WO2020162171A1 - 印字システム、印字装置、印字方法およびプログラム - Google Patents

印字システム、印字装置、印字方法およびプログラム Download PDF

Info

Publication number
WO2020162171A1
WO2020162171A1 PCT/JP2020/002040 JP2020002040W WO2020162171A1 WO 2020162171 A1 WO2020162171 A1 WO 2020162171A1 JP 2020002040 W JP2020002040 W JP 2020002040W WO 2020162171 A1 WO2020162171 A1 WO 2020162171A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
printing
print
controller
work
Prior art date
Application number
PCT/JP2020/002040
Other languages
English (en)
French (fr)
Inventor
達典 阪本
文崇 大田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to DE112020000705.7T priority Critical patent/DE112020000705T5/de
Priority to CN202080010407.6A priority patent/CN113348088B/zh
Publication of WO2020162171A1 publication Critical patent/WO2020162171A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/475Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material for heating selectively by radiation or ultrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects

Definitions

  • the present invention relates to a printing system, a printing device, a printing method, and a program.
  • Patent Document 1 Japanese Patent Laying-Open No. 2016-36840 discloses a laser printing apparatus that prints a desired character at a predetermined printing scheduled position on the surface of a work by scanning a laser beam on the surface of the work. ..
  • the printing device When the type or material of the object is changed, it may be necessary to change the printing conditions such as the printing position or the height of the printing surface. In order to realize such a change, the printing device may be modified or changed. Even if the device does not need to be modified, it may be necessary to change the software settings. Therefore, there is a problem that cost and man-hours are required to change the setting of the printing condition.
  • An object of the present invention is to provide an apparatus and method that can more flexibly change printing conditions according to an object.
  • a printing system moves a marker for printing on an object and the marker so that the relative position between the object and the marker can be changed with three or more degrees of freedom.
  • a second setting unit which is provided inside or outside the controller and which sets the control program of the controller based on the print parameters and the information about the three-dimensional shape and position of the object.
  • the marker can change the relative position with respect to the object with three or more degrees of freedom by the marker moving device. Therefore, it is possible to print on various positions of the object. Further, it is possible to print in a wider range than the printable range of the marker itself. Alternatively, it is possible to print not only on a stationary object but also on a moving object.
  • the control program of the controller By setting the control program of the controller, the conditions for such printing can be set. The control program can be set based on the print parameters and the information regarding the three-dimensional shape and position of the object. Therefore, the printing conditions can be changed without modifying the device.
  • printing means adding characters, symbols, figures, codes, etc. to an object.
  • the print parameter includes individual identification information of the object.
  • the first setting unit sets the individual identification information by receiving an instruction from the outside.
  • individual identification information can be attached to a desired position of an object.
  • the print parameters include the print position with respect to the reference position of the object and the print direction from the reference position.
  • printing can be performed in any direction at a desired position on the object.
  • the second setting unit further sets the moving speed of the object, the movable range of the marker moving device, the three-dimensional shape of the marker moving device and the three-dimensional shape of the marker, and the printable distance of the marker.
  • the control program is set based on at least one of the range and the information.
  • the printing system includes a sensor that measures the position of the object.
  • the second setting unit determines the target position of the marker based on the position of the object measured by the sensor.
  • the target position of the marker can be determined based on the measurement result of the sensor, it is possible to move the marker to the target position and print on the object. Therefore, it is possible to print at a predetermined printing position on the object.
  • the controller controls the marker and the marker moving device so as to execute printing step by step while changing the relative position between the object and the marker.
  • printing can be performed in stages while changing the printing position. For example, when the surface of the object has undulations or when the surface of the object is a curved surface, the distance between the printing surface and the marker is not constant. In such a case, if the work is printed on the assumption that the distance between the print surface and the marker is constant, the print quality may deteriorate. However, by printing in stages, it is possible to always print under desirable printing conditions. Therefore, it is possible to suppress deterioration of print quality.
  • the second setting unit is configured to determine whether or not it is possible to print on the target object based on the information on the three-dimensional shape and position of the target object.
  • the printing system further includes a notification unit that notifies the user of the result of the determination made by the second setting unit.
  • the user can know whether or not it is possible to print on the target object before the actual printing.
  • the print parameter includes print position information with redundancy.
  • the controller controls the marker and the marker moving device so as to adjust the print position based on the measurement result of the sensor and the print position information.
  • the marker and the marker moving device can be controlled based on the measurement result of the sensor and the printing position information so that the printing is performed on the printable position of the object. Therefore, for example, it is possible to print on an object having a complicated shape.
  • the marker is a laser marker. According to this disclosure, in printing using a laser marker, it is possible to flexibly change the printing condition according to the object. This makes it possible to provide a convenient laser marker.
  • a printing apparatus includes a marker unit for printing on an object and a marker unit for changing the relative position between the object and the marker unit with three or more degrees of freedom.
  • a marker moving unit for moving the marker and a controller for controlling the marker unit and the marker moving unit by executing a control program, wherein the controller is a print parameter and the target object acquired by the target object information acquiring unit.
  • the marker unit and the marker moving unit are controlled so that printing is performed at a predetermined position of the object based on the three-dimensional shape and position of the marker.
  • the marker unit can change the relative position with respect to the target object with three or more degrees of freedom by the marker moving unit.
  • the control program of the control unit it is possible to set the conditions for such printing.
  • the control program can be set based on the print parameters and the information regarding the three-dimensional shape and position of the object. Therefore, the printing conditions can be changed without modifying the device.
  • a printing method includes a marker, a marker moving device that moves the marker so that the relative position between the marker and the object can be changed with three or more degrees of freedom, and a controller.
  • This is a printing method using a printing system provided.
  • the printing method includes a step of acquiring information about a three-dimensional shape and a position of an object, a step of setting a printing parameter, a printing parameter, and a control program of a controller based on the three-dimensional shape and the position of the object.
  • the step of setting and the step of controlling the marker and the marker moving device to print on the object by executing the control program by the controller are provided.
  • the step of printing includes the step of repeating printing while changing the relative position between the object and the marker.
  • printing can be performed under desirable printing conditions by printing repeatedly while changing the printing position. Therefore, it is possible to suppress deterioration of print quality.
  • the print parameter includes print position information with redundancy.
  • the printing method includes controlling the marker and the marker moving device to adjust the printing position based on the three-dimensional shape of the object, the position of the object, and the printing position information.
  • the marker and the marker moving device can be controlled based on the measurement result of the sensor and the printing position information so that the printing is performed on the printable position of the object. Therefore, for example, it is possible to print on an object having a complicated shape.
  • a program causes a controller to acquire a information regarding a three-dimensional shape and a position of an object, a printing parameter, and a marker and a marker based on the three-dimensional shape and the position of the object. And a marker moving device that moves a marker so that the relative position to the object can be changed with three or more degrees of freedom, and a step of printing on the object is executed. ..
  • the step of printing includes the step of repeating printing while changing the relative position between the object and the marker.
  • printing can be performed under desirable printing conditions by printing repeatedly while changing the printing position. Therefore, it is possible to suppress deterioration of print quality.
  • the print parameter includes print position information with redundancy
  • the printing step controls the marker and the marker moving device based on the three-dimensional shape of the object, the position of the object, and the print position information. And adjusting the printing position.
  • the marker and the marker moving device can be controlled based on the measurement result of the sensor and the printing position information so that the printing is performed on the printable position of the object. Therefore, for example, it is possible to print on an object having a complicated shape.
  • FIG. 6 is a flowchart showing a flow of processing of the printing system according to the present embodiment. It is a schematic diagram explaining the shape of the conveyor used for printing on the back surface of the work. It is a schematic diagram explaining the structure of the tray used for printing on the back surface of the work.
  • FIG. 6 is a schematic diagram for explaining printing when the surface of the work W is a curved surface. It is a figure explaining printing on the side surface of a work. It is a figure for demonstrating the coordinate conversion from an observation coordinate system to a marker coordinate system.
  • FIG. 6 is a diagram showing an example of a setting screen for setting print parameters. It is a figure showing an example of designation of a printing position in a work. 6 is a flowchart showing an example of a flow of determination of printability. It is a figure which shows another example of determination of printing propriety.
  • FIG. 6 is a top view of an exemplary tray having a plurality of workpieces arranged therein. It is a side view of each work shown in FIG. It is a block diagram of a system in which the printing system according to the present embodiment and a reader are combined.
  • FIG. 1 is a block diagram showing one configuration example of a printing system according to this embodiment.
  • the printing system 100 includes a laser marker 10, a robot 20, a sensor 30, a controller 40, a setting device 50, a host system 60, and a network 70.
  • the work W moves on the production line by a conveyor (not shown).
  • the manufacturing process to which the printing system 100 is applied is not particularly limited.
  • the laser marker 10 is a marker for printing on the work W which is the target.
  • a laser marker is applied as the marker.
  • the marker may be an inkjet type marker.
  • the print pattern is not particularly limited.
  • the print pattern may be a pattern consisting of human readable symbols (for example, symbols such as alphanumeric characters), may be an information symbol such as QR code (registered trademark), or may be any figure, straight line, curve or point. ..
  • the robot 20 is a marker moving device for moving the laser marker 10.
  • the laser marker 10 is attached to the robot 20.
  • the robot 20 moves the laser marker 10 so that the relative position between the object (workpiece W) and the laser marker 10 can be changed with three or more degrees of freedom.
  • the degree of freedom of the robot may be 3 or more and is not particularly limited. Therefore, the type of robot is not limited. Any of a vertical articulated robot, a SCARA robot, and an orthogonal robot can be applied to this embodiment.
  • the robot 20 is an articulated robot arm.
  • the method of fixing the robot 20 is not particularly limited.
  • the robot 20 may be a robot that is hung from above or a type that is laid on the floor.
  • a plurality of robot axes may be combined in order to change the relative position between the object and the laser marker 10 with three or more degrees of freedom.
  • the robot 20 may be a vertical articulated robot that moves on a straight rail.
  • the sensor 30 may be a sensor that acquires information about the three-dimensional shape and position of the work W.
  • the sensor 30 may sense one or both of the work W and the environment (for example, a conveyor or a tray). Therefore, various known sensors can be applied to this embodiment.
  • An image sensor, a displacement sensor, a 3D sensor, an optical symbol reader, a photoelectric sensor, a rotary encoder, or the like can be applied as the sensor 30, but the type of the sensor 30 is not limited to these.
  • the sensor 30 may be attached to the robot 20 or may be installed separately from the robot 20.
  • the number of sensors 30 is not limited.
  • the sensor 30 may be realized by combining a plurality of types of sensors.
  • the controller 40 controls the laser marker 10 and the robot 20 by executing a control program. Specifically, the controller 40 acquires information about the work W or the environment (detection of arrival of work, image information, 3D information, etc.) from the sensor 30. The controller 40 controls the robot 20 based on the information, and changes the position and orientation of the laser marker 10 according to the work W. Further, the controller 40 controls the laser marker 10 to print on the work W.
  • controller 40 is not limited to being realized by one device.
  • controller 40 may include a controller for laser marker 10 and a controller for robot 20.
  • the setting device 50 sets the laser marker 10, the sensor 30, and the controller 40.
  • the setting device 50 can be realized by, for example, a personal computer (PC) and a monitor.
  • the setting device 50 includes a first setting unit 51 and a second setting unit 52.
  • the first setting unit 51 sets print parameters for printing with the laser marker 10.
  • the second setting unit 52 sets the control program executed by the controller 40 based on the print parameter, the three-dimensional shape information of the work W, and the position information of the work W. As a result, the printing conditions can be changed.
  • the configuration of the setting device 50 is not limited to the above.
  • the second setting unit 52 sets the print parameter, and the first setting unit 52 causes the controller 40 to operate based on the print parameter, the three-dimensional shape information of the work W, and the position information of the work W.
  • the control program to be executed may be set.
  • the method for the second setting unit 52 to acquire the position information of the work W and the three-dimensional shape information of the work W is not particularly limited.
  • the second setting unit 52 may acquire information on the three-dimensional shape of the work W and information on the position of the work W from the sensor 30.
  • the second setting unit 52 may acquire information on the three-dimensional shape of the work W from the host system 60.
  • the three-dimensional shape information of the work W acquired from the host system 60 may be the three-dimensional CAD information of the work W.
  • At least one of the first setting unit 51 and the second setting unit 52 may be included in a device other than the setting device 50.
  • the host system 60 may include at least one of the first setting unit 51 and the second setting unit 52.
  • the controller 40 may include at least one of the first setting unit 51 and the second setting unit 52.
  • the host system 60 transmits production instruction information (for example, product type, serial number, etc.) to the controller 40.
  • production instruction information for example, product type, serial number, etc.
  • the controller 40, the setting device 50, and the host system 60 can communicate with each other through the network 70.
  • the robot 20 can move the laser marker 10 according to the shape or position of the work W. Therefore, even if the shape of the work W is complicated, it is possible to print at a predetermined print scheduled position on the work W. Alternatively, it is possible to print on the surface of the work (for example, the back surface) which has been difficult to print in the past. Alternatively, even when the print target area on the surface of the work is larger than the printable area of the laser marker, printing can be performed at a predetermined print scheduled position on the work W.
