WO2020047734A1 - 测试纤维增强复合材料退化时力学性能的装置及方法 - Google Patents

测试纤维增强复合材料退化时力学性能的装置及方法 Download PDF

Info

Publication number
WO2020047734A1
WO2020047734A1 PCT/CN2018/103948 CN2018103948W WO2020047734A1 WO 2020047734 A1 WO2020047734 A1 WO 2020047734A1 CN 2018103948 W CN2018103948 W CN 2018103948W WO 2020047734 A1 WO2020047734 A1 WO 2020047734A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
vibration
reinforced composite
fiber
fixed
Prior art date
Application number
PCT/CN2018/103948
Other languages
English (en)
French (fr)
Inventor
李晖
周星辰
罗忠
任利聪
张培
谭龙飞
张文彬
邵震
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020047734A1 publication Critical patent/WO2020047734A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures

Definitions

  • the invention relates to the technical field of detection equipment, in particular to a device and method for testing mechanical properties of a fiber-reinforced composite material during degradation, and a device capable of measuring the mechanical properties of a fiber-reinforced composite material during degradation.
  • Fiber-reinforced composite materials have high specific strength, high specific modulus, good thermal stability, and a certain amount of damping ability, so they are widely used in important fields such as aviation, aerospace, shipbuilding, and weapon industry.
  • various composite structural parts made of this type of material in engineering practice such as composite wing used by helicopters and jet aircrafts, high-temperature turbine blades made of fiber / ceramic-based composite materials in aero engines, etc. .
  • composite materials and structures are often in the thermal environment of several hundred degrees Celsius or even thousands of degrees Celsius, after a period of service, their mechanical properties will deteriorate to a certain extent.
  • composite material structures working in complex environments such as humid heat, vibration, and ultraviolet radiation. The continuous effects of these environments also cause their mechanical properties to deteriorate to varying degrees. Therefore, it is of great engineering and academic significance to study its performance degradation and scientific evaluation methods.
  • Patent CN201610815513.7, patent 201410794089.3, patent CN201320300717.8, patent CN201020149610.5 are different experimental ideas, but they are all for testing the mechanical properties of metal materials or composite materials, they can only perform single loading on the sheet, and It cannot meet the comprehensive needs of the sheet, such as damp heat, vibration, and stretching.
  • Patent CN200910197140-1 discloses a metal material tensile testing machine, which includes a base and a tensile device provided on the base.
  • the tensile device includes a screw rod and a guide post fixed on the base, and the screw rod and the guide post.
  • Impact of degradation behavior; patents CN201610815513.7, patent 201410794089.3, and patent CN201020149610.5 respectively provide different heating and tensile test methods, but they are not compact enough in structure, single function, low space utilization, and are mostly used In specialized fields, the versatility is poor.
  • the conventional universal material testing machine can achieve independent static load loading such as tensile, compression, and torsion of the material, and use this data to initially evaluate its mechanical degradation problems.
  • static load loading such as tensile, compression, and torsion of the material
  • dynamic loading such as vibration and the static load can be combined for loading.
  • the limitations of universal material testers are more obvious, because fiber-reinforced composite materials are generally not used for torsion, often used for stretching and compression, and in addition to vibration and thermal environment, The effects of chemical corrosion on its degradation are particularly obvious, because tensile, compression, environmental factors, and vibration need to be designed, not just on a sheet made of a static load and material. Therefore, the universal material tester can no longer satisfy the test of the mechanical properties of the fiber-reinforced composite material when it is degraded.
  • Fiber-reinforced composites have good geometric characteristics, high specific strength, high specific modulus and processability, and are widely used in aviation, aerospace, shipbuilding and machinery due to their small thickness, light weight, few consumables, and good performance. Industry. However, its own structural problems are also very prominent, especially when it is stimulated and affected by the external environment, which will cause degradation and cause the mechanical properties of the material to decline. Therefore, it is important to study the mechanical properties of fiber-reinforced composites after degradation and their environmental and vibration factors. The magnitude of its impact is particularly important.
  • the present invention provides a device and method for testing the mechanical properties of a fiber-reinforced composite material when it is degraded, which can measure which factor has a greater impact on the degradation of the fiber-reinforced composite material, which is mainly the stretching of the transmission
  • the tester, universal tester and some patents are improved, and the design is based on the degradation of the fiber reinforced composite material.
  • This tester can stretch and vibrate the fiber reinforced composite beam and introduce environmental factors to share vibration. , Temperature, humidity, air oxygen content and five factors of ultraviolet intensity.
  • the instrument can not only achieve a single load or environmental factor loading, but can also arbitrarily combine the above several factors.
  • the four factors of environmental factors can be arbitrarily combined, such as temperature and humidity, vibration and humidity, vibration and temperature, vibration and air and temperature, and so on.
  • the environmental factor maintenance mechanism adjusted according to requirements can be combined with stretching and vibration as described above.
  • the thermal environment provided by this test chamber has a temperature gradient, and is not a uniform thermal environment used by general instruments. Therefore, compared to other instruments, the fiber-reinforced composite material performance degradation tester can conduct a more comprehensive study of the performance degradation of fiber-reinforced composite materials.
  • Device for testing mechanical properties of fiber-reinforced composite material when it is degraded including mobile shift exciter (1), continuously variable transmission (2), clamp (3), fixed frame (4), support (5), and bottom plate ( 6) Ball screw (7), transmission system (8), multi-functional environmental box (9), ventilation device (10), vibration-damping fixing plug (11), screw drive plate (12), main motor (13 ), Auxiliary motor (14), vibrating needle device (15), composite beam (16);
  • the lower end of the fixed frame (4) is fixed by a support (5), a bottom plate (6) at the bottom of the support is connected to the ground by anchor bolts, and the ball screw (7) and the fixed frame (4) are connected by threads;
  • the transmission system (8) is supported by the fixed frame (4), and is transmitted to the ball screw (7) by the main motor (13).
  • the mobile shift exciter (1) is fixed on the base, and the auxiliary motor (14)
  • the stepless transmission (2) is driven to drive the vibration of the mobile shift exciter.
  • the auxiliary motor (14) and the stepless transmission (2) and the output shaft of the main motor (13) and the reducer are connected through a sleeve coupling, and the main shaft
  • the motor and the auxiliary motor are fixed on the base plate (6) by bolting, and the multifunctional environmental box (9) is fixed on the surface of the fixed frame (4) by bolting; the clamp (3) is on both sides of the multifunctional environmental box (9).
  • the vibration-damping fixing plug (11) on the wall penetrates into the box body, and the outer ends of the clamp are respectively fixed by the fixing frame (4) and the screw transmission plate (12).
  • the mobile shift exciter (1) includes a vibration base (17), a vibration table (18), a wheel mechanism (19), a crank slider mechanism (20), a vibration damping spring (21), and a wheel system ( 22) Ratchet spring mechanism (23);
  • the vibration base (17) is welded on the bottom plate (6), the vibration table (18) is connected to the crank slider mechanism (20) through the space spherical pair, and the vibration table is driven to vibrate by the crank slider; the vibration damping spring (21) passes The interference fit of the spring coil on the bottom is connected to the vibration table (18) and the vibration base (17).
  • the runner mechanism (19) is fixed on the vibration base (17) by interference fit.
  • the crank of the crank-slider mechanism is connected by the rotating pair in the middle of the rotating lever of the disc, and the rotating lever can change the gear position through the ratchet spring mechanism (23).
  • the ratchet spring mechanism is fixed to the rotary mechanism (22) through clearance fit. Of the roulette.
  • the transmission system (8) includes a reducer (42), a helical gear pair (24), a worm gear (25), a gear transmission shaft (26), an A-type flat key (27), and a shafting fixed sleeve (28).
  • the reducer (42) is connected with the auxiliary motor (14) key through the A-type flat key (27), the helical gear set (24), the worm gear (25), all through the C-type flat key (30) and the B-type flat key ( 29) Connected to the gear drive shaft (26), the helical gear pair (24) is keyed to the reducer output shaft, and the gear drive shaft (26) and the belt drive system (31) used to connect the belt drive system have been used. And the belt drive is connected to the fixed plate (32) through a shaft-type fixed sleeve (28) to precisely position the belt drive.
  • the multifunctional environmental box (9) consists of a gradient heating tube (33), a mobile heat insulation plate (34), a plate wheel (35), a pipe hoop (36), a box flip cover (37), and a pneumatic telescopic rod (38). , Vibrating pin moving bar (39), box (40), rubber shock plug (41);
  • the gradient heating pipe (33) is uniformly distributed in the box (40) of the multifunctional environmental box (9) through a pipe clamp (35), the pipe clamp (36) is welded into the box by electric welding, and the bottom end of the box is screwed Connected and fixed to the fixed frame (4); the upper end of the box (40) is made by a groove to limit the pneumatic telescopic rod (38) in the groove slideway, and the box flip (37) also has a movable limit position
  • the groove is used to connect the other end of the pneumatic telescopic rod. This imitates the principle of the car rear box clamshell. When the multifunctional environmental box is working, it must be completely closed.
  • the box (40) and the box clamshell must be bolted ( 37)
  • the connection is made in the threaded hole opened in the middle casing.
  • a pulley track is opened in the bottom plate of the box.
  • the board wheel (35) is locked in the track, and the heat insulation plate (34) and the board wheel (35) are moved. ) After hinged connection, it is moved inside the box to ensure its thermal insulation effect.
  • the bottom of the body (40) is provided with a hole groove to facilitate communication or connection with the ventilation device (10) and the ultraviolet light source; the vibrating pin moving bar (39) is inside the bottom shell of the box (40) By limiting clearance fit with channels inside the base housing, a needle vibrating means (15) (39) extending into the housing by moving the needle bar transducer (40) inside, so that the cost may reach to seal by the action moved inside the case.
