WO2020161856A1 - 作業機、作業機の制御方法、及びプログラム - Google Patents

作業機、作業機の制御方法、及びプログラム Download PDF

Info

Publication number
WO2020161856A1
WO2020161856A1 PCT/JP2019/004407 JP2019004407W WO2020161856A1 WO 2020161856 A1 WO2020161856 A1 WO 2020161856A1 JP 2019004407 W JP2019004407 W JP 2019004407W WO 2020161856 A1 WO2020161856 A1 WO 2020161856A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
diagnostic data
working machine
mode
machine
Prior art date
Application number
PCT/JP2019/004407
Other languages
English (en)
French (fr)
Inventor
学 土橋
誠 山村
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP19914498.1A priority Critical patent/EP3901723A4/en
Priority to PCT/JP2019/004407 priority patent/WO2020161856A1/ja
Priority to JP2020570288A priority patent/JP7317053B2/ja
Publication of WO2020161856A1 publication Critical patent/WO2020161856A1/ja
Priority to US17/377,354 priority patent/US20210341931A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0237Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on parallel systems, e.g. comparing signals produced at the same time by same type systems and detect faulty ones by noticing differences among their responses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/64Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis mounted on a vehicle, e.g. a tractor, or drawn by an animal or a vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/74Cutting-height adjustment

Definitions

  • the present invention relates to a work machine, a work machine control method, and a program.
  • Patent Document 1 discloses a mobile work machine that autonomously travels according to sensor information from various sensors such as an obstacle recognition sensor.
  • a working machine for example, a lawn mower
  • a dealer or the like rushes to a place where the working machine is located to diagnose the state of the working machine. There is.
  • diagnosing the state of the work machine is time-consuming, time-consuming, and expensive, and the work must be interrupted during the diagnosis, which causes a problem that the user cannot carry out the work scheduled by the user. is there.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for collecting data for diagnosing a working machine while continuing work.
  • Control means for causing the work machine to perform work in a first work mode in which work is performed without collecting diagnostic data;
  • FIG. 1 is a diagram showing a configuration example of a management system according to an embodiment of the present invention.
  • the management system includes a work vehicle 10 and a management device 20.
  • the work vehicle 10 and the management device 20 are configured to be communicable via a network 30.
  • the work vehicle 10 is, for example, a work machine that autonomously travels (a lawn mower, a mowing machine, a snow remover, a golf ball collecting machine, etc.), and performs a predetermined work in a work area.
  • the management device 20 is a server device, and processes various information collected from the work vehicle 10.
  • a lawnmower will be described as an example of the work vehicle 10, but the present invention can be applied to other types of work machines.
  • FIG. 2A is a diagram showing a hardware configuration example of the work vehicle according to the embodiment of the present invention.
  • the ECU 100 is an electronic control unit including a microcomputer configured on a circuit board, and controls the operation of the work vehicle 10.
  • the ECU 100 includes a CPU 100a, an I/O 100b, and a memory 100c.
  • the I/O 100b inputs and outputs various information.
  • the memory 100c is a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory), a RAM (Random Access Memory), or the like.
  • the memory 100c stores a work schedule of the work vehicle 10, information about a work area, work mode information, various programs for controlling the operation of the work vehicle 10, and the like.
  • the ECU 100 can operate as each processing unit for implementing the present invention by reading and executing a program stored in the memory 100c.
  • the ECU 100 is connected to various sensor groups S.
  • the sensor group S includes an orientation sensor 110, a GPS sensor 111, a wheel speed sensor 112, an angular velocity sensor 113, an acceleration sensor 114, and a blade height sensor 115.
  • the direction sensor 110 and the GPS sensor 111 are sensors for acquiring information on the position and orientation of the work vehicle 10.
  • the azimuth sensor 110 detects an azimuth according to the geomagnetism.
  • the GPS sensor 111 receives radio waves from GPS satellites and detects information indicating the current position (latitude, longitude) of the work vehicle 10.
  • the wheel speed sensor 112, the angular velocity sensor 113, and the acceleration sensor 114 are sensors for acquiring information regarding the moving state of the work vehicle 10.
  • the wheel speed sensor 112 detects the wheel speeds of the left and right rear wheels.
  • the angular velocity sensor 113 detects an angular velocity about the vertical axis (vertical z axis) of the center of gravity of the work vehicle 10.