  • the movement of the laser marker 10 by the robot 20 and the movement of the work W can be synchronized.
  • the moving speed of the laser marker 10 can be the same as the moving speed of the work W, the printing system 100 can print on the surface of the moving work W.
  • the printing conditions of the printing system 100 can be flexibly changed according to the object. Therefore, it is possible to print according to the object without complicated modification or change of the system or apparatus.
  • the embodiment of the present invention can also be realized as a printing device.
  • the laser marker 10, the robot 20, and the controller 40 respectively realize the “marker unit”, the “marker moving unit”, and the “control unit” of the printing device according to the embodiment.
  • FIG. 2 is a diagram showing a hardware configuration of the controller 40 shown in FIG.
  • the controller 40 includes a processor 2, a ROM (Read Only Memory) 3 for storing the BIOS and various data, a RAM 4, and a storage device 5.
  • the processor 2 reads the control program 9 stored in the storage device 5 and expands the control program 9 in the RAM (Random Access Memory) 4.
  • RAM Random Access Memory
  • the processor 2 reads the control program 9 stored in the storage device 5 and expands the control program 9 in the RAM (Random Access Memory) 4.
  • a configuration example in which necessary processing is realized by the processor 2 executing a program will be described. However, some or all of the provided processing may be performed by a dedicated hardware circuit (for example, ASIC or FPGA). ) May be used for implementation.
  • the storage device 5 stores programs executed by the processor 2 in a non-volatile manner.
  • the storage device 5 is a non-volatile device such as SSD (Solid State Drive), and holds a control program 9 for realizing various functions executed by the processor 2.
  • the controller 40 can further include a communication interface 6, an I/O (Input/output) interface 7, and an R/W (reader/writer) device 8.
  • the communication interface 6 is an interface for the controller 40 to communicate with external devices (such as the setting device 50 and the host system 60) via the network 70.
  • the I/O interface 7 is an interface for input to the controller 40 or output from the controller 40.
  • the I/O interface 7 is connected to the input device 44 and the display 45, and receives information input by the user operating the input device 44.
  • the display 45 displays information regarding the operation of the controller 40.
  • the external storage medium 43 can be detachably attached to the R/W (reader/writer) device 8.
  • the storage medium 43 accumulates information such as a program by an electrical, magnetic, optical, mechanical, or chemical action so that the computer or other device, machine, or the like can read the information such as the recorded program. It may be a medium.
  • the controller 40 may acquire the control program 9 from the storage medium 43.
  • the controller 40 may include at least one of the first setting unit 51 and the second setting unit 52.
  • the controller 40 can be realized as a device including the first setting unit 51 and the second setting unit 52 by the processor 2 of the controller 40 executing a necessary program.
  • the setting device 50 can be realized by a computer. Therefore, the basic hardware configuration of the setting device 50 is the same as the configuration shown in FIG.
  • the computer can be realized as the setting device 50 including the first setting unit 51 and the second setting unit 52 by causing the processor of the computer to execute the necessary program.
  • the laser marker is a device that prints on a work by irradiating the surface of the work with laser light.
  • FIG. 3 is a diagram showing a first configuration example of the laser marker shown in FIG.
  • the laser marker 10 includes a laser light source 11 and an optical system 12.
  • the laser light source 11 and the optical system 12 are housed in a housing 13.
  • the laser light source 11 generates laser light having a desired wavelength and a desired power.
  • the type of laser light source 11 is not limited.
  • the laser light source 11 may be a solid-state laser, a gas laser, a fiber laser, or the like.
  • the fiber laser may be a MOPA (Master Oscillator Power Amplifier) type laser.
  • the optical system 12 can include, for example, a lens that focuses a laser light beam.
  • the optical system 12 may include optical elements other than the above optical elements.
  • the optical system 12 may include a galvanometer mirror for scanning a laser beam.
  • FIG. 4 is a diagram showing a second configuration example of the laser marker shown in FIG.
  • the laser marker 10 is separated into a main body 15 and a head 16.
  • the main body 15 houses the laser light source 11, and the head 16 houses the optical system 12.
  • the laser light source 11 and the optical system 12 are connected by a cable 14.
  • the cable 14 can include an optical fiber for propagating the laser light generated by the laser light source 11 to the optical system 12.
  • the main body 15 is placed on the floor, for example, and the head 16 is attached to the robot 20.
  • the size and weight of the head 16 can be reduced, which is advantageous in terms of moving the laser marker by the robot 20. Therefore, it is possible to further reduce the restrictions when changing the printing conditions of the printing device.
  • the controller 40 Prior to printing on the work W, the controller 40 is set. Referring back to FIG. 1, the controller 40 acquires the print parameter. In this embodiment, the print parameters are set for each type of work W. The controller 40 acquires the print parameter from the first setting unit 51 of the setting device 50. The host system 60 may have the first setting unit 51. In this case, the controller 40 acquires print parameters from the host system 60.
  • the print parameters can include the print position with respect to the reference position of the work and the print direction from the reference position.
  • the information included in the print parameter is not limited to the above information.
  • the print parameters may include print format.
  • FIG. 5 is a schematic diagram for explaining the operation of the printing system during operation of the printing system.
  • the controller 40 acquires the product type and serial number of the work W to be input to the line.
  • the product type and the serial number of the work W are sent from the host system 60 to the controller 40, for example.
  • the work W is moved by the conveyor 80 (see symbols (1) to (3) in FIG. 5).
  • a sensor 31 for detecting the speed of the conveyor 80 (that is, the moving speed of the work W) is installed on the conveyor 80.
  • the sensor 31 is, for example, a rotary encoder.
  • the sensor 32 is a trigger sensor.
  • the sensor 32 detects the work W
  • the sensor 32 sends a signal to the controller 40.
  • the controller 40 controls the robot 20 and the laser marker 10.
  • the sensor 32 is installed above the conveyor 80, but the installation direction of the sensor 32 is appropriately adjusted for each system. Therefore, the installation direction of the sensor 32 is not limited to the upward direction.
  • the controller 40 controls the robot 20 using the 3D shape information of the work W and the printing position information. Specifically, the controller 40 controls the robot 20 to move the robot arm on which the laser marker 10 is attached to a predetermined position. Then, the controller 40 controls the laser marker 10 to print on the work W.
  • Information on the 3D shape of the work W may be acquired in advance by teaching or the like.
  • the three-dimensional CAD information of the work W may be acquired in advance as the 3D shape information of the work W from the host system 60.
  • the 3D shape information of the work W may be acquired by the sensor 33 mounted on the robot 20 each time the printing process is executed.
  • the sensor 33 can be an image sensor or a 3D sensor.
  • the controller 40 may correct the previously acquired information of the work W by using the information of the shape of the work W acquired by the sensor 33.
  • FIG. 6 is a flowchart showing the flow of processing of the printing system according to this embodiment.
  • the printing system 100 executes the printing method by executing the processing according to this flowchart.
  • step S1 print parameters are set.
  • the first setting unit 51 sets the print parameters for printing on the work W.
  • step S2 the second setting unit 52 acquires the 3D shape information of the work W and the position information of the work W.
  • the control program of the controller 40 is set based on the acquired information.
  • step S2 the sensor 33 shown in FIG. 5 can acquire the 3D shape information of the work W and the position information of the work W in advance.
  • the 3D shape information of the work W and the position information of the work W may be acquired in advance by teaching.
  • the three-dimensional CAD information of the work W may be acquired in advance as the 3D shape information of the work W from the host system 60.
  • steps S1 and S2 are not limited to being executed in the order shown in FIG.
  • the process of step S2 may be executed first and the process of step S1 may be executed later.
  • step S11 the controller 40 acquires the type of work W and the serial number.
  • step S11 the controller 40 may acquire only the type of the work W.
  • step S12 the work W is detected by the sensor 32.
  • step S13 the controller 40 controls the robot 20 using the information on the 3D shape of the work W and the information on the print position. Thereby, the laser marker 10 moves to a predetermined position.
  • the controller 40 controls the laser marker 10 according to the print parameters. As a result, the laser marker 10 prints on the work W.
  • step S13 the process returns to step S11 for printing on the next work.
  • the controller 40 can obtain the moving speed of the work W from the detection value of the sensor 31.
  • the controller 40 further acquires information about the time when the work W is detected by the sensor 32, the position where the work W is detected, and the time required for the robot 20 to move the laser marker 10 to a predetermined position. Based on the information, the controller 40 can determine the target position (target value) of the movement destination of the sensor 33 and the laser marker 10. By moving the laser marker 10 to the target position, it is possible to print at a predetermined print position on the work W.
  • a laser beam scanning type laser marker printing is performed on the work W by scanning the laser beam.
  • the laser marker 10 is a laser beam scanning type laser marker
  • the relative speed between the work W and the laser marker 10 is large, a good printing result may not be obtained.
  • the robot arm may be moved so that the relative speed of the laser marker 10 with respect to the work W becomes as small as possible (the relative speed approaches 0). As a result, it is possible to prevent the print quality from deteriorating.
  • the controller 40 may control the robot 20 based on a preset route.
  • Various methods can be used to set the movement path of the robot 20.
  • an optimum path can be set in advance based on the three-dimensional shape information of the work W and the print position on the work W.
  • information on the three-dimensional shape of the work W for example, information on the three-dimensional CAD of the work W may be used.
  • 3D information may be obtained by measuring the work W and its surrounding environment with a 3D sensor, and the route may be dynamically calculated from the obtained 3D information.
  • the device that executes the calculation of the route is not particularly limited.
  • the controller 40 may dynamically calculate the route from the three-dimensional information.
  • the setting device 50 can also calculate the route.
  • the controller 40 may control the robot 20 based on the calculated route.
  • the robot 20 can move the laser marker 10 with three or more degrees of freedom, so that the workpiece W can be irradiated with laser light from various directions.
  • the shape of the conveyor or tray (base) it is possible to print on the back surface or side surface of the work W.
  • FIG. 7 is a schematic diagram illustrating the shape of the conveyor used for printing on the back surface of the work W.
  • FIG. 8 is a schematic diagram illustrating the structure of a tray used for printing on the back surface of the work W. As shown in FIGS. 7 and 8, the tray 81 on which the work W is placed is moved by the rail-shaped conveyor 80.
  • the tray 81 has a frame structure.
  • the controller 40 controls the robot 20 so that the laser marker 10 (not shown) is arranged below the conveyor 80. This enables printing on the back surface of the work W.
  • the controller 40 may further control the robot 20 so that the laser marker 10 moves in synchronization with the moving speed of the conveyor 80.
  • the controller 40 can receive a product type switching instruction. In this case, the controller 40 may cause the robot 20 to wait at a predetermined position until the next work arrives. With respect to the standby position, the controller 40 may calculate the optimum standby position for each product type.
  • the standby position can be determined based on, for example, information on the three-dimensional shape of the work, the printing position, the moving speed of the work W (speed of the conveyor 80), and the like. By calculating the optimum position and waiting the robot 20 at that position, the movement path of the robot 20 can be shortened. For example, it is possible to easily print the work on a line where the work W flows at high speed.
  • the product type switching instruction may be sent from the upper system 60 to the controller 40.
  • an RFID tag that issues a product type switching instruction may be attached to the tray 81.
  • the controller 40 may determine the standby position of the robot 20 according to the instruction from the RFID tag.
  • ⁇ Printing on uneven or curved surface If the surface of the work W is uneven or if the surface of the work W is a curved surface, the distance between the print surface and the laser marker is not constant. A general laser marker has a shallow depth of focus. Therefore, if printing is performed on an uneven surface or a curved surface on the assumption that the distance between the printing surface and the laser marker is constant, the printing quality may deteriorate. In this embodiment, printing is performed stepwise while changing the relative position between the work W and the laser marker 10.
  • FIG. 9 is a schematic diagram for explaining printing when the surface of the work W is a curved surface.
  • a part of the curved surface of the work W is the printing range.
  • the controller 40 controls the robot 20 so that the laser marker 10 moves along the direction of the axis A perpendicular to the printing surfaces M1, M2, M3, M4, and the printing range of the work W.
  • the laser marker 10 is controlled so as to print only the portion of the laser light which is in focus.
  • the axis A may coincide with the optical axis of the laser light beam emitted from the laser marker 10.
  • the printing surfaces M1, M2, M3, M4 are virtual planes, and are determined based on the printable range of the laser marker 10.
  • the printing order is not limited as described above.
  • the printing is performed within the printing range with the laser light always in focus. This makes it possible to avoid deterioration of print quality.
  • the laser marker 10 shown in FIG. 9 can two-dimensionally scan the laser light while adjusting the focus of the laser light.
  • the present embodiment is not limited to the fact that a laser marker having such specifications is necessary in order to print on an uneven surface or a curved surface.
  • the laser marker is not limited to being able to scan the laser beam in the two-dimensional direction.
  • the laser marker may scan the laser beam in a one-dimensional direction. For example, when the surface of the work W has a cylindrical side surface and printing is performed in an arc shape along the surface, it is possible to print on the surface of the work W by moving the robot 20 along the arc. is there.
  • FIG. 10 is a diagram illustrating printing on the side surface of the work W1.
  • the print range W11 is a part of the side surface of the work W1.
  • the attitude of the laser marker 10 is controlled so that the optical axis of the laser light beam L is parallel to the direction of the normal line to the surface of the work W1. May be. This enables printing in the print range W11. Since the distance from the laser marker 10 is constant, good print quality can be obtained. Further, since the optical axis of the laser light beam L and the printing surface are perpendicular to each other, perspective transformation distortion (trapezoidal distortion) can be reduced.
  • the print surface is flat.
  • the posture of the laser marker 10 may be controlled so that the optical axis of the laser light beam L is parallel to the direction of the normal to the curved surface.
  • the laser marker 10 is arranged in the direction of the normal to the printing surface.
  • the obstacle W2 exists in the direction of the normal to the print surface. Therefore, the laser light beam L is blocked by the obstacle W2.
  • the obstacle W2 is, for example, another work that flows along the line with the work W1.
  • the laser marker 10 irradiates the laser light beam L on the printing range W12 from a direction that is not blocked by the obstacle W2. Therefore, it is possible to print in the print range W12. However, the image appears distorted when viewed from the direction normal to the surface including the print range W12. This leads to deterioration of print quality.
  • the work W made up of a combination of flat surfaces is illustrated for the sake of easy understanding of the description, but the above-mentioned problem is not limited to what occurs when the surface of the work W is made up of only flat surfaces. .. Even if the surface of the work W is a curved surface, the same problem may occur.
