WO2020162049A1 - 化合物及びリチウム含有膜の製造方法 - Google Patents

化合物及びリチウム含有膜の製造方法 Download PDF

Info

Publication number
WO2020162049A1
WO2020162049A1 PCT/JP2019/049411 JP2019049411W WO2020162049A1 WO 2020162049 A1 WO2020162049 A1 WO 2020162049A1 JP 2019049411 W JP2019049411 W JP 2019049411W WO 2020162049 A1 WO2020162049 A1 WO 2020162049A1
Authority
WO
WIPO (PCT)
Prior art keywords
atom
group
compound
lithium
integer
Prior art date
Application number
PCT/JP2019/049411
Other languages
English (en)
French (fr)
Inventor
クリスチャン デュサラ
ヴァンサン デュプラン
悠実 池田
Original Assignee
レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
日本エア・リキード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード, 日本エア・リキード株式会社 filed Critical レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Priority to CN201980092779.5A priority Critical patent/CN113454021B/zh
Priority to US17/429,249 priority patent/US20220231268A1/en
Priority to KR1020217028062A priority patent/KR20210124346A/ko
Priority to JP2020571029A priority patent/JP7153094B2/ja
Priority to EP19914621.8A priority patent/EP3922600A4/en
Priority to SG11202109435YA priority patent/SG11202109435YA/en
Publication of WO2020162049A1 publication Critical patent/WO2020162049A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5045Complexes or chelates of phosphines with metallic compounds or metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to a method for producing a compound and a lithium-containing film.
  • the lithium-containing thin film is widely used as a surface coating layer for electrode materials in lithium-ion battery applications.
  • SEI solid electrolyte interface
  • the loss of capacity of lithium-ion batteries is due to the consumption of lithium.
  • the SEI layer formed is non-uniform and unstable, cracks and dendrites can appear, which can cause thermal runaway.
  • the SEI layer also creates a barrier potential that makes intercalation (insertion) into the electrodes more difficult.
  • Lithium-containing thin films are very promising candidates as protective electrode coatings because of their good conductivity and high electrochemical stability.
  • lithium-containing thin films Another important use of lithium-containing thin films is in the formation of solid electrolyte materials used in solid state batteries.
  • Solid-state batteries are solvent-free systems, have longer life, faster charge times, and higher energy density than conventional lithium-ion batteries. They are considered the next technological step in battery development.
  • Lithium-containing thin film solid electrolytes such as lithium phosphate, lithium borate and lithium borate are deposited by ALD/CVD techniques. Uniform and conformal lithium-containing thin films can be obtained even on complex structures such as 3D batteries.
  • the conventional lithium compounds for forming a lithium thin film have the following problems.
  • lithium compounds exist as various aggregates in solution and in the solid state. These molecules generally have a multimeric structure, typically trimers or tetramers, leading to high molecular weights, high melting points and low volatility.
  • n-BuLi is a tetramer in diethyl ether and a hexamer in cyclohexane. If the lithium compound is less volatile and therefore needs to be heated to higher temperatures, it will heat only the rapidly delivered portion. The remaining lithium compound is retained in the "mother tank” at ambient conditions. In that case, it is important to supply the remaining lithium compound to the tank heated at high temperature in a practical manner.
  • delivering solids at a stable feed rate is challenging, considering their morphological changes. Typically, small particles have a high surface bulk ratio and are consumed faster than larger particles. Conversely, particles may coalesce and potentially destabilize the feed rate.
  • liquid and volatile lithium compounds are required.
  • the liquid state allows the flow rate to be accurately measured and/or controlled, and the transfer filling through the tank can be performed by a simple valve opening.
  • one of the well known lithium compounds is an organolithium compound such as an alkyllithium and a lithium amide, which are usually highly reactive, moisture sensitive and in some cases pyrophoric species ( Pyrophoric species). These usually require special safety measures, as can be seen from their commercial availability in solution.
  • organolithium compound such as an alkyllithium and a lithium amide
  • pyrophoric species Pyrophoric species
  • known ALD/CVD processes for forming lithium-containing thin films typically proceed at temperatures between 250°C and 350°C. These temperatures are acceptable if the deposition occurs on a component such as a powder of active material. These temperatures are not suitable for deposition on temperature sensitive materials such as lithium ion battery electrodes.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a compound having a low melting point, improved volatility, and excellent thermal stability, and a method for producing a lithium-containing film.
  • the present invention relates in one embodiment to a compound represented by the following formula (1).
  • A is a nitrogen atom, a phosphorus atom, a boron atom or an aluminum atom.
  • E 1 and E 2 are each independently a carbon atom, a silicon atom, a germanium atom or a tin atom.
  • R 1 to R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms in which a constituent atom may be substituted with a hetero atom. However, there is no case where all of R 1 to R 6 are hydrogen atoms.
  • D is a monodentate or polydentate neutral ligand structure.
  • x is an integer of 0 or 1 or more
  • y is an integer of 1 or more.
  • A is a nitrogen atom and none of the carbon atoms constituting R 1 to R 6 is substituted by the hetero atom
  • x is a number of 1 or more
  • y is a number of 1 or more. ..
  • there are a plurality of A, E 1 , E 2 and R 1 to R 6 they may be the same or different from each other.
  • the compound represented by the above formula (1) (hereinafter, also referred to as “compound (1)”) has a low melting point, high volatility, and excellent thermal stability as compared with conventional lithium compounds. .. This enables a vapor deposition process at a lower temperature, and enables a lithium-containing film to be formed efficiently even on a temperature-sensitive material such as a lithium-ion battery electrode. Although the reason why these characteristics are obtained is not clear, it is presumed as follows. By introducing a bulky specific ligand or substituent to the lithium atom, the coordination sphere of the compound (1) (space that can participate in coordination around the compound) becomes more saturated, and the compound (1) It exerts a retarding effect on the oligomerization of each other. It is considered that this lowers the melting point of the compound (1) and exhibits volatility. Furthermore, the bulkiness provides the structural stability of the compound (1), which is considered to lead to the thermal stability. However, the present invention is not bound by these theories.
  • the compound is preferably represented by the following formula (i).
  • R 11 to R 16 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms in which a constituent atom may be substituted with a hetero atom. , R 11 to R 16 are not all hydrogen atoms.
  • D 1 is a bidentate or tridentate neutral ligand structure.
  • x1 and y1 are each independently an integer of 1 or more.
  • compound (i) since a chelate structure with a bulkier polydentate ligand is introduced, a low melting point, high volatility, and It is preferable in that the thermal stability is improved.
  • R 11 to R 16 are all methyl groups
  • D 1 is 1,2-diethoxyethane, diethylene glycol dimethyl ether, N,N,N′,N′-tetramethylethylenediamine, N,N,N′,N′-tetraethylethylenediamine, N,N,N′,N '-Tetramethyl-1,3-diaminopropane or N,N,N',N'',N''-pentamethyldiethylenetriamine, It is preferable that x1 and y1 are 1.
  • the compound is preferably represented by the following formula (ii).
  • E 1 and E 2 have the same meaning as in the formula (1).
  • Z 1 and Z 2 are each independently a single bond or a divalent linking group.
  • R 21 to R 28 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms in which a constituent atom may be substituted with a hetero atom. However, there is no case where all of R 21 to R 28 are hydrogen atoms.
  • D 2 is a monodentate or bidentate neutral ligand structure.
  • x2 is 0 or an integer of 1 or more, and y2 is an integer of 1 or more.
  • the compound represented by the above formula (ii) (hereinafter, also referred to as “compound (ii)”) employs a phosphorus-containing ligand as a neutral donor for imparting electronic and steric properties. ..
  • the compound (ii) can exhibit excellent low melting point, high volatility and thermal stability, and can introduce a phosphorus atom into the phosphorus-containing film, and can be applied to a solid electrolyte for a solid battery. It will be possible.
  • E 1 and E 2 are carbon atoms or silicon atoms
  • Z 1 and Z 2 are a methylene group or an ethylene group
  • R 21 , R 22 , R 27 and R 28 are a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group or a t-butyl group
  • R 22 to R 26 are a hydrogen atom, a methyl group or an ethyl group
  • D 2 is a chain or cyclic ether, a chain or cyclic thioether, or a tertiary amine
  • x2 is 0 or 1
  • y2 is 1.
  • the compound (ii) When the compound (ii) has the above structure specifically, it can exhibit a low melting point, high volatility and thermal stability at a high level.
  • the compound is preferably represented by the following formula (iii).
  • a 3 is a phosphorus atom, a boron atom or an aluminum atom.
  • E 1 and E 2 have the same meaning as in the above formula (1).
  • R 31 to R 36 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms in which a constituent atom may be substituted with a hetero atom. However, there is no case where all of R 31 to R 36 are hydrogen atoms.
  • D 3 is a monodentate or bidentate neutral ligand structure. x3 is 0 or an integer of 1 or more, and y2 is an integer of 1 or more. )
  • compound (iii) can exhibit a low melting point, high volatility and thermal stability at a high level by introducing a bulky ligand. it can.
  • introduction of phosphorus atom, boron atom or aluminum atom is also expected to develop into a solid electrolyte for a solid battery.
  • a 3 is a phosphorus atom
  • E 1 and E 2 are silicon atoms
  • R 31 to R 36 are a methyl group, an ethyl group, an n-propyl group or an i-propyl group
  • D 3 is N,N,N′,N′-tetramethylethylenediamine, N,N,N′,N′-tetraethylethylenediamine, N,N,N′,N′-tetramethyl-1,3-diaminopropane Or N,N,N′,N′′,N′′-pentamethyldiethylenetriamine, It is preferable that x3 is 0 or 1, and y3 is 1.
  • the compound (iii) When the compound (iii) has the above structure specifically, it can exhibit a low melting point, high volatility and thermal stability at a high level.
  • the compounds (1) and (i) to (iii) are liquid at 25° C. or have a vapor pressure of 25° C.
  • the temperature showing 133.3 Pa is preferably 100° C. or lower. This allows the compound to exist as a liquid at room temperature or as a solid with a low melting point, and the vapor deposition process for forming the lithium-containing film can be efficiently performed at low temperature.
  • thermogravimetric analysis of the compound it is preferable that there is a region where the weight loss is 95% or more at 300° C. or less. Accordingly, most of the compound volatilizes stably in the above temperature range, and thus it is possible to suppress the generation of a residue after the reaction and the decomposition of the compound after volatilization to generate a residue. That is, the weight loss property allows the compound to exhibit excellent thermal stability.
  • the compound can be preferably used for thin film vapor deposition due to the above properties.