  • a method for testing the mechanical properties of a fiber-reinforced composite material as it degrades including the following steps:
  • Step 1 Clamp the fiber-reinforced composite beam with the current fixture, and move the insulation board in the multifunctional environmental box to the required position;
  • Step 2 Adjust the exciter and the continuously variable transmission to the required vibration position, and check the reliability of each component's fixation and connection;
  • Step 3 Fix the vibrating needle mechanism on the vibrating table
  • Step 4 Rotate the vibrating pin on the composite beam and adjust the required vibration position, and close the box cover;
  • Step 5 Selectively turn on and adjust the ventilation device, ultraviolet irradiation device and heating device;
  • Step 6 Start the exciter motor to vibrate the composite beam, and the amplitude of the exciter can be used to adjust the amplitude, and the switchable magnetic pole circuit inside the exciter can be used to return the exciter amplitude to the minimum position;
  • Step 7 Start the motor of the transmission system to stretch the fiber-reinforced composite beam
  • Step 8 Import the measured data of the device into the computer through the sensors on the upper and lower planes of the composite beam.
  • the vibration exciter described in step 2 applies dynamic load to the composite beam, and at the same time uses the transmission mechanism to load the composite beam with static load.
  • the tensile properties of the clamping device and the simulated environmental factors can affect the undegraded fiber reinforced composite material.
  • the mechanical properties at the time of gradual degradation are measured, and then the controlled variable method is used to explore which environmental factors have the greatest impact on the fiber-reinforced composite material.
  • the present invention has the following beneficial effects:
  • the invention can realize the testing of the mechanical properties when the fiber reinforced composite material is degraded, and by controlling the variables, it is possible to study which factor has a great influence on the fiber reinforced composite material and prevent such an influence factor.
  • the traditional tensile test does not involve environmental factors and can only perform static tests on the sheet, even if there is a dynamic test, the two cannot be combined.
  • the present invention is based on the old-style tensile tester. improve.
  • the single-position vibration of the ordinary exciter is improved. Not only can the composite beam be stretched while vibrating the composite beam, but also the position of the vibration can be changed at any time to facilitate the vibration of each point of the composite beam.
  • the transmission system compared with the traditional universal material tensile tester, although it has a reducer and a helical gear transmission, it does not introduce a worm gear, so the screw transmission is in the forward transmission or the backward transmission. It does not guarantee the one-way reliability of the transmission, and the worm gear itself has a self-locking property, so when the motor rotates the lead screw to stretch the composite beam, it will not change the lead screw due to external forces such as vibration. .
  • the technical scheme of this design includes an adjustable excitation mechanism, an environmental maintenance mechanism, a tension and compression module, and a power transmission system.
  • the composite beam can be stably clamped on a special clamping device, and then the thermal environment box is tightly connected to the fixture. The shaker vibrates during work. After that, the mechanical performance information of the composite beam will be collected by the sensor and then transmitted to the analyzer for analysis.
  • FIG. 1 is a two-dimensional plan view of a fiber-reinforced composite material performance degradation tester according to the present invention
  • FIG. 2 is a two-dimensional plan view of a mobile shift exciter in the mechanism of the present invention
  • FIG. 3 is a two-dimensional plan view of a multifunctional environmental box in the mechanism of the present invention.
  • Fig. 4 is a two-dimensional plan view of a transmission system in the mechanism of the present invention
  • Device for testing mechanical properties of fiber-reinforced composite material when it is degraded including mobile shift exciter 1, continuously variable transmission 2, clamp 3, fixed frame 4, stand 5, base plate 6, ball screw 7, transmission system 8, Multifunctional environmental box 9, ventilation device 10, vibration-damping fixing plug 11, screw drive plate 12, main motor 13, auxiliary motor 14, vibrating needle device 15, composite beam 16;
  • the lower end of the fixed frame 4 is fixed by a support 5.
  • a bottom plate 6 at the bottom of the support is connected to the ground by anchor bolts.
  • the ball screw 7 and the fixed frame 4 are connected by threads.
  • the transmission system 8 is supported by the fixed frame 4. Driven by the main motor 13 to the ball screw 7, the mobile shift exciter 1 is fixed on the base, and the stepless transmission 2 is driven by the auxiliary motor 14 to drive the vibration of the mobile shift exciter.
  • the auxiliary motor 14 and the stepless transmission 2 and the main The output shaft of the motor 13 and the outer end of the reducer are connected through a sleeve coupling, while the main motor and the auxiliary motor are fixed on the base plate 6 by bolts, and the multifunctional environmental box 9 is fixed on the surface of the fixed frame 4 by bolts;
  • the jig 3 is penetrated into the box body through the vibration-damping fixing plugs 11 on both sides of the box wall of the multifunctional environmental box 9, and the outer ends of the jig are fixed by the fixed frame 4 and the screw transmission plate 12, respectively.
  • the mobile shift exciter 1 includes a vibration base 17, a vibration table 18, a wheel mechanism 19, a crank slider mechanism 20, a vibration damping spring 21, a wheel system 22, and a ratchet spring mechanism 23;
  • the vibration base 17 is welded on the bottom plate 6, and the vibration table 18 is connected to the crank slider mechanism 20 via a space spherical pair, and the vibration slider is driven by the crank slider to vibrate;
  • the vibration damping spring 21 is connected to the vibration through the interference fit of the spring coil at the bottom
  • the runner mechanism 19 is fixed on the vibration base 17 by interference fit, and the crank in the crank slider mechanism is connected by the rotating pair between the two rotating wheels of the middle wheel of the runner mechanism.
  • the rotation lever can change the gear position through the ratchet spring mechanism 23, and the ratchet spring mechanism is fixed on the slide of the wheel disc of the rotary mechanism 22 through clearance fit.
  • Transmission system 8 includes reducer 42, helical gear pair 24, worm gear 25, gear drive shaft 26, A-type flat key 27, shafting fixed sleeve 28, B-type flat key 29, C-type flat key 30, belt drive system 31.Fixed plate 32
  • the reducer 23 is connected to the auxiliary motor 14 through the A-type flat key 27, the helical gear set 24, and the worm gear 25 are connected to the gear transmission shaft 26 through the C-type flat key 30 and the B-type flat key 29, and the helical gear pair 24
  • the output shaft of the reducer is connected by a key.
  • the gear drive shaft 26 and the belt drive system 31 for connecting the belt drive system adopt an interference fit, and the belt drive is connected to the fixed plate 32 through the shaft system fixing sleeve 28 to align the belt drive system. Precise positioning.
  • the multifunctional environmental box 9 is composed of a gradient heating pipe 33, a movable heat insulation plate 34, a plate wheel 35, a pipe hoop 36, a box flip 37, a pneumatic telescopic rod 38, a vibrating pin moving bar 39, a box 40, and a rubber shock plug 41 composition;
  • the gradient heating pipe 33 is uniformly distributed in the box 40 of the multifunctional environmental box 9 through a pipe hoop 35, and the pipe hoop 36 is welded in the box by electric welding, and the bottom end of the box is fixed to the fixed frame 4 by screw connection;
  • the upper end of the body 40 is formed by a groove to limit the pneumatic telescopic rod 38 in the groove slideway.
  • the box flip 37 also has a movable limit groove for connecting the other end of the pneumatic telescopic rod, which imitates a car.
  • the principle of the rear box flip cover must be completely closed when the multifunctional environmental box is working. Therefore, bolts are used to connect the box 40 and the box flip 37 in the threaded holes opened in the middle shell.
  • the plate wheel 35 On the pulley track, the plate wheel 35 is snapped into the track.
  • the heat insulation plate 34 and the plate wheel 35 are hinged to move inside the box to ensure its heat insulation effect.
  • a hole is formed at the bottom of the box 40 to facilitate communication or connection with the ventilation device 10 and the ultraviolet light source;
  • a vibrating pin moving bar 39 is opened inside the bottom shell of the box 40
  • the channel is limited to the bottom by a clearance fit Inner housing, the needle apparatus 15 into the interior vibrating the casing 40 by moving the needle bar vibrator 39, so that the cost may reach to seal by the action moved inside the case.
  • a method for testing the mechanical properties of a fiber-reinforced composite material as it degrades including the following steps:
  • Step 1 Clamp the fiber-reinforced composite beam with the current fixture, and move the insulation board in the multifunctional environmental box to the required position;
  • Step 2 Adjust the exciter and the continuously variable transmission to the required vibration position, and check the reliability of each component's fixation and connection;
  • Step 3 Fix the vibrating needle mechanism on the vibrating table
  • Step 4 Rotate the vibrating pin on the composite beam and adjust the required vibration position, and close the box cover;
  • Step 5 Selectively turn on and adjust the ventilation device, ultraviolet irradiation device and heating device;
  • Step 6 Start the exciter motor to vibrate the composite beam, and the amplitude of the exciter can be used to adjust the amplitude, and the switchable magnetic pole circuit inside the exciter can be used to return the exciter amplitude to the minimum position;
  • Step 7 Start the motor of the transmission system to stretch the fiber-reinforced composite beam
  • Step 8 Import the measured data of the device into the computer through the sensors on the upper and lower planes of the composite beam.
  • the vibration exciter described in step 2 applies dynamic load to the composite beam, and at the same time uses the transmission mechanism to load the composite beam with static load.
  • the tensile properties of the clamping device and the simulated environmental factors can affect the undegraded fiber reinforced composite material.
  • the mechanical properties at the time of gradual degradation are measured, and then the controlled variable method is used to explore which environmental factors have the greatest impact on the fiber-reinforced composite material.
  • Figure 1 shows a two-dimensional plan view of a fiber-reinforced composite material performance degradation tester.