  • the observation coordinate system is a coordinate system including a print surface (when the print surface is a curved surface, its tangent plane) and its normal.
  • the marker coordinate system is a coordinate system including the position of the laser marker 10 as an origin and including the optical axis direction of the laser light beam L.
  • the perspective transformation Homography Transformation
  • FIG. 11 is a diagram for explaining coordinate conversion from the observation coordinate system to the marker coordinate system.
  • the point P1 is an observation point.
  • An arbitrary point P2 on the observation coordinate system C1 is projected on the target surface of the work W.
  • the point P3 is a point obtained by projecting the point P2 onto the target surface of the work W, and is the intersection of the projection line and the target surface of the work W.
  • the coordinates of the point P4 on the marker coordinate system C2 can be obtained by perspectively transforming this intersection point (point P3) into the marker coordinate system.
  • the point P5 is a point (reference point) indicating the position of the laser marker 10.
  • the coordinate conversion between the points P2 and P4 is performed by the perspective conversion, so that the printed characters and symbols are printed. It is possible to prevent such distortion. Therefore, the print quality can be improved.
  • the depth of focus of the laser marker is shallow, in printing on the target surface, even if the printing of two-dimensionally scanning the laser light while adjusting the focus of the laser light as shown in FIG. 9 is repeatedly applied. Good.
  • the printing system 100 prints the work W according to the printing parameters.
  • the print parameters include a print position with respect to the reference position of the work and a print direction from the reference position. Further, the print parameters can include print patterns.
  • the print pattern is not particularly limited, and may be a pattern composed of human readable symbols (for example, symbols such as alphanumeric characters), information symbols such as QR code (registered trademark), arbitrary figures, and straight lines. , It may be a curve or a point.
  • the setting device 50 can set print parameters by accepting user input.
  • the user can input print parameters into the setting device 50 while referring to the setting screen.
  • FIG. 12 is a diagram showing an example of a setting screen for setting print parameters.
  • the setting device 50 causes the display to display the setting screen 55.
  • the setting screen 55 displays the laser marker 10 and the work W. For example, by inputting the three-dimensional CAD data of the work W into the setting device 50, a three-dimensional perspective image of the work W is displayed on the setting screen 55.
  • the print position W21 is displayed on the surface of the work W. Further, an edit area 57 for editing the print pattern and a tool icon 58 are displayed on the setting screen 55.
  • the user operates a pointing device such as a mouse to select a tool icon. This allows the user to set or change the print position, print direction, and print pattern.
  • the surface of the work W may be a rough surface (cast surface or the like), or the surface of the work W may be dirty. In this embodiment, it is possible to determine whether or not printing can be performed at the designated printing position prior to actual printing.
  • FIG. 14 is a flow chart showing an example of the flow of determining whether printing is possible.
  • the processing shown in this flowchart is executed by the second setting unit 52.
  • step S21 the surrounding environment of the work W is sensed to obtain information about the surrounding environment.
  • the surrounding environment of the work W can be sensed by an image sensor or a 3D sensor (corresponding to the sensor 33 shown in FIG. 5). In this case, for example, information on the three-dimensional shape and position of the work W is acquired.
  • step S22 the setting device 50 determines whether the work W interferes with the robot 20 or the sensor in the virtual space displayed on the setting screen 55 (see FIG. 12).
  • step S23 the setting device 50 notifies the user of the determination result.
  • the setting device 50 may display a message indicating the determination result on the setting screen 55.
  • the setting screen 55 can realize the notification unit.
  • an image of the surface of the work W may be acquired using an image sensor (corresponding to the sensor 33 shown in FIG. 5).
  • the setting device 50 may determine that printing cannot be performed at the designated position by analyzing the image. For example, when the surface of the work W is rough or the surface of the work W is dirty, it is determined that printing cannot be performed at the designated position.
  • the setting device 50 may specify a plurality of print positions in advance. Therefore, in this case, the print position information has redundancy.
  • the print position information has redundancy.
  • the controller 40 controls the laser marker 10 and the robot 20 according to the measurement result of the sensor and the print position information to print at the print position W32.
  • the setting device 50 may make the print range including the print position W31 wider than the original print range in advance. Even in this case, the possibility of printing on the work W can be increased.
  • the determination of printability is not limited to being performed only by the setting device 50.
  • the controller 40 may determine the printing position by searching in real time from the image on the surface of the work W for a reliable printing location.
  • the controller 40 can control the robot 20 and the laser marker 10 so that printing is performed at the determined position.
  • the laser marker 10 and the robot 20 can be controlled so as to print on the work W while avoiding the interference between the laser marker 10 and the work W.
  • Such an embodiment will be described below.
  • FIG. 15 is a diagram showing another example of determination of printability.
  • the print position W31 is in the recessed area on the back side of the work W.
  • the work W is placed on the tray 81, and the tray 81 is moved by the conveyor 80.
  • the tray 81 and the conveyor 80 may have the configurations shown in FIGS. 7 and 8.
  • the laser marker 10 may collide with the work W when performing printing at the printing position W31.
  • the robot 20 controls the controller 40 (not shown in FIG. 15) so that the distance between the laser marker 10 and the work W changes while the tip of the robot 20 (robot arm) follows the speed of the conveyor 80. ) Controlled by.
  • T the relative distance between the laser marker 10 and the print position W31 is the smallest.
  • T ⁇ T time slightly before the time T
  • T+ ⁇ T the laser marker 10 is prevented from colliding with the work W, so that the laser marker 10 is removed from the work W.
  • the robot 20 moves the laser marker 10 so as to move away. Therefore, it is possible to prevent the laser marker 10 from colliding with the work W (or the tray 81).
  • the path of the robot 20 (robot arm) for realizing the movement of the laser marker 10 as described above includes the speed of the conveyor 80, the movable range of the robot 20, the three-dimensional shape information of the robot 20 (robot arm), and the tertiary of the laser marker 10.
  • Interference using the original shape information, the three-dimensional shape information of the tray 81, the three-dimensional shape information of the conveyor 80, the three-dimensional shape information of the work W, and the range of the printable distance of the laser marker 10 (for example, depth of focus). It is determined by determining whether or not occurs.
  • Such route determination processing may be executed by the second setting unit 52 at the stage of presetting. Alternatively, the controller 40 may execute the route determination process at the operation stage.
  • the route may not be determined, in other words, there may be no route solution.
  • the setting device 50 can notify the user of the error.
  • the controller 40 may notify the upper system 60 of the error at that time, or the controller 40 may record the error content as a log.
  • Tiers may be provided for the risk of collision or interference.
  • the risk level may be set by the user in the setting device 50 or the controller 40.
  • level 1 can be set to "at risk of workpiece damage” and level 2 can be set to "at risk of tray damage”.
  • the setting device 50 or the controller 40 may set a constraint according to the set level to obtain the route solution. Even in such an embodiment, the setting device 50 or the controller 40 may notify an error when there is no route solution.
  • FIG. 16 is a top view of an exemplary tray in which a plurality of works are arranged.
  • FIG. 17 is a side view of each work shown in FIG. Four works WA, WB, WC, WD are arranged on the tray 81.
  • the work WA is representatively shown, and the shape and the print position W41 of the work WA are also shown.
  • Information related to the three-dimensional shape of each work is acquired by the image sensor or the 3D sensor (corresponding to the sensor 33 in FIG. 5).
  • the controller 40 recognizes the position and orientation of each work based on the information on the three-dimensional shape and position of each work and obtains the print position of each work.
  • the controller 40 controls the robot 20 to move the laser marker 10 and controls the laser marker 10 to perform printing at the print position of each work.
  • the print information can be determined according to the detected work position and the instructed numbering rule.
  • an RFID tag 82 is attached to the tray 81.
  • the controller 40 prints on the works WA to WD according to the information read from the RFID tag 82 and a predetermined numbering rule.
  • the product type is “X” and the reference value of the individual identification number is “21”.
  • the numbering rule is set so that the numbers are sequentially incremented. Therefore, individual identification numbers “X021”, “X022”, “X023”, and “X024” are given to the works WA, WB, WC, and WD, respectively.
  • the tray 81 has a partition wall, but a partition for arranging a plurality of works may be omitted. Since the tray 81 has the partition wall, the plurality of works are not in contact with each other. However, when the tray 81 does not have a partition wall, the movement of the tray 81 may cause two or more works to contact each other, at least one work may contact the wall of the tray 81, or It is possible that more than one work will be stacked on top of each other. Even in such a case, the image sensor or the 3D sensor (corresponding to the sensor 33 in FIG. 5) acquires information about the three-dimensional shape and position of each work, and the route of the robot 20 based on the acquired information. The solution is calculated by the controller 40 or the setting device 50. Therefore, the printing system 100 can print on each work. If the route solution is not found as a result of the calculation, the printing system 100 may perform error handling (for example, notification to the user).
  • error handling for example, notification to the user.
  • the controller 40 may receive the product type information from the host system 60, for example.
  • the controller 40 can number the individual identification numbers in order of the time when the work is detected. Accordingly, the printing system 100 can print the individual identification number on the work without the tray having the RFID tag.
  • FIG. 18 is a configuration diagram of a system in which the printing system according to the present embodiment and a reader are combined.
  • the manufacturing system 200 is a system for executing four processes (process A, process B, process C, process D). In the manufacturing system 200, the manufacturing process is performed in the order of process A, process B, process C, and process D.
  • the specific content of each step is not particularly limited.
  • step A the controller 40A controls the laser marker 10A and the robot 20A to print on the work W.
  • the controller 40B controls the reader 10B and the robot 20B. As a result, the reader 10B is moved, and the reader 10B reads the information attached to the work W by laser marking.
  • readers 10C and 10D read the information attached to the work W.
  • the controller 40C controls the reader 10C and the robot 20C, and the controller 40D controls the reader 10D and the robot 20D.
  • each of the readers 10B, 10C, and 10D reads the information attached to that position. Therefore, the operations of the four robots 20A, 20B, 20C, and 20D have commonality.
  • the operation (path) of the robot 20A that executes the process A may be set by the setting device, and the setting information may be copied to the controller 40A. Further, the setting information may be copied to the controllers 40B, 40C, 40D using a network or the like.
  • the upper system 60 may collectively manage the setting data, and the controllers 40A, 40B, 40C, 40D may download the setting data. This facilitates system settings or changes.
  • a reader may be mounted on the robot 20A in addition to the laser marker 10A.
  • This reader can be used to verify print quality. For example, immediately after the work W is printed, the print is read by the reader.
  • the controller 40A may verify, for example, whether or not the printing is correctly performed or whether or not the printing quality is sufficient, based on the reading result of the reader.
  • the control of the controller 40A when the print quality has a problem is not particularly limited.
  • the work W may be discharged from the line.
  • the laser marker 10A may be controlled so that printing is performed at different places on the work W.
  • printing may be performed again at an unclear portion in the printed area.
  • the printing parameter includes individual identification information of the object (W), The printing system according to configuration 1, wherein the first setting unit (51) sets the individual identification information by receiving an instruction from the outside.
  • the printing parameters are 3.
  • the second setting unit (52) further includes The moving speed of the object (W), A movable range of the marker moving device (20), A three-dimensional shape of the marker moving device (20) and a three-dimensional shape of the marker (10), A range of printable distance of the marker (10), 4.
  • the printing system according to any one of configurations 1 to 3, wherein the control program is set based on information of at least one of the above.
  • the second setting unit (52) determines the target position of the marker (10) based on the position of the object (W) measured by the sensor (33).
  • the printing system according to one.
  • the second setting unit (52) determines whether or not printing can be performed on the object (W) based on the three-dimensional shape and the position information of the object (W). Composed,
  • the printing system is The printing system according to configuration 4 or configuration 5, further comprising a notification unit (55) for notifying a user of the result of the determination made by the second setting unit (52).
  • the print parameters include print position information with redundancy
  • the controller (40) controls the marker (10) and the marker moving device (20) so as to adjust the print position based on the measurement result of the sensor (33) and the print position information.
  • the printing system according to item 5.
  • a printing apparatus that controls the marker unit (10) and the marker moving unit (20) so that printing is performed at a predetermined position of.
  • a marker moving device for moving the marker (10) so that the relative position between the marker (10) and the object (W) can be changed with three or more degrees of freedom ( 20) and a controller (40) comprising a printing system comprising: Acquiring information about the three-dimensional shape and position of the object (W) (S2), A step (S1) of setting print parameters, Setting a control program of the controller (40) based on the printing parameter, the three-dimensional shape and the position of the object (W) (S2), A step (S13) of controlling the marker (10) and the marker moving device (20) to print on the object (W) by executing the control program by the controller (40).
  • a controller comprising a printing system comprising: Acquiring information about the three-dimensional shape and position of the object (W) (S2), A step (S1) of setting print parameters, Setting a control program of the controller (40) based on the printing parameter, the three-dimensional shape and the position of the object (W) (S2), A step (S13) of controlling the marker
  • the step of printing is 12.
  • the print parameters include print position information with redundancy, Adjusting the print position by controlling the marker (10) and the marker moving device (20) based on the three-dimensional shape of the target object (W), the position of the target object (W) and the print position information.
  • the controller (40) A step (S2) of acquiring information about the three-dimensional shape and position of the object (W), The relative position between the marker (10) and the marker (10) and the object (W) is 3 or more based on the printing parameter, the three-dimensional shape and the position of the object (W). And a marker moving device (20) for moving the marker (10) so that the marker (10) can be changed with the degree of freedom, and the step (S13) of printing on the object (W) is executed. program.
  • the step of printing is 15.
  • the print parameters include print position information with redundancy
  • the step of printing is Adjusting the print position by controlling the marker (10) and the marker moving device (20) based on the three-dimensional shape of the target object (W), the position of the target object (W) and the print position information.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Electronic Switches (AREA)

