WO2020164185A1 - 五自由度变胞式电磁振动试验台 - Google Patents

五自由度变胞式电磁振动试验台 Download PDF

Info

Publication number
WO2020164185A1
WO2020164185A1 PCT/CN2019/083399 CN2019083399W WO2020164185A1 WO 2020164185 A1 WO2020164185 A1 WO 2020164185A1 CN 2019083399 W CN2019083399 W CN 2019083399W WO 2020164185 A1 WO2020164185 A1 WO 2020164185A1
Authority
WO
WIPO (PCT)
Prior art keywords
swing
support
electromagnet
moving platform
freedom
Prior art date
Application number
PCT/CN2019/083399
Other languages
English (en)
French (fr)
Inventor
王成军
沈豫浙
胡海霞
胡标
茅卫东
陶永舒
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Publication of WO2020164185A1 publication Critical patent/WO2020164185A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/06Multidirectional test stands
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention belongs to the technical field of mechanical environment test equipment, and particularly relates to a five-degree-of-freedom metamorphic electromagnetic vibration test bench.
  • the vibration test bench mainly simulates the various shock and vibration environments experienced by the product in the process of manufacturing, loading, unloading, assembly, transportation and use, to determine the product’s adaptability to various environmental vibrations, and to evaluate the integrity of its structural devices for testing
  • the quality of the product provides a basis.
  • the vibration test bench needs to make a series of controllable vibration simulations in the vibration experiment to test whether the product can withstand the test of transportation or vibration environment factors during the life cycle. It can also determine the required standards for the design and function of the vibration test bench.
  • Vibration test benches are widely used in the research, development, quality control and manufacturing of various industries such as aerospace, automotive, power electronics, optoelectronics, optoelectronics, petrochemicals, toys, etc. With the different use environments and the improvement of simulation fidelity requirements, the requirements for the vibration freedom of the test bench are getting higher and higher, and the demand for multi-degree-of-freedom vibration test benches with more than three vibration degrees of freedom is increasing.
  • the existing vibration test devices are divided into mechanical vibration test benches and electromagnetic vibration test benches.
  • the existing mechanical vibration test benches have simple structure and low cost, they have defects such as single vibration mode, low vibration frequency, and low acceleration.
  • different vibration frequencies are used, and the safety protection of the vibration device is not strong, which poses a certain safety threat to the vibration test bench and the operators.
  • the electromagnetic vibration table is designed based on the principle of electromagnetic induction.
  • the electromagnetic vibration test table has become a widely used mechanical environment test equipment due to its wide frequency range and low waveform distortion.
  • the widely used electromagnetic vibration test bench has a frequency range of up to 2000 Hz, a wide dynamic range, and is easy to realize automatic or manual control.
  • the acceleration waveform is good, suitable for generating random waves, and can obtain larger acceleration.
  • the existing patent documents have proposed some solutions.
  • the Chinese patent application number 201820909519.5 discloses a three-axis vibration fatigue test bench, which is composed of a base, an X-direction workbench, a Y-direction workbench, and a Z-direction workbench.
  • the vibration table uses hydraulic actuators as power and loads. High, through the X-direction workbench, Y-direction workbench, Z-direction workbench independent vibration or three-axis linkage, it can simulate more kinds of road conditions.
  • the disadvantage is that the vibration frequency is low and the hydraulic system is prone to leakage.
  • the Chinese patent with application number 201820196523.1 discloses a mechanical vibration test bench, which is composed of components such as a power box, a drive gear, a connection piece, and a spring. It can use different vibration frequencies at the same time, but the excitation frequency is low and the adjustment range is small.
  • the Chinese patent application number 201810767591.3 discloses an active vibration control test bench, which includes a bottom plate, two optical axes, a door-shaped bracket located between the two optical axes, and an adjustable motor vibration device. The inertial vibration exciter can only be used to achieve Unidirectional vibration cannot simulate vibration and shock in complex environments.
  • the Chinese patent with the application number 201710127751.3 discloses a random vibration test bench. The vibration platform is supported on a bracket by springs.
  • Exciting devices are set in the X, Y, and Z directions of the vibration platform, and a force transmission rod is used. Acting on the vibrating platform to generate random vibrations can only generate three vibration degrees of freedom, and the vibration controllability in all directions is poor.
  • the Chinese patent with application number 201810013953.X discloses a high-frequency excitation grounding device test bench, the core part of which is a mechanical loading mechanism consisting of a gantry frame assembly, a grounding device test box, a high-frequency electromagnetic exciter and a suspension drive motor The system assembly adopts high-frequency electromagnetic exciter to excite, but the vibration freedom is too little.
  • the existing three-degree-of-freedom electromagnetic vibration test bench mostly adopts an integral series structure.
  • the vibration in the three directions of X, Y, and Z is realized by three parts from bottom to top. Not only the height of the test bench is larger, but also Costly.
  • the existing support methods of electromagnetic vibration test benches mostly use cylindrical spring support, suspension support, or straight spring support.
  • the existing electromagnetic vibration test bench has technical problems such as less vibration freedom, unreasonable support mode, poor controllability of vibration direction and parameters, and high energy consumption.
  • the existing vibration The test bench has been difficult to meet the needs of product vibration testing and other related multi-degree-of-freedom excitation research. It is urgent to develop a test platform with large test load, multiple vibration degrees of freedom, high vibration frequency, vibration decoupling in all directions, vibration directions and parameters Multi-degree-of-freedom electromagnetic vibration test bench with high controllability.
  • the purpose of the present invention is to provide a five-degree-of-freedom metamorphic electromagnetic vibration test bench against the deficiencies of the prior art, which can be used for large loads, many vibration degrees of freedom, high vibration frequency, vibration decoupling in all directions, vibration directions and Multi-degree-of-freedom high-frequency vibration testing and research with high parameter controllability improves the accuracy and reliability of vibration testing, reduces equipment and research and development costs, and can overcome the defects of the existing technology.
  • a five-degree-of-freedom metamorphic electromagnetic vibration test bench including a support base, a three-degree-of-freedom flexible support, an X-direction excitation device, a Y-direction excitation device, a Z-direction excitation device, a primary moving platform, and a swing excitation device , Slewing device and test bench.
  • the support base includes a base, an X-direction electromagnet support and a Y-direction electromagnet support, which are used to support and install a three-degree-of-freedom flexible support, an X-direction excitation device, a Y-direction excitation device, and a Z-direction excitation device .
  • X-direction electromagnet support and Y-direction electromagnet support There are two sets of X-direction electromagnet support and Y-direction electromagnet support, and they are arranged symmetrically on the side of the base respectively.
  • the bottoms of the X-direction electromagnet support and Y-direction electromagnet support are both fixedly connected to the base;
  • the lower end of the bracket is fixedly connected to the base, and the upper end is fixedly connected to the first-stage movable platform.
  • the X-direction excitation device is located between the first stage moving platform and the support base, the number of the X-direction excitation device is two, and the two sets of X-direction excitation devices are symmetrically arranged on both sides of the X direction above the base , Used to drive the first stage moving platform and test bench to produce X-direction reciprocating vibration.
  • the Y-direction excitation device is located between the primary moving platform and the support base, the number of the Y-direction excitation device is two, and the two sets of Y-direction excitation devices are symmetrically arranged on both sides of the Y direction above the base , Used to drive the first-stage moving platform and test bench to produce Y reciprocating vibration.
  • the Z-direction excitation device is located between the base and the first-stage moving platform, and includes a Z-direction electromagnet and a Z-direction adsorption bracket, which is used to drive the first-stage moving platform and the test bench to generate Z-direction reciprocating vibration.
  • the bottom of the Z-direction electromagnet is fixedly installed at the center position above the base
  • the Z-direction adsorption bracket is located directly above the Z-direction electromagnet
  • the top of the Z-direction electromagnet is fixedly installed below the first stage moving platform.
  • the swing excitation device is located between the first-stage movable platform and the slewing device, and is used to drive the test bench to swing back and forth around an axis parallel to the X direction.
  • the lower end of the slewing device is fixedly installed on the swing excitation device for driving the test workbench to rotate, thereby adjusting the relative swing direction of the test workbench when the swing excitation device is working.
  • the test bench fixedly installed on the top of the slewing device is the final output end of the present invention that generates vibration, and is used to fix and install objects that require vibration testing.
  • the swing excitation device is installed above the primary movable platform and includes a secondary movable platform, a supporting hinge, a locking device, a swing reset device and a swing electromagnet.
  • the two-stage moving platform is provided with a motor mounting hole and a transmission shaft mounting hole; two swing electromagnets are arranged in parallel on the upper side of the first-stage moving platform, and the bottom is fixedly connected with the first-stage moving platform , Used to drive the secondary moving platform and the test workbench to reciprocate around the axis of the supporting hinge;
  • the number of supporting hinges is two, and the two supporting hinges are arranged coaxially and symmetrically between the secondary moving platform and the primary moving platform , And are located on the side adjacent to the swing electromagnet, the upper and lower ends of the supporting hinge are respectively fixedly connected with the secondary moving platform and the primary moving platform; the upper and lower ends of the locking device are respectively connected with the secondary moving platform ,
  • the first-stage movable platform is fixedly connected and is located in the middle position
  • the three-degree-of-freedom flexible support includes a rigid bottom support, a Y-direction deforming leaf spring and an X-direction deforming leaf spring.
  • the lower end of the rigid bottom bracket is fixedly installed on the base for fixing and installing the Y-direction deformable leaf spring;
  • the lower end of the Y-direction deformable leaf spring is fixedly connected with the upper end of the rigid bottom bracket, and the The upper end of the Y-deformed leaf spring is fixedly connected with the lower end of the X-deformed leaf spring, and the upper end of the X-deformed leaf spring is connected with the first-stage movable platform by screws.
  • the Y-direction deformed leaf spring can make the first-stage movable platform and the test workbench move back and forth in Y-direction relative to the support base.
  • the X-direction deformation leaf spring is in the X-direction excitation device.
  • the first-stage movable platform and the test workbench can move back and forth in X direction relative to the support base, and the Y-direction deformation leaf spring and X-direction deformation leaf spring can also make the first-level movable platform and The test table moves back and forth in Z direction relative to the support base.
  • the lower end of the Y-deformed leaf spring is connected to the rigid bottom bracket by hot riveting or screws, and the joint is reinforced by friction stir welding.
  • the upper end of the Y-deformed leaf spring is connected to the X
  • the lower end of the deformable leaf spring is connected by a dual connection method of hot riveting and friction stir welding.
  • the X-direction excitation device includes an X-direction adsorption bracket, an X-direction electromagnet, an X-direction reset device and an X-direction reset support.
  • the top of the X-direction adsorption bracket is fixedly connected to the first-stage moving platform, and the X-direction electromagnet is fixedly installed on one side of the X-direction electromagnet support for adsorbing the X-direction adsorption support.
  • the X-direction reciprocating vibration of the platform and the test workbench provides power; the two ends of the X-direction reset device are respectively fixedly connected with the X-direction adsorption bracket and the X-direction reset support, which are the first-stage moving platform and the test workbench in the X direction.
  • Reset provides power.
  • the Y-direction excitation device includes a Y-direction adsorption bracket, a Y-direction electromagnet, a Y-direction reset device and a Y-direction reset support.