  • a composite composite beam is clamped at both ends of the composite beam by a special fixture designed, and connected to a transmission block and fixed to the wire.
  • the end of the screw is driven by a gear wheel train, which is driven by a motor that rotates at a high speed of about 6000 r / min.
  • the experimenter excites the composite beam through an excitation device on the test bench.
  • the device has a speed change mechanism that can change the amplitude and frequency of the vibration at all times when the exciter vibrates. It can be moved along the X axis to excite different positions of the composite beam.
  • the vibration results of the composite beam are measured and collected by the sensor and transmitted to the computer for processing.
  • the position of the sensor can also be moved in the X-axis direction, which is convenient for measuring different positions of the composite beam.
  • the clamp and clamping device in the clamping mechanism move in the X direction through the link of the transmission block and the screw drive to realize the stretching and compression of the composite beam.
  • the test object is a composite material composite beam.
  • the clamping device is required to be able to effectively and stably clamp the composite beam and to drive the composite beam to rotate.
  • Composite materials are composed of two or more materials with different properties. Physical or chemical methods are used to form materials with new properties in the macro (micro). Various materials complement each other in performance to produce synergistic effects and make composite materials. The comprehensive performance is better than the original composition material to meet various requirements.
  • the matrix materials of composite materials are divided into two categories: metal and non-metal.
  • Metal substrates commonly include aluminum, magnesium, copper, titanium and their alloys.
  • Non-metal substrates There are mainly synthetic resins, rubber, ceramics, graphite, carbon, etc.
  • the reinforcing materials are mainly glass fibers, carbon fibers, boron fibers, aramid fibers, silicon carbide fibers, asbestos fibers, whiskers, metal wires, and hard fine particles. Its It is characterized by small specific gravity, large specific strength and specific modulus, and also has excellent chemical stability, friction reduction and wear resistance, self-lubrication, heat resistance, fatigue resistance, creep resistance, sound insulation, electrical insulation and other properties. Another characteristic It is anisotropic, so the fiber arrangement can be designed according to the strength requirements of different parts of the product. Non-metal matrix composites can reduce weight due to their low density in automobiles and aircraft Increase speed and save energy. The stiffness and load-bearing capacity of composite leaf springs made of a mixture of carbon fiber and glass fiber are comparable to steel leaf springs that weigh more than five times.
  • this test bench is designed with a special clamping device in order to effectively and safely clamp it, and under the condition of protecting the composite beam from damage, a simple and compact design is used as much as possible.
  • this design uses two iron plates, one fixed and one floating. When the floating handle is tightened, the composite beam is clamped. During the test, the position of the composite beam and the clamping tension can be adjusted by the floating end handle. .
  • the clamping device is installed at both ends of the test bench and has strict alignment requirements.
  • the clamp is connected with the bolt and the lifting ring, and the positioning is accurately positioned on the transmission plate driven by the screw.
  • the geometric characteristics of the hook and the positioning of the pin are aligned with the fixture and bolts, and the centering can ensure that the direction of the composite beam and the direction of the fixture are the same.
  • FIG. 2 shows the main part of the vibration inside the shaker of this structure, which is also the shaker of this mechanism, which adopts the principle of the center crank slider mechanism and is designed through reasonable modification.
  • the motor is started, and the motor drives the stepless transmission to rotate the output shaft of the transmission to rotate at the required speed.
  • the modified crank slider mechanism drives the vibration platform to reciprocate up and down through the rotating device, and then the vibration platform is reciprocated.
  • a movable vibrating thimble is installed on it to achieve vibration at different positions of the composite beam.
  • the vibration amplitude can also be adjusted. The operator only needs to push the long handle on the shaker base.
  • Shifting gears 1, 2, and 3 if you want to shift gears 4, 5, and 6, you can press the small button below the right end of the base to achieve gears 4, 5, and 6. Change, when you want to go back, press the electromagnetic sensor on the box to return to the 0 position.
  • FIG 3 shows the introduction of the multifunctional environmental box of the tester.
  • High-temperature heating tubes are arranged neatly on the two sides of the environmental box.
  • the heat insulation plate can make the temperature difference between the two sections of the composite beam, which is convenient for further study of its material properties.
  • the designed rectangular small hole is convenient for point excitation to act on the entire composite beam.
  • Figure 4 shows the structure of the transmission system.
  • the selected motor is fixed by bolts.
  • the bolts are distributed according to the square apex of 100mm and connected by the ground plate.
  • the fixed axes of the reducer and the helical gear are also connected by a reasonable size distribution line. It is connected to the grounding plate itself, and the uppermost fixing plate is mainly used to fix two pulleys and a tensioning pulley.
  • the length of the fixing plate is 952mm, the width is 550mm, and the thickness is 67mm. It is mainly passed through the tester's test bench.
  • the rack is fixed.
  • the belt is mainly fixed on the fixed plate by bolts. However, the belt drive cannot be directly connected to the fixed plate. Instead, it needs a shaft connection.
  • the pulley is fixed in the axial direction by key connection and shoulder positioning.
  • the shaft is fixed by bearings.
  • the housing of the fixed bearing is fixed on the fixed plate by bolting, and a bearing cover is fixed on the other side of the fixed plate, which can further fix the bearing.
  • the center distance between the two bearing caps on the fixed plate is 514mm, and the diameter is 177mm, while the belt wheel's tension wheel is corresponding to the center distance of the bearing cap of 200mm, and its center is on the same horizontal line with the center of the bearing cap. .
  • Figure 2 shows the design of the runner in the shaker.
  • the runner is mainly composed of two rotatable discs that drive the crank slider in the middle and two fixed discs on both sides.
  • the middle two wheel discs are shifted by the ratchet spring device on the top and then moved by the ring.
  • the main principle is to increase the turning radius of the disc to achieve this step.
  • First set the left end to the No. 1 wheel.
  • the disks are numbered 1, 2, 3 and 4 from left to right.
  • the ratchet devices on the 2, 3 wheel discs are symmetrical.
  • Roulette No. 1 and Roulette No. 4 are fixed.
  • the main role of the two is to change the center of rotation of Roulette No. 2 and No. 3 to assist them to achieve a shift with a large distance.
  • the gears have a total of 1, 2, 3, 4, 5, 6, and 6 gears.
  • the different gears correspond to the stroke of the crank-slider mechanism for one revolution (the unit is mm, and the corresponding stroke size is shown in Table 1). Show.
  • the ratchet spring device on the two-wheel disk and the three-wheel disk when the ratchet spring device on the two-wheel disk and the three-wheel disk is at the center of the two-wheel disk in the center of rotation, the device shifts gears from the near center to the center away from the center, corresponding to 1, 2, and 3 speeds; When the center of rotation is not at the center of the circle, it corresponds to 4, 5, and 6 gears.
  • the first, second, and third gears as the center gear
  • the fourth, fifth, and sixth gears as the eccentric gears.
  • the design of this mechanism is not perfect, so the mechanism is not easy to change from the center gears to the eccentric gears.
  • the high-grade turning radius is large, so it is not easy to use often.
  • the ratchet spring mechanism in the exciter is composed of a modified spring, a moving sleeve, and a magnetic pole conversion circuit. It has two main functions. One is to fix the spring in the required position. The other is It is to return the runner in any gear to 0 gear, so that different gears can be adjusted at any time during the experiment.
  • the modified spring is the core part of the device called a ratchet spring, which is mainly fixed with a small hook outside the normal spring.
  • the small hook is curved and receives the same force as the bending direction (by the baffle, spring, and centrifugal force simultaneously). When it is generated, it will pass through the resistance plate, and when it receives a combined force opposite to the bending direction, the small hook will bear against the baffle. At this time, the combined external force knows that it can bear against the partition within 5000kN. Cheng Shi (the combined force received from the small gear to the big crotch spring is opposite to the bending direction, so the small hook will be pressed against the partition, so the spring will only be in a compressed state and will not push the sleeve back.
  • Testing the mechanical properties of degraded fiber reinforced composites includes the following steps:
  • Step 1 Clamp the fiber-reinforced composite beam with the current fixture, and move the insulation board in the multifunctional environmental box to the required position;
  • Step 2 Adjust the exciter and the continuously variable transmission to the required vibration position, and check the reliability of each component's fixation and connection;
  • Step 4 Rotate the vibrating pin on the composite beam and adjust the required vibration position, and close the box cover;
  • Step 5 Selectively turn on and adjust the ventilation device, ultraviolet irradiation device and heating device;
  • Step 6 Start the exciter motor to vibrate the composite beam, and the amplitude of the exciter can be used to adjust the amplitude, and the switchable magnetic pole circuit inside the exciter can be used to return the exciter amplitude to the minimum position;
  • Step 7 Start the motor of the transmission system to stretch the fiber-reinforced composite beam
  • Step 8 Import the measured data of the device into the computer through the sensors on the upper and lower planes of the composite beam.
  • the continuously variable transmission and ratchet spring device After the intervention of the continuously variable transmission and ratchet spring device, it can achieve a wide range of vibrations and can change the amplitude and its frequency at any time during the vibration. Comprehensive testing of the effects of vibration on composite degradation. The design task was initially completed, and a medium-sized and low-cost fiber-reinforced composite material performance degradation tester was designed, which can be operated by one person and can accurately measure the vibration results.