  • the acceleration sensor 114 detects the acceleration acting on the work vehicle 10 in the directions of the three orthogonal axes.
  • the blade height sensor 115 detects the height of the rotary blade for lawn mowing work with respect to the ground surface of the work vehicle 10. The detection result of the blade height sensor 115 is output to the ECU 100.
  • the blade height adjusting motor 119 is driven under the control of the ECU 100, and the blade moves up and down to adjust the height from the ground contact surface.
  • Outputs of the various sensor groups S are input to the ECU 100 via the I/O 100b.
  • the ECU 100 controls the work motor 117, the traveling motor 118, and the height adjustment motor 119 based on the outputs of the various sensor groups S.
  • the ECU 100 controls the rotation of the blade by outputting a control value via the I/O 100b and controlling the work motor 117. Further, the traveling of the work vehicle 10 is controlled by outputting a control value via the I/O 100b to control the traveling motor 118. Further, the blade height is adjusted by outputting a control value via the I/O 100b to control the blade height adjustment motor 119.
  • the I/O 100b can function as a communication interface, and can be wired or wirelessly connected to the management device 20 or another device (for example, a communication device (smartphone) held by a user of the work vehicle 10) via the network 30. It is possible to connect.
  • the management device 20 or another device (for example, a communication device (smartphone) held by a user of the work vehicle 10) via the network 30. It is possible to connect.
  • the work vehicle 10 includes a camera unit 116 including a plurality of cameras, and uses an image captured by a plurality of cameras having parallax to obtain distance information between an object existing in front and the work vehicle 10. Calculate and get. Then, the operation of the work vehicle 10 is controlled based on the captured image and the object recognition model held in advance.
  • a camera unit 116 including a plurality of cameras, and uses an image captured by a plurality of cameras having parallax to obtain distance information between an object existing in front and the work vehicle 10. Calculate and get. Then, the operation of the work vehicle 10 is controlled based on the captured image and the object recognition model held in advance.
  • the work motor 117 is an electric motor arranged above the rotary blade for lawn mowing work.
  • the blade is connected to the work motor 117 and is rotationally driven by the work motor 117.
  • the traveling motor 118 is two electric motors (motors) attached to the work vehicle 10.
  • the two electric motors are connected to the left and right rear wheels, respectively.
  • the blade height adjusting motor 119 is a motor for adjusting the vertical height of the blade with respect to the ground contact surface.
  • FIG. 2B is a diagram showing a functional configuration example of the work vehicle according to the embodiment of the present invention.
  • the work vehicle 10 includes a control unit 151, a storage unit 152, a reception unit 153, a switching unit 154, a transmission unit 155, and a reception unit 156.
  • the control unit 151 corresponds to the CPU 100a and controls the operation of the work vehicle 10.
  • the control unit 151 normally causes the work vehicle 10 to perform the work in the first work mode in which the work is performed without collecting the diagnostic data.
  • the work vehicle 10 is caused to perform work in the second work mode in which work is performed while collecting diagnostic data.
  • the storage unit 152 corresponds to the memory 100c and stores various information.
  • the reception unit 153 receives a diagnosis instruction.
  • the diagnostic instruction is an instruction for starting collection of diagnostic data.
  • the diagnostic instruction may be accepted by a user operation, or the diagnostic instruction may be accepted from the control unit 151 when the control unit 151 determines that the work vehicle 10 may be out of order.
  • the determination of the possibility of failure can be made on the basis of the data normally collected in the first work mode.
  • the switching unit 154 switches the work mode of the work vehicle 10 from a first work mode in which work is performed without collecting diagnostic data to a second work mode in which work is performed while collecting diagnostic data.
  • the transmission unit 155 transmits the data collected by the work vehicle 10 to the management device 20.
  • the transmission unit 155 also functions as a notification unit that notifies the user of various types. For example, it is possible to notify a communication device (for example, a smartphone) (not shown) held by the user.
  • the work vehicle 10 may be configured to be able to notify a user around the work vehicle 10 by a voice from a speaker (not shown) or a display from a display unit (not shown).
  • the receiving unit 156 receives the instruction transmitted from the management device 20.
  • the normal collection data is data collected while the work vehicle 10 performs a normal work, and includes, for example, a slip ratio, the total number of collisions, a blade load, and a work completion ratio.
