WO2020162627A1 - 人造構造タンパク質繊維の製造方法 - Google Patents
人造構造タンパク質繊維の製造方法 Download PDFInfo
- Publication number
- WO2020162627A1 WO2020162627A1 PCT/JP2020/004966 JP2020004966W WO2020162627A1 WO 2020162627 A1 WO2020162627 A1 WO 2020162627A1 JP 2020004966 W JP2020004966 W JP 2020004966W WO 2020162627 A1 WO2020162627 A1 WO 2020162627A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- seq
- mass
- acid sequence
- sequence
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/43504—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
- C07K14/43563—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
- C07K14/43586—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/06—Wet spinning methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/43504—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
- C07K14/43513—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae
- C07K14/43518—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae from spiders
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4741—Keratin; Cytokeratin
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F4/00—Monocomponent artificial filaments or the like of proteins; Manufacture thereof
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F4/00—Monocomponent artificial filaments or the like of proteins; Manufacture thereof
- D01F4/02—Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/20—Fusion polypeptide containing a tag with affinity for a non-protein ligand
Definitions
- the present invention relates to a method for producing an artificial structural protein fiber.
- regenerated silk fibers such as silk fibroin fiber and spider silk fibroin fiber have been known as structural protein fibers, and many manufacturing methods for them have been reported.
- Patent Document 1 a method for producing a spider silk fibroin fiber having a stress of 350 MPa or more by stretching an artificial polypeptide fiber derived from a natural spider silk fibroin structure by a first stage drawing in wet heat and a second stage drawing in dry heat ( Patent Document 1) and a method for improving the toughness of a structural protein molded body by exposing a molded body precursor containing a structural protein to an environment having a relative humidity of 80% or more have been proposed (Patent Document 1). Reference 2). However, fibers having a small diameter have not been obtained.
- a method of obtaining a blended fiber of silk fibroin and PEO having an average fiber diameter of less than 800 nm by discharging a mixed aqueous solution of silk fibroin and PEO from a spinner to which voltage is applied and performing electrospinning (Patent Document 3). Proposed.
- electrospinning requires special equipment and, in addition, it is difficult to obtain a fine fiber having sufficient stress.
- Patent No. 5540166 International Publication No. 2017/131196 JP, 2014-138877, A
- the present invention relates to the following inventions, for example.
- a method for producing an artificial structural protein fiber by a wet spinning method comprising a step of discharging a spinning stock solution containing an artificial structural protein and an organic solvent from a spinneret into a coagulating liquid, and coagulating the artificial structural protein
- the coagulating liquid contains water or an aqueous solution having a pH of 0.25 or more and a pH of 10.00 or less.
- aqueous solution is at least one selected from the group consisting of an aqueous sodium chloride solution, an aqueous sodium sulfate solution and an aqueous sodium citrate solution.
- the content of the artificial structural protein in the spinning dope is more than 10% by mass and 50% by mass or less based on 100% by mass of the spinning dope.
- the average structural index of the artificial structural protein is more than -0.8.
- the artificial structural protein has a plurality of repeating sequence units, The production method according to any one of [1] to [10], wherein the number of amino acid residues in the repeating sequence unit is 6 to 200.
- the production method according to any one of [1] to [13], wherein the artificial structural protein is spider silk fibroin.
- the organic solvent in the spinning dope is at least one selected from the group consisting of formic acid and hexafluoroisopropanol.
- the coagulation liquid contains the organic solvent, and the content of the organic solvent in the coagulation liquid is 10% by mass or more and 30% by mass or less, with the total amount of the coagulation liquid being 100% by mass, [1] to The production method according to any one of [16].
- aqueous solution is at least one selected from the group consisting of an aqueous solution of sulfate, an aqueous solution of chloride, and an aqueous solution of carboxylate.
- the sulfate is at least one selected from the group consisting of ammonium sulfate, potassium sulfate, sodium sulfate, lithium sulfate, magnesium sulfate, and calcium sulfate.
- the method for producing an artificial structural protein fiber of the present invention is a method for producing an artificial structural protein fiber by a wet spinning method, in which a spinning stock solution containing an artificial structural protein and an organic solvent is discharged from a spinneret into a coagulating liquid, It is characterized in that it includes a step of coagulating the artificial structural protein, and a spinning draft (bath draft) in the coagulating step is more than 0.4 and 20 or less.
- the spinning dope (also referred to as “dope solution”) according to this embodiment contains an artificial structural protein and an organic solvent.
- the artificial structural protein of the present embodiment is an artificially manufactured structural protein, and is not a natural protein or a purified protein thereof.
- the structural protein means a protein that forms or retains a structure, morphology, etc. in a living body.
- the method for artificially producing the structural protein is not particularly limited, and it may be produced by a microorganism or the like by a gene recombination technique or may be produced synthetically.
- the artificial structural protein according to the present embodiment may satisfy either of the following (1) or (2).
- (1) The number of amino acid residues is 150 or more, the alanine residue content is 12 to 40%, and the glycine residue content is 11 to 55%.
- alanine residue content is a value represented by the following formula.
- Alanine residue content (the number of alanine residues contained in the artificial structural protein/the number of all amino acid residues of the artificial structural protein) ⁇ 100(%)
- glycine residue content, serine residue content, threonine residue content and tyrosine residue content in the above formula, alanine residue, respectively glycine residue, serine residue, threonine residue and tyrosine residue It is synonymous with what is read as a group.
- the artificial structural protein satisfying (1) may have 150 or more amino acid residues.
- the number of amino acid residues may be, for example, 200 or more or 250 or more, and preferably 300 or more, 350 or more, 400 or more, 450 or more or 500 or more.
- the artificial structural protein satisfying (1) may have an alanine residue content of 12 to 40%.
- the alanine residue content may be, for example, 15-40%, 18-40%, 20-40%, 22-40%.
- the artificial structural protein that satisfies (1) may have a glycine residue content of 11 to 55%.
- the glycine residue content may be, for example, 11% to 55%, 13% to 55%, 15% to 55%, 18% to 55%, It may be 20% to 55%, 22% to 55%, 25% to 55%.
- the artificial structural protein that satisfies (2) has a content of at least one amino acid residue selected from the group consisting of serine, threonine, and tyrosine (that is, serine residue content, threonine residue content, tyrosine residue content).
- Amount the sum of serine residue content and threonine residue content, the sum of serine residue content and tyrosine residue content, the sum of threonine residue content and tyrosine residue content, serine residue content, Any of the sum of threonine residue content and tyrosine residue content), alanine residue content, and glycine residue content (total content) may be 56% or more. ..
- the total content may be, for example, 57% or more, 58% or more, 59% or more, and 60% or more.
- the upper limit of the total content is not particularly limited, but may be, for example, 90% or less, 85% or less, and 80% or less.
- the artificial structural protein satisfying (2) may have a sum of serine residue content, threonine residue content, and tyrosine residue content of 4% or more, and 4.5% or more. It may be 5% or more, 5.5% or more, 6% or more, 6.5% or more, 7% or more.
- the total of the serine residue content, the threonine residue content, and the tyrosine residue content may be, for example, 35% or less, 33% or less, 30% or less, 25% or less. And may be 20% or less.
- the artificial structural protein according to the present embodiment preferably satisfies both (1) and (2) above. As a result, the effect of the present invention is more remarkably exhibited.
- the artificial structural protein according to this embodiment has an average distribution of serine residues, threonine residues, or tyrosine residues, and among any 20 continuous amino acid residues, serine residues, threonine residues, and tyrosine residues remain.
- the total content of groups may be 5% or more, 10% or more, or 15% or more, and may be 50% or less, 40% or less, 30% or less, or 20% or less.
- the artificial structural protein according to one embodiment may have a repetitive sequence. That is, the artificial structural protein according to the present embodiment may have a plurality of amino acid sequences (repeating sequence units) having high sequence identity in the artificial structural protein.
- the amino acid sequence of the repeating sequence unit is not particularly limited as long as it satisfies the above (1) or (2) as the entire artificial structural protein.
- the number of amino acid residues in the repeating sequence unit is preferably 6 to 200.
- the sequence identity between the repeating sequence units may be, for example, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more. It may be present, may be 98% or more, and may be 99% or more.
- the artificial structural protein according to one embodiment may include an (A) n motif.
- the (A) n motif means an amino acid sequence mainly containing an alanine residue.
- the number of amino acid residues in the n motif may be 2 to 27, and may be an integer of 2 to 20, 2 to 16, or 2 to 12. Further, the ratio of the number of alanine residues to the total number of amino acid residues in the (A) n motif may be 40% or more, 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, It may be 86% or more, 90% or more, 95% or more, or 100% (meaning that it is composed of only alanine residues).
- the (A) n motif may be included in the repeating sequence unit.
- the n motif mainly contains an alanine residue, it easily takes an ⁇ -helix structure or a ⁇ -sheet structure.
- the artificial structural protein according to the present embodiment repeatedly has these secondary structures. Therefore, when the artificial structural protein is in the form of fiber, It is expected that these secondary structures will exert high stress.
- structural proteins examples include spider silk proteins (spider silk fibroin etc.), silk proteins (silk fibroin), collagen proteins, resilin proteins, elastin proteins, keratin proteins, etc.
- the spider silk protein includes naturally-derived spider silk protein and modified spider silk protein (hereinafter, also referred to as “modified spider silk fibroin” or simply “modified fibroin”).
- modified spider silk fibroin means a spider silk protein having the same amino acid sequence as that of a naturally-derived spider silk protein (spider silk fibroin, etc.).
- spike silk fibroin is meant a spider silk protein that has an amino acid sequence that differs from a naturally occurring spider silk protein.
- spider silk proteins examples include spider fibroin produced by spiders such as large vesicle guideline thread protein, weft thread protein, and vesicular gland protein. Since the large yarn ejection guide thread has a repeating region including a crystalline region and an amorphous region (also referred to as an amorphous region), it has high stress and elasticity.
- the weft thread of the spider thread is characterized by not having a crystalline region but having a repeating region composed of an amorphous region. The weft thread is less in stress than the large spit tube bookmark thread, but has high elasticity.
- Large votiver guideline protein is produced in the large alveolar gland of the spider and has the characteristic of excellent toughness.
- the large-spinner duct dragline protein include large ampullate spidroins MaSp1 and MaSp2 derived from Nephila clavipes, and ADF3 and ADF4 derived from Aranius diadematus.
- ADF3 is one of the two major bookmark thread proteins of the Japanese spider.
- the spider silk protein may be a spider silk protein derived from these bookmark silk proteins.
- the spider silk protein derived from ADF3 is relatively easy to synthesize and has excellent properties in terms of strength and elongation and toughness.
- Weft thread protein is produced in the flagella form of the spider.
- Examples of the weft thread protein include flagelliform silk protein derived from Nephila clavipes.
- spider fibroin produced by spiders include spiders belonging to the genus Araneus, such as Onigumo, Nihononigamo, Akanonigumo, Aonigumo and Maenoonigumo, spiders of the genus Araneus, Japanese spiders such as Spiders sp. Spiders belonging to the genus (Neoscona genus), spiders belonging to the genus Pronous (Pronus genus), such as the spider squirrel, and spiders belonging to the genus Cyrtarachne (genus Cyrtarachne), such as A.
- Spiders belonging to the genus Gasteracantha such as the spider Spider, spiders belonging to the genus Orbgarius, such as the spider spider, Mameitaisekigumo and Mutsutogayekisugi, such as Argiope brue, Argiope brue and Argiope argiogo, spider Argiope spp.
- Spiders belonging to the genus Arachnura such as spiders belonging to the genus Arachnura, spiders belonging to the genus Acusilas such as spiders, such as the spider spider, genus Cytophora, such as spider spiders such as spiders, brown spiders and dwarf spiders.
- Spider silks produced by spiders belonging to the genus Poltys (genus Poltys), spiders belonging to the genus Cyclosa, such as spider silk, spruce spider, etc.
- Proteins and spiders belonging to the genus Tetragnatha such as Tetragnatha
- Spiders belonging to the genus Nephila such as Nephila
- spiders belonging to the genus Menosira such as golden spider
- spiders belonging to the genus Dyschiriognonatha such as D.
- spider silk proteins produced by spiders include, for example, fibroin-3 (adf-3) [derived from Araneus diadematus] (GenBank accession number AAC47010 (amino acid sequence), U47855 (base sequence)), fibroin-4 (adf-4) [from Araneus diadematus] (GenBank accession number AAC47011 (amino acid sequence), U47856 (base sequence)), dragline silk protein spidroin 1 [from Nephila clavipes50] (session number 4 AA number) ), U37520 (base sequence)), major ampullate spidroin 1 [from Latrodetectus hesperus] (GenBank accession number ABR68856 (amino acid sequence), EF595246 (base sequence)), dragline silk protein vacenca Nile vulpein 2 [drugline silk caffeine 2] [spreadroin spillane] [2].
- fibroin-3 derived from Araneus di
- the spider silk protein is, for example, a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif. May be
- the spider silk protein may have an amino acid sequence (N-terminal sequence and C-terminal sequence) added to either or both of the N-terminal side and the C-terminal side of the domain sequence.
- the N-terminal sequence and the C-terminal sequence are typically, but not limited to, regions having no repeat of the amino acid motif characteristic of fibroin, and consist of about 100 amino acids.
- domain sequence refers to a crystalline region (typically corresponding to the (A) n motif of an amino acid sequence) and an amorphous region (typically REP of an amino acid sequence) peculiar to fibroin.
- the (A) n motif represents an amino acid sequence mainly composed of alanine residues, and the number of amino acid residues is 2 to 27.
- the number of amino acid residues of the n motif may be 2 to 20, 4 to 27, 4 to 20, 8 to 20, 10 to 20, 4 to 16, 8 to 16, or 10 to 16. Further, the ratio of the number of alanine residues to the total number of amino acid residues in the (A) n motif may be 40% or more, 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, It may be 86% or more, 90% or more, 95% or more, or 100% (meaning that it is composed of only alanine residues). At least seven of the (A) n motifs present in the domain sequence may be composed of only alanine residues.
- REP indicates an amino acid sequence composed of 2 to 200 amino acid residues.
- REP may be an amino acid sequence composed of 10 to 200 amino acid residues.
- m represents an integer of 2 to 300, and may be an integer of 10 to 300.
- the plurality of (A) n motifs may have the same amino acid sequence or different amino acid sequences.
- the plurality of REPs may have the same amino acid sequence or different amino acid sequences.
- Fibroin is not particularly limited as long as it satisfies the above (1) or (2).
- Specific examples of fibroin include, for example, fibroin (modified fibroin) shown in Table 1 below.
- the modified spider silk fibroin is, for example, one obtained by modifying the amino acid sequence of the naturally-derived spider fibroin (for example, modifying the gene sequence of the cloned naturally-derived spider fibroin).
- the amino acid sequence may be modified by the method described above, or artificially designed and synthesized without depending on naturally-occurring spider fibroin (for example, by chemically synthesizing a nucleic acid encoding the designed amino acid sequence, desired Having the amino acid sequence of).
- the modified fibroin is, for example, a gene sequence of a cloned naturally-derived arachnid fibroin, for example, a modification of the amino acid sequence corresponding to the substitution, deletion, insertion and/or addition of one or more amino acid residues. You can get it by doing. Amino acid residue substitutions, deletions, insertions and/or additions can be made by methods well known to those skilled in the art, such as partial directed mutagenesis. Specifically, Nucleic Acid Res. 10, 6487 (1982), Methods in Enzymology, 100, 448 (1983) and the like.
- modified fibroin examples include a modified fibroin derived from a large vesicular guideline protein produced in the large ampullate gland of a spider (first modified fibroin), and a modified fibroin having a reduced glycine residue content.
- first modified fibroin modified fibroin derived from a large vesicular guideline protein produced in the large ampullate gland of a spider
- modified fibroin having a reduced glycine residue content modified fibroin with reduced content of (A) n motif
- third modified fibroin modified fibroin
- modified fibroin modified fibroin with reduced content of (A) n motif
- modified fibroin 4th modified fibroin
- modified fibroin (5th modified fibroin) having a domain sequence containing a region having a large hydrophobicity index locally and a domain sequence having a reduced glutamine residue content
- Modified fibroin (6th modified fibroin) is mentioned.
- n is preferably an integer of 3 to 20, preferably an integer of 4 to 20, more preferably an integer of 8 to 20, still more preferably an integer of 10 to 20.
- An integer of -16 is even more preferred, an integer of 8-16 is particularly preferred, and an integer of 10-16 is most preferred.
- the number of amino acid residues constituting REP is preferably 10 to 200 residues, more preferably 10 to 150 residues, and 20 to 100 residues.
- the first modified fibroin has a total number of glycine residues, serine residues, and alanine residues contained in the amino acid sequence represented by the formula 1: [(A) n motif-REP] m.
- the total number is preferably 40% or more, more preferably 60% or more, still more preferably 70% or more.
- the first modified fibroin comprises a unit of the amino acid sequence represented by the formula 1: [(A) n motif-REP] m , and the C-terminal sequence is the amino acid sequence represented by any of SEQ ID NOs: 1 to 3, Alternatively, it may be a protein which is an amino acid sequence having 90% or more homology with the amino acid sequence shown in any of SEQ ID NOs: 1 to 3.
- the amino acid sequence shown in SEQ ID NO: 1 is the same as the amino acid sequence consisting of the amino acids of the C-terminal 50 residues of the amino acid sequence of ADF3 (GI: 1263287, NCBI), and the amino acid sequence shown in SEQ ID NO: 2 is The amino acid sequence shown in SEQ ID NO: 1 is the same as the amino acid sequence with 20 residues removed from the C-terminus, and the amino acid sequence shown in SEQ ID NO: 3 has 29 residues removed from the C-terminus of the amino acid sequence shown in SEQ ID NO: 1. It is identical to the amino acid sequence.
- modified fibroin As a more specific example of the first modified fibroin, (1-i) the amino acid sequence shown by SEQ ID NO: 4 or (1-ii) the amino acid sequence shown by SEQ ID NO: 4 with 90% or more sequence identity Mention may be made of modified fibroin, which comprises the amino acid sequence it has. The sequence identity is preferably 95% or more.
- the amino acid sequence represented by SEQ ID NO: 4 is the amino acid sequence of ADF3 in which the start codon, the His10 tag and the amino acid sequence (SEQ ID NO: 5) consisting of the HRV3C protease (Human rhinovirus 3C protease) recognition site are added to the N-terminal of the first to The 13th repeat region was increased to approximately double and the translation was mutated so that it terminated at the 1154th amino acid residue.
- the C-terminal amino acid sequence of the amino acid sequence represented by SEQ ID NO: 4 is the same as the amino acid sequence represented by SEQ ID NO: 3.
- the modified fibroin of (1-i) may consist of the amino acid sequence shown by SEQ ID NO:4.
- Modified fibroin having a reduced content of glycine residues has an amino acid sequence whose domain sequence has a reduced content of glycine residues as compared with naturally-occurring spider fibroin. Have.
- the second modified fibroin has an amino acid sequence corresponding to at least one or more glycine residues in REP being replaced with another amino acid residue, as compared with naturally-occurring spider fibroin. You can
- the second modified fibroin has a domain sequence that is different from naturally-occurring arachnoid fibroin in that GGX and GPGXX in REP (where G is a glycine residue, P is a proline residue, and X is an amino acid other than glycine).
- G is a glycine residue
- P is a proline residue
- X is an amino acid other than glycine.
- At least one motif sequence selected from the following) having an amino acid sequence corresponding to the substitution of one glycine residue in at least one or more of the motif sequences with another amino acid residue. May be
- the proportion of the motif sequence in which the glycine residue described above is replaced with another amino acid residue may be 10% or more based on the entire motif sequence.
- the second modified fibroin contains a domain sequence represented by the formula 1: [(A) n motif-REP] m , and the (A) n motif located closest to the C-terminal side from the above domain sequence is the above domain sequence.
- z is the total number of amino acid residues of the amino acid sequence consisting of XGX (where X represents an amino acid residue other than glycine) contained in all REPs in the sequence excluding the sequence up to the C-terminus of Therefore, when the total number of amino acid residues in the sequence excluding the sequence from the (A) n motif located closest to the C terminus to the C terminus of the above domain sequence is w, z/w is 30% or more, It may have an amino acid sequence of 40% or more, 50% or more, or 50.9% or more.
- the number of alanine residues to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more. Is more preferable, and 100% (meaning that it is composed of only alanine residues) is even more preferable.
- the second modified fibroin is preferably one in which the content ratio of the amino acid sequence consisting of XGX is increased by replacing one glycine residue of the GGX motif with another amino acid residue.
- the content ratio of the amino acid sequence consisting of GGX in the domain sequence is preferably 30% or less, more preferably 20% or less, further preferably 10% or less, 6 % Or less is more preferable, 4% or less is still more preferable, and 2% or less is particularly preferable.
- the content ratio of the amino acid sequence consisting of GGX in the domain sequence can be calculated by the same method as the method of calculating the content ratio (z/w) of the amino acid sequence consisting of XGX below.
- z/w is preferably 50.9% or more, more preferably 56.1% or more, further preferably 58.7% or more, and 70% or more. Is more preferable, and even more preferably 80% or more.
- the upper limit of z/w is not particularly limited, but may be 95% or less, for example.
- the second modified fibroin is modified, for example, from the cloned gene sequence of naturally-occurring spider fibroin so that at least a part of the base sequence encoding a glycine residue is substituted to encode another amino acid residue. Can be obtained. At this time, one glycine residue in the GGX motif and the GPGXX motif may be selected as the glycine residue to be modified, or the glycine residue may be substituted so that z/w is 50.9% or more. Alternatively, for example, it can be obtained by designing an amino acid sequence satisfying the above-mentioned aspect from the amino acid sequence of naturally-occurring spider fibroin and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
- the above-mentioned other amino acid residue is not particularly limited as long as it is an amino acid residue other than a glycine residue, but is a valine (V) residue, a leucine (L) residue, an isoleucine (I) residue, a methionine ( M) residue, proline (P) residue, hydrophobic amino acid residue such as phenylalanine (F) residue and tryptophan (W) residue, glutamine (Q) residue, asparagine (N) residue, serine (S) ) Residue, lysine (K) residue and hydrophilic amino acid residue such as glutamic acid (E) residue are preferred, and valine (V) residue, leucine (L) residue, isoleucine (I) residue and glutamine ( Q) residues are more preferred, and glutamine (Q) residues are even more preferred.
- valine (V) residue, leucine (L) residue, isoleucine (I) residue and glutamine ( Q) residues are more
- a modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9 can be mentioned.
- the modified fibroin of (2-i) will be described.
- the amino acid sequence represented by SEQ ID NO: 6 is obtained by substituting GQX for all GGX in REP of the amino acid sequence represented by SEQ ID NO: 10 corresponding to naturally-derived arachnid fibroin.
- the amino acid sequence represented by SEQ ID NO: 7 is the amino acid sequence represented by SEQ ID NO: 6 in which every two (A) n motifs are deleted from the N-terminal side toward the C-terminal side, and the amino acid sequence before the C-terminal sequence is further deleted.
- One [(A) n motif-REP] was inserted into.
- the amino acid sequence represented by SEQ ID NO: 8 has two alanine residues inserted at the C-terminal side of each (A) n motif of the amino acid sequence represented by SEQ ID NO: 7, and further has a partial glutamine (Q) residue. It is a substitution of serine (S) residue and a part of amino acids on the N-terminal side was deleted so that the molecular weight was almost the same as that of SEQ ID NO:7.
- the amino acid sequence represented by SEQ ID NO: 9 is a region of 20 domain sequences existing in the amino acid sequence represented by SEQ ID NO: 11 (however, several amino acid residues on the C-terminal side of the region are substituted). Is a sequence in which a His tag is added to the C terminus of the sequence repeated 4 times.
- the z/w value in the amino acid sequence represented by SEQ ID NO: 10 (corresponding to naturally-derived spider fibroin) is 46.8%.
- the amino acid sequence represented by SEQ ID NO: 6, the amino acid sequence represented by SEQ ID NO: 7, the amino acid sequence represented by SEQ ID NO: 8, and the amino acid sequence represented by SEQ ID NO: 9 each have a z/w value of 58.7%, 70.1%, 66.1% and 70.0%.
- the values of x/y in the serrated ratios (described later) 1:1.8 to 11.3 of the amino acid sequences shown in SEQ ID NO: 10, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9 are: They are 15.0%, 15.0%, 93.4%, 92.7% and 89.3%, respectively.
- the modified fibroin of (2-i) may consist of the amino acid sequence shown in SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- the modified fibroin of (2-ii) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- the modified fibroin of (2-ii) is also a protein containing a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the sequence identity is preferably 95% or more.
- the modified fibroin of (2-ii) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9, and is contained in REP (XGX( Where X is an amino acid residue other than glycine), and z is the total number of amino acid residues of the amino acid sequence consisting of) and w is the total number of amino acid residues of REP in the above-mentioned domain sequence. Is preferably 50.9% or more.
- the second modified fibroin may include a tag sequence at either or both of the N-terminus and C-terminus. This enables isolation, immobilization, detection and visualization of the modified fibroin.
- an affinity tag that utilizes specific affinity (binding, affinity) with another molecule can be mentioned.
- a specific example of the affinity tag is a histidine tag (His tag).
- His tag is a short peptide in which about 4 to 10 histidine residues are lined up, and it has the property of binding specifically to metal ions such as nickel. Therefore, the isolation of modified fibroin by metal chelating chromatography is performed. Can be used for.
- Specific examples of the tag sequence include, for example, the amino acid sequence represented by SEQ ID NO: 12 (amino acid sequence including His tag sequence and hinge sequence).
- tag sequences such as glutathione-S-transferase (GST) that specifically binds to glutathione and maltose binding protein (MBP) that specifically binds to maltose can be used.
- GST glutathione-S-transferase
- MBP maltose binding protein
- an "epitope tag” that utilizes the antigen-antibody reaction.
- a peptide (epitope) showing antigenicity as a tag sequence
- an antibody against the epitope can be bound.
- the epitope tag include HA (peptide sequence of influenza virus hemagglutinin) tag, myc tag, FLAG tag and the like.
- a tag sequence that can be cleaved with a specific protease can also be used.
- the modified fibroin from which the tag sequence is cleaved can be recovered.
- the second modified fibroin containing a tag sequence (2-iii) the amino acid sequence represented by SEQ ID NO: 13, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15, or (2-iv)
- a modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown by SEQ ID NO: 13, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15 can be mentioned.
- amino acid sequences shown in SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 13, SEQ ID NO: 11, SEQ ID NO: 14 and SEQ ID NO: 15 are respectively SEQ ID NO: 10, SEQ ID NO: 18, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 And the amino acid sequence represented by SEQ ID NO: 9 to which the amino acid sequence represented by SEQ ID NO: 12 (including His tag sequence and hinge sequence) is added.
- the modified fibroin of (2-iii) may consist of the amino acid sequence shown in SEQ ID NO: 13, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15.
- the modified fibroin (2-iv) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 13, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15.
- the modified fibroin of (2-iv) is also a protein containing a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the sequence identity is preferably 95% or more.
- the modified fibroin of (2-iv) has 90% or more sequence identity with the amino acid sequence of SEQ ID NO: 13, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15 and is contained in REP (XGX( Where X is an amino acid residue other than glycine), and z is the total number of amino acid residues of the amino acid sequence consisting of) and w is the total number of amino acid residues of REP in the above-mentioned domain sequence. Is preferably 50.9% or more.
- the second modified fibroin may contain a secretory signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
- the sequence of the secretion signal can be appropriately set depending on the type of host.
- the modified (A) n- motif content of the modified fibroin is such that the domain sequence of the modified (A) n- motif content is reduced as compared to naturally-occurring spider fibroin. It has a different amino acid sequence. It can be said that the domain sequence of the third modified fibroin has an amino acid sequence corresponding to the deletion of at least one or a plurality of (A) n motifs as compared with the naturally-occurring spider fibroin.
- the third modified fibroin may have an amino acid sequence corresponding to the (A) n motif deleted by 10 to 40% from naturally-occurring spider fibroin.
- the third modified fibroin has a domain sequence of 1 to 3 (A) at least from the N-terminal side to the C-terminal side as compared to the naturally-occurring arachnid fibroin (A) for each n motif (A) It may have an amino acid sequence corresponding to the deletion of the n motif.
- the third modified fibroin has a domain sequence in which at least two consecutive (A) n motifs are deleted from the N-terminal side toward the C-terminal side, as compared with naturally-occurring spider fibroin, and one (A) It may have an amino acid sequence corresponding to the deletion of the n motif repeated in this order.
- the third modified fibroin may have a domain sequence having an amino acid sequence corresponding to at least every two (A) n motifs deleted from the N-terminal side toward the C-terminal side. ..
- the third modified fibroin contains a domain sequence represented by the formula 1: [(A) n motif-REP] m , and has two adjacent [(A) n motifs from the N-terminal side to the C-terminal side.
- -REP] units are sequentially compared with each other, and when the number of amino acid residues of a REP having a small number of amino acid residues is 1, the ratio of the number of amino acid residues of the other REP is 1.8 to When the maximum value of the sum of the amino acid residues of two adjacent [(A) n motif-REP] units that are 11.3 is x and the total number of amino acid residues of the domain sequence is y In addition, x/y may have an amino acid sequence having 20% or more, 30% or more, 40% or more, or 50% or more.
- the number of alanine residues to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more. Is more preferable, and 100% (meaning that it is composed of only alanine residues) is even more preferable.
- FIG. 1 shows a domain sequence obtained by removing the N-terminal sequence and the C-terminal sequence from spider fibroin. From the N-terminal side (left side), the domain sequence is (A) n motif-first REP (50 amino acid residues)-(A) n motif-second REP (100 amino acid residues)-(A) n Motif-third REP (10 amino acid residues)-(A) n motif-fourth REP (20 amino acid residues)-(A) n motif-fifth REP (30 amino acid residues)-(A) It has an n motif sequence.
- the number of amino acid residues of each REP in two adjacent [(A) n motif-REP] units selected is compared.
- the fourth REP (20 amino acid residues) and the fifth REP (30 amino acid residues)
- the fourth REP having a smaller number of amino acid residues is set to 1
- each pattern the total number of amino acid residues of two adjacent [(A) n motif-REP] units shown by solid lines is added (not only REP but also the number of amino acid residues of (A) n motif is is there.). Then, the added total values are compared, and the total value of the patterns having the maximum total value (the maximum value of the total values) is set as x. In the example shown in FIG. 1, the total value of pattern 1 is the maximum.
- x/y (%) can be calculated by dividing x by the total number of amino acid residues in the domain sequence, y.
- x/y is preferably 50% or more, more preferably 60% or more, even more preferably 65% or more, even more preferably 70% or more. It is even more preferably 75% or more, still more preferably 80% or more.
- the upper limit of x/y is not particularly limited, and may be 100% or less, for example. When the notch ratio is 1:1.9 to 11.3, x/y is preferably 89.6% or more, and when the notch ratio is 1:1.8 to 3.4, x/y is x.
- /Y is preferably 77.1% or more, and when the notch ratio is 1:1.9 to 8.4, x/y is preferably 75.9% or more and the notch ratio is 1 In the case of 1.9 to 4.1, x/y is preferably 64.2% or more.
- x/y is 46.4% or more. Is more preferable, 50% or more is more preferable, 55% or more is still more preferable, 60% or more is still more preferable, 70% or more is still more preferable, 80% or more is more preferable. It is particularly preferable that The upper limit of x/y is not particularly limited and may be 100% or less.
- the third modified fibroin has, for example, one or more of the sequences encoding the (A) n motif so that x/y is 64.2% or more from the gene sequence of the cloned naturally-derived arachnid fibroin. It can be obtained by losing it.
- an amino acid sequence corresponding to the deletion of one or more (A) n motifs is designed so that x/y is 64.2% or more from the amino acid sequence of naturally-occurring spider fibroin.
- it can be obtained by chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
- one or more amino acid residues are further substituted, deleted, inserted and/or Alternatively, the amino acid sequence corresponding to the addition may be modified.
- the third modified fibroin (3-i) the amino acid sequence represented by SEQ ID NO: 18, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9, or (3-ii) SEQ ID NO: 18, the sequence A modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9 can be mentioned.
- the modified fibroin of (3-i) will be described.
- the amino acid sequence represented by SEQ ID NO: 18 lacks (A) n motif every two amino acids from the amino acid sequence represented by SEQ ID NO: 10 corresponding to naturally-occurring spider fibroin from the N-terminal side to the C-terminal side. It was deleted and one [(A) n motif-REP] was inserted before the C-terminal sequence.
- the amino acid sequence represented by SEQ ID NO: 7 is the amino acid sequence represented by SEQ ID NO: 18 in which all GGX in REP are replaced with GQX.
- the amino acid sequence represented by SEQ ID NO: 8 has two alanine residues inserted at the C-terminal side of each (A) n motif of the amino acid sequence represented by SEQ ID NO: 7, and further has a partial glutamine (Q) residue. It is a substitution of serine (S) residue and a part of amino acids on the N-terminal side was deleted so that the molecular weight was almost the same as that of SEQ ID NO:7.
- the amino acid sequence represented by SEQ ID NO: 9 is a region of 20 domain sequences existing in the amino acid sequence represented by SEQ ID NO: 11 (however, several amino acid residues on the C-terminal side of the region are substituted). Is a sequence in which a His tag is added to the C terminus of the sequence repeated 4 times.