Abstract

一种测试纤维增强复合材料退化时力学性能的装置及方法,其属于检测设备技术领域,装置包括移动变档激振器(1)、无级变速器(2)、夹具(3)、固定机架(4)、支座(5)、底板(6)、滚珠丝杠(7)、传动系统(8)、多功能环境箱(9)、通气装置(10)、减振固定塞(11)、丝杠传动板(12),主电机(13)、副电机(14)、振针装置(15)、复合梁(16)。装置可以对纤维增强复合梁(16)进行拉伸、振动并引入环境因素,共有振动、温度,湿度,空气含氧度以及紫外线强度五种因素,不仅能够实现单一的载荷或者环境因素加载,还能将以上几种因素任意复合,再由根据要求所调节的环境因素维持机构与拉伸,振动进行如上复合,此外,多功能环境箱(9)所提供的热环境具有温度梯度。

Description

测试纤维增强复合材料退化时力学性能的装置及方法 技术领域
本发明涉及检测设备技术领域,具体涉及测试纤维增强复合材料退化时力学性能的装置及方法,能够测量退化时的纤维增强复合材料的力学性能的一种装置。
背景技术
纤维增强复合材料的比强度高、比模量高、热稳定性好,还有一定的阻尼减振能力,因此被广泛应用于航空、航天、船舶、兵器工业等重要领域。目前,工程实际中存在大量通过该类型材料制成的各种复合材料结构件,如直升机及喷气飞机使用的复合材料机翼,航空发动机中由纤维/陶瓷基复合材料制成的高温涡轮叶片等。由于复合材料及结构经常处于几百摄氏度乃至上千摄氏度的热环境下,在经过一段服役期后,其力学性能会发生一定程度的退化。另外,还有很多复合材料结构工作在在湿热、振动、紫外线照射等复杂环境下,上述环境的持续作用也对导致其力学性能出现不同程度的退化。因此,研究其性能退化问题及科学评价方法,有着重要的工程及学术意义。
目前,人们已经开始关注复合材料及结构的力学性能退化问题,并设计了一些相关的试验仪器或设备,但依旧存在一些问题。专利CN201610815513.7,专利201410794089.3,专利CN201320300717.8,专利CN201020149610.5分别是不同的实验构想,但皆是对金属材料或者复合材料的力学性能测试,他们均只能对片材进行单一加载,并不能够同时满足湿热,振动,拉伸等环境对片材的综合作用需求。专利CN200910197140-1公开了一种金属材料拉伸试验机,包括底座和设置在底座上的拉伸装置,所述拉伸装置包括固定在底座上的丝杆和导柱,丝杆和导柱上设有上横梁和下横梁,上横梁的下方设有上夹具,下横梁的上方设有下夹具,且外部设有防护罩,但同样未考虑到多种环境耦合作用对片材力学性能及其退化行为的影响;专利CN201610815513.7,专利201410794089.3,专利CN201020149610.5,分别提供了不同的加温与拉伸的试验方法,但是在结构上不够紧凑,功能单一,空间利用率低,且大都应用于专门领域,通用性差。
另外,传统的万能材料试验机虽然可以对材料实现拉伸,压缩,扭转等单独的静载荷加载,并以此数据来初步评判其力学退化问题。但并不能将此三种静态载荷组合作用于被测材料上,也没有考虑将振动等动态载荷与静态载荷实现复合加载。近来,随着纤维增强复合材料的广泛引入万能材料测试仪的局限性更为明显,因为纤维增强复合材料其一般不用于扭转,常常用于拉伸和压缩,此外其在振动作用以及热环境,化学腐蚀环境下对其退化的影响显得尤为明显,因为需要对拉伸,压缩,环境因素以及振动均进行设计,而不单单只是对一种静载荷加载与材料所制成的片材上面。故万能材料测试仪已经不能满足于对纤维增强复合材料退化时的力学性能的测试。
那些细长复合材料壳体结构,如风力机叶片等常服役于湿热环境,湿热对复合材料性能有较大影响,导致结构振动特性改变,因此研究湿热对细长复合材料结构振动特性影响机理 有重要意义。境下旋转复合材料层合梁在周期激励下的动态响应和稳定性;之后便引入湿热,建立复合材料层合厚板的静力、屈曲和振动方程,并发展了自由度高阶剪切理论,在本构中考虑湿热,建立复合材料层合板几何非线性振动控制方程,讨论温度、湿度、长厚比、纤维方向角等对层合板振动特性影响;Swamy等用有限元法,分析湿热环境下复合材料层合壳的非线性自由振动;还有相关文献研究了湿热环境对旋转复合材料叠层梁摆振特性的影响。由于复合材料薄壁梁的复杂性,现有的对薄壁梁在湿热环境下的振动特性研究还很少。
纤维增强复合材料具有良好的几何特性、高比强度、高比模量和加工性,并且具有厚度小,质量轻,耗材少,性能好等特点而被广泛应用于航空、航天、造船和机械等工业领域。但它的自身结构问题也很突出,特别是受到激励、外界环境影响,会发生退化进而导致材料的力学性能下降,所以对研究纤维增强复合材料退化后的力学性能及其环境因素、振动因素对其影响的大小显得尤为重要。
长期以来对纤维增强复合材料的退化研究工作进行的十分有限,其主要原因是由于激振方法难以解决。除此之外,以往的试验台对于纤维增强复合材料的环境因素设计不够全面并且不能够将振动因素,环境因素以及力学测试有效的结合成为一个机构。
发明内容
针对现有技术存在的问题,本发明提供测试纤维增强复合材料退化时力学性能的装置及方法,能够测量哪一种因素对纤维增强复合材料的退化影响较大,其主要是对传动的拉伸试验仪、万能测试仪以及一些专利进行改进,在围绕着纤维增强复合材料性能退化这一基础上展开设计,本试验仪可以对纤维增强复合材料梁进行拉伸、振动并引入环境因素,共有振动、温度,湿度,空气含氧度以及紫外线强度五种因素。该仪器不仅能够实现单一的载荷或者环境因素加载,还能将以上几种因素任意复合。首先,环境因素的四种因素就可以任意复合,比如温度与湿度、振动与湿度、振动与温度、振动与空气与温度,等等。其次再由根据要求所调节的环境因素维持机构可与拉伸,振动进行如上复合。此外,本试验箱所提供的热环境是具有温度梯度的,不是一般仪器所用的均匀热环境。故相比于其他仪器,纤维增强复合材料性能退化测试仪可以对纤维增强复合材料的性能退化进行更加全面的研究
本发明的技术方案是:
测试纤维增强复合材料退化时力学性能的装置,包括移动变档激振器(1)、无级变速器(2)、夹具(3)、固定机架(4)、支座(5)、底板(6)、滚珠丝杠(7)、传动系统(8)、多功能环境箱(9)、通气装置(10)、减振固定塞(11)、丝杠传动板(12),主电机(13)、副电机(14)、振针装置(15)、复合梁(16);
所述固定机架(4)下端由支座(5)固定,支座底部有底板(6)通过地脚螺栓连接于地面,滚珠丝杠(7)与固定机架(4)通过螺纹连接;传动系统(8)由固定机架(4)所支撑,经过主电机(13)传动至滚珠丝杠(7),移动变档激振器(1)固定于底座上,经副电机(14)带动无极变速器(2)驱动移动变档激振器振动,副电机(14)与无极变速器(2)以 及主电机(13)与减速器外端的输出轴均通过套筒联轴器相连,而主电机和副电机均通过螺栓连接固定在底板(6)上,多功能环境箱(9)通过螺栓连接固定在固定机架(4)表面;夹具(3)通过多功能环境箱(9)两边箱壁上的减振固定塞(11)穿入箱体内,而夹具外端分别由固定机架(4)和丝杠传动板(12)固定。
所述移动变档激振器(1)包括振动底座(17)、振动台面(18)、转轮机构(19)、曲柄滑块机构(20)、减振弹簧(21)、转轮系统(22)、棘轮弹簧机构(23);
振动底座(17)焊接在底板(6)之上,振动台面(18)经过空间球面副连接在曲柄滑块机构(20)上面,通过曲柄滑块带动振动台面振动;减振弹簧(21)通过底部的弹簧圈过盈配合连接于振动台面(18)和振动底座(17)之上,转轮机构(19)在振动底座上(17)通过过盈配合固定,在转轮机构的中间两轮盘的转动杆中间将曲柄滑块机构中的曲柄通过转动副连接,而转动杆通过棘轮弹簧机构(23)可进行档位的变换,棘轮弹簧机构通过间隙配合固定在由转轮机构(22)的轮盘的滑道之上。
所述传动系统(8)包括减速器(42)、斜齿轮对(24)、蜗轮蜗杆(25)、齿轮传动轴(26)、A型平键(27)、轴系固定套筒(28)、B型平键(29)、C型平键(30)、皮带传动系统(31)、固定板(32)
减速器(42)通过A型平键(27)与副电机(14)键连接、斜齿轮组(24)、蜗轮蜗杆(25)、均通过C型平键(30)和B型平键(29)连接在齿轮传动轴(26)上,斜齿轮对(24)于减速器输出轴采用键连接,此外用于连接皮带传动系统的齿轮传动轴(26)与皮带传动系统(31)采用过盈配合,而皮带传动通过轴系固定套筒(28)连接在固定板(32)上以对其精准定位。
所述多功能环境箱(9)由梯度加热管(33)、移动隔热板(34)、板轮(35)、管箍(36)、箱体翻盖(37),气压伸缩杆(38)、振针移动条(39)、箱体(40)、橡胶减震塞(41)组成;
