JP2020122237A - タンパク質繊維の製造方法 - Google Patents

タンパク質繊維の製造方法 Download PDF

Info

Publication number
JP2020122237A
JP2020122237A JP2019014565A JP2019014565A JP2020122237A JP 2020122237 A JP2020122237 A JP 2020122237A JP 2019014565 A JP2019014565 A JP 2019014565A JP 2019014565 A JP2019014565 A JP 2019014565A JP 2020122237 A JP2020122237 A JP 2020122237A
Authority
JP
Japan
Prior art keywords
amino acid
seq
sequence
acid sequence
modified fibroin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019014565A
Other languages
English (en)
Inventor
努 小野
Tsutomu Ono
努 小野
貴一 渡邉
Takaichi Watanabe
貴一 渡邉
健大 佐藤
Kenta Sato
健大 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spiber Inc
Original Assignee
Spiber Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber Inc filed Critical Spiber Inc
Priority to JP2019014565A priority Critical patent/JP2020122237A/ja
Publication of JP2020122237A publication Critical patent/JP2020122237A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

【課題】簡便な方法によって、細径のタンパク質繊維を製造する方法を提供する。【解決手段】内管30に紡糸原液を流す工程と、前記内管を取り囲む外管20に凝固液を流す工程と、前記内管の吐出口250から吐出された前記紡糸原液と、前記凝固液とを、流しながら接触させて、前記紡糸原液からタンパク質繊維を形成させる工程とを含み、前記紡糸原液がタンパク質を含む、タンパク質繊維の製造方法。【選択図】図1A