- the x/y value at the Giza ratio 1:1.8 to 11.3 of the amino acid sequence represented by SEQ ID NO: 10 is 15.0%.
- the values of x/y in the amino acid sequence shown by SEQ ID NO: 18 and the amino acid sequence shown by SEQ ID NO: 7 are both 93.4%.
- the value of x/y in the amino acid sequence represented by SEQ ID NO: 8 is 92.7%.
- the value of x/y in the amino acid sequence represented by SEQ ID NO: 9 is 89.3%.
- the values of z/w in the amino acid sequences shown in SEQ ID NO: 10, SEQ ID NO: 18, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9 are 46.8%, 56.2%, 70.1%, 66. 1% and 70.0%.
- the modified fibroin of (3-i) may consist of the amino acid sequence shown in SEQ ID NO: 18, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- the modified fibroin of (3-ii) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 18, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- the modified fibroin of (3-ii) is also a protein containing a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the sequence identity is preferably 95% or more.
- the modified fibroin of (3-ii) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 18, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9, and from the N-terminal side to the C-terminal side.
- the number of REP amino acid residues in two adjacent [(A) n motif-REP] units is sequentially compared, and when the number of REP amino acid residues is 1, the other Amino acid residue of two adjacent [(A) n motif-REP] units whose ratio of the number of amino acid residues of REP is 1.8 to 11.3 (giza ratio is 1:1.8 to 11.3) It is preferable that x/y is 64.2% or more, where x is the maximum value of the total sum of the base numbers and y is the total number of amino acid residues in the domain sequence.
- the third modified fibroin may include the above-mentioned tag sequence at either or both of the N-terminus and the C-terminus.
- the third modified fibroin containing the tag sequence (3-iii) the amino acid sequence represented by SEQ ID NO: 17, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15, or the (3-iv) sequence
- 3-iii the amino acid sequence represented by SEQ ID NO: 17, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15, or the (3-iv) sequence
- a modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by No. 17, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15 can be mentioned.
- amino acid sequences shown in SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 13, SEQ ID NO: 11, SEQ ID NO: 14 and SEQ ID NO: 15 are respectively SEQ ID NO: 10, SEQ ID NO: 18, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 And the amino acid sequence represented by SEQ ID NO: 9 to which the amino acid sequence represented by SEQ ID NO: 12 (including His tag sequence and hinge sequence) is added.
- the modified fibroin of (3-iii) may consist of the amino acid sequence shown in SEQ ID NO: 17, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15.
- the modified fibroin of (3-iv) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 17, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15.
- the modified fibroin of (3-iv) is also a protein containing a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the sequence identity is preferably 95% or more.
- the modified fibroin of (3-iv) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 17, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15, and from the N-terminal side to the C-terminal side.
- the number of REP amino acid residues in two adjacent [(A) n motif-REP] units is sequentially compared, and when the number of REP amino acid residues is 1, the other X is the maximum value of the total sum of the number of amino acid residues of two adjacent [(A) n motif-REP] units in which the ratio of the number of amino acid residues of REP is 1.8 to 11.3.
- x/y is preferably 64.2% or more.
- the third modified fibroin may contain a secretory signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
- the sequence of the secretion signal can be appropriately set depending on the type of host.
- a modified fibroin having a reduced glycine residue content and (A) n motif content has a domain sequence that is (A) compared with a naturally-occurring spider fibroin. In addition to having a reduced content of n- motif, it has an amino acid sequence with a reduced content of glycine residues.
- the domain sequence of the fourth modified fibroin has at least one or more (A) n motifs deleted in addition to at least one or more glycine residues in REP, as compared to the naturally-occurring spider fibroin. It can be said that the group has an amino acid sequence corresponding to substitution of another amino acid residue.
- the fourth modified fibroin includes modified fibroin having a reduced content of the glycine residue (second modified fibroin) and modified fibroin having a reduced content of the (A) n motif (third modified fibroin).
- Modified fibroin is a modified fibroin that also has the characteristics of (modified fibroin). Specific aspects and the like are as described for the second modified fibroin and the third modified fibroin.
- the fourth modified fibroin (4-i) the amino acid sequence represented by SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15, (4- ii)
- You can Specific embodiments of the modified fibroin containing the amino acid sequence represented by SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 15 are as described above.
- Modified fibroin having a domain sequence including a region having a locally large hydrophobicity index has a domain sequence of 1 or more amino acids in REP as compared with naturally-occurring spider fibroin.
- a local hydrophobicity index corresponding to the substitution of a residue with an amino acid residue with a high hydrophobicity index and/or the insertion of one or more amino acid residues with a high hydrophobicity index into the REP. It may have an amino acid sequence containing a large region.
- a region having a locally large hydrophobicity index is composed of consecutive 2 to 4 amino acid residues.
- the above-mentioned amino acid residue having a large hydrophobicity index is an amino acid selected from isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A). It is more preferably a residue.
- the fifth modified fibroin has one or more amino acid residues in REP replaced with an amino acid residue having a large hydrophobicity index, and/or 1 in REP, as compared with naturally-occurring spider fibroin. Or a modification corresponding to the insertion of a plurality of amino acid residues having a large hydrophobicity index, and further, a substitution, a deletion or an insertion of one or more amino acid residues as compared with naturally-occurring spider fibroin. And/or there may be amino acid sequence alterations corresponding to the additions.
- the fifth modified fibroin has, for example, one or more hydrophilic amino acid residues (for example, an amino acid residue having a negative hydrophobicity index) in REP, which is hydrophobic from the cloned gene sequence of naturally-occurring spider fibroin. It can be obtained by substituting an amino acid residue (for example, an amino acid residue having a positive hydrophobicity index) and/or inserting one or more hydrophobic amino acid residues in REP. Further, for example, one or more hydrophilic amino acid residues in REP have been substituted with hydrophobic amino acid residues from the amino acid sequence of naturally-derived spider fibroin, and/or one or more hydrophobic amino acids in REP.
- one or more hydrophilic amino acid residues in REP have been substituted with hydrophobic amino acid residues from the amino acid sequence of naturally-derived spider fibroin, and/or one or more hydrophobic amino acids in REP.
- an amino acid sequence corresponding to the insertion of a residue can also be obtained by designing an amino acid sequence corresponding to the insertion of a residue and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
- one or more hydrophilic amino acid residues in REP were replaced with hydrophobic amino acid residues from the amino acid sequence of naturally-occurring spider fibroin, and/or one or more hydrophobic amino acids in REP.
- an amino acid sequence modification corresponding to the substitution, deletion, insertion and/or addition of one or more amino acid residues may be performed.
- the fifth modified fibroin contains a domain sequence represented by the formula 1: [(A) n motif-REP] m , from the (A) n motif located closest to the C terminus to the C terminus of the above domain sequence.
- the total number of amino acid residues contained in the region where the average value of the hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more is p
- the p/q is 6 It may have an amino acid sequence of 2% or more.
- hydrophobicity index of amino acid residues
- HI hydrophobicity index
- a sequence obtained by removing the sequence from the domain sequence represented by the formula 1: [(A) n motif-REP] m to the C-terminal of the (A) n motif located at the most C-terminal side (Hereinafter referred to as “array A”) is used.
- array A a sequence obtained by removing the sequence from the domain sequence represented by the formula 1: [(A) n motif-REP] m to the C-terminal of the (A) n motif located at the most C-terminal side.
- the average value of the hydrophobicity index is obtained for all four consecutive amino acid residues (each amino acid residue is used for calculating the average value 1 to 4 times).
- a region where the average value of the hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more is specified. Even if a certain amino acid residue corresponds to multiple “4 consecutive amino acid residues with an average hydrophobicity index of 2.6 or more”, it must be included as 1 amino acid residue in the region. become.
- the total number of amino acid residues contained in the region is p.
- the total number of amino acid residues contained in Sequence A is q.
- p/q is preferably 6.2% or more, more preferably 7% or more, further preferably 10% or more, and more preferably 20% or more. Even more preferably, it is even more preferably 30% or more.
- the upper limit of p/q is not particularly limited, but may be 45% or less, for example.
- the fifth modified fibroin includes, for example, one or more hydrophilic amino acid residues (for example, a hydrophobic amino acid residue) in REP so that the amino acid sequence of the cloned naturally-occurring spider fibroin is satisfied so that the above p/q condition is satisfied.
- Substitution of a negative amino acid residue having a sex index) with a hydrophobic amino acid residue (for example, an amino acid residue having a positive hydrophobic index), and/or one or more hydrophobic amino acid residues in REP Can be obtained by locally modifying the amino acid sequence to include a region having a large hydrophobicity index.
- one or more amino acid residues in REP were replaced with amino acid residues having a large hydrophobicity index, and/or 1 or more in REP, as compared with naturally-derived spider fibroin.
- further modification corresponding to substitution, deletion, insertion and/or addition of one or more amino acid residues is performed. Good.
- the amino acid residue having a large hydrophobicity index is not particularly limited, but isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A ) Is preferred, and valine (V), leucine (L) and isoleucine (I) are more preferred.
- the fifth modified fibroin (5-i) the amino acid sequence represented by SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21, or (5-ii) SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: A modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by 21 can be mentioned.
- the modified fibroin of (5-i) will be described.
- the amino acid sequence represented by SEQ ID NO: 22 is a deletion of the amino acid sequence of continuous alanine residues in the (A) n motif of naturally-occurring spider fibroin so that the number of continuous alanine residues is five. Is.
- the amino acid sequence represented by SEQ ID NO:19 is the amino acid sequence represented by SEQ ID NO:22 by inserting an amino acid sequence (VLI) consisting of three amino acid residues at every other REP at two positions, and shown by SEQ ID NO:22. A part of amino acids on the C-terminal side is deleted so that the molecular weight is almost the same as that of the amino acid sequence.
- the amino acid sequence represented by SEQ ID NO:23 is the same as the amino acid sequence represented by SEQ ID NO:22 by inserting two alanine residues at the C-terminal side of each (A) n motif and further leaving a part of glutamine (Q) residue.
- the amino acid sequence is obtained by substituting the group with a serine (S) residue and deleting a part of the amino acids on the C-terminal side so that the amino acid sequence shown in SEQ ID NO: 22 has almost the same molecular weight.
- the amino acid sequence represented by SEQ ID NO:20 is obtained by inserting an amino acid sequence (VLI) consisting of three amino acid residues at every other REP at one position into the amino acid sequence represented by SEQ ID NO:23.
- the amino acid sequence represented by SEQ ID NO: 21 is the amino acid sequence represented by SEQ ID NO: 23 with two amino acid sequences (VLI) each consisting of three amino acid residues inserted every other REP.
- the modified fibroin of (5-i) may consist of the amino acid sequence shown in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
- the modified fibroin of (5-ii) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
- the modified fibroin of (5-ii) is also a protein containing a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the sequence identity is preferably 95% or more.
- the modified fibroin of (5-ii) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21, and is located at the most C-terminal side (A) n.
- P/q is preferably 6.2% or more.
- the fifth modified fibroin may include a tag sequence at either or both of the N-terminus and the C-terminus.
- the amino acid sequence represented by (5-iii) SEQ ID NO: 24, SEQ ID NO: 25 or SEQ ID NO: 26, or (5-iv) SEQ ID NO: 24, sequence A modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 25 or SEQ ID NO: 26 can be mentioned.
- amino acid sequences represented by SEQ ID NO: 24, SEQ ID NO: 25 and SEQ ID NO: 26 are the amino acid sequences represented by SEQ ID NO: 12 (His tag) at the N-terminal of the amino acid sequences represented by SEQ ID NO: 19, SEQ ID NO: 20 and SEQ ID NO: 21, respectively. (Including sequences and hinge sequences).
- the modified fibroin of (5-iii) may consist of the amino acid sequence shown by SEQ ID NO: 24, SEQ ID NO: 25 or SEQ ID NO: 26.
- the modified fibroin of (5-iv) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 24, SEQ ID NO: 25 or SEQ ID NO: 26.
- the modified fibroin of (5-iv) is also a protein containing a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the sequence identity is preferably 95% or more.
- the modified fibroin of (5-iv) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 24, SEQ ID NO: 25 or SEQ ID NO: 26, and is located at the most C-terminal side (A) n.
- P/q is preferably 6.2% or more.
- the fifth modified fibroin may contain a secretory signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
- the sequence of the secretion signal can be appropriately set depending on the type of host.
- a modified fibroin having a domain sequence with a reduced content of glutamine residues (sixth modified fibroin) has an amino acid sequence with a reduced content of glutamine residues as compared to naturally-occurring spider fibroin ..
- the sixth modified fibroin preferably contains at least one motif selected from the GGX motif and the GPGXXX motif in the amino acid sequence of REP.
- the GPGXX motif content is usually 1% or more, may be 5% or more, and is preferably 10% or more.
- the upper limit of the GPGXX motif content rate is not particularly limited and may be 50% or less, or 30% or less.
- GPGXX motif content rate is a value calculated by the following method.
- Formula 1 [(A) n Motif-REP] m
- Formula 2 [(A) n Motif-REP] m- (A) n
- the total number of GPGXX motifs contained in the region is tripled ( That is, (corresponding to the total number of G and P in the GPGXX motif) is set to s, and the sequence from the (A) n motif located closest to the C terminus to the C terminus of the domain sequence is removed from the domain sequence, and further (A) n
- the GPGXX motif content rate is calculated as s/t.
- sequence obtained by excluding the sequence from the (A) n motif located at the most C-terminal to the C-terminal of the domain sequence from the domain sequence is "the most C-terminal side".
- sequence from the n motif to the C-terminal of the domain sequence may include a sequence having a low correlation with a sequence characteristic of spider fibroin. Is small (that is, when the domain sequence is short), it affects the calculation result of the GPGXX motif content rate, and is for eliminating this effect.
- the “GPGXX motif” is located at the C-terminal of REP, it is treated as a “GPGXX motif” even if “XX” is “AA”.
- FIG. 3 is a schematic diagram showing a domain sequence of spider fibroin.
- the sixth modified fibroin preferably has a glutamine residue content of 9% or less, more preferably 7% or less, further preferably 4% or less, and particularly preferably 0%. ..
- glucose residue content is a value calculated by the following method.
- Formula 1 [(A) n Motif-REP] m
- Formula 2 [(A) n Motif-REP] m- (A) n
- the glutamine residue content is calculated as u/t, where t is the total number of amino acid residues.
- the reason why “the sequence obtained by excluding the sequence from the (A) n motif located at the most C-terminal side to the C-terminal of the domain sequence from the domain sequence” is the same as the above-mentioned reason. The same is true.
- the sixth modified fibroin has a domain sequence in which one or more glutamine residues in REP are deleted or substituted with other amino acid residues, as compared with naturally-occurring spider fibroin. It may have a corresponding amino acid sequence.
- the other amino acid residue may be any amino acid residue other than the glutamine residue, but is preferably an amino acid residue having a larger hydrophobicity index than the glutamine residue.
- the hydrophobicity index of amino acid residues is as shown in Table 2.
- An amino acid residue selected from alanine (A), glycine (G), threonine (T), serine (S), tryptophan (W), tyrosine (Y), proline (P) and histidine (H) can be mentioned. it can.
- an amino acid residue selected from isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A) is more preferable. More preferably, it is an amino acid residue selected from isoleucine (I), valine (V), leucine (L) and phenylalanine (F).
- the hydrophobicity of REP is preferably ⁇ 0.8 or more, more preferably ⁇ 0.7 or more, further preferably 0 or more, and 0.3 or more. Is more preferable, and 0.4 or more is particularly preferable.
- the upper limit of REP is not particularly limited, and may be 1.0 or less, or 0.7 or less.
- the “repellency of REP” is a value calculated by the following method.
- Formula 1 [(A) n Motif-REP] m
- Formula 2 [(A) n Motif-REP] m- (A) n
- the sixth modified fibroin has a domain sequence lacking one or more glutamine residues in REP, and/or one or more glutamine in REP, as compared to naturally-occurring spider fibroin.
- the modification corresponding to the substitution of a residue with another amino acid residue there is a modification of the amino acid sequence corresponding to the replacement, deletion, insertion and/or addition of one or more amino acid residues. Good.
- the sixth modified fibroin comprises, for example, deleting one or more glutamine residues in REP from the cloned gene sequence of naturally-occurring spider fibroin, and/or one or more glutamine residues in REP. Can be obtained by substituting for another amino acid residue. Further, for example, one or more glutamine residues in REP have been deleted from the amino acid sequence of naturally-derived spider fibroin, and/or one or more glutamine residues in REP have been replaced with other amino acid residues. It can also be obtained by designing an amino acid sequence corresponding to the substitution and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
- a more specific example of the sixth modified fibroin is (6-i) SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33 or SEQ ID NO: 43.
- a modified fibroin comprising the amino acid sequence shown, or (6-ii) shown as SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33 or SEQ ID NO: 43. Mention may be made of modified fibroin which comprises an amino acid sequence having a sequence identity of 90% or more with the amino acid sequence.
- the amino acid sequence represented by SEQ ID NO: 7 is (A) n based on the nucleotide sequence and amino acid sequence of naturally-occurring fibroin, Nephila clavipes (GenBank Accession Nos.: P46804.1, GI:1174415).
- the amino acid sequence was modified in order to improve productivity, for example, by increasing the number of consecutive alanine residues in the amino acid sequence of alanine residues in the motif to 5.
- the glutamine residue (Q) was not modified, so the glutamine residue content is similar to the glutamine residue content of naturally occurring fibroin.
- the amino acid sequence (M_PRT888) shown in SEQ ID NO: 27 is obtained by replacing all QQ in Met-PRT410 (SEQ ID NO: 7) with VL.
- the amino acid sequence (M_PRT965) shown in SEQ ID NO: 28 is obtained by replacing all QQ in Met-PRT410 (SEQ ID NO: 7) with TS and replacing the remaining Q with A.
- the amino acid sequence (M_PRT889) shown in SEQ ID NO: 29 is obtained by replacing all QQ in Met-PRT410 (SEQ ID NO: 7) with VL and replacing the remaining Q with I.
- the amino acid sequence (M_PRT916) shown in SEQ ID NO: 30 is obtained by replacing all QQ in Met-PRT410 (SEQ ID NO: 7) with VI and replacing the remaining Q with L.
- the amino acid sequence (M_PRT918) shown in SEQ ID NO: 31 is obtained by replacing all QQ in Met-PRT410 (SEQ ID NO: 7) with VF and replacing the remaining Q with I.
- the amino acid sequence represented by SEQ ID NO: 34 has a molecular weight of Met-PRT410 in which two alanine residues are inserted in a region (A 5 ) where alanine residues are continuous with respect to Met-PRT410 (SEQ ID NO: 7). Two domain sequences on the C-terminal side were deleted so as to be almost the same as the above, and 13 positions of glutamine residues (Q) were replaced with serine residues (S) or proline residues (P).
- the amino acid sequence (M_PRT699) shown in SEQ ID NO: 32 is obtained by replacing all QQ in M_PRT525 (SEQ ID NO: 34) with VL.
- the amino acid sequence (M_PRT698) shown in SEQ ID NO: 33 is obtained by replacing all QQ in M_PRT525 (SEQ ID NO: 34) with VL and replacing the remaining Q with I.
- the amino acid sequence represented by SEQ ID NO:43 (Met-PRT966) has all the QQ in the amino acid sequence represented by SEQ ID NO:9 (the amino acid sequence before the amino acid sequence represented by SEQ ID NO:42 is added to the C-terminal) as VF. And the remaining Q is replaced by I.
- amino acid sequences shown in SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33 and SEQ ID NO: 43 all have a glutamine residue content of 9% or less. Yes (Table 3).
- the modified fibroin of (6-i) consists of the amino acid sequence shown by SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33 or SEQ ID NO:43. It may be.
- the modified fibroin of (6-ii) has 90% or more amino acid sequence represented by SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33 or SEQ ID NO: 43. It includes an amino acid sequence having the sequence identity of.
- the modified fibroin of (6-ii) also has a domain represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif.
- the modified fibroin of (6-ii) preferably has a glutamine residue content of 9% or less.
- the modified fibroin (6-ii) preferably has a GPGXX motif content of 10% or more.
- the sixth modified fibroin may contain a tag sequence at either or both of the N-terminus and the C-terminus. This enables isolation, immobilization, detection and visualization of the modified fibroin.
- the sixth modified fibroin containing a tag sequence (6-iii) SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41 or Modified fibroin comprising the amino acid sequence shown by SEQ ID NO:44, or (6-iv) SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 or SEQ ID NO:
- a modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by 44 can be mentioned.
- amino acid sequences shown in SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41 and SEQ ID NO: 44 are respectively SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29.
- the amino acid sequence represented by SEQ ID NO: 12 (including His tag sequence and hinge sequence) was added to the N-terminal of the amino acid sequence represented by SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33 and SEQ ID NO: 43. It is a thing.
- amino acid sequence shown by SEQ ID NO:44 all have a glutamine residue content of 9% or less (Table 4).
- the modified fibroin of (6-iii) consists of the amino acid sequence shown by SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 or SEQ ID NO:44. It may be.
- the modified fibroin of (6-iv) has 90% or more amino acid sequence represented by SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41 or SEQ ID NO: 44. It includes an amino acid sequence having the sequence identity of.
- the modified fibroin of (6-iv) also has a domain represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif.
- the modified fibroin of (6-iv) preferably has a glutamine residue content of 9% or less. Further, the modified fibroin of (6-iv) preferably has a GPGXX motif content of 10% or more.
- the sixth modified fibroin may contain a secretory signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
- the sequence of the secretion signal can be appropriately set depending on the type of host.
- the modified fibroin is at least two or more of the characteristics of the first modified fibroin, the second modified fibroin, the third modified fibroin, the fourth modified fibroin, the fifth modified fibroin, and the sixth modified fibroin. It may be a modified fibroin having the characteristics of
- the spider silk protein may be a hydrophilic spider silk protein or a hydrophobic spider silk protein.
- the hydrophobic spider silk protein is the sum of the hydrophobicity index (HI) of all amino acid residues constituting the spider silk protein, and the value (average HI) obtained by dividing the sum by the total number of amino acid residues is It is preferably a spider silk protein of more than -0.8, more preferably a protein having an average HI of -0.6 or more, and more preferably a protein having an average HI of -0.4 or more.
- a protein having an average HI of ⁇ 0.2 or more is more preferable, and a spider silk protein having an average HI of 0 or more is particularly preferable.
- the hydrophobicity index is as shown in Table 2.
- the hydrophilic spider silk protein is a spider silk protein having an average HI of ⁇ 0.8 or less.
- the average hydrophobicity index of the protein according to the present embodiment is preferably more than ⁇ 0.8, preferably ⁇ 0.7 or more, preferably ⁇ 0.6 or more, and ⁇ 0.5 or more. Is more preferable, -0.4 or more is preferable, -0.3 or more is preferable, -0.2 or more is preferable, and -0.1 or more is preferable. , More preferably 0 or more, more preferably 0.1 or more, more preferably 0.2 or more, further preferably 0.3 or more, and 0.4 or more. Is particularly preferable.
- the HIs of the amino acid sequences shown in SEQ ID NO: 11, SEQ ID NO: 15, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40 and SEQ ID NO: 41 are as shown in Table 5. is there.
- the HI of each amino acid sequence was calculated by excluding the sequence unrelated to the modified fibroin (that is, the sequence corresponding to the amino acid sequence represented by SEQ ID NO: 12).
- hydrophobic spider silk protein examples include, for example, the above-mentioned first modified fibroin sequence, second modified fibroin sequence, third modified fibroin sequence, fifth modified fibroin sequence, and sixth modified fibroin sequence. Sequences can be mentioned. More specific examples of the hydrophobic spider silk protein include amino acid sequences represented by SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33 or SEQ ID NO: 43. , A spider silk protein containing the amino acid sequence represented by SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41 or SEQ ID NO: 44.
- hydrophilic spider silk protein examples include the above-mentioned fourth modified fibroin sequence. More specific examples of the hydrophilic spider silk protein include the amino acid sequence represented by SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or the amino acid sequence represented by SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 11, the amino acid sequence shown by SEQ ID NO: 14 or SEQ ID NO: 15, the amino acid sequence shown by SEQ ID NO: 18, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 17, SEQ ID NO: 17, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO:
- the spider silk protein includes the amino acid sequence shown by 15, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21 or the amino acid sequence shown by SEQ ID NO: 47.
- spider silk proteins described above may be used alone or in combination of two or more.
- the spider silk protein is prepared by, for example, transforming the nucleic acid by a host transformed with an expression vector having a nucleic acid sequence encoding the spider silk protein and one or more regulatory sequences operably linked to the nucleic acid sequence. It can be produced by expressing.
- the method for producing a nucleic acid encoding a spider silk protein is not particularly limited.
- the nucleic acid can be produced by utilizing a gene encoding a natural spider silk protein, by a method of amplifying and cloning by polymerase chain reaction (PCR) or the like, or a method of chemically synthesizing the nucleic acid.
- the method for chemically synthesizing nucleic acid is not particularly limited, and for example, AKTA oligopilot plus 10/100 (GE Healthcare Japan Co., Ltd.) based on the amino acid sequence information of the spider silk protein obtained from the NCBI web database or the like.
- a gene can be chemically synthesized by a method of ligating an oligonucleotide automatically synthesized by, for example, PCR.
- a nucleic acid encoding a spider silk protein having an amino acid sequence in which an amino acid sequence consisting of a start codon and a His10 tag is added to the N-terminal is synthesized. Good.
- the regulatory sequence is a sequence that controls the expression of the recombinant protein in the host (eg, promoter, enhancer, ribosome binding sequence, transcription termination sequence, etc.), and can be appropriately selected according to the type of host.
- a promoter an inducible promoter that functions in a host cell and is capable of inducing expression of a target spider silk protein may be used.
- An inducible promoter is a promoter that can control transcription by the presence of an inducer (expression inducer), the absence of a repressor molecule, or physical factors such as an increase or decrease in temperature, osmotic pressure, or pH value.
- the type of expression vector can be appropriately selected according to the type of host, such as plasmid vector, virus vector, cosmid vector, fosmid vector, artificial chromosome vector.
- the expression vector one that can autonomously replicate in a host cell or can be integrated into the host chromosome and contains a promoter at a position where a nucleic acid encoding a spider silk protein can be transcribed is preferably used.
- prokaryote and eukaryote such as yeast, filamentous fungus, insect cell, animal cell and plant cell can be preferably used.
- the expression vector is capable of autonomous replication in a prokaryote, and at the same time, a vector containing a promoter, a ribosome binding sequence, a nucleic acid encoding a spider silk protein, and a transcription termination sequence. Is preferred. A gene that controls the promoter may be included.
- prokaryotes include microorganisms belonging to the genera Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Brevibacterium, Corynebacterium and Pseudomonas.
- microorganisms belonging to the genus Escherichia include Escherichia coli.
- microorganism belonging to the genus Brevibacillus include Brevibacillus agri.
- microorganisms belonging to the genus Serratia include Serratia liquefaciens.
- microorganisms belonging to the genus Bacillus include Bacillus subtilis.
- microorganisms belonging to the genus Microbacterium include Microbacterium ammoniaphilum and the like.
- microorganisms belonging to the genus Brevibacterium include Brevibacterium divaricatum.
- microorganisms belonging to the genus Corynebacterium include Corynebacterium ammoniagenes and the like.
- microorganism belonging to the genus Pseudomonas include Pseudomonas putida and the like.
- examples of a vector for introducing a nucleic acid encoding a spider silk protein include pBTrp2 (manufactured by Boehringer Mannheim), pGEX (manufactured by Pharmacia), pUC18, pBluescriptII, pSupex, pET22b, pCold, pUB110. , PNCO2 (Japanese Patent Laid-Open No. 2002-238569) and the like.
- Examples of eukaryotic hosts include yeast and filamentous fungi (molds, etc.).
- yeasts include yeasts belonging to the genera Saccharomyces, Pichia, Schizosaccharomyces, and the like.
- Examples of the filamentous fungi include filamentous fungi belonging to the genus Aspergillus, the genus Penicillium, the genus Trichoderma, and the like.
- examples of a vector into which a nucleic acid encoding a spider silk protein is introduced include YEp13 (ATCC37115) and YEp24 (ATCC37051).
- a method for introducing the expression vector into the host cell any method can be used as long as it is a method for introducing DNA into the host cell.
- a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)]
- electroporation method electroporation method
- spheroplast method protoplast method
- lithium acetate method competent method and the like.
- a method for expressing a nucleic acid by a host transformed with an expression vector in addition to direct expression, secretory production, fusion protein expression, etc. can be performed according to the method described in Molecular Cloning 2nd Edition. ..
- the spider silk protein can be produced, for example, by culturing a transformed host in a culture medium, producing and accumulating the spider silk protein in the culture medium, and collecting the spider silk protein from the culture medium.
- the method of culturing the transformed host in the culture medium can be performed according to the method usually used for culturing the host.
- the culture medium contains a carbon source, a nitrogen source, inorganic salts and the like that can be assimilated by the host to efficiently culture the host.
- a natural medium or a synthetic medium may be used as long as the medium can be used.
- the carbon source may be any as long as it can be assimilated by the host, and examples thereof include glucose, fructose, sucrose, and molasses containing these, carbohydrates such as starch and starch hydrolysates, and organic acids such as acetic acid and propionic acid. , And alcohols such as ethanol and propanol can be used.
- the nitrogen source for example, ammonia, ammonium chloride, ammonium sulfate, ammonium salts of inorganic acids or organic acids such as ammonium acetate and ammonium phosphate, other nitrogen-containing compounds, and peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented bacterial cells and digested products thereof can be used.
- potassium dihydrogenphosphate dipotassium hydrogenphosphate
- magnesium phosphate magnesium sulfate
- sodium chloride ferrous sulfate
- manganese sulfate copper sulfate and calcium carbonate
- Culturing of prokaryotic organisms such as Escherichia coli or eukaryotic organisms such as yeast can be carried out under aerobic conditions such as shaking culture or deep aeration agitation culture.
- the culture temperature is, for example, 15 to 40°C.
- the culture time is usually 16 hours to 7 days.
- the pH of the culture medium during culturing is preferably maintained at 3.0 to 9.0.
- the pH of the culture medium can be adjusted using inorganic acids, organic acids, alkaline solutions, urea, calcium carbonate, ammonia and the like.
- antibiotics such as ampicillin and tetracycline may be added to the culture medium during culture, if necessary.
- an inducer may be added to the medium, if necessary.
- indole acrylic is used. You may add an acid etc. to a culture medium.
- the spider silk protein produced by the transformed host can be isolated and purified by a method commonly used for protein isolation and purification.
- a method commonly used for protein isolation and purification For example, when the spider silk protein is expressed in a lysed state in the cells, after the culture is completed, the host cells are recovered by centrifugation, suspended in an aqueous buffer solution, and then ultrasonically disrupted, French press, Menton.
- a cell-free extract is obtained by crushing host cells with a Gaurin homogenizer, Dynomill and the like. From the supernatant obtained by centrifuging the cell-free extract, a method usually used for isolation and purification of proteins, that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, an organic solvent is used.
- Precipitation method anion exchange chromatography method using a resin such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Kasei Co., Ltd.), and cation using a resin such as S-Sepharose FF (manufactured by Pharmacia) Ion exchange chromatography, hydrophobic chromatography using resins such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieves, affinity chromatography, chromatofocusing, electrophoresis such as isoelectric focusing
- a resin such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Kasei Co., Ltd.)
- S-Sepharose FF manufactured by Pharmacia
- Ion exchange chromatography hydrophobic chromatography using resins such as butyl sepharose and phenyl sepharose
- the host cell When the spider silk protein is expressed by forming an insoluble matter in the cell, the host cell is similarly collected, crushed, and centrifuged to collect the insoluble matter of the spider silk protein as a precipitate fraction. To do.
- the collected insoluble matter of spider silk protein can be solubilized with a protein denaturing agent. After the operation, a purified preparation of spider silk protein can be obtained by the same isolation and purification method as above.
- spider silk protein When spider silk protein is secreted extracellularly, spider silk protein can be recovered from the culture supernatant. That is, a purified sample can be obtained by treating the culture with a method such as centrifugation to obtain a culture supernatant, and using the same isolation and purification method as described above from the culture supernatant.
- a structural protein derived from collagen for example, a structural protein containing a domain sequence represented by Formula 3: [REP3] p (wherein, p is an integer of 5 to 300 in Formula 3, REP3 is , Gly-XY, where X and Y represent arbitrary amino acid residues other than Gly, and a plurality of REP3s may have the same amino acid sequence or different amino acid sequences. ) Can be mentioned. Specifically, a structural protein including the amino acid sequence represented by SEQ ID NO: 45 can be mentioned.
- the amino acid sequence represented by SEQ ID NO: 45 corresponds to the repeat portion and motif of the partial sequence of human collagen type 4 (NCBI GenBank accession number: CAA56333, GI: 3702452) obtained from the NCBI database.
- the amino acid sequence shown in SEQ ID NO: 46 (tag sequence and hinge sequence) is added to the N-terminal of the amino acid sequence from the 301st residue to the 540th residue.
- a structural protein derived from resilin for example, a structural protein containing a domain sequence represented by Formula 4: [REP4] q (wherein, q in Formula 4 represents an integer of 4 to 300.
- REP4 Represents an amino acid sequence composed of Ser-JJ-Tyr-Gly-U-Pro, J represents an arbitrary amino acid residue, particularly an amino acid residue selected from the group consisting of Asp, Ser and Thr.