  • the slip rate is the rate at which the wheels of the work vehicle 10 slip. For example, it can be calculated as slip count/running time.
  • the total number of collisions is a count of the number of collisions when the work vehicle 10 may collide with an obstacle or the like in the work area while the work vehicle 10 is performing work.
  • the blade load is, for example, a load applied to the blade by grass or grass contacting the blade.
  • the blade load can be determined by, for example, calculating how much the actual blade rotation speed with respect to a predetermined output from the work motor 117 is reduced from an ideal value when no load is applied.
  • the work completion rate is a rate indicating how much work is completed. For example, by plotting the travel history of the work vehicle 10 by the GPS sensor 111, it can be acquired by calculating the ratio of the area in which the work vehicle 10 has traveled to the area of the work area.
  • data collected during normal times is not limited to the example shown. Other data may be further included. For example, in normal times, data of ambient temperature and humidity may be further collected. Alternatively, some of the data as shown in Figure 6A may not be collected.
  • the diagnostic data is data collected to diagnose the state of the work vehicle 10. By controlling the operation of the work vehicle 10 based on the collected diagnostic data, it becomes possible to perform more appropriate control according to the situation.
  • the diagnostic data includes, for example, the number of slips at each point in the work area indicating the number of times the wheels of the work vehicle 10 slip, the number of collisions of the work vehicle 10 at each point in the work area, and the number of points in the work area.
  • the point is, for example, one small area when the work area is divided by a grid and considered as an aggregate of rectangular small areas (grid area).
  • the number of slips for each point is data obtained by counting when slips occur while the work vehicle 10 is traveling at each point and totaling the counts for each point that constitutes the work area. This makes it possible to recognize at which point the slip is likely to occur.
  • the number of collisions at each point is data obtained by counting when the work vehicle 10 collides with an obstacle while traveling at each point and totaling the counts at each point constituting the work area. This makes it possible to recognize at which point the collision is likely to occur.
  • the number of times of work for each point is data obtained by counting when the work vehicle 10 travels at each point while performing work and totaling the counts for each point constituting the work area. This makes it possible to recognize at which point the work is not yet performed.
  • FIG. 3A is a diagram showing a hardware configuration example of a management device according to an embodiment of the present invention.
  • the management device 20 is, for example, a server device, and includes a CPU 200a, an I/O 200b, and a memory 200c.
  • the CPU 200a controls the operation of the management device 20.
  • the I/O 200b inputs and outputs various information.
  • the memory 200c is a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory), a RAM (Random Access Memory), or the like.
  • the memory 200c stores work mode information of the work vehicle 10, various programs for controlling the operation of the management device 20, and the like.
  • the CPU 200a can operate as each processing unit for implementing the present invention by reading and executing the program stored in the memory 200c.
  • FIG. 3B is a diagram showing a functional configuration example of the management apparatus according to the embodiment of the present invention.
  • the management device 20 includes a control unit 251, a storage unit 252, a reception unit 253, and a transmission unit 254.
  • the control unit 251 corresponds to the CPU 200a, controls the operation of the management device 20, and controls the operation of the work vehicle 10 by transmitting a work mode change instruction for operating the work vehicle 10 to the work vehicle 10. It is also possible to do so.
  • the storage unit 252 corresponds to the memory 200c and stores various information. For example, the normal-time collected data transmitted from the work vehicle 10 and the diagnostic-time collected data (diagnostic data) are stored.
  • the receiving unit 253 receives the data transmitted from the work vehicle 10.
  • the transmission unit 254 transmits to the work vehicle 10 an instruction according to the analysis content analyzed based on the data received from the work vehicle 10.
  • control unit 151 causes the work vehicle 10 to perform the work in the first work mode in which the work is performed without collecting the diagnostic data. It should be noted that during this operation, diagnostic data is not collected, but normal collection data as illustrated in FIG. 6A is collected.
  • the storage unit 152 stores the collected data, and the transmission unit 155 transmits the collected normal-time collected data to the management device 20.
  • the reception unit 153 determines whether or not the diagnosis instruction has been received.
  • the diagnostic instruction is an instruction for starting the collection of diagnostic data.
  • the diagnosis instruction may be accepted by a user operation.
  • the diagnosis instruction may be automatically accepted from the control unit 151.