  • the top of the Y-direction adsorption bracket is fixedly connected to the first-stage moving platform, and the Y-direction electromagnet is fixedly installed on one side of the Y-direction electromagnet support, and is used for adsorbing the Y-direction adsorption support.
  • the Y-direction reciprocating vibration of the platform and the test workbench provides power; the two ends of the Y-direction resetting device are respectively fixedly connected with the Y-direction adsorption support and the Y-direction reset support, which are the first-stage moving platform and the test workbench in the Y direction. Reset provides power.
  • the X-direction reset device includes an X-direction double universal joint, an X-direction return spring, and an X-direction adjusting screw.
  • the X-direction double universal joint is used to connect the X-direction return spring and the X-direction adsorption bracket, and make the X-direction return device have the freedom of movement in the Y and Z directions.
  • the Y-direction reset device includes a Y-direction double universal joint, a Y-direction return spring, and a Y-direction adjusting screw.
  • the Y-direction double universal joint is used to connect the Y-direction return spring and the Y-direction adsorption bracket, and make Y
  • the return device has X-direction and Z-direction freedom of movement, one end of the Y-direction double universal joint is connected with the Y-direction suction bracket by a screw, and the other end is connected with the Y-direction return spring by a screw;
  • the Y-direction return spring is used to provide power for the Y-direction resetting of the Y-direction suction bracket and the first stage moving platform;
  • one end of the Y-direction adjusting screw is connected with the Y-direction return spring by a bolt, and the Y-direction adjusting screw
  • the other end is connected with the Y-direction reset bracket through bolts.
  • the bottoms of the X-direction reset bracket and the Y-direction reset bracket are connected to the base by welding or bolt connection.
  • the locking device includes a locking support, a left clamping jaw, a right clamping jaw, a guide post, a driving screw and a T-shaped chuck.
  • the bottom of the locking support is fixedly connected to the first-stage movable platform, and the left and right ear seats are respectively provided on the left and right sides of the lower end of the locking support for installing guide posts and driving
  • the driving screw is a left and right double screw threaded screw, used to drive the left jaw
  • the right clamping jaw realizes clamping or unclamping.
  • the left half of the drive screw is provided with a left-hand thread
  • the right half of the drive screw is provided with a right-hand thread.
  • the two ends of the drive screw are respectively installed on the left In the ear seat and the right ear seat, and are connected with the left ear seat and the right ear seat through bearings, adjustment knobs are also provided at both ends of the driving screw; the left and right jaws are arranged in T-shaped
  • the two sides of the chuck are used to clamp the T-shaped chuck.
  • the left and right jaws are connected with the drive screw through the left and right threads respectively.
  • the left and right jaws and the guide post are all connected by the cylindrical pair Are connected; the top of the T-shaped chuck is fixedly connected with the secondary moving platform.
  • Both the left and right sides of the T-shaped chuck are provided with clamping grooves, and the inner sides of the left and right clamping jaws are provided with clamping teeth matched with the clamping grooves.
  • the swing reset device includes a swing reset spring and a swing adjustment screw.
  • the upper end of the swing return spring is fixed under the two-stage movable platform by screws to provide power for the return of the second-stage movable platform when swinging, and the lower end of the swing return spring is fixedly connected with the upper end of the swing adjustment screw;
  • the lower end of the swing adjusting screw is connected with the first-stage movable platform through threads, and is used to adjust the return spring force and swing amplitude of the second-stage movable platform when swinging.
  • the slewing device includes a slewing seat, a slewing body, an inner gear ring, a driving gear, a transmission shaft, a transmission gear, a driving gear and a slewing motor.
  • the lower end of the slewing seat is fixedly installed above the two-stage movable platform by screws to support and install the slewing body, and the upper end of the slewing body is connected with the test table by screws. It is connected with the slewing seat through a supporting bearing set.
  • the inner gear ring is fixedly installed inside the revolving body by screws, and the driving gear is fixedly installed at the upper end of the transmission shaft and is internally meshed with the inner gear ring for driving the inner gear ring and the revolving body to rotate.
  • the transmission gear is fixedly installed at the lower end of the transmission shaft, and the transmission shaft is placed in the transmission shaft installation hole of the two-stage movable platform, and is connected with the second-stage movable platform through a bearing.
  • the slewing motor is placed in the motor mounting hole of the two-stage moving platform, and is connected with the two-stage moving platform by screws, and is used to provide power for the rotation of the driving gear, and then drive the rotating body to rotate relative to the rotating base.
  • the driving gear is fixedly installed on the output shaft of the slewing motor and kept externally engaged with the transmission gear for driving the transmission gear to rotate with the transmission shaft; the driving gear is connected with the output shaft of the slewing motor through a flat key, The end of the output shaft of the swing motor is also provided with a shaft end retaining ring, and it is fixedly connected with the output shaft of the swing motor to play the role of axial positioning.
  • An outer cover is provided on the outside of the support seat, the three-degree-of-freedom flexible support, the X-direction vibration excitation device, the Y-direction vibration excitation device and the swing excitation device, and handles are also provided on the left and right sides of the outer cover.
  • the present invention is also provided with a controller, and the controller is connected with the X-direction electromagnet, the Y-direction electromagnet, the Z-direction electromagnet, the swing electromagnet and the rotary motor through a power cable and a signal cable.
  • the support bearing set in the above-mentioned slewing device includes a radial bearing and two thrust bearings, and the two thrust bearings are respectively arranged at the upper and lower ends of the radial bearing.
  • the radial bearing Cylindrical roller radial bearings or radial composite bearings are used, and cylindrical roller thrust bearings or axial composite bearings are used as thrust bearings.
  • the slewing motor in the above slewing device adopts a servo deceleration motor, a hydraulic servo motor, or a pneumatic servo motor.
  • the object to be tested When in use, the object to be tested is fixedly installed on the test workbench, the degree of freedom of vibration and the specific vibration mode of the present invention are determined according to the needs of the vibration test work, and then the X-direction excitation device, Y-direction excitation device, and Z-direction are selected.
  • the test workbench Under the action of X-direction excitation device, Y-direction excitation device, and Z-direction excitation device, the test workbench realizes linear reciprocating vibration in three directions of X, Y, and Z respectively. Release the locking device and start the swing electromagnet. Realize the reciprocating swing of the test table around the axis of the supporting hinge.
  • the invention can realize linear reciprocating vibration in three directions of X, Y, Z, reciprocating swing around the axis parallel to the X axis, and rotation around the axis parallel to the Z axis, totaling five degrees of freedom of movement.
  • the test table is relative to the support base.
  • the reciprocating swing can be adjusted in real time under the action of the slewing device.
  • the two-stage movable platform can be locked with the first-stage movable platform through a locking device.
  • Each vibration degree of freedom of the test bench is relatively independent and adjustable, with complete decoupling.
  • the beneficial effect of the present invention is that compared with the prior art, the present invention not only has more vibration degrees of freedom, and each vibration degree of freedom is independently adjustable without interfering with each other, but also the reciprocating swing direction and angle of the test bench can be adjusted, thereby realizing The degree of freedom of movement and the metamorphosis of the structure can meet the needs of more vibration testing work; the invention also has the advantages of high vibration frequency, compact structure, small equipment occupation space, low production cost, high safety, simple operation and maintenance, etc. It can overcome the defects of the prior art.
  • Figure 1 is a schematic diagram of the overall structure of the present invention.
  • Figure 2 is a schematic diagram of the main structure of the present invention (excluding the rotating device and the test bench);
  • Fig. 3 is a schematic diagram of the assembly relationship between the first-stage movable platform, the three-degree-of-freedom flexible support, and the Z-direction excitation device of the present invention
  • Figure 4 is a schematic diagram of the structure of the slewing device of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the X-direction excitation device of the present invention.
  • Figure 6 is a schematic diagram of the structure of the Y-direction excitation device of the present invention.
  • Figure 7 is a schematic structural diagram of the locking device of the present invention.
  • Figure 8 is a schematic structural diagram of the driving screw in the locking device of the present invention.
  • FIG. 9 is a schematic structural diagram of the swing reset device of the present invention.
  • Figure 10 is a schematic diagram of the working state of the present invention.
  • a five-degree-of-freedom metamorphic electromagnetic vibration test bench includes a support base 1, a three-degree-of-freedom flexible support 2, an X-direction excitation device 3, and a Y-direction excitation Vibration device 4, Z-direction excitation device 5, first-stage movable platform 6, swing excitation device 7, slewing device 8, and test bench 9.
  • the supporting base 1 includes a base 11, an X-direction electromagnet support 12 and a Y-direction electromagnet support 13, which are used to support and install a three-degree-of-freedom flexible support 2, an X-direction excitation device 3, and a Y-direction excitation device 4 and Z-direction excitation device 5.
  • X-direction electromagnet support 12 and Y-direction electromagnet support 13 There are two sets of X-direction electromagnet support 12 and Y-direction electromagnet support 13 and they are arranged symmetrically on the side of base 11 respectively.
  • the bottoms of X-direction electromagnet support 12 and Y-direction electromagnet support 13 are fixedly connected to base 11 ;
  • Between the base 11 and the first-level movable platform 6 are provided with four three-degree-of-freedom flexible supports 2 for installing and supporting the first-level movable platform 6, and the three-degree-of-freedom flexible support 2 also has an X-direction The ability of elastic deformation in the Y and Z directions.
  • the lower end of the three-degree-of-freedom flexible support 2 and the base 11 are fixedly connected by welding or screw connection, and the upper end is connected with the primary movable platform 6 by screws.
  • the X-direction excitation device 3 is located between the first stage moving platform 6 and the support base 1, the number of the X-direction excitation device 3 is two, and the two sets of X-direction excitation devices 3 are symmetrically arranged on the base 11
  • the upper two sides in the X direction are used to drive the first-stage moving platform 6 and the test workbench 9 to generate X-direction reciprocating vibration.
  • the Y-direction excitation device 4 is located between the first-stage movable platform 6 and the support base 1, the number of the Y-direction excitation device 4 is two, and the two sets of Y-direction excitation devices 4 are symmetrically arranged on the base 11
  • the upper two sides in the Y direction are used to drive the first-stage movable platform 6 and the test workbench 9 to produce Y-direction reciprocating vibration.
  • the Z-direction excitation device 5 is located between the base 11 and the first-stage moving platform 6, and includes a Z-direction electromagnet 51 and a Z-direction adsorption bracket 52, which are used to drive the first-stage moving platform 6 and the test workbench 9 to generate a Z-direction Reciprocating vibration.
  • the bottom of the Z-direction electromagnet 51 is fixedly installed at the center position above the base 11
  • the Z-direction adsorption bracket 52 is located directly above the Z-direction electromagnet 51
  • the top of the Z-direction electromagnet is fixedly installed on the first stage moving platform. 6 below.
  • the swing excitation device 7 is located between the first-stage movable platform 6 and the slewing device 8, and is used to drive the test table 9 to swing back and forth around an axis parallel to the X direction.
  • the lower end of the slewing device 8 is fixedly installed on the swing excitation device 7 for driving the test workbench 9 to rotate, thereby adjusting the relative swing direction of the test workbench 9 when the swing excitation device 7 is in operation.
  • the test bench 9 fixedly installed on the top of the rotating device 8 is the final output end of the present invention that generates vibration, and is used to fix and install objects that require vibration testing.