Description

本発明は、タンパク質繊維の製造方法に関する。
各種産業分野において、タンパク質繊維は、近年の環境保全意識の高まりから、化学繊維の代替繊維として、また、将来的に利用価値の高い素材として期待されている。細径のタンパク質繊維の製造方法も多数報告されている。
細径のタンパク質繊維の製造方法としては、例えば、精錬後の蚕絹フィブロインを透析して濃縮した蚕絹フィブロイン水溶液に、2−モルホリノエタンスルホン酸−トリスヒドロキシメチルアミノメタン緩衝液と塩化カルシウム水溶液を添加して作製した紡糸原液(ドープ液)を、シリンジに接続した毛細管から気中に吐出させて、繊維を形成させた後、さらにアルコール水溶液中で繊維を延伸及び含浸処理することで、直径5.7μmの繊維を得る方法(非特許文献1)が報告されている。
また、例えば、上述のドープ液を、マイクロ流体装置を用いて繊維形成させ、さらにアルコール水溶液中で繊維を延伸及び含浸処理することで、直径2μmの繊維を得る方法(非特許文献2)が報告されている。
また、例えば、クモ糸フィブロインのドープ液を、電圧をかけた口金からエレクトロスピニングにより吐出させることで、平均直径が1μm以下の繊維を得る方法(特許文献1)が報告されている。
また、例えば、家蚕又は野蚕由来の絹タンパク質水溶液から調製した絹タンパク質ドープ液を用いて、エレクトロスピニングにより、平均太さが1μm以下の絹タンパク質ナノファイバーを製造する方法(特許文献2)が報告されている。
特開2013−96037号公報 特開2010−150712号公報
Wei wei et al.,Journal of Material Resarch,26巻,9号,2011年5月14日,p.1100−1106 J.Luo et al.,International Journal of Biological Macromolecules,66巻,2014年,p.319−324
しかしながら、上記先行技術文献に開示される製造方法は、十分に細径のタンパク質繊維を得るために、多くの工程を必要としたりする。
したがって、本発明は、簡便な方法によって、細径のタンパク質繊維を提供することを目的とする。
本発明者らは、上記課題を解決すべく、鋭意検討を重ねた。その結果、多くの工程を必要とせず簡便に、細径を有するタンパク質繊維が得られることを見出した。
すなわち、本発明は、例えば、以下の各発明に関する。
[1]
内管に紡糸原液を流す工程と、
上記内管を取り囲む外管に凝固液を流す工程と、
上記内管の吐出口から吐出された上記紡糸原液と、上記凝固液とを、流しながら接触させて、上記紡糸原液からタンパク質繊維を形成させる工程とを含み、
上記紡糸原液がタンパク質を含む、タンパク質繊維の製造方法。
[2]
上記紡糸原液の溶媒が、ギ酸又はヘキサフルオロイソプロパノールを含む、[1]に記載の方法。
[3]
上記紡糸原液の溶媒が、イオン液体をさらに含む、[1]又は[2]に記載の方法。
[4]
上記凝固液が、メタノール、又は、メタノール及びギ酸の混合溶液を含む、[1]〜[3]のいずれかに記載の方法。
[5]
上記外管を流れる上記凝固液の線速度が1.6m/秒超である、[1]〜[4]のいずれかに記載の方法。
[6]
上記紡糸原液における上記タンパク質の濃度が20質量%未満である、[1]〜[5]のいずれかに記載の方法。
[7]
上記タンパク質がフィブロインを含む、[1]〜[6]のいずれかに記載の方法。
[8]
上記フィブロインがクモ糸フィブロインである、[7]に記載の方法。
[9]
上記フィブロインが改変フィブロインである、[7]又は[8]に記載の方法。
本発明を用いることによって、多くの工程を必要とせず、細径のタンパク質繊維を簡便に製造することが可能となる。
本願の製造方法に使用できるノズルの一例の縦断面図である。 図1AのZ−Z線で切った横断面図である。 クモ糸フィブロインのドメイン配列の一例を示す模式図である。 クモ糸フィブロインのドメイン配列の一例を示す模式図である。 クモ糸フィブロインのドメイン配列の一例を示す模式図である。
以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
〔紡糸原液及び凝固液を流す工程〕
本発明のタンパク質繊維の製造方法では、紡糸原液を凝固液と接触させて繊維化する湿式紡糸法を用いる。本発明の製造方法は、特に、内管に紡糸原液を流す工程と、上記内管を取り囲む外管に凝固液を流す工程と、上記内管の吐出口から吐出された上記紡糸原液と、上記凝固液とを、流しながら接触させて、上記紡糸原液からタンパク質繊維を形成させる工程とを含む。
図1A及び図1Bを用いて本発明の製造方法の一実施形態を説明する。図1Aは、本発明の製造方法に使用できる、内管30と外管20とを有するノズル100の一例の縦断面図である。円筒状の内管30は、内管上部310と、テーパ部320とから構成され、円筒状の外管20は、外管上部210と、テーパ部202、延伸部203及び吐出部204を有する外管下部220とから構成されている。図1Bは、図1AのZ−Z線で切った横断面図である。図1Bに示すように、外管上部210の内径は内管上部310の外径よりも大きく、外管20は内管30を取り囲み、ノズル100は二重管構造となっている。内管30と外管20とは鉛直方向に伸びており、内管30及び外管20は、それぞれ、上部に溶液の流入口340、240を有し、下部に吐出口350、250を有している。
内管30の内径D1(流路aに相当)を例えば、20μm〜2000μm、好ましくは50μm〜500μmとすることができる。外管上部210の内径D2を例えば、100μm〜5000μm、好ましくは500μm〜1000μmとすることができる。外管上部210と内管上部310との間の流路bの幅D3を例えば、20μm〜4900μm、好ましくは50μm〜2000μmとすることができる。外管の延伸部203の内径D4(延伸部流路dに相当)を例えば、20μm〜500μm、好ましくは50μm〜500μmとすることができる。外管の延伸部203の長さL1を例えば、1μm〜10000μm、好ましくは500μm〜5000μmとすることができる。外管の吐出部204の内径D5(吐出部流路eに相当)を例えば、20μm〜10000μm、好ましくは250μm〜1000μmとすることができる。内管の吐出口350から外管の吐出口250までの長さL2を例えば、10μm〜20000μm、好ましくは600μm〜10000μmとすることができる。内管の流入口340から内管の吐出口350までの長さL3を例えば、10μm〜10000μm、好ましくは100μm〜5000μmとすることができる。外管の流入口240から外管の吐出口250までの長さL4を例えば、20μm〜30000μm、好ましくは700μm〜15000μmとすることができる。内管の内径D1は、内管の流入口340から内管の吐出口350まで一定であってもよい。
本製造方法においては、内管30に紡糸原液を内管の流入口340から入れて流し、外管20に凝固液を外管の流入口240から入れて流す。紡糸原液は内管30内の流路aを流れ、内管の吐出口350から吐出された紡糸原液は、外管20内の流路bを流れてきた凝固液と、外管のテーパ部流路cにおいて、外管の吐出口250に向かって流れながら接触する。紡糸原液と凝固液とが接触することにより、紡糸原液中の溶媒が凝固液中に拡散して紡糸原液が脱溶媒され、紡糸原液に含まれるタンパク質の凝固が進行する。また、紡糸原液と凝固液とが流れながら接触することにより、タンパク質の凝固と流れ方向への延伸とが同時に行われ、細径化されたタンパク質繊維が形成される。外管のテーパ部流路cにおいて、凝固液と接触した紡糸原液は、凝固及び延伸され、タンパク質繊維が形成されつつ、外管の延伸部流路dを通過する。外管の延伸部203において流路が細くなることにより、凝固液の流速が速くなり、形成されたタンパク質繊維がより延伸され、さらに細径化される。形成されたタンパク質繊維は、吐出部流路eを通過し、外管の吐出口250を通過して、ノズル100から吐出される。なおノズル100は、湿式紡糸法で用いる紡糸ノズル(紡糸口金)の先端に取り付けてもよく、ノズル100自体を紡糸ノズルとして使用してもよく、ノズル100の外管の吐出口250側にさらに紡糸ノズルを取り付けてもよい。
本実施形態の場合、内管30と外管20とは鉛直方向に伸びているため、内管及び外管の上部の流入口340、240から下部の吐出口350、250に向かって、重力によって紡糸原液及び凝固液を流すことができ、また、自重によってタンパク質繊維がさらに延伸される。重力による他にも、流入口340、240への供給時に紡糸原液及び凝固液に圧力を加えて管内に流入させることによって、紡糸原液及び凝固液を流入口340、240から吐出口350、250に向かって流してもよい。
紡糸原液及び凝固液の流入口340、240への供給は、内管の流入口340及び外管の流入口240に流路を介して連結する溶液供給手段(図示せず)によっておこなうことができる。一実施形態によれば、例えばこの溶液供給手段を、紡糸原液及び凝固液がそれぞれ入った2本のシリンジポンプとすることができる。
紡糸原液が内管を流れる流速を調整してもよい。内管の内径D1が、流入口340から吐出口350まで一定である場合、流量によって流速を調整することができる。また、流速を、内管(流路a)を流れる紡糸原液の線速度により規定してもよい。そのような線速度の下限は、0.001m/秒であることが好ましく、0.003m/秒であることがより好ましく、0.005m/秒であることがさらに好ましい。上限は、0.5m/秒であることが好ましく、0.1m/秒であることがより好ましく、0.05m/秒であることがさらに好ましい。紡糸原液の線速度を上述の範囲とすることにより、繊維を途中で途切れないようにしたまま、繊維をより細く製造することができる。
凝固液が外管を流れる流速を調整してもよい。外管を流れる流速を、外管の延伸部203(流路d)を流れる凝固液の線速度により規定してもよい。そのような線速度の下限は、0.5m/秒であることが好ましく、1.6m/秒超であることがより好ましく、5.0m/秒であることがさらに好ましい。上限は、100m/秒であることが好ましく、30m/秒であることがより好ましく、10m/秒であることがさらに好ましい。凝固液の線速度を上述の範囲とすることにより、繊維を途中で途切れないようにしたまま、繊維をより細く製造することができる。
ノズル100で形成されたタンパク質繊維は、吐出口250を出た後、空気中に吐出されてもよく、液体中に吐出されてもよい。液体中にタンパク質繊維を吐出させる場合には、メタノール、エタノール、1−プロパノール、2−プロパノール、tert−ブチルアルコール、アセトン、メチルエチルケトン等の液体に吐出することができる。
〔巻き取り〕
吐出されたタンパク質繊維を、巻き取り装置で巻き取ってもよい。巻き取り装置を用いることで、繊維を連続的に製造し、タンパク質繊維を連続繊維とすることができる。本明細書において「連続繊維」とは、不定長の繊維のことをいう。巻き取り装置としてワインダーが挙げられる。ワインダーでは、適宜張力及び接圧等の巻き取り条件を調整して巻き取ることができる。また、ワインダーを用いることで、タンパク質繊維の繊維径をコントロールできる。具体的には、巻き取り速度を速くすることで繊維径をより細くすることができる。
〔延伸工程〕
本発明の製造方法では、紡糸原液と凝固液とが流れながら接触することで繊維が延伸され、細径のタンパク質繊維を製造することが可能であるため、別途の延伸工程を設けなくともよい。ただし、本発明の製造方法は、任意で、形成されたタンパク質繊維を延伸する工程(延伸工程)を更に含むものであってよい。任意の延伸倍率にタンパク質繊維を延伸し、完成されたタンパク質繊維を任意の用途に用いることができる。延伸方法としては、湿熱延伸、乾熱延伸等をあげることができる。
湿熱延伸は、温水中、温水に有機溶剤等を加えた溶液中、又はスチーム加熱中で行うことができる。湿熱延伸の温度は50〜90℃であることが好ましく、75〜85℃がより好ましい。該温度が50℃以上であると、繊維中の細孔径を小さく安定させることができる。また、温度が90℃以下であると、温度設定が容易であり紡糸安定性が向上する。
湿熱延伸における延伸倍率は、未延伸糸(又は前延伸糸)に対して、例えば、1〜30倍であってよく、1〜25倍であってよく、1〜20倍であってよく、1〜15倍であってよく、1〜10倍であってよく、2〜10倍であってよく、2〜8倍であってよく、2〜6倍であってよく、2〜4倍であってよく、2〜3倍であってよい。
乾熱延伸は、接触型の熱板、及び非接触型の炉等の熱源を備えた装置を用いて、空気中で延伸することにより行うことができるが、装置は特に限定されるものではなく、繊維を所定の温度まで昇温させ、かつ所定の倍率で延伸が可能な装置であればよい。乾熱延伸を行う温度としては、例えば、100℃〜270℃であってよく、140℃〜230℃であってよく、140℃〜200℃であってよく、160℃〜200℃であってよく、160℃〜180℃であってよい。
乾熱延伸工程における延伸倍率は、未延伸糸(又は前延伸糸)に対して、例えば、1〜30倍であってよく、1〜25倍であってよく、1〜20倍であってよく、1〜15倍であってよく、1〜10倍であってよく、2〜10倍であってよく、2〜8倍であってよく、2〜6倍であってよく、2〜4倍であってよく、2〜3倍であってよい。
延伸工程は、湿熱延伸及び乾熱延伸を、それぞれ単独で行うものであってもよく、またこれらを多段で、又は組み合わせて行うものであってもよい。すなわち、延伸工程として、一段目延伸を湿熱延伸で行い、二段目延伸を乾熱延伸で行う、又は一段目延伸を湿熱延伸で行い、二段目延伸を湿熱延伸で行い、更に三段目延伸を乾熱延伸で行う等、湿熱延伸及び乾熱延伸を適宜組み合わせて行うことができる。
延伸工程を経た繊維の最終的な延伸倍率の下限値は、未延伸糸(又は前延伸糸)に対して、例えば、1倍、2倍、3倍、4倍、5倍、6倍、7倍、8倍、又は9倍のうちの何れかであってよい。延伸工程を経た繊維の最終的な延伸倍率の上限値は、例えば、40倍、30倍、20倍、15倍、14倍、13倍、12倍、11倍、又は10倍のうちの何れかであってよい。また、例えば、最終的な延伸倍率は3〜40倍であってよく、3〜30倍であってよく、5〜30倍であってよく、5〜20倍であってよく、5〜15倍であってよく、5〜13倍であってよい。ただし、延伸倍率は、所望する繊維の太さ、機械物性などの特性が得られる範囲であれば限定されるものではない。
延伸工程の前又は後に、必要に応じて、繊維に対して、帯電抑制性、収束性及び潤滑性等を付与する目的で油剤を付与してもよい。付与する油剤の種類及び付与する量等は、特に限定されるものではなく、繊維を使用する用途、繊維の取扱い性等を考慮し適宜調整することができる。
以上のようにして、本実施形態の方法により、タンパク質繊維を製造することができる。なお上述のノズル100は一例であり、本発明の方法は、上記実施形態に限定されず、様々な変形態様が可能である。
例えば、図1Aに示すノズル100においては、内管30と外管20とが鉛直方向に伸びているが、紡糸原液と凝固液が流れるのであれば、内管及び外管が水平方向又は水平方向に対して斜め方向に伸びていてもよい。
また、図1Aに示すノズル100においては、内管30がテーパ部320、外管20がテーパ部202、延伸部203、吐出部204を有しているが、これらの部位を設けなくともよく、内管と外管は流入口から吐出口まで、内径及び外径が変化せずともよい。
また、図1Aに示すノズル100においては、内管の吐出口350から外管の吐出口250まで一定の長さL2を有するノズルを示しているが、L2の長さが0であってもよく、すなわち、内管の吐出口と外管の吐出口とは重なっていてもよい。
〔紡糸原液〕
紡糸原液は、タンパク質を溶質として含む。紡糸原液の溶媒としては、例えば、ヘキサフルオロイソプロパノール(HFIP)、ギ酸、ヘキサフルオロアセトン(HFA)、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)、1,3−ジメチル−2−イミダゾリドン(DMI)、N−メチル−2−ピロリドン(NMP)、アセトニトリル、N−メチルモルホリンN−オキシド(NMO)、エチレングリコール、及びテトラヒドロフラン(THF)等の有機溶媒、及び水等が挙げられる。
タンパク質の溶解性をより良好にする観点、及び、タンパク質繊維をより細径化する観点からは、紡糸原液の溶媒として、ヘキサフルオロイソプロパノール、ジメチルスルホキシド及びギ酸がより好ましく、ヘキサフルオロイソプロパノール及びギ酸がさらに好ましい。これらの有機溶媒は、水を含んでいてもよい。これらの溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
紡糸原液の溶媒は、上記挙げた溶媒の他に、さらにイオン液体を含むこともできる。本明細書において、イオン液体とは、100℃以下の融点を有する塩のことを指す。本発明に用いることができるイオン液体として、例えば、イミダゾリウム塩、アンモニウム塩、ホスホニウム塩、ピリジニウム塩、ピロリジニウム塩を挙げることができる。具体的には、例えば、1−エチル−3−メチルイミダゾリウムジエチルホスフェート([Emim][DEP])、1−エチル−3−メチルイミダゾリウムアセテート([Emim][OAc])、1−エチル−3−メチルイミダゾリウムジメチルホスフェート([Emim][DMP])、1−ブチル−3−メチルイミダゾリウムアセテート([Bmim][OAc])、1−ブチル−3−メチルイミダゾリウムクロライド([Bmim][Cl])、1−エチル−3−メチルイミダゾリウムクロライド([Emim][Cl])、1−ヘキシル−3−メチルイミダゾリウムクロライド([Hmim][Cl])等が挙げられる。
紡糸原液の溶媒がイオン液体を含む場合、イオン液体とイオン液体以外の溶媒とは、質量比で5:1〜100:1としてもよい。質量比は10:1〜50:1であることが好ましく、30:1〜40:1であることがより好ましい。イオン液体とイオン液体以外の溶媒とが上述の範囲内であることで、溶質であるタンパク質の溶解性がより良好となる。
紡糸原液における、タンパク質の濃度の下限を、紡糸しやすさの観点から、3質量%とすることが好ましく、5質量%とすることがより好ましい。タンパク質の濃度の上限は、繊維をより細径化できること及び溶解性の観点から、30質量%とすることが好ましく、20質量%未満とすることがより好ましく、15質量%とすることがより好ましい。
〔凝固液〕
凝固液としては、例えば、メタノール、ギ酸、エタノール、イソプロパノール、1−プロパノール、tert−ブチルアルコール、アセトン、メチルエチルケトン及びこれらの混合溶液を用いることができる。紡糸原液との反応性が良好であることから、凝固液が、メタノール、又はメタノール及びギ酸の混合溶液を含むことが好ましい。
凝固液がメタノール及びギ酸の混合溶液である場合には、凝固液中に含まれるメタノール及びギ酸は、体積比で9:1〜5:5の比であることができる。
〔各種添加剤〕
紡糸原液は、必要に応じて、各種の添加剤を更に含有していてよい。添加剤としては、例えば、可塑剤、レベリング剤、架橋剤、結晶核剤、酸化防止剤、紫外線吸収剤、着色剤、フィラー、合成樹脂が挙げられる。添加剤の含有量は、紡糸原液中のタンパク質全量100質量部に対して、50質量部以下であってよい。
〔タンパク質〕
紡糸原液に含まれるタンパク質は、構造タンパク質であってもよい。構造タンパク質は、具体的には、フィブロイン(例えば、クモ糸フィブロイン、絹糸フィブロイン等)、コラーゲン、レシリン、エラスチン及びケラチン、並びにこれらに由来するタンパク質等を挙げることができる。タンパク質は、天然由来のものでもよく、人為的に製造された人造タンパク質であってもよい。また、人造タンパク質のアミノ酸配列は、天然由来のタンパク質のアミノ酸配列と同一でも異なっていてもよい。