  • the determination of the possibility of failure can be made on the basis of the data normally collected in the first work mode. For example, the control unit 151 may determine that there is a possibility of failure when the magnitude of the blade load is equal to or larger than the threshold value, and the control unit 151 may receive the diagnosis instruction from the reception unit 153.
  • the diagnosis instruction may be automatically accepted from the control unit 151 at predetermined time intervals.
  • the switching unit 154 switches the work mode of the work vehicle 10 from the first work mode in which work is performed without collecting diagnostic data to the second work mode in which work is performed while collecting diagnostic data. Switch.
  • the control unit 151 causes the work vehicle 10 to perform the work in the second work mode in which the work is performed while collecting the diagnostic data.
  • the work vehicle 10 is controlled so as to collect diagnostic data in addition to the normal collection data.
  • the work vehicle 10 may be controlled so as to reduce at least a part of the normal-time collected data and collect the data, and further collect the diagnostic data.
  • the processing load of the control unit 151 can be reduced.
  • the storage unit 152 stores the collected data, and the transmission unit 155 transmits the data to the management device 20.
  • control unit 151 determines whether to end the process.
  • the case of ending the process is, for example, when the end time comes according to the scheduled work schedule, or when the user presses a power-off button (not shown) provided on the work vehicle 10.
  • the series of processing in FIG. 4 is ended.
  • the process returns to S101 and is repeated.
  • control unit 151 may analyze the collected diagnostic data after collecting the diagnostic data and control the operation of the work vehicle 10 based on the analysis result.
  • management device 20 may analyze the diagnostic data received from the work vehicle 10 and transmit an instruction to control the operation of the work vehicle 10 to the work vehicle 10 based on the analysis result.
  • the work vehicle 10 may control the operation according to an instruction received from the management device 20. As a result, the processing load on the work vehicle 10 can be reduced.
  • the traveling speed of the work vehicle 10 becomes slower around the point where the number of slips is the threshold value or more.
  • the operation of the work vehicle 10 may be controlled as described above.
  • the traveling speed of the work vehicle 10 becomes slower around the point where the number of collisions is greater than or equal to the threshold value.
  • the operation of the work vehicle 10 may be controlled as described above.
  • the work vehicle 10 Based on the number of times of work for each point, which is the diagnostic data, it analyzes which point the work is not yet performed, and the work vehicle 10 operates so as to sequentially travel to a plurality of points having a smaller number of times of work. May be controlled. For example, five points where the number of times of work is small may be extracted, and the operation of the work vehicle 10 may be controlled so that the five points are run in the order of increasing number of times of work. Further, any of a plurality of points where the number of times of work is smaller may be set as the start point of the work by the work vehicle 10. For example, five points having a small number of work may be extracted and any one of the five points may be set as the start point of the work by the work vehicle 10. As a result, it becomes possible to preferentially perform work at points where much work is left, for example, in the case of lawn mowers and grass mowers, where work is left behind, and overall work efficiency can be improved.
  • the work vehicle 10 performs work in the second work mode in which work is performed while collecting diagnostic data in accordance with a diagnostic instruction. Therefore, it is possible to make a diagnosis while working.
  • the operation of the work vehicle 10 can be appropriately controlled based on the diagnostic data.
  • the control unit 151 controls the work vehicle 10 so as to stop some of the functions of the work vehicle 10 in the second work mode and collect the normal-time collected data and the diagnostic data. May be.
  • the communication function of communicating with a communication device for example, a smartphone
  • the processing load of the control unit 151 can be reduced. Therefore, the heat generation of the CPU can be reduced and the battery life can be extended.
  • the data collection frequency may be changed according to the work mode. For example, in the first work mode, the collected data at the normal time is collected at the first frequency, and at the second work mode, the collected data at the normal time is collected at the second frequency lower than the first frequency and the diagnosis is performed. It may be configured to further collect the usage data. For example, the normal-time collected data may be collected every minute, and the normal-time collected data may be collected every 30 minutes or every hour.
  • control unit 151 may change the second work mode to the first work mode when a predetermined amount or more of diagnostic data is collected, or when a predetermined time has elapsed since the collection of diagnostic data was started. It may be configured to switch to. This makes it possible to automatically return to the original work mode when the diagnosis is no longer necessary, and it is possible to reduce the monitoring load on the user.