- U is an arbitrary amino acid residue, and is preferably an amino acid residue selected from the group consisting of Pro, Ala, Thr, and Ser. , May be different amino acid sequences).
- a structural protein including the amino acid sequence represented by SEQ ID NO: 47 can be mentioned.
- the amino acid sequence represented by SEQ ID NO:47 is the amino acid sequence of resilin (NCBI GenBank Accession No. NP 611157, Gl:246454243), in which Thr at the 87th residue is replaced with Ser, and Asn at the 95th residue is substituted.
- the amino acid sequence (tag sequence and hinge sequence) represented by SEQ ID NO: 46 is added to the N-terminal of the amino acid sequence from the 19th residue to the 321st residue of the sequence in which is substituted with Asp.
- structural proteins derived from elastin include structural proteins having amino acid sequences such as NCBI GenBank Accession Nos. AAC98395 (human), I47076 (sheep), and NP786966 (bovine).
- a structural protein including the amino acid sequence represented by SEQ ID NO: 48 can be mentioned.
- the amino acid sequence represented by SEQ ID NO:48 is the amino acid sequence represented by SEQ ID NO:46 at the N-terminal of the amino acid sequence from residue 121 to residue 390 of the amino acid sequence of NCBI GenBank accession number AAC98395 (tag sequence). And a hinge sequence) are added.
- keratin proteins examples include Capra hircus type I keratin.
- keratin proteins examples include Capra hircus type I keratin.
- SEQ ID NO: 49 amino acid sequence of accession number ACY30466 of GenBank of NCBI.
- the amino acid sequence represented by SEQ ID NO:49 is obtained by adding the amino acid sequence represented by SEQ ID NO:46 (tag sequence and hinge sequence) to the N-terminus of the amino acid sequence of NCBI GenBank Accession No. ACY30466.
- silk fibroin examples include structural proteins containing the domain sequence represented by the above formula 1.
- the collagen protein, resilin protein, elastin protein, keratin protein and silk fibroin may be hydrophilic proteins or hydrophobic proteins.
- hydrophobic protein means the sum of hydrophobicity indices (HI) of all amino acid residues constituting the above protein, and the value (average HI) obtained by dividing the sum by the number of all amino acid residues is ⁇ 0. More preferably, it is a protein having an average HI of ⁇ 0.6 or more, a protein having an average HI of ⁇ 0.6 or more, more preferably a protein having an average HI of ⁇ 0.4 or more, and an average HI of ⁇ 0.
- a protein having an average HI of 0 or more is more preferable, and a protein having an average HI of 0 or more is particularly preferable.
- the hydrophobicity index is as shown in Table 2. Further, the hydrophilic protein is a protein having the above average HI of ⁇ 0.8 or less.
- hydrophobic collagen protein examples include proteins containing the amino acid sequences represented by SEQ ID NO: 45, SEQ ID NO: 48 or SEQ ID NO: 49 described above. ..
- hydrophilic collagen protein examples include proteins including the amino acid sequence represented by SEQ ID NO: 47 described above.
- the HIs of the amino acid sequences shown in SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:48 and SEQ ID NO:49 are as shown in Table 5.
- the HI of each amino acid sequence was calculated by excluding the sequence unrelated to collagen protein, resilin protein, elastin protein, and keratin protein (that is, the sequence corresponding to the amino acid sequence shown in SEQ ID NO: 12).
- the structural protein includes a hydrophobic protein and a polypeptide which tends to cause self-aggregation in a polar solvent, and the structural protein is preferably a hydrophobic protein.
- the structural protein or the structural protein derived therefrom one type can be used alone, or two or more types can be used in combination.
- the hydrophobicity as a whole may be adjusted to a desired value by combining two or more structural proteins.
- the hydrophobicity can be calculated by the method described above.
- organic solvent As the organic solvent of the spinning dope according to the present embodiment, any solvent can be used as long as it can dissolve the artificial structural protein.
- the organic solvent include hexafluoroisopropanol (HFIP), hexafluoroacetone (HFA), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), and 1,3-dimethyl-2-imidazolidone.
- HFIP hexafluoroisopropanol
- HFA hexafluoroacetone
- DMF N,N-dimethylformamide
- DMA N,N-dimethylacetamide
- NMO 1,3-dimethyl-2-imidazolidone
- These solvents may be used alone or in combination of two or more.
- the organic solvent may include at least one selected from the group consisting of formic acid and HFIP, and may be formic acid. These organic solvents may contain water.
- the concentration of the artificial structural protein in the spinning dope according to the present embodiment is preferably more than 10% by mass to 50% by mass, more preferably 15 to 45% by mass, when the total amount of the spinning dope is 100% by mass.
- the content is 20 to 45% by mass, more preferably 15 to 35% by mass, further preferably 20 to 40% by mass, further preferably 20 to 35% by mass,
- the amount is more preferably 25 to 35% by mass, and particularly preferably 28 to 34% by mass.
- the concentration of the artificial structural protein is 50% by mass or less, it is possible to avoid clogging of the holes of the spinneret when discharging the spinning dope from the spinneret, and the productivity is further improved.
- the spinning dope according to the present embodiment may further contain a dissolution accelerator. By including the dissolution accelerator, the spinning dope can be easily prepared.
- the dissolution accelerator may be an inorganic salt composed of the following Lewis acid and Lewis base.
- the Lewis base include halide ions and the like.
- the Lewis acid include metal ions such as alkali metal ions and halide alkaline earth metal ions.
- the inorganic salt include alkali metal halides and alkaline earth metal halides.
- Specific examples of the alkali metal halide include lithium chloride and lithium bromide.
- Specific examples of the alkaline earth halide include magnesium chloride, calcium chloride and the like.
- the dissolution promoter can be used alone or in combination of two or more.
- inorganic salts can be used as dissolution promoters of structural proteins in formic acid or DMSO, lithium chloride and calcium chloride being particularly preferred.
- the spinning dope contains the dissolution promoter (the above-mentioned inorganic salt)
- the structural protein can be dissolved in the spinning dope at a high concentration. As a result, it is expected that the production efficiency of protein fibers will be further improved, and that the quality of protein fibers and the physical properties such as stress will be improved.
- the content of the dissolution accelerator is 0.1% by mass or more, 1% by mass or more, 2% by mass or more, 3% by mass or more, 4% by mass or more, 7% by mass or more, 10% by mass, with the total amount of the spinning dope as 100% by mass. It may be not less than mass% or not less than 15 mass% and may be not more than 20 mass%, not more than 16 mass%, not more than 12 mass%, or not more than 9 mass%.
- the spinning dope may further contain various additives, if necessary.
- the additive include a plasticizer, a leveling agent, a cross-linking agent, a crystal nucleating agent, an antioxidant, an ultraviolet absorber, a colorant, a filler, and a synthetic resin.
- the content of the additive may be 50 parts by mass or less based on 100 parts by mass of the total amount of protein in the spinning dope.
- the viscosity of the spinning dope according to the present embodiment may be appropriately set depending on the application of the fiber and the spinning method. For example, at 20° C., it may be 60,000 to 130,000 mPa ⁇ sec, or 65,000 to 125,000 mPa ⁇ sec. Further, for example, at 35° C., 500 to 35,000 mPa ⁇ sec, 1,000 to 35,000 mPa ⁇ sec, 3,000 to 30,000 mPa ⁇ sec, 500 to 20,000 mPa ⁇ sec, 500 to 15,000 mPa ⁇ s. It may be sec, 1,000 to 15,000 mPa ⁇ sec, 1,000 to 12,000 mPa ⁇ sec, 1,500 to 12,000 mPa ⁇ sec, 1,500 to 10,000 mPa ⁇ sec or 1,500.
- It may be up to 8,000 mPa ⁇ sec. Further, for example, at 40° C., 500 to 35,000 mPa ⁇ sec, 1,000 to 35,000 mPa ⁇ sec, 5,000 to 35,000 mPa ⁇ sec, 10,000 to 30,000 mPa ⁇ sec or 5,000 to It may be 20,000 mPa ⁇ sec, 8,000 to 20,000 mPa ⁇ sec, 9,000 to 18,000 mPa ⁇ sec, or 9000 to 16,000 mPa ⁇ sec. May be 10,000 to 15,000 mPa ⁇ sec, 12,000 to 30,000 mPa ⁇ sec, or 12,000 to 28,000 mPa ⁇ sec. , 12,000 to 18,000 mPa ⁇ sec, or 12,000 to 16,000 mPa ⁇ sec.
- the viscosity of the spinning dope can be measured using, for example, a product name "EMS viscometer” manufactured by Kyoto Electronics Manufacturing Co., Ltd.
- the spinning dope may be stirred or shaken for a certain period of time to accelerate dissolution. At that time, the spinning dope may be heated to a temperature at which it can be dissolved depending on the structural protein and solvent used, if necessary.
- the spinning dope may be heated to, for example, 30°C or higher, 40°C or higher, 50°C or higher, 60°C or higher, 70°C or higher, 80°C or higher, or 90°C or higher. From the viewpoint of further preventing decomposition of the modified fibroin, it is preferably 40°C.
- the upper limit of the heating temperature is, for example, the boiling point of the solvent or lower.
- the coagulation liquid according to the present embodiment is not particularly limited, but it is preferable to contain water or an aqueous solution having a pH of 0.25 or more and a pH of 10.00 or less. By containing water or an aqueous solution having a pH of 0.25 or more and a pH of 10.00 or less, it is possible to provide a method for producing protein fibers with reduced risk of explosion and fire, production cost, and environmental load.
- the aqueous solution may be a salt aqueous solution, an acid aqueous solution, a mixed solution of a salt aqueous solution and an acid aqueous solution, a salt aqueous solution, a mixed solution of a salt aqueous solution and an acid aqueous solution, or a salt aqueous solution.
- the mixed solution of the salt aqueous solution and the acid aqueous solution is not limited to the solution obtained by mixing the salt aqueous solution and the acid aqueous solution, and the solution obtained by mixing the salt aqueous solution with the acid, the solution obtained by mixing the acid aqueous solution with the salt, and the water mixed with the salt. It also includes a solution in which an acid is dissolved.
- aqueous acid solution examples include aqueous solutions of carboxylic acid and the like, and specific examples of the carboxylic acid include formic acid, acetic acid, propionic acid, citric acid, oxalic acid and the like. These solvents may be used alone or in combination of two or more and used as an aqueous solution.
- the aqueous acid solution may be an aqueous citric acid solution or an aqueous formic acid solution.
- salt aqueous solution examples include a salt aqueous solution of an organic salt or an inorganic salt, and a mixed aqueous solution of an organic salt and an inorganic salt.
- organic salts include carboxylates, and specific examples of carboxylates include formates, acetates, propionates, citrates, and oxalates.
- the organic salt may be formate, acetate and citrate.
- formate examples include ammonium formate, potassium formate, sodium formate, lithium formate, magnesium formate, calcium formate and the like.
- acetate examples include ammonium acetate, potassium acetate, sodium acetate, lithium acetate, magnesium acetate, calcium acetate and the like.
- propionate examples include ammonium propionate, potassium propionate, sodium propionate, lithium propionate, magnesium propionate, and calcium propionate.
- the citrate include ammonium citrate, potassium citrate, sodium citrate, lithium citrate, magnesium citrate, calcium citrate and the like.
- the citrate salt may include at least one selected from the group consisting of ammonium citrate, potassium citrate, sodium citrate, magnesium citrate, and calcium citrate, and ammonium citrate, It may contain at least one selected from the group consisting of potassium citrate and sodium citrate, or may contain at least one selected from the group consisting of potassium citrate and sodium citrate. Well, it may be sodium citrate.
- the oxalate examples include ammonium oxalate, potassium oxalate, sodium oxalate, lithium oxalate, magnesium oxalate, calcium oxalate and the like.
- the carboxylate sodium carboxylate is more preferable, and specific examples of sodium carboxylate include sodium formate, sodium acetate, sodium propionate, and sodium oxalate.
- inorganic salts include regular salts, acidic salts, and basic salts.
- normal salts include sulfates, chlorides, nitrates, iodides, thiocyanates, and carbonates.
- the sulfate include ammonium sulfate, potassium sulfate, sodium sulfate, lithium sulfate, magnesium sulfate, calcium sulfate and the like.
- the sulfate may include at least one selected from the group consisting of ammonium sulfate, sodium sulfate, magnesium sulfate, and calcium sulfate, and at least one selected from the group consisting of ammonium sulfate and sodium sulfate. May be included or may be sodium sulfate.
- chlorides include ammonium chloride, potassium chloride, sodium chloride, lithium chloride, magnesium chloride, calcium chloride and the like.
- the chloride may include at least one selected from the group consisting of ammonium chloride, potassium chloride, sodium chloride, lithium chloride, calcium chloride, and magnesium chloride, and the chloride may be potassium chloride, It may contain at least one selected from the group consisting of sodium chloride and calcium chloride, or may contain at least one selected from the group consisting of sodium chloride and calcium chloride, It may be sodium.
- nitrates include ammonium nitrate, potassium nitrate, sodium nitrate, lithium nitrate, magnesium nitrate, calcium nitrate and the like.
- iodide salt examples include ammonium iodide, potassium iodide, sodium iodide, lithium iodide, magnesium iodide, calcium iodide and the like.
- thiocyanates include ammonium thiocyanate, potassium thiocyanate, sodium thiocyanate, lithium thiocyanate, magnesium thiocyanate, calcium thiocyanate and guanidine thiocyanate.
- carbonate examples include ammonium carbonate, potassium carbonate, sodium carbonate, lithium carbonate, magnesium carbonate, calcium carbonate and the like.
- acid salt examples include hydrogen sulfate, hydrogen phosphate, hydrogen carbonate and the like.
- hydrogen sulfate examples include ammonium hydrogen sulfate, potassium hydrogen sulfate, sodium hydrogen sulfate, lithium hydrogen sulfate, magnesium hydrogen sulfate, calcium hydrogen sulfate, and the like.
- hydrogen phosphate examples include sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and phosphoric acid.
- examples thereof include diammonium hydrogen, magnesium dihydrogen phosphate, dimagnesium hydrogen phosphate, calcium dihydrogen phosphate, and dicalcium hydrogen phosphate.
- hydrogen carbonate examples include ammonium hydrogen carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, lithium hydrogen carbonate, lithium hydrogen carbonate, magnesium hydrogen carbonate, calcium hydrogen carbonate, and the like.
- basic salts include calcium chloride hydroxide, magnesium chloride hydroxide and the like.
- Examples of the salt mixed aqueous solution in which two or more kinds of salts or salt aqueous solutions are mixed include a mixed aqueous solution of the organic salt, a mixed aqueous solution of the inorganic salt, a mixed aqueous solution of the organic salt and the inorganic salt, and the like, from the viewpoint of manufacturing cost reduction.
- Particularly preferred are brackish water and seawater. Brackish water and seawater are known to contain primarily potassium chloride, sodium chloride, magnesium chloride, magnesium sulfate, and calcium sulfate.
- the coagulation liquid preferably contains an aqueous salt solution, and more preferably an aqueous salt solution.
- the salt more preferably contains at least one member selected from the group consisting of carboxylates, sulfates, chlorides, hydrogen phosphates and hydrogen carbonates, and at least from the group consisting of carboxylates, sulfates and chlorides. It is more preferable to contain one kind, it is more preferable to contain at least one kind from the group consisting of sulfate and chloride, and it is particularly preferable to contain sulfate. By containing these salts, the fiber-forming ability can be further improved, and the elongation of the obtained fiber can be further improved.
- the carboxylate salt is more preferably sodium carboxylate
- the sulfate salt is more preferably ammonium sulfate, sodium sulfate, magnesium sulfate, and calcium sulfate
- the chloride salt is potassium chloride, sodium chloride, magnesium chloride, and calcium chloride.
- sodium hydrogen carbonate is more preferable as the hydrogen carbonate
- brackish water and seawater are particularly preferable as the mixed aqueous solution.
- the content of the salt is 0.1 mass% or more, 0.3 mass% or more, 0.5 mass% or more, 0.7 mass% or more, 1 mass% or more, 1.3 mass% with respect to the total amount of the coagulating liquid. % Or more, 1.5 mass% or more, 1.7 mass% or more, 2 mass% or more, 2.3 mass% or more, 2.5 mass% or more, 2.7 mass% or more, 3 mass% or more, 4 mass% % Or more, 5% by mass or more, 7% by mass or more, 10% by mass or more, 15% by mass or more, or 20% by mass or more, and the upper limit value is 30% by mass or less, 25% by mass or less, or The content may be equal to or lower than the solubility.
- the content of the salt is, for example, 0.1% by mass or more and 30% by mass or less, 0.3% by mass or more and 25% by mass or less, 1% by mass or more and 25% by mass or less, and 3% by mass or more with respect to the total amount of the coagulating liquid.
- the content of the salt is, for example, preferably 0.05 mol/L or more, and may be 0.05 mol/L or more and 5.5 mol/L or less, or 0.1 mol/L with respect to the total amount of the coagulating liquid.
- the amount may be 5.0 mol/L or less, 0.1 mol/L or more and 4.5 mol/L or less, or 0.1 mol/L or more and 4.0 mol/L or less.
- the content of the salt may be, for example, 0.1 mol/L or more and 5.0 mol/L or less, or 0.1 mol/L or more and 4.5 mol/L with respect to the total amount of the coagulating liquid. It may be less than or equal to 0.1 mol/L and less than or equal to 4.0 mol/L.
- the content of the salt when using potassium chloride may be, for example, 0.1 mol/L or more and 3.9 mol/L or less with respect to the total amount of the coagulation liquid.
- the salt content may be, for example, 0.1 mol/L or more and 14.3 mol/L or less, or 0.1 mol/L or more and 13. mol/L or less with respect to the total amount of the coagulating liquid.
- 0.1 mol/L or less 0 mol/L or less, 0.1 mol/L or more and 12.0 mol/L or less, 0.1 mol/L or more and 11.0 mol/L or less, 0.1 mol/L L or more and 10.0 mol/L or less, 0.1 mol/L or more and 9.0 mol/L or less, or 0.1 mol/L or more and 8.0 mol/L or less, It may be 0.1 mol/L or more and 7.0 mol/L or less, may be 0.1 mol/L or more and 6.0 mol/L or less, and may be 0.1 mol/L or more and 5.0 mol/L or less.
- the salt content may be, for example, 0.1 mol/L or more and 3.4 mol/L or less, or 0.1 mol/L or more and 3. It may be 0 mol/L or less, 0.1 mol/L or more and 2.5 mol/L or less, or 0.1 mol/L or more and 2.0 mol/L or less.
- the content of sodium sulfate with respect to the total amount of the coagulation liquid is preferably 10% by mass or more and 20% by mass or less, preferably 11% by mass or more and 19% by mass or less, and 11% by mass or more and 18% by mass or less. It is more preferable that the amount is 12% by mass or more and 18% by mass or less, further preferably 12% by mass or more and 17% by mass or less, and further preferably 13% by mass or more and 17% by mass or less. , 13 mass% or more and 16 mass% or less is particularly preferable.
- the content of sodium sulfate with respect to the total amount of the coagulation liquid is 10% by mass or more, the coagulation rate becomes higher, and the cost increase due to equipment investment can be further reduced.
- the content of sodium sulfate with respect to the total amount of the coagulating liquid is 20% by mass or less, yarn breakage occurring at the interface between the dope liquid and the coagulating yarn (yarn) due to rapid coagulation of the dope liquid can be further reduced.
- the content of water with respect to the total amount of the coagulating liquid in the above case is preferably 50% by mass or more and 80% by mass or less, and 60% by mass or more and 80% by mass or less, from the viewpoint of improving the recovery efficiency of the dope solvent. It is more preferable that the amount is 60% by mass or more and 70% by mass or less.
- the concentration of the sodium sulfate aqueous solution when using sodium sulfate is preferably 10% by mass or more and 22% by mass or less, preferably 10% by mass or more and 20% by mass or less, and 12% by mass or more and 20% by mass or less.
- the content is 14% by mass or more and 20% by mass or less, and particularly preferably 16% by mass or more and 20% by mass or less.
- concentration of the sodium sulfate aqueous solution is 10% by mass or more, a sufficient solidification rate can be obtained, and the cost increase due to the equipment investment can be further reduced.
- concentration of the aqueous sodium sulfate solution is 22% by mass or less, the yarn breakage occurring at the interface between the dope liquid and the coagulated yarn (thread) due to the rapid coagulation of the dope liquid can be further reduced.
- the content of the salt when using sodium citrate may be, for example, 0.1 mol/L or more and 1.6 mol/L or less, or 0.1 mol/L or more 1 with respect to the total amount of the coagulation liquid. It may be 0.3 mol/L or less.
- the aqueous solution contained in the coagulation liquid of the present embodiment is, for example, a carboxylic acid aqueous solution, a hydrogen carbonate aqueous solution, a formate aqueous solution, an acetate aqueous solution, a chloride aqueous solution, a sulfate aqueous solution, a hydrogen phosphate aqueous solution, a citrate aqueous solution. , Brackish water, seawater and mixed solutions thereof.
- the aqueous solution contained in the coagulation liquid of the present embodiment is, for example, citric acid aqueous solution, formic acid aqueous solution, sodium hydrogen carbonate aqueous solution, sodium formate aqueous solution, sodium acetate aqueous solution, sodium chloride aqueous solution, sodium sulfate aqueous solution, ammonium sulfate aqueous solution, phosphoric acid.
- It may be selected from the group consisting of an aqueous solution of potassium hydrogen, an aqueous solution of calcium chloride, an aqueous solution of sodium citrate, brackish water, seawater and mixed solutions thereof, such as an aqueous solution of sodium chloride, an aqueous solution of sodium citrate, an aqueous solution of sodium sulfate, brackish water, seawater and mixtures thereof.
- It may be at least one selected from the group consisting of solutions, and may be at least one selected from the group consisting of sodium chloride aqueous solution, sodium citrate aqueous solution, sodium sulfate aqueous solution and mixed solutions thereof, sodium chloride It may be at least one selected from the group consisting of an aqueous solution, an aqueous sodium citrate solution and an aqueous sodium sulfate solution.
- the aqueous solution contained in the coagulation liquid of the present embodiment is a salt aqueous solution (Table 8).
- the salt aqueous solution is preferably at least one selected from the group consisting of a sulfate aqueous solution, a chloride aqueous solution, a carboxylate aqueous solution, a hydrogen phosphate aqueous solution, a hydrogen carbonate aqueous solution, brackish water, and seawater.
- the sulfate is preferably at least one selected from the group consisting of ammonium sulfate, potassium sulfate, sodium sulfate, lithium sulfate, magnesium sulfate, and calcium sulfate
- the chloride is sodium chloride, calcium chloride, or chloride. It is preferably at least one selected from the group consisting of ammonium, potassium chloride, lithium chloride, and magnesium chloride.
- the salt aqueous solution is more preferably at least one selected from the group consisting of a sodium chloride aqueous solution, a sodium sulfate aqueous solution and a sodium citrate aqueous solution.
- the organic solvent may or may not be contained in the coagulation liquid before contacting the spinning dope.
- the organic solvent may be the same as or different from the organic solvent in the spinning dope, but is preferably the same. Further, even when the coagulation liquid before contacting the spinning dope does not contain an organic solvent, in the process of bringing the spinning dope into contact with the coagulation liquid, the organic solvent may dissolve from the contacting spinning dope into the coagulation liquid. is there.
- the content of the organic solvent contained in the coagulation liquid is the total amount of the coagulation liquid (when the organic solvent is dissolved in the coagulation liquid from the spinning stock solution, 0 mass% or more and 30 mass% or less, 5 mass% or more and 30 mass% or less, with 100% by mass as the total content of the coagulating liquid before contacting the spinning dope and the organic solvent dissolved in the coagulating liquid from the spinning dope Mass% or more and 25 mass% or less, 0 mass% or more and 20 mass% or less, 5 mass% or more and 20 mass% or less, 5 mass% or more and 15 mass% or less, 10 mass% or more and 30 mass% or less, 10 mass% or more and 20 mass% or less % Or less, 0% by mass or more and 10% by mass or less, 0% by mass or more and 5% by mass or less, 0% by mass or more and 2% by mass or less, preferably 10%
- % Or less is particularly preferable.
- the content of the organic solvent is within the above range, the fiber-forming ability of the structural protein is further improved.
- the organic solvent formic acid, DMSO, or HFIP is preferable, formic acid or HFIP is more preferable, and formic acid is further preferable.
- the pH of the aqueous solution contained in the coagulation liquid may be 0.25 to 10.00 or 0.25 to 9.50.
- the pH of the aqueous acid solution in the coagulation liquid may be, for example, 0.25 to less than 7.00, may be 0.50 to less than 7.00, and may be 1.00 to less than 7.00. It may be 1.50 to less than 7.00, 2.00 to less than 7.00, or 3.00 to less than 7.00.
- the pH of the aqueous salt solution in the coagulation liquid may be, for example, 0.50 to 10.00, 1.00 to 10.00, or 2.00 to 10.00. It may be 3.00 to 10.00, 3.50 to 10.00, 4.00 to 10.00, or 4.50 to 10.00. It may be 5.00 to 10.00, 5.50 to 10.00, 6.00 to 10.00, or 6.50 to 10.00. Or may be 6.50 to 9.50.
- the content of the water or the aqueous solution in the coagulation liquid is preferably 60% by mass or more, more preferably 65% by mass or more, more preferably 68% by mass or more, and more preferably 70% by mass or more, based on 100% by mass of the coagulation liquid.
- 71 mass% or more is more preferable, 72 mass% or more is more preferable, 73 mass% or more is more preferable, 74 mass% or more is more preferable, 75 mass% or more is more preferable, 76 mass% or more is more preferable, 77 mass% or more is more preferable, 78 mass% or more is more preferable, 79 mass% or more is further preferable, 80 mass% or more is especially preferable, 85 mass% or more may be 90 mass% or more.
- the content of the water or the aqueous solution in the coagulation liquid may be, for example, 60% by mass or more and 100% by mass or less, or 70% by mass or more and 100% by mass or less, with respect to the total amount of the coagulation liquid, 75 May be from 100% by mass to 100% by mass, may be from 80% by mass to 100% by mass, may be from 85% by mass to 100% by mass, and may be from 90% by mass to 100% by mass.
- May be present may be 95% by mass or more and 100% by mass or less, may be 70% by mass or more and 90% by mass or less, may be 75% by mass or more and 85% by mass or less, and may be 78% by mass. It may be not less than 82% by mass.
- the temperature of the coagulating liquid may be room temperature, 0°C to 90°C, 0°C to 80°C, 5°C to 80°C, or 10°C to 80°C. 0° C., 15° C. to 80° C., 20° C. to 80° C., 25° C. to 80° C., 30° C. to 80° C. 40° C. to 80° C., 50° C. to 80° C., 60° C. to 80° C., 70° C. to 80° C., 20° C. to 70° C. , 30° C. to 70° C., 40° C. to 70° C., 50° C. to 70° C., 20° C. to 60° C., It may be 30° C.
- the temperature of the coagulating liquid is preferably 30° C. to 50° C., more preferably 32° C. to 48° C., further preferably 33° C. to 47° C., more preferably 34° C. to 46° C., and 35 from the viewpoint of being more excellent in spinning stability. C. to 45.degree. C. are more preferable.
- the lower limit of the temperature of the coagulation liquid may be equal to or higher than the melting point of the organic solvent contained in the spinning dope, and the upper limit of the temperature may be equal to or lower than the boiling point of the organic solvent contained in the spinning dope.
- the coagulation liquid may further contain a dope solvent (eg formic acid).
- the content of the dope solvent with respect to the total amount of the coagulation liquid is preferably 15 to 25% by mass, more preferably 16 to 25% by mass, and 16 to 24% by mass from the viewpoint of improving solvent recovery efficiency. Is more preferable and 18 to 24% by mass is particularly preferable.
- the coagulation liquid may further contain the above-mentioned dissolution accelerator that can be added to the spinning dope.
- the artificial structural protein fiber according to the present embodiment can be manufactured by a known wet spinning method.
- a method including a step (coagulation step) of coagulating the artificial structural protein by discharging a spinning stock solution containing the artificial structural protein and an organic solvent from a spinneret into a coagulating liquid.
- the spinning draft is more than 0.4 and 20 or less in the solidification step.
- the protein fiber manufacturing method of the present embodiment can be carried out, for example, by using the spinning device shown in FIG.
- FIG. 4 is an explanatory view schematically showing an example of a spinning device for producing protein fibers.
- the spinning device 10 shown in FIG. 4 is an example of a spinning device for wet spinning, and has an extrusion device 1, a coagulation bath 20, a washing bath (stretching bath) 21, and a drying device 4 in this order from the upstream side. ing.
- the extruder 1 has a storage tank 7 in which the spinning dope (dope) 6 is stored.
- the coagulation liquid 11 is stored in the coagulation bath 20.
- the spinning solution 6 is extruded from a nozzle 9 provided in the coagulating solution 11 by a gear pump 8 attached to the lower end of the storage tank 7.
- the extruded spinning solution 6 is supplied (introduced) into the coagulating solution 11 in the coagulating bath 20.
- the solvent is removed from the spinning dope in the coagulation liquid 11 to coagulate spider silk proteins.
- the coagulated spider silk protein is guided to the washing bath 21 and washed with the washing liquid 12 in the washing bath 21 and then to the drying device 4 by the first nip roller 13 and the second nip roller 14 installed in the washing bath 21. Is sent. At this time, for example, if the rotation speed of the second nip roller 14 is set to be higher than the rotation speed of the first nip roller 13, the protein fiber 36 stretched at a ratio according to the rotation speed ratio can be obtained.
- the protein fiber stretched in the cleaning liquid 12 is dried when passing through the drying device 4 after leaving the cleaning bath 21, and then wound up by a winder. In this way, the protein fiber is finally obtained as the wound product 5 wound on the winder by the spinning device 10.
- 18a to 18g are thread guides.
- the temperature of the coagulation liquid 11 is not particularly limited, but is 55° C. or lower, 50° C. or lower, 45° C. or lower, 40° C. or lower, 30° C. or lower, 25° C. or lower, 20° C. or lower, 10° C. or lower, or 5° C. or lower. May be. From the viewpoint of workability and cooling cost, it is preferably 0°C or higher.
- the temperature of the coagulation liquid 11 can be adjusted by using, for example, a spinning device 10 having a coagulation bath 20 having a heat exchanger inside and a cooling circulation device.
- the temperature is adjusted within the above range by heat exchange between the coagulating liquid 11 and the heat exchanger by flowing a medium cooled to a predetermined temperature by a cooling circulation device through a heat exchanger installed in the coagulation bath. You can In this case, more efficient cooling is possible by circulating the solvent used as the medium for the coagulating liquid 11.
- the coagulated artificial structural protein may be wound up in a winder as it is after leaving the coagulation bath or the washing bath, or may be passed through a drying device to be dried and then wound in a winder. ..
- the distance that the coagulated artificial structural protein passes through the coagulation liquid may be such that the solvent can be efficiently removed, and it may be determined according to the extrusion speed (discharge speed) of the spinning dope from the nozzle. Good.
- the residence time of the coagulated artificial structural protein (or spinning dope) in the coagulating liquid is determined according to the distance that the coagulated artificial structural protein passes through the coagulating liquid, the extrusion speed of the spinning dope from the nozzle, etc. May be
- the "spinning draft (bath draft)" means a value obtained by dividing the speed at which the coagulated yarn is drawn by the take-up roller (godet roller) 18b (take-off speed) by the linear speed at which the spinning dope is discharged from the spinneret (discharge linear speed). To do.
- the discharge linear velocity and the take-up velocity may be appropriately adjusted according to the desired physical properties such as the fiber diameter and the production amount.
- the value of the spinning draft can be appropriately adjusted according to the hole diameter of the spinneret to be used.
- a spinneret having a hole diameter of 0.04 mm to 0.1 mm is used, it is more than 0.4 to 20. It is preferably double, more preferably more than 0.8 to 20 times, more preferably 0.8 to 15 times, more preferably 0.8 to 10 times, and 1 to 7 times. It is more preferably double, more preferably 2 to 7 times, further preferably 2 to 6.5 times, further preferably 3 to 6.5 times, and 3 to 6 times.
- It may be 0.8 to 5.5 times or 1.8 to 5 times, 2 to 10 times, 2 to 9 times, 2 to 8 times, 2 to 6 times, 2 to 5.5 times or 2 to 5 times May be double, 2.5-10 times, 2.5-9 times, 2.5-8 times, 2.5-7 times, 2.5-6.5 times, 2.5-6 times , 2.5 to 5.5 times or 2.5 to 5 times, 3 to 10 times, 3 to 9 times, 3 to 8 times, 3 to 7 times, 3 to 5.5 times or 3 times May be up to 5 times, 3.5-10 times, 3.5-9 times, 3.5-8 times, 3.
- the spinning draft (bath draft) is more than 0.4, the spinning stability is further improved and the productivity can be improved.
- the value of the spinning draft (bath draft) is 20 times or less, the equipment cost can be further reduced, and the effect of reducing the fiber diameter and the effect of improving the stress can be sufficiently obtained.
- the method for producing the artificial structural protein fiber of the present embodiment may further include a step of stretching the coagulated artificial structural protein (drawing step).
- the stretching method include wet heat stretching and dry heat stretching.
- the stretching step may be performed in the coagulation bath 20 or the cleaning bath 21, for example.
- the stretching step can also be carried out in air.