タンパク質は、好ましくはフィブロインである。タンパク質は、より好ましくは、クモ糸フィブロインである。
天然由来のクモ糸フィブロインとしては、例えば、大吐糸管しおり糸タンパク質、横糸タンパク質、及び小瓶状腺タンパク質等のクモ類が産生するクモ糸フィブロインが挙げられる。大吐糸管しおり糸は、結晶領域と非晶領域(無定形領域とも言う。)からなる繰り返し領域を持つため、高い応力と伸縮性を併せ持つ。クモ糸の横糸は、結晶領域を持たず、非晶領域からなる繰り返し領域を持つという特徴を有する。横糸は、大吐糸管しおり糸に比べると応力は劣るが、高い伸縮性を持つ。
大吐糸管しおり糸タンパク質は、クモの大瓶状腺で産生され、強靭性に優れるという特徴を有する。大吐糸管しおり糸タンパク質としては、例えば、アメリカジョロウグモ(Nephila clavipes)に由来する大瓶状腺スピドロインMaSp1及びMaSp2、並びに二ワオニグモ(Araneus diadematus)に由来するADF3及びADF4が挙げられる。ADF3は、ニワオニグモの2つの主要なしおり糸タンパク質の一つである。ADF3に由来するクモ糸タンパク質は、比較的合成し易く、また、強伸度及びタフネスの点で優れた特性を有する。
横糸タンパク質は、クモの鞭毛状腺(flagelliform gland)で産生される。横糸タンパク質としては、例えばアメリカジョロウグモ(Nephila clavipes)に由来する鞭毛状絹タンパク質(flagelliform silk protein)が挙げられる。
クモ類が産生するクモ糸フィブロインの更なる例として、例えば、オニグモ、ニワオニグモ、アカオニグモ、アオオニグモ及びマメオニグモ等のオニグモ属(Araneus属)に属するクモ、ヤマシロオニグモ、イエオニグモ、ドヨウオニグモ及びサツマノミダマシ等のヒメオニグモ属(Neoscona属)に属するクモ、コオニグモモドキ等のコオニグモモドキ属(Pronus属)に属するクモ、トリノフンダマシ及びオオトリノフンダマシ等のトリノフンダマシ属(Cyrtarachne属)に属するクモ、トゲグモ及びチブサトゲグモ等のトゲグモ属(Gasteracantha属)に属するクモ、マメイタイセキグモ及びムツトゲイセキグモ等のイセキグモ属(Ordgarius属)に属するクモ、コガネグモ、コガタコガネグモ及びナガコガネグモ等のコガネグモ属(Argiope属)に属するクモ、キジロオヒキグモ等のオヒキグモ属(Arachnura属)に属するクモ、ハツリグモ等のハツリグモ属(Acusilas属)に属するクモ、スズミグモ、キヌアミグモ及びハラビロスズミグモ等のスズミグモ属(Cytophora属)に属するクモ、ゲホウグモ等のゲホウグモ属(Poltys属)に属するクモ、ゴミグモ、ヨツデゴミグモ、マルゴミグモ及びカラスゴミグモ等のゴミグモ属(Cyclosa属)に属するクモ、及びヤマトカナエグモ等のカナエグモ属(Chorizopes属)に属するクモが産生するスパイダーシルクタンパク質、並びにアシナガグモ、ヤサガタアシナガグモ、ハラビロアシダカグモ及びウロコアシナガグモ等のアシナガグモ属(Tetragnatha属)に属するクモ、オオシロカネグモ、チュウガタシロカネグモ及びコシロカネグモ等のシロカネグモ属(Leucauge属)に属するクモ、ジョロウグモ及びオオジョロウグモ等のジョロウグモ属(Nephila属)に属するクモ、キンヨウグモ等のアズミグモ属(Menosira属)に属するクモ、ヒメアシナガグモ等のヒメアシナガグモ属(Dyschiriognatha属)に属するクモ、クロゴケグモ、セアカゴケグモ、ハイイロゴケグモ及びジュウサンボシゴケグモ等のゴケグモ属(Latrodectus属)に属するクモ、及びユープロステノプス属(Euprosthenops属)に属するクモ等のアシナガグモ科(Tetragnathidae科)に属するクモが産生するスパイダーシルクタンパク質が挙げられる。
クモ類が産生するスパイダーシルクタンパク質のより具体的な例としては、例えば、fibroin−3(adf−3)[Araneus diadematus由来](GenBankアクセッション番号AAC47010(アミノ酸配列)、U47855(塩基配列))、fibroin−4(adf−4)[Araneus diadematus由来](GenBankアクセッション番号AAC47011(アミノ酸配列)、U47856(塩基配列))、dragline silk protein spidroin 1[Nephila clavipes由来](GenBankアクセッション番号AAC04504(アミノ酸配列)、U37520(塩基配列))、major ampullate spidroin 1[Latrodectus hesperus由来](GenBankアクセッション番号ABR68856(アミノ酸配列)、EF595246(塩基配列))、dragline silk protein spidroin 2[Nephila clavata由来](GenBankアクセッション番号AAL32472(アミノ酸配列)、AF441245(塩基配列))、major ampullate spidroin 1[Euprosthenops australis由来](GenBankアクセッション番号CAJ00428(アミノ酸配列)、AJ973155(塩基配列))、及びmajor ampullate spidroin 2[Euprosthenops australis](GenBankアクセッション番号CAM32249.1(アミノ酸配列)、AM490169(塩基配列))、minor ampullate silk protein 1[Nephila clavipes](GenBankアクセッション番号AAC14589.1(アミノ酸配列))、minor ampullate silk protein 2[Nephila clavipes](GenBankアクセッション番号AAC14591.1(アミノ酸配列))、minor ampullate spidroin−like protein[Nephilengys cruentata](GenBankアクセッション番号ABR37278.1(アミノ酸配列)等が挙げられる。
フィブロインが、改変フィブロインであってもよい。改変フィブロインは、例えば、天然由来のフィブロインのアミノ酸配列に依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のフィブロインの遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、また天然由来のフィブロインに依らず人工的に設計及び合成したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。
改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列に対し、例えば、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行うことで得ることができる。アミノ酸残基の置換、欠失、挿入及び/又は付加は、部分特異的突然変異誘発法等の当業者に周知の方法により行うことができる。具体的には、Nucleic Acid Res.10,6487(1982)、Methods in Enzymology,100,448(1983)等の文献に記載されている方法に準じて行うことができる。
改変フィブロインは、例えば、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むフィブロインであってもよい。改変フィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。
本明細書において「ドメイン配列」とは、フィブロイン特有の結晶領域(典型的には、アミノ酸配列の(A)モチーフに相当する。)と非晶領域(典型的には、アミノ酸配列のREPに相当する。)を生じるアミノ酸配列であり、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるアミノ酸配列を意味する。ここで、(A)モチーフは、アラニン残基を主とするアミノ酸配列を示し、アミノ酸残基数は2〜27である。(A)モチーフのアミノ酸残基数は、2〜20、4〜27、4〜20、8〜20、10〜20、4〜16、8〜16、又は10〜16であってもよい。また、(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。ドメイン配列中に複数存在する(A)モチーフは、少なくとも7つがアラニン残基のみで構成されてもよい。REPは2〜200アミノ酸残基から構成されるアミノ酸配列を示す。REPは、10〜200アミノ酸残基から構成されるアミノ酸配列であってもよい。mは2〜300の整数を示し、10〜300の整数であってもよい。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。
改変フィブロインの具体的な例として、クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロイン(第1の改変フィブロイン)、グリシン残基の含有量が低減された改変フィブロイン(第2の改変フィブロイン)、(A)モチーフの含有量が低減された改変フィブロイン(第3の改変フィブロイン)、グリシン残基の含有量、及び(A)モチーフの含有量が低減された改変フィブロイン(第4の改変フィブロイン)、局所的に疎水性指標の大きい領域を含むドメイン配列を有する改変フィブロイン(第5の改変フィブロイン)、及びグルタミン残基の含有量が低減されたドメイン配列を有する改変フィブロイン(第6の改変フィブロイン)が挙げられる。
クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロイン(第1の改変フィブロイン)としては、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質が挙げられる。第1の改変フィブロインは、式1中、nは3〜20の整数が好ましく、4〜20の整数がより好ましく、8〜20の整数が更に好ましく、10〜20の整数が更により好ましく、4〜16の整数が更によりまた好ましく、8〜16の整数が特に好ましく、10〜16の整数が最も好ましい。第1の改変フィブロインは、式1中、REPを構成するアミノ酸残基の数は、10〜200残基であることが好ましく、10〜150残基であることがより好ましく、20〜100残基であることが更に好ましく、20〜75残基であることが更により好ましい。第1の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるアミノ酸配列中に含まれるグリシン残基、セリン残基及びアラニン残基の合計残基数がアミノ酸残基数全体に対して、40%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。
第1の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるアミノ酸配列の単位を含み、かつC末端配列が配列番号1〜3のいずれかに示されるアミノ酸配列、又は配列番号1〜3のいずれかに示されるアミノ酸配列と90%以上の相同性を有するアミノ酸配列である、タンパク質であってもよい。
配列番号1に示されるアミノ酸配列は、ADF3(GI:1263287、NCBI)のアミノ酸配列のC末端の50残基のアミノ酸からなるアミノ酸配列と同一であり、配列番号2に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から20残基取り除いたアミノ酸配列と同一であり、配列番号3に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から29残基取り除いたアミノ酸配列と同一である。
第1の改変フィブロインのより具体的な例として、(1−i)配列番号4で示されるアミノ酸配列、又は(1−ii)配列番号4で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列同一性は、95%以上であることが好ましい。
配列番号4で示されるアミノ酸配列は、N末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Human rhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号5)を付加したADF3のアミノ酸配列において、第1〜13番目の反復領域をおよそ2倍になるように増やすとともに、翻訳が第1154番目アミノ酸残基で終止するように変異させたものである。配列番号4で示されるアミノ酸配列のC末端のアミノ酸配列は、配列番号3で示されるアミノ酸配列と同一である。
(1−i)の改変フィブロインは、配列番号4で示されるアミノ酸配列からなるものであってもよい。
グリシン残基の含有量が低減された改変フィブロイン(第2の改変フィブロイン)は、そのドメイン配列が、天然由来のクモ糸フィブロインと比較して、グリシン残基の含有量が低減されたアミノ酸配列を有する。第2の改変フィブロインは、天然由来のクモ糸フィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。
第2の改変フィブロインは、そのドメイン配列が、天然由来のクモ糸フィブロインと比較して、REP中のGGX及びGPGXX(但し、Gはグリシン残基、Pはプロリン残基、Xはグリシン以外のアミノ酸残基を示す。)から選ばれる少なくとも一つのモチーフ配列において、少なくとも1又は複数の当該モチーフ配列中の1つのグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものであってもよい。
第2の改変フィブロインは、上述のグリシン残基が別のアミノ酸残基に置換されたモチーフ配列の割合が、全モチーフ配列に対して、10%以上であってもよい。
第2の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるドメイン配列を含み、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の全REPに含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の総アミノ酸残基数をwとしたときに、z/wが30%以上、40%以上、50%以上又は50.9%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
第2の改変フィブロインは、GGXモチーフの1つのグリシン残基を別のアミノ酸残基に置換することにより、XGXからなるアミノ酸配列の含有割合を高めたものであることが好ましい。第2の改変フィブロインは、ドメイン配列中のGGXからなるアミノ酸配列の含有割合が30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましく、6%以下であることが更により好ましく、4%以下であることが更によりまた好ましく、2%以下であることが特に好ましい。ドメイン配列中のGGXからなるアミノ酸配列の含有割合は、下記XGXからなるアミノ酸配列の含有割合(z/w)の算出方法と同様の方法で算出することができる。
z/wの算出方法を更に詳細に説明する。まず、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むクモ糸フィブロイン(改変フィブロイン)において、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる全てのREPから、XGXからなるアミノ酸配列を抽出する。XGXを構成するアミノ酸残基の総数がzである。例えば、XGXからなるアミノ酸配列が50個抽出された場合(重複はなし)、zは50×3=150である。また、例えば、XGXGXからなるアミノ酸配列の場合のように2つのXGXに含まれるX(中央のX)が存在する場合は、重複分を控除して計算する(XGXGXの場合は5アミノ酸残基である)。wは、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる総アミノ酸残基数である。例えば、図2に示したドメイン配列の場合、wは4+50+4+100+4+10+4+20+4+30=230である(最もC末端側に位置する(A)モチーフは除いている。)。次に、zをwで除すことによって、z/w(%)を算出することができる。
第2の改変フィブロインにおいて、z/wは、50.9%以上であることが好ましく、56.1%以上であることがより好ましく、58.7%以上であることが更に好ましく、70%以上であることが更により好ましく、80%以上であることが更によりまた好ましい。z/wの上限に特に制限はないが、例えば、95%以下であってもよい。
第2の改変フィブロインは、例えば、クローニングした天然由来のクモ糸フィブロインの遺伝子配列から、グリシン残基をコードする塩基配列の少なくとも一部を置換して別のアミノ酸残基をコードするように改変することにより得ることができる。このとき、改変するグリシン残基として、GGXモチーフ及びGPGXXモチーフにおける1つのグリシン残基を選択してもよいし、またz/wが50.9%以上になるように置換してもよい。また、例えば、天然由来のクモ糸フィブロインのアミノ酸配列から上記態様を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のクモ糸フィブロインのアミノ酸配列からREP中のグリシン残基を別のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
上記の別のアミノ酸残基としては、グリシン残基以外のアミノ酸残基であれば特に制限はないが、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、メチオニン(M)残基、プロリン(P)残基、フェニルアラニン(F)残基及びトリプトファン(W)残基等の疎水性アミノ酸残基、グルタミン(Q)残基、アスパラギン(N)残基、セリン(S)残基、リシン(K)残基及びグルタミン酸(E)残基等の親水性アミノ酸残基が好ましく、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基及びグルタミン(Q)残基がより好ましく、グルタミン(Q)残基が更に好ましい。
第2の改変フィブロインのより具体的な例として、(2−i)配列番号6、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列、又は(2−ii)配列番号6、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(2−i)の改変フィブロインについて説明する。配列番号6で示されるアミノ酸配列は、天然由来のクモ糸フィブロインに相当する配列番号10で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号7で示されるアミノ酸配列は、配列番号6で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ−REP]を1つ挿入したものである。配列番号8で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列の各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、配列番号7の分子量とほぼ同じとなるようにN末端側の一部のアミノ酸を欠失させたものである。配列番号9で示されるアミノ酸配列は、配列番号11で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端にHisタグが付加されたものである。