  • the receiving unit 253 determines whether or not the normal-time collected data of the work vehicle 10, that is, the data collected in the first work mode, transmitted from the work vehicle 10 has been received. If the collected data at the normal time is received, the process proceeds to S202. On the other hand, if the collected data at the normal time has not been received, the process proceeds to S204.
  • the control unit 251 analyzes based on the normal collection data collected in S201 and accumulated in the storage unit 252. For example, it may be determined that a failure may occur in the work vehicle 10 when the blade load, which is the normally collected data, is equal to or more than the threshold value. Then, the instruction based on the analyzed result is generated. For example, when the work vehicle 10 may be out of order, a diagnostic instruction is generated.
  • the transmission unit 254 transmits the instruction generated in S202 to the work vehicle 10.
  • the work vehicle 10 switches the work mode to the second work mode in which work is performed while collecting diagnostic data. Note that this step may be skipped if the instruction is not generated only by accumulating the analysis results.
  • the receiving unit 253 determines whether or not the diagnostic data, which is the collected data at the time of the diagnosis of the work vehicle 10 transmitted from the work vehicle 10, that is, the data collected in the second work mode is received. To do. When the diagnostic data is received, the process proceeds to S205. On the other hand, if the diagnostic data has not been received, the process proceeds to S207.
  • control unit 251 performs analysis based on the diagnostic data collected in S204 and accumulated in the storage unit 252, and generates an instruction for transmission to the work vehicle 10. For example, on the basis of the number of slips for each point which is the diagnostic data, it is analyzed at which point the slip is likely to occur, and the traveling speed of the work vehicle 10 becomes slower around the point where the number of slips is the threshold value or more. As described above, the instruction for controlling the operation of the work vehicle 10 may be generated.
  • the instruction for controlling the operation of the work vehicle 10 may be generated.
  • the work vehicle 10 Based on the number of times of work for each point, which is the diagnostic data, it analyzes which point the work is not yet performed, and the work vehicle 10 operates so as to sequentially travel to a plurality of points having a smaller number of times of work. May be generated to control. Alternatively, it is possible to generate an instruction to set any of a plurality of points having a smaller number of work times as a work start point by the work vehicle 10. Alternatively, an instruction that combines at least a part of these may be generated.
  • the transmission unit 254 transmits the instruction generated in S205 to the work vehicle 10.
  • the work vehicle 10 controls the operation of the work vehicle 10 based on the instruction.
  • step S207 the control unit 251 determines whether to end the process.
  • the case of ending the process is, for example, the case where the end time comes according to the work schedule planned by the work vehicle 10.
  • the series of processing in FIG. 5 is ended.
  • the process returns to S201 and is repeated.
  • the management device 20 receives various kinds of collected data (collected data at normal times or diagnostic data) collected by the work vehicle 10, and performs work based on the analysis result. Instructions for controlling the operation of the vehicle 10 are transmitted to the work vehicle 10. As a result, the operation of the work vehicle 10 can be appropriately controlled based on the collected data or the diagnostic data at the normal time.
  • the diagnostic data is not limited to these examples.
  • “the number of times of obstacle avoidance at each point” may be counted and stored.
  • the number of times of obstacle avoidance is the number of times that an obstacle can be detected by a sensor (for example, a camera or a radar) provided in the work vehicle 10 and a collision with the detected obstacle can be avoided.
  • the following can be estimated by counting and storing the number of collisions of the work vehicle 10 and the number of obstacle avoidances for each point. For example, at a certain point, when the number of collisions is large and the number of obstacle avoidances is small, it can be inferred that it is a geographically difficult point to detect an obstacle. For example, there is a case where an obstacle such as a rock exists in a blind spot in the traveling direction of the work vehicle 10. In such a case, an obstacle may fall out of the visual field of the camera or the scanning range of the radar. Alternatively, when passing between two obstacles, the radar does not detect obstacles in the passing direction of the work vehicle 10, but the work vehicles 10 pass through the obstacles at a narrow interval and a collision occurs. This is the case.
  • the number of collisions is large and the number of obstacle avoidances is small, it may be notified to the user. Specifically, at a certain point, when the number of collisions is greater than or equal to a threshold and the number of obstacle avoidances is less than or equal to another threshold, the user may be notified. As a result, it is possible to suppress the occurrence of collision by removing obstacles such as rocks or blocking a narrow road.
  • the control unit 251 controls the operation of the work vehicle 10 so that the traveling speed of the work vehicle 10 becomes faster. May be generated. Thereby, it becomes possible to perform adaptive control in which the situation of the obstacle is more estimated.
