WO2023027036A1 - 有機溶媒を使用しないタンパク質素材の製造方法 - Google Patents

有機溶媒を使用しないタンパク質素材の製造方法 Download PDF

Info

Publication number
WO2023027036A1
WO2023027036A1 PCT/JP2022/031603 JP2022031603W WO2023027036A1 WO 2023027036 A1 WO2023027036 A1 WO 2023027036A1 JP 2022031603 W JP2022031603 W JP 2022031603W WO 2023027036 A1 WO2023027036 A1 WO 2023027036A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
raw material
solution containing
type
collagen
Prior art date
Application number
PCT/JP2022/031603
Other languages
English (en)
French (fr)
Inventor
典弥 松▲崎▼
カン,ドンヒ
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2023543910A priority Critical patent/JPWO2023027036A1/ja
Publication of WO2023027036A1 publication Critical patent/WO2023027036A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof

Definitions

  • the present invention relates to a method for producing a protein material without using an organic solvent and a protein material obtained thereby.
  • Protein materials are used as one-dimensional fibrous materials, two-dimensional sheet materials, and three-dimensional three-dimensional materials.
  • a protein material is generally obtained by a manufacturing method using an organic solvent, such as discharging a protein solution into an organic solvent (Patent Document 1).
  • a protein material manufactured using an organic solvent usually contains the organic solvent.
  • the present inventors have made intensive studies to solve the above problems, and surprisingly, by ejecting a solution containing a protein raw material into an aqueous medium and drying the ejected protein raw material, , found that a protein material can be obtained, and completed the present invention. That is, the present invention provides the following.
  • a method for producing a protein material comprising ejecting a solution containing the protein material into an aqueous medium, and drying the ejected protein material.
  • the method according to any one of (1) to (5), wherein the protein material to be obtained is selected from the group consisting of fibrous material, sheet material and three-dimensional material.
  • the protein raw material is selected from the group consisting of type I collagen, type II collagen, type III collagen, type V collagen, type XI collagen, keratin, myosin, and elastin, (1) to (6).
  • a method according to any one of (8) The method according to (7), wherein the protein raw material is type I collagen.
  • the method according to any one of (1) to (9), wherein the resulting protein material has an elastic modulus of 1 GPa or more.
  • (11) The method according to any one of (1) to (10), wherein the obtained protein material has an elastic modulus of 8 GPa or more.
  • a protein material containing no organic solvent can be obtained.
  • a protein material that does not contain an organic solvent has less adverse effects on organisms or living organisms, and has less adverse effects on ecosystems, the natural world, or the environment.
  • the method for producing a protein material that does not use an organic solvent according to the present invention also has less adverse effects on organisms or living organisms, and has less adverse effects on ecosystems, the natural world, or the environment.
  • FIG. 1 shows photographs taken one hour after discharging a 1 wt % collagen aqueous solution into water at 4, 25, 37 or 45° C.
  • FIG. Protein material could be made in water at 4°C, 25°C, 37°C and 45°C.
  • Figure 2 shows the modulus of collagen fibers made in water at 37°C or 45°C. In water at 37°C and 45°C, a protein material with high elastic modulus could be made.
  • FIG. 3 shows photographs taken one hour after discharging a 1 wt % collagen aqueous solution into water using a syringe pump fitted with a 14, 20 or 25G needle. Gel time in water was the same for 14, 20 and 25G needles.
  • FIG. 4 shows the modulus of collagen fibers made in water using a syringe pump fitted with a 14, 20 or 25G needle.
  • syringe pumps fitted with 14 and 20 G needles we were able to produce protein material with a modulus of about 5 GPa.
  • FIG. 5 shows the modulus of collagen fibers made in an organic solvent of 60% acetonitrile (ACN) or in water.
  • the elastic modulus of collagen fibers made in an organic solvent of 60% acetonitrile (ACN) is 10 GPa
  • the elastic modulus of collagen fibers made in water is 8 GPa.
  • the modulus of the protein material made in water was not significantly different from that of the protein material made in acetonitrile (ACN).
  • the present invention provides a method for producing a protein material, which includes discharging a solution containing the protein material into an aqueous medium and drying the discharged protein material.
  • Protein raw materials are proteins that have a fibrous structure, and many protein raw materials constitute the connective tissue, tendons, bones, and skeletal muscles of living organisms. Protein raw materials include, but are not limited to, collagen, keratin, myosin, elastin, resilin, silk protein, amyloid, and the like. Also included is the family of proteinaceous ingredients. For example, collagen includes type I, type II, type III, type V, type XI collagen, and atelocollagen. The proteinaceous material may be derived from any part of any animal. Methods for obtaining and purifying protein raw materials from living organisms are known. A protein source material may be a wild-type protein, a mutant protein, or a modified one.
  • the protein raw material may be one extracted from a living tissue, or one artificially produced by a method such as a chemical peptide synthesis method or a genetic recombination method.
  • a method such as a chemical peptide synthesis method or a genetic recombination method.
  • the type of protein material can be selected, or mutations and modifications can be added by known methods.
  • a solution containing protein raw materials can be prepared by dissolving the protein raw materials in a solvent.
  • the solution containing the proteinaceous material is substantially free of organic solvents or free of organic solvents.
  • the type of solvent for dissolving the protein raw material is not particularly limited, and the type and concentration of the protein raw material, the pH and temperature of the solvent, the temperature of the aqueous medium in which the solution containing the protein raw material is discharged, the shape and strength of the protein raw material. It can be selected as appropriate according to, for example.
  • solvents include water, aqueous solutions containing salts, phosphate-buffered saline, culture media, and mixtures thereof.
  • the concentration of the protein raw material in the solution containing the protein raw material depends on the type of protein raw material, the type of solvent, pH and temperature, the temperature of the aqueous medium in which the solution containing the protein raw material is discharged, and the shape and strength of the protein raw material. It can be selected as appropriate according to, for example.
  • the concentration of the proteinaceous material may be, for example, 0.1 wt% to 5 wt%, 0.5 wt% to 4 wt%, 0.8 wt% to 3 wt%, 1 wt% to 2 wt%, and the like.