配列番号10で示されるアミノ酸配列(天然由来のクモ糸フィブロインに相当)におけるz/wの値は、46.8%である。配列番号6で示されるアミノ酸配列、配列番号7で示されるアミノ酸配列、配列番号8で示されるアミノ酸配列、及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ58.7%、70.1%、66.1%及び70.0%である。また、配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のギザ比率(後述する)1:1.8〜11.3におけるx/yの値は、それぞれ15.0%、15.0%、93.4%、92.7%及び89.3%である。
(2−i)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(2−ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2−ii)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2−ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による改変フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号12で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含むアミノ酸配列)が挙げられる。
また、グルタチオンに特異的に結合するグルタチオン−S−トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。
さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に改変フィブロインを精製することができる。
さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した改変フィブロインを回収することもできる。
タグ配列を含む第2の改変フィブロインのより具体的な例として、(2−iii)配列番号13、配列番号11、配列番号14若しく配列番号15で示されるアミノ酸配列、又は(2−iv)配列番号13、配列番号11、配列番号14若しく配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号16、配列番号17、配列番号13、配列番号11、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号10、配列番号18、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号12で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(2−iii)の改変フィブロインは、配列番号13、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(2−iv)の改変フィブロインは、配列番号13、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2−iv)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2−iv)の改変フィブロインは、配列番号13、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
(A)モチーフの含有量が低減された改変フィブロイン(第3の改変フィブロイン)は、そのドメイン配列が、天然由来のクモ糸フィブロインと比較して、(A)モチーフの含有量が低減されたアミノ酸配列を有する。第3の改変フィブロインのドメイン配列は、天然由来のクモ糸フィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を有するものということができる。
第3の改変フィブロインは、天然由来のクモ糸フィブロインから(A)モチーフを10〜40%欠失させたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のクモ糸フィブロインと比較して、少なくともN末端側からC末端側に向かって1〜3つの(A)モチーフ毎に1つの(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のクモ糸フィブロインと比較して、少なくともN末端側からC末端側に向かって2つ連続した(A)モチーフの欠失、及び1つの(A)モチーフの欠失がこの順に繰り返されたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、少なくともN末端側からC末端側に向かって2つおきに(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるドメイン配列を含み、N末端側からC末端側に向かって、隣合う2つの[(A)モチーフ−REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8〜11.3となる隣合う2つの[(A)モチーフ−REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが20%以上、30%以上、40%以上又は50%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
x/yの算出方法を、図2を参照しながら更に詳細に説明する。図2には、クモ糸フィブロインからN末端配列及びC末端配列を除いたドメイン配列を示す。当該ドメイン配列は、N末端側(左側)から(A)モチーフ−第1のREP(50アミノ酸残基)−(A)モチーフ−第2のREP(100アミノ酸残基)−(A)モチーフ−第3のREP(10アミノ酸残基)−(A)モチーフ−第4のREP(20アミノ酸残基)−(A)モチーフ−第5のREP(30アミノ酸残基)−(A)モチーフという配列を有する。
隣り合う2つの[(A)モチーフ−REP]ユニットは、重複がないように、N末端側からC末端側に向かって、順次選択する。このとき、選択されない[(A)モチーフ−REP]ユニットが存在してもよい。図2には、パターン1(第1のREPと第2のREPの比較、及び第3のREPと第4のREPの比較)、パターン2(第1のREPと第2のREPの比較、及び第4のREPと第5のREPの比較)、パターン3(第2のREPと第3のREPの比較、及び第4のREPと第5のREPの比較)、パターン4(第1のREPと第2のREPの比較)を示した。なお、これ以外にも選択方法は存在する。
次に各パターンについて、選択した隣り合う2つの[(A)モチーフ−REP]ユニット中の各REPのアミノ酸残基数を比較する。比較は、よりアミノ酸残基数の少ない方を1としたときの、他方のアミノ酸残基数の比を求めることによって行う。例えば、第1のREP(50アミノ酸残基)と第2のREP(100アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第1のREPを1としたとき、第2のREPのアミノ酸残基数の比は、100/50=2である。同様に、第4のREP(20アミノ酸残基)と第5のREP(30アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第4のREPを1としたとき、第5のREPのアミノ酸残基数の比は、30/20=1.5である。
図2中、よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8〜11.3となる[(A)モチーフ−REP]ユニットの組を実線で示した。以下このような比をギザ比率と呼ぶ。よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8未満又は11.3超となる[(A)モチーフ−REP]ユニットの組は破線で示した。
各パターンにおいて、実線で示した隣り合う2つの[(A)モチーフ−REP]ユニットの全てのアミノ酸残基数を足し合わせる(REPのみではなく、(A)モチーフのアミノ酸残基数もである。)。そして、足し合わせた合計値を比較して、当該合計値が最大となるパターンの合計値(合計値の最大値)をxとする。図2に示した例では、パターン1の合計値が最大である。
次に、xをドメイン配列の総アミノ酸残基数yで除すことによって、x/y(%)を算出することができる。
第3の改変フィブロインにおいて、x/yは、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることが更に好ましく、70%以上であることが更により好ましく、75%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、例えば、100%以下であってよい。ギザ比率が1:1.9〜11.3の場合には、x/yは89.6%以上であることが好ましく、ギザ比率が1:1.8〜3.4の場合には、x/yは77.1%以上であることが好ましく、ギザ比率が1:1.9〜8.4の場合には、x/yは75.9%以上であることが好ましく、ギザ比率が1:1.9〜4.1の場合には、x/yは64.2%以上であることが好ましい。
第3の改変フィブロインが、ドメイン配列中に複数存在する(A)モチーフの少なくとも7つがアラニン残基のみで構成される改変フィブロインである場合、x/yは、46.4%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることが更に好ましく、60%以上であることが更により好ましく、70%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、100%以下であればよい。
第3の改変フィブロインは、例えば、クローニングした天然由来のクモ糸フィブロインの遺伝子配列から、x/yが64.2%以上になるように(A)モチーフをコードする配列の1又は複数を欠失させることにより得ることができる。また、例えば、天然由来のクモ糸フィブロインのアミノ酸配列から、x/yが64.2%以上になるように1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のクモ糸フィブロインのアミノ酸配列から(A)モチーフが欠失したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第3の改変フィブロインのより具体的な例として、(3−i)配列番号18、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列、又は(3−ii)配列番号18、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(3−i)の改変フィブロインについて説明する。配列番号18で示されるアミノ酸配列は、天然由来のクモ糸フィブロインに相当する配列番号10で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ−REP]を1つ挿入したものである。配列番号7で示されるアミノ酸配列は、配列番号18で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号8で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列の各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、配列番号7の分子量とほぼ同じとなるようにN末端側の一部のアミノ酸を欠失させたものである。配列番号9で示されるアミノ酸配列は、配列番号11で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端にHisタグが付加されたものである。
配列番号10で示されるアミノ酸配列(天然由来のクモ糸フィブロインに相当)のギザ比率1:1.8〜11.3におけるx/yの値は15.0%である。配列番号18で示されるアミノ酸配列、及び配列番号7で示されるアミノ酸配列におけるx/yの値は、いずれも93.4%である。配列番号8で示されるアミノ酸配列におけるx/yの値は、92.7%である。配列番号9で示されるアミノ酸配列におけるx/yの値は、89.3%である。配列番号10、配列番号18、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ46.8%、56.2%、70.1%、66.1%及び70.0%である。
(3−i)の改変フィブロインは、配列番号18、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(3−ii)の改変フィブロインは、配列番号18、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3−ii)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3−ii)の改変フィブロインは、配列番号18、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣り合う2つの[(A)モチーフ−REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8〜11.3(ギザ比率が1:1.8〜11.3)となる隣合う2つの[(A)モチーフ−REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、N末端及びC末端のいずれか一方又は両方に上述したタグ配列を含んでいてもよい。
タグ配列を含む第3の改変フィブロインのより具体的な例として、(3−iii)配列番号17、配列番号11、配列番号14若しくは配列番号15で示されるアミノ酸配列、又は(3−iv)配列番号17、配列番号11、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号16、配列番号17、配列番号13、配列番号11、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号10、配列番号18、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号12で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(3−iii)の改変フィブロインは、配列番号17、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(3−iv)の改変フィブロインは、配列番号17、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3−iv)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3−iv)の改変フィブロインは、配列番号17、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ−REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8〜11.3となる隣合う2つの[(A)モチーフ−REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
グリシン残基の含有量、及び(A)モチーフの含有量が低減された改変フィブロイン(第4の改変フィブロイン)は、そのドメイン配列が、天然由来のクモ糸フィブロインと比較して、(A)モチーフの含有量が低減されたことに加え、グリシン残基の含有量が低減されたアミノ酸配列を有するものである。第4の改変フィブロインのドメイン配列は、天然由来のクモ糸フィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに加え、更に少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。すなわち、第4の改変フィブロインは、上述したグリシン残基の含有量が低減された改変フィブロイン(第2の改変フィブロイン)と、(A)モチーフの含有量が低減された改変フィブロイン(第3の改変フィブロイン)の特徴を併せ持つ改変フィブロインである。具体的な態様等は、第2の改変フィブロイン、及び第3の改変フィブロインで説明したとおりである。
第4の改変フィブロインのより具体的な例として、(4−i)配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列、(4−ii)配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列を含む改変フィブロインの具体的な態様は上述のとおりである。
局所的に疎水性指標の大きい領域を含むドメイン配列を有する改変フィブロイン(第5の改変フィブロイン)は、そのドメイン配列が、天然由来のクモ糸フィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有するものであってよい。
局所的に疎水性指標の大きい領域は、連続する2〜4アミノ酸残基で構成されていることが好ましい。
上述の疎水性指標の大きいアミノ酸残基は、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましい。
第5の改変フィブロインは、天然由来のクモ糸フィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に、天然由来のクモ糸フィブロインと比較して、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のクモ糸フィブロインの遺伝子配列からREP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより得ることができる。また、例えば、天然由来のクモ糸フィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のクモ糸フィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第5の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるドメイン配列を含み、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であるアミノ酸配列を有してもよい。
アミノ酸残基の疎水性指標については、公知の指標(Hydropathy index:Kyte J,&Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”,J.Mol.Biol.,157,pp.105−132)を使用する。具体的には、各アミノ酸の疎水性指標(ハイドロパシー・インデックス、以下「HI」とも記す。)は、下記表1に示すとおりである。
Figure 2020122237