- the stretching carried out in the washing bath 21 may be so-called wet heat stretching, which is carried out in warm water, a solution obtained by adding an organic solvent or the like to warm water.
- the temperature for wet heat stretching is preferably 50 to 90°C. When the temperature is 50° C. or higher, the fine pore diameter of the yarn can be stably reduced. When the temperature is 90°C or lower, the temperature can be easily set and the spinning stability is improved.
- the temperature is more preferably 75 to 85°C.
- the wet heat stretching can be performed in warm water, a solution of warm water plus an organic solvent, or steam heating.
- the temperature may be, for example, 40 to 200° C., 50 to 180° C., 50 to 150° C., or 75 to 90° C.
- the draw ratio in wet heat drawing may be, for example, 1 to 30 times, 2 to 25 times, or 2 to 20 times that of the undrawn yarn (or pre-drawn yarn). It may be 2 to 15 times, 2 to 10 times, 2 to 8 times, 2 to 6 times, or 2 to 4 times. Good. However, the draw ratio is not limited as long as the desired fiber thickness, mechanical properties and other characteristics can be obtained.
- the dry heat drawing can be performed using a device such as a contact type hot plate and a non-contact type furnace, but is not particularly limited, and the fiber is heated to a predetermined temperature and Any device capable of stretching at a magnification may be used.
- the temperature may be, for example, 100° C. to 270° C., 140° C. to 230° C., 140° C. to 200° C., 160° C. to 200° C., It may be 160°C to 180°C.
- the draw ratio in the dry heat drawing step is, for example, 1 to 30 times, 2 to 30 times, or 2 to 20 times that of the undrawn yarn (or pre-drawn yarn). It may be 3 to 15 times, preferably 3 to 10 times, more preferably 3 to 8 times, and further preferably 4 to 8 times. However, the draw ratio is not limited as long as the desired fiber thickness, mechanical properties and other characteristics can be obtained.
- wet heat stretching and dry heat stretching may be performed individually, or may be performed in multiple stages or in combination. That is, as the stretching step, the first stage stretching is performed by wet heat stretching, the second stage stretching is performed by dry heat stretching, or the first stage stretching is performed by wet heat stretching, the second stage stretching is performed by wet heat stretching, and further the third stage stretching is performed.
- the wet heat stretching and the dry heat stretching can be appropriately combined, such as the dry heat stretching.
- the lower limit of the final draw ratio of the artificial structural protein fiber that has undergone the drawing step is preferably 1 time, 2 times, 3 times, 4 times, 5 times that of the undrawn yarn (or pre-drawn yarn). It may be any of 6 times, 7 times, 8 times, or 9 times.
- the upper limit of the final draw ratio of the modified fibroin fiber that has undergone the drawing step is preferably 40 times, 30 times, 20 times, 15 times, 14 times, 13 times, 12 times, 11 times, or 10 times. It may be either. Further, for example, the final draw ratio may be 3 to 40 times, 3 to 30 times, 5 to 30 times, 5 to 20 times, or 5 to It may be 15 times or 5 to 13 times.
- the draw ratio is not limited as long as the desired fiber thickness, mechanical properties and other characteristics can be obtained.
- the spinneret shape, hole shape, number of holes, etc. are not particularly limited, and can be appropriately selected according to the desired fiber diameter and the number of single yarns.
- an oil agent may be added to the undrawn yarn (or predrawn yarn) or the drawn yarn for the purpose of imparting antistatic property, sizing property, lubricity and the like, if necessary.
- the type and amount of the applied oil agent are not particularly limited, and can be appropriately adjusted in consideration of the use of the fiber, the handleability of the fiber, and the like.
- the hole diameter of the spinneret can be 0.01 mm or more and 0.6 mm or less.
- the hole diameter is 0.01 mm or more, pressure loss can be reduced and equipment cost can be suppressed.
- the pore diameter is 0.6 mm or less, it is possible to reduce the need for a stretching operation for thinning the fiber diameter and reduce the possibility of stretching breakage between the discharge and the winding.
- the temperature of the spinning dope when passing through the spinneret and the temperature of the spinning dope are not particularly limited, and may be appropriately adjusted depending on the concentration and viscosity of the spinning dope to be used, the type of organic solvent, and the like.
- the temperature is preferably 30° C. to 100° C. from the viewpoint of preventing deterioration of structural proteins and the like.
- the temperature is preferably set to an upper limit of a temperature lower than the boiling point of the solvent used, from the viewpoint of reducing the pressure increase due to volatilization of the solvent and the possibility of clogging of the pipe due to solidification of the spinning dope. .. This improves the process stability.
- the manufacturing method according to the present embodiment further includes a step of filtering the spinning dope before the discharge of the spinning dope (filtering step), and/or a step of defoaming the spinning dope before discharging (the defoaming step). May be.
- the fiber diameter can be calculated by the following equation, assuming that the cross-sectional shape is a circle.
- Fiber diameter [ ⁇ m] ⁇ average fineness [m/g]/(density of artificial structural protein [g/cm 3 ] ⁇ ) ⁇ 1/2
- the number of constituent fibers in the fiber bundle may be appropriately selected depending on the manufacturing conditions, and may be, for example, 1,000 (multifilament composed of 1000 single yarns).
- the elongation and stress of the artificial structural protein fiber are measured using a tensile tester of 3345 series manufactured by Instron.
- the test conditions may be a test length of 300 mm and a test speed of 300 mm/min in an environment of a temperature of 20° C. and a relative humidity of 65%, and the load cell capacity may be appropriately selected according to the fineness of the fiber.
- a plurality of artificial structural protein fibers having a length of about 30 cm are bundled to form a fiber bundle having a fineness of 150 denier.
- a 0.8 g lead weight is attached to this fiber bundle, and in that state, the fiber bundle is immersed in water at 40° C. for 90 seconds to shrink. Then, each fiber bundle is taken out of water, dried with a lead weight of 0.8 g attached, and the length of each dried fiber bundle is measured.
- the shrinkage rate is calculated according to the following formula.
- L 0 represents the length of the fiber before contact with water (after spinning) (here, 30 cm)
- the protein fiber according to the present embodiment is a woven fabric as a fiber (long fiber, short fiber, monofilament, multifilament, etc.) or yarn (spun yarn, twisted yarn, false twisted yarn, processed yarn, mixed yarn, mixed yarn, etc.). It can be applied to fabrics such as knitted fabrics, braids or non-woven fabrics, paper and cotton. It can also be applied to high strength applications such as ropes, surgical sutures, hemostatic agents, flexible fasteners for electrical components, and bioactive materials for transplantation (eg artificial ligaments and aortic bands). These can be manufactured by a known method.
- nucleic acid encoding the artificial structural protein PRT966 having the designed amino acid sequence of SEQ ID NO: 44 was synthesized.
- An NdeI site was added to the 5'end and an EcoRI site was added downstream of the stop codon to the nucleic acid.
- the nucleic acid was cloned into a cloning vector (pUC118). Then, the same nucleic acid was digested with restriction enzymes NdeI and EcoRI to excise it, and then each was recombined into protein expression vector pET-22b(+) to obtain an expression vector.
- the seed culture solution was added to a jar fermenter to which 500 mL of the production medium (Table 7) was added so that the OD 600 was 0.05.
- the temperature of the culture solution was maintained at 37° C., and the culture was performed at a constant pH of 6.9.
- the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration.
- the feed solution (glucose 455 g/1 L, Yeast Extract 120 g/1 L) was added at a rate of 1 mL/min.
- the temperature of the culture solution was maintained at 37° C., and the culture was performed at a constant pH of 6.9. Further, the dissolved oxygen concentration in the culture medium was maintained at 20% of the dissolved oxygen saturated concentration, and the culture was carried out for 20 hours.
- 1 M isopropyl- ⁇ -thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce the expression of the artificial structural protein.
- IPTG isopropyl- ⁇ -thiogalactopyranoside
- the culture solution was centrifuged to collect the bacterial cells. SDS-PAGE is performed using the cells prepared from the culture solution before and after the addition of IPTG, and the appearance of the desired artificial structural protein due to the appearance of the band of the desired artificial structural protein size depending on the addition of IPTG. It was confirmed.
- the precipitate after washing was suspended in 8M guanidine buffer (8M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) at a concentration of 100 mg/mL, and the suspension was dried at 60°C. The mixture was stirred for 30 minutes with a stirrer and dissolved. After dissolution, dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.). The white aggregated protein obtained after dialysis was recovered by centrifugation, the water was removed by a freeze dryer, and the freeze-dried powder was recovered to obtain an artificial structural protein (fibroin PRT966).
- 8M guanidine buffer 8M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0
- the mixture was stirred for 30 minutes with a
- the dope liquid obtained in (1) was filled in a 10 ml syringe and discharged from a nozzle having a nozzle diameter of 0.2 ⁇ m into a coagulating liquid to coagulate modified fibroin at room temperature.
- the solidified fibril was wound at a linear velocity of 2.39 m/min.
- the obtained fibrils were observed and the fiber forming ability was visually determined.
- the extrusion rate of the dope solution was 0.075 ml/min.
- the types of coagulation liquid used are shown in Table 8. Brackish water is brackish water collected at the mouth of Sakata City, Yamagata Prefecture, and seawater is seawater collected from the ocean in Kamo City, Yamagata Prefecture.
- the concentration [wt%] of brackish water and seawater shows an approximate value of the concentration of all solutes.
- the mixed solutions of Test Examples 26 to 28 were prepared by assuming that formic acid in the spinning stock solution that was contacted was dissolved in the sodium chloride aqueous solution, and the ratio of the total mass of the coagulating solution (mixed solution) was 60% by weight. The amount is 80% by mass to 80% by mass and 20% by mass to 40% by mass of formic acid. In the formic acid aqueous solution of Test Example 29, the proportion of the total mass (mixed solution) of the coagulation liquid was 80 mass% of water and 20 mass% of formic acid.
- Table 8 shows the evaluation results of the fiber-forming ability.
- the evaluation criteria for the fiber-forming ability are as shown below.
- flexible fibers could be formed when any of water, aqueous acid solution, aqueous salt solution and mixed solution was used (Test Examples 1 to 26).
- the coagulating liquid was an aqueous salt solution
- flexible and homogeneous fibers could be formed, and extremely good fiber forming ability was shown (Test Examples 4 to 26).
- the use of resource-rich and inexpensive water, sodium sulfate aqueous solution, sodium chloride aqueous solution, brackish water, and seawater as the coagulating liquid makes it possible to greatly reduce the manufacturing cost.
- flexible fibers can be formed even when a mixed aqueous solution of an organic solvent and a coagulating liquid is used as the coagulating liquid (Test Examples 27 to 30).
- the coagulation liquid in which formic acid was dissolved was an aqueous sodium chloride solution
- flexible and homogeneous fibers could be formed (Test Examples 28 to 30).
- Table 9 shows the evaluation results of the ejection stability of each coagulating liquid.
- the ejection stability was evaluated by keeping the take-up speed constant and changing the value of the ejection linear velocity.
- a sodium chloride aqueous solution was used as the chloride aqueous solution
- a sodium sulfate aqueous solution was used as the sulfate
- a sodium citrate aqueous solution was used as the carboxylate.
- the evaluation criteria of discharge stability are as shown below. ⁇ : There is no slack in the yarn immediately after discharging, and it is possible to pass the fiber.
- ⁇ There is a slight slack in the yarn immediately after discharging, but it is possible to pass the fiber. : Immediately after discharge, the slack in the yarn is large, and fiber cannot be passed.
- Example 1 Spinning stability evaluation Example 1 to Example 1 except that the spinneret (spinning nozzle) having 1,000 holes was used and the wet spinning conditions were the values of the spinneret hole diameter and bath draft shown in Table 10.
- Wet spinning was carried out in the same procedure as in No. 24 to produce artificial structural protein fibers.
- the spinning stability of the obtained artificial structural protein fiber was evaluated by slackening of yarn and yarn breakage, and the results are shown in Table 10.
- Coagulating liquid sodium sulfate 14.4% by mass, water 65.6% by mass (18% by mass sodium sulfate aqueous solution 80% by mass), and formic acid 20% by mass mixed solution coagulating liquid temperature: 40° C.
- Total draw ratio 5 times
- Examples 25 to 30 the dope solution was discharged to form the yarn.
- the bus draft was 0.5 to 10 times (Examples 25 to 30) and 0.7 to 10 times (Examples 31 to 35) over a wide range without sagging or thread breakage in the yarn. It was possible to stably manufacture the fiber.
- Examples 36 to 40 the dope solution was discharged to form the yarn.
- the bus draft was 1.4 to 20 times (Examples 36 to 40) and 1.8 to 16 times (Examples 41 to 46) over a wide range without sagging or thread breakage in the yarn. It was possible to stably manufacture the fiber.
- Examples 47 to 56> Wet spinning (Examples 47 to 48) Wet spinning was performed in the same manner as in Examples 25 to 30 except that the hole diameter and the bath draft of the spinneret (spinning nozzle) were set to the values shown in Table 11, and the coagulating solution was an 11.9 mass% sodium sulfate aqueous solution. Structural protein fibers (modified fibroin fibers) were produced. (Examples 49 to 56) Wet spinning was carried out in the same manner as in Examples 25 to 30 except that the hole diameter and the bath draft of the spinneret were set to the values in Table 11 to produce artificial structural protein fibers (modified fibroin fibers).
- the fiber diameter was calculated by the following formula, assuming that the cross-sectional shape is a circle.
- Fiber diameter [ ⁇ m] ⁇ average fineness [m/g]/(density of artificial structural protein [g/cm 3 ] ⁇ ) ⁇ 1/2
- the density of the artificial structural protein (modified fibroin PRT966) was 1.34 [g/cm 3 ].
- the shrinkability was evaluated using the shrinkage rate obtained by the following method as an index.
- a plurality of artificial structural protein fibers having a length of about 30 cm are bundled to form a fiber bundle having a fineness of 150 denier.
- a 0.8 g lead weight was attached to this fiber bundle, and in that state, the fiber bundle was dipped in water at 40° C. for 90 seconds to shrink. Then, each fiber bundle was taken out from water, dried with a lead weight of 0.8 g attached, and the length of each dried fiber bundle was measured.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Insects & Arthropods (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Peptides Or Proteins (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Artificial Filaments (AREA)
Abstract
本発明は、従来と同等以上の応力を有する、細径の人造構造タンパク質繊維の製造方法を提供することを目的とする。本発明に係る人造構造タンパク質繊維の製造方法は、湿式紡糸法によって人造構造タンパク質繊維を製造する方法であって、人造構造タンパク質及び有機溶媒を含有する紡糸原液を紡糸口金から凝固液中に吐出し、上記人造構造タンパク質を凝固させる工程を含み、上記凝固工程におけるバスドラフトが0.4超20以下である。
Description
本発明は、人造構造タンパク質繊維の製造方法に関する。
従来から、構造タンパク質繊維として、再生絹繊維である絹フィブロイン繊維、クモ糸フィブロイン繊維等が知られており、これらの製造方法も多数報告されている。
例えば、天然型クモ糸フィブロイン構造由来の人造ポリペプチド繊維を湿熱における1段目延伸と乾熱における2段目延伸で延伸することにより、350MPa以上の応力を有するクモ糸フィブロイン繊維を製造する方法(特許文献1)や、構造タンパク質を含有する成形体前駆体を、相対湿度が80%以上である環境に曝露することで、構造タンパク質成形体のタフネスを向上させる方法等が提案されている(特許文献2)。しかしながら、細径を有する繊維は得られていない。
また、例えば、電圧をかけた口金から絹フィブロインとPEOの混合水溶液を吐出して電界紡糸させることで、平均繊維径が800nm未満の絹フィブロインとPEOのブレンド繊維を得る方法(特許文献3)が提案されている。しかしながら、電界紡糸は特殊な設備が必要とされるのに加えて、十分な応力を有する細径繊維を得ることは困難であった。
多様な用途への展開のため、従来と同等以上の応力を有する細径の構造タンパク質繊維が求められている。
本発明は、例えば、以下の各発明に関する。
[1]
湿式紡糸法によって人造構造タンパク質繊維を製造する方法であって、人造構造タンパク質及び有機溶媒を含有する紡糸原液を紡糸口金から凝固液中に吐出し、上記人造構造タンパク質を凝固させる工程を含み、上記凝固工程におけるバスドラフトが0.4超20以下である、人造構造タンパク質繊維の製造方法。
[2]
上記凝固液が水又はpH0.25以上pH10.00以下の水溶液を含有する、[1]に記載の製造方法。
[3]
上記凝固液中の水又はpH0.25以上pH10.00以下の水溶液の含有量が、上記凝固液の全量を100質量%として70質量%以上である、[2]に記載の方法。
[4]
上記水溶液が塩水溶液である、[2]又は[3]に記載の製造方法。
[5]
上記水溶液が、硫酸塩水溶液、塩化物水溶液、カルボン酸塩水溶液、汽水、及び海水からなる群から選択される少なくとも1種である、[2]~[4]のいずれかに記載の製造方法。
[6]
上記水溶液が、塩化ナトリウム水溶液、硫酸ナトリウム水溶液及びクエン酸ナトリウム水溶液からなる群から選択される少なくとも1種である、[2]~[4]のいずれかに記載の製造方法。
[7]
上記紡糸原液における上記人造構造タンパク質の含有量が、上記紡糸原液全量を100質量%として10質量%超50質量%以下である、[1]~[6]のいずれかに記載の製造方法。
[8]
上記人造構造タンパク質の平均疎水性指標が-0.8超である、[1]~[7]のいずれかに記載の製造方法。
[9]
上記人造構造タンパク質が、下記(1)又は(2)を満たす、[1]~[8]のいずれかに記載の製造方法。
(1)アミノ酸残基数150以上であり、アラニン残基含有量が12~40%であり、かつグリシン残基含有量が11~55%である
(2)セリン、スレオニン及びチロシンからなる群より選択される少なくとも1種のアミノ酸残基含有量、アラニン残基含有量及びグリシン残基含有量の合計が56%以上である
[10]
上記人造構造タンパク質が、上記(1)及び(2)の両方を満たす、[9]に記載の製造方法。
[11]
上記人造構造タンパク質は、複数の反復配列単位を有しており、
上記反復配列単位のアミノ酸残基数が6~200である、[1]~[10]のいずれかに記載の製造方法。
[12]
上記人造構造タンパク質が、クモ糸フィブロイン、絹フィブロイン及びケラチンタンパク質からなる群から選択される少なくとも1種を含む、[1]~[11]のいずれかに記載の製造方法。
[13]
上記人造構造タンパク質は、(A)nモチーフを含む、[1]~[12]のいずれかに記載の製造方法。
[14]
上記人造構造タンパク質が、クモ糸フィブロインである、[1]~[13]のいずれかに記載の製造方法。
[15]
上記人造構造タンパク質が、改変クモ糸フィブロインである、[1]~[14]のいずれかに記載の製造方法。
[16]
上記紡糸原液中の有機溶媒が、ギ酸及びヘキサフルオロイソプロパノールからなる群から選択される少なくとも1種である、[1]~[15]のいずれかに記載の製造方法。
[17]
上記凝固液が上記有機溶媒を含有し、上記凝固液中の上記有機溶媒の含有量が、上記凝固液の全量を100質量%として、10質量%以上30質量%以下である、[1]~[16]のいずれかに記載の製造方法。
[18]
上記水溶液が、硫酸塩水溶液、塩化物水溶液及びカルボン酸塩水溶液からなる群から選択される少なくとも1種である、[2]~[6]のいずれかに記載の製造方法。
[19]
上記硫酸塩が、硫酸アンモニウム、硫酸カリウム、硫酸ナトリウム、硫酸リチウム、硫酸マグネシウム、及び硫酸カルシウムからなる群から選択される少なくとも1種である、[5]に記載の製造方法。
[20]
上記塩化物が、塩化ナトリウム、塩化カルシウム、塩化アンモニウム、塩化カリウム、塩化リチウム、及び塩化マグネシウムからなる群から選択される少なくとも1種である、[5]に記載の製造方法。
[21]
上記バスドラフトが0.8超20以下である、[1]~[20]のいずれかに記載の製造方法。
[1]
湿式紡糸法によって人造構造タンパク質繊維を製造する方法であって、人造構造タンパク質及び有機溶媒を含有する紡糸原液を紡糸口金から凝固液中に吐出し、上記人造構造タンパク質を凝固させる工程を含み、上記凝固工程におけるバスドラフトが0.4超20以下である、人造構造タンパク質繊維の製造方法。
[2]
上記凝固液が水又はpH0.25以上pH10.00以下の水溶液を含有する、[1]に記載の製造方法。
[3]
上記凝固液中の水又はpH0.25以上pH10.00以下の水溶液の含有量が、上記凝固液の全量を100質量%として70質量%以上である、[2]に記載の方法。
[4]
上記水溶液が塩水溶液である、[2]又は[3]に記載の製造方法。
[5]
上記水溶液が、硫酸塩水溶液、塩化物水溶液、カルボン酸塩水溶液、汽水、及び海水からなる群から選択される少なくとも1種である、[2]~[4]のいずれかに記載の製造方法。
[6]
上記水溶液が、塩化ナトリウム水溶液、硫酸ナトリウム水溶液及びクエン酸ナトリウム水溶液からなる群から選択される少なくとも1種である、[2]~[4]のいずれかに記載の製造方法。
[7]
上記紡糸原液における上記人造構造タンパク質の含有量が、上記紡糸原液全量を100質量%として10質量%超50質量%以下である、[1]~[6]のいずれかに記載の製造方法。
[8]
上記人造構造タンパク質の平均疎水性指標が-0.8超である、[1]~[7]のいずれかに記載の製造方法。
[9]
上記人造構造タンパク質が、下記(1)又は(2)を満たす、[1]~[8]のいずれかに記載の製造方法。
(1)アミノ酸残基数150以上であり、アラニン残基含有量が12~40%であり、かつグリシン残基含有量が11~55%である
(2)セリン、スレオニン及びチロシンからなる群より選択される少なくとも1種のアミノ酸残基含有量、アラニン残基含有量及びグリシン残基含有量の合計が56%以上である