  • the pH of the solution containing the protein raw material is appropriately determined depending on the type and concentration of the protein raw material, the type and temperature of the solvent, the temperature of the aqueous medium into which the solution containing the protein raw material is discharged, the shape and strength of the protein raw material, and the like. can be selected.
  • the pH of the solution may be, for example, pH 6.0 to pH 9.0, pH 6.0 to pH 8.0, pH 7.0 to pH 9.0, pH 7.0 to pH 8.0, pH 7.4, and the like.
  • the temperature of the solution containing the protein raw material is appropriately determined according to the type and concentration of the protein raw material, the type and pH of the solvent, the temperature of the aqueous medium into which the solution containing the protein raw material is discharged, the shape and strength of the protein raw material, and the like. can be selected.
  • the temperature of the solution is, for example, 53°C or less, 37°C or less, 0°C to 53°C, 4°C to 53°C, 0°C to 50°C, 4°C to 50°C, 0°C to 40°C, 4°C to 40°C, 0°C to 37°C, 4°C to 37°C, 0°C to 30°C, 4°C to 30°C, 0°C to 20°C, 4°C to 20°C, 0°C to 10°C, 4°C to 10°C, 4°C and so on.
  • the aqueous medium into which the solution containing the protein raw material is discharged does not substantially contain an organic solvent.
  • the concentration of the organic solvent in the aqueous medium from which the solution containing the protein raw material is discharged is less than 1% by volume (vol%), less than 0.5vol%, less than 0.1vol%, less than 0.05vol%, 0 Preferably less than 0.01 vol%, less than 0.005 vol%, or less than 0.001 vol%. More preferably, the aqueous medium into which the solution containing the protein raw material is discharged does not contain an organic solvent. Free of organic solvents means that organic solvents are not detected using means or methods known to those skilled in the art.
  • aqueous medium into which the solution containing the protein raw material is discharged examples include, but are not limited to, ultrapure water, pure water, and distilled water.
  • the aqueous medium into which the solution containing the protein raw material is discharged is water as one embodiment.
  • the aqueous medium into which the solution containing the protein raw material is discharged may contain, for example, inorganic salts, organic salts, proteins, growth factors, organic low-molecular-weight compounds, inorganic substances, and the like. However, these substances are soluble or dispersible in water.
  • the organic solvent is, for example, a polar organic solvent.
  • Organic solvents include, for example, acetonitrile, acetone and methanol.
  • the aqueous medium into which the solution containing the protein raw material is discharged does not substantially contain these organic solvents.
  • the temperature of the aqueous medium for discharging the solution containing the protein raw material can be appropriately selected according to the type and concentration of the protein raw material, the type of solvent, pH and temperature, the shape and strength of the protein raw material, and the like.
  • the temperature of the aqueous medium for discharging the solution containing the protein raw material is 53°C or less, 0°C to 53°C, 0°C to 45°C, 0°C to 37°C, 0°C to 25°C, 4°C to 53°C, 4°C to 45°C, 4°C to 37°C, 4°C to 25°C, 10°C to 53°C, 10°C to 45°C, 10°C to 37°C, 10°C to 25°C, 20°C to 53°C, 20°C up to 45°C, 20°C to 37°C, 20°C to 25°C, 25°C to 53°C, 25°C to 45°C, 25°C to 37°C, 30°C to 53°C
  • the combination of the temperature of the solution containing the protein raw material and the temperature of the aqueous medium to which the solution containing the protein raw material is discharged also depends on the type and concentration of the protein raw material, the type and pH of the solvent, the shape and strength of the protein raw material, and the like. Accordingly, the temperature of the solution containing the protein raw material and the temperature of the aqueous medium into which the solution containing the protein raw material is discharged can be appropriately selected.
  • Combinations of the temperature of the solution containing the protein raw material and the temperature of the aqueous medium to which the solution containing the protein raw material is discharged are 0° C. to 53° C. and 0° C. to 53° C., 0° C. to 4° C. and 25° C. to 53° C. , 4° C. and 4° C.-45° C., and 4° C. and 37° C.-45° C., and the like.
  • the protein material produced by the method of the present invention may be applied for any purpose.
  • the protein material may be applied, for example, in the medical field including regenerative medicine, surgery, etc., or as a container, thread, cloth, clothing, or the like.
  • the protein material produced by the method of the present invention does not contain an organic solvent, it has less adverse effects on organisms or living organisms than protein materials produced using an organic solvent, and does not harm the ecosystem, the natural world, or the environment. less adverse effects.
  • the method for producing a protein material that does not use an organic solvent according to the present invention also has less adverse effects on organisms or living organisms, and has less adverse effects on ecosystems, the natural world, or the environment.
  • the protein material produced by the method of the present invention does not contain an organic solvent, the protein material is more biocompatible than the protein material produced using an organic solvent. Alternatively, it has little adverse effect on living organisms, and has little adverse effect on ecosystems, the natural world, or the environment.
  • the shape of the protein material produced by the method of the present invention can be varied depending on the use of the material.
  • Examples of the shape of the protein material include a one-dimensional fibrous material, a two-dimensional sheet-like material, and a three-dimensional three-dimensional material.
  • fibrous materials include, but are not limited to, thread-like, rod-like, needle-like, and columnar-like materials.
  • Examples of the sheet-like material include plate-like, film-like, and myocardial sheets, but are not limited to these.
  • Examples of the three-dimensional material include blood vessel-like, organ-like, spherical, block-like, and container-like shapes, but are not limited to these. Strength may be enhanced by twisting or weaving the fibers.
  • the elastic modulus of the protein material produced by the method of the present invention can be varied according to the use of the material.
  • the elastic modulus of the protein material includes the type and concentration of the protein material, the type of solvent of the solution containing the protein material, pH and temperature, the temperature of the aqueous medium in which the solution containing the protein material is discharged, and the protein material. It varies depending on the type and concentration of salt contained in the aqueous medium from which the solution is ejected, the ejection speed, and the like.