  • the swing excitation device 7 is installed above the primary movable platform 6, and includes a secondary movable platform 71, a supporting hinge 72, a locking device 73, a swing Reset device 74 and swing electromagnet 75.
  • the two-stage moving platform 71 is provided with a motor mounting hole 711 and a transmission shaft mounting hole 712; two swing electromagnets 75 are arranged in parallel on the upper side of the first-stage moving platform 6, and the bottom is connected to the first stage.
  • the movable platform 6 is fixedly connected to drive the secondary movable platform 71 and the test workbench 9 to reciprocate around the axis of the supporting hinge 72; the number of the supporting hinge 72 is two, and the two supporting hinges 72 are arranged coaxially and symmetrically.
  • the upper and lower ends of the supporting hinge 72 are respectively fixedly connected to the second stage moving platform 71 and the first stage moving platform 6;
  • the upper and lower ends of the locking device 73 are respectively fixedly connected to the secondary moving platform 71 and the primary moving platform 6, and are located in the middle position on the opposite side of the swing electromagnet 75, and are used to restrict or permit the secondary moving platform 71 And the reciprocating swing of the test workbench 9;
  • two swing reset devices 74 are symmetrically arranged on both sides of the locking device 73 to provide a reset force for the swing electromagnet 75 to drive the secondary movable platform 71 and the test workbench 9 to swing back and forth, so
  • the upper end of the swing reset device 74 is fixedly connected with the second-stage movable platform 71 by screws, and the lower end of the swing reset device 74 is connected with the first-stage movable platform 6 by threads.
  • the three-degree-of-freedom flexible support 2 includes a rigid bottom support 21, a Y-direction deforming leaf spring 22 and an X-direction deforming leaf spring 23.
  • the lower end of the rigid bottom bracket 21 is fixedly installed on the base 11 by welding or screw connection for fixing and installing the Y-deformed leaf spring 22; the lower end of the Y-deformed leaf spring 22 is connected to the rigid
  • the upper end of the bottom bracket 21 is fixedly connected, the upper end of the Y-direction deforming leaf spring 22 is fixedly connected to the lower end of the X-direction deforming leaf spring 23, and the upper end of the X-direction deforming leaf spring 23 is connected to the primary movable platform 6 by screws Phase connection.
  • the Y-direction deformed leaf spring 22 can make the first-stage movable platform 6 and the test workbench 9 reciprocate in the Y direction relative to the support base 1 under the action of the Y-direction excitation device 4, the X-direction deformed leaf spring 23 Under the action of the X-direction excitation device 3, the first-stage movable platform 6 and the test bench 9 can reciprocate in the X direction relative to the support base 1, and the Y-direction deformation leaf spring 22 and the X-direction deformation leaf spring 23 are excited in the Z direction. Under the action of the device 5, the primary movable platform 6 and the test workbench 9 can also move back and forth in Z direction relative to the support base 1.
  • the lower end of the Y-deformation leaf spring 22 is connected with the rigid bottom bracket 21 by hot riveting or screws, and the joint is reinforced by friction stir welding around the joint, so The upper end of the Y-direction deformed leaf spring 22 and the lower end of the X-direction deformed leaf spring 23 are connected by a dual connection of hot riveting and friction stir welding.
  • the X-direction excitation device 3 includes an X-direction adsorption bracket 31, an X-direction electromagnet 32, an X-direction reset device 33 and an X-direction reset support 34.
  • the top of the X-direction adsorption bracket 31 is fixedly connected to the primary movable platform 6 by welding or bolt connection, and the X-direction electromagnet 32 is fixedly installed on one side of the X-direction electromagnet bracket 12.
  • the bracket 34 is fixedly connected to provide power for the resetting of the first-stage movable platform 6 and the test workbench 9 in the X direction.
  • the Y-direction excitation device 4 includes a Y-direction adsorption bracket 41, a Y-direction electromagnet 42, a Y-direction reset device 43 and a Y-direction reset support 44.
  • the top of the Y-direction adsorption bracket 41 is fixedly connected to the primary movable platform 6 by welding or bolt connection, and the Y-direction electromagnet 42 is fixedly installed on one side of the Y-direction electromagnet bracket 13.
  • the bracket 44 is fixedly connected to provide power for the resetting of the first-stage movable platform 6 and the test workbench 9 in the Y direction.
  • the bottoms of the X-direction reset bracket 34 and the Y-direction reset bracket 44 are connected to the base 11 by welding or bolt connection.
  • the X-direction reset device 33 includes an X-direction double universal joint 331, an X-direction return spring 332, and an X-direction adjusting screw 333.
  • the X-direction double universal joint 331 is used to connect the X-direction return spring 332 and the X-direction adsorption bracket 31, and enable the X-direction return device 33 to have the freedom of movement in the Y and Z directions.
  • One end of the universal joint 331 is connected with the X-direction adsorption bracket 31 by a screw, and the other end is connected with the X-direction return spring 332 by a screw; the X-direction return spring 332 is used for the X-direction adsorption support 31 and the first stage
  • the X-direction resetting of the movable platform 6 provides power; one end of the X-direction adjusting screw 333 is connected with the X-direction return spring 332 by a bolt, and the other end of the X-direction adjusting screw 333 is connected with the X-direction return bracket 34 by a bolt Phase connection.
  • the Y-direction reset device includes a Y-direction double universal joint, a Y-direction return spring, and a Y-direction adjusting screw.
  • the Y-direction double universal joint 431 is used to connect The Y-direction return spring 432 and the Y-direction suction bracket 41 enable the Y-direction return device 43 to have the freedom of movement in the X and Z directions.
  • One end of the Y-direction double universal joint 431 and the Y-direction suction support 41 are connected by screws.
  • the other end is connected with the Y-direction return spring 432 through a screw; the Y-direction return spring 432 is used to provide power for the Y-direction suction bracket 41 and the Y-direction return of the first stage moving platform 6; the Y-direction One end of the adjusting screw 433 is connected with the Y-direction return spring 432 by a bolt, and the other end of the Y-direction adjusting screw 433 is connected with the Y-return bracket 44 by a bolt.
  • the locking device 73 includes a locking support 731, a left clamping jaw 732, a right clamping jaw 733, a guide post 734, a drive screw 735 and a T-shaped chuck 736 .
  • the bottom of the locking support 731 is connected with the first-stage movable platform 6 by screws, and a left ear seat 7311 and a right ear seat 7312 are respectively provided on the left and right sides of the lower end of the locking support 731, It is used to install the guide post 734 and the driving screw 735; there are two guide posts 734, and the two ends of the guide post 734 are symmetrically arranged and installed in the left ear seat 7311 and the right ear seat 7312; the driving screw 735 is left and right The double-threaded threaded screw is used to drive the left clamping jaw 732 and the right clamping jaw 733 to achieve clamping or unclamping.
  • the left half of the driving screw 735 is provided with a left-hand thread 7351.
  • the half section is provided with a right-hand thread 7352.
  • the two ends of the driving screw 735 are respectively installed in the left ear seat 7311 and the right ear seat 7312, and are connected with the left ear seat 7311 and the right ear seat 7312 through bearings.
  • the two ends of the driving screw 735 are also provided with adjusting knobs 737, and the adjusting knob 737 and the driving screw 735 are connected by splines; the left clamping jaw 732 and the right clamping jaw 733 are arranged on the T-shaped chuck 736 The two sides of the chuck are used to clamp the T-shaped chuck 736.
  • the left clamping jaw 732, the right clamping jaw 733 and the driving screw 735 are respectively connected by left and right threads, and the left clamping jaw 732, the right clamping jaw 733 and the guide post 734 are all connected by a cylinder pair; the top of the T-shaped chuck 736 is connected with the secondary movable platform 71 by screws.
  • the left and right sides of the T-shaped chuck 736 are provided with clamping grooves 7361, and the inner sides of the left clamping jaw 732 and the right clamping jaw 733 are provided with clamping teeth matching the clamping grooves 7361.
  • the swing reset device 74 includes a swing return spring 741 and a swing adjustment screw 742.
  • the upper end of the swing return spring 741 is fixed under the two-stage movable platform 71 by screws to provide power for the return of the second-stage movable platform 71 when swinging.
  • the lower end of the swing return spring 741 is connected to the swing adjustment screw 742.
  • the upper end is fixedly connected; the lower end of the swing adjustment screw 742 is connected with the first-stage movable platform 6 through threads, and is used to adjust the return spring force and swing amplitude of the second-stage movable platform 71 when swinging.
  • the rotating device 8 includes a rotating seat 81, a rotating body 82, an inner ring gear 83, a driving gear 84, a transmission shaft 85, a transmission gear 86, a driving gear 87 and a rotation motor 88.
  • the lower end of the revolving base 81 is fixedly installed above the secondary movable platform 71 by screws to support and install the revolving body 82, and the upper end of the revolving body 82 is connected with the test table 9 by screws,
  • the revolving body 82 and the revolving seat 81 are connected through a supporting bearing set.
  • the inner gear 83 is fixedly installed inside the revolving body 82 by screws, and the drive gear 84 is fixedly installed on the upper end of the transmission shaft 85 and keeps internal meshing with the inner gear 83 for driving the inner gear 83 And the rotating body 82 rotates.
  • the transmission gear 86 is fixedly installed at the lower end of the transmission shaft 85, and the transmission shaft 85 is placed in the transmission shaft mounting hole 712 of the two-stage movable platform 71, and is connected with the second-stage movable platform 71 through bearings.
  • the slewing motor 88 is placed in the motor mounting hole 711 of the two-stage moving platform 71, and is connected with the two-stage moving platform 71 by screws, and is used to provide power for the rotation of the driving gear 87, thereby driving the rotating body 82 to rotate relatively
  • the seat 81 rotates.
  • the driving gear 87 is fixedly installed on the output shaft of the slewing motor 88, and is kept externally meshed with the transmission gear 86, for driving the transmission gear 86 and the transmission shaft 85 to rotate; the driving gear 87 and the output of the slewing motor 88
  • the shafts are connected by a flat key, and a shaft end retaining ring is also provided at the end of the output shaft of the rotary motor 88, and is fixedly connected with the output shaft of the rotary motor 88 to play the role of axial positioning.
  • an outer cover 14 is provided on the outside of the support base 1, the three-degree-of-freedom flexible support 2, the X-direction excitation device 3, the Y-direction excitation device 4 and the swing excitation device 7. , There are handles 15 on the left and right sides of the outer cover.
  • the present invention is also provided with a controller 10, the controller 10 through the power cable 101, signal cable 102 and X-direction electromagnet 32, Y-direction electromagnet 42, Z-direction electromagnet 51, swing electromagnet 75 and rotary The motor 88 is connected.
  • the support bearing set described in the above-mentioned slewing device 8 includes a radial bearing and two thrust bearings, and the two thrust bearings are respectively arranged at the upper and lower ends of the radial bearing, so
  • the radial bearings mentioned above adopt cylindrical roller radial bearings or radial composite bearings
  • the thrust bearings adopt cylindrical roller thrust bearings or axial composite bearings.
  • the slewing motor 88 described in the slewing device 8 adopts a servo deceleration motor, a hydraulic servo motor, or a pneumatic servo motor.
  • the object to be tested is fixedly installed on the test workbench 9, the degree of freedom of vibration and the specific vibration mode of the present invention are determined according to the needs of the vibration test work, and then the X-direction excitation device 3 and the Y-direction vibration device 4 are selected. , Z-direction vibration excitation device 5, swing excitation device 7 and rotation device 8 specific combined working mode.
  • the test workbench 9 realizes the linear reciprocating vibration in the three directions of X, Y, and Z under the action of the X-direction vibration excitation device 3, the Y-direction vibration device 4, and the Z-direction vibration device 5, and is released by rotating the adjustment knob 737
  • the locking device 73 and activating the swing electromagnet 75 can realize the reciprocating swing of the test workbench 9 around the axis of the supporting hinge 72.
  • the present invention can realize linear reciprocating vibration in the three directions of X, Y, Z, reciprocating swing around the axis parallel to the X axis, and rotation around the axis parallel to the Z axis, totaling five degrees of freedom.
  • the test workbench 9 is relatively supported
  • the reciprocating swing of the seat 1 can be adjusted in real time under the action of the rotating device 8.
  • the adjusting knob 737 can be rotated, and the second-stage movable platform 71 and the first-stage movable platform 6 are locked by the locking device 73.