  • the present invention in one embodiment, comprises providing a reaction chamber having at least one substrate disposed therein, Introducing a gas containing the vaporized compound into the reaction chamber, and forming a lithium-containing film on at least a part of the surface of the substrate by a vapor deposition process of bringing the gas into contact with the substrate.
  • the present invention relates to a method for manufacturing a lithium-containing film.
  • the production method uses the above-mentioned compounds having a low melting point, improved volatility, and thermal stability, so that they can be transferred without condensation. In addition, the generation of residues during the process can be suppressed. As a result, the deposition of the lithium-containing film can be performed efficiently and stably at a lower temperature than in the conventional case.
  • a vapor deposition process at a low temperature of 200° C. or lower becomes possible.
  • the abbreviation “Me” is a methyl group
  • the abbreviation “Et” is an ethyl group
  • the abbreviation “Pr” is an n-propyl group (linear propyl group)
  • the abbreviation “iPr” is an isopropyl group (i-propyl).
  • Group) and the abbreviation “tBu” mean a tertiary butyl group (t-butyl group), respectively.
  • FIG. 3 shows the weight change with respect to temperature at atmospheric pressure in thermogravimetric analysis (TGA, atm, m: 14.72 mg, 10° C./min) of LiN(SiMe 3 ) 2 (TMEDA).
  • TGA thermogravimetric analysis
  • 2 shows the weight change with respect to temperature at atmospheric pressure in thermogravimetric analysis (TGA, at, m: 28.77 mg, 10° C./min m) of LiN(SiMe 3 ) 2 (1,2-bis(dimethylamino)propane).
  • TGA thermogravimetric analysis
  • the position-thickness relationship for the formation of a lithium oxide film formed at 150° C. is shown.
  • the position-thickness relationship for forming a lithium oxide film formed at 200° C. is shown.
  • the position-thickness relationship for forming a lithium phosphate film formed at 150° C. is shown.
  • the position-thickness relationship for the formation of a lithium phosphate film formed at 200° C. is shown.
  • A is a nitrogen atom, a phosphorus atom, a boron atom or an aluminum atom.
  • E 1 and E 2 are each independently a carbon atom, a silicon atom, a germanium atom or a tin atom.
  • R 1 to R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms in which a constituent atom may be substituted with a hetero atom. However, there is no case where all of R 1 to R 6 are hydrogen atoms.
  • D is a monodentate or polydentate neutral ligand structure.
  • x is an integer of 0 or 1 or more
  • y is an integer of 1 or more.
  • A is a nitrogen atom and none of the carbon atoms constituting R 1 to R 6 is substituted by the hetero atom
  • x is a number of 1 or more
  • y is a number of 1 or more. ..
  • there are a plurality of A, E 1 , E 2 and R 1 to R 6 they may be the same or different from each other.
  • the hydrocarbon group having 1 to 10 carbon atoms in which the constituent atom may be substituted with a hetero atom at least one of the carbon atom and the hydrogen atom constituting the hydrocarbon group is substituted with a hetero atom other than both atoms. Included groups.
  • the hetero atom include nitrogen atom, oxygen atom, phosphorus atom, boron atom, sulfur atom, halogen atom (chlorine atom, fluorine atom, iodine atom, bromine atom) and the like.
  • hydrocarbon group having 1 to 10 carbon atoms examples include a chain hydrocarbon group having 1 to 10 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 10 carbon atoms, and a monovalent hydrocarbon group having 6 to 10 carbon atoms. And the aromatic hydrocarbon group.
  • Examples of the chain hydrocarbon group having 1 to 10 carbon atoms include, for example, Alkyl groups such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group; Alkenyl groups such as ethenyl group, propenyl group, butenyl group; Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
  • Examples of the alicyclic hydrocarbon group having 3 to 10 carbon atoms include monocyclic cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group; A polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group or a tricyclodecyl group; Cycloalkenyl groups such as cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group; Examples thereof include polycyclic cycloalkenyl groups such as norbornenyl group and tricyclodecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include, for example, Examples thereof include aryl groups such as phenyl group, tolyl group, xylyl group and naphthyl group; aralkyl groups such as benzyl group and phenethyl group.
  • the monodentate or polydentate neutral ligand structure is not particularly limited, and monodentate or polydentate neutral coordination known in the art such as ethers, thioethers, amines and unsaturated hydrocarbons.
  • a child structure can be adopted.
  • Specific examples of the monodentate neutral ligand structure include tetrahydrofuran (THF), dioxane, pyridine, pyrrole, imidazole, dimethyl ether, diethyl ether, methyl ethyl ether, dipropyl ether, di-propyl ether, dimethyl thioether, diethyl. Examples thereof include thioether, methyl ethyl thioether, cyclopentadiene and the like.
  • bidentate neutral ligand structure examples include 1,2-dimethoxyethane (DME), 1,2-diethoxyethane, bipyridine, diene, N,N,N′,N′-tetramethylethylenediamine. (TMEDA), N,N,N′,N′-tetraethylethylenediamine (TEEDA), 1,2-bis(dimethylamino)propane and the like.
  • tridentate neutral ligand structure include triene, diglyme (diethylene glycol dimethyl ether), N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDTA), and the like.
  • the compound (1) is preferably represented by the following formula (i).
  • R 11 to R 16 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms in which a constituent atom may be substituted with a hetero atom. , R 11 to R 16 are not all hydrogen atoms.
  • D 1 is a bidentate or tridentate neutral ligand structure.
  • x1 and y1 are each independently an integer of 1 or more.
  • the same group as the group in the compound (1) can be preferably adopted.
  • the bidentate or tridentate neutral ligand structure is not particularly limited, but a bidentate or tridentate neutral ligand structure in the compound (1) is preferably mentioned.
  • R 11 to R 16 are all methyl groups
  • D 1 is 1,2-diethoxyethane, diethylene glycol dimethyl ether, N,N,N′,N′-tetramethylethylenediamine, N,N,N′,N′-tetraethylethylenediamine, 1,2-bis(dimethylamino) ) Propane or N,N,N',N",N"-pentamethyldiethylenetriamine, It is preferable that x1 and y1 are 1.
  • the compound (i) include LiN(SiMe 3 ) 2 (1,2-diethoxyethane), LiN(SiMe 3 ) 2 (diglyme), LiN(SiMe 3 ) 2 (TMEDA), LiN(SiMe 3 ). ) 2 (1,2-bis(dimethylamino)propane), LiN(SiMe 3 ) 2 (TEEDA), LiN(SiMe 3 ) 2 (PMDTA) and the like.
  • the compound (1) is preferably represented by the following formula (ii).
  • E 1 and E 2 have the same meaning as in the formula (1).
  • Z 1 and Z 2 are each independently a single bond or a divalent linking group.
  • R 21 to R 28 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms in which a constituent atom may be substituted with a hetero atom. However, there is no case where all of R 21 to R 28 are hydrogen atoms.
  • D 2 is a monodentate or bidentate neutral ligand structure.
  • x2 is 0 or an integer of 1 or more, and y2 is an integer of 1 or more.
  • divalent linking group examples include a divalent linear or branched hydrocarbon group having 1 to 10 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms, or a group thereof.
  • examples thereof include a group composed of at least one hydrocarbon group and at least one group selected from —CO—, —O—, —NH— and —S—.
  • the same group as the group in the compound (1) can be preferably adopted.
  • the monodentate or bidentate neutral ligand structure is not particularly limited, but a monodentate or bidentate neutral ligand structure in the compound (1) is preferably exemplified.
  • E 1 and E 2 are carbon atoms or silicon atoms
  • Z 1 and Z 2 are a methylene group or an ethylene group
  • R 21 , R 22 , R 27 and R 28 are a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group or a t-butyl group
  • R 22 to R 26 are a hydrogen atom, a methyl group or an ethyl group
  • D 2 is a chain or cyclic ether, a chain or cyclic thioether, or a tertiary amine
  • x2 is 0 or 1
  • y2 is 1.
  • the compound (ii) is, LiN (SiMe 2 CH 2 PMe 2) 2, LiN (SiMe 2 CH 2 PEt 2) 2, LiN (SiMe 2 CH 2 PEt 2) 2 ( dioxane), LiN (SiMe 2 CH 2 PEt 2) 2 (THF ), LiN (SiMe 2 CH 2 PEt 2) 2 (nPrMe), LiN (SiMe 2 CH 2 PEt 2) 2 (iPr 2 O), LiN (CH 2 CH 2 PMe 2) 2 , LiN(CH 2 CH 2 PEt 2 ) 2 , LiN(CH 2 CH 2 PiPr 2 ) 2 and LiN(CH 2 CH 2 PtBu 2 ) 2 .
  • the compound (1) is preferably represented by the following formula (iii).
  • a 3 is a phosphorus atom, a boron atom or an aluminum atom.
  • E 1 and E 2 have the same meaning as in the above formula (1).
  • R 31 to R 36 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms in which a constituent atom may be substituted with a hetero atom. However, there is no case where all of R 31 to R 36 are hydrogen atoms.
  • D 3 is a monodentate or bidentate neutral ligand structure. x3 is 0 or an integer of 1 or more, and y2 is an integer of 1 or more. )
  • the same group as the group in the compound (1) can be preferably adopted.
  • the monodentate or bidentate neutral ligand structure is not particularly limited, but a monodentate or bidentate neutral ligand structure in the compound (1) is preferably exemplified.
  • a 3 is a phosphorus atom
  • E 1 and E 2 are silicon atoms
  • R 31 to R 36 are a methyl group, an ethyl group, an n-propyl group or an i-propyl group
  • D 3 is N,N,N′,N′-tetramethylethylenediamine, N,N,N′,N′-tetraethylethylenediamine, N,N,N′,N′-tetramethyl-1,3-diaminopropane Or N,N,N′,N′′,N′′-pentamethyldiethylenetriamine, It is preferable that x3 is 0 or 1, and y3 is 1.
  • the compound (iii) include LiP(SiMe 3 ) 2 , LiP(SiMe 3 ) 2 (TMEDA) and LiP(SiMe 3 ) 2 (PMDTA).
  • the compound is preferably liquid at 25° C., or the temperature at which the vapor pressure is 133.3 Pa is 100° C. or lower.
  • the temperature at which the vapor pressure is 133.3 Pa is more preferably 90°C or lower. This allows the compound to exist as a liquid at room temperature or as a solid with a low melting point, and the vapor deposition process for forming the lithium-containing film can be efficiently performed at low temperature.
  • thermogravimetric analysis of the compound there is preferably a region where the weight loss is 95% or more at 300° C. or less, and there is a region where the weight loss is 95% or more at 280° C. or less. Is more preferable, and it is further preferable that there is a region where the weight loss is 95% or more at 250° C. or less. Accordingly, most of the compound volatilizes stably in the above temperature range, and thus it is possible to suppress the generation of a residue after the reaction and the decomposition of the compound after volatilization to generate a residue. That is, the weight loss property allows the compound to exhibit excellent thermal stability.
  • the compound can be preferably used for thin film vapor deposition due to the above characteristics.
  • suitable vapor deposition methods include, but are not limited to, atomic layer deposition (ALD), plasma enhanced atomic layer deposition (PE-ALD), chemical vapor deposition (CVD), pulsed chemical vapor deposition (P-CVD). ), thermal in low pressure chemical vapor deposition (LPCVD), plasma, or remote plasma processes, or combinations thereof.
  • the compound (1) and compounds (i) to (iii) which are a preferred embodiment can be produced by a method known in the art.
  • the compound (i) can be obtained by reacting the corresponding lithium amide with the compound corresponding to the neutral ligand structure in a solvent (toluene or the like).