  • the solution containing the protein raw material can be discharged into the aqueous medium by a known method, for example, using a nozzle or an injection needle. Normally, the protein raw material is discharged as an aqueous solution. Conditions such as the size and shape of the ejection port and the ejection speed are determined by the type and concentration of the protein raw material, the type of solvent of the solution containing the protein raw material, the pH and temperature, and the aqueous medium into which the solution containing the protein raw material is discharged. temperature, and the shape and strength of the protein material desired.
  • the size of the ejection port examples include 7G to 33G, 10G to 30G, 7G to 25G, 10G to 25G, 14G to 30G, 14G to 25G, 14G to 20G, 20G to 25G, 14G, 20G and 25G. , but not limited to these sizes.
  • the inner diameter is 4.0 mm to 80 ⁇ m
  • the inner diameter is 2.8 mm to 130 ⁇ m
  • the inner diameter is 4.0 mm to 260 ⁇ m
  • the inner diameter is 2.8 mm to 260 ⁇ m
  • the inner diameter is 1.6 mm to 130 ⁇ m
  • the inner diameter is 1.
  • the ejection speed is 0.1 mL/min to 100 mL/min, 0.5 mL/min to 50 mL/min, 0.6 mL/min to 30 mL/min, 0.7 mL/min to 10 mL/min, and 0.8 mL/min.
  • the solution containing the protein raw material into the aqueous medium may be discharged in any direction, including horizontal, upward, downward, arbitrary inclination angles, etc., in the aqueous medium into which the solution containing the protein raw material is discharged. .
  • the solution containing the protein raw material may be discharged according to a known wet spinning method.
  • a known liquid printing method and a 3D printer may be used in combination to eject the protein material raw material, and for example, it may be shaped as a sheet-like material according to the shape of a myocardial sheet, or for example, according to the shape of a blood vessel or organ. It may be modeled as a three-dimensional material.
  • the solution containing the protein raw material may be homogenized before discharging the solution containing the protein raw material into the aqueous medium. Homogenization of the solution containing the protein raw material may be performed while cooling, for example, in an ice bath.
  • the protein raw material extruded into the aqueous medium may be stretched before being dried. Stretching can be performed by a known method. Stretching is preferably carried out in water or during drying.
  • the protein raw material may be crosslinked.
  • Cross-linking methods are known, and examples thereof include cross-linking using cross-linking agents such as formaldehyde, glutaraldehyde and carbodiimide, and cross-linking using transglutaminase, but are not limited to these cross-linking methods.
  • cross-linking the protein material it is possible not only to increase the strength of the protein material, but also to prevent re-dissolution of the protein material in an aqueous solution.
  • the discharged protein raw material obtained by discharging a solution containing the protein raw material into an aqueous medium is dried. Drying can be performed by a known method. Air drying, air drying, reduced pressure drying, freeze drying and the like can be used, but the drying method is not limited to these.
  • the drying temperature is 10°C to 70°C, 10°C to 60°C, 10°C to 50°C, 10°C to 40°C, 10°C to 30°C, 10°C to 20°C, 20°C to 70°C, 20°C to 60°C, 20°C to 50°C, 20°C to 40°C, 20°C to 30°C, 30°C to 70°C, 30°C to 60°C, 30°C to 50°C, 30°C to 40°C, 40°C to 70°C , 40° C.-60° C., 40° C.-50° C., 40° C., 37° C., 35° C., 30° C., 25° C., 20° C., room temperature, and the like.
  • Drying time 10 minutes to 7 days, 10 minutes to 3 days, 10 minutes to 24 hours, 20 minutes to 7 days, 20 minutes to 3 days, 20 minutes to 24 hours, 1 hour to 7 days, 1 hour 3 days, 1-24 hours, 3-24 hours, 6-24 hours, 9-24 hours, 12-24 hours, 18-24 hours, 1-18 hours, 3-18 hours , 6-18 hours, 9-18 hours, 12-18 hours, 1-12 hours, 3-12 hours, 6-12 hours, 9-12 hours, 1-9 hours, 3 hours to 9 hours, 6 hours to 9 hours, 1 hour to 6 hours, 3 hours to 6 hours, overnight, 4 hours, 8 hours, 12 hours, 24 hours, and the like.
  • a protein material having a high elastic modulus can also be obtained by the method of the present invention.
  • the elastic modulus of the protein material obtained in the method of the invention can be from 1 GPa to 3 GPa or higher.
  • a fiber having a higher elastic modulus can be obtained by sufficiently drying the protein material using vacuum drying or the like.
  • the elastic modulus of the protein material may be 4.5 GPa to 8 GPa, 5 GPa to 8 GPa or more when drying is performed under reduced pressure.
  • Elastic modulus can be measured and calculated using a tensile strength tester. Various tensile strength testers have been devised and are commercially available and can be used as appropriate.
  • porcine skin-derived type I collagen (provided by Nippon Ham Co., Ltd.) was placed in a 50 mL centrifuge tube (CORNING, 430829, New York, USA) and added to 30 mL of 1 ⁇ phosphate buffered saline (PBS).
  • PBS 1 ⁇ phosphate buffered saline
  • SIGMA-ALDRICH D5652-10L, St. Louis, USA
  • fibrillated for 6 minutes in an ice bath using a homogenizer with a diameter of 8 mm AS ONE Bioscience, VH-10, Osaka, Japan
  • 1 wt. % collagen aqueous solution was obtained.
  • FIG. Fibers could be made in water at 4°C, 25°C, 37°C and 45°C.
  • Figure 2 shows the elastic moduli of collagen fibers made at 37°C and 45°C.
  • the elastic modulus of collagen fibers produced in water at 37° C. was 5 GPa
  • the elastic modulus of collagen fibers produced in water at 45° C. was 4.5 GPa, with no significant difference between them.
  • fibers were made in water at 37°C.
  • the tensile elastic modulus of the produced fibers was measured using an elastic modulus measuring instrument under the conditions of an area of each fiber, a distance between grips of 40 mm, a tensile speed of 1 mm/min, and a temperature of 25°C. A photograph after 1 hour of spinning is shown in FIG. The gelling time in water was the same at 14, 20 and 25G.
  • FIG. 4 shows the elastic modulus of the collagen fibers produced with each needle inner diameter. At 14G and 20G, there was no significant difference from the elastic modulus of 5 GPa, but at 25G the elastic modulus was significantly reduced to 1.5 GPa.
  • Fiber preparation was performed in the same manner as in Example 1 or 2 using a 2 wt % aqueous collagen solution at 4° C., ultrapure water or 60% acetonitrile (ACN) at 37° C., and a 20 G needle.
  • the tensile elastic modulus of the produced fibers was measured using an elastic modulus measuring instrument under the conditions of an area of each fiber, a distance between grips of 40 mm, a tensile speed of 1 mm/min, and a temperature of 25°C.
  • the elastic modulus of collagen fibers produced using ultrapure water at 37° C. was 8 GPa, and there was no significant difference from the elastic modulus of 10 GPa of collagen fibers produced using 60% acetonitrile (ACN) as an organic solvent. (Fig. 5).
  • this method can be two-dimensionally or three-dimensionally printed, it can also be used to construct two-dimensional or three-dimensional protein materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Peptides Or Proteins (AREA)