Abstract

一种五自由度变胞式电磁振动试验台,包括支撑座(1)、三自由度柔性支架(2)、X向激振装置(3)、Y向激振装置(4)、Z向激振装置(5)、一级动平台(6)、摆动激振装置(7)、回转装置(8)和测试工作台(9)。X向激振装置(3)、Y向激振装置(4)、Z向激振装置(5)分别用于产生X、Y、Z三个方向的往复振动,摆动激振装置(7)、回转装置(8)分别用于驱动测试工作台(9)产生往复摆动和旋转。试验台可实现五个自由度的振动,各振动自由度独立可调,且测试工作台(9)的往复摆动方向和角度可调,实现了自由度和结构的变胞,可满足更多的振动测试工作的需要,还具有振动频率高,结构紧凑,设备占用空间小、生产成本低、安全性高、操作维护简便等优点。

Description

五自由度变胞式电磁振动试验台 技术领域
本发明属于力学环境试验设备技术领域,特别涉及一种五自由度变胞式电磁振动试验台。
背景技术
振动试验台主要是模拟产品在制造、装卸、组装运输及使用过程中遭受的各种冲击振动环境,用以确定产品对各种环境振动的适应性,并评定其结构装置的完好性,为检测产品的质量提供依据。振动试验台需要在振动实验中作一系列可控制的振动模拟,测试产品在寿命周期内是否能承受运送或振动环境因素的考验,也能确定振动试验台设计及功能的要求标准。振动试验台广泛应用于航空航天、汽机车、电力电子、光机电、石油化工、玩具等各行各业的研究、开发、品管与制造。随着使用环境的不同和模拟逼真度要求的提高,对试验台的振动自由度的要求越来越高,具有三个振动自由度以上的多自由度振动试验台的需求越来越多。
现有的振动试验装置分为机械振动试验台和电磁振动试验台,但现有的机械振动试验台虽然结构简单、成本较低,但存在振动方式单一、振动频率低、加速度小等缺陷,不能同时使用不同的振动频率,且对振动装置的安全保护性不强,对振动试验台和操作人员都构成一定的安全威胁,同时还常会因为振动冲击力难以控制而影响试验效果。
电磁振动台是根据电磁感应原理设计的,电磁振动试验台由于其使用频率范围宽、波形失真度小已成为广泛使用的力学环境试验设备。目前使用广泛的电磁式振动试验台的频率范围最大可达2000Hz,动态范围宽,易于实现自动或手动控制,加速度波形良好,适合产生随机波,可得到较大的加速度。
针对现有振动试验设备中存在的一些技术难题,现有专利文献提出了一些解决方案。如申请号为201820909519.5的中国专利公开了一种三轴振动疲劳试验台,由底座、X向工作台、Y向工作台、Z向工作台构成,振动台采用液压式作动器为动力,负载高,通过X向工作台、Y向工作台、Z向工作台单独振动或三轴联动,可以模拟更多种路况场景,缺点是振动频率低,液压系统容易产生泄漏。申请号为201820196523.1的中国专利公开了一种机械振动试验台,由动力箱、驱动齿轮、连接件和弹簧等组件构成,能够同时使用不同的振动频率,但激振频率较低,调节范围小。申请号为201810767591.3的中国专利公开了一种振动主动控制试验台,包括底板、两光轴、位于两光轴之间的门形支架和可调式电机振动装置,采用惯性激振器,只能实现单方向振动,无法模拟复杂环境下的振动冲击。申请号为201710127751.3的中国专利公开了一种随机振动式试验台,振动平台通过弹簧支撑在支架上,在振动平台的X、Y、Z三个方向上分别设置激振装置,并通过传力杆作用于振动平台产生随机振动,只能产生三个振动自由度,且在各方向上的振动可控性差。申请号为201810013953.X的中国专利公开了一 种高频激振接地装置试验台,其核心部分机械加载机构由龙门框架总成、接地装置试验箱、高频电磁激振器和悬挂式驱动电机系统总成组成,采用高频电磁激振器激振,但振动自由度过少。现有的三自由度电磁振动试验台多采用整体串联式结构,X、Y、Z三个方向的振动分别由至下而上的三个部分实现,不仅试验台的高度尺寸较大,而且能耗高。此外,现有电磁振动试验台的支撑方式多采用圆柱弹簧支撑、悬挂支撑或直板弹簧支撑等支撑方式。
现有电磁振动试验台存在振动自由度少、支撑方式不合理,振动方向及参数可控性差以及能耗高等技术难题,随着振动测试对象对振动试验台振动参数要求的不断提高,现有振动试验台已经很难满足产品振动测试及其它有关多自由度激振研究的需要,迫切需要研制一种具有测试负载大、振动自由度多、振动频率高、各方向振动解耦、振动方向及参数可控性高的多自由度电磁振动试验台。
发明内容
本发明的目的是针对现有技术的不足,提供一种五自由度变胞式电磁振动试验台,能够用于大负载、振动自由度多、振动频率高、各方向振动解耦、振动方向及参数可控性高的多自由度高频振动测试与研究,提高振动测试的准确率和可靠性,降低设备和研发成本,可克服现有技术的缺陷。
本发明所要解决的技术问题采用以下技术方案来实现。
一种五自由度变胞式电磁振动试验台,包括支撑座、三自由度柔性支架、X向激振装置、Y向激振装置、Z向激振装置、一级动平台、摆动激振装置、回转装置和测试工作台。其中,所述的支撑座包括底座、X向电磁铁支架和Y向电磁铁支架,用于支撑和安装三自由度柔性支架、X向激振装置、Y向激振装置和Z向激振装置。X向电磁铁支架和Y向电磁铁支架均有两组,且分别对称布置在底座的侧面,X向电磁铁支架和Y向电磁铁支架的底部均与底座相固连;在底座与一级动平台之间设有四个三自由度柔性支架,用于安装与支撑一级动平台,且同时具有沿着X向、Y向和Z向产生弹性变形的能力,所述的三自由度柔性支架的下端与底座固连,其上端与一级动平台固连。所述的X向激振装置位于一级动平台与支撑座之间,所述的X向激振装置的数量为二,且两组X向激振装置对称布置在底座上方X向的两侧,用于驱动一级动平台和测试工作台产生X向往复振动。所述的Y向激振装置位于一级动平台与支撑座之间,所述的Y向激振装置的数量为二,且两组Y向激振装置对称布置在底座上方Y向的两侧,用于驱动一级动平台和测试工作台产生Y向往复振动。所述的Z向激振装置位于底座与一级动平台之间,包括Z向电磁铁和Z向吸附支架,用于驱动一级动平台和测试工作台产生Z向往复振动。其中,所述的Z向电磁铁的底部固定安装在底座上方的中心位置,所述的Z向吸附支架位于Z向电磁铁的正上方,且其顶部固定安装在一级动平台的下方。所述的摆动激振装置位于一级动平台与回转装置之间,用于驱动测试工作台产生绕平行于X向轴线的往复摆动。所述的回转装置的下端固定安装在摆动激振装置上,用于驱动测试工作台转 动,进而调节摆动激振装置工作时测试工作台的相对摆动方向。固定安装在回转装置顶部的测试工作台是本发明产生振动的最终输出端,用于固定和安装需要进行振动测试的物品。
所述的摆动激振装置安装在一级动平台的上方,包括二级动平台、支撑铰链、锁紧装置、摆动复位装置和摆动电磁铁。其中,在所述的二级动平台上设有马达安装孔和传动轴安装孔;两个摆动电磁铁平行布置在一级动平台的上方一侧,且其底部与一级动平台相固连,用于驱动二级动平台及测试工作台绕支撑铰链的轴线往复摆动;所述的支撑铰链的数量为二,两个支撑铰链同轴对称布置在二级动平台与一级动平台之间,且均位于摆动电磁铁相邻的一侧,支撑铰链的上下两端分别与二级动平台、一级动平台相固连;所述的锁紧装置的上下两端分别与二级动平台、一级动平台相固连,且位于摆动电磁铁的对面一侧中间位置,用于限制或许可二级动平台及测试工作台的往复摆动;两个摆动复位装置对称布置在锁紧装置的两侧,为摆动电磁铁驱动二级动平台及测试工作台往复摆动时提供复位力,所述的摆动复位装置的上端通过螺钉与二级动平台相固连,摆动复位装置的下端与一级动平台通过螺纹相连接。
所述的三自由度柔性支架包括刚性底支架、Y向变形板簧和X向变形板簧。其中,所述的刚性底支架的下端固定安装在底座上,用于固定和安装Y向变形板簧;所述的Y向变形板簧的下端与刚性底支架的上端相固连,所述的Y向变形板簧的上端与X向变形板簧的下端相固连,所述的X向变形板簧的上端与一级动平台通过螺钉相连接。所述的Y向变形板簧在Y向激振装置的作用下可使一级动平台与测试工作台相对支撑座产生Y向往复移动,所述的X向变形板簧在X向激振装置的作用下可使一级动平台与测试工作台相对支撑座产生X向往复移动,Y向变形板簧和X向变形板簧在Z向激振装置的作用下还可使一级动平台与测试工作台相对支撑座产生Z向往复移动。
优选地,所述的Y向变形板簧的下端与刚性底支架通过热铆或螺钉相连接,且在接头处四周通过搅拌摩擦焊接方式补强,所述的Y向变形板簧的上端与X向变形板簧的下端通过热铆和搅拌摩擦焊双重连接的方式相连接。
所述的X向激振装置包括X向吸附支架、X向电磁铁、X向复位装置和X向复位支架。其中,所述的X向吸附支架的顶部与一级动平台固连,所述的X向电磁铁固定安装在X向电磁铁支架的一侧,用于吸附X向吸附支架,为一级动平台及测试工作台的X向往复振动提供动力;所述的X向复位装置的两端分别与X向吸附支架、X向复位支架固连,为一级动平台及测试工作台在X向的复位提供动力。所述的Y向激振装置包括Y向吸附支架、Y向电磁铁、Y向复位装置和Y向复位支架。其中,所述的Y向吸附支架的顶部与一级动平台固连,所述的Y向电磁铁固定安装在Y向电磁铁支架的一侧,用于吸附Y向吸附支架,为一级动平台及测试工作台的Y向往复振动提供动力;所述的Y向复位装置的两端分别与Y向吸附支架、Y向复位支架固连,为一级动平台及测试工作台在Y向的复位提供动力。