p/qの算出方法を更に詳細に説明する。算出には、式1:[(A)モチーフ−REP]で表されるドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列(以下、「配列A」とする)を用いる。まず、配列Aに含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値を算出する。疎水性指標の平均値は、連続する4アミノ酸残基に含まれる各アミノ酸残基のHIの総和を4(アミノ酸残基数)で除して求める。疎水性指標の平均値は、全ての連続する4アミノ酸残基について求める(各アミノ酸残基は、1〜4回平均値の算出に用いられる。)。次いで、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域を特定する。あるアミノ酸残基が、複数の「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」に該当する場合であっても、領域中には1アミノ酸残基として含まれることになる。そして、当該領域に含まれるアミノ酸残基の総数がpである。また、配列Aに含まれるアミノ酸残基の総数がqである。
例えば、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が20カ所抽出された場合(重複はなし)、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、連続する4アミノ酸残基(重複はなし)が20含まれることになり、pは20×4=80である。また、例えば、2つの「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が1アミノ酸残基だけ重複して存在する場合、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、7アミノ酸残基含まれることになる(p=2×4−1=7。「−1」は重複分の控除である。)。例えば、図3に示したドメイン配列の場合、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が重複せずに7つ存在するため、pは7×4=28となる。また、例えば、図3に示したドメイン配列の場合、qは4+50+4+40+4+10+4+20+4+30=170である(C末端側の最後に存在する(A)モチーフは含めない)。次に、pをqで除すことによって、p/q(%)を算出することができる。図3の場合28/170=16.47%となる。
第5の改変フィブロインにおいて、p/qは、6.2%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることが更に好ましく、20%以上であることが更により好ましく、30%以上であることが更によりまた好ましい。p/qの上限は、特に制限されないが、例えば、45%以下であってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のクモ糸フィブロインのアミノ酸配列を、上記のp/qの条件を満たすように、REP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより、局所的に疎水性指標の大きい領域を含むアミノ酸配列に改変することにより得ることができる。また、例えば、天然由来のクモ糸フィブロインのアミノ酸配列から上記のp/qの条件を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のクモ糸フィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当する改変を行ってもよい。
疎水性指標の大きいアミノ酸残基としては、特に制限はないが、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)が好ましく、バリン(V)、ロイシン(L)及びイソロイシン(I)がより好ましい。
第5の改変フィブロインの具体的な例として、(5−i)配列番号19、配列番号20若しくは配列番号21で示されるアミノ酸配列、又は(5−ii)配列番号19、配列番号20若しくは配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(5−i)の改変フィブロインについて説明する。配列番号22で示されるアミノ酸配列は、天然由来のクモ糸フィブロインの(A)モチーフ中のアラニン残基が連続するアミノ酸配列をアラニン残基が連続する数を5つになるよう欠失したものである。配列番号19で示されるアミノ酸配列は、配列番号22で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入し、かつ配列番号22で示されるアミノ酸配列の分子量とほぼ同じとなるようにC末端側の一部のアミノ酸を欠失させたものである。配列番号23で示されるアミノ酸配列は、配列番号22で示されるアミノ酸配列に対し、各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、かつ配列番号22で示されるアミノ酸配列の分子量とほぼ同じとなるようにC末端側の一部のアミノ酸を欠失させたものである。配列番号20で示されるアミノ酸配列は、配列番号23で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を1カ所挿入したものである。配列番号21で示されるアミノ酸配列は、配列番号23で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入したものである。
(5−i)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列からなるものであってもよい。
(5−ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5−ii)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5−ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。
タグ配列を含む第5の改変フィブロインのより具体的な例として、(5−iii)配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列、又は(5−iv)配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号24、配列番号25及び配列番号26で示されるアミノ酸配列は、それぞれ配列番号19、配列番号20及び配列番号21で示されるアミノ酸配列のN末端に配列番号12で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(5−iii)の改変フィブロインは、配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列からなるものであってもよい。
(5−iv)の改変フィブロインは、配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5−iv)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5−iv)の改変フィブロインは、配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
グルタミン残基の含有量が低減されたドメイン配列を有する改変フィブロイン(第6の改変フィブロイン)は、天然由来のクモ糸フィブロインと比較して、グルタミン残基の含有量が低減されたアミノ酸配列を有する。
第6の改変フィブロインは、REPのアミノ酸配列中に、GGXモチーフ及びGPGXXモチーフから選ばれる少なくとも一つのモチーフが含まれていることが好ましい。
第6の改変フィブロインが、REP中にGPGXXモチーフを含む場合、GPGXXモチーフ含有率は、通常1%以上であり、5%以上であってもよく、10%以上であるのが好ましい。GPGXXモチーフ含有率の上限に特に制限はなく、50%以下であってよく、30%以下であってもよい。
本明細書において、「GPGXXモチーフ含有率」は、以下の方法により算出される値である。
式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むクモ糸フィブロインにおいて、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、その領域に含まれるGPGXXモチーフの個数の総数を3倍した数(即ち、GPGXXモチーフ中のG及びPの総数に相当)をsとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、GPGXXモチーフ含有率はs/tとして算出される。
GPGXXモチーフ含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としているのは、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列」(REPに相当する配列)には、クモ糸フィブロインに特徴的な配列と相関性の低い配列が含まれることがあり、mが小さい場合(つまり、ドメイン配列が短い場合)、GPGXXモチーフ含有率の算出結果に影響するので、この影響を排除するためである。なお、REPのC末端に「GPGXXモチーフ」が位置する場合、「XX」が例えば「AA」の場合であっても、「GPGXXモチーフ」として扱う。
図4は、クモ糸フィブロインのドメイン配列を示す模式図である。図4を参照しながらGPGXXモチーフ含有率の算出方法を具体的に説明する。まず、図4に示したクモ糸フィブロインのドメイン配列(「[(A)モチーフ−REP]−(A)モチーフ」タイプである。)では、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図4中、「領域A」で示した配列。)に含まれているため、sを算出するためのGPGXXモチーフの個数は7であり、sは7×3=21となる。同様に、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図4中、「領域A」で示した配列。)に含まれているため、当該配列から更に(A)モチーフを除いた全REPのアミノ酸残基の総数tは50+40+10+20+30=150である。次に、sをtで除すことによって、s/t(%)を算出することができ、図4のフィブロインの場合21/150=14.0%となる。
第6の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましく、7%以下であることがより好ましく、4%以下であることが更に好ましく、0%であることが特に好ましい。
本明細書において、「グルタミン残基含有率」は、以下の方法により算出される値である。
式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むクモ糸フィブロインにおいて、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図4の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域に含まれるグルタミン残基の総数をuとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、グルタミン残基含有率はu/tとして算出される。グルタミン残基含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のクモ糸フィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当するアミノ酸配列を有するものであってよい。
「他のアミノ酸残基」は、グルタミン残基以外のアミノ酸残基であればよいが、グルタミン残基よりも疎水性指標の大きいアミノ酸残基であることが好ましい。アミノ酸残基の疎水性指標は表1に示すとおりである。
表1に示すとおり、グルタミン残基よりも疎水性指標の大きいアミノ酸残基としては、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)アラニン(A)、グリシン(G)、スレオニン(T)、セリン(S)、トリプトファン(W)、チロシン(Y)、プロリン(P)及びヒスチジン(H)から選ばれるアミノ酸残基を挙げることができる。これらの中でも、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましく、イソロイシン(I)、バリン(V)、ロイシン(L)及びフェニルアラニン(F)から選ばれるアミノ酸残基であることが更に好ましい。
第6の改変フィブロインは、REPの疎水性度が、−0.8以上であることが好ましく、−0.7以上であることがより好ましく、0以上であることが更に好ましく、0.3以上であることが更により好ましく、0.4以上であることが特に好ましい。REPの疎水性度の上限に特に制限はなく、1.0以下であってよく、0.7以下であってもよい。
本明細書において、「REPの疎水性度」は、以下の方法により算出される値である。
式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むクモ糸フィブロインにおいて、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図4の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域の各アミノ酸残基の疎水性指標の総和をvとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、REPの疎水性度はv/tとして算出される。REPの疎水性度の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のクモ糸フィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第6の改変フィブロインは、例えば、クローニングした天然由来のクモ糸フィブロインの遺伝子配列からREP中の1又は複数のグルタミン残基を欠失させること、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換することにより得ることができる。また、例えば、天然由来のクモ糸フィブロインのアミノ酸配列からREP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。
第6の改変フィブロインのより具体的な例として、(6−i)配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33若しくは配列番号43で示されるアミノ酸配列を含む、改変フィブロイン、又は(6−ii)配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33若しくは配列番号43で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(6−i)の改変フィブロインについて説明する。
配列番号7で示されるアミノ酸配列(Met−PRT410)は、天然由来のフィブロインであるNephila clavipes(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、(A)モチーフ中のアラニン残基が連続するアミノ酸配列をアラニン残基が連続する数を5つにする等の生産性を向上させるためのアミノ酸の改変を行ったものである。一方、Met−PRT410は、グルタミン残基(Q)の改変は行っていないため、グルタミン残基含有率は、天然由来のフィブロインのグルタミン残基含有率と同程度である。
配列番号27で示されるアミノ酸配列(M_PRT888)は、Met−PRT410(配列番号7)中のQQを全てVLに置換したものである。
配列番号28で示されるアミノ酸配列(M_PRT965)は、Met−PRT410(配列番号7)中のQQを全てTSに置換し、かつ残りのQをAに置換したものである。
配列番号29で示されるアミノ酸配列(M_PRT889)は、Met−PRT410(配列番号7)中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。
配列番号30で示されるアミノ酸配列(M_PRT916)は、Met−PRT410(配列番号7)中のQQを全てVIに置換し、かつ残りのQをLに置換したものである。
配列番号31で示されるアミノ酸配列(M_PRT918)は、Met−PRT410(配列番号7)中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号34で示されるアミノ酸配列(M_PRT525)は、Met−PRT410(配列番号7)に対し、アラニン残基が連続する領域(A)に2つのアラニン残基を挿入し、Met−PRT410の分子量とほぼ同じになるよう、C末端側のドメイン配列2つを欠失させ、かつグルタミン残基(Q)13箇所をセリン残基(S)又はプロリン残基(P)に置換したものである。
配列番号32で示されるアミノ酸配列(M_PRT699)は、M_PRT525(配列番号34)中のQQを全てVLに置換したものである。
配列番号33で示されるアミノ酸配列(M_PRT698)は、M_PRT525(配列番号34)中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。
配列番号43で示されるアミノ酸配列(Met−PRT966)は、配列番号9で示されるアミノ酸配列(C末端に配列番号42で示されるアミノ酸配列が付加される前のアミノ酸配列)中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33及び配列番号43で示されるアミノ酸配列は、いずれもグルタミン残基含有率は9%以下である(表2)。
Figure 2020122237
(6−i)の改変フィブロインは、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33又は配列番号43で示されるアミノ酸配列からなるものであってもよい。
(6−ii)の改変フィブロインは、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33又は配列番号43で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6−ii)の改変フィブロインもまた、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6−ii)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6−ii)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列を含む第6の改変フィブロインのより具体的な例として、(6−iii)配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41若しくは配列番号44で示されるアミノ酸配列を含む、改変フィブロイン、又は(6−iv)配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41若しくは配列番号44で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41及び配列番号44で示されるアミノ酸配列は、それぞれ配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33及び配列番号43で示されるアミノ酸配列のN末端に配列番号12で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。N末端にタグ配列を付加しただけであるため、グルタミン残基含有率に変化はなく、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41及び配列番号44で示されるアミノ酸配列は、いずれもグルタミン残基含有率が9%以下である(表3)。