Abstract

[課題]有機溶媒を使用しない製造方法により得られたタンパク質素材を提供する。 [解決手段]タンパク質素材原料を含む溶液を水性媒体中に吐出すること、および吐出されたタンパク質素材原料を乾燥させることを含む、有機溶媒を使用しないタンパク質素材の製造方法、およびそれにより得られるタンパク質素材。

Description

有機溶媒を使用しないタンパク質素材の製造方法
 本発明は、有機溶媒を使用しないタンパク質素材の製造方法およびそれにより得られるタンパク質素材に関する。
 タンパク質素材は、一次元の繊維状素材、二次元のシート状素材、および三次元の立体状素材として使用されている。タンパク質素材は、一般的に、タンパク質溶液を有機溶媒中に吐出する等、有機溶媒を使用する製造方法により得られている(特許文献1)。有機溶媒を使用して製造されたタンパク質素材は、通常、有機溶媒を含む。
特開2005-314865号公報
 しかし、有機溶媒は、生物または生体に悪影響を与えることが知られている。そこで、有機溶媒を使用しないタンパク質素材の製造方法、およびそれにより得られる有機溶媒を含まないタンパク質素材が必要とされている。
 本発明者らは、上記課題を解決するために鋭意研究を重ね、驚くべきことに、タンパク質素材原料を含む溶液を水性媒体中に吐出すること、および吐出されたタンパク質素材原料を乾燥させることにより、タンパク質素材が得られることを見出し、本発明を完成させるに至った。すなわち、本発明は以下のものを提供する。
 (1)タンパク質素材原料を含む溶液を水性媒体中に吐出すること、および
吐出されたタンパク質素材原料を乾燥させること
を含む、タンパク質素材の製造方法。
 (2)水性媒体が有機溶媒を含まないものである、(1)記載の方法。
 (3)水性媒体の温度が4℃~53℃である、(1)~(2)のいずれか記載の方法。
 (4)タンパク質素材原料を含む溶液の温度が37℃以下である、(1)~(3)のいずれか記載の方法。
 (5)タンパク質素材原料の濃度が0.1wt%~5wt%である、(1)~(4)のいずれか記載の方法。
 (6)得られるタンパク質素材が繊維状素材、シート状素材、および立体状素材からなる群より選択されるものである、(1)~(5)のいずれか記載の方法。
 (7)タンパク質素材原料がI型コラーゲン、II型コラーゲン、III型コラーゲン、V型コラーゲン、XI型コラーゲン、ケラチン、ミオシン、エラスチンからなる群より選択されるものである、(1)~(6)のいずれか記載の方法。
 (8)タンパク質素材原料がI型コラーゲンである、(7)記載の方法。
 (9)乾燥を減圧乾燥によって行う、(1)~(8)のいずれか記載の方法。
 (10)得られるタンパク質素材の弾性率が1GPa以上である、(1)~(9)のいずれか記載の方法。
 (11)得られるタンパク質素材の弾性率が8GPa以上である、(1)~(10)のいずれか記載の方法。
 (12)得られるタンパク質素材が医療用である、(1)~(11)のいずれか記載の方法。
 本発明によれば、有機溶媒を含まないタンパク質素材を得ることができる。有機溶媒を含まないタンパク質素材は、生物または生体への悪影響が少なく、生態系、自然界または環境への悪影響が少ない。本発明による有機溶媒を使用しないタンパク質素材の製造方法もまた、生物または生体への悪影響が少なく、生態系、自然界または環境への悪影響が少ない。
図1は、4、25、37または45℃の水中に1wt%コラーゲン水溶液を吐出した1時間後の写真を示す。4℃、25℃、37℃および45℃の水中で、タンパク質素材を作製することができた。 図2は、37℃または45℃の水中で作製したコラーゲン繊維の弾性率を示す。37℃および45℃の水中で、高い弾性率を有するタンパク質素材を作製することができた。 図3は、14、20または25G針を取り付けたシリンジポンプを用いて、水中に1wt%コラーゲン水溶液を吐出した1時間後の写真を示す。水中でのゲル化時間は、14、20および25G針で同じであった。14、20および25G針を取り付けたシリンジポンプを用いて、水中でタンパク質素材を作製することができた。 図4は、14、20または25G針を取り付けたシリンジポンプを用いて、水中で作製したコラーゲン繊維の弾性率を示す。14および20G針を取り付けたシリンジポンプを用いて、約5GPaの弾性率を有するタンパク質素材を作製することができた。 図5は、60%アセトニトリル(ACN)の有機溶媒中または水中で作製したコラーゲン繊維の弾性率を示す。60%アセトニトリル(ACN)の有機溶媒中で作製したコラーゲン繊維の弾性率は10GPaであり、水中で作製したコラーゲン繊維の弾性率は8GPaである。水中で作製したタンパク質素材の弾性率は、アセトニトリル(ACN)中で作製したタンパク質素材の弾性率と有意差はなかった。
 本発明は、タンパク質素材原料を含む溶液を水性媒体中に吐出すること、および吐出されたタンパク質素材原料を乾燥させることを含む、タンパク質素材の製造方法を提供する。
 タンパク質素材原料は、繊維状の構造をとるタンパク質で、多くのタンパク質素材原料は生体の結合組織、腱、骨、骨格筋を構成している。タンパク質素材原料としては、コラーゲン、ケラチン、ミオシン、エラスチン、レジリン、シルクタンパク質、アミロイドなどが例示されるが、これらに限定されない。タンパク質素材原料のファミリーも含まれる。例えば、コラーゲンという場合、I型、II型、III型、V型、XI型コラーゲン、アテロコラーゲンなどが含まれる。タンパク質素材原料はいかなる動物のいかなる部位に由来するものであってもよい。生体からのタンパク質素材原料の取得、精製方法は公知である。タンパク質素材原料は野生型タンパク質であってもよく、変異型タンパク質であってもよく、修飾されたものであってもよい。タンパク質素材原料は、生体組織から抽出されたものであってもよく、ペプチドの化学合成法や遺伝子組換え法などの方法により人工的に製造されたものであってもよい。望まれるタンパク質素材の強度、形状などの物理的性質、および化学的、生物学的性質に応じて、タンパク質素材原料の種類を選択し、あるいは公知の方法にて変異や修飾を加えることができる。
 タンパク質素材原料を含む溶液は、タンパク質素材原料を溶媒に溶解することにより調製することができる。タンパク質素材原料を含む溶液は、実質的に有機溶媒を含まないか、あるいは有機溶媒を含まない。タンパク質素材原料を溶解する溶媒の種類は特に限定されず、タンパク質素材原料の種類および濃度、溶媒のpHおよび温度、タンパク質素材原料を含む溶液を吐出される水性媒体の温度、タンパク質素材の形状や強度などに応じて適宜選択することができる。溶媒の例としては、水、塩類を含む水溶液、リン酸緩衝食塩水、培養液、およびこれらの混合物などが挙げられる。
 タンパク質素材原料を含む溶液中のタンパク質素材原料の濃度は、タンパク質素材原料の種類、溶媒の種類、pHおよび温度、タンパク質素材原料を含む溶液を吐出される水性媒体の温度、タンパク質素材の形状や強度などに応じて適宜選択することができる。タンパク質素材原料の濃度は、例えば0.1wt%~5wt%、0.5wt%~4wt%、0.8wt%~3wt%、1wt%~2wt%などであってよい。