Abstract

印字システム(100)は、レーザマーカ(10)と、ワーク(W)とレーザマーカ(10)との間の相対位置を3以上の自由度で変化させることが可能なようにレーザマーカ(10)を移動させるロボット(20)と、制御プログラムを実行することによりレーザマーカ(10)およびロボット(20)を制御するコントローラ(40)と、レーザマーカ(10)によるワーク(W)への印字のための印字パラメータを設定する第1の設定部(51)と、印字パラメータと、ワーク(W)の三次元形状および位置に関する情報とに基づいて、コントローラ(40)の制御プログラムを設定する第2の設定部(52)とを備える。

Description

印字システム、印字装置、印字方法およびプログラム
 本発明は、印字システム、印字装置、印字方法およびプログラムに関する。
 対象物の表面に文字、記号、コード等を印字する装置が知られている。たとえば特開2016-36840号公報(特許文献1)は、ワークの表面上でレーザビームを走査させることにより、ワークの表面の所定の印字予定位置に所望のキャラクタを印字するレーザ印字装置を開示する。
特開2016-36840号公報
 対象物の種類あるいは材料が変更されたときには、たとえば印字の位置あるいは印字面の高さといったような印字条件を変更する必要が生じうる。このような変更を実現するために、印字装置を改造あるいは変更する可能性がある。装置の改造が不要である場合にも、ソフトウェアの設定を変更する必要が生じる可能性がある。したがって、印字条件の設定を変更するために費用および工数を要するという課題がある。
 本発明の目的は、対象物に応じて印字条件をより柔軟に変更できる装置および方法を提供することである。
 本開示の一例では、印字システムは、対象物に印字を行うためのマーカと、対象物とマーカとの間の相対位置を3以上の自由度で変化させることが可能なようにマーカを移動させる、マーカ移動装置と、制御プログラムを実行することによりマーカおよびマーカ移動装置を制御するコントローラと、コントローラの内部または外部に設けられ、マーカによる対象物への印字のための印字パラメータを設定する第1の設定部と、コントローラの内部または外部に設けられ、印字パラメータと、対象物の三次元形状および位置に関する情報とに基づいて、コントローラの制御プログラムを設定する第2の設定部とを備える。
 この開示によれば、マーカは、マーカ移動装置によって、対象物との間の相対位置を3以上の自由度で変化させることができる。したがって、対象物のさまざまな位置に印字を行うことができる。さらに、マーカ自体の印字可能範囲よりも広い範囲で印字を行うことができる。あるいは静止した対象物だけでなく移動する対象物にも印字を行うことができる。コントローラの制御プログラムを設定することにより、このような印字のための条件を設定することができる。制御プログラムは、印字パラメータと、対象物の三次元形状および位置に関する情報とにより設定可能である。したがって、装置を改造することなく印字条件を変更することができる。
 なお、「印字」とは、対象物に、文字、記号、図形、コード等を付すことを意味する。
 上述の開示において、印字パラメータは、対象物の個体識別情報を含む。第1の設定部は、外部からの指示を受け付けることにより個体識別情報を設定する。
 この開示によれば、対象物の所望の位置に個体識別情報を付すことができる。
 上述の開示において、印字パラメータは、対象物の基準位置に対する印字位置と、基準位置からの印字方向とを含む。
 この開示によれば、対象物の所望の位置において任意の方向に印字を行うことができる。
 上述の開示において、第2の設定部は、さらに、対象物の移動速度と、マーカ移動装置の可動範囲と、マーカ移動装置の三次元形状およびマーカの三次元形状と、マーカの印字可能距離の範囲と、のうちの少なくとも1つの情報に基づいて、制御プログラムを設定する。
 この開示によれば、対象物が移動する場合において、マーカあるいはマーカ移動装置と、対象物との衝突あるいは干渉を回避しながら、対象物に印字を行うことができる。
 上述の開示において、印字システムは、対象物の位置を計測するセンサを含む。第2の設定部は、センサにより計測された対象物の位置に基づいてマーカの目標位置を決定する。
 この開示によれば、マーカの目標位置をセンサの計測結果に基づいて決定することができるので、マーカを目標位置に移動させて、対象物に印字を行うことができる。したがって対象物の所定の印字位置に印字が可能である。
 上述の開示において、コントローラは、対象物とマーカとの間の相対位置を変化させながら段階的に印字を実行するように、マーカおよびマーカ移動装置を制御する。
 この開示によれば、印字位置を変化させながら段階的に印字を行うことができる。たとえば対象物の表面に起伏がある場合、あるいは、対象物の表面が曲面である場合には、印字面とマーカとの距離が一定ではない。このような場合、印字面とマーカとの距離が一定であるとの前提でワークに印字を行うと、印字の品質が劣化する可能性がある。しかし、段階的に印字を行うことにより、常に望ましい印字条件で印字を行うことができる。したがって印字品質の低下を抑えることができる。
 上述の開示において、第2の設定部は、対象物の三次元形状および位置の情報に基づいて、対象物に印字が可能であるかどうかを判定するように構成される。印字システムは、第2の設定部による判定の結果をユーザに通知する通知部をさらに備える。
 この開示によれば、実際の印字に先立って、対象物に印字が可能かどうかをユーザが知ることができる。
 上述の開示において、印字パラメータは、冗長性をもつ印字位置情報を含む。コントローラは、センサの計測結果および印字位置情報に基づいて、印字位置を調整するように、マーカおよびマーカ移動装置を制御する。
 この開示によれば、印字位置において印字が不可と判定される場合であっても、他の印字位置において、印字が可能であることが期待できる。したがって、対象物への印字が可能となる確率を高めることができる。対象物の印字可能な位置に印字が行われるよう、センサの計測結果および印字位置情報に基づいて、マーカおよびマーカ移動装置を制御することができる。したがって、たとえば複雑な形状を有する対象物において、印字を可能とすることができる。
 上述の開示において、マーカは、レーザマーカである。
 この開示によれば、レーザマーカを用いた印字において、対象物に応じて印字条件を柔軟に変更することができる。これにより利便性に優れたレーザマーカを提供できる。
 本開示の一例では、印字装置は、対象物に印字を行うためのマーカ部と、対象物とマーカ部との間の相対位置を3以上の自由度で変化させることが可能なようにマーカ部を移動させるマーカ移動部と、制御プログラムを実行することによりマーカ部およびマーカ移動部を制御する制御部とを備え、制御部は、印字パラメータ、ならびに、対象物情報取得部により取得された対象物の三次元形状および位置に基づいて、対象物の所定の位置に印字が行われるように、マーカ部およびマーカ移動部を制御する。
 この開示によれば、マーカ部は、マーカ移動部によって、対象物との間の相対位置を3以上の自由度で変化させることができる。制御部の制御プログラムを設定することにより、このような印字のための条件を設定することができる。制御プログラムは、印字パラメータと、対象物の三次元形状および位置に関する情報とにより設定可能である。したがって、装置を改造することなく印字条件を変更することができる。
 本開示の一例では、印字方法は、マーカと、マーカと対象物との間の相対位置を3以上の自由度で変化させることが可能なようにマーカを移動させるマーカ移動装置と、コントローラとを備えた印字システムによる、印字方法である。印字方法は、対象物の三次元形状および位置に関する情報を取得するステップと、印字パラメータを設定するステップと、印字パラメータと、対象物の三次元形状および位置とに基づいて、コントローラの制御プログラムを設定するステップと、制御プログラムをコントローラが実行することにより、マーカおよびマーカ移動装置を制御して対象物に印字するステップとを備える。
 この開示によれば、制御プログラムを設定することにより装置を改造することなく印字条件を変更することができる。したがって、システムあるいは装置の複雑な改造あるいは変更を伴わずに対象物に応じた印字が可能となる。
 上述の開示において、印字するステップは、対象物とマーカとの間の相対位置を変化させながら印字を行うことを繰り返すステップを含む。
 この開示によれば、印字位置を変化させながら繰り返し印字することにより、常に望ましい印字条件で印字を行うことができる。したがって印字品質の低下を抑えることができる。
 上述の開示において、印字パラメータは、冗長性をもつ印字位置情報を含む。印字方法は、対象物の三次元形状、対象物の位置および印字位置情報に基づいてマーカおよびマーカ移動装置を制御して印字位置を調整するステップを含む。
 この開示によれば、ある印字位置において印字が不可であっても、他の印字位置において、印字が可能であることが期待できる。したがって、対象物への印字が可能となる確率を高めることができる。対象物の印字可能な位置に印字が行われるよう、センサの計測結果および印字位置情報に基づいて、マーカおよびマーカ移動装置を制御することができる。したがって、たとえば複雑な形状を有する対象物において、印字を可能とすることができる。
 本開示の一例では、プログラムは、コントローラに、対象物の三次元形状および位置に関する情報を取得するステップと、印字パラメータと、対象物の三次元形状および位置とに基づいて、マーカと、マーカと対象物との間の相対位置を3以上の自由度で変化させることが可能なようにマーカを移動させるマーカ移動装置とを制御して、対象物に印字するステップとを実行させる、プログラムである。
 この開示によれば、制御プログラムを設定することにより装置を改造することなく印字条件を変更することができる。したがって、システムあるいは装置の複雑な改造あるいは変更を伴わずに対象物に応じた印字が可能となる。
 上述の開示において、印字するステップは、対象物とマーカとの間の相対位置を変化させながら印字を行うことを繰り返すステップを含む。
 この開示によれば、印字位置を変化させながら繰り返し印字することにより、常に望ましい印字条件で印字を行うことができる。したがって印字品質の低下を抑えることができる。
 上述の開示において、印字パラメータは、冗長性をもつ印字位置情報を含み、印字するステップは、対象物の三次元形状、対象物の位置および印字位置情報に基づいてマーカおよびマーカ移動装置を制御して印字位置を調整するステップを含む。
 この開示によれば、ある印字位置において印字が不可であっても、他の印字位置において、印字が可能であることが期待できる。したがって、対象物への印字が可能となる確率を高めることができる。対象物の印字可能な位置に印字が行われるよう、センサの計測結果および印字位置情報に基づいて、マーカおよびマーカ移動装置を制御することができる。したがって、たとえば複雑な形状を有する対象物において、印字を可能とすることができる。
 本発明によれば、対象物に応じて印字装置の印字条件を柔軟に変更することができる。
本実施の形態に係る印字システムの一つの構成例を示すブロック図である。 図1に示したコントローラのハードウエア構成を示す図である。 図1に示すレーザマーカの第1の構成例を示した図である。 図1に示すレーザマーカの第2の構成例を示した図である。 印字システムの運用時における印字システムの動作を説明するための模式図である。 本実施の形態に係る印字システムの処理の流れを示すフローチャートである。 ワークの裏面への印字のために用いられるコンベアの形状を説明する模式図である。 ワークの裏面への印字のために用いられるトレイの構造を説明する模式図である。 ワークWの表面が曲面である場合の印字を説明するための模式図である。 ワークの側面への印字を説明する図である。 観測座標系からマーカ座標系への座標変換を説明するための図である。 印字パラメータを設定するための設定画面の例を示した図である。 ワークにおける印字位置の指定の例を示した図である。 印字可否の判断のフローの例を示したフローチャートである。 印字可否の判断の別の例を示す図である。 複数のワークが配置された例示的なトレイの上面図である。 図16に示した各ワークの側面図である。 本実施の形態に係る印字システムとリーダとを組み合わせたシステムの構成図である。
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。
 <適用例>
 まず、図1を参照して、本発明が適用される場面の一例について説明する。図1は、本実施の形態に係る印字システムの一つの構成例を示すブロック図である。図1に示すように、印字システム100は、レーザマーカ10と、ロボット20と、センサ30と、コントローラ40と、設定装置50と、上位システム60と、ネットワーク70とを含む。たとえばワークWは、コンベア(図示せず)により、製造ラインを移動する。印字システム100が適用される製造工程は特に限定されない。
 レーザマーカ10は、対象物であるワークWに印字を行うためのマーカである。この実施形態では、マーカとしてレーザマーカが適用される。しかしマーカは、インクジェット方式のマーカでもよい。印字パターンは特に限定されない。たとえば印字パターンはヒューマンリーダブルなシンボル(たとえば英数字等のシンボル)からなるパターンでもよく、QRコード(登録商標)などの情報シンボルでもよいし、任意の図形、直線、曲線または点であってもよい。
 ロボット20は、レーザマーカ10を移動させるためのマーカ移動装置である。レーザマーカ10は、ロボット20に装着される。この実施の形態では、ロボット20は、対象物(ワークW)とレーザマーカ10との間の相対位置を3以上の自由度で変化させることが可能なように、レーザマーカ10を移動させる。ロボットの自由度は3以上であればよく、特に限定されない。したがってロボットの種類も限定されるものではない。垂直多関節ロボット、スカラロボット、直交ロボットのいずれも本実施の形態に適用することができる。たとえばロボット20は、多関節ロボットアームである。
 さらに、ロボット20を固定する方法は特に限定されない。ロボット20は上方から吊り下げられるタイプのロボットでもよく、床に据え置かれるタイプのロボットでもよい。
 本実施の形態では、対象物とレーザマーカ10との間の相対位置を3以上の自由度で変化させるために、複数のロボット軸が組み合わされてもよい。たとえばロボット20は、直線レールの上を移動する垂直多関節ロボットであってもよい。
 センサ30は、ワークWの三次元形状および位置に関する情報を取得するセンサであってもよい。センサ30は、ワークWおよび環境(たとえばコンベアあるいはトレイ等)の一方または両方をセンシングしてもよい。したがって公知の種々のセンサを本実施の形態に適用することができる。センサ30として、画像センサ、変位センサ、3Dセンサ、光学式シンボルリーダ、光電センサ、ロータリエンコーダ等を適用することができるが、センサ30の種類はこれらに限定されるものではない。センサ30はロボット20に装着されてもよく、ロボット20とは離れて設置されてもよい。