Figure 2020122237
(6−iii)の改変フィブロインは、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41又は配列番号44で示されるアミノ酸配列からなるものであってもよい。
(6−iv)の改変フィブロインは、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41又は配列番号44で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6−iv)の改変フィブロインもまた、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6−iv)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6−iv)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
改変フィブロインは、第1の改変フィブロイン、第2の改変フィブロイン、第3の改変フィブロイン、第4の改変フィブロイン、第5の改変フィブロイン、及び第6の改変フィブロインが有する特徴のうち、少なくとも2つ以上の特徴を併せ持つ改変フィブロインであってもよい。
改変フィブロインは、親水性改変フィブロインであってもよく、疎水性改変フィブロインであってもよい。疎水性改変フィブロインとは、改変フィブロインを構成する全てのアミノ酸残基の疎水性指標(HI)の総和を求め、次にその総和を全アミノ酸残基数で除した値(平均HI)が0以上である改変フィブロインである。疎水性指標は表1に示したとおりである。また、親水性改変フィブロインとは、上記の平均HIが0未満である改変フィブロインである。
疎水性改変フィブロインとしては、例えば、上述した第6の改変フィブロインを挙げることができる。疎水性改変フィブロインのより具体的な例としては、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33又は配列番号43で示されるアミノ酸配列、配列番号35、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41又は配列番号44で示されるアミノ酸配列を含む改変フィブロインが挙げられる。
親水性改変フィブロインとしては、例えば、上述した第1の改変フィブロイン、第2の改変フィブロイン、第3の改変フィブロイン、第4の改変フィブロイン、及び第5の改変フィブロインを挙げることができる。親水性クモ糸タンパク質のより具体的な例としては、配列番号4で示されるアミノ酸配列、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列、配列番号13、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列、配列番号18、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列、配列番号17、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列を含む改変フィブロインが挙げられる。
上述した改変フィブロインは、1種を単独で、又は2種以上を組み合わせて用いることができる。
改変フィブロインは、例えば、当該改変フィブロインをコードする核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する発現ベクターで形質転換された宿主により、当該核酸を発現させることにより生産することができる。
改変フィブロインをコードする核酸の製造方法は、特に制限されない。例えば、改変フィブロインをコードする遺伝子を利用して、ポリメラーゼ連鎖反応(PCR)等で増幅しクローニングする方法、又は、化学的に合成する方法によって、当該核酸を製造することができる。核酸の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手したクモ糸タンパク質のアミノ酸配列情報をもとに、AKTA oligopilot plus 10/100(GEヘルスケア・ジャパン株式会社)等で自動合成したオリゴヌクレオチドをPCR等で連結する方法によって遺伝子を化学的に合成することができる。この際に、改変フィブロインの精製及び/又は確認を容易にするため、N末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなる改変フィブロインをコードする核酸を合成してもよい。
調節配列は、宿主における組換えタンパク質の発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。プロモーターとして、宿主細胞中で機能し、目的とする改変フィブロインを発現誘導可能な誘導性プロモーターを用いてもよい。誘導性プロモーターは、誘導物質(発現誘導剤)の存在、リプレッサー分子の非存在、又は温度、浸透圧若しくはpH値の上昇若しくは低下等の物理的要因により、転写を制御できるプロモ
ーターである。
発現ベクターの種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。発現ベクターとしては、宿主細胞において自立複製が可能、又は宿主の染色体中への組込みが可能で、改変フィブロインをコードする核酸を転写できる位置にプロモーターを含有しているものが好適に用いられる。
宿主として、原核生物、並びに酵母、糸状真菌、昆虫細胞、動物細胞及び植物細胞等の真核生物のいずれも好適に用いることができる。
細菌等の原核生物を宿主として用いる場合は、発現ベクターは、原核生物中で自立複製が可能であると同時に、プロモーター、リボソーム結合配列、改変フィブロインをコードする核酸、及び転写終結配列を含むベクターであることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。
原核生物としては、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属及びシュードモナス属等に属する微生物を挙げることができる。エシェリヒア属に属する微生物として、例えば、エシェリヒア・コリ等を挙げることができる。ブレビバチルス属に属する微生物として、例えば、ブレビバチルス・アグリ等を挙げることができる。セラチア属に属する微生物として、例えば、セラチア・リクエファシエンス等を挙げることができる。バチルス属に属する微生物として、例えば、バチルス・サチラス等を挙げることができる。ミクロバクテリウム属に属する微生物として、例えば、ミクロバクテリウム・アンモニアフィラム等を挙げることができる。ブレビバクテリウム属に属する微生物として、例えば、ブレビバクテリウム・ディバリカタム等を挙げることができる。コリネバクテリウム属に属する微生物として、例えば、コリネバクテリウム・アンモニアゲネス等を挙げることができる。シュードモナス(Pseudomonas)属に属する微生物として、例えば、シュードモナス・プチダ等を挙げることができる。
原核生物を宿主とする場合、改変フィブロインをコードする核酸を導入するベクターとしては、例えば、pBTrp2(ベーリンガーマンハイム社製)、pGEX(Pharmacia社製)、pUC18、pBluescriptII、pSupex、pET22b、pCold、pUB110、pNCO2(特開2002−238569号公報)等を挙げることができる。
真核生物の宿主としては、例えば、酵母及び糸状真菌(カビ等)を挙げることができる。酵母としては、例えば、サッカロマイセス属、ピキア属、シゾサッカロマイセス属等に属する酵母を挙げることができる。糸状真菌としては、例えば、アスペルギルス属、ペニシリウム属、トリコデルマ(Trichoderma)属等に属する糸状真菌を挙げることができる。
真核生物を宿主とする場合、改変フィブロインをコードする核酸を導入するベクターとしては、例えば、YEp13(ATCC37115)、YEp24(ATCC37051)等を挙げることができる。上記宿主細胞への発現ベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. Sci. USA,69,2110(1972)〕、エレクトロポレーション法、スフェロプラスト法、プロトプラスト法、酢酸リチウム法、コンピテント法等を挙げることができる。
発現ベクターで形質転換された宿主による核酸の発現方法としては、直接発現のほか、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。
改変フィブロインは、例えば、形質転換された宿主を培養培地中で培養し、培養培地中に改変フィブロインを生成蓄積させ、該培養培地から採取することにより製造することができる。形質転換された宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。
宿主が、大腸菌等の原核生物又は酵母等の真核生物である場合、培養培地として、該宿主が資化し得る炭素源、窒素源及び無機塩類等を含有し、該宿主の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。
炭素源としては、該宿主が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、及びこれらを含有する糖蜜、デンプン及びデンプン加水分解物等の炭水化物、酢酸及びプロピオン酸等の有機酸、並びにエタノール及びプロパノール等のアルコール類を用いることができる。
窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。
無機塩類としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。
大腸菌等の原核生物又は酵母等の真核生物の培養は、例えば、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、例えば、15〜40℃である。培養時間は、通常16時間〜7日間である。培養中の培養培地のpHは3.0〜9.0に保持することが好ましい。培養培地のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。
また、培養中必要に応じて、アンピシリン及びテトラサイクリン等の抗生物質を培養培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル−β−D−チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。
形質転換された宿主により生産された改変フィブロインは、タンパク質の単離精製に通常用いられている方法で単離及び精製することができる。例えば、改変フィブロインが、細胞内に溶解状態で発現した場合には、培養終了後、宿主細胞を遠心分離により回収し、水系緩衝液にけん濁した後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー及びダイノミル等により宿主細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、タンパク質の単離精製に通常用いられている方法、すなわち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)−セファロース、DIAION HPA−75(三菱化成社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、S−Sepharose FF(Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の方法を単独又は組み合わせて使用し、精製標品を得ることができる。
上記クロマトグラフィーとしては、フェニル−トヨパール(東ソー)、DEAE−トヨパール(東ソー)、セファデックスG−150(ファルマシアバイオテク)を用いたカラムクロマトグラフィーが好ましく用いられる。
また、改変フィブロインが細胞内に不溶体を形成して発現した場合は、同様に宿主細胞を回収後、破砕し、遠心分離を行うことにより、沈殿画分として改変フィブロインの不溶体を回収する。回収した改変フィブロインの不溶体は蛋白質変性剤で可溶化することができる。該操作の後、上記と同様の単離精製法により改変フィブロインの精製標品を得ることができる。
改変フィブロインが細胞外に分泌された場合には、培養上清から改変フィブロインを回収することができる。すなわち、培養物を遠心分離等の手法により処理することにより培養上清を取得し、該培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。
以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
〔タンパク質の製造〕
(1)発現ベクターの作製
紡糸原液に含まれるタンパク質として、ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号15を有する改変フィブロイン(以下、「PRT799」ともいう。)を設計した。なお、配列番号15で示されるアミノ酸配列は、ネフィラ・クラビペス由来のフィブロインのアミノ酸配列に対して、生産性の向上を目的としてアミノ酸残基の置換、挿入及び欠失を施したアミノ酸配列を有し、さらにN末端に配列番号12で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されている。
次に、設計した配列番号15で示されるアミノ酸配列を有する改変フィブロインPRT799をコードする核酸を合成した。当該核酸には、5’末端にNdeIサイト及び終止コドン下流にEcoRIサイトを付加した。当該核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、それぞれタンパク質発現ベクターpET−22b(+)に組換えて発現ベクターを得た。
(2)タンパク質の発現
(1)で得られた発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表4)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
Figure 2020122237
当該シード培養液を500mLの生産培地(表5)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。
Figure 2020122237
生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル−β−チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、改変フィブロインを発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS−PAGEを行い、IPTG添加に依存した目的とするクモ糸フィブロインサイズのバンドの出現により、目的とする改変フィブロインタンパク質の発現を確認した。
(3)タンパク質の精製
IPTGを添加してから2時間後に回収した菌体を20mM Tris−HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris−HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社製)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris−HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris−HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収することにより、目的の改変フィブロインタンパク質(PRT799)を得た。
〔繊維の製造及び評価〕
(試験例1)
ギ酸を溶媒として、得られたタンパク質PRT799を加えて攪拌し、溶解させて、タンパク質濃度が10質量%である紡糸原液を作製した。また、99.8質量%メタノール及びギ酸を体積比8:2で含む溶液を凝固液として調製した。
図1A及びBに示す二重管構造のノズルを紡糸ノズルとして用い、内管に紡糸原液を、外管に凝固液を、それぞれ内管及び外管に通じるシリンジポンプを用いて送流した。内管を流れる紡糸原液の流速を10μL/分とし、外管を流れる凝固液の外管の延伸部203(流路d)における線速度を表7に示すように、1.6m/秒〜8.5m/秒の間で変化させて、それぞれの線速度においてタンパク質繊維を製造した。吐出口から吐出されたタンパク質繊維をメタノール溶液に回収した後、純水で洗浄した。得られたタンパク質繊維の繊維径を測定した。
なお、実施例に用いたノズルでは、図1Aで示される、内管の内径D1を130μm、外管上部の内径D2を800μm、外管上部と内管上部との間の流路bの幅D3を145μm、外管の延伸部の内径D4を200μm、外管の延伸部の長さL1を1000μm、外管の吐出部の内径D5を500μm、内管の吐出口から外管の吐出口までの長さL2を5000μmとした。
(試験例2)
凝固液を、ギ酸を含まない、99.8質量%メタノール溶液に変更したこと以外は試験例1と同様にして、タンパク質繊維を作製し、繊維径を測定した。
(試験例3)
紡糸原液の溶媒を、ヘキサフルオロイソプロパノール(HFIP)と、1−エチル−3−メチルイミダゾリウムジエチルホスフェート([Emim][DEP])とを、質量比35:1で含む溶液に変更したこと以外は、試験例2と同様にして、タンパク質繊維を作製し、繊維径を測定した。
(試験例4)
紡糸原液の溶媒を、ヘキサフルオロイソプロパノール(HFIP)と、1−エチル−3−メチルイミダゾリウムアセテート([Emim][OAc])とを質量比35:1で含む溶液に変更したこと以外は、試験例2と同様にして、タンパク質繊維を作製し、繊維径を測定した。
(試験例5)
紡糸原液の溶媒を、ジメチルスルホキシド(DMSO)に変更したこと以外は、試験例2と同様にして、タンパク質繊維を作製し、繊維径を測定した。
(試験例6)
紡糸原液におけるタンパク質の濃度を8質量%に変更したこと以外は、試験例3と同様にして、タンパク質繊維を作製し、繊維径を測定した。
(試験例7)
紡糸原液におけるタンパク質の濃度を20質量%に変更したこと以外は、試験例1と同様にして、タンパク質繊維を作製し、繊維径を測定した。
各試験例における紡糸原液及び凝固液の組成を表6に、平均繊維径を表7に示す。
Figure 2020122237
Figure 2020122237
表7より、試験例1〜7において、細径のタンパク質繊維を得ることができた。
特に、外管を流れる凝固液の線速度を1.6m/秒よりも速くした場合、1.6m/秒の場合と比べて、繊維径が顕著に細くなった。その傾向は、紡糸原液の溶媒が、ギ酸、又はHFIPとイオン液体との混合溶液である場合(試験例1〜4、6、7)においてさらに強かった。
また、紡糸原液におけるタンパク質の濃度が10質量%又は8質量%である試験例1〜6は、タンパク質の濃度が20質量%である試験例7に比べて、得られる繊維がより細い傾向にあった。
20…外管、30…内管、100…ノズル、210…外管上部、202…テーパ部、203…延伸部、204…吐出部、220…外管下部、240…流入口、250…吐出口、310…内管上部、320…テーパ部、340…流入口、350…吐出口。