 タンパク質素材原料を含む溶液のpHは、タンパク質素材原料の種類および濃度、溶媒の種類および温度、タンパク質素材原料を含む溶液を吐出される水性媒体の温度、タンパク質素材の形状や強度などに応じて適宜選択することができる。溶液のpHは、例えばpH6.0~pH9.0、pH6.0~pH8.0、pH7.0~pH9.0、pH7.0~pH8.0、pH7.4などであってよい。
 タンパク質素材原料を含む溶液の温度は、タンパク質素材原料の種類および濃度、溶媒の種類およびpH、タンパク質素材原料を含む溶液を吐出される水性媒体の温度、タンパク質素材の形状や強度などに応じて適宜選択することができる。溶液の温度は、例えば53℃以下、37℃以下、0℃~53℃、4℃~53℃、0℃~50℃、4℃~50℃、0℃~40℃、4℃~40℃、0℃~37℃、4℃~37℃、0℃~30℃、4℃~30℃、0℃~20℃、4℃~20℃、0℃~10℃、4℃~10℃、4℃などであってよい。
タンパク質素材原料を含む溶液を吐出される水性媒体は、有機溶媒を実質的に含まない。例えば、タンパク質素材原料を含む溶液を吐出される水性媒体中の有機溶媒の濃度は、1体積%(vol%)未満、0.5vol%未満、0.1vol%未満、0.05vol%未満、0.01vol%未満、0.005vol%未満、または0.001vol%未満であることが好ましい。より好ましくは、タンパク質素材原料を含む溶液を吐出される水性媒体は有機溶媒を含まない。有機溶媒を含まないとは、当業者に公知の手段または方法を用いて有機溶媒が検出されないことをいう。タンパク質素材原料を含む溶液を吐出される水性媒体としては、超純水、純水、および蒸留水などが例示されるが、これらに限定されない。タンパク質素材原料を含む溶液を吐出される水性媒体は、一実施形態としては水である。タンパク質素材原料を含む溶液を吐出される水性媒体は、例えば無機塩類、有機塩類、タンパク質、増殖因子、有機低分子化合物、無機物などを含んでいてもよい。ただし、これらの物質は、水に溶解しうる、または分散しうるものである。
 本願において、有機溶媒は、例えば極性有機溶媒である。有機溶媒は、例えばアセトニトリル、アセトンおよびメタノールなどが挙げられる。タンパク質素材原料を含む溶液を吐出される水性媒体は、これらの有機溶媒を実質的に含まない。
 タンパク質素材原料を含む溶液を吐出される水性媒体の温度は、タンパク質素材原料の種類および濃度、溶媒の種類、pHおよび温度、タンパク質素材の形状や強度などに応じて適宜選択することができる。タンパク質素材原料を含む溶液を吐出される水性媒体の温度は、53℃以下、0℃~53℃、0℃~45℃、0℃~37℃、0℃~25℃、4℃~53℃、4℃~45℃、4℃~37℃、4℃~25℃、10℃~53℃、10℃~45℃、10℃~37℃、10℃~25℃、20℃~53℃、20℃~45℃、20℃~37℃、20℃~25℃、25℃~53℃、25℃~45℃、25℃~37℃、30℃~53℃、30℃~45℃、30℃~37℃、37℃~53℃、37℃~45℃、4℃、25℃、37℃、および45℃などであってよい。
 タンパク質素材原料を含む溶液の温度およびタンパク質素材原料を含む溶液を吐出される水性媒体の温度の組合せもまた、タンパク質素材原料の種類および濃度、溶媒の種類およびpH、タンパク質素材の形状や強度などに応じて、上記タンパク質素材原料を含む溶液の温度および上記タンパク質素材原料を含む溶液を吐出される水性媒体の温度からそれぞれ適宜選択することができる。タンパク質素材原料を含む溶液の温度およびタンパク質素材原料を含む溶液を吐出される水性媒体の温度の組合せは、0℃~53℃および0℃~53℃、0℃~4℃および25℃~53℃、4℃および4℃~45℃、ならびに4℃および37℃~45℃などであってよい。
 本発明の方法により製造されるタンパク質素材は、あらゆる用途に適用されてよい。タンパク質素材は、例えば、再生医療や手術等を含む医療分野において、または、容器、糸、布や衣類等として、適用されてよい。
 本発明の方法により製造されるタンパク質素材は、有機溶媒を含まないため、有機溶媒を使用して製造されるタンパク質素材よりも、生物または生体への悪影響が少なく、生態系、自然界または環境への悪影響が少ない。本発明による有機溶媒を使用しないタンパク質素材の製造方法もまた、生物または生体への悪影響が少なく、生態系、自然界または環境への悪影響が少ない。さらに、本発明の方法により製造されるタンパク質素材は、有機溶媒を含まないため、有機溶媒を使用して製造されるタンパク質素材よりも、タンパク質素材の使用後の処分や廃棄時または後も、生物または生体への悪影響が少なく、生態系、自然界または環境への悪影響が少ない。
 本発明の方法により製造されるタンパク質素材の形状は、素材の用途等に応じて様々なものとすることができる。タンパク質素材の形状としては、一次元の繊維状素材、二次元のシート状素材、および三次元の立体状素材が例示される。繊維状素材としては、糸状、棒状、針状、柱状などが例示されるが、これらに限定されない。シート状素材としては、板状、フィルム状、心筋シートなどが例示されるが、これらに限定されない。立体状素材としては、血管状、臓器状、球状、ブロック状、容器状などが例示されるが、これらに限定されない。繊維をより合わせる、あるいは織るなどして強度を増強してもよい。
 本発明の方法により製造されるタンパク質素材の弾性率は、素材の用途等に応じて様々なものとすることができる。タンパク質素材の弾性率は、タンパク質素材原料の種類および濃度、タンパク質素材原料を含む溶液の溶媒の種類、pHおよび温度、タンパク質素材原料を含む溶液を吐出される水性媒体の温度、タンパク質素材原料を含む溶液を吐出される水性媒体に含まれる塩の種類や濃度、吐出速度などに応じて変化する。
 水性媒体中へのタンパク質素材原料を含む溶液の吐出は公知の方法で行うことができ、例えばノズルや注射針などを用いて行われ得る。通常は、タンパク質素材原料を水溶液として吐出する。吐出口のサイズや形状、および吐出速度などの条件は、タンパク質素材原料の種類および濃度、タンパク質素材原料を含む溶液の溶媒の種類、pHおよび温度、タンパク質素材原料を含む溶液を吐出される水性媒体の温度、望まれるタンパク質素材の形状や強度に応じて変更することができる。吐出口のサイズとしては、7G~33G、10G~30G、7G~25G、10G~25G、14G~30G、14G~25G、14G~20G、20G~25G、14G、20Gおよび25Gなどが例示されるが、これらのサイズに限定されない。あるいは、吐出口のサイズとしては、内径4.0mm~80μm、内径2.8mm~内径130μm、内径4.0mm~内径260μm、内径2.8mm~内径260μm、内径1.6mm~内径130μm、内径1.6mm~内径260μm、内径1.6mm~内径600μm、内径600μm~内径260μm、内径1.6mm、内径600μmおよび内径260μmなどが例示されるが、これらのサイズに限定されない。吐出速度としては、0.1mL/min~100mL/min、0.5mL/min~50mL/min、0.6mL/min~30mL/min、0.7mL/min~10mL/min、0.8mL/min~8mL/min、0.9mL/min~5mL/min、および1mL/min、または0.1mm/min~100mm/min、0.5mm/min~50mm/min、0.6mm/min~30mm/min、0.7mm/min~10mm/min、0.8mm/min~8mm/min、0.9mm/min~5mm/min、および1mm/minなどが例示されるが、これらの速度に限定されない。吐出口は1つであってもよく、または、例えば大容量を吐出するために、複数であってもよい。水性媒体中へのタンパク質素材原料を含む溶液の吐出は、タンパク質素材原料を含む溶液を吐出される水性媒体中で、水平、上向き、下向き、任意の傾斜角度などを含む任意の方向であってよい。