梯度加热管(33)通过管箍(35)均布在多功能环境箱(9)的箱体(40)内,管箍(36)通过电焊焊接在箱体内,而箱体的底端通过螺钉连接固定于固定机架(4);在箱体(40)上端作由凹槽将气压伸缩杆(38)限制于凹槽滑道内,在箱体翻盖(37)同样开有可移动的限位凹槽,用于连接气压伸缩杆的另一端,这样就模仿了汽车后车箱翻盖的原理,在多功能环境箱工作时必须保证完全封闭故需采用螺栓将箱体(40)和箱体翻盖(37)在中间壳体所开的螺纹孔进行连接,在箱体的底板内开有滑轮轨道,将板轮(35)卡至在轨道之内,移动隔热板(34)与板轮(35)经过铰链连接,移动在箱体内部,保证其移动隔热效果,在隔热板中间有橡胶减振塞(41)来防止复合梁(16)对多功能环境箱(9)的振动,箱体(40)底部开有孔槽便于与通气装置(10)和紫外线光源相通或者连接;振针移动条(39)在箱体(40)底板壳体内部开有通道通过间隙配合限制在底板壳体内部,振针装置(15)通过振针移动条(39)伸入箱体(40)内部,这样便即达到密封由达到在箱体内部移动的作用。
测试纤维增强复合材料退化时力学性能的方法,包括以下步骤:
步骤1:现用夹具将纤维增强复合材料梁夹持,移动多功能环境箱内的隔热板至所需位置;
步骤2:将激振器以及无级变速器调节至所需要的振动档位,并检查个部件固定以及连接的可靠性;
步骤3:将振动台面上的振针机构固定;
步骤4:旋转振针顶在复合梁上并调节所需振动位置,关闭箱盖;
步骤5:将通气装置,紫外线照射装置以及加热装置进行选择性开启与调节;
步骤6:启动激振器电机,使复合梁进行振动,并可以通过激振器外端把手调节振幅大小,控制激振器内部的可变换磁极电路使激振器振幅回至最小档位;
步骤7:启动传动系统的电机来对纤维增强复合材料梁进行拉伸;
步骤8:通过复合梁上下标面的传感器将器所测数据导入到计算机内。
步骤2所述的激振器对复合梁进行动载荷加载,同时采用传动机构对复合梁进行静载荷加载,经夹持装置的拉伸以及模拟的环境因素影响可对未退化的纤维增强复合材料逐渐退化时的力学性能进行测量,再通过控制变量法探究哪种环境因素对纤维增强复合材料影响最大。
与现有技术相比,本发明具有如下有益效果:
本发明可以实现对纤维增强复合材料退化时的力学性能测试,而且通过控制变量可以研究哪一因素对纤维增强复合材料影响大进而预防这种影响因素。此外,由于传统拉伸试验没有环境因素的介入并且只能对片材进行静态试验,即使有动态试验也并不能将两者结合,而本发明是在老式拉伸实验仪的基础上对其进行改善。
在动态载荷加载方面,改善了普通激振器的单一位置振动,不但能在振动复合梁的同时拉伸复合梁,而且还能够时刻改变振动的位置,以方便对复合梁各个点的振动。
在环境维持方面引入四种对纤维增强复合材料的有影响的环境因素,而且可以取氧含量、紫外线、湿度、温度进行多种复合一起作用,并且在温度方面可以加热产生温度梯度,更加能进一步与实际机械中的纤维增强复合材料的工作环境相切合。
在传动系统方面,相比于传统的万能材料拉伸试验仪来说,其虽有减速器,以及斜齿轮的传动但是并未引入蜗轮蜗杆,所以丝杠传动在处于向前传动或者向后传动中并不能保证传动的单向可靠性,而蜗轮蜗杆本身具有自锁性,故当电机正转带动丝杠对复合梁进行拉伸时变不会因为外力如振动的影响使得丝杠反向运动。
本设计正是针对现有的测振设备中存在的不足和缺陷,对工程实际中,经常处于振动冲击、高温度、高湿度、化学腐蚀下的有纤维增强复合材料组成的构建,进行精确的性能退化测试实验。
本设计的技术方案有可调节激振机构、环境维持机构、拉伸与压缩模块、动力传动系统。复合梁可稳定的装夹在专用的夹持装置上,再由热环境箱与夹具紧密相连,工作时激振器振动,之后,复合梁的力学性能信息将由传感器收集然后传输给分析仪分析。
附图说明
图1是本发明机构即纤维增强复合材料性能退化测试仪的二维平面图;
图2是本发明机构中的移动变档激振器的二维平面图;
图3是本发明机构中的多功能环境箱的二维平面图;
图4是本发明机构中的传动系统的二维平面图
图中:1—移动变档激振器 2—无级变速器 3—夹具 4—固定机架 5—支座 6—底板 7—滚珠丝杠 8—传动系统 9—多功能环境箱 10—通气装置 11—减振固定塞 12—丝杠传动板 13—主电机 14—副电机 15—振针装置 16—复合梁 17—振动底座 18—振动台面 19—转轮机构 20—曲柄滑块机构 21—减振弹簧 22—转轮系统 23—棘轮弹簧机构 24—斜齿轮对 25—蜗轮蜗杆 26—齿轮传动轴 27—A型平键 28—轴系固定套筒 29—B型平键 30—C型平键 31—皮带传动系统 32—固定板 33—梯度加热管 34—移动隔热板 35—板轮 36—管箍 37—箱体翻盖 38—气压伸缩杆 39—振针移动条 40—箱体 41—橡胶减震塞 42—减速器
具体实施方式
下面结合附图对本发明的具体实施方式做详细说明。
测试纤维增强复合材料退化时力学性能的装置,包括移动变档激振器1、无级变速器2、夹具3、固定机架4、支座5、底板6、滚珠丝杠7、传动系统8、多功能环境箱9、通气装置10、减振固定塞11、丝杠传动板12,主电机13、副电机14、振针装置15、复合梁16;
所述固定机架4下端由支座5固定,支座底部有底板6通过地脚螺栓连接于地面,滚珠丝杠7与固定机架4通过螺纹连接;传动系统8由固定机架4所支撑,经过主电机13传动至滚珠丝杠7,移动变档激振器1固定于底座上,经副电机14带动无极变速器2驱动移动变档激振器振动,副电机14与无极变速器2以及主电机13与减速器外端的输出轴均通过套筒联轴器相连,而主电机和副电机均通过螺栓连接固定在底板6上,多功能环境箱9通过螺栓连接固定在固定机架4表面;夹具3通过多功能环境箱9两边箱壁上的减振固定塞11穿入箱体内,而夹具外端分别由固定机架4和丝杠传动板12固定。
移动变档激振器1包括振动底座17、振动台面18、转轮机构19、曲柄滑块机构20、减振弹簧21、转轮系统22、棘轮弹簧机构23;
振动底座17焊接在底板6之上,振动台面18经过空间球面副连接在曲柄滑块机构20上面,通过曲柄滑块带动振动台面振动;减振弹簧21通过底部的弹簧圈过盈配合连接于振动台面18和振动底座17之上,转轮机构19在振动底座上17通过过盈配合固定,在转轮机构的中间两轮盘的转动杆中间将曲柄滑块机构中的曲柄通过转动副连接,而转动杆通过棘轮弹簧机构23可进行档位的变换,棘轮弹簧机构通过间隙配合固定在由转轮机构22的轮盘的滑道之上。
传动系统8包括减速器42、斜齿轮对24、蜗轮蜗杆25、齿轮传动轴26、A型平键27、轴系固定套筒28、B型平键29、C型平键30、皮带传动系统31、固定板32
减速器23通过A型平键27与副电机14键连接、斜齿轮组24、蜗轮蜗杆25、均通过C型平键30和B型平键29连接在齿轮传动轴26上,斜齿轮对24于减速器输出轴采用键连接,此外用于连接皮带传动系统的齿轮传动轴26与皮带传动系统31采用过盈配合,而皮带传动通过轴系固定套筒28连接在固定板32上以对其精准定位。
多功能环境箱9由梯度加热管33、移动隔热板34、板轮35、管箍36、箱体翻盖37,气压伸缩杆38、振针移动条39、箱体40、橡胶减震塞41组成;
梯度加热管33通过管箍35均布在多功能环境箱9的箱体40内,管箍36通过电焊焊接在箱体内,而箱体的底端通过螺钉连接固定于固定机架4;在箱体40上端作由凹槽将气压伸缩杆38限制于凹槽滑道内,在箱体翻盖37同样开有可移动的限位凹槽,用于连接气压伸缩杆的另一端,这样就模仿了汽车后车箱翻盖的原理,在多功能环境箱工作时必须保证完全封闭故需采用螺栓将箱体40和箱体翻盖37在中间壳体所开的螺纹孔进行连接,在箱体的底板内开有滑轮轨道,将板轮35卡至在轨道之内,移动隔热板34与板轮35经过铰链连接,移动在箱体内部,保证其移动隔热效果,在隔热板中间有橡胶减振塞41来防止复合梁16对多功能环境箱9的振动,箱体40底部开有孔槽便于与通气装置10和紫外线光源相通或者连接;振针移动条39在箱体40底板壳体内部开有通道通过间隙配合限制在底板壳体内部,振针装置15通过振针移动条39伸入箱体40内部,这样便即达到密封由达到在箱体内部移动的作用。
测试纤维增强复合材料退化时力学性能的方法,包括以下步骤:
步骤1:现用夹具将纤维增强复合材料梁夹持,移动多功能环境箱内的隔热板至所需位置;
步骤2:将激振器以及无级变速器调节至所需要的振动档位,并检查个部件固定以及连接的可靠性;
步骤3:将振动台面上的振针机构固定;
步骤4:旋转振针顶在复合梁上并调节所需振动位置,关闭箱盖;
步骤5:将通气装置,紫外线照射装置以及加热装置进行选择性开启与调节;
步骤6:启动激振器电机,使复合梁进行振动,并可以通过激振器外端把手调节振幅大小,控制激振器内部的可变换磁极电路使激振器振幅回至最小档位;
步骤7:启动传动系统的电机来对纤维增强复合材料梁进行拉伸;
步骤8:通过复合梁上下标面的传感器将器所测数据导入到计算机内。
步骤2所述的激振器对复合梁进行动载荷加载,同时采用传动机构对复合梁进行静载荷加载,经夹持装置的拉伸以及模拟的环境因素影响可对未退化的纤维增强复合材料逐渐退化时的力学性能进行测量,再通过控制变量法探究哪种环境因素对纤维增强复合材料影响最大。