Claims (9)

  1. 内管に紡糸原液を流す工程と、
    前記内管を取り囲む外管に凝固液を流す工程と、
    前記内管の吐出口から吐出された前記紡糸原液と、前記凝固液とを、流しながら接触させて、前記紡糸原液からタンパク質繊維を形成させる工程とを含み、
    前記紡糸原液がタンパク質を含む、タンパク質繊維の製造方法。
  2. 前記紡糸原液の溶媒が、ギ酸又はヘキサフルオロイソプロパノールを含む、請求項1に記載の方法。
  3. 前記紡糸原液の溶媒が、イオン液体をさらに含む、請求項1又は2に記載の方法。
  4. 前記凝固液が、メタノール、又は、メタノール及びギ酸の混合溶液を含む、請求項1〜3のいずれか一項に記載の方法。
  5. 前記外管を流れる前記凝固液の線速度が1.6m/秒超である、請求項1〜4のいずれか一項に記載の方法。
  6. 前記紡糸原液における前記タンパク質の濃度が20質量%未満である、請求項1〜5のいずれか一項に記載の方法。
  7. 前記タンパク質がフィブロインを含む、請求項1〜6のいずれか一項に記載の方法。
  8. 前記フィブロインがクモ糸フィブロインである、請求項7に記載の方法。
  9. 前記フィブロインが改変フィブロインである、請求項7又は8に記載の方法。
JP2019014565A 2019-01-30 2019-01-30 タンパク質繊維の製造方法 Pending JP2020122237A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019014565A JP2020122237A (ja) 2019-01-30 2019-01-30 タンパク質繊維の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014565A JP2020122237A (ja) 2019-01-30 2019-01-30 タンパク質繊維の製造方法