[10]
上記人造構造タンパク質が、上記(1)及び(2)の両方を満たす、[9]に記載の製造方法。
[11]
上記人造構造タンパク質は、複数の反復配列単位を有しており、
上記反復配列単位のアミノ酸残基数が6~200である、[1]~[10]のいずれかに記載の製造方法。
[12]
上記人造構造タンパク質が、クモ糸フィブロイン、絹フィブロイン及びケラチンタンパク質からなる群から選択される少なくとも1種を含む、[1]~[11]のいずれかに記載の製造方法。
[13]
上記人造構造タンパク質は、(A)nモチーフを含む、[1]~[12]のいずれかに記載の製造方法。
[14]
上記人造構造タンパク質が、クモ糸フィブロインである、[1]~[13]のいずれかに記載の製造方法。
[15]
上記人造構造タンパク質が、改変クモ糸フィブロインである、[1]~[14]のいずれかに記載の製造方法。
[16]
上記紡糸原液中の有機溶媒が、ギ酸及びヘキサフルオロイソプロパノールからなる群から選択される少なくとも1種である、[1]~[15]のいずれかに記載の製造方法。
[17]
上記凝固液が上記有機溶媒を含有し、上記凝固液中の上記有機溶媒の含有量が、上記凝固液の全量を100質量%として、10質量%以上30質量%以下である、[1]~[16]のいずれかに記載の製造方法。
[18]
上記水溶液が、硫酸塩水溶液、塩化物水溶液及びカルボン酸塩水溶液からなる群から選択される少なくとも1種である、[2]~[6]のいずれかに記載の製造方法。
[19]
上記硫酸塩が、硫酸アンモニウム、硫酸カリウム、硫酸ナトリウム、硫酸リチウム、硫酸マグネシウム、及び硫酸カルシウムからなる群から選択される少なくとも1種である、[5]に記載の製造方法。
[20]
上記塩化物が、塩化ナトリウム、塩化カルシウム、塩化アンモニウム、塩化カリウム、塩化リチウム、及び塩化マグネシウムからなる群から選択される少なくとも1種である、[5]に記載の製造方法。
[21]
上記バスドラフトが0.8超20以下である、[1]~[20]のいずれかに記載の製造方法。
本発明によれば、特殊な設備を必要としない簡便な方法で、従来と同等以上の応力を有する、細径の人造構造タンパク質繊維の製造方法を提供することができる。
以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
〔人造構造タンパク質繊維の製造方法〕
本発明の人造構造タンパク質繊維の製造方法は、湿式紡糸法によって人造構造タンパク質繊維を製造する方法であって、人造構造タンパク質及び有機溶媒を含有する紡糸原液を紡糸口金から凝固液中に吐出し、上記人造構造タンパク質を凝固させる工程を含み、上記凝固工程における紡糸ドラフト(バスドラフト)が0.4超20以下であることを特徴とする。
本発明の人造構造タンパク質繊維の製造方法は、湿式紡糸法によって人造構造タンパク質繊維を製造する方法であって、人造構造タンパク質及び有機溶媒を含有する紡糸原液を紡糸口金から凝固液中に吐出し、上記人造構造タンパク質を凝固させる工程を含み、上記凝固工程における紡糸ドラフト(バスドラフト)が0.4超20以下であることを特徴とする。
<紡糸原液>
本実施形態に係る紡糸原液(「ドープ液」ともいう)は、人造構造タンパク質及び有機溶媒を含有する。
本実施形態に係る紡糸原液(「ドープ液」ともいう)は、人造構造タンパク質及び有機溶媒を含有する。
(人造構造タンパク質)
本実施形態の人造構造タンパク質は、人工的に製造された構造タンパク質であり、天然のタンパク質又はそれを精製したものではない。構造タンパク質とは、生体内で構造、形態等を形成又は保持するタンパク質を意味する。人工的に構造タンパク質を製造する方法については、特に限定されるものではなく、遺伝子組換え技術により微生物等で製造したものであってもよく、合成により製造されたものであってもよい。
本実施形態の人造構造タンパク質は、人工的に製造された構造タンパク質であり、天然のタンパク質又はそれを精製したものではない。構造タンパク質とは、生体内で構造、形態等を形成又は保持するタンパク質を意味する。人工的に構造タンパク質を製造する方法については、特に限定されるものではなく、遺伝子組換え技術により微生物等で製造したものであってもよく、合成により製造されたものであってもよい。
本実施形態に係る人造構造タンパク質は、下記(1)又は(2)のいずれかを満たすものであってよい。
(1)アミノ酸残基数150以上であり、アラニン残基含有量が12~40%であり、かつグリシン残基含有量が11~55%である
(2)セリン、スレオニン及びチロシンからなる群より選択される少なくとも1種のアミノ酸残基含有量、アラニン残基含有量及びグリシン残基含有量の合計が56%以上である
(1)アミノ酸残基数150以上であり、アラニン残基含有量が12~40%であり、かつグリシン残基含有量が11~55%である
(2)セリン、スレオニン及びチロシンからなる群より選択される少なくとも1種のアミノ酸残基含有量、アラニン残基含有量及びグリシン残基含有量の合計が56%以上である
なお、本明細書において、「アラニン残基含有量」とは、下記式で表される値である。
アラニン残基含有量=(人造構造タンパク質に含まれるアラニン残基の数/人造構造タンパク質の全アミノ酸残基の数)×100(%)
また、グリシン残基含有量、セリン残基含有量、スレオニン残基含有量及びチロシン残基含有量は、上記式において、アラニン残基をそれぞれグリシン残基、セリン残基、スレオニン残基及びチロシン残基と読み替えたものと同義である。
アラニン残基含有量=(人造構造タンパク質に含まれるアラニン残基の数/人造構造タンパク質の全アミノ酸残基の数)×100(%)
また、グリシン残基含有量、セリン残基含有量、スレオニン残基含有量及びチロシン残基含有量は、上記式において、アラニン残基をそれぞれグリシン残基、セリン残基、スレオニン残基及びチロシン残基と読み替えたものと同義である。
(1)を満たす人造構造タンパク質は、アミノ酸残基数が150以上であればよい。当該アミノ酸残基数は、例えば、200以上又は250以上であってよく、好ましくは300以上、350以上、400以上、450以上又は500以上である。
(1)を満たす人造構造タンパク質は、アラニン残基含有量が12~40%であればよい。当該アラニン残基含有量は、例えば、15~40%であってよく、18~40%であってよく、20~40%であってよく、22~40%であってよい。
(1)を満たす人造構造タンパク質は、グリシン残基含有量が11~55%であればよい。当該グリシン残基含有量は、例えば、11%~55%であってよく、13%~55%であってよく、15%~55%であってよく、18%~55%であってよく、20%~55%であってよく、22%~55%であってよく、25%~55%であってよい。
(2)を満たす人造構造タンパク質は、セリン、スレオニン及びチロシンからなる群より選択される少なくとも1種のアミノ酸残基含有量(すなわち、セリン残基含有量、スレオニン残基含有量、チロシン残基含有量、セリン残基含有量及びスレオニン残基含有量の合計、セリン残基含有量及びチロシン残基含有量の合計、スレオニン残基含有量及びチロシン残基含有量の合計、セリン残基含有量、スレオニン残基含有量及びチロシン残基含有量の合計のいずれか)と、アラニン残基含有量と、グリシン残基含有量とを合計した含有量(合計含有量)が56%以上であればよい。当該合計含有量は、例えば、57%以上であってよく、58%以上であってよく、59%以上であってよく、60%以上であってよい。当該合計含有量の上限は特に制限はないが、例えば、90%以下であってよく、85%以下であってよく、80%以下であってよい。
一実施形態において、(2)を満たす人造構造タンパク質は、セリン残基含有量、スレオニン残基含有量及びチロシン残基含有量の合計が、4%以上であってよく、4.5%以上であってよく、5%以上であってよく、5.5%以上であってよく、6%以上であってよく、6.5%以上であってよく、7%以上であってよい。セリン残基含有量、スレオニン残基含有量及びチロシン残基含有量の合計は、例えば、35%以下であってよく、33%以下であってよく、30%以下であってよく、25%以下であってよく、20%以下であってよい。
本実施形態に係る人造構造タンパク質は、上記(1)及び(2)の両方を満たすものであることが好ましい。これにより、本発明による効果がより顕著に発揮される。
本実施形態に係る人造構造タンパク質は、セリン残基、スレオニン残基又はチロシン残基の分布が平均的であり、任意の連続した20アミノ酸残基の中、セリン残基、スレオニン残基及びチロシン残基の合計含有量が、5%以上、10%以上、又は15%以上であってよく、50%以下、40%以下、30%以下、又は20%以下であってよい。
一実施形態に係る人造構造タンパク質は、反復配列を有するものであってよい。すなわち、本実施形態に係る人造構造タンパク質は、人造構造タンパク質内に配列同一性が高いアミノ酸配列(反復配列単位)が複数存在するものであってよい。反復配列単位のアミノ酸配列に特に制限はなく、人造構造タンパク質全体として上述した(1)又は(2)を満たすものであればよい。反復配列単位のアミノ酸残基数は6~200であることが好ましい。また、反復配列単位間の配列同一性は、例えば、85%以上であってよく、90%以上であってよく、95%以上であってよく、96%以上であってよく、97%以上であってよく、98%以上であってよく、99%以上であってよい。
一実施形態に係る人造構造タンパク質は、(A)nモチーフを含むものであってよい。本明細書において、(A)nモチーフとは、アラニン残基を主とするアミノ酸配列を意味する。(A)nモチーフのアミノ酸残基数は2~27であってよく、2~20、2~16、又は2~12の整数であってよい。また、(A)nモチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。
一実施形態において、(A)nモチーフは反復配列単位に含まれていてもよい。(A)nモチーフは、アラニン残基を主として含むため、αヘリックス構造又はβシート構造を取りやすい。(A)nモチーフが反復配列単位に含まれることにより、本実施形態に係る人造構造タンパク質が、反復してこれら二次構造を有することになるため、当該人造構造タンパク質を繊維の形態とすると、これらの二次構造により高い応力を発揮することが期待される。
構造タンパク質としては、例えば、クモ糸タンパク質(クモ糸フィブロイン等)、シルクタンパク質(絹フィブロイン)、コラーゲンタンパク質、レシリンタンパク質、エラスチンタンパク質、ケラチンタンパク質等を挙げることができる。
クモ糸タンパク質は、天然由来のクモ糸タンパク質と改変クモ糸タンパク質(以下、「改変クモ糸フィブロイン」又は単に「改変フィブロイン」ともいう。)とを含む。本明細書において「天然由来のクモ糸タンパク質」とは、天然由来のクモ糸タンパク質(クモ糸フィブロイン等)と同一のアミノ酸配列を有するクモ糸タンパク質を意味し、「改変クモ糸タンパク質」又は「改変クモ糸フィブロイン」とは、天然由来のクモ糸タンパク質とは異なるアミノ酸配列を有するクモ糸タンパク質を意味する。
天然由来のクモ糸タンパク質としては、例えば、大吐糸管しおり糸タンパク質、横糸タンパク質、及び小瓶状腺タンパク質等のクモ類が産生するクモ類フィブロインが挙げられる。大吐糸管しおり糸は、結晶領域と非晶領域(無定形領域とも言う。)からなる繰り返し領域を持つため、高い応力と伸縮性を併せ持つ。クモ糸の横糸は、結晶領域を持たず、非晶領域からなる繰り返し領域を持つという特徴を有する。横糸は、大吐糸管しおり糸に比べると応力は劣るが、高い伸縮性を持つ。
大吐糸管しおり糸タンパク質は、クモの大瓶状腺で産生され、強靭性に優れるという特徴を有する。大吐糸管しおり糸タンパク質としては、例えば、アメリカジョロウグモ(Nephila clavipes)に由来する大瓶状腺スピドロインMaSp1及びMaSp2、並びに二ワオニグモ(Araneus diadematus)に由来するADF3及びADF4が挙げられる。ADF3は、ニワオニグモの2つの主要なしおり糸タンパク質の一つである。クモ糸タンパク質は、これらのしおり糸タンパク質に由来するクモ糸タンパク質であってもよい。ADF3に由来するクモ糸タンパク質は、比較的合成し易く、また、強伸度及びタフネスの点で優れた特性を有する。
横糸タンパク質は、クモの鞭毛状腺(flagelliform gland)で産生される。横糸タンパク質としては、例えばアメリカジョロウグモ(Nephila clavipes)に由来する鞭毛状絹タンパク質(flagelliform silk protein)が挙げられる。
クモ類が産生するクモ類フィブロインの更なる例として、例えば、オニグモ、ニワオニグモ、アカオニグモ、アオオニグモ及びマメオニグモ等のオニグモ属(Araneus属)に属するクモ、ヤマシロオニグモ、イエオニグモ、ドヨウオニグモ及びサツマノミダマシ等のヒメオニグモ属(Neoscona属)に属するクモ、コオニグモモドキ等のコオニグモモドキ属(Pronus属)に属するクモ、トリノフンダマシ及びオオトリノフンダマシ等のトリノフンダマシ属(Cyrtarachne属)に属するクモ、トゲグモ及びチブサトゲグモ等のトゲグモ属(Gasteracantha属)に属するクモ、マメイタイセキグモ及びムツトゲイセキグモ等のイセキグモ属(Ordgarius属)に属するクモ、コガネグモ、コガタコガネグモ及びナガコガネグモ等のコガネグモ属(Argiope属)に属するクモ、キジロオヒキグモ等のオヒキグモ属(Arachnura属)に属するクモ、ハツリグモ等のハツリグモ属(Acusilas属)に属するクモ、スズミグモ、キヌアミグモ及びハラビロスズミグモ等のスズミグモ属(Cytophora属)に属するクモ、ゲホウグモ等のゲホウグモ属(Poltys属)に属するクモ、ゴミグモ、ヨツデゴミグモ、マルゴミグモ及びカラスゴミグモ等のゴミグモ属(Cyclosa属)に属するクモ、及びヤマトカナエグモ等のカナエグモ属(Chorizopes属)に属するクモが産生するスパイダーシルクタンパク質、並びにアシナガグモ、ヤサガタアシナガグモ、ハラビロアシダカグモ及びウロコアシナガグモ等のアシナガグモ属(Tetragnatha属)に属するクモ、オオシロカネグモ、チュウガタシロカネグモ及びコシロカネグモ等のシロカネグモ属(Leucauge属)に属するクモ、ジョロウグモ及びオオジョロウグモ等のジョロウグモ属(Nephila属)に属するクモ、キンヨウグモ等のアズミグモ属(Menosira属)に属するクモ、ヒメアシナガグモ等のヒメアシナガグモ属(Dyschiriognatha属)に属するクモ、クロゴケグモ、セアカゴケグモ、ハイイロゴケグモ及びジュウサンボシゴケグモ等のゴケグモ属(Latrodectus属)に属するクモ、及びユープロステノプス属(Euprosthenops属)に属するクモ等のアシナガグモ科(Tetragnathidae科)に属するクモが産生するスパイダーシルクタンパク質が挙げられる。
クモ類が産生するスパイダーシルクタンパク質のより具体的な例としては、例えば、fibroin-3(adf-3)[Araneus diadematus由来](GenBankアクセッション番号AAC47010(アミノ酸配列)、U47855(塩基配列))、fibroin-4(adf-4)[Araneus diadematus由来](GenBankアクセッション番号AAC47011(アミノ酸配列)、U47856(塩基配列))、dragline silk protein spidroin 1[Nephila clavipes由来](GenBankアクセッション番号AAC04504(アミノ酸配列)、U37520(塩基配列))、major ampullate spidroin 1[Latrodectus hesperus由来](GenBankアクセッション番号ABR68856(アミノ酸配列)、EF595246(塩基配列))、dragline silk protein spidroin 2[Nephila clavata由来](GenBankアクセッション番号AAL32472(アミノ酸配列)、AF441245(塩基配列))、major ampullate spidroin 1[Euprosthenops australis由来](GenBankアクセッション番号CAJ00428(アミノ酸配列)、AJ973155(塩基配列))、及びmajor ampullate spidroin 2[Euprosthenops australis](GenBankアクセッション番号CAM32249.1(アミノ酸配列)、AM490169(塩基配列))、minor ampullate silk protein 1[Nephila clavipes](GenBankアクセッション番号AAC14589.1(アミノ酸配列))、minor ampullate silk protein 2[Nephila clavipes](GenBankアクセッション番号AAC14591.1(アミノ酸配列))、minor ampullate spidroin-like protein[Nephilengys cruentata](GenBankアクセッション番号ABR37278.1(アミノ酸配列)等が挙げられる。
クモ糸タンパク質は、例えば、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質であってもよい。クモ糸タンパク質は、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。
本明細書において「ドメイン配列」とは、フィブロイン特有の結晶領域(典型的には、アミノ酸配列の(A)nモチーフに相当する。)と非晶領域(典型的には、アミノ酸配列のREPに相当する。)を生じるアミノ酸配列であり、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるアミノ酸配列を意味する。ここで、(A)nモチーフは、アラニン残基を主とするアミノ酸配列を示し、アミノ酸残基数は2~27である。(A)nモチーフのアミノ酸残基数は、2~20、4~27、4~20、8~20、10~20、4~16、8~16、又は10~16であってもよい。また、(A)nモチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。ドメイン配列中に複数存在する(A)nモチーフは、少なくとも7つがアラニン残基のみで構成されてもよい。REPは2~200アミノ酸残基から構成されるアミノ酸配列を示す。REPは、10~200アミノ酸残基から構成されるアミノ酸配列であってもよい。mは2~300の整数を示し、10~300の整数であってもよい。複数存在する(A)nモチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。
フィブロインとしては、上記(1)又は(2)を満たすものであれば特に制限されない。フィブロインの具体例としては、例えば、下記表1に示すフィブロイン(改変フィブロイン)が一例として挙げられる。
改変クモ糸フィブロイン(改変フィブロイン)は、例えば、天然由来のクモ類フィブロインのアミノ酸配列に依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のクモ類フィブロインの遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、また天然由来のクモ類フィブロインに依らず人工的に設計及び合成したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。
改変フィブロインは、例えば、クローニングした天然由来のクモ類フィブロインの遺伝子配列に対し、例えば、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行うことで得ることができる。アミノ酸残基の置換、欠失、挿入及び/又は付加は、部分特異的突然変異誘発法等の当業者に周知の方法により行うことができる。具体的には、Nucleic Acid Res.10,6487(1982)、Methods in Enzymology,100,448(1983)等の文献に記載されている方法に準じて行うことができる。
改変フィブロインの具体的な例として、クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロイン(第1の改変フィブロイン)、グリシン残基の含有量が低減された改変フィブロイン(第2の改変フィブロイン)、(A)nモチーフの含有量が低減された改変フィブロイン(第3の改変フィブロイン)、グリシン残基の含有量、及び(A)nモチーフの含有量が低減された改変フィブロイン(第4の改変フィブロイン)、局所的に疎水性指標の大きい領域を含むドメイン配列を有する改変フィブロイン(第5の改変フィブロイン)、及びグルタミン残基の含有量が低減されたドメイン配列を有する改変フィブロイン(第6の改変フィブロイン)が挙げられる。
クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロイン(第1の改変フィブロイン)としては、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質が挙げられる。第1の改変フィブロインは、式1中、nは3~20の整数が好ましく、4~20の整数がより好ましく、8~20の整数が更に好ましく、10~20の整数が更により好ましく、4~16の整数が更によりまた好ましく、8~16の整数が特に好ましく、10~16の整数が最も好ましい。第1の改変フィブロインは、式1中、REPを構成するアミノ酸残基の数は、10~200残基であることが好ましく、10~150残基であることがより好ましく、20~100残基であることが更に好ましく、20~75残基であることが更により好ましい。第1の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるアミノ酸配列中に含まれるグリシン残基、セリン残基及びアラニン残基の合計残基数がアミノ酸残基数全体に対して、40%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。
第1の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるアミノ酸配列の単位を含み、かつC末端配列が配列番号1~3のいずれかに示されるアミノ酸配列、又は配列番号1~3のいずれかに示されるアミノ酸配列と90%以上の相同性を有するアミノ酸配列である、タンパク質であってもよい。
配列番号1に示されるアミノ酸配列は、ADF3(GI:1263287、NCBI)のアミノ酸配列のC末端の50残基のアミノ酸からなるアミノ酸配列と同一であり、配列番号2に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から20残基取り除いたアミノ酸配列と同一であり、配列番号3に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から29残基取り除いたアミノ酸配列と同一である。
第1の改変フィブロインのより具体的な例として、(1-i)配列番号4で示されるアミノ酸配列、又は(1-ii)配列番号4で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列同一性は、95%以上であることが好ましい。
配列番号4で示されるアミノ酸配列は、N末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Human rhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号5)を付加したADF3のアミノ酸配列において、第1~13番目の反復領域をおよそ2倍になるように増やすとともに、翻訳が第1154番目アミノ酸残基で終止するように変異させたものである。配列番号4で示されるアミノ酸配列のC末端のアミノ酸配列は、配列番号3で示されるアミノ酸配列と同一である。
(1-i)の改変フィブロインは、配列番号4で示されるアミノ酸配列からなるものであってもよい。
グリシン残基の含有量が低減された改変フィブロイン(第2の改変フィブロイン)は、そのドメイン配列が、天然由来のクモ類フィブロインと比較して、グリシン残基の含有量が低減されたアミノ酸配列を有する。第2の改変フィブロインは、天然由来のクモ類フィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。
第2の改変フィブロインは、そのドメイン配列が、天然由来のクモ類フィブロインと比較して、REP中のGGX及びGPGXX(但し、Gはグリシン残基、Pはプロリン残基、Xはグリシン以外のアミノ酸残基を示す。)から選ばれる少なくとも一つのモチーフ配列において、少なくとも1又は複数の当該モチーフ配列中の1つのグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものであってもよい。
第2の改変フィブロインは、上述のグリシン残基が別のアミノ酸残基に置換されたモチーフ配列の割合が、全モチーフ配列に対して、10%以上であってもよい。
第2の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含み、上記ドメイン配列から、最もC末端側に位置する(A)nモチーフから上記ドメイン配列のC末端までの配列を除いた配列中の全REPに含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列から、最もC末端側に位置する(A)nモチーフから上記ドメイン配列のC末端までの配列を除いた配列中の総アミノ酸残基数をwとしたときに、z/wが30%以上、40%以上、50%以上又は50.9%以上であるアミノ酸配列を有するものであってもよい。(A)nモチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってもよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
第2の改変フィブロインは、GGXモチーフの1つのグリシン残基を別のアミノ酸残基に置換することにより、XGXからなるアミノ酸配列の含有割合を高めたものであることが好ましい。第2の改変フィブロインは、ドメイン配列中のGGXからなるアミノ酸配列の含有割合が30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましく、6%以下であることが更により好ましく、4%以下であることが更によりまた好ましく、2%以下であることが特に好ましい。ドメイン配列中のGGXからなるアミノ酸配列の含有割合は、下記XGXからなるアミノ酸配列の含有割合(z/w)の算出方法と同様の方法で算出することができる。
z/wの算出方法を更に詳細に説明する。まず、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むクモ類フィブロイン(改変フィブロイン又は天然由来のクモ類フィブロイン)において、ドメイン配列から、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列を除いた配列に含まれる全てのREPから、XGXからなるアミノ酸配列を抽出する。XGXを構成するアミノ酸残基の総数がzである。例えば、XGXからなるアミノ酸配列が50個抽出された場合(重複はなし)、zは50×3=150である。また、例えば、XGXGXからなるアミノ酸配列の場合のように2つのXGXに含まれるX(中央のX)が存在する場合は、重複分を控除して計算する(XGXGXの場合は5アミノ酸残基である)。wは、ドメイン配列から、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列を除いた配列に含まれる総アミノ酸残基数である。例えば、図1に示したドメイン配列の場合、wは4+50+4+100+4+10+4+20+4+30=230である(最もC末端側に位置する(A)nモチーフは除いている。)。次に、zをwで除すことによって、z/w(%)を算出することができる。
第2の改変フィブロインにおいて、z/wは、50.9%以上であることが好ましく、56.1%以上であることがより好ましく、58.7%以上であることが更に好ましく、70%以上であることが更により好ましく、80%以上であることが更によりまた好ましい。z/wの上限に特に制限はないが、例えば、95%以下であってもよい。
第2の改変フィブロインは、例えば、クローニングした天然由来のクモ類フィブロインの遺伝子配列から、グリシン残基をコードする塩基配列の少なくとも一部を置換して別のアミノ酸残基をコードするように改変することにより得ることができる。このとき、改変するグリシン残基として、GGXモチーフ及びGPGXXモチーフにおける1つのグリシン残基を選択してもよいし、またz/wが50.9%以上になるように置換してもよい。また、例えば、天然由来のクモ類フィブロインのアミノ酸配列から上記態様を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のクモ類フィブロインのアミノ酸配列からREP中のグリシン残基を別のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
上記の別のアミノ酸残基としては、グリシン残基以外のアミノ酸残基であれば特に制限はないが、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、メチオニン(M)残基、プロリン(P)残基、フェニルアラニン(F)残基及びトリプトファン(W)残基等の疎水性アミノ酸残基、グルタミン(Q)残基、アスパラギン(N)残基、セリン(S)残基、リシン(K)残基及びグルタミン酸(E)残基等の親水性アミノ酸残基が好ましく、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基及びグルタミン(Q)残基がより好ましく、グルタミン(Q)残基が更に好ましい。
第2の改変フィブロインのより具体的な例として、(2-i)配列番号6、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列、又は(2-ii)配列番号6、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(2-i)の改変フィブロインについて説明する。配列番号6で示されるアミノ酸配列は、天然由来のクモ類フィブロインに相当する配列番号10で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号7で示されるアミノ酸配列は、配列番号6で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)nモチーフを欠失させ、更にC末端配列の手前に[(A)nモチーフ-REP]を1つ挿入したものである。配列番号8で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列の各(A)nモチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、配列番号7の分子量とほぼ同じとなるようにN末端側の一部のアミノ酸を欠失させたものである。配列番号9で示されるアミノ酸配列は、配列番号11で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端にHisタグが付加されたものである。
配列番号10で示されるアミノ酸配列(天然由来のクモ類フィブロインに相当)におけるz/wの値は、46.8%である。配列番号6で示されるアミノ酸配列、配列番号7で示されるアミノ酸配列、配列番号8で示されるアミノ酸配列、及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ58.7%、70.1%、66.1%及び70.0%である。また、配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のギザ比率(後述する)1:1.8~11.3におけるx/yの値は、それぞれ15.0%、15.0%、93.4%、92.7%及び89.3%である。
(2-i)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(2-ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-ii)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2-ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による改変フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号12で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含むアミノ酸配列)が挙げられる。
また、グルタチオンに特異的に結合するグルタチオン-S-トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。
さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に改変フィブロインを精製することができる。
さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した改変フィブロインを回収することもできる。
タグ配列を含む第2の改変フィブロインのより具体的な例として、(2-iii)配列番号13、配列番号11、配列番号14若しく配列番号15で示されるアミノ酸配列、又は(2-iv)配列番号13、配列番号11、配列番号14若しく配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号16、配列番号17、配列番号13、配列番号11、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号10、配列番号18、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号12で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(2-iii)の改変フィブロインは、配列番号13、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(2-iv)の改変フィブロインは、配列番号13、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-iv)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2-iv)の改変フィブロインは、配列番号13、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
(A)nモチーフの含有量が低減された改変フィブロイン(第3の改変フィブロイン)は、そのドメイン配列が、天然由来のクモ類フィブロインと比較して、(A)nモチーフの含有量が低減されたアミノ酸配列を有する。第3の改変フィブロインのドメイン配列は、天然由来のクモ類フィブロインと比較して、少なくとも1又は複数の(A)nモチーフが欠失したことに相当するアミノ酸配列を有するものということができる。
第3の改変フィブロインは、天然由来のクモ類フィブロインから(A)nモチーフを10~40%欠失させたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のクモ類フィブロインと比較して、少なくともN末端側からC末端側に向かって1~3つの(A)nモチーフ毎に1つの(A)nモチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のクモ類フィブロインと比較して、少なくともN末端側からC末端側に向かって2つ連続した(A)nモチーフの欠失、及び1つの(A)nモチーフの欠失がこの順に繰り返されたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、少なくともN末端側からC末端側に向かって2つおきに(A)nモチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含み、N末端側からC末端側に向かって、隣合う2つの[(A)nモチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)nモチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが20%以上、30%以上、40%以上又は50%以上であるアミノ酸配列を有するものであってもよい。(A)nモチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってもよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
x/yの算出方法を図1を参照しながら更に詳細に説明する。図1には、クモ類フィブロインからN末端配列及びC末端配列を除いたドメイン配列を示す。当該ドメイン配列は、N末端側(左側)から(A)nモチーフ-第1のREP(50アミノ酸残基)-(A)nモチーフ-第2のREP(100アミノ酸残基)-(A)nモチーフ-第3のREP(10アミノ酸残基)-(A)nモチーフ-第4のREP(20アミノ酸残基)-(A)nモチーフ-第5のREP(30アミノ酸残基)-(A)nモチーフという配列を有する。
隣合う2つの[(A)nモチーフ-REP]ユニットは、重複がないように、N末端側からC末端側に向かって、順次選択する。このとき、選択されない[(A)nモチーフ-REP]ユニットが存在してもよい。図1には、パターン1(第1のREPと第2のREPの比較、及び第3のREPと第4のREPの比較)、パターン2(第1のREPと第2のREPの比較、及び第4のREPと第5のREPの比較)、パターン3(第2のREPと第3のREPの比較、及び第4のREPと第5のREPの比較)、パターン4(第1のREPと第2のREPの比較)を示した。なお、これ以外にも選択方法は存在する。
次に各パターンについて、選択した隣合う2つの[(A)nモチーフ-REP]ユニット中の各REPのアミノ酸残基数を比較する。比較は、よりアミノ酸残基数の少ない方を1としたときの、他方のアミノ酸残基数の比を求めることによって行う。例えば、第1のREP(50アミノ酸残基)と第2のREP(100アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第1のREPを1としたとき、第2のREPのアミノ酸残基数の比は、100/50=2である。同様に、第4のREP(20アミノ酸残基)と第5のREP(30アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第4のREPを1としたとき、第5のREPのアミノ酸残基数の比は、30/20=1.5である。
図1中、よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8~11.3となる[(A)nモチーフ-REP]ユニットの組を実線で示した。以下このような比をギザ比率と呼ぶ。よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8未満又は11.3超となる[(A)nモチーフ-REP]ユニットの組は破線で示した。
各パターンにおいて、実線で示した隣合う2つの[(A)nモチーフ-REP]ユニットの全てのアミノ酸残基数を足し合わせる(REPのみではなく、(A)nモチーフのアミノ酸残基数もである。)。そして、足し合わせた合計値を比較して、当該合計値が最大となるパターンの合計値(合計値の最大値)をxとする。図1に示した例では、パターン1の合計値が最大である。
次に、xをドメイン配列の総アミノ酸残基数yで除すことによって、x/y(%)を算出することができる。
第3の改変フィブロインにおいて、x/yは、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることが更に好ましく、70%以上であることが更により好ましく、75%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、例えば、100%以下であってもよい。ギザ比率が1:1.9~11.3の場合には、x/yは89.6%以上であることが好ましく、ギザ比率が1:1.8~3.4の場合には、x/yは77.1%以上であることが好ましく、ギザ比率が1:1.9~8.4の場合には、x/yは75.9%以上であることが好ましく、ギザ比率が1:1.9~4.1の場合には、x/yは64.2%以上であることが好ましい。
第3の改変フィブロインが、ドメイン配列中に複数存在する(A)nモチーフの少なくとも7つがアラニン残基のみで構成される改変フィブロインである場合、x/yは、46.4%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることが更に好ましく、60%以上であることが更により好ましく、70%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、100%以下であればよい。
第3の改変フィブロインは、例えば、クローニングした天然由来のクモ類フィブロインの遺伝子配列から、x/yが64.2%以上になるように(A)nモチーフをコードする配列の1又は複数を欠失させることにより得ることができる。また、例えば、天然由来のクモ類フィブロインのアミノ酸配列から、x/yが64.2%以上になるように1又は複数の(A)nモチーフが欠失したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のクモ類フィブロインのアミノ酸配列から(A)nモチーフが欠失したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第3の改変フィブロインのより具体的な例として、(3-i)配列番号18、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列、又は(3-ii)配列番号18、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(3-i)の改変フィブロインについて説明する。配列番号18で示されるアミノ酸配列は、天然由来のクモ類フィブロインに相当する配列番号10で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)nモチーフを欠失させ、更にC末端配列の手前に[(A)nモチーフ-REP]を1つ挿入したものである。配列番号7で示されるアミノ酸配列は、配列番号18で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号8で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列の各(A)nモチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、配列番号7の分子量とほぼ同じとなるようにN末端側の一部のアミノ酸を欠失させたものである。配列番号9で示されるアミノ酸配列は、配列番号11で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端にHisタグが付加されたものである。
配列番号10で示されるアミノ酸配列(天然由来のクモ類フィブロインに相当)のギザ比率1:1.8~11.3におけるx/yの値は15.0%である。配列番号18で示されるアミノ酸配列、及び配列番号7で示されるアミノ酸配列におけるx/yの値は、いずれも93.4%である。配列番号8で示されるアミノ酸配列におけるx/yの値は、92.7%である。配列番号9で示されるアミノ酸配列におけるx/yの値は、89.3%である。配列番号10、配列番号18、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ46.8%、56.2%、70.1%、66.1%及び70.0%である。