 タンパク質素材原料を含む溶液の吐出を、公知の湿式紡糸法に準じて行ってもよい。公知の液中プリント法と3Dプリンタを組み合わせて用いてタンパク質素材原料を吐出して、例えば心筋シートの形態に合わせてシート状素材として造形してもよく、または例えば血管や臓器の形態に合わせて立体状素材として造形してもよい。
 タンパク質素材原料を含む溶液を水性媒体中に吐出する前に、タンパク質素材原料を含む溶液をホモジナイズしてもよい。タンパク質素材原料を含む溶液のホモジナイズは、例えば氷浴中で、冷却しながら行ってもよい。
 水性媒体中に吐出されたタンパク質素材原料を乾燥させる前に延伸してもよい。延伸は公知の方法にて行うことができる。延伸は、水中で、あるいは乾燥中に行うことが好ましい。
 タンパク質素材原料を架橋してもよい。架橋方法は公知であり、例えばホルムアルデヒド、グルタルアルデヒド、カルボジイミドなどの架橋剤を用いる架橋、トランスグルタミナーゼを用いる架橋などが挙げられるが、これらの架橋法に限定されない。タンパク質素材原料を架橋することにより、タンパク質素材の強度を増加させることができるだけでなく、タンパク質素材原料の水溶液中での再溶解を防止することもできる。
 本発明の方法において、タンパク質素材原料を含む溶液を水性媒体中に吐出することにより得られた吐出されたタンパク質素材原料を乾燥させる。乾燥は公知の方法にて行うことができる。風乾、通気乾燥、減圧乾燥、凍結乾燥などを用いることができるが、乾燥方法はこれらに限定されない。乾燥の温度は、10℃~70℃、10℃~60℃、10℃~50℃、10℃~40℃、10℃~30℃、10℃~20℃、20℃~70℃、20℃~60℃、20℃~50℃、20℃~40℃、20℃~30℃、30℃~70℃、30℃~60℃、30℃~50℃、30℃~40℃、40℃~70℃、40℃~60℃、40℃~50℃、40℃、37℃、35℃、30℃、25℃、20℃、室温などであってよい。乾燥の時間は、10分~7日、10分~3日、10分~24時間、20分~7日、20分~3日、20分~24時間、1時間~7日、1時間~3日、1時間~24時間、3時間~24時間、6時間~24時間、9時間~24時間、12時間~24時間、18時間~24時間、1時間~18時間、3時間~18時間、6時間~18時間、9時間~18時間、12時間~18時間、1時間~12時間、3時間~12時間、6時間~12時間、9時間~12時間、1時間~9時間、3時間~9時間、6時間~9時間、1時間~6時間、3時間~6時間、一晩、4時間、8時間、12時間、24時間などであってよい。
 本発明の方法により、高弾性率を有するタンパク質素材を得ることもできる。本発明の方法において得られるタンパク質素材の弾性率は1GPa~3GPaまたはそれ以上であり得る。本発明の方法において、減圧乾燥等を用いてタンパク質素材を十分に乾燥させることにより、より弾性率の高い繊維を得ることができる。本発明の方法において、乾燥を減圧乾燥にて行った場合のタンパク質素材の弾性率は4.5GPa~8GPa、5GPa~8GPaまたはそれ以上であり得る。弾性率は引張強度試験装置を用いて測定および算出することができる。様々な引張強度試験装置が考案され、市販されており、適宜使用することができる。
 300mgのブタ皮膚由来I型コラーゲン(日本ハム(株)より提供)を、50mL遠沈管(CORNING, 430829, New York, USA)に入った30mLの1倍濃度のリン酸緩衝生理食塩水(PBS)(SIGMA-ALDRICH, D5652-10L, St. Louis, USA)中に入れ、直径8mmのホモジナイザー(アズワン バイオサイエンス, VH-10, Osaka、Japan)を用いて氷浴中で6分間解繊し、1wt%コラーゲン水溶液を得た。4℃の1wt%コラーゲン水溶液を10mL、中口テルモシリンジに入れ、トップ三方活栓と20G針を取り付けてシリンジポンプに設置した。No.7サンプル管瓶に入れた4、25、37、45℃の50mLの超純水中に紡出速度1mL/min、溶液量0.5mLごと紡出して切り、1時間各温度でインキュベートした。その後、空気中に取り出し、20分間風乾することで繊維を作製した。その後、一晩減圧乾燥することで感熱応答コラーゲン繊維を得た。作製した繊維を、位相差顕微鏡を用いてスライドガラスに載せて観察し、弾性率測定器により、各繊維の面積、つかみ具間距離40mm、引張速度1mm/min、温度25℃を条件として引張弾性率を測定した。
 紡出1時間後の写真を図1に示す。4℃、25℃、37℃および45℃の水中で、繊維を作製することができた。
 37℃および45℃で作製したコラーゲン繊維の弾性率を図2に示す。37℃の水中で作製したコラーゲン繊維の弾性率は、5GPaであり、45℃の水中で作製したコラーゲン繊維の弾性率は4.5GPaとどちらも有意差はなかった。
 以下の実施例では、37℃の水中で繊維を作製した。
 4℃の1wt%コラーゲン水溶液を10mL、中口テルモシリンジに入れ、トップ三方活栓と14、20、25G針を取り付けてシリンジポンプに設置した。サンプル管瓶に入れた37℃の50mLの超純水中に紡出速度1mL/min、溶液量0.5mLごとに紡出して切り、1時間37℃でインキュベートした。その後、空気中に取り出し、20分間風乾することで繊維を作製した。その後、一晩減圧乾燥することで感熱応答コラーゲン繊維を得た。作製した繊維を、弾性率測定器により、各繊維の面積、つかみ具間距離40mm、引張速度1mm/min、温度25℃を条件として引張弾性率を測定した。
 紡出1時間後の写真を図3に示す。水中でのゲル化時間は、14、20および25Gで同じであった。
 各針の内径で作製したコラーゲン繊維の弾性率を図4に示す。14Gおよび20Gでは、弾性率5GPaと有意差はなかったが、25Gでは弾性率1.5GPaと著しく低下していた。
 4℃の2wt%コラーゲン水溶液、37℃の超純水または60%アセトニトリル(ACN)、および20G針を用いて、実施例1または2と同様に繊維作製を行った。作製した繊維を、弾性率測定器により、各繊維の面積、つかみ具間距離40mm、引張速度1mm/min、温度25℃を条件として引張弾性率を測定した。
 37℃の超純水を用いて作製されたコラーゲン繊維の弾性率は8GPaであり、60%アセトニトリル(ACN)の有機溶媒を用いて作製されたコラーゲン繊維の弾性率の10GPaと有意差はなかった(図5)。
 本手法は、2次元または3次元プリント可能であるため、二次元または三次元のタンパク質素材を構築するために使用することもできる。