  • the lawn mower is described as an example of the autonomous work machine, but the invention is not limited to the lawn mower.
  • the present invention can be applied to other types of autonomous working machines such as an autonomous snow remover and a golf ball collecting machine.
  • an example in which the working machine is autonomously controlled based on images acquired from a plurality of cameras has been described, but the working machine to which the present invention can be applied is not limited to the case of using camera images. Absent.
  • the present invention can be applied to a work machine that performs autonomous control using an obstacle sensor (distance measuring sensor) such as an ultrasonic sensor or an infrared sensor.
  • an obstacle sensor distance measuring sensor
  • the working machine (for example, 10) of the above embodiment is A work machine, Control means (eg 151) for causing the work machine to perform work in a first work mode in which work is performed without collecting diagnostic data; Accepting means (eg 153) for accepting a diagnostic instruction, Switching means (for example, 154) for switching from the first work mode to a second work mode for performing work while collecting the diagnostic data when the diagnosis instruction is received by the reception means; Equipped with When the switching unit switches to the second work mode, the control unit causes the work machine to perform a work in the second work mode.
  • the work mode is switched only when necessary to collect the diagnostic data, so that the load in the normal time can be reduced as compared with the case where the diagnostic data is constantly collected.
  • the control means controls the working machine to collect predetermined data in the first work mode and further collect the diagnostic data in addition to the predetermined data in the second work mode.
  • the control means collects predetermined data in the first work mode, reduces and collects at least a part of data of the predetermined data in the second work mode, and collects the diagnostic data.
  • the work machine is controlled to collect more.
  • the control means collects predetermined data in the first work mode, stops a part of the function of the work machine and collects the predetermined data and the diagnostic data in the second work mode.
  • the working machine is controlled so that
  • the control means collects predetermined data at a first frequency in the first work mode, and collects the predetermined data at a second frequency lower than the first frequency in the second work mode. At the same time, the diagnostic data is further collected.
  • the reception means receives the diagnosis instruction based on a user instruction.
  • the control means further determines the possibility of a failure of the work machine based on predetermined data collected in the work in the first work mode,
  • the accepting unit accepts the diagnosis instruction in response to the determination that the working machine may be out of order.
  • the reception means receives the diagnosis instruction at predetermined time intervals.
  • the control means causes the work machine to perform work in the second work mode within a preset work schedule.
  • the diagnostic data it is possible to prevent the diagnostic data from being collected in the time zone outside the work schedule. For example, when the work schedule is in the daytime, it is recommended to collect the diagnostic data in the daytime, but prevent the diagnostic data from being collected in the nighttime, for example. be able to.
  • control means controls the operation of the working machine based on the diagnostic data.
  • the diagnostic data is the number of times of work for each point in the work area
  • the control means controls the operation of the work machine so as to sequentially travel through a plurality of points where the number of times of work is smaller.
  • the diagnostic data is the number of times of work for each point in the work area
  • the control means sets any of a plurality of points having a smaller number of work times as a work start point by the work machine.
  • the work can be completed early by performing the work from a point where the work is difficult to be performed.
  • the diagnostic data is the number of collisions of the working machine for each point in the work area
  • the control means controls the operation of the working machine such that the traveling speed of the working machine becomes slower around a point where the number of collisions is equal to or more than a threshold value.
  • the diagnostic data is the number of times the wheels provided in the work machine slip, the number of slips for each point in the work area,
  • the control means controls the operation of the working machine such that the traveling speed of the working machine becomes slower around a point where the number of slips is equal to or more than a threshold value.
  • the occurrence of slip can be suppressed by reducing the traveling speed at the point where slip is likely to occur. Therefore, it is possible to improve the accuracy of self-position estimation.
  • the diagnostic data includes the number of collisions of the work machine for each point in the work area, and the number of obstacle collision avoidances of the work machine for each point in the work area
  • the control means controls the operation of the working machine based on the number of collisions and the number of obstacle collision avoidances.
  • a notification unit (e.g., 155, 102b) is further provided to notify the user when the number of collisions is equal to or greater than a threshold and the number of obstacle collision avoidances is equal to or less than another threshold.
  • the control means when a predetermined amount or more of the diagnostic data is collected, or when a predetermined time has elapsed after starting the collection of the diagnostic data, starts the first work mode from the second work mode. Switch to working mode.