所述的X向复位装置包括X向双万向节、X向复位弹簧、X向调节螺杆。其中,所述的X向双 万向节用于连接X向复位弹簧与X向吸附支架,并使X向复位装置具有Y向和Z向运动自由度,所述的X向双万向节的一端与X向吸附支架通过螺钉相连接,其另一端与X向复位弹簧通过螺钉相连接;所述的X向复位弹簧用于为X向吸附支架及一级动平台的X向复位提供动力;所述的X向调节螺杆的一端与X向复位弹簧通过螺栓相连接,所述的X向调节螺杆的另一端与X向复位支架通过螺栓相连接。所述的Y向复位装置包括Y向双万向节、Y向复位弹簧、Y向调节螺杆,所述的Y向双万向节用于连接Y向复位弹簧与Y向吸附支架,并使Y向复位装置具有X向和Z向运动自由度,所述的Y向双万向节的一端与Y向吸附支架通过螺钉相连接,其另一端与Y向复位弹簧通过螺钉相连接;所述的Y向复位弹簧用于为Y向吸附支架及一级动平台的Y向复位提供动力;所述的Y向调节螺杆的一端与Y向复位弹簧通过螺栓相连接,所述的Y向调节螺杆的另一端与Y向复位支架通过螺栓相连接。所述的X向复位支架与所述的Y向复位支架的底部通过焊接或螺栓连接的方式与底座相连接。
所述的锁紧装置包括锁紧支座、左夹爪、右夹爪、导柱、驱动丝杠和T型夹头。其中,所述的锁紧支座的底部与一级动平台固连,在所述的锁紧支座下端的左右两侧分别设有左耳座和右耳座,用于安装导柱和驱动丝杠;所述的导柱有两根,且其两端对称布置安装在左耳座和右耳座内;所述的驱动丝杠为左右双旋螺纹丝杠,用于驱动左夹爪、右夹爪实现夹紧或松开,在所述的驱动丝杠的左半段设有左旋螺纹,在驱动丝杠的右半段设有右旋螺纹,驱动丝杠的两端分别安装在左耳座和右耳座内,且与左耳座、右耳座均通过轴承相连接,在所述的驱动丝杠的两端还设有调节旋钮;左夹爪、右夹爪布置在T型夹头的两侧,用于夹紧T型夹头,左夹爪、右夹爪与驱动丝杠分别通过左螺纹、右螺纹相连接,左夹爪、右夹爪与导柱均通过圆柱副相连接;所述的T型夹头的顶部与二级动平台固连。在所述的T型夹头的左右两侧均设有卡槽,在左夹爪、右夹爪的内侧均设有与卡槽相配合的卡齿。
所述的摆动复位装置包括摆动复位弹簧和摆动调节螺杆。其中,所述的摆动复位弹簧的上端通过螺钉固定在二级动平台的下方,用于为二级动平台在摆动时的复位提供动力,摆动复位弹簧的下端与摆动调节螺杆的上端固连;所述的摆动调节螺杆的下端与一级动平台通过螺纹相连接,用于调节二级动平台在摆动时的复位弹簧力和摆动幅度。
所述的回转装置包括回转座、回转体、内齿圈、驱动齿轮、传动轴、传动齿轮、主动齿轮和回转马达。其中,所述的回转座的下端通过螺钉固定安装在二级动平台的上方,用于支撑与安装回转体,所述的回转体的上端与测试工作台通过螺钉相连接,所述的回转体与回转座之间通过支撑轴承组相连接。所述的内齿圈通过螺钉固定安装在回转体的内部,所述的驱动齿轮固定安装在传动轴的上端,且与内齿圈保持内啮合,用于驱动内齿圈及回转体转动。所述的传动齿轮固定安装在传动轴的下端,所述的传动轴置于二级动平台的传动轴安装孔中,且与二级动平台通过轴承相连接。所述的回转马达置于二级动平台的马达安装孔内,且与二级动平台通过螺钉相连接,用于为主动齿轮的转动提供动力,进而驱动回转体相对回转座转 动。所述的主动齿轮固定安装在回转马达的输出轴上,且与传动齿轮保持外啮合,用于驱动传动齿轮与传动轴转动;所述的主动齿轮与回转马达的输出轴通过平键相连接,在回转马达的输出轴的末端还设有轴端挡圈,且与回转马达的输出轴固连,起轴向定位的作用。
在支撑座、三自由度柔性支架、X向激振装置、Y向激振装置和摆动激振装置的外侧设有外罩壳,在所述的外罩壳的左右两侧还设有把手。本发明还设有控制器,所述的控制器通过电源线缆、信号线缆与X向电磁铁、Y向电磁铁、Z向电磁铁、摆动电磁铁及回转马达相连接。
优选地,在上述回转装置中所述的支撑轴承组,包括一个径向轴承和两个止推轴承,且两个止推轴承分别布置在径向轴承的上下两端,所述的径向轴承采用圆柱滚子径向轴承或径向复合轴承,止推轴承采用圆柱滚子止推轴承或轴向复合轴承。
优选地,在上述回转装置中所述的回转马达采用伺服减速电机或液压伺服马达或气动伺服马达。
使用时,将被测试物品固定安装在测试工作台上,根据振动测试工作需要确定本发明的振动自由度和具体执行的振动模式,进而选择X向激振装置、Y向激振装置、Z向激振装置、摆动激振装置和回转装置的具体组合工作模式。测试工作台在X向激振装置、Y向激振装置、Z向激振装置的作用下分别实现X、Y、Z三个方向的直线往复振动,松开锁紧装置,启动摆动电磁铁可实现测试工作台绕支撑铰链轴线的往复摆动。本发明最多可实现X、Y、Z三个方向的直线往复振动和绕平行于X向轴线的往复摆动,以及绕平行于Z向轴线的旋转共五个运动自由度,测试工作台相对支撑座的往复摆动可在回转装置的作用下实时调整。当不需要产生摆动时,可通过锁紧装置将二级动平台与一级动平台锁紧。测试工作台的各个振动自由度相对独立可调,具有完全解耦性。
本发明的有益效果是,与现有的技术相比,本发明不仅振动自由度多,各振动自由度独立可调,互不干涉,而且测试工作台的往复摆动方向和角度可调,实现了运动自由度和结构的变胞,可满足更多的振动测试工作的需要;本发明还具有振动频率高,结构紧凑,设备占用空间小、生产成本低、安全性高、操作维护简便等优点,可克服现有技术的缺陷。
附图说明
图1为本发明的总体结构示意图;
图2为本发明的主体结构(不含回转装置和测试工作台)示意图;
图3为本发明的一级动平台与三自由度柔性支架、Z向激振装置之间的装配关系示意图;
图4为本发明的回转装置的结构示意图;
图5为本发明的X向激振装置的结构示意图;
图6为本发明的Y向激振装置的结构示意图;
图7为本发明的锁紧装置的结构示意图;
图8为本发明的锁紧装置中驱动丝杠的结构示意图;
图9为本发明的摆动复位装置的结构示意图;
图10为本发明的工作状态示意图。
具体实施方式
为了使本发明所实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例和图示,进一步阐述本发明。
如图1、图2、图3和图10所示,一种五自由度变胞式电磁振动试验台,包括支撑座1、三自由度柔性支架2、X向激振装置3、Y向激振装置4、Z向激振装置5、一级动平台6、摆动激振装置7、回转装置8和测试工作台9。其中,所述的支撑座1包括底座11、X向电磁铁支架12和Y向电磁铁支架13,用于支撑和安装三自由度柔性支架2、X向激振装置3、Y向激振装置4和Z向激振装置5。X向电磁铁支架12和Y向电磁铁支架13均有两组,且分别对称布置在底座11的侧面,X向电磁铁支架12和Y向电磁铁支架13的底部均与底座11相固连;在底座11与一级动平台6之间设有四个三自由度柔性支架2,用于安装与支撑一级动平台6,且所述的三自由度柔性支架2同时具有沿着X向、Y向和Z向产生弹性变形的能力,所述的三自由度柔性支架2的下端与底座11通过焊接或螺钉连接的方式相固连,其上端与一级动平台6通过螺钉相连接。所述的X向激振装置3位于一级动平台6与支撑座1之间,所述的X向激振装置3的数量为二,且两组X向激振装置3对称布置在底座11上方X向的两侧,用于驱动一级动平台6和测试工作台9产生X向往复振动。所述的Y向激振装置4位于一级动平台6与支撑座1之间,所述的Y向激振装置4的数量为二,且两组Y向激振装置4对称布置在底座11上方Y向的两侧,用于驱动一级动平台6和测试工作台9产生Y向往复振动。所述的Z向激振装置5位于底座11与一级动平台6之间,包括Z向电磁铁51和Z向吸附支架52,用于驱动一级动平台6和测试工作台9产生Z向往复振动。其中,所述的Z向电磁铁51的底部固定安装在底座11上方的中心位置,所述的Z向吸附支架52位于Z向电磁铁51的正上方,且其顶部固定安装在一级动平台6的下方。所述的摆动激振装置7位于一级动平台6与回转装置8之间,用于驱动测试工作台9产生绕平行于X向轴线的往复摆动。所述的回转装置8的下端固定安装在摆动激振装置7上,用于驱动测试工作台9转动,进而调节摆动激振装置7工作时测试工作台9的相对摆动方向。固定安装在回转装置8顶部的测试工作台9是本发明产生振动的最终输出端,用于固定和安装需要进行振动测试的物品。
如图1、图2、图9和图10所示,所述的摆动激振装置7安装在一级动平台6的上方,包括二级动平台71、支撑铰链72、锁紧装置73、摆动复位装置74和摆动电磁铁75。其中,在所述的二级动平台71上设有马达安装孔711和传动轴安装孔712;两个摆动电磁铁75平行布置在一级动平台6的上方一侧,且其底部与一级动平台6固连,用于驱动二级动平台71及测试工作台9绕支撑铰链72的轴线往复摆动;所述的支撑铰链72的数量为二,两个支撑铰链72同轴对称布置在二级动平台71与一级动平台6之间,且均位于摆动电磁铁75相邻的一侧,支撑铰链72的上下两端分别与二级动平台71、一级动平台6固连;所述的锁紧装置73的上下两端分别与二级动 平台71、一级动平台6相固连,且位于摆动电磁铁75的对面一侧中间位置,用于限制或许可二级动平台71及测试工作台9的往复摆动;两个摆动复位装置74对称布置在锁紧装置73的两侧,为摆动电磁铁75驱动二级动平台71及测试工作台9往复摆动时提供复位力,所述的摆动复位装置74的上端通过螺钉与二级动平台71相固连,摆动复位装置74的下端与一级动平台6通过螺纹相连接。