Claims (12)

  1.  タンパク質素材原料を含む溶液を水性媒体中に吐出すること、および
    吐出されたタンパク質素材原料を乾燥させること
    を含む、タンパク質素材の製造方法。
  2.  水性媒体が有機溶媒を含まないものである、請求項1記載の方法。
  3.  水性媒体の温度が4℃~53℃である、請求項1~2のいずれか1項記載の方法。
  4.  タンパク質素材原料を含む溶液の温度が37℃以下である、請求項1~3のいずれか1項記載の方法。
  5.  タンパク質素材原料の濃度が0.1wt%~5wt%である、請求項1~4のいずれか1項記載の方法。
  6.  得られるタンパク質素材が繊維状素材、シート状素材、および立体状素材からなる群より選択されるものである、請求項1~5のいずれか1項記載の方法。
  7.  タンパク質素材原料がI型コラーゲン、II型コラーゲン、III型コラーゲン、V型コラーゲン、XI型コラーゲン、ケラチン、ミオシン、エラスチンからなる群より選択されるものである、請求項1~6のいずれか1項記載の方法。
  8.  タンパク質素材原料がI型コラーゲンである、請求項7記載の方法。
  9.  乾燥を減圧乾燥によって行う、請求項1~8のいずれか1項記載の方法。
  10.  得られるタンパク質素材の弾性率が1GPa以上である、請求項1~9のいずれか1項記載の方法。
  11.  得られるタンパク質素材の弾性率が8GPa以上である、請求項1~10のいずれか1項記載の方法。
  12.  得られるタンパク質素材が医療用である、請求項1~11のいずれか1項記載の方法。
PCT/JP2022/031603 2021-08-26 2022-08-22 有機溶媒を使用しないタンパク質素材の製造方法 WO2023027036A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023543910A JPWO2023027036A1 (ja) 2021-08-26 2022-08-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021137700 2021-08-26
JP2021-137700 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023027036A1 true WO2023027036A1 (ja) 2023-03-02