  • the compound (ii) is prepared by first reacting an alkyl phosphate with an organolithium compound to prepare a lithium alkylphosphate, reacting this with a terminal halogenated alkylamine, and finally reacting with an organolithium compound. can get.
  • the compound (iii) can be obtained by reacting the corresponding lithium amide with the compound corresponding to the neutral ligand structure in a solvent (toluene or the like).
  • Other structures can be manufactured by appropriately changing these.
  • ⁇ Method for producing lithium-containing film>> The manufacturing method of the lithium-containing film according to the present embodiment, Providing a reaction chamber having at least one substrate disposed therein, Introducing a gas containing the vaporized compound into the reaction chamber, and forming a lithium-containing film on at least a part of the surface of the substrate by a vapor deposition process of bringing the gas into contact with the substrate. ..
  • reaction chamber preparation process In this step, a reaction chamber in which at least one substrate is arranged is prepared.
  • the type of substrate on which the lithium-containing film is deposited is appropriately selected according to the end use.
  • the substrate is an oxide (eg, HfO 2 -based material, TiO 2 -based material, ZrO 2 -based material, rare earth oxide-based material, used as an insulating material in MIM, DRAM, or FeRam technology, Ternary oxide based materials) or a nitride based film (eg TaN) used as an oxygen barrier between the copper and low-k film.
  • oxide eg, HfO 2 -based material, TiO 2 -based material, ZrO 2 -based material, rare earth oxide-based material, used as an insulating material in MIM, DRAM, or FeRam technology, Ternary oxide based materials
  • a nitride based film eg TaN
  • Other substrates can be used in the manufacture of semiconductors, photovolta
  • substrates include, but are not limited to, solid substrates such as, but not limited to, metal nitride containing substrates (eg, TaN, TiN, WN, TaCN, TiCN, TaSiN, and TiSiN); insulators (eg, SiO 2 , Si 3 N 4 , SiON, HfO 2 , Ta 2 O 5 , ZrO 2 , TiO 2 , Al 2 O 3 , and barium strontium titanate); or other substrates containing some of these material combinations. Can be mentioned. The actual substrate utilized may also depend on the particular compound embodiment utilized.
  • metal nitride containing substrates eg, TaN, TiN, WN, TaCN, TiCN, TaSiN, and TiSiN
  • insulators eg, SiO 2 , Si 3 N 4 , SiON, HfO 2 , Ta 2 O 5 , ZrO 2 , TiO 2 , Al 2 O 3 , and barium strontium titanate
  • the reaction chamber may be any enclosure or chamber of the device in which the vapor deposition method is carried out. Specific examples include, but are not limited to, parallel plate type reactors, cold wall type reactors, hot wall type reactors, single mode reactors, multi-wafer reactors, or other types of deposition systems.
  • a gas containing the vaporized compound is introduced into the reaction chamber.
  • the pure (single) or blended (plural) compounds may be fed in liquid form to the vaporizer, where they are vaporized before being introduced into the reaction chamber.
  • the compound can be vaporized by passing the carrier gas through a container containing the compound or by bubbling the carrier gas through the compound.
  • a carrier gas and a gas containing the vaporized compound are introduced into the reaction chamber.
  • the vessel may be heated to a temperature that allows the compound to have a sufficient vapor pressure.
  • the carrier gas can include, but is not limited to, Ar, He, N 2 , and mixtures thereof.
  • Oxygen sources such as O 3 , O 2 , NO, H 2 O, H 2 O 2 , carboxylic acids (C 1 -C 10 linear and branched), acetic acid, formalin, formic acid, alcohols, para-formaldehyde, And a combination thereof; preferably O 3 , O 2 , H 2 O, NO, and a combination thereof; more preferably H 2 O may further be provided.
  • the vessel can be maintained at a temperature in the range of, for example, about 0°C to about 150°C. Those skilled in the art will appreciate that the temperature of the vessel can be adjusted by known methods to control the amount of compound that is vaporized.
  • Compounds may be supplied in pure form (eg liquid or low melting solids) or in a blend with a suitable solvent.
  • exemplary solvents include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, heterocyclic hydrocarbons, ethers, glymes, glycols, amines, polyamines, cyclicamines, alkylated amines, alkylated polyamines and These mixtures are mentioned.
  • Preferred solvents include ethylbenzene, diglyme, triglyme, tetraglyme, pyridine, xylene, mesitylene, decane, dodecane, and mixtures thereof.
  • the concentration of the compound is typically in the range of about 0.02 to about 2.0M, and preferably in the range of about 0.05 to about 0.2M.
  • the gas containing the vaporized compound may be mixed with the reaction species in the reaction chamber.
  • exemplary reactive species include, but are not limited to, metal precursors such as strontium containing precursors, barium containing precursors, aluminum containing precursors such as TMA, and the like, and any combination thereof.
  • the reaction chamber may be maintained at a pressure within the range of about 0.5 mTorr to about 20 Torr.
  • the temperature within the reaction chamber can be in the range of about 50°C to about 600°C, preferably in the range of about 80°C to about 550°C.
  • One skilled in the art can empirically optimize the temperature to achieve the desired result.
  • Substrate can be heated to a temperature sufficient to obtain a desired lithium-containing film at a sufficient growth rate and desired physical state and composition.
  • Non-limiting exemplary temperature ranges in which the substrate can be heated include 50°C to 500°C.
  • the substrate temperature is kept below 300°C.
  • a lithium-containing film is formed on at least a part of the surface of the substrate by a vapor deposition process of bringing the gas into contact with the substrate.
  • a vapor phase of a compound is introduced into a reaction chamber where it is contacted with a suitable substrate. Thereafter, excess compound can be removed from the reaction chamber by purging and/or evacuating the reactor.
  • An oxygen source is introduced into the reaction chamber, where it reacts with the absorbed compound in a self-terminating manner. Excess oxygen source is removed from the reaction chamber by purging and/or evacuating the reaction chamber. If the desired film is a lithium oxide film, this two-step process may provide the desired film thickness or may be repeated until a film having the required thickness is obtained.
  • the introduction of the vapor of the metal precursor into the reaction chamber can be continued after the two-step process described above.
  • the metal precursor is selected based on the nature of the lithium metal oxide to be deposited.
  • the compound contacts the substrate. Excess compound is removed from the reaction chamber by purging and/or evacuating the reaction chamber.
  • an oxygen source may be introduced into the reaction chamber to react with the metal precursor. Excess oxygen source is removed from the reaction chamber by purging and/or evacuating the reaction chamber.
  • the process may be terminated once the desired film thickness is achieved. However, if a thicker film is desired, all of the four step process may be repeated. By alternating the supply of compound, metal precursor and oxygen source, a film of desired composition and thickness can be deposited.
  • the lithium-containing film is selected from Li x NiO 2, Li x CoO 2, Li x V 3 O 8, Li x V 2 O 5, and Li x Mn 2 O 4, wherein x is from 1 8 Is within the range of.
  • One of ordinary skill in the art can obtain the desired film composition by appropriate selection of the appropriate compound and reactive species.
  • the composition of the deposited film depends on the application.
  • lithium-containing membranes can be used in fuel cell and storage battery applications.
  • FIG. 2 shows the weight of LiN(SiMe 3 ) 2 (1,2-bis(dimethylamino)propane) versus temperature at atmospheric pressure in thermogravimetric analysis (TGA, at, m: 28.77 mg, 10° C./min m). Show changes.
  • FIG. 3 shows the weight change with temperature under reduced pressure in the thermogravimetric analysis (TGA, vac, m: 17.65 mg, 10° C./min) of LiN(SiMe 2 CH 2 PiPr 2 ) 2 .
  • LiOtBu manufactured by Sigma-Aldrich
  • the properties of the prepared compound and the comparative substance were as follows.
  • the melting point and vapor pressure were both measured by the thermogravimetric analysis described above.
  • LiN(SiMe 2 CH 2 PiPr 2 ) 2 A silicon or amorphous carbon substrate (about 20 mm x about 20 mm x thickness about 0.75 mm) was introduced into the ALD reactor or the CVD reactor. The substrate was then heated to a set point of 100-500° C. under a nitrogen atmosphere for each experiment. After reaching the set value, LiN as compound (SiMe 2 CH 2 PiPr 2) 2, an oxygen source and a flow of carrier gas into the reactor, depositing a film on a substrate. During this period, water vapor or oxygen was used as the oxygen source, and nitrogen was used as the carrier gas, and the pressure was maintained at 266.6 Pa.
  • a lithium oxide film was deposited by ALD at 100°C, 120°C, 150°C, 175°C, 200°C, and 250°C. Lithium oxide films were also obtained by CVD at 200°C, 300°C and 400°C, while lithium silicate films were deposited by CVD at 500°C. On the other hand, a lithium oxide film was deposited by ALD at 100° C., 120° C., 150° C., 175° C., 200° C. and 250° C. using oxygen as an oxygen source. The compositions of typical lithium oxide and lithium silicate films on Si substrates are shown in the table below. The film composition was evaluated using an X-ray photoelectron spectrometer ("K-Alpha" manufactured by Thermo Scientific, in vacuum, room temperature (non-heated)).
  • the deposition rates of ALD experiments on Si substrates at 100°C, 150°C and 200°C are shown below.
  • 200 cycles of LiN(SiMe 2 CH 2 PiPr 2 ) 2 pulse, steam or O 2 pulse, and purge were applied.
  • the deposition rate was measured using a film thickness measurement by spectroscopic ellipsometry (“ORISEL” manufactured by HORIBA/JOBIN YVON, analysis software “DeltaPsi2”, in air, at room temperature).
  • ORISEL spectroscopic ellipsometry
  • the uniformity of the film thickness was evaluated for the lithium oxide film formed at 150°C and 200°C.
  • the thickness of the obtained lithium oxide film was measured at 10 cm or 20 cm intervals for a total of 6 points.
  • FIG. 4 shows the position-thickness relationship for the formation of a lithium oxide film formed at 150° C.
  • FIG. 5 shows the position-thickness relationship for the formation of a lithium oxide film formed at 200° C.
  • the film thickness was measured using the above-mentioned spectroscopic ellipsometry.
  • the uniformity of the film thickness was evaluated for the lithium phosphate film formed at 150°C and 200°C.
  • the thickness of the obtained lithium phosphate film was measured at 10 cm intervals for a total of 6 points.
  • FIG. 6 shows the position-thickness relationship for the formation of a lithium phosphate film formed at 150° C.
  • FIG. 7 shows the position-thickness relationship for the formation of a lithium phosphate film formed at 200° C.
  • the film thickness was measured using the above-mentioned spectroscopic ellipsometry.
  • Lithium-containing films could be obtained at high deposition rates at 100° C., 150° C. and 200° C. by using LiN(SiMe 2 CH 2 PiPr 2 ) 2 and water as the oxygen source.
  • the deposition rate at low temperature (100 and 150° C.) was 7-8 times higher than the known deposition procedure with LiN(SiMe 3 ) 2 and trimethyl phosphate. Good uniformity was observed at 150° C. and 200° C. even though the deposition rate of lithium oxide film formation was much faster than the lithium phosphate film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