如图1、图2和图3所示,所述的三自由度柔性支架2包括刚性底支架21、Y向变形板簧22和X向变形板簧23。其中,所述的刚性底支架21的下端通过焊接或螺钉连接的方式固定安装在底座11上,用于固定和安装Y向变形板簧22;所述的Y向变形板簧22的下端与刚性底支架21的上端固连,所述的Y向变形板簧22的上端与X向变形板簧23的下端固连,所述的X向变形板簧23的上端与一级动平台6通过螺钉相连接。所述的Y向变形板簧22在Y向激振装置4的作用下可使一级动平台6与测试工作台9相对支撑座1产生Y向往复移动,所述的X向变形板簧23在X向激振装置3的作用下可使一级动平台6与测试工作台9相对支撑座1产生X向往复移动,Y向变形板簧22和X向变形板簧23在Z向激振装置5的作用下还可使一级动平台6与测试工作台9相对支撑座1产生Z向往复移动。
如图1、图2和图3所示,所述的Y向变形板簧22的下端与刚性底支架21通过热铆或螺钉相连接,且在接头处四周通过搅拌摩擦焊接方式补强,所述的Y向变形板簧22的上端与X向变形板簧23的下端通过热铆和搅拌摩擦焊双重连接的方式相连接。
如图1、图2和图5所示,所述的X向激振装置3包括X向吸附支架31、X向电磁铁32、X向复位装置33和X向复位支架34。其中,所述的X向吸附支架31的顶部与一级动平台6通过焊接或螺栓连接的方式相固连,所述的X向电磁铁32固定安装在X向电磁铁支架12的一侧,用于吸附X向吸附支架31,为一级动平台6及测试工作台9的X向往复振动提供动力;所述的X向复位装置33的两端分别与X向吸附支架31、X向复位支架34固连,为一级动平台6及测试工作台9在X向的复位提供动力。
如图1、图2和图6所示,所述的Y向激振装置4包括Y向吸附支架41、Y向电磁铁42、Y向复位装置43和Y向复位支架44。其中,所述的Y向吸附支架41的顶部与一级动平台6通过焊接或螺栓连接的方式相固连,所述的Y向电磁铁42固定安装在Y向电磁铁支架13的一侧,用于吸附Y向吸附支架41,为一级动平台6及测试工作台9的Y向往复振动提供动力;所述的Y向复位装置43的两端分别与Y向吸附支架41、Y向复位支架44相固连,为一级动平台6及测试工作台9在Y向的复位提供动力。
如图1、图2、图5和图6所示,所述的X向复位支架34与所述的Y向复位支架44的底部通过焊接或螺栓连接的方式与底座11相连接。
如图1、图2和图5所示,所述的X向复位装置33包括X向双万向节331、X向复位弹簧332、X向调节螺杆333。其中,所述的X向双万向节331用于连接X向复位弹簧332与X向吸附支架31, 并使X向复位装置33具有Y向和Z向运动自由度,所述的X向双万向节331的一端与X向吸附支架31通过螺钉相连接,其另一端与X向复位弹簧332通过螺钉相连接;所述的X向复位弹簧332用于为X向吸附支架31及一级动平台6的X向复位提供动力;所述的X向调节螺杆333的一端与X向复位弹簧332通过螺栓相连接,所述的X向调节螺杆333的另一端与X向复位支架34通过螺栓相连接。
如图1、图2和图6所示,所述的Y向复位装置包括Y向双万向节、Y向复位弹簧、Y向调节螺杆,所述的Y向双万向节431用于连接Y向复位弹簧432与Y向吸附支架41,并使Y向复位装置43具有X向和Z向运动自由度,所述的Y向双万向节431的一端与Y向吸附支架41通过螺钉相连接,其另一端与Y向复位弹簧432通过螺钉相连接;所述的Y向复位弹簧432用于为Y向吸附支架41及一级动平台6的Y向复位提供动力;所述的Y向调节螺杆433的一端与Y向复位弹簧432通过螺栓相连接,所述的Y向调节螺杆433的另一端与Y向复位支架44通过螺栓相连接。
如图1、图7和图8所示,所述的锁紧装置73包括锁紧支座731、左夹爪732、右夹爪733、导柱734、驱动丝杠735和T型夹头736。其中,所述的锁紧支座731的底部与一级动平台6通过螺钉相连接,在所述的锁紧支座731下端的左右两侧分别设有左耳座7311和右耳座7312,用于安装导柱734和驱动丝杠735;所述的导柱734有两根,且其两端对称布置安装在左耳座7311和右耳座7312内;所述的驱动丝杠735为左右双旋螺纹丝杠,用于驱动左夹爪732、右夹爪733实现夹紧或松开,在所述的驱动丝杠735的左半段设有左旋螺纹7351,在驱动丝杠735的右半段设有右旋螺纹7352,驱动丝杠735的两端分别安装在左耳座7311和右耳座7312内,且与左耳座7311、右耳座7312均通过轴承相连接,在所述的驱动丝杠735的两端还设有调节旋钮737,所述的调节旋钮737与驱动丝杠735之间通过花键相连接;左夹爪732、右夹爪733布置在T型夹头736的两侧,用于夹紧T型夹头736,左夹爪732、右夹爪733与驱动丝杠735分别通过左螺纹、右螺纹相连接,左夹爪732、右夹爪733与导柱734均通过圆柱副相连接;所述的T型夹头736的顶部与二级动平台71通过螺钉相连接。在所述的T型夹头736的左右两侧均设有卡槽7361,在左夹爪732、右夹爪733的内侧均设有与卡槽7361相配合的卡齿。
如图1和图9所示,所述的摆动复位装置74包括摆动复位弹簧741和摆动调节螺杆742。其中,所述的摆动复位弹簧741的上端通过螺钉固定在二级动平台71的下方,用于为二级动平台71在摆动时的复位提供动力,摆动复位弹簧741的下端与摆动调节螺杆742的上端固连;所述的摆动调节螺杆742的下端与一级动平台6通过螺纹相连接,用于调节二级动平台71在摆动时的复位弹簧力和摆动幅度。
如图1和图4所示,所述的回转装置8包括回转座81、回转体82、内齿圈83、驱动齿轮84、传动轴85、传动齿轮86、主动齿轮87和回转马达88。其中,所述的回转座81的下端通过螺钉固定安装在二级动平台71的上方,用于支撑与安装回转体82,所述的回转体82的上端与测试工作台9通过螺钉相连接,所述的回转体82与回转座81之间通过支撑轴承组相连接。所述的内 齿圈83通过螺钉固定安装在回转体82的内部,所述的驱动齿轮84固定安装在传动轴85的上端,且与内齿圈83保持内啮合,用于驱动内齿圈83及回转体82转动。所述的传动齿轮86固定安装在传动轴85的下端,所述的传动轴85置于二级动平台71的传动轴安装孔712中,且与二级动平台71通过轴承相连接。所述的回转马达88置于二级动平台71的马达安装孔711内,且与二级动平台71通过螺钉相连接,用于为主动齿轮87的转动提供动力,进而驱动回转体82相对回转座81转动。所述的主动齿轮87固定安装在回转马达88的输出轴上,且与传动齿轮86保持外啮合,用于驱动传动齿轮86与传动轴85转动;所述的主动齿轮87与回转马达88的输出轴通过平键相连接,在回转马达88的输出轴的末端还设有轴端挡圈,且与回转马达88的输出轴固连,起轴向定位的作用。
如图1、图2和图10所示,在支撑座1、三自由度柔性支架2、X向激振装置3、Y向激振装置4和摆动激振装置7的外侧设有外罩壳14,在所述的外罩壳的左右两侧还设有把手15。本发明还设有控制器10,所述的控制器10通过电源线缆101、信号线缆102与X向电磁铁32、Y向电磁铁42、Z向电磁铁51、摆动电磁铁75及回转马达88相连接。
更进一步的技术方案中,在上述回转装置8中所述的支撑轴承组,包括一个径向轴承和两个止推轴承,且两个止推轴承分别布置在径向轴承的上下两端,所述的径向轴承采用圆柱滚子径向轴承或径向复合轴承,止推轴承采用圆柱滚子止推轴承或轴向复合轴承。
更进一步的技术方案中,在上述回转装置8中所述的回转马达88采用伺服减速电机或液压伺服马达或气动伺服马达。
使用时,将被测试物品固定安装在测试工作台9上,根据振动测试工作需要确定本发明的振动自由度和具体执行的振动模式,进而选择X向激振装置3、Y向激振装置4、Z向激振装置5、摆动激振装置7和回转装置8的具体组合工作模式。测试工作台9在X向激振装置3、Y向激振装置4、Z向激振装置5的作用下分别实现X、Y、Z三个方向的直线往复振动,通过旋转调节旋钮737松开锁紧装置73,启动摆动电磁铁75可实现测试工作台9绕支撑铰链72轴线的往复摆动。本发明最多可实现X、Y、Z三个方向的直线往复振动和绕平行于X向轴线的往复摆动,以及绕平行于Z向轴线的旋转共五个运动自由度,测试工作台9相对支撑座1的往复摆动可在回转装置8的作用下实时调整。当不需要产生摆动时,可旋转调节旋钮737,通过锁紧装置73将二级动平台71与一级动平台6锁紧。
在本发明的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不 脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