图1示出了纤维增强复合材料性能退化测试仪的二维平面图,此测试仪中,复合材料复合梁通过设计的专用夹具在复合梁两端进行夹持,并通传动块相连且固定到丝杠上面,丝杠末端经过齿轮轮系的传动由,以6000r/min左右的速度高速旋转的电机来实现传动。在拉压 实验的过程中,实验者通过试验台上的激励装置对复合梁进行激励,同时,该装置有变速机构,可以在激振器振时时刻改变振动的振幅与频率,并且,该装置可沿X轴移动,以便对复合梁不同位置进行激励。复合梁振动的结果通过传感器的测量与收集并传输给计算机进行处理,传感器的位置也可在X轴方向移动,方便对复合梁不同位置进行测量。
夹持机构中的夹具,夹持装置通过传动块和丝杠传动的链接进行X方向的移动,来实现对复合梁的拉伸和压缩。
该试验对象是复合材料复合梁,夹持装置要求能够对复合梁进行有效稳定的夹持,并且能够带动复合梁进行转动。复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。其特点是比重小、比强度和比模量大,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。
复合梁由于其薄壁特征,所以常规的夹持机构容易对复合梁造成破坏,或者不能满足对本试验夹持的要求。针对这两方面的特点,本试验台设计有专门的夹持装置,以便对其进行有效安全的夹持,并在保护复合梁不被破坏的条件下,尽量采用简单紧凑的设计。通过对相关知识的查询,本设计采用两个铁板,一个固定一个浮动,当浮动把手拧紧是则将复合梁夹持,试验时,可以通过浮动端把手来调整复合梁的位置以及夹持松紧。该夹持装置在试验台的两端都有安装,并有严格的对心要求一端是用螺栓将夹具,吊环连接,精准定位在被丝杠带动的传动板上,另一端则是用吊环于吊钩的几何特性以及销轴定位对夹具,螺栓连接,进行对心,可以保证复合梁受力方向和夹具受力方向一致。复合梁安装在试验台上后,一方面可以得到有效的夹持,另一方面可以保证拉压时所受力的准确性。
图2示出了本结构的激振器内部的振动主部,也正是本机构的激振器,其采用对心曲柄滑块机构的原理,通过合理的改装设计而成。试验时,将电机启动,电机带动无极变速器转动从而使变速器的输出轴俺所需转速进行转动,在通过转动装置带动改装过后的曲柄滑块机构带动振动平台进行上下往复振动,后再将振动平台上安装可移动的振动顶针,从而实现对复合梁不同位置的振动,此外除了所需要的振动转速以外,振动的振幅也可以进行调节,操作人员只需推动激振器底座上面的长把手就可进行1、2、3挡位的变速,如果想进行4、5、6挡位的变速,则可以将底座最右端的下面的小按钮按下,则就可以实现4、5、6挡位的变 换,想要回挡时便按一下箱体上面的电磁感应器,即可退回至0档。
图3示出了本测试仪多功能环境箱进行介绍,在环境箱两侧分别有高温加热管整齐分布,在箱体中间有一个隔热板并且隔热板与复合梁接触处有软质圆形材料及可以让复合梁振动,又能保证其隔热效果,隔热板可使得复合梁两段出现温差,便于对其材料性能进行进一步研究,在热箱底部有专门为振动顶针的移动而设计的长方形小孔,便于点激振可作用于整个复合梁上面,在多功能环境箱连接夹具的位置上有一个可以在箱体内移动的活塞可以减少片材先对夹具再由夹具传递到环境箱的振动影响。在环境箱的底端开有六个孔,四大两小,两侧形状及其作用均对称,两个大孔主要用于通入化学气体和水雾,小孔用于安装紫外线的光源,之所以两侧安装是为了考虑隔热板的存在。在环境箱的一侧上面,安装两个抗高温玻璃窗便于操作人员时刻观察箱内的各个情况。
图4示出了传动系统结构,其选用的电机通过螺栓固定,其螺栓按100mm的正方形顶点分布并通过接地板连接,减速机与斜齿轮的固定轴线也均是通过合理的尺寸分布线将其本身与接地板相连,而最上端的固定板主要用来固定两个皮带轮和一个张紧轮,固定板长度为952mm,宽为550mm,厚度67mm,其主要是通过测试仪的试验台外形尺寸中的机架固定。皮带主要是通过螺栓连接固定于固定板上面,然而皮带传动并不能直接与固定板相连,而是需要轴连接,首先带轮通过键连接以及轴肩定位固定于轴向,轴通过轴承固定,而固定轴承的外壳通过螺栓连接固定在固定板上面,在固定板的另一侧固定有轴承盖,可将轴承进一步固定。
在固定板上面两个轴承盖的中心距离为514mm,直径均为177mm,而皮带传动的张紧轮距主动带轮对应的轴承盖中心距为200mm,并且其中心与轴承盖中心在同一水平线上。
图2示出了激振器中的转轮设计,转轮主要是由中部驱动曲柄滑块的两个可旋转圆盘和两边固定的轮盘组成。中间两个轮盘通过其上面棘轮弹簧装置再由移动圆环使之进行挡位的变换,其主要原理是通过增加圆盘的回转半径来实现这一步操作的,首先设最左端为1号轮盘,从左至右依次标号为1、2、3、4。且2、3轮盘上面的棘轮装置是对称的。1号轮盘和4号轮盘是固定的,两者的主要作用是改变2,3轮盘的回转中心,协助其实现一次距离较大的变档,在1号轮盘内部是由电机驱动两个小锥齿轮,并且通过调节电机底座的高度可以选择其啮合哪一个斜齿轮,即电机只能驱动一个斜齿轮,之后经过斜齿轮传动带动2、3号轮带动回转中心转动。此外,1、3号轮两端用卡箍和管道进行连接,保证当主动斜齿轮与某一个从动斜齿轮啮合时,在四号轮盘处回转轴也移动到与之对应的挡位,保证两段同步运动来提高回转中心的对心性。其档位一共有1、2、3、4、5、6,六个档位,不同的档位对应曲柄滑块机构做一周回转运动的行程(单位为mm,所对应行程大小如表1所示。
表1
Figure PCTCN2018103948-appb-000001
Figure PCTCN2018103948-appb-000002
其中2轮盘和3轮盘上面的棘轮弹簧装置在回转中心处于2轮盘圆心时,该装置从近圆心处向背离圆心进行档位变换,分别对应为1、2、3挡;而当其回转中心处于非圆心处时则对应4、5、6挡。
由于档位变换范围相对较广,故可以对复合梁进行不同振幅的振动,以便对材料进行较为全面的研究和试验。我们将1、2、3档命名为中心档,将4、5、6档命名为偏心档,本机构由于设计还不够完善所以机构不易由频繁由中心档变换为偏心档,此外偏心档的最高档回转半径较大,故也不易经常使用。
激振器中的棘轮弹簧机构,此机构是由改装弹簧、移动套杆、磁极变换电路三部分构成,它主要的作用有二,其一是将弹簧固定在所需要的档位上,其二就是将处于任何一种档位的转轮退回至0档,以便于做实验时可进行不同档位的随时调节。
其中改装弹簧是此装置的核心部分称之为棘轮弹簧,主要是由正常的弹簧外固定有小型钩,小型钩是弯曲的,且其受到与弯曲方向相同合力(由挡板、弹簧、离心力同时产生时其会通过阻力板,而当其收到与弯曲方向相反的合力时小型钩会顶住挡板,此时合外力知道在5000kN内均可以顶住隔板。简言之在整个机构推程时(由小档至大裆弹簧收到的合力与弯曲方向相反故小型钩会顶在隔板上,故弹簧只会处于压缩状态而不会反向推动套杆。当需要套杆做回程运动可将隔板由远程遥控器移开,之后弹簧内部储存的弹性势能立即转换为套杆的动能,将推动套杆至轮盘圆心之后在控制隔板回到原来的位置,再由把手将棘轮装置推动至所需要的档位。
对退化的纤维增强复合材料的力学性能的测试,包括以下步骤:
步骤1:现用夹具将纤维增强复合材料梁夹持,移动多功能环境箱内的隔热板至所需位置;
步骤2:将激振器以及无级变速器调节至所需要的振动档位,并检查个部件固定以及连接的可靠性;
步骤3:将振动台面上的振针机构固定;
步骤4:旋转振针顶在复合梁上并调节所需振动位置,关闭箱盖;
步骤5:将通气装置,紫外线照射装置以及加热装置进行选择性开启与调节;
步骤6:启动激振器电机,使复合梁进行振动,并可以通过激振器外端把手调节振幅大小,控制激振器内部的可变换磁极电路使激振器振幅回至最小档位;
步骤7:启动传动系统的电机来对纤维增强复合材料梁进行拉伸;
步骤8:通过复合梁上下标面的传感器将器所测数据导入到计算机内。
上述对退化的纤维增强复合材料的力学性能的测试,通过从质量评估、成本分析和功能分析等几个方面进行分析可知,本次设计时的预计功能已基本实现,但仍存在不完善的地方需要改进,本试验台有变幅变频部分以及在拉伸和压缩复合梁时转矩较大,所以对各装置的安装提出了一定的要求。夹持装置是通过对拉伸试验仪器的夹具进行改装,能够对复合梁进行稳定有效的夹持,同时不会对复合梁造成破坏。激振器装置改善了以往激振器振动规律单一的情况,在经过无级变速器和棘轮弹簧装置介入以后可以实现范围较大的振动并可以在振动时随时改变振幅及其频率的大小,可以更加全面的测试出振动对复合材料退化的影响。初步完成了设计任务,设计出了一种中型低成本的纤维增强复合材料性能退化测试仪,可实现单人操作,并且能够对振动结果实现准确的测量。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不受限于以上描述的具体实例。对于本领域技术人员而言,任何对本发明进行些许修改和替代也都在本人所发明的范围之内。因此,在不脱离本发明的精神和范围下所做的均等变换和修改,都应包含在本发明范围内。