Family

ID=85323218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031603 WO2023027036A1 (ja) 2021-08-26 2022-08-22 有機溶媒を使用しないタンパク質素材の製造方法

Country Status (2)

Country Link
JP (1) JPWO2023027036A1 (ja)
WO (1) WO2023027036A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327110A (ja) * 1989-06-17 1991-02-05 Kanegafuchi Chem Ind Co Ltd 再生コラーゲン繊維の製造法
JPH0835193A (ja) * 1994-07-19 1996-02-06 Mitsubishi Rayon Co Ltd コラーゲン繊維不織シートの製造方法
JP2005314865A (ja) 2005-06-02 2005-11-10 Nipro Corp コラーゲン単糸の製造方法
JP2013528568A (ja) * 2010-03-11 2013-07-11 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ 高分子量の組み換えシルク蛋白質、またはシルク様蛋白質、及びこれを利用して製造されたマイクロ、またはナノサイズのクモの巣線維、またはクモの巣様繊維
JP2017121843A (ja) * 2016-01-06 2017-07-13 住友ゴム工業株式会社 空気入りタイヤ
WO2019208831A1 (ja) * 2018-04-27 2019-10-31 凸版印刷株式会社 細胞外マトリックス含有組成物、三次元組織体形成用仮足場材及び三次元組織体形成剤並びに三次元組織体から細胞を回収する方法
WO2020162627A1 (ja) * 2019-02-07 2020-08-13 Spiber株式会社 人造構造タンパク質繊維の製造方法
WO2021177407A1 (ja) * 2020-03-05 2021-09-10 国立大学法人大阪大学 三次元組織体のヤング率を制御する方法、三次元組織体の製造方法、及び三次元組織体
JP2021179019A (ja) * 2020-05-11 2021-11-18 国立大学法人大阪大学 超高弾性率タンパク質繊維の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327110A (ja) * 1989-06-17 1991-02-05 Kanegafuchi Chem Ind Co Ltd 再生コラーゲン繊維の製造法
JPH0835193A (ja) * 1994-07-19 1996-02-06 Mitsubishi Rayon Co Ltd コラーゲン繊維不織シートの製造方法
JP2005314865A (ja) 2005-06-02 2005-11-10 Nipro Corp コラーゲン単糸の製造方法
JP2013528568A (ja) * 2010-03-11 2013-07-11 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ 高分子量の組み換えシルク蛋白質、またはシルク様蛋白質、及びこれを利用して製造されたマイクロ、またはナノサイズのクモの巣線維、またはクモの巣様繊維
JP2017121843A (ja) * 2016-01-06 2017-07-13 住友ゴム工業株式会社 空気入りタイヤ
WO2019208831A1 (ja) * 2018-04-27 2019-10-31 凸版印刷株式会社 細胞外マトリックス含有組成物、三次元組織体形成用仮足場材及び三次元組織体形成剤並びに三次元組織体から細胞を回収する方法
WO2020162627A1 (ja) * 2019-02-07 2020-08-13 Spiber株式会社 人造構造タンパク質繊維の製造方法
WO2021177407A1 (ja) * 2020-03-05 2021-09-10 国立大学法人大阪大学 三次元組織体のヤング率を制御する方法、三次元組織体の製造方法、及び三次元組織体
JP2021179019A (ja) * 2020-05-11 2021-11-18 国立大学法人大阪大学 超高弾性率タンパク質繊維の製造方法

Also Published As

Publication number Publication date
JPWO2023027036A1 (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
Zhao et al. Preparation of nanofibers with renewable polymers and their application in wound dressing
PT2211876E (pt) Método de gelificação de fibroína de seda utilizando sonicação
US10119202B2 (en) Method for preparing electro-mechanically stretched hydrogel micro fibers
EP3112396A1 (en) Preparation method and use of sericin hydrogel
CN110078947A (zh) 一种复合凝胶微球的制备方法、复合凝胶微球及其应用
JP6316795B2 (ja) 新規なコラーゲン材料およびそれを得る方法
CN105985529B (zh) 一种丝胶蛋白-海藻酸盐复合水凝胶及其制备方法
Cheng et al. Self-assembling functionalized nanopeptides for immediate hemostasis and accelerative liver tissue regeneration
JP2017012762A (ja) 高強度キチン複合材料および製造方法
Mobini et al. Bioactivity and biocompatibility studies on silk-based scaffold for bone tissue engineering
JP6399653B2 (ja) コラーゲンファイバーの製造方法
JP2023078119A (ja) マイクロフルイディック押出
CN103981561A (zh) 一种电聚丝素水凝胶膜的制备方法、装置及其应用
CN108310463A (zh) 一种3d打印生物墨水及其制备方法
WO2023027036A1 (ja) 有機溶媒を使用しないタンパク質素材の製造方法
CN103993425A (zh) 一种聚己内酯-角蛋白复合纳米纤维膜的制备方法
JP2021179019A (ja) 超高弾性率タンパク質繊維の製造方法
CN108452378A (zh) 一种3d生物打印成型方法
Hoseini et al. Manufacturing and properties of poly vinyl alcohol/fibrin nanocomposite used for wound dressing
CN115068687B (zh) 梯度纳/微纤维支架及其制备方法与应用
JP6892387B2 (ja) 特に高濃度コラーゲンマトリックスの形成のための、注入可能なコラーゲン懸濁液、その調製方法、及びその使用
Bagrov et al. Mechanical properties of films and three-dimensional scaffolds made of fibroin and gelatin
WO2019054970A2 (en) PROCESS FOR THE PRODUCTION OF PLGA FIBERS AS TISSUE SCAFFOLDING AND THE PLGA FIBERS PRODUCED ACCORDING TO THIS METHOD
Wang et al. Preparation and evaluation of poly (ester-urethane) urea/gelatin nanofibers based on different crosslinking strategies for potential applications in vascular tissue engineering
JP2014166217A (ja) コラーゲン線維無機高分子複合体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543910

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022861324

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022861324

Country of ref document: EP

Effective date: 20240326