低融点で、揮発性が改善されており、熱安定性に優れる化合物及びリチウム含有膜の製造方法を提供する。下記式(1)で表される化合物。(式(1)中、Aは窒素原子、リン原子、ホウ素原子又はアルミニウム原子である。 E1及びE2は、それぞれ独立して、炭素原子、ケイ素原子、ゲルマニウム原子又はスズ原子である。 R1~R6は、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10の炭化水素基である。ただし、R1~R6の全てが水素原子となる場合はない。 Dは、単座又は多座の中性配位子構造である。 xは0又は1以上の整数であり、yは1以上の整数である。ただし、Aが窒素原子であり、かつR1~R6を構成する炭素原子のいずれも前記ヘテロ原子により置換されていない場合、xは1以上の数であり、yは1以上の数である。 A、E1、E2及びR1~R6が、それぞれ複数ある場合、それらは互いに同一でも異なっていてもよい。)

Description

化合物及びリチウム含有膜の製造方法
 本発明は、化合物及びリチウム含有膜の製造方法に関する。
 リチウム含有薄膜は、リチウムイオン電池用途における電極材料の表面コーティング層として広く用いられている。リチウムイオン電池の第1のサイクルの間、アノードおよび/またはカソード上の固体電解質界面(SEI:solid electrolyte interface)の形成は、電解質/電極界面での電解質の分解から観察される。リチウムイオン電池の容量の損失は、リチウムの消費に起因する。さらに、形成されるSEI層は不均一で不安定であり、亀裂および樹枝状結晶が現れ、熱暴走を引き起こし得る。さらに、SEI層は、電極へのインターカレーション(挿入)をより困難にする障壁電位も生成する。
 原子層堆積(ALD)や化学気相成長(CVD)技術による電極の表面コーティングは、意図する固体電解質界面薄膜を形成するための第1選択の方法であり、したがって、これらの不安定層の形成を回避する。リチウム含有薄膜はその良好な導電性および高い電気化学的安定性のために、保護電極コーティングとして非常に有望な候補である。
 リチウム含有薄膜の別の重要な用途は、固体電池に使用される固体電解質材料の形成である。固体電池は無溶媒系であり、従来のリチウムイオン電池よりも長い寿命、より速い充電時間、およびより高いエネルギー密度を有する。それらは、バッテリー開発における次の技術ステップとみなされている。リン酸リチウム、ホウ酸リチウムおよびホウリン酸リチウムなどのリチウム含有薄膜固体電解質は、ALD/CVD技術によって堆積される。均一でコンフォーマルなリチウム含有薄膜は、3D電池のような複雑な構造物上でも得ることができる。
 これまでリチウム電池用途や他の用途を含め、リチウム含有膜の形成方法として種々の報告がなされている(例えば、特許文献1~4等)。
国際公開第00/67300号 国際公開第02/27063号 国際公開第2011/002920号 米国特許出願公開第2012/0276305号明細書
 しかしながら、リチウム薄膜形成のための従来のリチウム化合物には次のような問題がある。
 まず、リチウム化合物は、溶液中および固体状態で種々の凝集体として存在する。これらの分子は一般に多量体構造を有し、典型的には三量体または四量体であり、高分子量、高融点および低揮発性をもたらす。例えば、n-BuLiはジエチルエーテル中では四量体であり、シクロヘキサン中では六量体である。リチウム化合物があまり揮発性でなく、したがって高温に加熱する必要がある場合、迅速に送達される部分だけを加熱することになる。残りのリチウム化合物は、「マザータンク」内に周囲条件で保持される。その場合、残余のリチウム化合物を高温加熱されたタンクに実際的な方法で供給することが重要となる。さらに、安定した供給速度で固体を送達することには、それらの形態の変化を考慮すると、困難性を伴う。典型的には、小さな粒子は表面バルク比が高く、より大きな粒子よりも速く消費される。逆に、粒子が融合して供給速度を潜在的に不安定にすることもある。
 従って、当該技術分野、特に半導体業界においては液状で揮発性のあるリチウム化合物が求められている。液状であることで、流量を正確に測定および/または制御することができるとともに、単純な弁開放によりタンクを通じた移送充填を行うことができる。
 次に、周知のリチウム化合物の1つは、アルキルリチウムおよびリチウムアミドのような有機リチウム化合物であるところ、それらは通常、反応性が高く、水分感受性が高く、場合によっては自然発火性の種(pyrophoric species)であり得る。これらは、通常、溶液で市販されていることからも分かるように、特別な安全対策が必要となる。
 さらに、リチウム含有薄膜形成のための公知のALD/CVDプロセスは、典型的には250℃と350℃との間の温度で進行する。これらの温度は、堆積が活性材料の粉末のような成分上で起こる場合に許容される。これらの温度は、リチウムイオン電池電極などの温度感受性材料上への堆積には適していない。
 本発明は前記問題点に鑑みなされたものであり、低融点で、揮発性が改善されており、熱安定性に優れる化合物及びリチウム含有膜の製造方法を提供することを目的とする。
 本願発明者らは鋭意検討したところ、下記構成を採用することにより前記目的を達成できることを見出して、本発明を完成させるに至った。
 本発明は、一実施形態において、下記式(1)で表される化合物に関する。
Figure JPOXMLDOC01-appb-C000005
 