(3-i)の改変フィブロインは、配列番号18、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(3-ii)の改変フィブロインは、配列番号18、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-ii)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3-ii)の改変フィブロインは、配列番号18、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)nモチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3(ギザ比率が1:1.8~11.3)となる隣合う2つの[(A)nモチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、N末端及びC末端のいずれか一方又は両方に上述したタグ配列を含んでいてもよい。
タグ配列を含む第3の改変フィブロインのより具体的な例として、(3-iii)配列番号17、配列番号11、配列番号14若しくは配列番号15で示されるアミノ酸配列、又は(3-iv)配列番号17、配列番号11、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号16、配列番号17、配列番号13、配列番号11、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号10、配列番号18、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号12で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(3-iii)の改変フィブロインは、配列番号17、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(3-iv)の改変フィブロインは、配列番号17、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-iv)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3-iv)の改変フィブロインは、配列番号17、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)nモチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)nモチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
グリシン残基の含有量、及び(A)nモチーフの含有量が低減された改変フィブロイン(第4の改変フィブロイン)は、そのドメイン配列が、天然由来のクモ類フィブロインと比較して、(A)nモチーフの含有量が低減されたことに加え、グリシン残基の含有量が低減されたアミノ酸配列を有するものである。第4の改変フィブロインのドメイン配列は、天然由来のクモ類フィブロインと比較して、少なくとも1又は複数の(A)nモチーフが欠失したことに加え、更に少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。すなわち、第4の改変フィブロインは、上述したグリシン残基の含有量が低減された改変フィブロイン(第2の改変フィブロイン)と、(A)nモチーフの含有量が低減された改変フィブロイン(第3の改変フィブロイン)の特徴を併せ持つ改変フィブロインである。具体的な態様等は、第2の改変フィブロイン、及び第3の改変フィブロインで説明したとおりである。
第4の改変フィブロインのより具体的な例として、(4-i)配列番号7、配列番号8、配列番号9、配列番号11、配列番号14若しくは配列番号15で示されるアミノ酸配列、(4-ii)配列番号7、配列番号8、配列番号9、配列番号11、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列番号7、配列番号8、配列番号9、配列番号11、配列番号14若しくは配列番号15で示されるアミノ酸配列を含む改変フィブロインの具体的な態様は上述のとおりである。
局所的に疎水性指標の大きい領域を含むドメイン配列を有する改変フィブロイン(第5の改変フィブロイン)は、そのドメイン配列が、天然由来のクモ類フィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有するものであってもよい。
局所的に疎水性指標の大きい領域は、連続する2~4アミノ酸残基で構成されていることが好ましい。
上述の疎水性指標の大きいアミノ酸残基は、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましい。
第5の改変フィブロインは、天然由来のクモ類フィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に、天然由来のクモ類フィブロインと比較して、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のクモ類フィブロインの遺伝子配列からREP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより得ることができる。また、例えば、天然由来のクモ類フィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のクモ類フィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第5の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含み、最もC末端側に位置する(A)nモチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)nモチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であるアミノ酸配列を有してもよい。
アミノ酸残基の疎水性指標については、公知の指標(Hydropathy index:Kyte J,&Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”,J.Mol.Biol.,157,pp.105-132)を使用する。具体的には、各アミノ酸の疎水性指標(ハイドロパシー・インデックス、以下「HI」とも記す。)は、下記表2に示すとおりである。
p/qの算出方法を更に詳細に説明する。算出には、式1:[(A)nモチーフ-REP]mで表されるドメイン配列から、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列を除いた配列(以下、「配列A」とする)を用いる。まず、配列Aに含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値を算出する。疎水性指標の平均値は、連続する4アミノ酸残基に含まれる各アミノ酸残基のHIの総和を4(アミノ酸残基数)で除して求める。疎水性指標の平均値は、全ての連続する4アミノ酸残基について求める(各アミノ酸残基は、1~4回平均値の算出に用いられる。)。次いで、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域を特定する。あるアミノ酸残基が、複数の「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」に該当する場合であっても、領域中には1アミノ酸残基として含まれることになる。そして、当該領域に含まれるアミノ酸残基の総数がpである。また、配列Aに含まれるアミノ酸残基の総数がqである。
例えば、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が20カ所抽出された場合(重複はなし)、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、連続する4アミノ酸残基(重複はなし)が20含まれることになり、pは20×4=80である。また、例えば、2つの「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が1アミノ酸残基だけ重複して存在する場合、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、7アミノ酸残基含まれることになる(p=2×4-1=7。「-1」は重複分の控除である。)。例えば、図2に示したドメイン配列の場合、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が重複せずに7つ存在するため、pは7×4=28となる。また、例えば、図2に示したドメイン配列の場合、qは4+50+4+40+4+10+4+20+4+30=170である(C末端側の最後に存在する(A)nモチーフは含めない)。次に、pをqで除すことによって、p/q(%)を算出することができる。図2の場合28/170=16.47%となる。
第5の改変フィブロインにおいて、p/qは、6.2%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることが更に好ましく、20%以上であることが更により好ましく、30%以上であることが更によりまた好ましい。p/qの上限は、特に制限されないが、例えば、45%以下であってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のクモ類フィブロインのアミノ酸配列を、上記のp/qの条件を満たすように、REP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより、局所的に疎水性指標の大きい領域を含むアミノ酸配列に改変することにより得ることができる。また、例えば、天然由来のクモ類フィブロインのアミノ酸配列から上記のp/qの条件を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のクモ類フィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当する改変を行ってもよい。
疎水性指標の大きいアミノ酸残基としては、特に制限はないが、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)が好ましく、バリン(V)、ロイシン(L)及びイソロイシン(I)がより好ましい。
第5の改変フィブロインの具体的な例として、(5-i)配列番号19、配列番号20若しくは配列番号21で示されるアミノ酸配列、又は(5-ii)配列番号19、配列番号20若しくは配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(5-i)の改変フィブロインについて説明する。配列番号22で示されるアミノ酸配列は、天然由来のクモ類フィブロインの(A)nモチーフ中のアラニン残基が連続するアミノ酸配列をアラニン残基が連続する数を5つになるよう欠失したものである。配列番号19で示されるアミノ酸配列は、配列番号22で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入し、かつ配列番号22で示されるアミノ酸配列の分子量とほぼ同じとなるようにC末端側の一部のアミノ酸を欠失させたものである。配列番号23で示されるアミノ酸配列は、配列番号22で示されるアミノ酸配列に対し、各(A)nモチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、かつ配列番号22で示されるアミノ酸配列の分子量とほぼ同じとなるようにC末端側の一部のアミノ酸を欠失させたものである。配列番号20で示されるアミノ酸配列は、配列番号23で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を1カ所挿入したものである。配列番号21で示されるアミノ酸配列は、配列番号23で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入したものである。
(5-i)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列からなるものであってもよい。
(5-ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-ii)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5-ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。
タグ配列を含む第5の改変フィブロインのより具体的な例として、(5-iii)配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列、又は(5-iv)配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号24、配列番号25及び配列番号26で示されるアミノ酸配列は、それぞれ配列番号19、配列番号20及び配列番号21で示されるアミノ酸配列のN末端に配列番号12で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(5-iii)の改変フィブロインは、配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列からなるものであってもよい。
(5-iv)の改変フィブロインは、配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-iv)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5-iv)の改変フィブロインは、配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
グルタミン残基の含有量が低減されたドメイン配列を有する改変フィブロイン(第6の改変フィブロイン)は、天然由来のクモ類フィブロインと比較して、グルタミン残基の含有量が低減されたアミノ酸配列を有する。
第6の改変フィブロインは、REPのアミノ酸配列中に、GGXモチーフ及びGPGXXモチーフから選ばれる少なくとも一つのモチーフが含まれていることが好ましい。
第6の改変フィブロインが、REP中にGPGXXモチーフを含む場合、GPGXXモチーフ含有率は、通常1%以上であり、5%以上であってもよく、10%以上であるのが好ましい。GPGXXモチーフ含有率の上限に特に制限はなく、50%以下であってもよく、30%以下であってもよい。
本明細書において、「GPGXXモチーフ含有率」は、以下の方法により算出される値である。
式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むクモ類フィブロインにおいて、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、その領域に含まれるGPGXXモチーフの個数の総数を3倍した数(即ち、GPGXXモチーフ中のG及びPの総数に相当)をsとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)nモチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、GPGXXモチーフ含有率はs/tとして算出される。
GPGXXモチーフ含有率の算出において、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としているのは、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列」(REPに相当する配列)には、クモ類フィブロインに特徴的な配列と相関性の低い配列が含まれることがあり、mが小さい場合(つまり、ドメイン配列が短い場合)、GPGXXモチーフ含有率の算出結果に影響するので、この影響を排除するためである。なお、REPのC末端に「GPGXXモチーフ」が位置する場合、「XX」が例えば「AA」の場合であっても、「GPGXXモチーフ」として扱う。
図3は、クモ類フィブロインのドメイン配列を示す模式図である。図3を参照しながらGPGXXモチーフ含有率の算出方法を具体的に説明する。まず、図3に示したクモ類フィブロインのドメイン配列(「[(A)nモチーフ-REP]m-(A)nモチーフ」タイプである。)では、全てのREPが「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図3中、「領域A」で示した配列。)に含まれているため、sを算出するためのGPGXXモチーフの個数は7であり、sは7×3=21となる。同様に、全てのREPが「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図3中、「領域A」で示した配列。)に含まれているため、当該配列から更に(A)nモチーフを除いた全REPのアミノ酸残基の総数tは50+40+10+20+30=150である。次に、sをtで除すことによって、s/t(%)を算出することができ、図3のフィブロインの場合21/150=14.0%となる。
第6の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましく、7%以下であることがより好ましく、4%以下であることが更に好ましく、0%であることが特に好ましい。
本明細書において、「グルタミン残基含有率」は、以下の方法により算出される値である。
式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むクモ類フィブロインにおいて、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図3の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域に含まれるグルタミン残基の総数をuとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)nモチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、グルタミン残基含有率はu/tとして算出される。グルタミン残基含有率の算出において、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のクモ類フィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当するアミノ酸配列を有するものであってもよい。
「他のアミノ酸残基」は、グルタミン残基以外のアミノ酸残基であればよいが、グルタミン残基よりも疎水性指標の大きいアミノ酸残基であることが好ましい。アミノ酸残基の疎水性指標は表2に示すとおりである。
表2に示すとおり、グルタミン残基よりも疎水性指標の大きいアミノ酸残基としては、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)アラニン(A)、グリシン(G)、スレオニン(T)、セリン(S)、トリプトファン(W)、チロシン(Y)、プロリン(P)及びヒスチジン(H)から選ばれるアミノ酸残基を挙げることができる。これらの中でも、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましく、イソロイシン(I)、バリン(V)、ロイシン(L)及びフェニルアラニン(F)から選ばれるアミノ酸残基であることが更に好ましい。
第6の改変フィブロインは、REPの疎水性度が、-0.8以上であることが好ましく、-0.7以上であることがより好ましく、0以上であることが更に好ましく、0.3以上であることが更により好ましく、0.4以上であることが特に好ましい。REPのーの上限に特に制限はなく、1.0以下であってもよく、0.7以下であってもよい。
本明細書において、「REPの疎水性度」は、以下の方法により算出される値である。
式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むクモ類フィブロインにおいて、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図3の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域の各アミノ酸残基の疎水性指標の総和をvとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)nモチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、REPの疎水性度はv/tとして算出される。REPの疎水性度の算出において、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のクモ類フィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第6の改変フィブロインは、例えば、クローニングした天然由来のクモ類フィブロインの遺伝子配列からREP中の1又は複数のグルタミン残基を欠失させること、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換することにより得ることができる。また、例えば、天然由来のクモ類フィブロインのアミノ酸配列からREP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。
第6の改変フィブロインのより具体的な例として、(6-i)配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33若しくは配列番号43で示されるアミノ酸配列を含む、改変フィブロイン、又は(6-ii)配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33若しくは配列番号43で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(6-i)の改変フィブロインについて説明する。
配列番号7で示されるアミノ酸配列(Met-PRT410)は、天然由来のフィブロインであるNephila clavipes(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、(A)nモチーフ中のアラニン残基が連続するアミノ酸配列をアラニン残基が連続する数を5つにする等の生産性を向上させるためのアミノ酸の改変を行ったものである。一方、Met-PRT410は、グルタミン残基(Q)の改変は行っていないため、グルタミン残基含有率は、天然由来のフィブロインのグルタミン残基含有率と同程度である。
配列番号27で示されるアミノ酸配列(M_PRT888)は、Met-PRT410(配列番号7)中のQQを全てVLに置換したものである。
配列番号28で示されるアミノ酸配列(M_PRT965)は、Met-PRT410(配列番号7)中のQQを全てTSに置換し、かつ残りのQをAに置換したものである。
配列番号29で示されるアミノ酸配列(M_PRT889)は、Met-PRT410(配列番号7)中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。
配列番号30で示されるアミノ酸配列(M_PRT916)は、Met-PRT410(配列番号7)中のQQを全てVIに置換し、かつ残りのQをLに置換したものである。
配列番号31で示されるアミノ酸配列(M_PRT918)は、Met-PRT410(配列番号7)中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号34で示されるアミノ酸配列(M_PRT525)は、Met-PRT410(配列番号7)に対し、アラニン残基が連続する領域(A5)に2つのアラニン残基を挿入し、Met-PRT410の分子量とほぼ同じになるよう、C末端側のドメイン配列2つを欠失させ、かつグルタミン残基(Q)13箇所をセリン残基(S)又はプロリン残基(P)に置換したものである。
配列番号32で示されるアミノ酸配列(M_PRT699)は、M_PRT525(配列番号34)中のQQを全てVLに置換したものである。
配列番号33で示されるアミノ酸配列(M_PRT698)は、M_PRT525(配列番号34)中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。
配列番号43で示されるアミノ酸配列(Met-PRT966)は、配列番号9で示されるアミノ酸配列(C末端に配列番号42で示されるアミノ酸配列が付加される前のアミノ酸配列)中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33及び配列番号43で示されるアミノ酸配列は、いずれもグルタミン残基含有率は9%以下である(表3)。
(6-i)の改変フィブロインは、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33又は配列番号43で示されるアミノ酸配列からなるものであってもよい。
(6-ii)の改変フィブロインは、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33又は配列番号43で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6-ii)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6-ii)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6-ii)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列を含む第6の改変フィブロインのより具体的な例として、(6-iii)配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41若しくは配列番号44で示されるアミノ酸配列を含む、改変フィブロイン、又は(6-iv)配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41若しくは配列番号44で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41及び配列番号44で示されるアミノ酸配列は、それぞれ配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33及び配列番号43で示されるアミノ酸配列のN末端に配列番号12で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。N末端にタグ配列を付加しただけであるため、グルタミン残基含有率に変化はなく、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41及び配列番号44で示されるアミノ酸配列は、いずれもグルタミン残基含有率が9%以下である(表4)。
(6-iii)の改変フィブロインは、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41又は配列番号44で示されるアミノ酸配列からなるものであってもよい。
(6-iv)の改変フィブロインは、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41又は配列番号44で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6-iv)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6-iv)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6-iv)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
改変フィブロインは、第1の改変フィブロイン、第2の改変フィブロイン、第3の改変フィブロイン、第4の改変フィブロイン、第5の改変フィブロイン、及び第6の改変フィブロインが有する特徴のうち、少なくとも2つ以上の特徴を併せ持つ改変フィブロインであってもよい。
クモ糸タンパク質は、親水性クモ糸タンパク質であってもよく、疎水性クモ糸タンパク質であってもよい。疎水性クモ糸タンパク質とは、クモ糸タンパク質を構成する全てのアミノ酸残基の疎水性指標(HI)の総和を求め、次にその総和を全アミノ酸残基数で除した値(平均HI)が-0.8超であるクモ糸タンパク質であることが好ましく、平均HIが-0.6以上であるタンパク質であることがより好ましく、平均HIが-0.4以上であるタンパク質であることがより好ましく、平均HIが-0.2以上であるタンパク質であることがさらに好ましく、平均HIが0以上であるクモ糸タンパク質であることが特に好ましい。疎水性指標は表2に示したとおりである。また、親水性クモ糸タンパク質とは、上記の平均HIが-0.8以下であるクモ糸タンパク質である。本実施形態に係るタンパク質の平均疎水性指標は-0.8超であることが好ましく、-0.7以上であることが好ましく、-0.6以上であることが好ましく、-0.5以上であることがより好ましく、-0.4以上であることが好ましく、-0.3以上であることが好ましく、-0.2以上であることが好ましく、-0.1以上であることが好ましく、0以上であることがより好ましく、0.1以上であることがより好ましく、0.2以上であることがより好ましく、0.3以上であることがさらに好ましく、0.4以上であることが特に好ましい。
配列番号11、配列番号15、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40及び配列番号41で示されるアミノ酸配列のHIは、表5に示すとおりである。各アミノ酸配列のHIを算出するにあたり、改変フィブロインと無関係な配列(すなわち、配列番号12で示されるアミノ酸配列に相当する配列)を除いて算出した。
疎水性クモ糸タンパク質としては、例えば、上述した第1の改変フィブロインの配列、第2の改変フィブロインの配列、第3の改変フィブロインの配列、第5の改変フィブロインの配列及び第6の改変フィブロインの配列を挙げることができる。疎水性クモ糸タンパク質のより具体的な例としては、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33又は配列番号43で示されるアミノ酸配列、配列番号35、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41又は配列番号44で示されるアミノ酸配列を含むクモ糸タンパク質が挙げられる。
親水性クモ糸タンパク質としては、例えば、上述した、第4の改変フィブロインの配列を挙げることができる。親水性クモ糸タンパク質のより具体的な例としては、配列番号4で示されるアミノ酸配列、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列、配列番号13、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列、配列番号18、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列、配列番号17、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列、配列番号19、配列番号20、配列番号21又は配列番号47で示されるアミノ酸配列を含むクモ糸タンパク質が挙げられる。
上述したクモ糸タンパク質は、1種を単独で、又は2種以上を組み合わせて用いることができる。
クモ糸タンパク質は、例えば、当該クモ糸タンパク質をコードする核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する発現ベクターで形質転換された宿主により、当該核酸を発現させることにより生産することができる。
クモ糸タンパク質をコードする核酸の製造方法は、特に制限されない。例えば、天然のクモ糸タンパク質をコードする遺伝子を利用して、ポリメラーゼ連鎖反応(PCR)等で増幅しクローニングする方法、又は、化学的に合成する方法によって、当該核酸を製造することができる。核酸の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手したクモ糸タンパク質のアミノ酸配列情報をもとに、AKTA oligopilot plus 10/100(GEヘルスケア・ジャパン株式会社)等で自動合成したオリゴヌクレオチドをPCR等で連結する方法によって遺伝子を化学的に合成することができる。この際に、クモ糸タンパク質の精製及び/又は確認を容易にするため、N末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなるクモ糸タンパク質をコードする核酸を合成してもよい。
調節配列は、宿主における組換えタンパク質の発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。プロモーターとして、宿主細胞中で機能し、目的とするクモ糸タンパク質を発現誘導可能な誘導性プロモーターを用いてもよい。誘導性プロモーターは、誘導物質(発現誘導剤)の存在、リプレッサー分子の非存在、又は温度、浸透圧若しくはpH値の上昇若しくは低下等の物理的要因により、転写を制御できるプロモーターである。
発現ベクターの種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。発現ベクターとしては、宿主細胞において自立複製が可能、又は宿主の染色体中への組込みが可能で、クモ糸タンパク質をコードする核酸を転写できる位置にプロモーターを含有しているものが好適に用いられる。
宿主として、原核生物、並びに酵母、糸状真菌、昆虫細胞、動物細胞及び植物細胞等の真核生物のいずれも好適に用いることができる。
細菌等の原核生物を宿主として用いる場合は、発現ベクターは、原核生物中で自立複製が可能であると同時に、プロモーター、リボソーム結合配列、クモ糸タンパク質をコードする核酸、及び転写終結配列を含むベクターであることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。
原核生物としては、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属及びシュードモナス属等に属する微生物を挙げることができる。エシェリヒア属に属する微生物として、例えば、エシェリヒア・コリ等を挙げることができる。ブレビバチルス属に属する微生物として、例えば、ブレビバチルス・アグリ等を挙げることができる。セラチア属に属する微生物として、例えば、セラチア・リクエファシエンス等を挙げることができる。バチルス属に属する微生物として、例えば、バチルス・サチラス等を挙げることができる。ミクロバクテリウム属に属する微生物として、例えば、ミクロバクテリウム・アンモニアフィラム等を挙げることができる。ブレビバクテリウム属に属する微生物として、例えば、ブレビバクテリウム・ディバリカタム等を挙げることができる。コリネバクテリウム属に属する微生物として、例えば、コリネバクテリウム・アンモニアゲネス等を挙げることができる。シュードモナス(Pseudomonas)属に属する微生物として、例えば、シュードモナス・プチダ等を挙げることができる。
原核生物を宿主とする場合、クモ糸タンパク質をコードする核酸を導入するベクターとしては、例えば、pBTrp2(ベーリンガーマンハイム社製)、pGEX(Pharmacia社製)、pUC18、pBluescriptII、pSupex、pET22b、pCold、pUB110、pNCO2(特開2002-238569号公報)等を挙げることができる。
真核生物の宿主としては、例えば、酵母及び糸状真菌(カビ等)を挙げることができる。酵母としては、例えば、サッカロマイセス属、ピキア属、シゾサッカロマイセス属等に属する酵母を挙げることができる。糸状真菌としては、例えば、アスペルギルス属、ペニシリウム属、トリコデルマ(Trichoderma)属等に属する糸状真菌を挙げることができる。
真核生物を宿主とする場合、クモ糸タンパク質をコードする核酸を導入するベクターとしては、例えば、YEp13(ATCC37115)、YEp24(ATCC37051)等を挙げることができる。上記宿主細胞への発現ベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. Sci. USA,69,2110(1972)〕、エレクトロポレーション法、スフェロプラスト法、プロトプラスト法、酢酸リチウム法、コンピテント法等を挙げることができる。
発現ベクターで形質転換された宿主による核酸の発現方法としては、直接発現のほか、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。
クモ糸タンパク質は、例えば、形質転換された宿主を培養培地中で培養し、培養培地中にクモ糸タンパク質を生成蓄積させ、該培養培地から採取することにより製造することができる。形質転換された宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。
宿主が、大腸菌等の原核生物又は酵母等の真核生物である場合、培養培地として、該宿主が資化し得る炭素源、窒素源及び無機塩類等を含有し、該宿主の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。
炭素源としては、該宿主が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、及びこれらを含有する糖蜜、デンプン及びデンプン加水分解物等の炭水化物、酢酸及びプロピオン酸等の有機酸、並びにエタノール及びプロパノール等のアルコール類を用いることができる。
窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。
無機塩類としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。
大腸菌等の原核生物又は酵母等の真核生物の培養は、例えば、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、例えば、15~40℃である。培養時間は、通常16時間~7日間である。培養中の培養培地のpHは3.0~9.0に保持することが好ましい。培養培地のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。
また、培養中必要に応じて、アンピシリン及びテトラサイクリン等の抗生物質を培養培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。
形質転換された宿主により生産されたクモ糸タンパク質は、タンパク質の単離精製に通常用いられている方法で単離及び精製することができる。例えば、クモ糸タンパク質が、細胞内に溶解状態で発現した場合には、培養終了後、宿主細胞を遠心分離により回収し、水系緩衝液にけん濁した後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー及びダイノミル等により宿主細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、タンパク質の単離精製に通常用いられている方法、すなわち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱化成社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の方法を単独又は組み合わせて使用し、精製標品を得ることができる。
上記クロマトグラフィーとしては、フェニル-トヨパール(東ソー)、DEAE-トヨパール(東ソー)、セファデックスG-150(ファルマシアバイオテク)を用いたカラムクロマトグラフィーが好ましく用いられる。
また、クモ糸タンパク質が細胞内に不溶体を形成して発現した場合は、同様に宿主細胞を回収後、破砕し、遠心分離を行うことにより、沈殿画分としてクモ糸タンパク質の不溶体を回収する。回収したクモ糸タンパク質の不溶体は蛋白質変性剤で可溶化することができる。該操作の後、上記と同様の単離精製法によりクモ糸タンパク質の精製標品を得ることができる。
クモ糸タンパク質が細胞外に分泌された場合には、培養上清からクモ糸タンパク質を回収することができる。すなわち、培養物を遠心分離等の手法により処理することにより培養上清を取得し、該培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。
コラーゲン由来の構造タンパク質(コラーゲンタンパク質)として、例えば、式3:[REP3]pで表されるドメイン配列を含む構造タンパク質(ここで、式3中、pは5~300の整数を示す。REP3は、Gly-X-Yから構成されるアミノ酸配列を示し、X及びYはGly以外の任意のアミノ酸残基を示す。複数存在するREP3は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。具体的には、配列番号45で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。配列番号45で示されるアミノ酸配列は、NCBIデータベースから入手したヒトのコラーゲンタイプ4の部分的な配列(NCBIのGenBankのアクセッション番号:CAA56335.1、GI:3702452)のリピート部分及びモチーフに該当する301残基目から540残基目までのアミノ酸配列のN末端に配列番号46で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
レシリン由来の構造タンパク質(レシリンタンパク質)として、例えば、式4:[REP4]qで表されるドメイン配列を含む構造タンパク質(ここで、式4中、qは4~300の整数を示す。REP4はSer-J-J-Tyr-Gly-U-Proから構成されるアミノ酸配列を示す。Jは任意のアミノ酸残基を示し、特にAsp、Ser及びThrからなる群から選ばれるアミノ酸残基であることが好ましい。Uは任意のアミノ酸残基を示し、特にPro、Ala、Thr及びSerからなる群から選ばれるアミノ酸残基であることが好ましい。複数存在するREP4は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。具体的には、配列番号47で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。配列番号47で示されるアミノ酸配列は、レシリン(NCBIのGenBankのアクセッション番号NP 611157、Gl:24654243)のアミノ酸配列において、87残基目のThrをSerに置換し、かつ95残基目のAsnをAspに置換した配列の19残基目から321残基目までのアミノ酸配列のN末端に配列番号46で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
エラスチン由来の構造タンパク質(エラスチンタンパク質)として、例えば、NCBIのGenBankのアクセッション番号AAC98395(ヒト)、I47076(ヒツジ)、NP786966(ウシ)等のアミノ酸配列を有する構造タンパク質を挙げることができる。具体的には、配列番号48で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。配列番号48で示されるアミノ酸配列は、NCBIのGenBankのアクセッション番号AAC98395のアミノ酸配列の121残基目から390残基目までのアミノ酸配列のN末端に配列番号46で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