 センサ30の個数は限定されない。センサ30は、複数の種類のセンサの組み合わせにより実現されてもよい。
 コントローラ40は、制御プログラムを実行することによりレーザマーカ10およびロボット20を制御する。具体的には、コントローラ40は、ワークWあるいは環境に関する情報(ワーク到来の検出、画像情報、3D情報など)を、センサ30から取得する。コントローラ40は、その情報に基づいてロボット20を制御して、ワークWに応じてレーザマーカ10の位置および姿勢を変化させる。さらにコントローラ40は、ワークWに印字を行うようレーザマーカ10を制御する。
 図1には、1つのコントローラが示される。しかし、1台の装置によりコントローラ40が実現されるものと限定されない。たとえば、コントローラ40は、レーザマーカ10のためのコントローラと、ロボット20のためのコントローラとを含むのでもよい。
 設定装置50は、レーザマーカ10、センサ30、コントローラ40に対して設定を行う。設定装置50は、たとえばパーソナルコンピュータ(PC)と、モニタとにより実現することができる。
 設定装置50は、第1の設定部51と、第2の設定部52とを含む。第1の設定部51は、レーザマーカ10による印字のための印字パラメータを設定する。第2の設定部52は、その印字パラメータと、ワークWの三次元形状の情報と、ワークWの位置の情報とに基づいて、コントローラ40により実行される制御プログラムの設定を行う。これにより、印字条件を変更することができる。なお、設定装置50の構成は上記のように限定されない。第2の設定部52が印字パラメータを設定し、第1の設定部52が、その印字パラメータと、ワークWの三次元形状の情報と、ワークWの位置の情報とに基づいて、コントローラ40により実行される制御プログラムの設定を行ってもよい。
 第2の設定部52が、ワークWの位置の情報およびワークWの三次元形状の情報を取得するための方法は特に限定されるものではない。第2の設定部52は、ワークWの三次元形状の情報およびワークWの位置の情報をセンサ30から取得してもよい。あるいは、第2の設定部52は、ワークWの三次元形状の情報を上位システム60から取得してもよい。たとえば、上位システム60から取得されるワークWの三次元形状の情報は、ワークWの三次元CADの情報でもよい。
 第1の設定部51および第2の設定部52の少なくとも一方が、設定装置50以外の装置に含まれてもよい。たとえば上位システム60が第1の設定部51および第2の設定部52の少なくとも一方を含むのでもよい。コントローラ40が第1の設定部51および第2の設定部52の少なくとも一方を含むのでもよい。
 上位システム60は、生産指示情報(たとえば製品の品種、シリアル番号など)をコントローラ40に送信する。コントローラ40、設定装置50および上位システム60は、ネットワーク70を通じて相互に通信することができる。
 この実施形態によれば、ロボット20が、レーザマーカ10をワークWの形状あるいは位置に応じて移動させることができる。したがって、ワークWの形状が複雑であっても、ワークWの所定の印字予定位置に印字を行うことができる。あるいは、従来は、印字が困難であったワークの面(たとえば裏面等)にも印字が可能となる。あるいは、ワーク表面の印字対象エリアがレーザマーカの印字可能エリアより大きい場合にも、ワークWの所定の印字予定位置に印字を行うことができる。
 さらに、ワークWがコンベア上で移動する場合においても、ロボット20によるレーザマーカ10の移動とワークWの移動とを同期させることができる。たとえばレーザマーカ10の移動速度をワークWの移動速度と同じにすることで、印字システム100は、移動中のワークWの表面に印字することができる。
 このように本実施の形態によれば、対象物に応じて印字システム100の印字条件を柔軟に変更することができる。したがって、システムあるいは装置の複雑な改造あるいは変更を伴わずに対象物に応じた印字が可能となる。
 なお、本発明の実施の形態は、印字装置として実現することも可能である。この場合、レーザマーカ10、ロボット20およびコントローラ40は、それぞれ、実施の形態に係る印字装置の「マーカ部」、「マーカ移動部」および「制御部」を実現する。
 <コントローラのハードウエア構成>
 図2は、図1に示したコントローラ40のハードウエア構成を示す図である。コントローラ40は、プロセッサ2と、BIOSや各種データを格納するROM(Read Only Memory)3と、RAM4と、記憶装置5とを含む。
 プロセッサ2は、記憶装置5に格納された制御プログラム9を読み出して、当該制御プログラム9をRAM(Random Access Memory)4に展開する。以下ではプロセッサ2がプログラムを実行することで必要な処理が実現される構成例について説明するが、これらの提供される処理の一部または全部を、専用のハードウエア回路(たとえば、ASICまたはFPGA等)を用いて実装してもよい。
 記憶装置5は、プロセッサ2で実行されるプログラムなどを不揮発的に格納する。記憶装置5は、例えばSSD(Solid State Drive)等の不揮発性のデバイスであり、プロセッサ2が実行する各種機能を実現するための制御プログラム9を保持する。
 コントローラ40は、さらに通信インタフェース6と、I/O(Input/output)インタフェース7と、R/W(リーダライタ)デバイス8とを含むことができる。通信インタフェース6は、コントローラ40がネットワーク70を通じて外部の機器(設定装置50および上位システム60等)と通信するためのインタフェースである。I/Oインタフェース7は、コントローラ40への入力またはコントローラ40からの出力のインタフェースである。I/Oインタフェース7は、入力装置44とディスプレイ45とに接続され、ユーザが入力装置44を操作して入力した情報を受け付ける。ディスプレイ45は、コントローラ40の動作に関する情報を表示する。
 R/W(リーダライタ)デバイス8は、外部の記憶媒体43を脱着自在に装着することができる。記憶媒体43は、コンピュータその他装置、機械等が記録されたプログラム等の情報を読み取り可能なように、当該プログラム等の情報を、電気的、磁気的、光学的、機械的または化学的作用によって蓄積する媒体であってもよい。コントローラ40は、記憶媒体43から、制御プログラム9を取得してもよい。
 上述のように、コントローラ40は、第1の設定部51および第2の設定部52の少なくとも一方を含んでもよい。コントローラ40のプロセッサ2が必要なプログラムを実行することにより、コントローラ40を、第1の設定部51および第2の設定部52を含む装置として実現することができる。
 <設定装置のハードウエア構成例>
 設定装置50は、コンピュータにより実現可能である。したがって、設定装置50の基本的なハードウエア構成は、図2に示す構成と同じである。コンピュータのプロセッサが必要なプログラムを実行することにより、コンピュータを、第1の設定部51および第2の設定部52を含む設定装置50として実現することができる。
 <レーザマーカの構成例>
 レーザマーカは、レーザ光をワークの表面に照射することによりワークに印字する装置である。図3は、図1に示すレーザマーカの第1の構成例を示した図である。図3に示すように、レーザマーカ10は、レーザ光源11と、光学系12とを含む。レーザ光源11と、光学系12とは筐体13に収容される。
 レーザ光源11は所望の波長および所望のパワーを有するレーザ光を発生させる。レーザ光源11の種類は限定されない。たとえばレーザ光源11は、固体レーザ、気体レーザ、ファイバレーザ等であってもよい。ファイバレーザは、MOPA(Master Oscillator Power Amplifier)方式のレーザでもよい。
 光学系12は、たとえば、レーザ光ビームを収束させるレンズを含むことができる。光学系12は、上記の光学要素の他にも光学要素を含むことができる。たとえば、光学系12は、レーザ光を走査するためのガルバノミラーを含んでもよい。
 図4は、図1に示すレーザマーカの第2の構成例を示した図である。図4に示すように、レーザマーカ10は、本体15とヘッド16とに分離される。本体15はレーザ光源11を収容し、ヘッド16は光学系12を収容する。レーザ光源11と光学系12とはケーブル14により接続される。このケーブル14は、レーザ光源11で発生させたレーザ光を光学系12に伝播するための光ファイバを含むことができる。
 本体15は、たとえば床に据え置かれ、ヘッド16がロボット20に装着される。本体15とヘッド16とを分離することにより、ヘッド16のサイズおよび重量を小さくすることができるので、ロボット20によるレーザマーカの移動の点において有利である。したがって、印字装置の印字条件を変更する際の制約をより小さくすることができる。
 <印字システムの基本制御>
 ワークWに印字を行うに先立ち、コントローラ40が設定される。図1を再び参照して、コントローラ40は、印字パラメータを取得する。この実施の形態では、印字パラメータはワークWの種類ごとに設定される。コントローラ40は、印字パラメータを設定装置50の第1の設定部51から取得する。上位システム60が第1の設定部51を有してもよい。この場合には、コントローラ40は、上位システム60から印字パラメータを取得する。
 印字パラメータは、ワークの基準位置に対する印字位置、およびその基準位置からの印字方向を含むことができる。しかし、印字パラメータに含まれる情報は、上述の情報に限定されない。たとえば印字パラメータは、印字フォーマットを含んでもよい。
 図5は、印字システムの運用時における印字システムの動作を説明するための模式図である。コントローラ40は、ラインに投入されるワークWの品種およびシリアル番号を取得する。ワークWの品種およびシリアル番号は、たとえば上位システム60からコントローラ40に送られる。
 コンベア80によってワークWが移動する(図5中の符号(1)~(3)を参照)。コンベア80には、コンベア80の速度(すなわちワークWの移動速度)を検知するためのセンサ31が設置される。センサ31は、たとえばロータリエンコーダである。
 センサ32はトリガセンサである。センサ32がワークWを検出すると、センサ32は信号をコントローラ40に送る。この信号をトリガとして、コントローラ40は、ロボット20およびレーザマーカ10を制御する。図5に示された例では、センサ32がコンベア80の上方に設置されているが、システムごとにセンサ32の設置方向は適切に調整される。したがってセンサ32の設置方向は、上方に限定されるものではない。
 コントローラ40は、ワークWの3D形状の情報および印字位置の情報を用いて、ロボット20を制御する。具体的には、コントローラ40は、レーザマーカ10が装着されたロボットアームを所定の位置に移動させるようにロボット20を制御する。そして、コントローラ40は、レーザマーカ10を制御してワークWに印字する。
 ワークWの3D形状の情報は、ティーチング等により予め取得されてもよい。あるいは、上位システム60から、ワークWの三次元CADの情報をワークWの3D形状の情報として予め取得してもよい。あるいは、ワークWの3D形状の情報は、ロボット20に装着されたセンサ33により、印字処理を実行するたびに取得されてもよい。このような目的のため、センサ33を、画像センサあるいは3Dセンサとすることができる。コントローラ40は、センサ33により取得されたワークWの形状の情報を用いて、予め取得されたワークWの情報を補正してもよい。
 図6は、本実施の形態に係る印字システムの処理の流れを示すフローチャートである。印字システム100は、このフローチャートに従って処理を実行することにより、印字方法を実行する。
 まず印字システムの設定(事前設定)が実行される。ステップS1において、印字パラメータが設定される。上述のように、第1の設定部51が、ワークWに印字を行うための印字パラメータを設定する。次にステップS2において、第2の設定部52が、ワークWの3D形状の情報と、ワークWの位置情報とを取得する。その取得された情報に基づいて、コントローラ40の制御プログラムを設定する。ステップS2において、図5に示すセンサ33により、ワークWの3D形状の情報と、ワークWの位置情報とを予め取得することができる。しかし、ワークWの3D形状の情報と、ワークWの位置情報とはティーチングにより予め取得されてもよい。あるいは、上位システム60から、ワークWの三次元CADの情報をワークWの3D形状の情報として予め取得してもよい。
 なお、ステップS1,S2の処理は、図6に示した順番に従って実行されるように限定されるものではない。たとえばステップS2の処理が先に実行され、ステップS1の処理が後で実行されるのでもよい。
 続いて、印字処理が実行される(印字システムの運用)。一例として、ステップS11において、コントローラ40がワークWの品種およびシリアル番号を取得する。ステップS11において、コントローラ40がワークWの品種のみ取得するのでもよい。ステップS12において、センサ32によりワークWが検出される。ステップS13において、コントローラ40は、ワークWの3D形状の情報および印字位置の情報を用いて、ロボット20を制御する。これにより、レーザマーカ10が所定の位置に移動する。コントローラ40が印字パラメータに従ってレーザマーカ10を制御する。これによりレーザマーカ10はワークWに印字する。ステップS13の処理が終了すると、次のワークへの印字のため、処理はステップS11へと戻される。
 <制御オプション>
 図5を再び参照して、コントローラ40は、センサ31の検出値からワークWの移動速度を求めることができる。コントローラ40は、さらに、センサ32によりワークWを検出した時刻、そのワークWが検出された位置、および、ロボット20がレーザマーカ10を所定の位置に移動させるのに要する所要時間に関する情報を取得する。その情報に基づき、コントローラ40は、センサ33およびレーザマーカ10の移動先の目標位置(目標値)を定めることができる。その目標位置にレーザマーカ10を移動させることにより、ワークWの所定の印字位置に印字が可能である。
 レーザビーム走査型のレーザマーカである場合、レーザビームを走査することにより、ワークWに印字が行われる。レーザマーカ10がレーザビーム走査型のレーザマーカである場合、ワークWとレーザマーカ10との間の相対速度が大きいと、良好な印字結果が得られない可能性がある。たとえばワークWに付された文字が歪むといった問題が生じうる。本実施の形態では、ワークWに対するレーザマーカ10の相対速度ができるだけ小さくなる(相対速度を0に近づける)ようにロボットアームを追従動作させてもよい。これにより、印字の品質の低下を防ぐことができる。
 レーザマーカ10を移動させるために、事前に設定した経路に基づいて、コントローラ40がロボット20を制御してもよい。ロボット20の移動経路の設定には種々の方法を用いることができる。一実施形態では、ワークWの三次元形状の情報およびワークW上の印字位置に基づいて、最適な経路を事前に設定することができる。ワークWの三次元形状の情報には、たとえばワークWの三次元CADの情報を用いてもよい。