(式(1)中、Aは窒素原子、リン原子、ホウ素原子又はアルミニウム原子である。
 E及びEは、それぞれ独立して、炭素原子、ケイ素原子、ゲルマニウム原子又はスズ原子である。
 R~Rは、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10の炭化水素基である。ただし、R~Rの全てが水素原子となる場合はない。
 Dは、単座又は多座の中性配位子構造である。
 xは0又は1以上の整数であり、yは1以上の整数である。ただし、Aが窒素原子であり、かつR~Rを構成する炭素原子のいずれも前記ヘテロ原子により置換されていない場合、xは1以上の数であり、yは1以上の数である。
 A、E、E及びR~Rが、それぞれ複数ある場合、それらは互いに同一でも異なっていてもよい。)
 上記式(1)で表される化合物(以下、「化合物(1)」ともいう。)は、従来のリチウム化合物に比して、低融点で、揮発性が高く、熱安定性に優れている。これにより、より低温での気相堆積プロセスが可能となり、リチウムイオン電池電極のような温度感受性材料に対しても効率的にリチウム含有膜を形成することができる。これらの特性が得られる理由は定かではないものの、以下のように推察される。リチウム原子に対して嵩高い特定の配位子又は置換基を導入することにより、化合物(1)の配位球(化合物周辺の配位に関与し得る空間)はより飽和し、化合物(1)同士のオリゴマー化に対する遅延化作用を及ぼす。これにより化合物(1)の融点を低下させ、揮発性を発揮すると考えられる。さらに嵩高さにより化合物(1)の構造安定性が得られ、これが熱安定性につながっていると考えられる。ただし、本発明はこれらの理論に束縛されるものではない。
 一実施形態において、当該化合物は下記式(i)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 
(式(i)中、R11~R16は、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10のアルキル基である。ただし、R11~R16の全てが水素原子となる場合はない。
 Dは、二座又は三座の中性配位子構造である。
 x1及びy1は、それぞれ独立して1以上の整数である。)
 上記式(i)で表される化合物(以下、「化合物(i)」ともいう。)では、より嵩高い多座配位子によるキレート構造を導入しているので、低融点、高揮発性及び熱安定性を向上させる点で好ましい。
 一実施形態において、化合物(i)では、R11~R16が全てメチル基であり、
 Dが、1,2-ジエトキシエタン、ジエチレングリコールジメチルエーテル、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン又はN,N,N’,N’’,N’’-ペンタメチルジエチレントリアミンであり、
 x1及びy1が1であることが好ましい。
 化合物(i)が具体的に上記構造を有することで、低融点、高揮発性及び熱安定性を高いレベルで発揮することができる。
 他の実施形態において、当該化合物は、下記式(ii)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 
(式(ii)中、E及びEは、前記式(1)と同義である。
 Z及びZは、それぞれ独立して、単結合又は2価の連結基である。
 R21~R28は、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10のアルキル基である。ただし、R21~R28の全てが水素原子となる場合はない。
 Dは、単座又は二座の中性配位子構造である。
 x2は0又は1以上の整数であり、y2は1以上の整数である。)
 上記式(ii)で表される化合物(以下、「化合物(ii)」ともいう。)では、電子的および立体的特性を付与するための中性ドナーとしてリン含有配位子を採用している。これにより化合物(ii)は優れた低融点、高揮発性及び熱安定性を発揮することができるとともに、リン含有膜にリン原子を導入することができ、固体電池用の固体電解質への応用も可能となる。
 一実施形態において、化合物(ii)では、E及びEが炭素原子又はケイ素原子であり、
 Z及びZは、メチレン基又はエチレン基であり、
 R21、R22、R27及びR28は、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基又はt-ブチル基であり、
 R22~R26は、水素原子、メチル基又はエチル基であり、
 Dは、鎖状若しくは環状エーテル、鎖状若しくは環状チオエーテル、又は第三級アミンであり、
 x2が0又は1であり、y2が1であることが好ましい。
 化合物(ii)が具体的に上記構造を有することで、低融点、高揮発性及び熱安定性を高いレベルで発揮することができる。
 さらに別の実施形態において、当該化合物は、下記式(iii)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 
(式(iii)中、Aは、リン原子、ホウ素原子又はアルミニウム原子である。
 E及びEは、前記式(1)と同義である。
 R31~R36は、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10のアルキル基である。ただし、R31~R36の全てが水素原子となる場合はない。
 Dは、単座又は二座の中性配位子構造である。
 x3は0又は1以上の整数であり、y2は1以上の整数である。)
 上記式(iii)で表される化合物(以下、「化合物(iii)」ともいう。)でも嵩高い配位子の導入により低融点、高揮発性及び熱安定性を高いレベルで発揮することができる。また、リン原子、ホウ素原子又はアルミニウム原子の導入により固体電池用の固体電解質への展開も期待される。
 一実施形態において、化合物(iii)では、Aがリン原子であり、
 E及びEがケイ素原子であり、
 R31~R36がメチル基、エチル基、n-プロピル基又はi-プロピル基であり、
 Dが、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン又はN,N,N’,N’’,N’’-ペンタメチルジエチレントリアミンであり、
 x3が0又は1であり、y3が1であることが好ましい。
 化合物(iii)が具体的に上記構造を有することで、低融点、高揮発性及び熱安定性を高いレベルで発揮することができる。
 一実施形態において、前記化合物(1)及び(i)~(iii)(以下、これらを区別することなく「化合物」ということもある。)は、25℃で液状であるか、又は蒸気圧が133.3Paを示す温度が100℃以下であることが好ましい。これにより、化合物が室温で液状、又は低融点の固体として存在することができ、リチウム含有膜の形成のための気相堆積プロセスを低温で効率的に行うことができる。
 一実施形態において、当該化合物の熱重量分析において、300℃以下で重量損失が95%以上となる領域が存在することが好ましい。これにより、上記温度範囲において当該化合物の大部分が安定的に揮発するので、反応後に残渣が発生することや揮発後に化合物が分解して残渣が発生することを抑制することができる。すなわち、上記重量損失特性により当該化合物は優れた熱安定性を発揮することができる。
 一実施形態において、当該化合物は、上記特性により薄膜気相堆積用として好適に用いることができる。
 本発明は、一実施形態において、内部に少なくとも1枚の基板を配置した反応チャンバを準備する工程、
 気化させた当該化合物を含むガスを前記反応チャンバに導入する工程、及び
 前記ガスと前記基板とを接触させる気相堆積プロセスにより前記基板の表面の少なくとも一部にリチウム含有膜を形成する工程
 を含むリチウム含有膜の製造方法に関する。
 当該製造方法では、低融点で、揮発性が改善され、熱安定性のある上記化合物を用いているので、凝縮なしでそれらを移送することができる。また、プロセス中での残渣の発生を抑制することができる。その結果、リチウム含有膜の堆積を従来に比してより低い温度で効率的にかつ安定的に行うことができる。
 一実施形態において、前記気相堆積プロセスを200℃以下で行うことが好ましい。上記化合物を採用することにより、200℃以下という低温での気相堆積プロセスが可能となる。
 なお、本明細書において、略語「Me」はメチル基、略語「Et」はエチル基、略語「Pr」はn-プロピル基(直鎖プロピル基)、略語「iPr」はイソプロピル基(i-プロピル基)、略語「tBu」は三級ブチル基(t-ブチル基)をそれぞれ意味する。
LiN(SiMe(TMEDA)の熱重量分析(TGA、atm、m:14.72mg、10℃/分)における大気圧での温度に対する重量変化を示す。 LiN(SiMe(1,2-ビス(ジメチルアミノ)プロパン)の熱重量分析(TGA、at、m:28.77mg、10℃/分m)における大気圧での温度に対する重量変化を示す。 LiN(SiMeCHPiPrの熱重量分析(TGA、vac、m:17.65mg、10℃/分)における減圧下での温度に対する重量変化を示す。 150℃で形成した酸化リチウム膜形成についての位置-厚さの関係を示す。 200℃で形成した酸化リチウム膜形成についての位置-厚さの関係を示す。 150℃で形成したリン酸リチウム膜形成についての位置-厚さの関係を示す。 200℃で形成したリン酸リチウム膜形成についての位置-厚さの関係を示す。
 以下に本発明の一実施形態について図面を参照しつつ説明する。以下に説明する実施形態は、本発明の一例を説明するものである。本発明は以下の実施形態になんら限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形形態も含む。以下で説明される構成の全てが本発明の必須の構成であるとは限らない。
《化合物(1)》
 本実施形態に係る化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000009
 