ケラチン由来の構造タンパク質(ケラチンタンパク質)として、例えば、カプラ・ヒルクス(Capra hircus)のタイプIケラチン等を挙げることができる。具体的には、配列番号49で示されるアミノ酸配列(NCBIのGenBankのアクセッション番号ACY30466のアミノ酸配列)を含む構造タンパク質を挙げることができる。配列番号49で示されるアミノ酸配列は、NCBIのGenBankのアクセッション番号ACY30466のアミノ酸配列のN末端に、配列番号46で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
絹フィブロインとしては、例えば、上記式1で表されるドメイン配列を含む構造タンパク質を挙げることができる。
コラーゲンタンパク質、レシリンタンパク質、エラスチンタンパク質、ケラチンタンパク質及び絹フィブロインは、親水性タンパク質であってもよく、疎水性タンパク質であってもよい。疎水性タンパク質とは、上記タンパク質を構成する全てのアミノ酸残基の疎水性指標(HI)の総和を求め、次にその総和を全アミノ酸残基数で除した値(平均HI)が-0.8超であるタンパク質であり、平均HIが-0.6以上であるタンパク質であることがより好ましく、平均HIが-0.4以上であるタンパク質であることがより好ましく、平均HIが-0.2以上であるタンパク質であることがさらに好ましく、平均HIが0以上であるタンパク質であることが特に好ましい。疎水性指標は表2に示したとおりである。また、親水性タンパク質とは、上記の平均HIが-0.8以下であるタンパク質である。
疎水性コラーゲンタンパク質、疎水性レシリンタンパク質、疎水性エラスチンタンパク質、及び疎水性ケラチンタンパク質としては、例えば、上述した配列番号45、配列番号48又は配列番号49で示されるアミノ酸配列を含むタンパク質が挙げられる。
親水性コラーゲンタンパク質、親水性レシリンタンパク質、親水性エラスチンタンパク質、及び親水性ケラチンタンパク質としては、例えば、上述した配列番号47で示されるアミノ酸配列を含むタンパク質が挙げられる。
配列番号45、配列番号47、配列番号48及び配列番号49で示されるアミノ酸配列のHIは、表5に示すとおりである。各アミノ酸配列のHIを算出するにあたり、コラーゲンタンパク質、レシリンタンパク質、エラスチンタンパク質、及びケラチンタンパク質と無関係な配列(すなわち、配列番号12で示されるアミノ酸配列に相当する配列)を除いて算出した。
また、構造タンパク質は、疎水性タンパク質及び極性溶媒中で自己凝集を起こしやすい傾向にあるポリペプチドを含み、構造タンパク質は疎水性タンパク質であることが好ましい。構造タンパク質又はそれに由来する構造タンパク質は、1種を単独で、又は2種以上を組み合わせて用いることができる。構造タンパク質を2種以上組み合わせることで、全体としての疎水性度を所望の値に調節してもよい。疎水性度は、上述した方法により算出することができる。
(有機溶媒)
本実施形態に係る紡糸原液の有機溶媒は、人造構造タンパク質を溶解し得るものであればいずれも使用することができる。有機溶媒としては、例えば、ヘキサフルオロイソプロパノール(HFIP)、ヘキサフルオロアセトン(HFA)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、1,3-ジメチル-2-イミダゾリドン(DMI)、N-メチル-2-ピロリドン(NMP)、アセトニトリル、N-メチルモルホリンN-オキシド(NMO)及びギ酸等が挙げられる。これらの溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。例えば、有機溶媒は、ギ酸及びHFIPからなる群から選択される少なくとも1種を含むものであってもよく、ギ酸であってもよい。これらの有機溶媒は、水を含んでいてもよい。
本実施形態に係る紡糸原液の有機溶媒は、人造構造タンパク質を溶解し得るものであればいずれも使用することができる。有機溶媒としては、例えば、ヘキサフルオロイソプロパノール(HFIP)、ヘキサフルオロアセトン(HFA)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、1,3-ジメチル-2-イミダゾリドン(DMI)、N-メチル-2-ピロリドン(NMP)、アセトニトリル、N-メチルモルホリンN-オキシド(NMO)及びギ酸等が挙げられる。これらの溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。例えば、有機溶媒は、ギ酸及びHFIPからなる群から選択される少なくとも1種を含むものであってもよく、ギ酸であってもよい。これらの有機溶媒は、水を含んでいてもよい。
本実施形態に係る紡糸原液における人造構造タンパク質の濃度は、紡糸原液全量を100質量%としたとき、10質量%超~50質量%であることが好ましく、15~45質量%であることがより好ましく、20~45質量%であることがより好ましく、15~35質量%であることがより好ましく、20~40質量%であることがより好ましく、20~35質量%であることがさらに好ましく、25~35質量%であることがさらに好ましく、28~34質量%であることが特に好ましい。人造構造タンパク質が10質量%超であると、紡糸原液の曳糸性が向上し、紡糸口金から紡糸原液をより安定的に吐出させることができる。人造構造タンパク質の濃度が50質量%以下であると、紡糸口金から紡糸原液を吐出する際に紡糸口金の孔が閉塞するのを避けることができ、生産性がより向上する。
(溶解促進剤)
本実施形態に係る紡糸原液は、溶解促進剤を更に含有するものであってもよい。溶解促進剤を含むことにより、紡糸原液の調製が容易になる。
本実施形態に係る紡糸原液は、溶解促進剤を更に含有するものであってもよい。溶解促進剤を含むことにより、紡糸原液の調製が容易になる。
溶解促進剤は、以下に示すルイス酸とルイス塩基とからなる無機塩であってもよい。ルイス塩基としては、例えば、ハロゲン化物イオン等が挙げられる。ルイス酸としては、例えば、アルカリ金属イオン、ハロゲン化物アルカリ土類金属イオン等の金属イオン等が挙げられる。無機塩としては、例えば、アルカリ金属ハロゲン化物、及びアルカリ土類金属ハロゲン化物等が挙げられる。アルカリ金属ハロゲン化物の具体例としては、塩化リチウム、臭化リチウム等が挙げられる。アルカリ土類ハロゲン化物の具体例としては、塩化マグネシウム、塩化カルシウム等が挙げられる。溶解促進剤は、1種を単独で、又は2種以上を組み合わせて用いることができる。
これらの無機塩は、ギ酸又はDMSOに対する構造タンパク質の溶解促進剤として用いられ得、塩化リチウム及び塩化カルシウムが特に好ましい。紡糸原液が溶解促進剤(上記の無機塩)を含有することにより、構造タンパク質が紡糸原液中に高い濃度で溶解可能となる。これにより、タンパク質繊維の生産効率がより一層向上し、かつタンパク質繊維の高品質化と応力等の物性の向上等が期待される。
溶解促進剤の含有量は、紡糸原液全量を100質量%として、0.1質量%以上、1質量%以上、2質量%以上、3質量%以上、4質量%以上、7質量%以上、10質量%以上、又は15質量%以上であってもよく、20質量%以下、16質量%以下、12質量%以下、又は9質量%以下であってもよい。
(各種添加剤)
紡糸原液は、必要に応じて、各種の添加剤を更に含有していてよい。添加剤としては、例えば、可塑剤、レベリング剤、架橋剤、結晶核剤、酸化防止剤、紫外線吸収剤、着色剤、フィラー、及び合成樹脂が挙げられる。添加剤の含有量は、紡糸原液中のタンパク質全量100質量部に対して、50質量部以下であってもよい。
紡糸原液は、必要に応じて、各種の添加剤を更に含有していてよい。添加剤としては、例えば、可塑剤、レベリング剤、架橋剤、結晶核剤、酸化防止剤、紫外線吸収剤、着色剤、フィラー、及び合成樹脂が挙げられる。添加剤の含有量は、紡糸原液中のタンパク質全量100質量部に対して、50質量部以下であってもよい。
本実施形態に係る紡糸原液の粘度は、繊維の用途や紡糸方法に応じて等に応じて適宜設定してよい。例えば、20℃において、60,000~130,000mPa・secであってもよく、65,000~125,000mPa・secであってもよい。また、例えば、35℃において、500~35,000mPa・sec、1,000~35,000mPa・sec、3,000~30,000mPa・sec、500~20,000mPa・sec、500~15,000mPa・secであってもよく、1,000~15,000mPa・sec、1,000~12,000mPa・sec、1,500~12,000mPa・sec、1,500~10,000mPa・sec又は1,500~8,000mPa・sec等であってもよい。また、例えば、40℃において、500~35,000mPa・sec、1,000~35,000mPa・sec、5,000~35,000mPa・sec、10,000~30,000mPa・sec又は5,000~20,000mPa・secであってもよく、8,000~20,000mPa・secであってもよく、9,000~18,000mPa・secであってもよく、9,000~16,000mPa・secであってもよく、10,000~15,000mPa・secであってもよく、12,000~30,000mPa・secであってもよく、12,000~28,000mPa・secであってもよく、12,000~18,000mPa・secであってもよく、12,000~16,000mPa・sec等であってもよい。また、例えば、70℃において、1,000~6,000mPa・sec、1,500~5,000mPa・sec等であってもよい。紡糸原液の粘度は、例えば京都電子工業社製の商品名“EMS粘度計”を使用して測定することができる。
紡糸原液は、溶解を促進するために、ある程度の時間撹拌又は振とうしてもよい。その際、紡糸原液は必要により、使用する構造タンパク質及び溶媒に応じて溶解可能な温度に加熱してもよい。紡糸原液は、例えば、30℃以上、40℃以上、50℃以上、60℃以上、70℃以上、80℃以上、又は、90℃以上に加熱してもよい。改変フィブロインの分解をより防ぐという観点からは、40℃であることが好ましい。加熱温度の上限は、例えば、溶媒の沸点以下である。
<凝固液>
本実施形態に係る凝固液は特に限定されないが、水又はPH0.25以上PH10.00以下の水溶液を含有することが好ましい。水又はPH0.25以上PH10.00以下の水溶液を含有することにより、爆発・火災等の危険性、製造コスト、及び環境負荷が低減されたタンパク質繊維の製造方法の提供が可能となる。水溶液は、塩水溶液、酸水溶液、又は塩水溶液と酸水溶液の混合溶液であってもよく、塩水溶液又は塩水溶液と酸水溶液の混合溶液であってもよく、塩水溶液であってもよい。ここで、塩水溶液と酸水溶液の混合溶液は、塩水溶液と酸水溶液を混合した溶液に限定されず、塩水溶液に酸を混合した溶液、酸水溶液に塩を混合した溶液、及び水に塩と酸を溶解した溶液も含む。
本実施形態に係る凝固液は特に限定されないが、水又はPH0.25以上PH10.00以下の水溶液を含有することが好ましい。水又はPH0.25以上PH10.00以下の水溶液を含有することにより、爆発・火災等の危険性、製造コスト、及び環境負荷が低減されたタンパク質繊維の製造方法の提供が可能となる。水溶液は、塩水溶液、酸水溶液、又は塩水溶液と酸水溶液の混合溶液であってもよく、塩水溶液又は塩水溶液と酸水溶液の混合溶液であってもよく、塩水溶液であってもよい。ここで、塩水溶液と酸水溶液の混合溶液は、塩水溶液と酸水溶液を混合した溶液に限定されず、塩水溶液に酸を混合した溶液、酸水溶液に塩を混合した溶液、及び水に塩と酸を溶解した溶液も含む。
(酸水溶液)
酸水溶液としては、カルボン酸等の水溶液が挙げられ、カルボン酸の具体例としては、ギ酸、酢酸、プロピオン酸、クエン酸、及びシュウ酸等が挙げられる。これらの溶媒は、1種単独で使用してもよく、2種以上を混合して水溶液として使用してもよい。例えば、酸水溶液は、クエン酸水溶液又はギ酸水溶液であってもよい。
酸水溶液としては、カルボン酸等の水溶液が挙げられ、カルボン酸の具体例としては、ギ酸、酢酸、プロピオン酸、クエン酸、及びシュウ酸等が挙げられる。これらの溶媒は、1種単独で使用してもよく、2種以上を混合して水溶液として使用してもよい。例えば、酸水溶液は、クエン酸水溶液又はギ酸水溶液であってもよい。
(塩水溶液)
塩水溶液としては、有機塩、又は無機塩の塩水溶液、並びに有機塩及び無機塩の混合水溶液等が挙げられる。
塩水溶液としては、有機塩、又は無機塩の塩水溶液、並びに有機塩及び無機塩の混合水溶液等が挙げられる。
有機塩としては、例えば、カルボン酸塩等が挙げられ、カルボン酸塩の具体例としては、ギ酸塩、酢酸塩、プロピオン酸塩、クエン酸塩、及びシュウ酸塩等が挙げられる。例えば、有機塩は、ギ酸塩、酢酸塩及びクエン酸塩であってもよい。
ギ酸塩の具体例としては、例えば、ギ酸アンモニウム、ギ酸カリウム、ギ酸ナトリウム、ギ酸リチウム、ギ酸マグネシウム、及びギ酸カルシウム等が挙げられる。
酢酸塩の具体例としては、例えば、酢酸アンモニウム、酢酸カリウム、酢酸ナトリウム、酢酸リチウム、酢酸マグネシウム、及び酢酸カルシウム等が挙げられる。
プロピオン酸塩の具体例としては、例えば、プロピオン酸アンモニウム、プロピオン酸カリウム、プロピオン酸ナトリウム、プロピオン酸リチウム、プロピオン酸マグネシウム、及びプロピオン酸カルシウム等が挙げられる。
クエン酸塩の具体例としては、クエン酸アンモニウム、クエン酸カリウム、クエン酸ナトリウム、クエン酸リチウム、クエン酸マグネシウム、及びクエン酸カルシウム等が挙げられる。例えば、クエン酸塩は、クエン酸アンモニウム、クエン酸カリウム、クエン酸ナトリウム、クエン酸マグネシウム、及びクエン酸カルシウムからなる群から選択される少なくとも1種を含むものであってもよく、クエン酸アンモニウム、クエン酸カリウム及びクエン酸ナトリウムからなる群から選択される少なくとも1種を含むものであってもよく、クエン酸カリウム及びクエン酸ナトリウムからなる群から選択される少なくとも1種を含むものであってもよく、クエン酸ナトリウムであってもよい。
シュウ酸塩の具体例としては、シュウ酸アンモニウム、シュウ酸カリウム、シュウ酸ナトリウム、シュウ酸リチウム、シュウ酸マグネシウム、及びシュウ酸カルシウム等が挙げられる。カルボン酸塩としては、カルボン酸ナトリウムがより好ましく、カルボン酸ナトリウムの具体例としては、ギ酸ナトリウム、酢酸ナトリウム、プロピオン酸ナトリウム、及びシュウ酸ナトリウム等が挙げられる。
無機塩の具体例としては、正塩、酸性塩、及び塩基性塩が挙げられる。
正塩の具体例としては、硫酸塩、塩化物、硝酸塩、ヨウ化物塩、チオシアン酸塩、及び炭酸塩等が挙げられる。
硫酸塩の具体例としては、例えば、硫酸アンモニウム、硫酸カリウム、硫酸ナトリウム、硫酸リチウム、硫酸マグネシウム、及び硫酸カルシウム等が挙げられる。例えば、硫酸塩は、硫酸アンモニウム、硫酸ナトリウム、硫酸マグネシウム、及び硫酸カルシウムからなる群から選択される少なくとも1種を含むものであってもよく、硫酸アンモニウム及び硫酸ナトリウムからなる群から選択される少なくとも1種を含むものであってもよく、硫酸ナトリウムであってもよい。
塩化物の具体例としては、例えば、塩化アンモニウム、塩化カリウム、塩化ナトリウム、塩化リチウム、塩化マグネシウム、及び塩化カルシウム等が挙げられる。例えば、塩化物は、塩化アンモニウム、塩化カリウム、塩化ナトリウム、塩化リチウム、塩化カルシウム、及び塩化マグネシウムからなる群から選択される少なくとも1種を含むものであってもよく、塩化物は、塩化カリウム、塩化ナトリウム、及び塩化カルシウムからなる群から選択される少なくとも1種を含むものであってもよく、塩化ナトリウム及び塩化カルシウムからなる群から選択される少なくとも1種を含むものであってもよく、塩化ナトリウムであってもよい。
硝酸塩の具体例としては、例えば、硝酸アンモニウム、硝酸カリウム、硝酸ナトリウム、硝酸リチウム、硝酸マグネシウム、及び硝酸カルシウム等が挙げられる。
ヨウ化物塩の具体例としては、例えば、ヨウ化アンモニウム、ヨウ化カリウム、ヨウ化ナトリウム、ヨウ化リチウム、ヨウ化マグネシウム、及びヨウ化カルシウム等が挙げられる。
チオシアン酸塩の具体例としては、例えば、チオシアン酸アンモニウム、チオシアン酸カリウム、チオシアン酸ナトリウム、チオシアン酸リチウム、チオシアン酸マグネシウム、及びチオシアン酸カルシウム、チオシアン酸グアニジン等が挙げられる。
炭酸塩の具体例としては、例えば、炭酸アンモニウム、炭酸カリウム、炭酸ナトリウム、炭酸リチウム、炭酸マグネシウム、及び炭酸カルシウム等が挙げられる。
酸性塩の具体例としては、硫酸水素塩、リン酸水素塩、及び炭酸水素塩等が挙げられる。
硫酸水素塩の具体例としては、例えば、硫酸水素アンモニウム、硫酸水素カリウム、硫酸水素ナトリウム、硫酸水素リチウム、硫酸水素マグネシウム、硫酸水素カルシウム等が挙げられる。
リン酸水素塩の具体例としては、例えば、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸水素二アンモニウム、リン酸二水素マグネシウム、リン酸水素二マグネシウム、リン酸二水素カルシウム、及びリン酸水素二カルシウム等が挙げられる。
炭酸水素塩の具体例としては、例えば、炭酸水素アンモニウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素リチウム、炭酸水素リチウム、炭酸水素マグネシウム、及び炭酸水素カルシウム等が挙げられる。
塩基性塩の具体例としては、塩化水酸化カルシウム、塩化水酸化マグネシウム等が挙げられる。
上記の酸、酸水溶液、塩、及び塩水溶液は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
2種以上の塩又は塩水溶液を混合した塩混合水溶液としては、上記有機塩の混合水溶液、上記無機塩の混合水溶液、上記有機塩及び無機塩の混合水溶液等が挙げられ、製造コスト低減の観点から汽水及び海水が特に好ましい。汽水及び海水は、塩化カリウム、塩化ナトリウム、塩化マグネシウム、硫酸マグネシウム、及び硫酸カルシウムを主として含むことで知られている。
凝固液は、塩水溶液を含有することが好ましく、塩水溶液であることがより好ましい。塩を含むことで脱溶媒速度をより向上させることができる。塩は、カルボン酸塩、硫酸塩、塩化物、リン酸水素塩、及び炭酸水素塩からなる群の少なくとも1種を含むことがより好ましく、カルボン酸塩、硫酸塩及び塩化物からなる群の少なくとも1種を含むことが更に好ましく、硫酸塩及び塩化物からなる群の少なくとも1種を含むことが更に好ましく、硫酸塩を含むことが特に好ましい。これらの塩を含むことで、繊維形成能をより向上させることができ、得られる繊維の伸度をより向上させ得る。
カルボン酸塩としては、カルボン酸ナトリウムがより好ましく、硫酸塩としては、硫酸アンモニウム、硫酸ナトリウム、硫酸マグネシウム、及び硫酸カルシウムがより好ましく、塩化物としては、塩化カリウム、塩化ナトリウム、塩化マグネシウム、及び塩化カルシウムがより好ましく、炭酸水素塩としては、炭酸水素ナトリウムがより好ましく、混合水溶液としては、汽水及び海水が特に好ましい。これらの塩及び混合水溶液を使用することで、繊維形成能の向上効果に加えて、製造コストをさらに低減することができる。
塩の含有量は、凝固液全量に対して、0.1質量%以上、0.3質量%以上、0.5質量%以上、0.7質量%以上、1質量%以上、1.3質量%以上、1.5質量%以上、1.7質量%以上、2質量%以上、2.3質量%以上、2.5質量%以上、2.7質量%以上、3質量%以上、4質量%以上、5質量%以上、7質量%以上、10質量%以上、15質量%以上、又は20質量%以上であってもよく、上限値としては、30質量%以下、25質量%以下、又は溶解度以下の含有量であってもよい。塩の含有量は、凝固液全量に対して、例えば、0.1質量%以上30質量%以下、0.3質量%以上25質量%以下、1質量%以上25質量%以下、3質量%以上25質量%以下、5質量%以上25質量%以下、8質量%以上25質量%以下、10質量%以上25質量%以下、12質量%以上25質量%以下、1質量%以上20質量%以下、3質量%以上20質量%以下、5質量%以上20質量%以下、8質量%以上20質量%以下、10質量%以上20質量%以下、10質量%以上15質量%以下、12質量%以上20質量%以下、12質量%以上18質量%以下、12質量%以上17質量%以下、12質量%以上16質量%以下、15質量%以上20質量%以下又は16質量%以上20質量%以下であってもよい。塩の含有量は、例えば、凝固液全量に対して、0.05mol/L以上であることが好ましく、0.05mol/L以上5.5mol/L以下であってもよく、0.1mol/L以上5.0mol/L以下であってもよく、0.1mol/L以上4.5mol/L以下であってもよく、0.1mol/L以上4.0mol/L以下であってもよい。
塩化ナトリウムを用いる場合の塩の含有量は、例えば、凝固液全量に対して、0.1mol/L以上5.0mol/L以下であってもよく、0.1mol/L以上4.5mol/L以下であってもよく、0.1mol/L以上4.0mol/L以下であってもよい。
塩化カリウムを用いる場合を用いる場合の塩の含有量は、例えば、凝固液全量に対して、0.1mol/L以上3.9mol/L以下であってもよい。
塩化カルシウムを用いる場合を用いる場合の塩の含有量は、例えば、凝固液全量に対して、0.1mol/L以上14.3mol/L以下であってもよく、0.1mol/L以上13.0mol/L以下であってもよく、0.1mol/L以上12.0mol/L以下であってもよく、0.1mol/L以上11.0mol/L以下であってもよく、0.1mol/L以上10.0mol/L以下であってもよく、0.1mol/L以上9.0mol/L以下であってもよく、0.1mol/L以上8.0mol/L以下であってもよく、0.1mol/L以上7.0mol/L以下であってもよく、0.1mol/L以上6.0mol/L以下であってもよく、0.1mol/L以上5.0mol/L以下であってもよく、0.1mol/L以上4.0mol/L以下であってもよく、0.1mol/L以上3.0mol/L以下であってもよく、0.1mol/L以上2.0mol/L以下であってもよい。
硫酸ナトリウムを用いる場合を用いる場合の塩の含有量は、例えば、凝固液全量に対して、0.1mol/L以上3.4mol/L以下であってもよく、0.1mol/L以上3.0mol/L以下であってもよく、0.1mol/L以上2.5mol/L以下であってもよく、0.1mol/L以上2.0mol/L以下であってもよい。また、例えば、凝固液全量に対して、3質量%以上28質量%以下、3質量%以上25質量%以下、3質量%以上20質量%以下、5質量%以上20質量%以下、8質量%以上20質量%以下、10質量%以上20質量%以下、10質量%以上18質量%以下、12質量%以上20質量%以下、12質量%以上18質量%以下、12質量%以上16質量%以下又は13質量%以上16質量%以下であってもよい。
また、凝固液全量に対する硫酸ナトリウムの含有量は、10質量%以上20質量%以下であることが好ましく、11質量%以上19質量%以下であることが好ましく、11質量%以上18質量%以下であることがより好ましく、12質量%以上18質量%以下であることがさらに好ましく、12質量%以上17質量%以下であることがさらに好ましく、13質量%以上17質量%以下であることがさらに好ましく、13質量%以上16質量%以下であることが特に好ましい。凝固液全量に対する硫酸ナトリウムの含有量が10質量%以上であると、凝固速度がより大きくなり、設備投資による費用増大をより低減することができる。凝固液全量に対する硫酸ナトリウムの含有量が20質量%以下であると、ドープ液の急速な凝固によるドープ液と凝固糸(糸条)間の界面で発生する糸切れをより低減することができる。
また、上記の場合の凝固液全量に対する水の含有量は、ドープ溶媒の回収効率を向上させる観点から、50質量%以上80質量%以下であることが好ましく、60質量%以上80質量%以下であることがより好ましく、60質量%以上70質量%以下であることがより好ましい。
また、硫酸ナトリウムを用いる場合の硫酸ナトリウム水溶液の濃度は、10質量%以上22質量%以下であることが好ましく、10質量%以上20質量%以下であることが好ましく、12質量%以上20質量%以下であることがより好ましく、14質量%以上20質量%以下であることがさらに好ましく、16質量%以上20質量%以下であることが特に好ましい。硫酸ナトリウム水溶液の濃度が10質量%以上であると、十分な凝固速度が得られ、設備投資による費用増大をより低減することができる。硫酸ナトリウム水溶液の濃度が22質量%以下であると、ドープ液の急速な凝固によるドープ液と凝固糸(糸条)間の界面で発生する糸切れをより低減することができる。
また、硫酸ナトリウムを用いる場合の硫酸ナトリウム水溶液の濃度は、10質量%以上22質量%以下であることが好ましく、10質量%以上20質量%以下であることが好ましく、12質量%以上20質量%以下であることがより好ましく、14質量%以上20質量%以下であることがさらに好ましく、16質量%以上20質量%以下であることが特に好ましい。硫酸ナトリウム水溶液の濃度が10質量%以上であると、十分な凝固速度が得られ、設備投資による費用増大をより低減することができる。硫酸ナトリウム水溶液の濃度が22質量%以下であると、ドープ液の急速な凝固によるドープ液と凝固糸(糸条)間の界面で発生する糸切れをより低減することができる。
クエン酸ナトリウムを用いる場合を用いる場合の塩の含有量は、例えば、凝固液全量に対して、0.1mol/L以上1.6mol/L以下であってもよく、0.1mol/L以上1.3mol/L以下であってもよい。
本実施形態の凝固液に含有される水溶液は、例えば、カルボン酸水溶液、炭酸水素塩水溶液、ギ酸塩水溶液、酢酸塩水溶液、塩化物水溶液、硫酸塩水溶液、リン酸水素塩水溶液、クエン酸塩水溶液、汽水、海水及びこれらの混合溶液からなる群から選択されてよい。また、本実施形態の凝固液に含有される水溶液は、例えば、クエン酸水溶液、ギ酸水溶液、炭酸水素ナトリウム水溶液、ギ酸ナトリウム水溶液、酢酸ナトリウム水溶液、塩化ナトリウム水溶液、硫酸ナトリウム水溶液、硫酸アンモニウム水溶液、リン酸水素カリウム水溶液、塩化カルシウム水溶液、クエン酸ナトリウム水溶液、汽水、海水及びこれらの混合溶液からなる群から選択されてよく、塩化ナトリウム水溶液、クエン酸ナトリウム水溶液、硫酸ナトリウム水溶液、汽水、海水及びこれらの混合溶液からなる群から選択される少なくとも1種であってよく、塩化ナトリウム水溶液、クエン酸ナトリウム水溶液、硫酸ナトリウム水溶液及びこれらの混合溶液からなる群から選択される少なくとも1種であってよく、塩化ナトリウム水溶液、クエン酸ナトリウム水溶液及び硫酸ナトリウム水溶液からなる群から選択される少なくとも1種であってよい。
さらに、繊維形成能の観点から、本実施形態の凝固液に含有される水溶液が塩水溶液であることが好ましい(表8)。塩水溶液が、硫酸塩水溶液、塩化物水溶液、カルボン酸塩水溶液、リン酸水素塩水溶液、炭酸水素塩水溶液、汽水、及び海水からなる群から選択される少なくとも1種であることが好ましい。硫酸塩としては、硫酸アンモニウム、硫酸カリウム、硫酸ナトリウム、硫酸リチウム、硫酸マグネシウム、及び硫酸カルシウムからなる群から選択される少なくとも1種であることが好ましく、塩化物としては、塩化ナトリウム、塩化カルシウム、塩化アンモニウム、塩化カリウム、塩化リチウム、及び塩化マグネシウムからなる群から選択される少なくとも1種であることが好ましい。さらに、塩水溶液としては、塩化ナトリウム水溶液、硫酸ナトリウム水溶液及びクエン酸ナトリウム水溶液からなる群から選択される少なくとも1種であることがより好ましい。
紡糸原液を接触させる前の凝固液には有機溶媒が含まれてもよく、含まれなくてもよい。凝固液が有機溶媒を含む場合、該有機溶媒は紡糸原液中の有機溶媒と同じであってもよく、異なっていてもよいが、同じであることが好ましい。また、紡糸原液を接触させる前の凝固液に有機溶媒が含まれない場合であっても、紡糸原液を凝固液に接触させる過程において、接触した紡糸原液から凝固液に有機溶媒が溶解する場合がある。凝固液に含まれる有機溶媒(凝固液に接触した紡糸原液から凝固液に溶解した場合も含む)の含有量は、凝固液の全量(有機溶媒が紡糸原液から凝固液に溶解した場合には、紡糸原液を接触させる前の凝固液と紡糸原液から凝固液に溶解した有機溶媒の合計含有量)を100質量%として、0質量%以上30質量%以下、5質量%以上30質量%以下、5質量%以上25質量%以下、0質量%以上20質量%以下、5質量%以上20質量%以下、5質量%以上15質量%以下、10質量%以上30質量%以下、10質量%以上20質量%以下、0質量%以上10質量%以下、0質量%以上5質量%以下、0質量%以上2質量%以下であってもよく、10質量%以上30質量%以下が好ましく、12質量%以上28質量%以下がより好ましく、14質量%以上26質量%以下がより好ましく、15質量%以上25質量%以下がより好ましく、18質量%以上24質量%以下がさらに好ましく、18質量%以上22質量%以下が特に好ましい。有機溶媒の含有量が、上述の範囲内である場合、より一層構造タンパク質の繊維形成能が向上する。有機溶媒としては、ギ酸、DMSO、又はHFIPが好ましく、ギ酸又はHFIPがより好ましく、ギ酸がさらに好ましい。
凝固液が含有する水溶液のpHは、0.25~10.00であってもよく、0.25~9.50であってもよい。
凝固液における酸水溶液のpHは、例えば、0.25~7.00未満であってもよく、0.50~7.00未満であってもよく、1.00~7.00未満であってもよく、1.50~7.00未満であってもよく、2.00~7.00未満であってもよく、3.00~7.00未満であってもよい。
凝固液における塩水溶液のpHは、例えば、0.50~10.00であってもよく、1.00~10.00であってもよく、2.00~10.00であってもよく、3.00~10.00であってもよく、3.50~10.00であってもよく、4.00~10.00であってもよく、4.50~10.00であってもよく、5.00~10.00であってもよく、5.50~10.00であってもよく、6.00~10.00であってもよく、6.50~10.00であってもよく、6.50~9.50であってもよい。
凝固液における上記水又は水溶液の含有量は、凝固液全量を100質量%として、60質量%以上が好ましく、65質量%以上がより好ましく、68質量%以上がより好ましく、70質量%以上がより好ましく、71質量%以上がより好ましく、72質量%以上がより好ましく、73質量%以上がより好ましく、74質量%以上がより好ましく、75質量%以上がより好ましく、76質量%以上がより好ましく、77質量%以上がより好ましく、78質量%以上がより好ましく、79質量%以上がさらに好ましく、80質量%以上が特に好ましく、85質量%以上であってもよく、90質量%以上であってもよく、95質量%であってもよい。上記水又は水溶液の含有量が上述の範囲内である場合、より一層構造タンパク質の繊維形成能が向上する。凝固液における上記水又は水溶液の含有量は、凝固液全量に対して、例えば、60質量%以上100質量%以下であってもよく、70質量%以上100質量%以下であってもよく、75質量%以上100質量%以下であってもよく、80質量%以上100質量%以下であってもよく、85質量%以上100質量%以下であってもよく、90質量%以上100質量%以下であってもよく、95質量%以上100質量%以下であってもよく、70質量%以上90質量%以下であってもよく、75質量%以上85質量%以下であってもよく、78質量%以上82質量%以下であってもよい。
凝固液の温度は、室温であってもよく、0℃~90℃であってもよく、0℃~80℃であってもよく、5℃~80℃であってもよく、10℃~80℃であってもよく、15℃~80℃であってもよく、20℃~80℃であってもよく、25℃~80℃であってもよく、30℃~80℃であってもよく、40℃~80℃であってもよく、50℃~80℃であってもよく、60℃~80℃であってもよく、70℃~80℃であってもよく、20℃~70℃であってもよく、30℃~70℃であってもよく、40℃~70℃であってもよく、50℃~70℃であってもよく、20℃~60℃であってもよく、30℃~60℃であってもよく、40℃~60℃であってもよく、50℃~60℃であってもよい。凝固液の温度は、紡糸安定性により優れる観点から、30℃~50℃が好ましく、32℃~48℃がより好ましく、33℃~47℃がより好ましく、34℃~46℃がより好ましく、35℃~45℃がさらに好ましい。凝固液の温度の下限値は、紡糸原液に含有される有機溶媒の融点以上であればよく、温度の上限値は、紡糸原液に含有される有機溶媒の沸点以下であればよい。凝固液の温度をより高くすることで、紡糸原液の脱溶媒速度をより速くすることができる。
凝固液はドープ溶媒(例:ギ酸)をさらに含んでいてもよい。凝固液全量に対するドープ溶媒の含有量は、溶媒回収効率向上の観点から、15~25質量%であることが好ましく、16~25質量%であることがより好ましく、16~24質量%であることがさらに好ましく、18~24質量%であることが特に好ましい。
凝固液は、紡糸原液に添加し得る上述の溶解促進剤をさらに含んでいてよい。
〔紡糸工程〕
本実施形態に係る人造構造タンパク質繊維は、公知の湿式紡糸法によって製造することができる。例えば、人造構造タンパク質及び有機溶媒を含有する紡糸原液を紡糸口金から凝固液中に吐出し、人造構造タンパク質を凝固させる工程(凝固工程)を含む方法が挙げられる。ここで、上記凝固工程において紡糸ドラフト(バスドラフト)を0.4超20以下とすることが好ましい。紡糸ドラフト(バスドラフト)を0.4超とすることで、繊維の直径をより細径化させることができる。本実施形態のタンパク質繊維の製造方法は、例えば、図4に示す紡糸装置を使用して実施することができる。
本実施形態に係る人造構造タンパク質繊維は、公知の湿式紡糸法によって製造することができる。例えば、人造構造タンパク質及び有機溶媒を含有する紡糸原液を紡糸口金から凝固液中に吐出し、人造構造タンパク質を凝固させる工程(凝固工程)を含む方法が挙げられる。ここで、上記凝固工程において紡糸ドラフト(バスドラフト)を0.4超20以下とすることが好ましい。紡糸ドラフト(バスドラフト)を0.4超とすることで、繊維の直径をより細径化させることができる。本実施形態のタンパク質繊維の製造方法は、例えば、図4に示す紡糸装置を使用して実施することができる。
図4は、タンパク質繊維を製造するための紡糸装置の一例を概略的に示す説明図である。図4に示す紡糸装置10は、湿式紡糸用の紡糸装置の一例であり、押出し装置1と、凝固浴槽20と、洗浄浴槽(延伸浴槽)21と、乾燥装置4とを上流側から順に有している。
押出し装置1は貯槽7を有しており、ここに紡糸原液(ドープ液)6が貯留される。凝固浴槽20に凝固液11が貯留される。紡糸原液6は、貯槽7の下端部に取り付けられたギアポンプ8により、凝固液11中に設けられたノズル9から押し出される。押し出された紡糸原液6は、凝固浴槽20の凝固液11内に供給(導入)される。凝固液11内で紡糸原液から溶媒が除去されてクモ糸タンパク質が凝固する。凝固したクモ糸タンパク質は、洗浄浴槽21に導かれ、洗浄浴槽21内の洗浄液12により洗浄された後、洗浄浴槽21内に設置された第一ニップローラ13と第二ニップローラ14により、乾燥装置4へと送られる。このとき、例えば、第二ニップローラ14の回転速度を第一ニップローラ13の回転速度よりも速く設定すると、回転速度比に応じた倍率で延伸されたタンパク質繊維36が得られる。洗浄液12中で延伸されたタンパク質繊維は、洗浄浴槽21内を離脱してから、乾燥装置4内を通過する際に乾燥され、その後、ワインダーにて巻き取られる。このようにして、タンパク質繊維が、紡糸装置10により、最終的にワインダーに巻き取られた巻回物5として得られる。なお、18a~18gは糸ガイドである。
凝固液11の温度は、特に限定されないが、55℃以下、50℃以下、45℃以下、40℃以下、30℃以下、25℃以下、20℃以下、10℃以下、又は5℃以下であってもよい。作業性、冷却コスト等の観点から、0℃以上であることが好ましい。なお、凝固液11の温度は、例えば、熱交換器を内部に備える凝固浴槽20と、冷却循環装置と、を有する紡糸装置10を用いることにより調整することができる。例えば、凝固浴槽内に設置した熱交換器に冷却循環装置で所定の温度まで冷却した媒体を流すことにより、凝固液11と熱交換器間での熱交換により温度を上記範囲内に調整することができる。この場合、媒体として凝固液11に用いる溶媒を循環することでより効率的な冷却が可能となる。
凝固液が貯留される凝固浴槽は複数設けられていてもよい。
凝固した人造構造タンパク質は、凝固浴槽又は洗浄浴槽を離脱してから、そのままワインダーにて巻き取られてもよいし、乾燥装置を通過し、乾燥され、その後、ワインダーにて巻き取られてもよい。
凝固した人造構造タンパク質が凝固液中を通過する距離は、脱溶媒が効率的に行えればよく、ノズルからの紡糸原液の押出速度(吐出速度)等に応じて決定されるものであってもよい。凝固した人造構造タンパク質(又は紡糸原液)の凝固液中での滞留時間は、凝固した人造構造タンパク質が凝固液中を通過する距離、ノズルからの紡糸原液の押出速度等に応じて決定されるものであってもよい。
「紡糸ドラフト(バスドラフト)」とは、凝固糸を引き取りローラ(ゴデットローラ)18bで引き取る速度(引き取り速度)を、紡糸口金から紡糸原液を吐出する線速度(吐出線速度)で割った値を意味する。吐出線速度と引き取り速度は、所望する繊維の繊維径等の物性や、製造量等にあわせて、それぞれ適宜調節してよい。
紡糸ドラフト(バスドラフト)の値は、用いる紡糸口金の孔径に応じて適宜調節することができるが、例えば、孔径0.04mm~0.1mmの紡糸口金を用いる場合は、0.4超~20倍であることが好ましく、0.8超~20倍であることがより好ましく、0.8~15倍であることがより好ましく、0.8~10倍であることがより好ましく、1~7倍であることがより好ましく、2~7倍であることがより好ましく、2~6.5倍であることがより好ましく、3~6.5倍であることがさらに好ましく、3~6倍であることが特に好ましい。また、0.4超~16倍であってもよく、0.4超~15倍、0.4超~14倍で、0.4超~12倍、0.5~12倍、0.6~12倍、0.7~12倍、0.7~10倍又は0.5~10倍であってもよく、0.6~10倍、0.7~10倍、0.6~9倍、0.6~8倍、0.6~7倍、0.6~6倍又は0.6~5倍であってもよく、0.7~5倍、0.7~4.5倍、0.8~10倍、0.8超~10倍、0.8~9倍、0.8超~9倍、0.8~8倍、0.8超~8倍、0.8~7倍、0.8超~7倍、0.8~6.5倍、0.8超~6.5倍又は0.8超~6倍であってもよく、1~10倍、1~9倍、1~8倍、1~7倍、1~6.5倍、1~6倍又は1~5倍であってもよく、1.2~10倍、1.2~9倍、1.2~8倍、1.2~7倍、1.2~6.5倍、1.2~6倍又は1.2~5倍であってもよく、1.5~10倍、1.5~9倍、1.5~8倍、1.5~7倍、1.5~6.5倍、1.5~6倍、1.5~5.5倍又は1.5~5倍であってもよく、1.8~10倍、1.8~9倍、1.8~8倍、1.8~7倍、1.8~6.5倍、1.8~6倍、1.8~5.5倍又は1.8~5倍であってもよく、2~10倍、2~9倍、2~8倍、2~6倍、2~5.5倍又は2~5倍であってもよく、2.5~10倍、2.5~9倍、2.5~8倍、2.5~7倍、2.5~6.5倍、2.5~6倍、2.5~5.5倍又は2.5~5倍であってもよく、3~10倍、3~9倍、3~8倍、3~7倍、3~5.5倍又は3~5倍であってもよく、3.5~10倍、3.5~9倍、3.5~8倍、3.5~7倍、3.5~6倍、3.5~5.5倍又は3.5~5倍であってもよい。紡糸ドラフト(バスドラフト)の値が0.4超であると、より紡糸安定性が向上し、生産性を向上させることができる。紡糸ドラフト(バスドラフト)の値が20倍以下であれば、設備費用をより低減でき、繊維の細径化効果と応力向上効果を十分に得ることができる。
〔延伸工程〕
本実施形態の人造構造タンパク質繊維の製造方法は、凝固させた人造構造タンパク質を延伸する工程(延伸工程)を更に含むものであってもよい。延伸方法としては、湿熱延伸、乾熱延伸等をあげることができる。延伸工程は、例えば、凝固浴槽20内で実施してもよく、洗浄浴槽21内で実施してもよい。延伸工程はまた、空気中で実施することもできる。
本実施形態の人造構造タンパク質繊維の製造方法は、凝固させた人造構造タンパク質を延伸する工程(延伸工程)を更に含むものであってもよい。延伸方法としては、湿熱延伸、乾熱延伸等をあげることができる。延伸工程は、例えば、凝固浴槽20内で実施してもよく、洗浄浴槽21内で実施してもよい。延伸工程はまた、空気中で実施することもできる。
洗浄浴槽21内で実施される延伸は、温水中、温水に有機溶剤等を加えた溶液中等で行う、いわゆる湿熱延伸であってもよい。湿熱延伸の温度は50~90℃であることが好ましい。該温度が50℃以上であると、糸の細孔径を安定的に小さくすることができる。また、温度が90℃以下であると、温度設定が容易であり紡糸安定性が向上する。温度は75~85℃がより好ましい。
湿熱延伸は、温水中、温水に有機溶剤等を加えた溶液中、又はスチーム加熱中で行うことができる。温度としては、例えば、40~200℃であってもよく、50~180℃であってもよく、50~150℃であってもよく、75~90℃であってもよい。湿熱延伸における延伸倍率は、未延伸糸(又は前延伸糸)に対して、例えば、1~30倍であってもよく、2~25倍であってもよく、2~20倍であってもよく、2~15倍であってもよく、2~10倍であってもよく、2~8倍であってもよく、2~6倍であってもよく、2~4倍であってもよい。ただし、延伸倍率は、所望する繊維の太さ、機械物性などの特性が得られる範囲であれば限定されるものではない。
乾熱延伸は、接触型の熱板、及び非接触型の炉などの装置を用いて行うことができるが、特に限定されるものではなく、繊維を所定の温度まで昇温させ、かつ所定の倍率で延伸が可能な装置であればよい。温度としては、例えば、100℃~270℃であってもよく、140℃~230℃であってもよく、140℃~200℃であってもよく、160℃~200℃であってもよく、160℃~180℃であってもよい。
乾熱延伸工程における延伸倍率は、未延伸糸(又は前延伸糸)に対して、例えば、1~30倍であってもよく、2~30倍であってもよく、2~20倍であってもよく、3~15倍であってもよく、3~10倍であることが好ましく、3~8倍であることがより好ましく、4~8倍であることがさらに好ましい。ただし、延伸倍率は、所望する繊維の太さ、機械物性などの特性が得られる範囲であれば限定されるものではない。
延伸工程は、湿熱延伸及び乾熱延伸を、それぞれ単独で行うものであってもよく、またこれらを多段で、又は組み合わせて行うものであってもよい。すなわち、延伸工程として、一段目延伸を湿熱延伸で行い、二段目延伸を乾熱延伸で行う、又は一段目延伸を湿熱延伸行い、二段目延伸を湿熱延伸行い、更に三段目延伸を乾熱延伸で行う等、湿熱延伸及び乾熱延伸を適宜組み合わせて行うことができる。
延伸工程を経た人造構造タンパク質繊維の最終的な延伸倍率の下限値は、未延伸糸(又は前延伸糸)に対して、好ましくは、1倍、2倍、3倍、4倍、5倍、6倍、7倍、8倍、又は9倍のうちの何れかであってもよい。延伸工程を経た改変フィブロイン繊維の最終的な延伸倍率の上限値は、好ましくは40倍、30倍、20倍、15倍、14倍、13倍、12倍、11倍、又は10倍のうちの何れかであってもよい。また、例えば、最終的な延伸倍率は3~40倍であてよく、3~30倍であってもよく、5~30倍であってもよく、5~20倍であってもよく、5~15倍であってもよく、5~13倍であってもよい。ただし、延伸倍率は、所望する繊維の太さ、機械物性などの特性が得られる範囲であれば限定されるものではない。
紡糸工程において、紡糸口金の口金形状、ホール形状、ホール数などは特に限定されるものではなく、所望の繊維径及び単糸本数等に応じて適宜選択できる。
乾燥の前又は後に、必要に応じて、未延伸糸(若しくは前延伸糸)又は延伸糸に対して、帯電抑制性、収束性及び潤滑性等を付与する目的で油剤を付与してもよい。付与する油剤の種類及び付与する量等は、特に限定されるものではなく、繊維を使用する用途、繊維の取扱い性等を考慮し適宜調整することができる。