 ワークWおよびその周囲環境を3Dセンサで計測することにより三次元情報を取得して、その得られた三次元情報から、経路を動的に算出してもよい。経路の算出を実行する装置は特に限定されない。コントローラ40が、三次元情報から動的に経路を算出してもよい。設定装置50が経路を算出することも可能である。その算出された経路に基づいて、コントローラ40がロボット20を制御してもよい。
 さらに本実施の形態では、ロボット20がレーザマーカ10を3以上の自由度で移動させることが可能であるので、様々な方向からワークWに対してレーザ光を照射できる。コンベアあるいはトレイ(台座)の形状を工夫することにより、ワークWの裏面あるいは側面に印字が可能となる。
 図7は、ワークWの裏面への印字のために用いられるコンベアの形状を説明する模式図である。図8は、ワークWの裏面への印字のために用いられるトレイの構造を説明する模式図である。図7および図8に示されるように、ワークWを載せたトレイ81は、レール状のコンベア80により移動させられる。トレイ81は、フレーム構造を有する。
 レーザマーカ10(図示せず)が、コンベア80の下方に配置されるように、コントローラ40は、ロボット20を制御する。これによりワークWの裏面への印字が可能である。コントローラ40は、さらに、コンベア80の移動速度に同期してレーザマーカ10が移動するようにロボット20を制御してもよい。
 コントローラ40は、品種の切り替え指示を受けることができる。この場合、次のワークが到来するまで、コントローラ40はロボット20を所定の位置に待機させてもよい。待機位置に関して、コントローラ40は、品種ごとに最適な待機位置を算出してもよい。待機位置は、たとえばワークの三次元形状の情報、印字位置、ワークWの移動速度(コンベア80の速度)等に基づいて決定することができる。最適な位置を算出して、その位置にロボット20を待機させることにより、ロボット20の移動経路を短くすることができる。たとえばワークWが高速に流れるラインにおいて、ワークの印字を行いやすくすることができる。
 品種の切り替え指示は、上位システム60からコントローラ40に送られてもよい。あるいは、品種の切り替え指示を発するRFIDタグをトレイ81に取り付けてもよい。コントローラ40は、そのRFIDタグからの指示に応じて、ロボット20の待機位置を決定してもよい。
 <起伏を有する面あるいは曲面への印字>
 ワークWの表面に起伏がある場合、あるいはワークWの表面が曲面である場合には、印字面とレーザマーカとの距離が一定ではない。一般的なレーザマーカでは、その焦点深度が浅い。したがって、印字面とレーザマーカとの距離が一定であるとの前提で、起伏のある表面、あるいは曲面に印字を行うと、印字の品質が劣化する可能性がある。この実施の形態では、ワークWとレーザマーカ10との間の相対位置を変化させながら段階的に印字を実行する。
 図9は、ワークWの表面が曲面である場合の印字を説明するための模式図である。図9において、ワークWの曲面の一部が印字範囲である。この実施の形態では、ロボット20が曲面の形状に追従して動くことにより曲面に印字が可能である。たとえば図9に示すように、コントローラ40は、レーザマーカ10が印字面M1,M2,M3,M4に垂直な軸Aの方向に沿って移動するようにロボット20を制御するとともに、ワークWの印字範囲のうちのレーザ光の焦点が合う部位のみ印字するように、レーザマーカ10を制御する。なお、軸Aは、レーザマーカ10から出射されるレーザ光ビームの光軸に一致してもよい。図9に示した例においては、印字面M1,M2,M3,M4は仮想的な平面であり、レーザマーカ10の印字可能範囲に基づいて決定される。
 印字面の軸Aの方向の位置を変化させながら、レーザ光の焦点が合う部位のみ印字することが複数回実行される。一例では、1回目の印字では、印字面M1と印字面M2との間の領域が印字範囲に設定される。2回目の印字では、印字面M2と印字面M3との間の領域が印字範囲に設定される。3回目の分字では、印字面M3と印字面M4との間の領域が印字範囲に設定される。ただし印字の順序は上述のように限定されるものではない。
 上記のように印字を繰り返すことによって、レーザ光の焦点が常に合っている状態で、印字範囲内に印字が行われる。これにより印字品質の劣化を避けることができる。
 図9に示したレーザマーカ10は、レーザ光の焦点を調整しつつレーザ光を二次元に走査することができる。しかし、本実施の形態は、起伏を有する面あるいは曲面に印字するためには、このような仕様を備えるレーザマーカが必要であると限定するものではない。本実施の形態において、レーザマーカがレーザ光の焦点の調整機能を有することは必須ではない。さらに、レーザマーカは、レーザ光を二次元方向に走査可能であると限定されない。レーザマーカは、レーザ光を一次元方向に走査するものであってもよい。たとえばワークWの表面の形状が円筒側面であり、かつ、その面に沿って円弧状に印字を行うような場合、ロボット20を円弧に沿って移動させることにより、ワークWの表面に印字可能である。
 <透視変換>
 図10は、ワークW1の側面への印字を説明する図である。図10に示した例では、印字範囲W11は、ワークW1の側面の一部である。図10において符号(1)により示されるように、本実施の形態では、レーザ光ビームLの光軸をワークW1の表面の法線の方向と平行になるように、レーザマーカ10の姿勢を制御してもよい。これにより印字範囲W11に印字が可能となる。レーザマーカ10からの距離が一定になるので、良好な印字品質を得ることができる。さらに、レーザ光ビームLの光軸と印字面とが垂直であるので、透視変換歪み(台形歪み)を低減できる。
 図10の例では、印字面は平面である。しかし、印字面が曲面であっても、レーザ光ビームLの光軸がその曲面の法線の方向と平行になるように、レーザマーカ10の姿勢を制御すればよい。
 一方、ワークW1の印字位置、および環境に依存して、レーザマーカ10の姿勢を制御しても良好な印字品質が得られない可能性がある。図10において符号(2)により示された例では、印字範囲W12に印字を行うため、レーザマーカ10が印字面の法線の方向に配置される。しかし、印字面の法線の方向に障害物W2が存在する。したがってレーザ光ビームLが障害物W2によって遮られる。障害物W2は、たとえばワークW1とともにラインを流れる他のワークである。
 図10において符号(3)により示された例では、レーザマーカ10は、障害物W2によって遮られない方向から印字範囲W12にレーザ光ビームLを照射する。したがって印字範囲W12に印字が可能である。しかし、印字範囲W12を含む面の法線方向から見たときには、像が歪んで見える。このことは印字品質の低下につながる。なお、図10では説明を分かりやすくするために、平面の組み合わせからなるワークWを例示するが、上述の課題は、ワークWの表面が平面のみからなる場合に生じるものと限定されるものではない。ワークWの表面が曲面であっても、同様の課題が生じ得る。
 このような問題を回避するため、本実施の形態では、観測座標系からマーカ座標系に座標変換を行い、そのマーカ座標系に従って印字を実行する。観測座標系とは、印字面(印字面が曲面である場合には、その接平面)およびその法線からなる座標系である。マーカ座標系とは、レーザマーカ10の位置を原点として、レーザ光ビームLの光軸方向を含む座標系である。この実施の形態では、座標変換に透視変換(Homography Transformation)を適用することができる。
 図11は、観測座標系からマーカ座標系への座標変換を説明するための図である。図11に示すように、点P1は観測点である。観測座標系C1上の任意の点P2をワークWの対象面に投影する。点P3は、点P2をワークWの対象面に投影することにより得られた点であり、投影線とワークWの対象面との交点である。この交点(点P3)をマーカ座標系に透視変換することによってマーカ座標系C2上の点P4の座標を得ることができる。なお、点P5は、レーザマーカ10の位置を示す点(基準点)である。
 このように、レーザ光ビームLの光軸が印字面に対して垂直ではない場合にも、透視変換によって点P2と点P4との間での座標変換を行うことにより、印字された文字、記号等の歪みを防ぐことができる。したがって印字品質を良好にすることができる。レーザマーカの焦点深度が浅い場合は、対象面への印字において、図9に示されるような、レーザ光の焦点を調整しつつレーザ光を二次元に走査する印字を複数回繰り返して適用してもよい。
 <印字パラメータの設定>
 本実施の形態において、印字システム100は印字パラメータに従ってワークWの印字を実行する。印字パラメータは、ワークの基準位置に対する印字位置と、その基準位置からの印字方向とを含む。さらに、印字パラメータは、印字パターンを含むことができる。上述のように、印字パターンは特に限定されず、ヒューマンリーダブルなシンボル(たとえば英数字等のシンボル)からなるパターンでもよく、QRコード(登録商標)などの情報シンボルでもよいし、任意の図形、直線、曲線または点であってもよい。
 本実施の形態において、設定装置50はユーザの入力を受け付けることにより印字パラメータを設定することができる。ユーザは設定画面を参照しながら設定装置50に印字パラメータを入力することができる。
 図12は、印字パラメータを設定するための設定画面の例を示した図である。設定装置50は、ディスプレイに設定画面55を表示させる。設定画面55は、レーザマーカ10およびワークWを表示する。たとえばワークWの3次元CADデータを設定装置50に入力することにより、ワークWの三次元透視像が設定画面55に表示される。
 ワークWの表面には、印字位置W21が表示される。さらに、印字パターンを編集するための編集エリア57、およびツールアイコン58が設定画面55に表示される。ユーザは、マウス等のポインティングデバイスを操作して、ツールアイコンを選択する。これにより、ユーザは、印字位置、印字方向、印字パターンを設定あるいは変更することができる。
 <印字可否の判断>
 設定装置50により印字位置を設定したとしても、実際には、その指定された位置に印字ができない可能性がある。図13に例示されたワークWにおいて、印字位置W31が指定される。しかし、トレイ81の構造体などのような、ワークWの周囲環境物がロボットあるいはセンサと干渉する場合がある。このような場合には、印字位置W31に印字を行うことができない。
 指定された位置に印字を行うと印字品質が低下する可能性がある。このような場合にも、その指定された位置には印字ができない。このような場合としては、たとえば、ワークWの表面が粗面(鋳肌など)である場合、あるいは、ワークWの表面が汚れている場合などがある。この実施の形態では、実際の印字に先立って、指定された印字位置において印字が可能か否かを判断することができる。
 図14は、印字可否の判断のフローの例を示したフローチャートである。このフローチャートに示された処理は、第2の設定部52により実行される。図13および図14を参照して、ステップS21において、ワークWの周囲環境をセンシングして、周囲環境に関する情報を取得する。たとえば画像センサあるいは3Dセンサ(図5に示すセンサ33に相当)によりワークWの周囲環境をセンシングすることができる。この場合、たとえばワークWの三次元形状および位置の情報が取得される。
 ステップS22において、設定装置50は、設定画面55(図12を参照)に表示される仮想空間上で、ワークWがロボット20あるいはセンサと干渉するか否かを判定する。ステップS23において、設定装置50は、判定結果をユーザに通知する。たとえば設定装置50は、設定画面55上に判定結果を示すメッセージを表示させてもよい。設定画面55により通知部を実現することができる。
 ステップS21において、画像センサ(図5に示すセンサ33に相当)を用いてワークWの表面の画像を取得してもよい。ステップS22において、設定装置50はその画像を解析することにより、指定した位置に印字ができないと判断してもよい。たとえばワークWの表面が粗面である、あるいは、ワークWの表面が汚れている場合には、指定した位置に印字ができないと判断される。
 設定装置50は、予め、印字位置を複数指定してもよい。したがって、この場合には、印字位置情報は冗長性を有する。図13に示した例では、印字位置W31だけでなく、印字位置W32も指定される。印字位置W31において印字が不可と判断された場合でも、印字位置W32において印字が可能である。この場合、コントローラ40は、センサの計測結果および印字位置情報に従って、レーザマーカ10およびロボット20を制御して、印字位置W32に印字を行う。このように、印字位置情報に冗長性を持たせることにより、複雑な形状を有するワークに印字ができる可能性を高めることができる。
 また、設定装置50は、印字位置W31を含む印字範囲を、本来の印字範囲よりも予め広くしてもよい。この場合にもワークWに印字ができる可能性を高めることができる。
 印字可否の判断は設定装置50のみが実行するものと限定されない。コントローラ40がワークWの表面の画像から、確実に印字できる場所をリアルタイムで探索して印字位置を決定してもよい。コントローラ40は、その決定された位置に印字が行なわれるようにロボット20およびレーザマーカ10を制御することができる。
 さらに本実施の形態では、レーザマーカ10とワークWとの干渉を回避しつつワークWに印字するように、レーザマーカ10およびロボット20を制御することができる。このような実施の形態を以下に説明する。
 図15は、印字可否の判断の別の例を示す図である。図15に示した例では、印字位置W31が、ワークWの裏側の奥まった領域にある。ワークWはトレイ81に載せられて、トレイ81はコンベア80により移動する。トレイ81およびコンベア80の構成は、図7および図8に示した構成であってもよい。
 印字位置W31に印字を行う際に、レーザマーカ10がワークWと衝突するおそれがある。本実施の形態では、ロボット20(ロボットアーム)の先端をコンベア80の速度に追従させながら、レーザマーカ10とワークWとの間の距離が変化するようにロボット20がコントローラ40(図15に示さず)により制御される。たとえば時刻Tにおいて、レーザマーカ10と印字位置W31との間の相対距離が最も小さいとする。しかし、時刻Tよりも少し前の時刻(T-ΔT)および、時刻Tよりも少し後の時刻(T+ΔT)では、レーザマーカ10がワークWに衝突することを回避するため、レーザマーカ10がワークWから離れるようにロボット20がレーザマーカ10を移動させる。したがって、レーザマーカ10がワークW(またはトレイ81)に衝突することを回避することができる。
 上記のようなレーザマーカ10の移動を実現するためのロボット20(ロボットアーム)の経路は、コンベア80の速度、ロボット20の可動範囲、ロボット20(ロボットアーム)の三次元形状情報、レーザマーカ10の三次元形状情報、トレイ81の三次元形状情報、コンベア80の三次元形状情報、およびワークWの三次元形状情報、レーザマーカ10の印字可能距離の範囲(たとえば焦点深度)を利用して干渉(衝突)が生じないかどうかを判定して求められる。このような経路の判定処理は、第2の設定部52により、事前設定の段階で実行されてもよい。あるいは、運用の段階でコントローラ40が経路の判定処理を実行してもよい。