Claims (6)

  1. 测试纤维增强复合材料退化时力学性能的装置,其特征在于,包括移动变档激振器(1)、无级变速器(2)、夹具(3)、固定机架(4)、支座(5)、底板(6)、滚珠丝杠(7)、传动系统(8)、多功能环境箱(9)、通气装置(10)、减振固定塞(11)、丝杠传动板(12),主电机(13)、副电机(14)、振针装置(15)、复合梁(16);
    所述固定机架(4)下端由支座(5)固定,支座底部有底板(6)通过地脚螺栓连接于地面,滚珠丝杠(7)与固定机架(4)通过螺纹连接;传动系统(8)由固定机架(4)所支撑,经过主电机(13)传动至滚珠丝杠(7),移动变档激振器(1)固定于底座上,经副电机(14)带动无极变速器(2)驱动移动变档激振器振动,副电机(14)与无极变速器(2)以及主电机(13)与减速器外端的输出轴均通过套筒联轴器相连,而主电机和副电机均通过螺栓连接固定在底板(6)上,多功能环境箱(9)通过螺栓连接固定在固定机架(4)表面;夹具(3)通过多功能环境箱(9)两边箱壁上的减振固定塞(11)穿入箱体内,而夹具外端分别由固定机架(4)和丝杠传动板(12)固定。
  2. 根据权利要求1所述的测试纤维增强复合材料退化时力学性能的装置,其特征在于:
    所述移动变档激振器(1)包括振动底座(17)、振动台面(18)、转轮机构(19)、曲柄滑块机构(20)、减振弹簧(21)、转轮系统(22)、棘轮弹簧机构(23);
    振动底座(17)焊接在底板(6)之上,振动台面(18)经过空间球面副连接在曲柄滑块机构(20)上面,通过曲柄滑块带动振动台面振动;减振弹簧(21)通过底部的弹簧圈过盈配合连接于振动台面(18)和振动底座(17)之上,转轮机构(19)在振动底座上(17)通过过盈配合固定,在转轮机构的中间两轮盘的转动杆中间将曲柄滑块机构中的曲柄通过转动副连接,而转动杆通过棘轮弹簧机构(23)可进行档位的变换,棘轮弹簧机构通过间隙配合固定在由转轮机构(22)的轮盘的滑道之上。
  3. 根据权利要求1所述的测试纤维增强复合材料退化时力学性能的装置,其特征在于:
    所述传动系统(8)包括减速器(42)、斜齿轮对(24)、蜗轮蜗杆(25)、齿轮传动轴(26)、A型平键(27)、轴系固定套筒(28)、B型平键(29)、C型平键(30)、皮带传动系统(31)、固定板(32)
    减速器(42)通过A型平键(27)与副电机(14)键连接、斜齿轮组(24)、蜗轮蜗杆(25)、均通过C型平键(30)和B型平键(29)连接在齿轮传动轴(26)上,斜齿轮对(24)于减速器输出轴采用键连接,此外用于连接皮带传动系统的齿轮传动轴(26)与皮带传动系统(31)采用过盈配合,而皮带传动通过轴系固定套筒(28)连接在固定板(32)上以对其精准定位。
  4. 根据权利要求1所述的测试纤维增强复合材料退化时力学性能的装置,其特征在于:
    所述多功能环境箱(9)由梯度加热管(33)、移动隔热板(34)、板轮(35)、管箍(36)、箱体翻盖(37),气压伸缩杆(38)、振针移动条(39)、箱体(40)、橡胶减震塞(41)组成;
    梯度加热管(33)通过管箍(35)均布在多功能环境箱(9)的箱体(40)内,管箍(36)通过电焊焊接在箱体内,而箱体的底端通过螺钉连接固定于固定机架(4);在箱体(40)上端作由凹槽将气压伸缩杆(38)限制于凹槽滑道内,在箱体翻盖(37)同样开有可移动的限位凹槽,用于连接气压伸缩杆的另一端,这样就模仿了汽车后车箱翻盖的原理,在多功能环境箱工作时必须保证完全封闭故需采用螺栓将箱体(40)和箱体翻盖(37)在中间壳体所开的螺纹孔进行连接,在箱体的底板内开有滑轮轨道,将板轮(35)卡至在轨道之内,移动隔热板(34)与板轮(35)经过铰链连接,移动在箱体内部,保证其移动隔热效果,在隔热板中间有橡胶减振塞(41)来防止复合梁(16)对多功能环境箱(9)的振动,箱体(40)底部开有孔槽便于与通气装置(10)和紫外线光源相通或者连接;振针移动条(39)在箱体(40)底板壳体内部开有通道通过间隙配合限制在底板壳体内部,振针装置(15)通过振针移动条(39)伸入箱体(40)内部,这样便即达到密封由达到在箱体内部移动的作用。
  5. 根据权利要求1~4中任一项所述的测试纤维增强复合材料退化时力学性能的方法,其特征在于,包括以下步骤:
    步骤1:现用夹具将纤维增强复合材料梁夹持,移动多功能环境箱内的隔热板至所需位置;
    步骤2:将激振器以及无级变速器调节至所需要的振动档位,并检查个部件固定以及连接的可靠性;
    步骤3:将振动台面上的振针机构固定;
    步骤4:旋转振针顶在复合梁上并调节所需振动位置,关闭箱盖;
    步骤5:将通气装置,紫外线照射装置以及加热装置进行选择性开启与调节;
    步骤6:启动激振器电机,使复合梁进行振动,并可以通过激振器外端把手调节振幅大小,控制激振器内部的可变换磁极电路使激振器振幅回至最小档位;
    步骤7:启动传动系统的电机来对纤维增强复合材料梁进行拉伸;
    步骤8:通过复合梁上下标面的传感器将器所测数据导入到计算机内。
  6. 根据权利要求5所述的测试纤维增强复合材料退化时力学性能的方法,其特征在于:步骤2所述的激振器对复合梁进行动载荷加载,同时采用传动机构对复合梁进行静载荷加载,经夹持装置的拉伸以及模拟的环境因素影响可对未退化的纤维增强复合材料逐渐退化时的力学性能进行测量,再通过控制变量法探究哪种环境因素对纤维增强复合材料影响最大。
PCT/CN2018/103948 2018-09-03 2018-09-04 测试纤维增强复合材料退化时力学性能的装置及方法 WO2020047734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811017698.2A CN109115594B (zh) 2018-09-03 2018-09-03 测试纤维增强复合材料退化时力学性能的装置及方法
CN201811017698.2 2018-09-03