(式(1)中、Aは窒素原子、リン原子、ホウ素原子又はアルミニウム原子である。
 E及びEは、それぞれ独立して、炭素原子、ケイ素原子、ゲルマニウム原子又はスズ原子である。
 R~Rは、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10の炭化水素基である。ただし、R~Rの全てが水素原子となる場合はない。
 Dは、単座又は多座の中性配位子構造である。
 xは0又は1以上の整数であり、yは1以上の整数である。ただし、Aが窒素原子であり、かつR~Rを構成する炭素原子のいずれも前記ヘテロ原子により置換されていない場合、xは1以上の数であり、yは1以上の数である。
 A、E、E及びR~Rが、それぞれ複数ある場合、それらは互いに同一でも異なっていてもよい。)
 前記構成原子がヘテロ原子により置換されていてもよい炭素数1~10の炭化水素基としては、この炭化水素基を構成する炭素原子及び水素原子の少なくとも1つが、両原子以外のヘテロ原子により置換されている基を含む。ヘテロ原子としては、窒素原子、酸素原子、リン原子、ホウ素原子、硫黄原子、ハロゲン原子(塩素原子、フッ素原子、ヨウ素原子、臭素原子)等が挙げられる。
 炭素数1~10の炭化水素基としては、例えば、炭素数1~10の鎖状炭化水素基、炭素数3~10の1価の脂環式炭化水素基、炭素数6~10の1価の芳香族炭化水素基等が挙げられる。
 上記炭素数1~10の鎖状炭化水素基としては、例えば、
 メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
 上記炭素数3~10の脂環式炭化水素基としては、例えば
 シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の単環のシクロアルキル基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環のシクロアルキル基;
 シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等のシクロアルケニル基;
 ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基などが挙げられる。
 上記炭素数6~20の1価の芳香族炭化水素基としては、例えば、
 フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基などが挙げられる。
 単座又は多座の中性配位子構造としては、特に限定されず、エーテル類、チオエーテル類、アミン類、不飽和炭化水素類等、当該技術分野で公知の単座又は多座の中性配位子構造を採用することができる。
 単座の中性配位子構造の具体例としては、テトラヒドロフラン(THF)、ジオキサン、ピリジン、ピロール、イミダゾール、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、ジプロピルエーテル、ジi-プロピルエーテル、ジメチルチオエーテル、ジエチルチオエーテル、メチルエチルチオエーテル、シクロペンタジエン等が挙げられる。
 二座の中性配位子構造の具体例としては、1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン、ビピリジン、ジエン、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)、N,N,N’,N’-テトラエチルエチレンジアミン(TEEDA)、1,2-ビス(ジメチルアミノ)プロパン等が挙げられる。
 三座の中性配位子構造の具体例としては、トリエン、ジグリム(ジエチレングリコールジメチルエーテル)、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン(PMDTA)等が挙げられる。
《化合物(i)》
 化合物(1)は、一実施形態として、下記式(i)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 
(式(i)中、R11~R16は、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10のアルキル基である。ただし、R11~R16の全てが水素原子となる場合はない。
 Dは、二座又は三座の中性配位子構造である。
 x1及びy1は、それぞれ独立して1以上の整数である。)
 構成原子がヘテロ原子により置換されていてもよい炭素数1~10のアルキル基としては、化合物(1)における基と同様のものを好適に採用することができる。
 二座又は三座の中性配位子構造としては、特に限定されないものの、化合物(1)における二座又は三座の中性配位子構造が好適に挙げられる。
 中でも、上記式(i)において、R11~R16が全てメチル基であり、
 Dが、1,2-ジエトキシエタン、ジエチレングリコールジメチルエーテル、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、1,2-ビス(ジメチルアミノ)プロパン又はN,N,N’,N’’,N’’-ペンタメチルジエチレントリアミンであり、
 x1及びy1が1であることが好ましい。
 化合物(i)の具体例としては、LiN(SiMe(1,2-ジエトキシエタン)、LiN(SiMe(ジグリム)、LiN(SiMe(TMEDA)、LiN(SiMe(1,2-ビス(ジメチルアミノ)プロパン)、LiN(SiMe(TEEDA)、LiN(SiMe(PMDTA)等が挙げられる。
《化合物(ii)》
 化合物(1)は、一実施形態として、下記式(ii)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 
(式(ii)中、E及びEは、前記式(1)と同義である。
 Z及びZは、それぞれ独立して、単結合又は2価の連結基である。
 R21~R28は、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10のアルキル基である。ただし、R21~R28の全てが水素原子となる場合はない。
 Dは、単座又は二座の中性配位子構造である。
 x2は0又は1以上の整数であり、y2は1以上の整数である。)
 前記2価の連結基としては、例えば、炭素数1~10の2価の直鎖状若しくは分岐状の炭化水素基、炭素数4~12の2価の脂環式炭化水素基、又はこれらの炭化水素基の1個以上と-CO-、-O-、-NH-及び-S-のうちの少なくとも1種の基とから構成される基等が挙げられる。
 構成原子がヘテロ原子により置換されていてもよい炭素数1~10のアルキル基としては、化合物(1)における基と同様のものを好適に採用することができる。
 単座又は二座の中性配位子構造としては、特に限定されないものの、化合物(1)における単座又は二座の中性配位子構造等が好適に挙げられる。
 中でも、上記式(ii)において、E及びEが炭素原子又はケイ素原子であり、
 Z及びZは、メチレン基又はエチレン基であり、
 R21、R22、R27及びR28は、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基又はt-ブチル基であり、
 R22~R26は、水素原子、メチル基又はエチル基であり、
 Dは、鎖状若しくは環状エーテル、鎖状若しくは環状チオエーテル、又は第三級アミンであり、
 x2が0又は1であり、y2が1であることが好ましい。
 化合物(ii)の具体例としては、LiN(SiMeCHPMe、LiN(SiMeCHPEt、LiN(SiMeCHPEt(ジオキサン)、LiN(SiMeCHPEt(THF)、LiN(SiMeCHPEt(nPrMe)、LiN(SiMeCHPEt(iPrO)、LiN(CHCHPMe、LiN(CHCHPEt、LiN(CHCHPiPrおよびLiN(CHCHPtBu等が挙げられる。
 化合物(1)は、一実施形態において、下記式(iii)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 
(式(iii)中、Aは、リン原子、ホウ素原子又はアルミニウム原子である。
 E及びEは、前記式(1)と同義である。
 R31~R36は、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10のアルキル基である。ただし、R31~R36の全てが水素原子となる場合はない。
 Dは、単座又は二座の中性配位子構造である。
 x3は0又は1以上の整数であり、y2は1以上の整数である。)
 構成原子がヘテロ原子により置換されていてもよい炭素数1~10のアルキル基としては、化合物(1)における基と同様のものを好適に採用することができる。
 単座又は二座の中性配位子構造としては、特に限定されないものの、化合物(1)における単座又は二座の中性配位子構造等が好適に挙げられる。
  中でも、上記式(iii)において、Aがリン原子であり、
 E及びEがケイ素原子であり、
 R31~R36がメチル基、エチル基、n-プロピル基又はi-プロピル基であり、
 Dが、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン又はN,N,N’,N’’,N’’-ペンタメチルジエチレントリアミンであり、
 x3が0又は1であり、y3が1であることが好ましい。
 化合物(iii)の具体例としては、LiP(SiMe、LiP(SiMe(TMEDA)およびLiP(SiMe(PMDTA)等が挙げられる。
 本実施形態において、前記化合物は、25℃で液状であるか、又は蒸気圧が133.3Paを示す温度が100℃以下であることが好ましい。蒸気圧が133.3Paを示す温度は90℃以下であることがより好ましい。これにより、化合物が室温で液状、又は低融点の固体として存在することができ、リチウム含有膜の形成のための気相堆積プロセスを低温で効率的に行うことができる。
 本実施形態において、前記化合物の熱重量分析において、300℃以下で重量損失が95%以上となる領域が存在することが好ましく、280℃以下で重量損失が95%以上となる領域が存在することがより好ましく、250℃以下で重量損失が95%以上となる領域が存在することがさらに好ましい。これにより、上記温度範囲において当該化合物の大部分が安定的に揮発するので、反応後に残渣が発生することや揮発後に化合物が分解して残渣が発生することを抑制することができる。すなわち、上記重量損失特性により当該化合物は優れた熱安定性を発揮することができる。
 本実施形態において、前記化合物は、上記特性により薄膜気相堆積用として好適に用いることができる。好適な気相堆積方法の例としては、限定されないが、原子層堆積(ALD)、プラズマ強化原子層堆積(PE-ALD)、化学気相堆積(CVD)、パルス化学気相堆積(P-CVD)、低圧化学気相堆積(LPCVD)における熱、プラズマ、もしくはリモートプラズマプロセス、またはこれらの組み合わせが挙げられる。
《化合物の製造方法》
 化合物(1)及び好適な実施形態である化合物(i)~(iii)は、当該技術分野における公知の方法にて製造することができる。例えば、化合物(i)は、対応するリチウムアミドと中性配位子構造に対応する化合物とを溶媒(トルエン等)で反応させることにより得られる。また、化合物(ii)は、まずアルキルホスフェートと有機リチウム化合物とを反応させてリチウムアルキルホスフェートを調製し、これと末端ハロゲン化アルキルアミンとを反応させ、最後に有機リチウム化合物とを反応させることで得られる。化合物(iii)は、対応するリチウムアミドと中性配位子構造に対応する化合物とを溶媒(トルエン等)で反応させることにより得られる。他の構造もこれらを適宜変更することで製造することができる。
《リチウム含有膜の製造方法》
 本実施形態に係るリチウム含有膜の製造方法は、
 内部に少なくとも1枚の基板を配置した反応チャンバを準備する工程、
 気化させた前記化合物を含むガスを前記反応チャンバに導入する工程、及び
 前記ガスと前記基板とを接触させる気相堆積プロセスにより前記基板の表面の少なくとも一部にリチウム含有膜を形成する工程
 を含む。
 (反応チャンバ準備工程)
 本工程では、内部に少なくとも1枚の基板を配置した反応チャンバを準備する。リチウム含有膜を堆積させる基板の種類は、最終用途に応じて適宜選択される。いくつかの実施形態では、基板は、MIM、DRAM、またはFeRam技術における絶縁材料として使用される酸化物(たとえば、HfOベース材料、TiOベース材料、ZrOベース材料、希土類酸化物ベース材料、三元酸化物ベースの材料など)から、または銅とlow-k膜との間の酸素バリアとして使用される窒化物ベース膜(たとえば、TaN)から選択することができる。半導体、光電池、LCD-TFT、またはフラットパネルデバイスの製造において、他の基板を使用することができる。このような基板の例としては、限定されないが、金属窒化物含有基板(たとえば、TaN、TiN、WN、TaCN、TiCN、TaSiN、およびTiSiN)などの中実基板;絶縁体(たとえば、SiO、Si、SiON、HfO、Ta、ZrO、TiO、Al、およびチタン酸バリウムストロンチウム);またはこれらの材料の組み合わせのうちのいくつかを含む他の基板が挙げられる。利用する実際の基板は、利用する具体的な化合物の実施形態にも依存し得る。
 反応チャンバは、内部で気相堆積方法が実行されるデバイスの任意の閉鎖容器またはチャンバであればよい。具体例として、限定されないが、平行板タイプリアクタ、コールドウォールタイプリアクタ、ホットウォールタイプリアクタ、枚様式リアクタ、マルチウェハリアクタ、または他のタイプの堆積システム等が挙げられる。
 (ガス導入工程)
 本工程では、気化させた前記化合物を含むガスを前記反応チャンバに導入する。純粋な(単一の)化合物またはブレンドされた(複数の)化合物は液体の状態で気化器に供給されてもよく、ここで反応チャンバに導入される前に気化される。あるいは、化合物は、この化合物を容れた容器にキャリアガスを通すことによって、またはこの化合物にキャリアガスをバブリングすることによって気化できる。次に、キャリアガスおよび気化した化合物を含むガスを反応チャンバに導入する。必要であれば、化合物が十分な蒸気圧を有することを可能にする温度まで容器を加熱してもよい。キャリアガスとしては、限定はされないが、Ar、He、N、およびこれらの混合物を挙げることができる。酸素供給源、たとえばO、O、NO、HO、H、カルボン酸(C-C10の線状および分枝)、酢酸、ホルマリン、蟻酸、アルコール、パラ-ホルムアルデヒド、およびこれらの組み合わせ;好ましくはO、O、HO、NO、およびこれらの組み合わせ;より好ましくはHOをさらに提供してもよい。容器はたとえば約0℃~約150℃の範囲内の温度に維持されうる。当業者であれば、容器の温度を周知の方法で調節して、気化させる化合物の量を制御できることが分かる。
 化合物は、純粋な形態(たとえば液体もしくは低融点固体)、または好適な溶媒とのブレンドの形態で供給され得る。例示的な溶媒としては、限定されないが、脂肪族炭化水素、芳香族炭化水素、複素環式炭化水素、エーテル、グリム、グリコール、アミン、ポリアミン、シクリカミン(cyclicamine)、アルキル化アミン、アルキル化ポリアミンおよびこれらの混合物が挙げられる。好ましい溶媒としては、エチルベンゼン、ジグリム、トリグリム、テトラグリム、ピリジン、キシレン、メシチレン、デカン、ドデカン、およびこれらの混合物が挙げられる。化合物の濃度は典型的に約0.02~約2.0Mの範囲内、および好ましくは約0.05~約0.2Mの範囲内にある。
 反応チャンバへの導入前の化合物と溶媒との任意の混合に加えて、反応チャンバの内で、気化した化合物を含むガスを反応種と混合してもよい。例示的な反応種としては、限定はされないが、金属前駆体、たとえばストロンチウム含有前駆体、バリウム含有前駆体、アルミニウム含有前駆体たとえばTMAなど、およびこれらの任意の組み合わせが挙げられる。
 反応チャンバは、約0.5mTorr~約20Torrの範囲内にある圧力に維持され得る。加えて、反応チャンバ内の温度は約50℃~約600℃の範囲内、好ましくは約80℃~約550℃の範囲内にあり得る。当業者であれば、経験によって温度を最適化して所望の結果を達成することができる。
 十分な成長速度ならびに所望の物理的状態および組成で所望のリチウム含有膜を得るのに十分な温度まで、基板を加熱することができる。基板を加熱することができる非限定的例示温度範囲としては50℃~500℃が挙げられる。好ましくは、基板の温度は300℃以下を保つ。
 (リチウム含有膜形成工程)
 本工程では、前記ガスと前記基板とを接触させる気相堆積プロセスにより前記基板の表面の少なくとも一部にリチウム含有膜を形成する。例示的な1つの原子層堆積タイプのプロセスでは、化合物の気相を反応チャンバに導入し、ここで好適な基板と接触させる。その後、過剰な化合物はリアクタをパージするおよび/または排気することによって反応チャンバから除去できる。酸素供給源を反応チャンバに導入し、ここでそれは吸収された化合物と自己停止方式で反応する。過剰な酸素供給源は反応チャンバをパージするおよび/または排気することによって反応チャンバから除去される。所望の膜がリチウム酸化物膜である場合、この二段階プロセスは所望の膜厚を提供する場合もあるし、必要な厚さを有する膜が得られるまで繰り返される場合もある。
 あるいは、所望の膜がリチウム金属酸化物膜である場合、上記二段階プロセスの後に、反応チャンバへの金属前駆体の蒸気の導入を続けることができる。この金属前駆体は、堆積させるリチウム金属酸化物の性質に基づいて選択する。反応チャンバへの導入後、化合物が基板に接触する。過剰な化合物は反応チャンバをパージするおよび/または排気することによって反応チャンバから除去される。再度、酸素供給源を反応チャンバに導入して、金属前駆体と反応させてもよい。過剰な酸素供給源は反応チャンバをパージするおよび/または排気することによって反応チャンバから除去される。所望の膜厚が得られたら、このプロセスを終わりにしてもよい。しかしながら、より厚い膜が所望されるのであれば、4段階プロセスの全てを繰り返してもよい。化合物、金属前駆体および酸素供給源の供給を交互に行うことにより、所望の組成および厚さの膜を堆積させることができる。
 本実施形態の製造方法から得られるリチウム含有膜またはリチウム含有層は、一般式Li(ここで、M=Ni、Co、Fe、V、Mn、またはPであり、x、y、およびzは1から8の範囲内にある)を有し得る。好ましくは、リチウム含有膜は、LiNiO、LiCoO、Li、Li、およびLiMnから選択され、ここでxは1から8の範囲内にある。当業者であれば、適切な化合物および反応種の適切な選択によって、所望の膜組成を得ることができる。
 堆積される膜の組成は用途に依存する。たとえば、リチウム含有膜を燃料電池や蓄電池の用途に使用できる。
 以下、本発明に関して実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
<化合物(i):LiN(SiMe(TMEDA)の合成>
 LiN(SiMe(2g、12mmol)をトルエン(40ml)に溶解し、これにN,N,N’、N’-テトラメチルエチレンジアミン(1.8ml、12mmol)を0℃でゆっくりと添加した。得られた溶液を1時間撹拌し、次に揮発性物質を真空下で除去した。白色固体を単離し、ペンタンで洗浄した。粗物質を昇華により精製して、3.12gの白色固体を得た。収率(92%)。HNMR(C,400 MHz):1.75ppm(s,12H),1.48ppm(m,4H),0.38ppm(s,18H)
 図1にLiN(SiMe(TMEDA)の熱重量分析(TGA、METTLER TOLEDO社製「TGA/DSC3+STAR SYSTEM」、atm、m:14.72mg、10℃/分)における大気圧での温度に対する重量変化を示す。
<化合物(i):LiN(SiMe(1,2-ビス(ジメチルアミノ)プロパン)の合成>
 LiN(SiMe(2g、12mmol)のトルエン(30ml)溶液に、1,2-ビス(ジメチルアミノ)プロパン(2.89ml、18mmol)を0℃で滴下した。次いで、反応混合物を一晩撹拌した。翌日、溶媒を真空下で除去した。粗物質を真空下(95~97℃、15Pa)で蒸留により精製し、922mgの無色油状物を得た。収率(26%)。HNMR(C,400MHz):2.1ppm(m,1H)、2~1.6ppm(m,13H)、1.2ppm(dd,1H,H-H=13.3Hz,H-H=3.2Hz)、0.32ppm(s,18H)、0.21ppm(d,3H,J=6.4Hz)
 図2にLiN(SiMe(1,2-ビス(ジメチルアミノ)プロパン)の熱重量分析(TGA、at、m:28.77mg、10℃/分m)における大気圧での温度に対する重量変化を示す。
<化合物(ii):LiN(SiMeCHPiPrの合成>
 LiN(SiMeCHPiPrを、Inorg Chem.2002,41,5615に記載された改良された方法に従って、iPrPLi塩による塩素の求核置換により合成した。
 ジイソプロピルホスフィン(25g、0.213mol)のTHF(250mL)溶液に、ヘキサン中のn-BuLi(133ml、1.6M溶液、0.213mol)を-78℃で添加した。得られた溶液は黄色になり、iPrPLiが出現した。その後、冷浴を除去し、反応混合物を室温で1時間撹拌した。次に、(ClCHSiMeNH(15.6mL、71mmol)を0℃で滴下した。反応混合物を45分間撹拌し、無色に変化させた。n-BuLiの第2の部分(44ml、1.6M溶液、71mmol)を0℃でゆっくりと添加した。反応は黄色くなり、45分間かき混ぜた。(ClCHMeChNH(5.2ml、23.7ml)を加え、さらに45分間かき混ぜた。最後に、n-BuLiの第3の部分(15ml、1.6M溶液、23.7mmol)を0℃で添加した。反応は黄色くなり、45分間かき混ぜた。(ClCHMeChNH(1.76ml,7.9ml)を加え、さらに45分間かき混ぜた。次いで、溶媒を真空下で除去し、残渣をヘキサン(150ml)で抽出した。セライトパッドを通して濾過してLiClを除去した後、ヘキサンを蒸発させて橙色油状物を得た。粗物質をさらに減圧蒸留(140-150℃、20Pa)して、30.1gの無色油状物を得た。収率(73%)。HNMR(C,400MHz):1.70ppm(m,4H)、1.06ppm(m,24H)、0.69ppm(d,4H,H-P=5.9Hz)、0.48ppm(s,12H)。
 図3にLiN(SiMeCHPiPrの熱重量分析(TGA、vac、m:17.65mg、10℃/分)における減圧下での温度に対する重量変化を示す。
<比較対象物質>
 比較対象物質としてLiOtBu(シグマ・アルドリッチ製)を用いた。
 調製した化合物及び比較対象物質の特性は以下のとおりであった。なお、融点及び蒸気圧は、いずれも上述の熱重量分析により測定した。
Figure JPOXMLDOC01-appb-T000013
<LiN(SiMeCHPiPrを用いたLi含有膜の形成>
 シリコンまたはアモルファス炭素基板(約20mm×約20mm×厚さ約0.75mm)をALD反応器またはCVD反応器に導入した。次いで、各実験について、基板を窒素雰囲気下で100~500℃の設定点まで加熱した。設定値に達した後、化合物としてLiN(SiMeCHPiPr、酸素源およびキャリアガスを反応器に流し、基板上に膜を堆積させた。この間、酸素源として水蒸気または酸素、キャリアガスとして窒素を用い、圧力を266.6Paに保った。
 その結果、水蒸気を酸素源とした場合、100℃、120℃、150℃、175℃、200℃、250℃でALDにより酸化リチウム膜を堆積した。酸化リチウム膜はまた200℃、300℃、400℃でCVDにより得たのに対し、ケイ酸リチウム膜はCVDにより500℃で堆積した。一方、酸素を酸素源として、100℃、120℃、150℃、175℃、200℃、250℃のALDにより酸化リチウム膜を堆積した。Si基板上の典型的な酸化リチウム膜およびケイ酸リチウム膜の組成を以下の表に示す。膜組成は、X線光電子分光計(ThermoScientific社製、「K-Alpha」、真空中、室温(非加熱))を用いて評価した。
Figure JPOXMLDOC01-appb-T000014
 Si基板上への100℃、150℃および200℃でのALD実験の堆積速度を以下に示す。それぞれの試験において、LiN(SiMeCHPiPrパルス、水蒸気またはOパルス、およびパージを200サイクル適用した。堆積速度は分光エリプソメトリ(HORIBA/JOBIN YVON社製、「UVISEL」、解析ソフト「DeltaPsi2」、大気中、室温)による膜厚測定を用いて測定した。
Figure JPOXMLDOC01-appb-T000015
 