紡糸口金のホール形状が円形である場合は、紡糸口金の孔径として0.01mm以上0.6mm以下を例示できる。孔径が0.01mm以上であると、圧力損失を低減することができ設備費用を抑えることができる。孔径が0.6mm以下であると、繊維径を細くするための延伸操作の必要性を低減することができ、吐出から巻き取りまでの間で延伸切れを起こす可能性を低減することができる。
紡糸口金を通過する際の紡糸原液の温度、及び紡糸口金の温度は、特に限定されるものではなく、用いる紡糸原液の濃度及び粘度、有機溶媒の種類等により適宜調整すればよい。当該温度は、構造タンパク質の劣化等を防止するという観点から、30℃~100℃が好ましい。また、当該温度は、溶媒の揮発による圧力上昇、紡糸原液の固形化による配管内の閉塞が発生する可能性を低減するという観点から、用いる溶媒の沸点に満たない温度を上限とすることが好ましい。これにより工程安定性が向上する。
本実施形態に係る製造方法は、紡糸原液の吐出前に紡糸原液を濾過する工程(濾過工程)、及び/又は吐出前に紡糸原液を脱泡する工程(脱泡工程)を更に備えるものであってもよい。
(人造構造タンパク質繊維の繊維径評価)
繊維径の算出は、断面形状が円であると仮定して、下記式により算出できる。
繊維径[μm]={平均繊度[m/g]/(人造構造タンパク質の密度[g/cm3]×π)}1/2
なお、繊維の平均繊度は、以下の手順で測定できる。
繊維束をランダムにサンプリングし、長さ90cmにカットして、温度20℃、相対湿度65%の環境下で12時間以上コンディショニングする。コンディショニング後、繊維束の質量を測定して平均繊度を算出し、単繊維あたりの平均繊度に換算する(サンプル数=5)。繊維束中の繊維の構成本数は、製造条件によって適宜選択すればよく、例えば1,000本(単糸1000本で構成されるマルチフィラメント)としてよい。
繊維径の算出は、断面形状が円であると仮定して、下記式により算出できる。
繊維径[μm]={平均繊度[m/g]/(人造構造タンパク質の密度[g/cm3]×π)}1/2
なお、繊維の平均繊度は、以下の手順で測定できる。
繊維束をランダムにサンプリングし、長さ90cmにカットして、温度20℃、相対湿度65%の環境下で12時間以上コンディショニングする。コンディショニング後、繊維束の質量を測定して平均繊度を算出し、単繊維あたりの平均繊度に換算する(サンプル数=5)。繊維束中の繊維の構成本数は、製造条件によって適宜選択すればよく、例えば1,000本(単糸1000本で構成されるマルチフィラメント)としてよい。
(人造構造タンパク質繊維の機械物性評価)
JIS L1013に基づき、インストロン社製3345シリーズの引張試験機を用いて、人造構造タンパク質繊維の伸度と応力を測定する。試験条件は、温度20℃、相対湿度65%の環境下、試験長300mm、試験速度300mm/分として行えばよく、ロードセル容量は繊維の繊度に応じて適宜選択すればよい。測定値は、例えば、サンプル数n=5の平均値として算出してもよい。
JIS L1013に基づき、インストロン社製3345シリーズの引張試験機を用いて、人造構造タンパク質繊維の伸度と応力を測定する。試験条件は、温度20℃、相対湿度65%の環境下、試験長300mm、試験速度300mm/分として行えばよく、ロードセル容量は繊維の繊度に応じて適宜選択すればよい。測定値は、例えば、サンプル数n=5の平均値として算出してもよい。
(人造構造タンパク質繊維の収縮性評価)
人造構造タンパク質繊維は、沸点未満の水に接触(湿潤)させることにより収縮する特性を有する。人造構造タンパク質繊維において、このような収縮が少ない程好ましい。収縮性は、以下の方法で求められる収縮率を指標として評価することができる。
人造構造タンパク質繊維は、沸点未満の水に接触(湿潤)させることにより収縮する特性を有する。人造構造タンパク質繊維において、このような収縮が少ない程好ましい。収縮性は、以下の方法で求められる収縮率を指標として評価することができる。
長さ約30cmの複数本の人造構造タンパク質繊維を束ね、繊度150デニールの繊維束とする。この繊維束に0.8gの鉛錘を取り付け、その状態で繊維束を40℃の水に90秒浸漬し収縮させる。その後、各繊維束を水中から取り出し、0.8gの鉛錘を取り付けたまま乾燥させ、乾燥後の各繊維束の長さを測定する。収縮率は下記式に従って算出される。なお、L0は水と接触させる前(紡糸後)の繊維の長さ(ここでは30cm)を示し、LDは収縮後(水への含浸処理後乾燥させた繊維)の繊維の長さを示す。
収縮率[%]={1-(LD/L0)}×100
収縮率[%]={1-(LD/L0)}×100
〔製品〕
本実施形態に係るタンパク質繊維は、繊維(長繊維、短繊維、モノフィラメント、又はマルチフィラメント等)又は糸(紡績糸、撚糸、仮撚糸、加工糸、混繊糸、又は混紡糸等)として、織物、編物、組み物、若しくは不織布等の布帛、紙及び綿等に応用できる。また、ロープ、手術用縫合糸、止血剤、電気部品用の可撓性止め具、さらには移植用生理活性材料(例えば、人工靭帯及び大動脈バンド)等の高強度用途にも応用できる。これらは、公知の方法により製造することができる。
本実施形態に係るタンパク質繊維は、繊維(長繊維、短繊維、モノフィラメント、又はマルチフィラメント等)又は糸(紡績糸、撚糸、仮撚糸、加工糸、混繊糸、又は混紡糸等)として、織物、編物、組み物、若しくは不織布等の布帛、紙及び綿等に応用できる。また、ロープ、手術用縫合糸、止血剤、電気部品用の可撓性止め具、さらには移植用生理活性材料(例えば、人工靭帯及び大動脈バンド)等の高強度用途にも応用できる。これらは、公知の方法により製造することができる。
以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
〔人造構造タンパク質の製造〕
(1)発現ベクターの作製
ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号44を有する人造構造タンパク質(改変フィブロインPRT966)を設計した。なお、配列番号44で示されるアミノ酸配列は、疎水度の向上を目的として、配列番号9で示されるアミノ酸配列(C末端に配列番号42で示されるアミノ酸配列が付加される前のアミノ酸配列)中のQQを全てVFに置換し、かつ残りのQをIに置換したアミノ酸配列を有し、さらにN末端に配列番号12で示されるアミノ酸配列が付加されている。
(1)発現ベクターの作製
ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号44を有する人造構造タンパク質(改変フィブロインPRT966)を設計した。なお、配列番号44で示されるアミノ酸配列は、疎水度の向上を目的として、配列番号9で示されるアミノ酸配列(C末端に配列番号42で示されるアミノ酸配列が付加される前のアミノ酸配列)中のQQを全てVFに置換し、かつ残りのQをIに置換したアミノ酸配列を有し、さらにN末端に配列番号12で示されるアミノ酸配列が付加されている。
次に、設計した配列番号44でアミノ酸配列を有する人造構造タンパク質PRT966をコードする核酸を合成した。当該核酸には、5’末端にNdeIサイト及び終止コドン下流にEcoRIサイトを付加した。当該核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、それぞれタンパク質発現ベクターpET-22b(+)に組換えて発現ベクターを得た。
(2)人造構造タンパク質の発現
(1)で得られた発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表6)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
(1)で得られた発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表6)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
当該シード培養液を500mLの生産培地(表7)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。
生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、人造構造タンパク質を発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存した目的とする人造構造タンパク質サイズのバンドの出現により、目的とする人造構造タンパク質の発現を確認した。
(3)人造構造タンパク質の精製
IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社製)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収することにより、人造構造タンパク質(フィブロインPRT966)を得た。
IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社製)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収することにより、人造構造タンパク質(フィブロインPRT966)を得た。
〔繊維形成能の評価〕
(1)ドープ液の調製
上記人造構造タンパク質の製造工程で得られた改変フィブロイン(PRT966)26質量%と、溶解用溶媒としてのギ酸(株式会社朝日化学社製、純度98%)74質量%とを混合し、攪拌しながら70℃のアルミブロックヒーターで1時間加温し、溶解させた。目開き1μmの金属フィルターで濾過し、脱泡してドープ液を得た。
(1)ドープ液の調製
上記人造構造タンパク質の製造工程で得られた改変フィブロイン(PRT966)26質量%と、溶解用溶媒としてのギ酸(株式会社朝日化学社製、純度98%)74質量%とを混合し、攪拌しながら70℃のアルミブロックヒーターで1時間加温し、溶解させた。目開き1μmの金属フィルターで濾過し、脱泡してドープ液を得た。
(2)ドープ液の吐出試験
(1)で得られたドープ液を10mlのシリンジに充填し、ノズル径0.2μmのノズルから凝固液中に吐出して、室温で改変フィブロインを凝固させた。凝固させた原繊維は、線速度2.39m/minで巻き取った。得られた原繊維を観察し、繊維形成能を目視で判定した。ドープ液の押出速度は0.075ml/分であった。使用した凝固液の種類は表8に示すとおりである。なお、汽水は山形県酒田市の河口部で採取した汽水であり、海水は山形県加茂市の海洋から採取した海水である。汽水及び海水の濃度[wt%]は、全溶質の濃度の概算値を示す。試験例26~28の混合溶液は、塩化ナトリウム水溶液に、接触した紡糸原液中のギ酸が溶解することを想定したものであり、凝固液の全質量(混合溶液)の割合を、塩化ナトリウム水溶液60質量%~80質量%及びギ酸20質量%~40質量%としたものである。試験例29のギ酸水溶液は、凝固液の全質量(混合溶液)の割合を、水80質量%及びギ酸20質量%としたものである。
(1)で得られたドープ液を10mlのシリンジに充填し、ノズル径0.2μmのノズルから凝固液中に吐出して、室温で改変フィブロインを凝固させた。凝固させた原繊維は、線速度2.39m/minで巻き取った。得られた原繊維を観察し、繊維形成能を目視で判定した。ドープ液の押出速度は0.075ml/分であった。使用した凝固液の種類は表8に示すとおりである。なお、汽水は山形県酒田市の河口部で採取した汽水であり、海水は山形県加茂市の海洋から採取した海水である。汽水及び海水の濃度[wt%]は、全溶質の濃度の概算値を示す。試験例26~28の混合溶液は、塩化ナトリウム水溶液に、接触した紡糸原液中のギ酸が溶解することを想定したものであり、凝固液の全質量(混合溶液)の割合を、塩化ナトリウム水溶液60質量%~80質量%及びギ酸20質量%~40質量%としたものである。試験例29のギ酸水溶液は、凝固液の全質量(混合溶液)の割合を、水80質量%及びギ酸20質量%としたものである。
繊維形成能の評価結果を表8に示した。繊維形成能の評価基準は以下に示すとおりである。
◎:繊維が形成される。得られた繊維は可撓性があり、かつ均質である。
○:繊維が形成される。得られた繊維は可撓性がある。
△:繊維が形成される。
×:繊維が形成されない。
◎:繊維が形成される。得られた繊維は可撓性があり、かつ均質である。
○:繊維が形成される。得られた繊維は可撓性がある。
△:繊維が形成される。
×:繊維が形成されない。
表8に示すとおり、水、酸水溶液、塩水溶液及び混合溶液のいずれを使用した場合にも、可撓性がある繊維を形成することができた(試験例1~試験例26)。凝固液を塩水溶液とした場合には、可撓性があり、かつ均質な繊維を形成することができ、極めて良好な繊維形成能が示された(試験例4~試験例26)。特に、凝固液に資源が豊富で安価な水、硫酸ナトリウム水溶液、塩化ナトリウム水溶液、汽水、及び海水を用いることで、甚大な製造コスト削減が可能となる。また、凝固液に有機溶媒と凝固液の混合水溶液を用いた場合であっても、可撓性がある繊維を形成することができることが示された(試験例27~試験例30)。特に、ギ酸が溶解した凝固液が塩化ナトリウム水溶液である場合には、可撓性があり、かつ均質な繊維を形成することができた(試験例28~試験例30)。
〔人造構造タンパク質繊維の製造及び評価〕
<実施例1~24>
(1)紡糸原液(ドープ液)の調製
上記人造構造タンパク質の製造工程で得られた人造構造タンパク質(フィブロインPRT966)30質量%と、溶解用溶媒としてのギ酸(株式会社朝日化学社製、純度98%)70質量%とを混合し、攪拌しながら40℃のアルミブロックヒーターで1時間加温し、溶解させた。目開き1μmの金属フィルターで濾過し、脱泡してドープ液を得た。
<実施例1~24>
(1)紡糸原液(ドープ液)の調製
上記人造構造タンパク質の製造工程で得られた人造構造タンパク質(フィブロインPRT966)30質量%と、溶解用溶媒としてのギ酸(株式会社朝日化学社製、純度98%)70質量%とを混合し、攪拌しながら40℃のアルミブロックヒーターで1時間加温し、溶解させた。目開き1μmの金属フィルターで濾過し、脱泡してドープ液を得た。
(2)湿式紡糸
調製したドープ液をリザーブタンクに充填し、孔数200ホールの紡糸ノズル(紡糸口金)からギアポンプを用いて凝固浴槽中で吐出させ、糸条(原糸)を形成させた。糸条の引き取り速度は一定値とした。次いで、凝固させた原糸を水洗浄浴中で延伸した。水洗浄浴中における洗浄及び延伸後、乾熱板を用いて乾燥させ、得られた人造構造タンパク質繊維(改変フィブロイン繊維)をワインダーで巻き取った。湿式紡糸の条件は以下のとおりであった。表9に用いた凝固液とバスドラフトの値をそれぞれ示した。
紡糸口金の孔径:0.05mm
凝固液の温度:50℃
水洗浄浴の温度:40℃
延伸浴の温度:60℃
総延伸倍率:4.8倍
乾燥温度:60℃
調製したドープ液をリザーブタンクに充填し、孔数200ホールの紡糸ノズル(紡糸口金)からギアポンプを用いて凝固浴槽中で吐出させ、糸条(原糸)を形成させた。糸条の引き取り速度は一定値とした。次いで、凝固させた原糸を水洗浄浴中で延伸した。水洗浄浴中における洗浄及び延伸後、乾熱板を用いて乾燥させ、得られた人造構造タンパク質繊維(改変フィブロイン繊維)をワインダーで巻き取った。湿式紡糸の条件は以下のとおりであった。表9に用いた凝固液とバスドラフトの値をそれぞれ示した。
紡糸口金の孔径:0.05mm
凝固液の温度:50℃
水洗浄浴の温度:40℃
延伸浴の温度:60℃
総延伸倍率:4.8倍
乾燥温度:60℃
(3)吐出安定性評価
各凝固液の吐出安定性の評価結果を表9に示した。吐出安定性の評価は、引き取り速度を一定とし、吐出線速度の値を変えて行なった。塩化物水溶液として塩化ナトリウム水溶液、硫酸塩として硫酸ナトリウム水溶液、カルボン酸塩としてクエン酸ナトリウム水溶液を用いた。吐出安定性の評価基準は以下に示す通りである。
◎:吐出直後の糸条にたるみがなく、通繊可能
○:吐出直後の糸条にわずかなたるみがあるが、通繊可能
△:吐出直後の糸条のたるみが大きいが、通繊可能
×:吐出直後の糸条のたるみが大きく、通繊不可能
各凝固液の吐出安定性の評価結果を表9に示した。吐出安定性の評価は、引き取り速度を一定とし、吐出線速度の値を変えて行なった。塩化物水溶液として塩化ナトリウム水溶液、硫酸塩として硫酸ナトリウム水溶液、カルボン酸塩としてクエン酸ナトリウム水溶液を用いた。吐出安定性の評価基準は以下に示す通りである。
◎:吐出直後の糸条にたるみがなく、通繊可能
○:吐出直後の糸条にわずかなたるみがあるが、通繊可能
△:吐出直後の糸条のたるみが大きいが、通繊可能
×:吐出直後の糸条のたるみが大きく、通繊不可能
表9に示した通り、凝固液に水を用いた場合にも、バスドラフトが1.0~2.7の範囲において繊維の通繊が可能であったが(実施例1~6)、凝固液を塩水溶液(実施例7~24)とした場合には、より吐出安定性が向上した。特に凝固液に硫酸塩水溶液(硫酸ナトリウム水溶液、実施例13~18)とカルボン酸水溶液(クエン酸ナトリウム水溶液、実施例19~24)を用いた場合、より吐出安定性に優れており、吐出線速度をさらに高めることができ、生産性を向上させることが可能であった。
<実施例25~46>
(4)紡糸安定性評価
孔数1,000ホールの紡糸口金(紡糸ノズル)を用い、湿式紡糸の条件を表10に示す紡糸口金の孔径とバスドラフトの値とした他は、実施例1~24と同様の手順で湿式紡糸を行い、人造構造タンパク質繊維を製造した。得られた人造構造タンパク質繊維の紡糸安定性を糸条のたるみ及び糸切れによって評価し、その結果表10に示す。
凝固液:硫酸ナトリウム14.4質量%及び水65.6質量%(18質量%硫酸ナトリウム水溶液が80質量%)、並びにギ酸20質量%の混合溶液
凝固液の温度:40℃
総延伸倍率:5倍
(4)紡糸安定性評価
孔数1,000ホールの紡糸口金(紡糸ノズル)を用い、湿式紡糸の条件を表10に示す紡糸口金の孔径とバスドラフトの値とした他は、実施例1~24と同様の手順で湿式紡糸を行い、人造構造タンパク質繊維を製造した。得られた人造構造タンパク質繊維の紡糸安定性を糸条のたるみ及び糸切れによって評価し、その結果表10に示す。
凝固液:硫酸ナトリウム14.4質量%及び水65.6質量%(18質量%硫酸ナトリウム水溶液が80質量%)、並びにギ酸20質量%の混合溶液
凝固液の温度:40℃
総延伸倍率:5倍
表10に示したとおり、孔径0.04mm(実施例25~30)と0.06mm(実施例31~35)の紡糸口金を用いた湿式紡糸では、ドープ液を吐出して糸条を形成させた際、それぞれバスドラフトが0.5~10倍(実施例25~30)と0.7~10倍(実施例31~35)の広範囲にわたって、糸条にたるみと糸切れを発生させることなく、安定して繊維を製造することができた。
なお、バスドラフト0.5未満と10倍超(孔径0.04mm)並びにバスドラフト0.7未満と10倍超(孔径0.06mm)の範囲に関しては、吐出速度と引き取り速度に関する設備上の下限値により、試験することができなかったが、同様に繊維製造が可能であると考えられる。
表10に示したとおり、孔径0.08mm(実施例36~40)と0.1mm(実施例41~46)の紡糸口金を用いた湿式紡糸では、ドープ液を吐出して糸条を形成させた際、それぞれバスドラフトが1.4~20倍(実施例36~40)と1.8~16倍(実施例41~46)の広範囲にわたって、糸条にたるみと糸切れを発生させることなく、安定して繊維を製造することができた。なお、バスドラフト1.4未満と20倍超(孔径0.08mm)、並びにバスドラフト1.8未満と16倍超(孔径0.08mm)の範囲に関しては、吐出速度と引き取り速度に関する設備上の下限値により、試験することができなかったが、同様に繊維製造が可能であると考えられる。
以上のとおり、広範囲のバスドラフト(0.5~20)において、紡糸安定性が得られた。バスドラフトの値を広範囲に調節可能なことにより、所望する繊維の繊維径に合わせて、より孔径が大きな紡糸口金を用いた湿式紡糸が可能である。本製造方法により、生産性をより向上させられることが示された。
<実施例47~56>
(5)湿式紡糸
(実施例47~48)
紡糸口金(紡糸ノズル)の孔径とバスドラフトを表11の値とし、凝固液に11.9質量%硫酸ナトリウム水溶液を用いた他は、実施例25~30と同様にして湿式紡糸を行い、人造構造タンパク質繊維(改変フィブロイン繊維)を製造した。
(実施例49~56)
紡糸口金の孔径とバスドラフトを表11の値とした他は、実施例25~30と同様にして湿式紡糸を行い、人造構造タンパク質繊維(改変フィブロイン繊維)を製造した。
(5)湿式紡糸
(実施例47~48)
紡糸口金(紡糸ノズル)の孔径とバスドラフトを表11の値とし、凝固液に11.9質量%硫酸ナトリウム水溶液を用いた他は、実施例25~30と同様にして湿式紡糸を行い、人造構造タンパク質繊維(改変フィブロイン繊維)を製造した。
(実施例49~56)
紡糸口金の孔径とバスドラフトを表11の値とした他は、実施例25~30と同様にして湿式紡糸を行い、人造構造タンパク質繊維(改変フィブロイン繊維)を製造した。
(6)物性評価
(5)で得られた人造構造タンパク質繊維の物性評価は以下の繊維径評価、機械物性評価及び繊維の収縮性評価によって行い、その結果を表11及び表12に示した。
(5)で得られた人造構造タンパク質繊維の物性評価は以下の繊維径評価、機械物性評価及び繊維の収縮性評価によって行い、その結果を表11及び表12に示した。
(繊維径評価)
繊維径の算出は、断面形状が円であると仮定して、下記式により算出した。
繊維径[μm]={平均繊度[m/g]/(人造構造タンパク質の密度[g/cm3]×π)}1/2
なお、繊維の平均繊度は、以下の手順で測定した。繊維束をランダムにサンプリングし、長さ90cmにカットして、温度20℃、相対湿度65%の環境下で12時間以上コンディショニングした。コンディショニング後、繊維束の質量を測定して平均繊度を算出し、単繊維あたりの平均繊度に換算した。サンプル数はn=5とした。人造構造タンパク質(改変フィブロインPRT966)の密度は1.34[g/cm3]であった。
繊維径の算出は、断面形状が円であると仮定して、下記式により算出した。
繊維径[μm]={平均繊度[m/g]/(人造構造タンパク質の密度[g/cm3]×π)}1/2
なお、繊維の平均繊度は、以下の手順で測定した。繊維束をランダムにサンプリングし、長さ90cmにカットして、温度20℃、相対湿度65%の環境下で12時間以上コンディショニングした。コンディショニング後、繊維束の質量を測定して平均繊度を算出し、単繊維あたりの平均繊度に換算した。サンプル数はn=5とした。人造構造タンパク質(改変フィブロインPRT966)の密度は1.34[g/cm3]であった。
(機械物性評価)
JIS L1013に基づき、インストロン社製3345シリーズの引張試験機を用いて、造構造タンパク質繊維の伸度と応力を測定した。試験条件は、温度20℃、相対湿度65%の環境下、ロードセル容量50N、試験長300mm、試験速度300mm/分として行った。測定値は、サンプル数n=5の平均値として算出した。
JIS L1013に基づき、インストロン社製3345シリーズの引張試験機を用いて、造構造タンパク質繊維の伸度と応力を測定した。試験条件は、温度20℃、相対湿度65%の環境下、ロードセル容量50N、試験長300mm、試験速度300mm/分として行った。測定値は、サンプル数n=5の平均値として算出した。
(繊維の収縮性評価)
収縮性は、以下の方法で求められる収縮率を指標として評価した。長さ約30cmの複数本の人造構造タンパク質繊維を束ね、繊度150デニールの繊維束とする。この繊維束に0.8gの鉛錘を取り付け、その状態で繊維束を40℃の水に90秒浸漬し収縮させた。その後、各繊維束を水中から取り出し、0.8gの鉛錘を取り付けたまま乾燥させ、乾燥後の各繊維束の長さを測定した。収縮率は、サンプル数をn=2とし、下記式に従って算出した。
収縮率[%]={1-(LD/L0)}×100
なお、L0は水と接触させる前(紡糸後)の繊維の長さ(ここでは30cm)を示し、LDは収縮後(水への含浸処理後乾燥させた繊維)の繊維の長さを示す。
収縮性は、以下の方法で求められる収縮率を指標として評価した。長さ約30cmの複数本の人造構造タンパク質繊維を束ね、繊度150デニールの繊維束とする。この繊維束に0.8gの鉛錘を取り付け、その状態で繊維束を40℃の水に90秒浸漬し収縮させた。その後、各繊維束を水中から取り出し、0.8gの鉛錘を取り付けたまま乾燥させ、乾燥後の各繊維束の長さを測定した。収縮率は、サンプル数をn=2とし、下記式に従って算出した。
収縮率[%]={1-(LD/L0)}×100
なお、L0は水と接触させる前(紡糸後)の繊維の長さ(ここでは30cm)を示し、LDは収縮後(水への含浸処理後乾燥させた繊維)の繊維の長さを示す。
<比較例>
バスドラフトの値を0.4倍とした他は、実施例25~30と同様にして孔径0.04mmの紡糸口金を用いて湿式紡糸を行い、人造構造タンパク質繊維(改変フィブロイン繊維)を製造した。得られた繊維の物性評価の結果は表11及び表12に示す。
バスドラフトの値を0.4倍とした他は、実施例25~30と同様にして孔径0.04mmの紡糸口金を用いて湿式紡糸を行い、人造構造タンパク質繊維(改変フィブロイン繊維)を製造した。得られた繊維の物性評価の結果は表11及び表12に示す。
表11に示したとおり、バスドラフトを0.8~6.4倍と大きくした人造構造タンパク質繊維(実施例47~56)では、バスドラフトを0.4倍と小さくした人造構造タンパク質繊維(比較例)と比較して、繊維径が細径化したことに加えて、さらに同等以上の応力を有する繊維が得られ、予想されない秀逸な結果が得られた。特に、バスドラフトを2.0倍とした場合、比較例と比較すると、8μmの細径繊維が得られたことに加えて、応力が向上した。さらに、表12に示したとおり、水に対する収縮率が低減するという効果が得られ、極めて秀逸な効果が得られた(実施例48)。また、バスドラフトを6.4倍とした場合、比較例に比べて繊維径が細径化し、応力の値が184%と最も向上した(実施例56)。以上のとおり、バスドラフトを0.4超とすることで、繊維径が細径化した同等以上の応力値を有する繊維が得られることが示された。また、バスドラフトを0.8超とすることで、さらに応力が向上するという効果が奏されることも示された。なお、表11及び表12の応力、伸度、及び収縮率の相対値は、比較例の人造構造タンパク質繊維の応力、伸度、及び収縮率の値をそれぞれ100[%]としたときの相対値である。
1…押出し装置、2…未延伸糸製造装置、3…湿熱延伸装置、4…乾燥装置、6…紡糸原液、10…紡糸装置、20…凝固浴槽、21…洗浄浴槽、36…タンパク質繊維。
Claims (12)
- 湿式紡糸法によって人造構造タンパク質繊維を製造する方法であって、人造構造タンパク質及び有機溶媒を含有する紡糸原液を紡糸口金から凝固液中に吐出し、前記人造構造タンパク質を凝固させる工程を含み、前記凝固工程におけるバスドラフトが0.4超20以下である、人造構造タンパク質繊維の製造方法。
- 前記凝固液が水又はpH0.25以上pH10.00以下の水溶液を含有する、請求項1に記載の製造方法。
- 前記凝固液中の水又はpH0.25以上pH10.00以下の水溶液の含有量が、前記凝固液の全量を100質量%として70質量%以上である、請求項2に記載の方法。
- 前記水溶液が、硫酸塩水溶液、塩化物水溶液、カルボン酸塩水溶液、リン酸水素塩水溶液、炭酸水素塩水溶液、汽水、及び海水からなる群から選択される少なくとも1種である、請求項2又は3に記載の製造方法。
- 前記水溶液が、塩化ナトリウム水溶液、硫酸ナトリウム水溶液及びクエン酸ナトリウム水溶液からなる群から選択される少なくとも1種である、請求項2~4のいずれか1項に記載の製造方法。
- 前記紡糸原液における前記人造構造タンパク質の含有量が、前記紡糸原液全量を100質量%として10質量%超50質量%以下である、請求項1~5のいずれか1項に記載の製造方法。
- 前記人造構造タンパク質の平均疎水性指標が-0.8超である、請求項1~6のいずれか1項に記載の製造方法。
- 前記人造構造タンパク質が、クモ糸フィブロイン、絹フィブロイン及びケラチンタンパク質からなる群から選択される少なくとも1種を含む、請求項1~7のいずれか1項に記載の製造方法。
- 前記人造構造タンパク質が、クモ糸フィブロインである、請求項1~8のいずれか1項に記載の製造方法。
- 前記人造構造タンパク質が、改変クモ糸フィブロインである、請求項1~9のいずれか1項に記載の製造方法。
- 前記紡糸原液中の有機溶媒が、ギ酸及びヘキサフルオロイソプロパノールからなる群から選択される少なくとも1種である、請求項1~10のいずれか1項に記載の製造方法。
- 前記凝固液が前記有機溶媒を含有し、前記凝固液中の前記有機溶媒の含有量が、前記凝固液の全量を100質量%として、10質量%以上30質量%以下である、請求項1~11のいずれか1項に記載の方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20753263.1A EP3922763A4 (en) | 2019-02-07 | 2020-02-07 | PROCESS FOR THE PRODUCTION OF ARTIFICIALLY STRUCTURED PROTEIN FIBERS |
JP2020571315A JP7503842B2 (ja) | 2019-02-07 | 2020-02-07 | 人造構造タンパク質繊維の製造方法 |
CN202080012336.3A CN113474496A (zh) | 2019-02-07 | 2020-02-07 | 人造结构蛋白质纤维的制备方法 |
US17/428,136 US20220127755A1 (en) | 2019-02-07 | 2020-02-07 | Method for Manufacturing Artificially-Structured Protein Fiber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019021015 | 2019-02-07 | ||
JP2019-021015 | 2019-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020162627A1 true WO2020162627A1 (ja) | 2020-08-13 |
Family
ID=71947450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/004966 WO2020162627A1 (ja) | 2019-02-07 | 2020-02-07 | 人造構造タンパク質繊維の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220127755A1 (ja) |
EP (1) | EP3922763A4 (ja) |
JP (1) | JP7503842B2 (ja) |
CN (1) | CN113474496A (ja) |
WO (1) | WO2020162627A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023027036A1 (ja) * | 2021-08-26 | 2023-03-02 | 国立大学法人大阪大学 | 有機溶媒を使用しないタンパク質素材の製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3748049A4 (en) * | 2018-01-31 | 2021-09-08 | Spiber Inc. | PROTEIN FIBER PRODUCTION PROCESS |
US20210395317A1 (en) * | 2018-09-28 | 2021-12-23 | Spiber Inc. | Protein Fiber Production Method |
CN114805548B (zh) * | 2021-12-29 | 2023-11-14 | 江苏创健医疗科技股份有限公司 | 一种重组胶原蛋白冻干纤维及其制备方法 |
CN115559005B (zh) * | 2022-09-27 | 2024-05-07 | 温州佳远生物科技有限公司 | 一种壳聚糖纤维一步法纺丝装置 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4872353A (ja) * | 1971-12-29 | 1973-09-29 | ||
JPS5540166B2 (ja) | 1976-04-27 | 1980-10-16 | ||
JP2002238569A (ja) | 2001-02-14 | 2002-08-27 | Higeta Shoyu Co Ltd | 大腸菌とブレビバチルス属細菌間のプラスミドシャトルベクター |
JP2005515309A (ja) * | 2002-01-09 | 2005-05-26 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | ポリペプチド繊維およびそれらの製造方法 |
WO2011149113A1 (ja) * | 2010-05-28 | 2011-12-01 | ミドリホクヨー株式会社 | 綿球可溶化コラーゲン繊維 |
JP2014138877A (ja) | 2002-06-24 | 2014-07-31 | Tufts Univ | 絹糸生体材料およびその使用方法 |
WO2017131196A1 (ja) | 2016-01-29 | 2017-08-03 | 国立研究開発法人理化学研究所 | 成形体及びその製造方法、並びに成形体のタフネスを向上させる方法 |
WO2018034111A1 (ja) * | 2016-08-19 | 2018-02-22 | 国立研究開発法人理化学研究所 | フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法 |
JP2018512407A (ja) * | 2015-03-16 | 2018-05-17 | ボルト スレッズ インコーポレイテッド | 改善されたシルク繊維 |
US20180193524A1 (en) * | 2017-01-12 | 2018-07-12 | Collplant Ltd. | Method of generating collagen fibers |
WO2018164234A1 (ja) * | 2017-03-10 | 2018-09-13 | カジナイロン株式会社 | タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法 |
WO2019151429A1 (ja) * | 2018-01-31 | 2019-08-08 | Spiber株式会社 | タンパク質繊維の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003202949A1 (en) * | 2002-01-11 | 2003-07-30 | Ali Alwattari | Methods and apparatus for spinning spider silk protein |
CN1664183A (zh) * | 2005-03-17 | 2005-09-07 | 复旦大学 | 一种用盐溶液为凝固浴的再生蚕丝纤维及其制备方法 |
JP6450680B2 (ja) * | 2012-09-06 | 2019-01-09 | アーエムシルク ゲーエムベーハー | 高靱性シルク繊維を作製する方法 |
JP6337252B1 (ja) * | 2017-03-10 | 2018-06-06 | Spiber株式会社 | 高収縮人造フィブロイン繊維及びその製造方法、並びに人造フィブロイン繊維の収縮方法 |
-
2020
- 2020-02-07 WO PCT/JP2020/004966 patent/WO2020162627A1/ja unknown
- 2020-02-07 EP EP20753263.1A patent/EP3922763A4/en active Pending
- 2020-02-07 CN CN202080012336.3A patent/CN113474496A/zh active Pending
- 2020-02-07 US US17/428,136 patent/US20220127755A1/en active Pending
- 2020-02-07 JP JP2020571315A patent/JP7503842B2/ja active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4872353A (ja) * | 1971-12-29 | 1973-09-29 | ||
JPS5540166B2 (ja) | 1976-04-27 | 1980-10-16 | ||
JP2002238569A (ja) | 2001-02-14 | 2002-08-27 | Higeta Shoyu Co Ltd | 大腸菌とブレビバチルス属細菌間のプラスミドシャトルベクター |
JP2005515309A (ja) * | 2002-01-09 | 2005-05-26 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | ポリペプチド繊維およびそれらの製造方法 |
JP2014138877A (ja) | 2002-06-24 | 2014-07-31 | Tufts Univ | 絹糸生体材料およびその使用方法 |
WO2011149113A1 (ja) * | 2010-05-28 | 2011-12-01 | ミドリホクヨー株式会社 | 綿球可溶化コラーゲン繊維 |
JP2018512407A (ja) * | 2015-03-16 | 2018-05-17 | ボルト スレッズ インコーポレイテッド | 改善されたシルク繊維 |
WO2017131196A1 (ja) | 2016-01-29 | 2017-08-03 | 国立研究開発法人理化学研究所 | 成形体及びその製造方法、並びに成形体のタフネスを向上させる方法 |
WO2018034111A1 (ja) * | 2016-08-19 | 2018-02-22 | 国立研究開発法人理化学研究所 | フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法 |
US20180193524A1 (en) * | 2017-01-12 | 2018-07-12 | Collplant Ltd. | Method of generating collagen fibers |
WO2018164234A1 (ja) * | 2017-03-10 | 2018-09-13 | カジナイロン株式会社 | タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法 |
WO2019151429A1 (ja) * | 2018-01-31 | 2019-08-08 | Spiber株式会社 | タンパク質繊維の製造方法 |
Non-Patent Citations (8)
Title |
---|
"GenBank", Database accession no. ABR37278.1 |
"Genbank", Database accession no. Gl: 24654243 |
"NCBI", Database accession no. CAA56335.1 |
KYTE JDOOLITTLE R: "A simple method for displaying the hydropathic character of a protein", J. MOL. BIOL., vol. 157, 1982, pages 105 - 132, XP024014365, DOI: 10.1016/0022-2836(82)90515-0 |
METHODS IN ENZYMOLOGY, vol. 100, 1983, pages 448 |
NUCLEIC ACID RES, vol. 10, 1982, pages 6487 |
PROC. NATL. ACAD. SCI. USA, vol. 69, 1972, pages 2110 |
See also references of EP3922763A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023027036A1 (ja) * | 2021-08-26 | 2023-03-02 | 国立大学法人大阪大学 | 有機溶媒を使用しないタンパク質素材の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7503842B2 (ja) | 2024-06-21 |
EP3922763A4 (en) | 2023-03-15 |
US20220127755A1 (en) | 2022-04-28 |
EP3922763A1 (en) | 2021-12-15 |
CN113474496A (zh) | 2021-10-01 |
JPWO2020162627A1 (ja) | 2021-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020162627A1 (ja) | 人造構造タンパク質繊維の製造方法 | |
JP7454853B2 (ja) | タンパク質繊維の製造方法 | |
JP7330468B2 (ja) | 混紡糸並びにその編織体及びその編織体の製造方法 | |
WO2019151429A1 (ja) | タンパク質繊維の製造方法 | |
WO2020162626A1 (ja) | 組み換え構造タンパク質マルチフィラメント及びその製造方法 | |
JP7104960B2 (ja) | フィブロイン繊維の製造方法 | |
JPWO2019044982A1 (ja) | 高密度編地及び高密度編地の製造方法 | |
WO2020158900A1 (ja) | 人工毛髪用繊維を製造する方法、人工毛髪を製造する方法、人工毛髪用繊維、及び人工毛髪 | |
WO2020067573A1 (ja) | 異形断面タンパク質繊維の製造方法及び形状コントロール方法 | |
WO2021066040A1 (ja) | 人工毛髪用繊維及びその製造方法 | |
JP7458619B2 (ja) | フィブロイン繊維の製造方法及びフィブロイン溶液 | |
JP7483263B2 (ja) | 複合繊維及びその製造方法 | |
JP2020122248A (ja) | フィブロイン繊維の製造方法及びフィブロイン溶液 | |
JP7198481B2 (ja) | 難燃性付与剤、及び難燃性を付与する方法 | |
WO2020017652A1 (ja) | タンパク質繊維の製造方法 | |
JP2021054819A (ja) | 人工構造タンパク質繊維及びその製造方法 | |
JP2020122237A (ja) | タンパク質繊維の製造方法 | |
JPWO2020067547A1 (ja) | 改変フィブロイン繊維 | |
JP2021152224A (ja) | 高密度不織布、及び高密度不織布の製造方法 | |
JP2021055197A (ja) | タンパク質繊維の製造方法 | |
JP7475683B2 (ja) | 複合繊維及びその製造方法 | |
JP7452861B2 (ja) | 高密度織物及びその製造方法 | |
JP7345155B2 (ja) | 保温性付与剤、及び物品に保温性を付与する方法 | |
WO2019151433A1 (ja) | タンパク質フィラメントの開繊トウ及びその製造方法 | |
JP2020122251A (ja) | 賦形性付与材、賦形性繊維製品及びその製造方法、並びに、形状が付与された繊維製品及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20753263 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020571315 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020753263 Country of ref document: EP Effective date: 20210907 |