 ワークWの印字位置によっては、経路を決定できない可能性、言い換えると経路の解が存在しない可能性がある。事前設定の段階において、設定装置50の計算により経路の解が存在しないことが判明した場合、設定装置50はユーザに対してエラーを通知することができる。運用時の経路計算で解が存在しないことが分かった場合は、その時点でコントローラ40が上位システム60にエラーを通知してもよく、コントローラ40がエラー内容をログとして記録してもよい。
 衝突あるいは干渉のリスクについては、段階(レベル)を設けてもよい。リスクのレベルをユーザが設定装置50あるいはコントローラ40に対して設定してもよい。たとえば、レベル1を「ワークの破損リスクあり」と設定し、レベル2を「トレイ破損リスクあり」と設定することができる。設定装置50あるいはコントローラ40は、その設定されたレベルに応じた制約を設けて経路解を求めてもよい。このような実施の形態においても、経路解がない場合に、設定装置50あるいはコントローラ40は、エラーを通知してもよい。
 <複数のワークへの印字>
 上述の実施形態では、1つのトレイに1つのワークが載せられる。しかし、製造現場においては、1つのトレイ内に配置された複数の製品のそれぞれに個体識別番号などの印字を行う場合もある。以下では複数のワークへの印字について説明する。
 図16は、複数のワークが配置された例示的なトレイの上面図である。図17は、図16に示した各ワークの側面図である。トレイ81には4つのワークWA,WB,WC,WDが配置される。図17には、代表的に、ワークWAが示されるとともに、ワークWAの形状および印字位置W41が示される。
 画像センサあるいは3Dセンサ(図5のセンサ33に相当)により、各ワークの3次元形状に関する情報が取得される。コントローラ40は、各ワークの三次元形状および位置に関する情報に基づいて、各ワークの位置と姿勢を認識し、各ワークの印字位置を求める。コントローラ40は、ロボット20を制御してレーザマーカ10を移動させるとともに、レーザマーカ10を制御して各ワークの印字位置に印字を行う。
 この実施形態では、印字情報は、検出されたワークの位置と、指示された採番ルールに従って決定することができる。図16に示すように、トレイ81にはRFIDタグ82が取り付けられる。コントローラ40は、RFIDタグ82から読み出された情報および、予め定められた採番ルールに従って、ワークWA~WDに印字を行う。
 図16に示した例では、品種は「X」であり、個体識別番号の基準値は「21」である。またトレイ81の上方から見て、トレイ81内の左上に位置するワーク、トレイ81内の右上に位置するワーク、トレイ81内の右下に位置するワーク、トレイ81内の左下に位置するワークの順番に番号がインクリメントするように採番ルールが設定される。したがって、ワークWA,WB,WC,WDに、それぞれ「X021」、「X022」、「X023」、「X024」との個体識別番号が付与される。
 図16の例では、トレイ81は仕切り壁を有しているが、複数のワークを配置するための仕切りはなくてもよい。トレイ81が仕切り壁を有することにより複数のワークは互いに接触していない。しかし、トレイ81が仕切り壁を有していない場合、トレイ81の移動により、2つ以上のワークが互いに接触する可能性、少なくとも1つのワークがトレイ81の壁に接触する可能性、あるいは、2つ以上のワークが互いに積み重なっている可能性が生じる。このような場合にも、画像センサあるいは3Dセンサ(図5のセンサ33に相当)により、各ワークの三次元形状および位置に関する情報が取得されて、その取得された情報に基づいてロボット20の経路解が、コントローラ40あるいは設定装置50によって計算される。したがって印字システム100は、各ワークに印字を行うことができる。計算の結果、経路解が見つからない場合、印字システム100は、エラー処理(たとえばユーザへの通知)を行ってもよい。
 また、たとえば一部のワークが裏返しあるいは横倒しになっている場合にも経路解が見つからない。しかしながら、候補位置をワークの各面に事前に設定することによって、印字位置に冗長性を持たせることができるので、ワークへの印字が可能となる。
 種類によっては、ワークがコンベアに直接載って流れることも想定される。このような場合には、コントローラ40は、たとえば上位システム60から品種情報を受け取ってもよい。コントローラ40は、ワークを検出した時間順に個体識別番号を採番することができる。これによりRFIDタグを有するトレイがなくても、印字システム100は個体識別番号をワークに印字することができる。
 <印字システムとリーダとの組み合わせ>
 図18は、本実施の形態に係る印字システムとリーダとを組み合わせたシステムの構成図である。図18に示す例では、製造システム200は、4つの工程(工程A、工程B、工程C、工程D)を実行するためのシステムである。製造システム200において、製造工程は、工程A、工程B、工程C、工程Dの順に実行される。各工程の具体的な内容は特に限定されるものではない。
 工程Aでは、コントローラ40Aが、レーザマーカ10Aおよびロボット20Aを制御して、ワークWに印字を行う。
 工程Bでは、コントローラ40Bが、リーダ10Bおよびロボット20Bを制御する。これによりリーダ10Bが動かされて、リーダ10Bは、レーザマーキングによってワークWに付された情報を読み取る。
 工程Cおよび行程Dでは、行程Bと同様に、リーダ10C、リーダ10DがワークWに付された情報を読み取る。コントローラ40Cは、リーダ10Cおよびロボット20Cを制御し、コントローラ40Dがリーダ10Dおよびロボット20Dを制御する。
 レーザマーカ10Aにより、ワークWの所定位置に印字がなされると、リーダ10B,10C,10Dの各々は、その位置に付された情報を読み取る。したがって、4つのロボット20A,20B,20C,20Dの動作には共通性がある。工程Aを実行するロボット20Aの動作(経路)を設定装置により設定し、その設定情報をコントローラ40Aにコピーしてもよい。さらにその設定情報を、ネットワーク等を用いて、コントローラ40B,40C,40Dにコピーしてもよい。
 あるいは上位システム60で設定データを一括管理し、コントローラ40A,40B,40C,40Dが、その設定データをダウンロードするのでもよい。これによりシステムの設定あるいは変更が容易になる。
 工程Aにおいて、レーザマーカ10Aに加えてリーダをロボット20Aに搭載してもよい。このリーダを、印字品質の検証に用いることができる。たとえばワークWに印字を行った直後にリーダで印字を読み取る。コントローラ40Aは、リーダの読み取り結果に基づいて、たとえば、正しく印字がされているか否か、あるいは、印字品質が十分か否かを検証してもよい。
 印字品質に問題がある場合のコントローラ40Aの制御は特に限定されない。たとえば、ワークWをラインから排出してもよい。あるいは、ワークWの異なる場所に印字を行うようレーザマーカ10Aを制御してもよい。あるいは、印字された領域のうち、不鮮明な個所にもう一度印字を行ってもよい。
 [付記]
 以上のように、本実施形態は以下のような開示を含む。
 (構成1)
 対象物(W)に印字を行うためのマーカ(10)と、
 前記対象物(W)と前記マーカ(10)との間の相対位置を3以上の自由度で変化させることが可能なように前記マーカ(10)を移動させる、マーカ移動装置(20)と、
 制御プログラムを実行することにより前記マーカ(10)および前記マーカ移動装置(20)を制御するコントローラ(40)と、
 前記コントローラ(40)の内部または外部に設けられ、前記マーカ(10)による前記対象物(W)への印字のための印字パラメータを設定する第1の設定部(51)と、
 前記コントローラ(40)の内部または外部に設けられ、前記印字パラメータと、前記対象物(W)の三次元形状および位置に関する情報とに基づいて、前記コントローラ(40)の前記制御プログラムを設定する第2の設定部(52)とを備える、印字システム。
 (構成2)
 前記印字パラメータは、前記対象物(W)の個体識別情報を含み、
 前記第1の設定部(51)は、外部からの指示を受け付けることにより前記個体識別情報を設定する、構成1に記載の印字システム。
 (構成3)
 前記印字パラメータは、
 前記対象物(W)の基準位置に対する印字位置と、前記基準位置からの印字方向とを含む、構成1または構成2に記載の印字システム。
 (構成4)
 前記第2の設定部(52)は、さらに、
 前記対象物(W)の移動速度と、
 前記マーカ移動装置(20)の可動範囲と、
 前記マーカ移動装置(20)の三次元形状および前記マーカ(10)の三次元形状と、
 前記マーカ(10)の印字可能距離の範囲と、
 のうちの少なくとも1つの情報に基づいて、前記制御プログラムを設定する、構成1から構成3のいずれか1つに記載の印字システム。
 (構成5)
 前記対象物(W)の位置を計測するセンサ(33)を含み、
 前記第2の設定部(52)は、前記センサ(33)により計測された前記対象物(W)の位置に基づいて前記マーカ(10)の目標位置を決定する、構成1から構成4のいずれか1つに記載の印字システム。
 (構成6)
 前記コントローラ(40)は、前記対象物(W)と前記マーカ(10)との間の前記相対位置を変化させながら段階的に印字を実行するように、前記マーカ(10)および前記マーカ移動装置(20)を制御する、構成1から構成5のいずれか1つに記載の印字システム。
 (構成7)
 前記第2の設定部(52)は、前記対象物(W)の前記三次元形状および前記位置の情報に基づいて、前記対象物(W)に印字が可能であるかどうかを判定するように構成され、
 前記印字システムは、
 前記第2の設定部(52)による判定の結果をユーザに通知する通知部(55)をさらに備える、構成4または構成5に記載の印字システム。
 (構成8)
 前記印字パラメータは、冗長性をもつ印字位置情報を含み、
 前記コントローラ(40)は、前記センサ(33)の計測結果および前記印字位置情報に基づいて、印字位置を調整するように、前記マーカ(10)および前記マーカ移動装置(20)を制御する、構成5に記載の印字システム。
 (構成9)
 前記マーカ(10)は、レーザマーカである、構成1から構成8のいずれか1つに記載の印字システム。
 (構成10)
 対象物(W)に印字を行うためのマーカ部(10)と、
 前記対象物(W)と前記マーカ部(10)との間の相対位置を3以上の自由度で変化させることが可能なように前記マーカ部(10)を移動させるマーカ移動部(20)と、
 制御プログラムを実行することにより前記マーカ部(10)および前記マーカ移動部(20)を制御する制御部(40)とを備え、
 前記制御部(40)は、印字パラメータ、ならびに、前記対象物(W)情報取得部により取得された前記対象物(W)の前記三次元形状および前記位置に基づいて、前記対象物(W)の所定の位置に印字が行われるように、前記マーカ部(10)および前記マーカ移動部(20)を制御する、印字装置。
 (構成11)
 マーカ(10)と、前記マーカ(10)と対象物(W)との間の相対位置を3以上の自由度で変化させることが可能なように前記マーカ(10)を移動させるマーカ移動装置(20)と、コントローラ(40)とを備えた印字システムによる、印字方法であって、
 前記対象物(W)の三次元形状および位置に関する情報を取得するステップ(S2)と、
 印字パラメータを設定するステップ(S1)と、
 前記印字パラメータと、前記対象物(W)の前記三次元形状および前記位置とに基づいて、前記コントローラ(40)の制御プログラムを設定するステップ(S2)と、
 前記制御プログラムを前記コントローラ(40)が実行することにより、前記マーカ(10)および前記マーカ移動装置(20)を制御して前記対象物(W)に印字するステップ(S13)とを備える、印字方法。
 (構成12)
 前記印字するステップは、
 前記対象物(W)と前記マーカ(10)との間の前記相対位置を変化させながら印字を行うことを繰り返すステップを含む、構成11に記載の印字方法。
 (構成13)
 前記印字パラメータは、冗長性をもつ印字位置情報を含み、
 前記対象物(W)の三次元形状、前記対象物(W)の位置および前記印字位置情報に基づいて前記マーカ(10)および前記マーカ移動装置(20)を制御して印字位置を調整するステップを含む、構成11に記載の印字方法。
 (構成14)
 コントローラ(40)に、
 対象物(W)の三次元形状および位置に関する情報を取得するステップ(S2)と、
 印字パラメータと、前記対象物(W)の前記三次元形状および前記位置とに基づいて、マーカ(10)と、前記マーカ(10)と前記対象物(W)との間の相対位置を3以上の自由度で変化させることが可能なように前記マーカ(10)を移動させるマーカ移動装置(20)とを制御して、前記対象物(W)に印字するステップ(S13)とを実行させる、プログラム。
 (構成15)
 前記印字するステップは、
 前記対象物(W)と前記マーカ(10)との間の前記相対位置を変化させながら印字を行うことを繰り返すステップを含む、構成14に記載のプログラム。
 (構成16)
 前記印字パラメータは、冗長性をもつ印字位置情報を含み、
 前記印字するステップは、
 前記対象物(W)の三次元形状、前記対象物(W)の位置および前記印字位置情報に基づいて前記マーカ(10)および前記マーカ移動装置(20)を制御して印字位置を調整するステップを含む、構成14に記載のプログラム。
 今回開示された各実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、実施の形態および各変形例において説明された発明は、可能な限り、単独でも、組み合わせても、実施することが意図される。
 2 プロセッサ、3 ROM、4 RAM、5 記憶装置、6 通信インタフェース、7 I/Oインタフェース、8 R/Wデバイス、9 制御プログラム、10,10A レーザマーカ、10B,10C,10D リーダ、11 レーザ光源、12 光学系、13 筐体、14 ケーブル、15 本体、16 ヘッド、20,20A,20B,20C,20D ロボット、30,31,32,33 センサ、40,40A,40B,40C,40D コントローラ、43 記憶媒体、44 入力装置、45 ディスプレイ、50 設定装置、51 第1の設定部、52 第2の設定部、55 設定画面、57 編集エリア、58 ツールアイコン、60 上位システム、70 ネットワーク、80 コンベア、81 トレイ、82 RFIDタグ、100 印字システム、200 製造システム、A 軸、C1 観測座標系、C2 マーカ座標系、L レーザ光ビーム、M1,M2,M3,M4 印字面、P1,P2,P3,P4,P5 点、S1,S2,S11,S12,S13,S21,S22,S23 ステップ、W,W1,WA,WB,WC,WD ワーク、W2 障害物、W11,W12 印字範囲、W21,W31,W32,W41 印字位置。