Publications (1)

Publication Number Publication Date
WO2020047734A1 true WO2020047734A1 (zh) 2020-03-12

Family

ID=64861863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103948 WO2020047734A1 (zh) 2018-09-03 2018-09-04 测试纤维增强复合材料退化时力学性能的装置及方法

Country Status (2)

Country Link
CN (1) CN109115594B (zh)
WO (1) WO2020047734A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115586066A (zh) * 2022-09-27 2023-01-10 佳诺威集团股份有限公司 一种用于高密度纤维板的多强度检测装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108565B (zh) * 2019-06-05 2024-02-09 长春浩园试验机有限公司 高频复合电子万能试验机
CN110377940B (zh) * 2019-06-10 2020-11-13 大连理工大学 一种获取cfrp工件铣削振动幅度的方法
CN110566301B (zh) * 2019-08-27 2021-07-13 常州机电职业技术学院 一种低温废热动力机
CN111982700B (zh) * 2020-09-01 2023-08-11 中国航发沈阳发动机研究所 面向航发管路衬垫力学性能退化检测的大批量测试装置
CN112146984B (zh) * 2020-10-04 2021-03-19 苏州辰晟优机电科技有限公司 一种用于聚氨酯高分子材料的测试模具的使用方法
CN113063673B (zh) * 2021-04-01 2021-11-23 山东龙为检测技术有限公司 一种用于光纤强度的测试装置
CN113740013B (zh) * 2021-09-06 2022-06-24 青海大学 一种粉末冶金阻尼实验耐高温装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152389A (ja) * 1994-11-29 1996-06-11 Shimadzu Corp 材料試験機
CN103487315A (zh) * 2013-08-28 2014-01-01 吉林大学 一种材料力学性能测试装置
CN104359773A (zh) * 2014-10-24 2015-02-18 同济大学 一种用于汽车零部件的拉伸及扭转疲劳试验机
CN204214718U (zh) * 2014-11-06 2015-03-18 上海电气电站设备有限公司 一种高温拉伸试验环境箱用保护装置
CN107340190A (zh) * 2017-08-24 2017-11-10 吉林大学 用于高频疲劳试验的多级静动态耦合力学加载装置
CN107966259A (zh) * 2017-10-30 2018-04-27 东北大学 纤维增强复合薄壁构件的冲击与热复合试验装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188456A (en) * 1991-11-29 1993-02-23 Hoechst Celanese Corporation Apparatus for thermomechanical testing of fibers
CN106950280B (zh) * 2017-03-16 2019-04-12 东北大学 基于激光无损扫描的纤维增强复合材料参数辨识方法
CN107870074B (zh) * 2017-11-06 2019-06-18 东北大学 一种纤维复合板非线性内共振表征测试方法及测试系统
CN207423703U (zh) * 2017-11-14 2018-05-29 吉林大学 拉伸预载荷下动态扭转疲劳力学性能测试装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152389A (ja) * 1994-11-29 1996-06-11 Shimadzu Corp 材料試験機
CN103487315A (zh) * 2013-08-28 2014-01-01 吉林大学 一种材料力学性能测试装置
CN104359773A (zh) * 2014-10-24 2015-02-18 同济大学 一种用于汽车零部件的拉伸及扭转疲劳试验机
CN204214718U (zh) * 2014-11-06 2015-03-18 上海电气电站设备有限公司 一种高温拉伸试验环境箱用保护装置
CN107340190A (zh) * 2017-08-24 2017-11-10 吉林大学 用于高频疲劳试验的多级静动态耦合力学加载装置
CN107966259A (zh) * 2017-10-30 2018-04-27 东北大学 纤维增强复合薄壁构件的冲击与热复合试验装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115586066A (zh) * 2022-09-27 2023-01-10 佳诺威集团股份有限公司 一种用于高密度纤维板的多强度检测装置

Also Published As

Publication number Publication date
CN109115594A (zh) 2019-01-01
CN109115594B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2020047734A1 (zh) 测试纤维增强复合材料退化时力学性能的装置及方法
WO2018165999A1 (zh) 基于激光无损扫描的纤维增强复合材料参数辨识方法及装置
CN108709793B (zh) 用于弯扭振动疲劳试验的加载装置及其方法
WO2020164185A1 (zh) 五自由度变胞式电磁振动试验台
Hamouda et al. Testing of composite materials at high rates of strain: advances and challenges
CN104535438B (zh) 一种试验件高温高低周复合疲劳裂纹扩展试验系统及测量方法
CN109883833A (zh) 拉伸-弯曲复合载荷下材料疲劳力学性能测试装置与方法
CN107340190A (zh) 用于高频疲劳试验的多级静动态耦合力学加载装置
WO2015043137A1 (zh) 多载荷多物理场耦合材料微观力学性能原位测试仪器
CN112485113B (zh) 一种小尺寸样品的材料拉伸性能测试方法及装置
Uyaner et al. Dynamic response of laminated composites subjected to low-velocity impact
Huang et al. Dynamic response of circular composite laminates subjected to underwater impulsive loading
Fan et al. Experimental research on vibration fatigue of cfrp and its influence factors based on vibration testing
Reghunath et al. Low velocity impact analysis on glass fiber reinforced composites with varied volume fractions
Ghasemi et al. Comparison between the frequencies of FML and composite cylindrical shells using beam modal function model
Yang et al. Analysis of porosity and mechanical behavior of composite T-joints produced by random vibration-assisted vacuum processing
Castellanos et al. Low-velocity impact response of woven carbon composites in arctic conditions
Qian et al. Time lapse in situ X-ray imaging of failure in structural materials under cyclic loads and extreme environments
CN111948077A (zh) 一种高温高压复合微动磨损试验装置
Naik et al. Stress–strain behavior of composites under high strain rate compression along thickness direction: effect of loading condition
CN108760469B (zh) 一种陶瓷基复合材料榫连接结构高温强度测试试验装置及试验方法
CN109612864B (zh) 一种用于旋转弯曲疲劳机的滑动摩擦疲劳试验装置
Li et al. Structural Design and Characteristic Research of Product Vibration Test Fixture Based on High Frequency Response Characteristics
Backe et al. Ultrasonic fatigue testing system combined with online nondestructive testing for carbon fiber reinforced composites
Peng et al. Influence of core thickness and boundary condition on the modal characteristics of composite structure with metallic damping core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932467

Country of ref document: EP

Kind code of ref document: A1