  1. 一种五自由度变胞式电磁振动试验台,包括支撑座、三自由度柔性支架、X向激振装置、Y向激振装置、Z向激振装置、一级动平台、摆动激振装置、回转装置和测试工作台,其特征在于:所述的支撑座包括底座、X向电磁铁支架和Y向电磁铁支架,X向电磁铁支架和Y向电磁铁支架均有两组,且分别对称布置在底座的侧面,X向电磁铁支架和Y向电磁铁支架的底部均与底座固连;所述的三自由度柔性支架的数量为四,所述的三自由度柔性支架的下端与底座固连,其上端与一级动平台固连;所述的X向激振装置位于一级动平台与支撑座之间,所述的X向激振装置的数量为二,且两组X向激振装置对称布置在底座上方X向的两侧;所述的Y向激振装置位于一级动平台与支撑座之间,所述的Y向激振装置的数量为二,且两组Y向激振装置对称布置在底座上方Y向的两侧;所述的Z向激振装置位于底座与一级动平台之间,包括Z向电磁铁和Z向吸附支架,所述的Z向电磁铁的底部固定安装在底座上方的中心位置,所述的Z向吸附支架位于Z向电磁铁的正上方,且其顶部固定安装在一级动平台的下方;所述的回转装置的下端固定安装在摆动激振装置上,所述的摆动激振装置位于一级动平台与回转装置之间,所述的测试工作台固定安装在回转装置的顶部;
    所述的X向激振装置包括X向吸附支架、X向电磁铁、X向复位装置和X向复位支架,所述的X向吸附支架的顶部与一级动平台固连,所述的X向电磁铁固定安装在X向电磁铁支架的一侧,所述的X向复位装置的两端分别与X向吸附支架、X向复位支架相固连;
    所述的Y向激振装置包括Y向吸附支架、Y向电磁铁、Y向复位装置和Y向复位支架,所述的Y向吸附支架的顶部与一级动平台固连,所述的Y向电磁铁固定安装在Y向电磁铁支架的一侧,所述的Y向复位装置的两端分别与Y向吸附支架、Y向复位支架相固连;
    X向复位支架与Y向复位支架的底部通过焊接或螺栓连接的方式与底座相连接;
    所述的摆动激振装置安装在一级动平台的上方,包括二级动平台、支撑铰链、锁紧装置、摆动复位装置和摆动电磁铁;在所述的二级动平台上设有马达安装孔和传动轴安装孔,两个摆动电磁铁平行布置在一级动平台的上方一侧,且与一级动平台固连;所述的支撑铰链的数量为二,两个支撑铰链同轴对称布置在二级动平台与一级动平台之间,且均位于摆动电磁铁相邻的一侧,支撑铰链的上下两端分别与二级动平台、一级动平台固连;所述的锁紧装置的上下两端分别与二级动平台、一级动平台固连,且位于摆动电磁铁的对面一侧的中间位置;两个摆动复位装置对称布置在锁紧装置的两侧,所述的摆动复位装置的上端通过螺钉与二级动平台相固连,摆动复位装置的下端与一级动平台通过螺纹相连接;
    所述的回转装置包括回转座、回转体、内齿圈、驱动齿轮、传动轴、传动齿轮、主动齿轮和回转马达,所述的回转座的下端通过螺钉固定安装在二级动平台的上方,所述的回转体的上端与测试工作台通过螺钉相连接,所述的回转体与回转座通过支撑轴承组相连接;所述 的内齿圈通过螺钉固定安装在回转体的内部,所述的驱动齿轮与内齿圈保持内啮合;所述的驱动齿轮固定安装在传动轴的上端,所述的传动齿轮固定安装在传动轴的下端,所述的传动轴与二级动平台通过轴承相连接;所述的回转马达置于二级动平台的马达安装孔内,且与二级动平台通过螺钉相连接;所述的主动齿轮固定安装在回转马达的输出轴上,且与传动齿轮保持外啮合,所述的主动齿轮与回转马达的输出轴通过平键相连接,在回转马达的输出轴的末端还设有轴端挡圈,且与回转马达的输出轴固连。
  2. 根据权利要求1所述的一种五自由度变胞式电磁振动试验台,其特征在于:所述的三自由度柔性支架包括刚性底支架、Y向变形板簧和X向变形板簧,所述的刚性底支架的下端固定安装在底座上,所述的Y向变形板簧的下端与刚性底支架的上端固连,所述的Y向变形板簧的上端与X向变形板簧的下端固连,所述的X向变形板簧的上端与一级动平台通过螺栓相连接。
  3. 根据权利要求2所述的一种五自由度变胞式电磁振动试验台,其特征在于:所述的Y向变形板簧的下端与刚性底支架通过热铆或螺钉相连接,且在接头处四周通过搅拌摩擦焊接方式补强,所述的Y向变形板簧的上端与X向变形板簧的下端通过热铆和搅拌摩擦焊双重连接的方式相连接。
  4. 根据权利要求1所述的一种五自由度变胞式电磁振动试验台,其特征在于:所述的X向复位装置包括X向双万向节、X向复位弹簧、X向调节螺杆,所述的X向双万向节的一端与X向吸附支架通过螺钉相连接,所述的X向双万向节的另一端与X向复位弹簧通过螺钉相连接,所述的X向调节螺杆的一端与X向复位弹簧通过螺栓相连接,所述的X向调节螺杆的另一端与X向复位支架通过螺栓相连接;所述的Y向复位装置包括Y向双万向节、Y向复位弹簧、Y向调节螺杆,所述的Y向双万向节的一端与Y向吸附支架通过螺钉相连接,所述的Y向双万向节的另一端与Y向复位弹簧通过螺钉相连接,所述的Y向调节螺杆的一端与Y向复位弹簧通过螺栓相连接,所述的Y向调节螺杆的另一端与Y向复位支架通过螺栓相连接。
  5. 根据权利要求1所述的一种五自由度变胞式电磁振动试验台,其特征在于:所述的支撑轴承组,包括一个径向轴承和两个止推轴承,且两个止推轴承分别布置在径向轴承的上下两端,所述的径向轴承采用圆柱滚子径向轴承或径向复合轴承,止推轴承采用圆柱滚子止推轴承或轴向复合轴承。
  6. 根据权利要求1所述的一种五自由度变胞式电磁振动试验台,其特征在于:所述的回转马达采用伺服减速电机或液压伺服马达或气动伺服马达。
  7. 根据权利要求1所述的一种五自由度变胞式电磁振动试验台,其特征在于:所述的锁紧装置包括锁紧支座、左夹爪、右夹爪、导柱、驱动丝杠和T型夹头,所述的锁紧支座的底 部与一级动平台固连,在所述的锁紧支座下端的左右两侧分别设有左耳座和右耳座;所述的导柱有两根,且其两端对称布置安装在左耳座和右耳座内;所述的驱动丝杠为左右双螺纹丝杠,驱动丝杠的两端分别安装在左耳座和右耳座内,且与左耳座、右耳座均通过轴承相连接,在所述的驱动丝杠的两端还设有调节旋钮;左夹爪、右夹爪布置在T型夹头的两侧,左夹爪、右夹爪与驱动丝杠分别通过左螺纹、右螺纹相连接,左夹爪、右夹爪与导柱均通过圆柱副相连接;所述的T型夹头的顶部与二级动平台固连;在所述的T型夹头的左右两侧均设有卡槽,在左夹爪、右夹爪的内侧均设有与卡槽相配合的卡齿。
  8. 根据权利要求1所述的一种五自由度变胞式电磁振动试验台,其特征在于:所述的摆动复位装置包括摆动复位弹簧和摆动调节螺杆,所述的摆动复位弹簧的上端通过螺钉固定在二级动平台的下方,摆动复位弹簧的下端与摆动调节螺杆的上端固连;所述的摆动调节螺杆的下端与一级动平台通过螺纹相连接。
PCT/CN2019/083399 2019-02-13 2019-04-19 五自由度变胞式电磁振动试验台 WO2020164185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910113046.7 2019-02-13
CN201910113046.7A CN109682563B (zh) 2019-02-13 2019-02-13 五自由度变胞式电磁振动试验台