Publications (1)

Publication Number Publication Date
JP2020122237A true JP2020122237A (ja) 2020-08-13

Family

ID=71992350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014565A Pending JP2020122237A (ja) 2019-01-30 2019-01-30 タンパク質繊維の製造方法

Country Status (1)

Country Link
JP (1) JP2020122237A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023214570A1 (ja) * 2022-05-02 2023-11-09 株式会社ファーマフーズ 水難溶性タンパク質を溶解する方法、それによって得られるタンパク質溶液、およびその成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023214570A1 (ja) * 2022-05-02 2023-11-09 株式会社ファーマフーズ 水難溶性タンパク質を溶解する方法、それによって得られるタンパク質溶液、およびその成形体

Similar Documents

Publication Publication Date Title
JP7454853B2 (ja) タンパク質繊維の製造方法
JP2020097796A (ja) 人造フィブロイン繊維
WO2020162627A1 (ja) 人造構造タンパク質繊維の製造方法
CN112469298B (zh) 人工毛发用纤维及其制造方法、以及人工毛发
WO2019151429A1 (ja) タンパク質繊維の製造方法
JP7281139B2 (ja) タンパク質繊維の製造方法
WO2020158900A1 (ja) 人工毛髪用繊維を製造する方法、人工毛髪を製造する方法、人工毛髪用繊維、及び人工毛髪
WO2020158897A1 (ja) 人工毛髪用繊維、人工毛髪、人工毛髪用繊維を製造する方法、及び人工毛髪を製造する方法
JP2020122237A (ja) タンパク質繊維の製造方法
JP7367977B2 (ja) タンパク質捲縮ステープルの製造方法
JP7228220B2 (ja) 吸湿発熱性付与剤、及び吸湿発熱性を付与する方法
WO2019151437A1 (ja) タンパク質紡績糸の製造方法
JP2021055222A (ja) ボイドが形成された細径繊維
JPWO2019066053A1 (ja) タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法
JPWO2019066047A1 (ja) タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法
JP7458619B2 (ja) フィブロイン繊維の製造方法及びフィブロイン溶液
JP7287621B2 (ja) 改変フィブロイン繊維及びその製造方法
WO2019151432A1 (ja) 油剤付着タンパク質捲縮繊維の製造方法
JP2020122248A (ja) フィブロイン繊維の製造方法及びフィブロイン溶液
JP2022024198A (ja) 異形断面タンパク質繊維の製造方法及び形状コントロール方法
JP2020121962A (ja) タンパク質フィルム及びタンパク質フィルムの製造方法
JP2022001669A (ja) タンパク質繊維の製造方法
JP2021167277A (ja) 人造フィブロイン繊維
JP2021055197A (ja) タンパク質繊維の製造方法
JP7345155B2 (ja) 保温性付与剤、及び物品に保温性を付与する方法