Claims (16)

  1.  対象物に印字を行うためのマーカと、
     前記対象物と前記マーカとの間の相対位置を3以上の自由度で変化させることが可能なように前記マーカを移動させる、マーカ移動装置と、
     制御プログラムを実行することにより前記マーカおよび前記マーカ移動装置を制御するコントローラと、
     前記コントローラの内部または外部に設けられ、前記マーカによる前記対象物への印字のための印字パラメータを設定する第1の設定部と、
     前記コントローラの内部または外部に設けられ、前記印字パラメータと、前記対象物の三次元形状および位置に関する情報とに基づいて、前記コントローラの前記制御プログラムを設定する第2の設定部とを備える、印字システム。
  2.  前記印字パラメータは、前記対象物の個体識別情報を含み、
     前記第1の設定部は、外部からの指示を受け付けることにより前記個体識別情報を設定する、請求項1に記載の印字システム。
  3.  前記印字パラメータは、
     前記対象物の基準位置に対する印字位置と、前記基準位置からの印字方向とを含む、請求項1または請求項2に記載の印字システム。
  4.  前記第2の設定部は、さらに、
     前記対象物の移動速度と、
     前記マーカ移動装置の可動範囲と、
     前記マーカ移動装置の三次元形状および前記マーカの三次元形状と、
     前記マーカの印字可能距離の範囲と、
     のうちの少なくとも1つの情報に基づいて、前記制御プログラムを設定する、請求項1から請求項3のいずれか1項に記載の印字システム。
  5.  前記対象物の位置を計測するセンサを含み、
     前記第2の設定部は、前記センサにより計測された前記対象物の位置に基づいて前記マーカの目標位置を決定する、請求項1から請求項4のいずれか1項に記載の印字システム。
  6.  前記コントローラは、前記対象物と前記マーカとの間の前記相対位置を変化させながら段階的に印字を実行するように、前記マーカおよび前記マーカ移動装置を制御する、請求項1から請求項5のいずれか1項に記載の印字システム。
  7.  前記第2の設定部は、前記対象物の前記三次元形状および前記位置の情報に基づいて、前記対象物に印字が可能であるかどうかを判定するように構成され、
     前記印字システムは、
     前記第2の設定部による判定の結果をユーザに通知する通知部をさらに備える、請求項4または請求項5に記載の印字システム。
  8.  前記印字パラメータは、冗長性をもつ印字位置情報を含み、
     前記コントローラは、前記センサの計測結果および前記印字位置情報に基づいて、印字位置を調整するように、前記マーカおよび前記マーカ移動装置を制御する、請求項5に記載の印字システム。
  9.  前記マーカは、レーザマーカである、請求項1から請求項8のいずれか1項に記載の印字システム。
  10.  対象物に印字を行うためのマーカ部と、
     前記対象物と前記マーカ部との間の相対位置を3以上の自由度で変化させることが可能なように前記マーカ部を移動させるマーカ移動部と、
     制御プログラムを実行することにより前記マーカ部および前記マーカ移動部を制御する制御部とを備え、
     前記制御部は、印字パラメータ、ならびに、前記対象物情報取得部により取得された前記対象物の前記三次元形状および前記位置に基づいて、前記対象物の所定の位置に印字が行われるように、前記マーカ部および前記マーカ移動部を制御する、印字装置。
  11.  マーカと、前記マーカと対象物との間の相対位置を3以上の自由度で変化させることが可能なように前記マーカを移動させるマーカ移動装置と、コントローラとを備えた印字システムによる、印字方法であって、
     前記対象物の三次元形状および位置に関する情報を取得するステップと、
     印字パラメータを設定するステップと、
     前記印字パラメータと、前記対象物の前記三次元形状および前記位置とに基づいて、前記コントローラの制御プログラムを設定するステップと、
     前記制御プログラムを前記コントローラが実行することにより、前記マーカおよび前記マーカ移動装置を制御して前記対象物に印字するステップとを備える、印字方法。
  12.  前記印字するステップは、
     前記対象物と前記マーカとの間の前記相対位置を変化させながら印字を行うことを繰り返すステップを含む、請求項11に記載の印字方法。
  13.  前記印字パラメータは、冗長性をもつ印字位置情報を含み、
     前記対象物の三次元形状、前記対象物の位置および前記印字位置情報に基づいて前記マーカおよび前記マーカ移動装置を制御して印字位置を調整するステップを含む、請求項11に記載の印字方法。
  14.  コントローラに、
     対象物の三次元形状および位置に関する情報を取得するステップと、
     印字パラメータと、前記対象物の前記三次元形状および前記位置とに基づいて、マーカと、前記マーカと前記対象物との間の相対位置を3以上の自由度で変化させることが可能なように前記マーカを移動させるマーカ移動装置とを制御して、前記対象物に印字するステップとを実行させる、プログラム。
  15.  前記印字するステップは、
     前記対象物と前記マーカとの間の前記相対位置を変化させながら印字を行うことを繰り返すステップを含む、請求項14に記載のプログラム。
  16.  前記印字パラメータは、冗長性をもつ印字位置情報を含み、
     前記印字するステップは、
     前記対象物の三次元形状、前記対象物の位置および前記印字位置情報に基づいて前記マーカおよび前記マーカ移動装置を制御して印字位置を調整するステップを含む、請求項14に記載のプログラム。
PCT/JP2020/002040 2019-02-05 2020-01-22 印字システム、印字装置、印字方法およびプログラム WO2020162171A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020000705.7T DE112020000705T5 (de) 2019-02-05 2020-01-22 Markierungssystem, Markierungsvorrichtung, Markierungsverfahren und Programm
CN202080010407.6A CN113348088B (zh) 2019-02-05 2020-01-22 打印系统、打印装置、打印方法以及存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019018678A JP7047790B2 (ja) 2019-02-05 2019-02-05 印字システム、印字装置、印字方法およびプログラム
JP2019-018678 2019-02-05

Publications (1)

Publication Number Publication Date
WO2020162171A1 true WO2020162171A1 (ja) 2020-08-13

Family

ID=71947575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002040 WO2020162171A1 (ja) 2019-02-05 2020-01-22 印字システム、印字装置、印字方法およびプログラム

Country Status (4)

Country Link
JP (1) JP7047790B2 (ja)
CN (1) CN113348088B (ja)
DE (1) DE112020000705T5 (ja)
WO (1) WO2020162171A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7248170B2 (ja) * 2019-02-05 2023-03-29 オムロン株式会社 印字システム、印字装置、印字方法およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198682A (ja) * 1984-10-19 1986-05-16 Mazda Motor Corp 車両の車体番号打刻方法
JPH08297298A (ja) * 1995-04-25 1996-11-12 A G Technol Kk 近赤外光変調装置
JP2000263475A (ja) * 1999-03-18 2000-09-26 Seiko Seiki Co Ltd トラッキング搬送によるマーキング装置
US20150138275A1 (en) * 2013-11-19 2015-05-21 Heidelberger Druckmaschinen Ag Method for generating a printed image on an object having a curved surface
JP2017071173A (ja) * 2015-10-09 2017-04-13 紀州技研工業株式会社 印刷方法および印刷装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745857A (en) * 1986-02-28 1988-05-24 Markem Corporation Programmable pad printing apparatus and method
JP2000238254A (ja) * 1999-02-25 2000-09-05 Tenryu Ind Co Ltd 物品表面への模様形成方法及び装置
CN100439117C (zh) * 2005-11-29 2008-12-03 武汉矽感科技有限公司 自动生产线的激光打标系统及其方法
DE102012006371A1 (de) * 2012-03-29 2012-07-05 Heidelberger Druckmaschinen Aktiengesellschaft Verfahren zum Bedrucken eines Objekts
JP2012139732A (ja) * 2012-04-26 2012-07-26 Keyence Corp レーザ加工装置、レーザ加工条件設定装置、レーザ加工方法、レーザ加工条件設定方法、レーザ加工条件設定プログラム、コンピュータで読み取り可能な記録媒体及び記録した機器
JP6321485B2 (ja) 2014-08-08 2018-05-09 株式会社キーエンス 読取機能付きレーザ印字装置及びワークに印字したキャラクタの読取方法
CN105150693B (zh) * 2015-09-09 2017-10-27 上海有立信息科技有限公司 一种激光打标机
CN106183439A (zh) * 2016-08-31 2016-12-07 无锡富瑞德测控仪器股份有限公司 一种活塞销激光打标装置
CN108161241A (zh) * 2018-02-26 2018-06-15 长沙八思量信息技术有限公司 激光打标机控制方法、装置以及可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198682A (ja) * 1984-10-19 1986-05-16 Mazda Motor Corp 車両の車体番号打刻方法
JPH08297298A (ja) * 1995-04-25 1996-11-12 A G Technol Kk 近赤外光変調装置
JP2000263475A (ja) * 1999-03-18 2000-09-26 Seiko Seiki Co Ltd トラッキング搬送によるマーキング装置
US20150138275A1 (en) * 2013-11-19 2015-05-21 Heidelberger Druckmaschinen Ag Method for generating a printed image on an object having a curved surface
JP2017071173A (ja) * 2015-10-09 2017-04-13 紀州技研工業株式会社 印刷方法および印刷装置

Also Published As

Publication number Publication date
JP2020124854A (ja) 2020-08-20
CN113348088B (zh) 2022-10-04
CN113348088A (zh) 2021-09-03
DE112020000705T5 (de) 2021-10-21
JP7047790B2 (ja) 2022-04-05

Similar Documents

Publication Publication Date Title
JP7030518B2 (ja) 産業用遠隔操作ロボットシステム
EP3863791B1 (en) System and method for weld path generation
US9643316B2 (en) Semi-autonomous multi-use robot system and method of operation
KR100680413B1 (ko) 로보트를 교시하는 로보트 교시용 프로그램, 및 이것에사용하는 카세트, 위치 측정 기구 및 이것들을 이용한로보트 작동 방법
EP1769891B1 (en) Offline teaching apparatus for robot
JP2006247677A (ja) レーザ溶接教示装置及び方法
KR20150001619A (ko) 정확한 구조물 마킹 및 마킹-보조 구조물을 위치시키기 위한 장치 및 방법
US11493899B2 (en) Method for identifying a workpiece, determining a measurement sequence, and measuring a workpiece with a measurement device
US20080301072A1 (en) Robot simulation apparatus
JP2003150219A (ja) 作業機械のシミュレーション装置
WO2016077042A1 (en) Human-centric robot with noncontact measurement device
CN112276936A (zh) 三维数据生成装置以及机器人控制系统
WO2020162171A1 (ja) 印字システム、印字装置、印字方法およびプログラム
CN104203482A (zh) 加工控制装置、激光加工装置以及加工控制方法
CN115555648A (zh) 一种数控切割方法、系统、设备及介质
JP7248170B2 (ja) 印字システム、印字装置、印字方法およびプログラム
JP2018134698A (ja) ワーク取出システム
JP4983567B2 (ja) 板材加工システム
KR101724441B1 (ko) 도면 영상 투사 장치
JP2007518313A (ja) 像を印刷及び/又はカットするための方法
JP7353019B2 (ja) 加工制御装置、加工制御方法及びプログラム
US20200384641A1 (en) Processing device
TWI806762B (zh) 標誌檢測裝置以及機器人示教系統
TW202313283A (zh) 作業程式作成系統以及作業程式作成方法
Kwok et al. A production interface to enable legacy factories for industry 4.0

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752534

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20752534

Country of ref document: EP

Kind code of ref document: A1