 150℃及び200℃で形成した酸化リチウム膜について、膜厚の均一性を評価した。得られた酸化リチウム膜の厚さを10cm又は20cmおきに合計6点測定した。図4は、150℃で形成した酸化リチウム膜形成についての位置-厚さの関係を示す。図5は、200℃で形成した酸化リチウム膜形成についての位置-厚さの関係を示す。膜厚は、上述の分光エリプソメトリを用いて測定した。
<ALDによるリン酸リチウム膜の形成>
 Si基板上の100℃、150℃および200℃でのALD実験の堆積速度を以下に示す。各実験において、LiN(SiMeパルス、リン酸トリメチルパルス、およびパージを400サイクル適用した。管状炉を使用し、30cmの位置を炉の中心点と見なした。
Figure JPOXMLDOC01-appb-T000016
 150℃及び200℃で形成したリン酸リチウム膜について、膜厚の均一性を評価した。得られたリン酸リチウム膜の厚さを10cmおきに合計6点測定した。図6は、150℃で形成したリン酸リチウム膜形成についての位置-厚さの関係を示す。図7は、200℃で形成したリン酸リチウム膜形成についての位置-厚さの関係を示す。膜厚は、上述の分光エリプソメトリを用いて測定した。
 リチウム含有膜は、LiN(SiMeCHPiPr)2および酸素源として水を用いることによって、高い堆積速度で100℃、150℃および200℃で得ることができた。低温(100および150℃)での堆積速度は、LiN(SiMeおよびリン酸トリメチルを用いた既知の堆積手順よりも7~8倍高かった。酸化リチウム膜形成の堆積速度がリン酸リチウム膜よりはるかに高速であっても、150℃および200℃で良好な均一性が観察された。