Publications (1)

Publication Number Publication Date
WO2020164185A1 true WO2020164185A1 (zh) 2020-08-20

Family

ID=66194407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083399 WO2020164185A1 (zh) 2019-02-13 2019-04-19 五自由度变胞式电磁振动试验台

Country Status (2)

Country Link
CN (1) CN109682563B (zh)
WO (1) WO2020164185A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112985730A (zh) * 2021-02-04 2021-06-18 无锡商业职业技术学院 一种用于机电设备生产的多维震动试验检测装置
CN113720560A (zh) * 2021-09-08 2021-11-30 方盛车桥(柳州)有限公司 制动气室振动耐久性试验台
CN114135755A (zh) * 2021-11-27 2022-03-04 徐州恒远高新技术有限公司 一种自动化机柜专用安装定位装置及其使用方法
CN114160020A (zh) * 2021-12-22 2022-03-11 深圳市博为医疗机器人有限公司 一种用于西林瓶内药物摇匀溶解的装置
CN114739506A (zh) * 2022-04-20 2022-07-12 王德章 一种全自动三代轮毂轴承振动测量仪及测量方法
CN116337622A (zh) * 2023-03-29 2023-06-27 哈尔滨工业大学(深圳) 一种岩土测试用承载力测试设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376118A (zh) * 2019-06-05 2019-10-25 天津英创汇智汽车技术有限公司 一种用于ehcu总成的dv测试装置
CN110307956B (zh) * 2019-06-18 2024-01-26 西南交通大学 一种侧向振动装置
CN112198344B (zh) * 2020-10-19 2021-11-19 华中科技大学 一种全自由度无轴承电机测试平台
CN112304546A (zh) * 2020-10-29 2021-02-02 博众精工科技股份有限公司 一种振动测试装置
CN112697451B (zh) * 2020-11-30 2023-10-24 中国汽车工程研究院股份有限公司 材料摩擦异响试验台直列式切换结构
CN112683473B (zh) * 2020-12-09 2023-03-28 西安苏试广博环境可靠性实验室有限公司 一种具有防护功能的低频大位移颠振试验台
CN113790864A (zh) * 2021-09-18 2021-12-14 阳光学院 土木工程结构抗震试验装置
CN113899262A (zh) * 2021-10-27 2022-01-07 中国兵器装备集团自动化研究所有限公司 一种振动机构及高精度定位装料振动装置
CN115576257B (zh) * 2022-12-08 2023-03-03 北京航空航天大学 一种航空发动机高空台架试验控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067832A (ja) * 1983-09-24 1985-04-18 Shimadzu Corp 四軸加振装置
CN101738279A (zh) * 2009-10-30 2010-06-16 上海交通大学 五自由度磁性联轴器测试平台
CN103698099A (zh) * 2013-12-26 2014-04-02 长春孔辉汽车科技有限公司 五自由度汽车座椅振动试验台
CN203949790U (zh) * 2014-07-01 2014-11-19 安徽理工大学 一种可变自由度并联磁力振动试验装置
CN104772451A (zh) * 2015-04-29 2015-07-15 安徽理工大学 三平移一转动四自由度混联振动铸造机
CN107127734A (zh) * 2017-07-19 2017-09-05 安徽理工大学 悬挂轨道式多臂铸造机器人

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281088B (zh) * 2008-05-13 2010-07-14 苏州苏试试验仪器有限公司 三轴六自由度振动试验装置
JP5442472B2 (ja) * 2010-01-28 2014-03-12 倉敷化工株式会社 加振機能を有するアクティブ除振装置
CN203011660U (zh) * 2012-12-27 2013-06-19 苏州长菱测试技术有限公司 新型多轴向振动测试系统
JP2018205278A (ja) * 2017-06-09 2018-12-27 Imv株式会社 振動試験装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067832A (ja) * 1983-09-24 1985-04-18 Shimadzu Corp 四軸加振装置
CN101738279A (zh) * 2009-10-30 2010-06-16 上海交通大学 五自由度磁性联轴器测试平台
CN103698099A (zh) * 2013-12-26 2014-04-02 长春孔辉汽车科技有限公司 五自由度汽车座椅振动试验台
CN203949790U (zh) * 2014-07-01 2014-11-19 安徽理工大学 一种可变自由度并联磁力振动试验装置
CN104772451A (zh) * 2015-04-29 2015-07-15 安徽理工大学 三平移一转动四自由度混联振动铸造机
CN107127734A (zh) * 2017-07-19 2017-09-05 安徽理工大学 悬挂轨道式多臂铸造机器人

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112985730A (zh) * 2021-02-04 2021-06-18 无锡商业职业技术学院 一种用于机电设备生产的多维震动试验检测装置
CN113720560A (zh) * 2021-09-08 2021-11-30 方盛车桥(柳州)有限公司 制动气室振动耐久性试验台
CN114135755A (zh) * 2021-11-27 2022-03-04 徐州恒远高新技术有限公司 一种自动化机柜专用安装定位装置及其使用方法
CN114160020A (zh) * 2021-12-22 2022-03-11 深圳市博为医疗机器人有限公司 一种用于西林瓶内药物摇匀溶解的装置
CN114160020B (zh) * 2021-12-22 2024-01-26 深圳市博为医疗机器人有限公司 一种用于西林瓶内药物摇匀溶解的装置
CN114739506A (zh) * 2022-04-20 2022-07-12 王德章 一种全自动三代轮毂轴承振动测量仪及测量方法
CN114739506B (zh) * 2022-04-20 2023-09-26 杭州宝利嘉轴承有限公司 一种全自动三代轮毂轴承振动测量仪及测量方法
CN116337622A (zh) * 2023-03-29 2023-06-27 哈尔滨工业大学(深圳) 一种岩土测试用承载力测试设备
CN116337622B (zh) * 2023-03-29 2024-05-03 哈尔滨工业大学(深圳) 一种岩土测试用承载力测试设备

Also Published As

Publication number Publication date
CN109682563A (zh) 2019-04-26
CN109682563B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2020164185A1 (zh) 五自由度变胞式电磁振动试验台
WO2020164186A1 (zh) 六自由度混联式电磁振动试验台
JP6491732B2 (ja) トルク付与ユニット及び駆動装置
JP5916893B2 (ja) 試験装置
CN108709793A (zh) 用于弯扭振动疲劳试验的加载装置及其方法
WO2020047734A1 (zh) 测试纤维增强复合材料退化时力学性能的装置及方法
WO2009011433A9 (ja) 加振試験装置
CN105486603B (zh) 一种冲击/切向复合运动微幅磨损试验装置
CN108549027B (zh) 一种测试高速列车驱动电机疲劳破坏的试验台及其使用方法
CN111551333A (zh) 一种可加载拉力或压力及振动的复合式试验装置
CN112525459B (zh) 一种垂荡摇摆与三向振动复合试验平台
CN113532782A (zh) 一种空间位姿可调的八驱动六自由度电动振动试验装置
CN205940960U (zh) 汽车半轴及传动轴扭转疲劳试验装置
CN215726008U (zh) 一种七自由度运动装置
CN106017933B (zh) 回转支承试验台调心装置及回转支承试验台
CN111251285B (zh) 一种压电驱动二自由度深海机械臂及其驱动方法
CN212372180U (zh) 一种压电驱动二自由度深海机械臂
CN212230084U (zh) 基于压电驱动的托卡马克装置轨道检测系统
CN111645104A (zh) 一种大行程且可快速替换的四自由度刚柔耦合机械臂
US20230035932A1 (en) Repeated moment generation device
CN212646026U (zh) 可加载拉力或压力及振动的复合式试验装置
CN215701706U (zh) 一种桌面级3d打印六轴机械臂
CN114354110B (zh) 多维微振动模拟器
CN219294030U (zh) 工业机器人故障诊断实验台
CN116718376A (zh) 一种用于大型轴承试验的加载方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915061

Country of ref document: EP

Kind code of ref document: A1