Claims (12)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、Aは窒素原子、リン原子、ホウ素原子又はアルミニウム原子である。
     E及びEは、それぞれ独立して、炭素原子、ケイ素原子、ゲルマニウム原子又はスズ原子である。
     R~Rは、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10の炭化水素基である。ただし、R~Rの全てが水素原子となる場合はない。
     Dは、単座又は多座の中性配位子構造である。
     xは0又は1以上の整数であり、yは1以上の整数である。ただし、Aが窒素原子であり、かつR~Rを構成する炭素原子のいずれも前記ヘテロ原子により置換されていない場合、xは1以上の数であり、yは1以上の数である。
     A、E、E及びR~Rが、それぞれ複数ある場合、それらは互いに同一でも異なっていてもよい。)
  2.  下記式(i)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
     
    (式(i)中、R11~R16は、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10のアルキル基である。ただし、R11~R16の全てが水素原子となる場合はない。
     Dは、二座又は三座の中性配位子構造である。
     x1及びy1は、それぞれ独立して1以上の整数である。)
  3.  R11~R16が全てメチル基であり、
     Dが、1,2-ジエトキシエタン、ジエチレングリコールジメチルエーテル、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン又はN,N,N’,N’’,N’’-ペンタメチルジエチレントリアミンであり、
     x1及びy1が1である請求項2に記載の化合物。
  4.   下記式(ii)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
     
    (式(ii)中、E及びEは、前記式(1)と同義である。
     Z及びZは、それぞれ独立して、単結合又は2価の連結基である。
     R21~R28は、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10のアルキル基である。ただし、R21~R28の全てが水素原子となる場合はない。
     Dは、単座又は二座の中性配位子構造である。
     x2は0又は1以上の整数であり、y2は1以上の整数である。)
  5.  E及びEが炭素原子又はケイ素原子であり、
     Z及びZは、メチレン基又はエチレン基であり、
     R21、R22、R27及びR28は、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基又はt-ブチル基であり、
     R22~R26は、水素原子、メチル基又はエチル基であり、
     Dは、鎖状若しくは環状エーテル、鎖状若しくは環状チオエーテル、又は第三級アミンであり、
     x2が0又は1であり、y2が1である請求項4に記載の化合物。
  6.    下記式(iii)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
     
    (式(iii)中、Aは、リン原子、ホウ素原子又はアルミニウム原子である。
     E及びEは、前記式(1)と同義である。
     R31~R36は、それぞれ独立して、水素原子であるか、又は構成原子がヘテロ原子により置換されていてもよい炭素数1~10のアルキル基である。ただし、R31~R36の全てが水素原子となる場合はない。
     Dは、単座又は二座の中性配位子構造である。
     x3は0又は1以上の整数であり、y2は1以上の整数である。)
  7.  Aがリン原子であり、
     E及びEがケイ素原子であり、
     R31~R36がメチル基、エチル基、n-プロピル基又はi-プロピル基であり、
     Dが、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン又はN,N,N’,N’’,N’’-ペンタメチルジエチレントリアミンであり、
     x3が0又は1であり、y3が1である請求項6に記載の化合物。
  8.  25℃で液状であるか、又は蒸気圧が133.3Paを示す温度が100℃以下である請求項1~7のいずれか1項に記載の化合物。
  9.  熱重量分析において、300℃以下で重量損失が95%以上となる領域が存在する請求項1~8のいずれか1項に記載の化合物。
  10.  薄膜気相堆積用である請求項1~9のいずれか1項に記載の化合物。
  11.  内部に少なくとも1枚の基板を配置した反応チャンバを準備する工程、
     気化させた請求項1~10のいずれか1項に記載の化合物を含むガスを前記反応チャンバに導入する工程、及び
     前記ガスと前記基板とを接触させる気相堆積プロセスにより前記基板の表面の少なくとも一部にリチウム含有膜を形成する工程
     を含むリチウム含有膜の製造方法。
  12.  前記気相堆積プロセスを200℃以下で行う請求項11に記載のリチウム含有膜の製造方法。
     
     
PCT/JP2019/049411 2019-02-06 2019-12-17 化合物及びリチウム含有膜の製造方法 WO2020162049A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980092779.5A CN113454021B (zh) 2019-02-06 2019-12-17 化合物和含锂膜的制造方法
US17/429,249 US20220231268A1 (en) 2019-02-06 2019-12-17 Compound and method for producing lithium-containing film
KR1020217028062A KR20210124346A (ko) 2019-02-06 2019-12-17 화합물 및 리튬 함유 막의 제조 방법
JP2020571029A JP7153094B2 (ja) 2019-02-06 2019-12-17 化合物及びリチウム含有膜の製造方法
EP19914621.8A EP3922600A4 (en) 2019-02-06 2019-12-17 COMPOUND AND METHOD FOR PRODUCING LITHIUM-CONTAINING FILM
SG11202109435YA SG11202109435YA (en) 2019-02-06 2019-12-17 Compound and method for producing lithium-containing film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019019632 2019-02-06
JP2019-019632 2019-02-06

Publications (1)

Publication Number Publication Date
WO2020162049A1 true WO2020162049A1 (ja) 2020-08-13

Family

ID=71947059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049411 WO2020162049A1 (ja) 2019-02-06 2019-12-17 化合物及びリチウム含有膜の製造方法

Country Status (8)

Country Link
US (1) US20220231268A1 (ja)
EP (1) EP3922600A4 (ja)
JP (1) JP7153094B2 (ja)
KR (1) KR20210124346A (ja)
CN (1) CN113454021B (ja)
SG (1) SG11202109435YA (ja)
TW (1) TWI799681B (ja)
WO (1) WO2020162049A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008828A1 (en) * 2003-07-11 2005-01-27 Excellatron Solid State, Llc System and method of producing thin-film electrolyte
JP2013214510A (ja) * 2012-03-08 2013-10-17 Nagoya Univ イオン伝導性固体電解質およびそれを用いたイオン二次電池
JP2014500401A (ja) * 2010-12-09 2014-01-09 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Cvdによるリチウムベースの層の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179919B2 (en) * 2004-03-18 2007-02-20 Boehringer Ingelheim Pharmaceuticals, Inc. Stereoselective synthesis of certain trifluoromethyl-substituted alcohols
BRPI0813739A2 (pt) * 2007-06-19 2019-09-24 Novartis Ag compostos orgânicos
US9315894B2 (en) * 2011-03-30 2016-04-19 Asm Ip Holding B.V. Atomic layer deposition of metal phosphates and lithium silicates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008828A1 (en) * 2003-07-11 2005-01-27 Excellatron Solid State, Llc System and method of producing thin-film electrolyte
JP2014500401A (ja) * 2010-12-09 2014-01-09 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Cvdによるリチウムベースの層の製造方法
JP2013214510A (ja) * 2012-03-08 2013-10-17 Nagoya Univ イオン伝導性固体電解質およびそれを用いたイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3922600A4 *

Also Published As

Publication number Publication date
CN113454021B (zh) 2023-12-15
JP7153094B2 (ja) 2022-10-13
SG11202109435YA (en) 2021-09-29
EP3922600A1 (en) 2021-12-15
CN113454021A (zh) 2021-09-28
JPWO2020162049A1 (ja) 2021-12-16
US20220231268A1 (en) 2022-07-21
TW202035427A (zh) 2020-10-01
EP3922600A4 (en) 2023-02-22
KR20210124346A (ko) 2021-10-14
TWI799681B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
US10914001B2 (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
JP6242026B2 (ja) Ald/cvdシリコン含有膜用のオルガノシラン前駆体
JP5666433B2 (ja) ランタニド含有前駆体の調製およびランタニド含有膜の堆積
TWI660958B (zh) 鉬矽烷基環戊二烯基及矽烷基烯丙基錯合物及彼等於薄膜沉積之用途
US10174423B2 (en) Niobium-containing film forming compositions and vapor deposition of Niobium-containing films
US20120145953A1 (en) LITHIUM PRECURSORS FOR LixMyOz MATERIALS FOR BATTERIES
US10023462B2 (en) Niobium-Nitride film forming compositions and vapor deposition of Niobium-Nitride films
KR20210084297A (ko) 이트륨/란탄족 금속 전구체 화합물, 이를 포함하는 막 형성용 조성물 및 이를 이용한 이트륨/란탄족 금속 함유 막의 형성 방법
KR101684660B1 (ko) 지르코늄 박막 형성용 전구체 조성물 및 이를 이용한 지르코늄 박막의 형성 방법
US20240102161A1 (en) Lithium precursors for deposition of lithium-containing layers, islets or clusters
US10011903B2 (en) Manganese-containing film forming compositions, their synthesis, and use in film deposition
WO2020162049A1 (ja) 化合物及びリチウム含有膜の製造方法
TW202330561A (zh) 用於沈積含錫薄膜之含錫先質及其相應沈積方法
KR20140075024A (ko) 알칼리 금속 디아자부타디엔 화합물 및 알칼리 금속-함유 필름 침착을 위한 그의 용도
JP7508550B2 (ja) リチウム含有層、アイレット、又はクラスターの堆積のためのリチウム前駆体
WO2023140351A1 (ja) 化合物、金属含有膜の形成方法および化合物の製造方法
CN115279940B (zh) 铝前体化合物、其制备方法和使用其形成含铝膜的方法
WO2023102063A1 (en) Deposition of noble metal islets or thin films for its use for electrochemical catalysts with improved catalytic activity
KR20240100397A (ko) 개선된 촉매 활성을 갖는 전기화학 촉매에 대한 사용을 위한 귀금속 아일렛 또는 박막의 증착
JP2023544202A (ja) 蒸着用インジウム前駆体
CN118284616A (zh) 沉积贵金属岛或薄膜,以将其用于具有改进催化活性的电化学催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571029

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217028062

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019914621

Country of ref document: EP

Effective date: 20210906