  • Transmission means for example, 155) for transmitting the diagnostic data collected in the second work mode to a management device (for example, 20); Further comprising a receiving unit (for example, 156) that receives an instruction from the management device that has analyzed the diagnostic data, The control means controls the operation of the work machine based on the instruction received from the management device.
  • the processing load of the work machine can be reduced by the management device performing the processing.
  • the control method of the working machine (for example, 10) of the above embodiment is A method of controlling a work machine, A step of causing the work machine to perform work in a first work mode in which work is performed without collecting diagnostic data; A receiving step for receiving diagnostic instructions, Switching from the first work mode to a second work mode in which work is performed while collecting the diagnostic data when the diagnosis instruction is accepted; A step of causing the work machine to perform work in the second work mode when the work mode is switched to the second work mode; Have.
  • the work mode is switched only when necessary to collect the diagnostic data, so that it is possible to reduce the load in the normal time as compared with the case of constantly collecting the diagnostic data.
  • the program of the above embodiment is It is a program for causing a computer to function as the work machine according to the above embodiment.
  • the working machine according to the present invention can be realized by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

作業機であって、診断用データを収集せずに作業を行う第1の作業モードで前記作業機に作業を実行させる制御手段と、診断指示を受け付ける受付手段と、前記受付手段により前記診断指示が受け付けられた場合、前記第1の作業モードから、前記診断用データを収集しながら作業を行う第2の作業モードへ切り替える切替手段と、を備え、前記制御手段は、前記切替手段により前記第2の作業モードへ切り替えられた場合、前記第2の作業モードで前記作業機に作業を実行させる。

Description

作業機、作業機の制御方法、及びプログラム
 本発明は、作業機、作業機の制御方法、及びプログラムに関するものである。
 特許文献1は、障害物認識センサ等の各種センサのセンサ情報に従って自律走行を行う移動作業機を開示している。
 このような作業機(例えば芝刈機等)に不具合があったり、芝刈りの効率低下が起こったりすると、ディーラー等が作業機のある場所まで駆け付けて作業機の状態を診断することが行われている。
特開平9-128044号公報
 しかしながら、作業機の状態を診断するには手間、時間、費用がかかる上に、診断中は作業を中断する必要があるため、ユーザの予定していた作業が行えないといった不都合が生じるという課題がある。
 本発明は、上記の課題に鑑みてなされたものであり、作業を継続しながら作業機を診断するためのデータを収集するための技術を提供することを目的とする。
 上記課題を解決し、目的を達成するために、本発明に係る作業機は、
 診断用データを収集せずに作業を行う第1の作業モードで前記作業機に作業を実行させる制御手段と、
 診断指示を受け付ける受付手段と、
 前記受付手段により前記診断指示が受け付けられた場合、前記第1の作業モードから、前記診断用データを収集しながら作業を行う第2の作業モードへ切り替える切替手段と、
 を備え、
 前記制御手段は、前記切替手段により前記第2の作業モードへ切り替えられた場合、前記第2の作業モードで前記作業機に作業を実行させることを特徴とする。
 本発明によれば、作業を継続しながら作業機を診断するためのデータを収集することが可能となる。従って、作業を中断する必要なく作業機の状態を診断することが可能となる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
一実施形態に係る管理システムの構成例を示す図である。 一実施形態に係る作業車のハードウェア構成例を示す図である。 一実施形態に係る作業車の機能構成例を示す図である。 一実施形態に係る管理装置のハードウェア構成例を示す図である。 一実施形態に係る管理装置の機能構成例を示す図である。 一実施形態に係る作業車が実施する処理の手順を示すフローチャートである。 一実施形態に係る管理装置が実施する処理の手順を示すフローチャートである。 一実施形態に係る通常時の収集データの一例を示す図である。 一実施形態に係る診断時の収集データの一例を示す図である。
 以下、添付の図面を参照しながら、本発明の実施形態を説明する。なお、各図面を通じて同一の構成要素に対しては同一の参照符号を付している。
 <システム構成>
 図1は、本発明の一実施形態に係る管理システムの構成例を示す図である。管理システムは、作業車10と、管理装置20とを含んで構成される。作業車10と管理装置20とはネットワーク30を介して通信可能に構成されている。作業車10は、例えば自律走行する作業機(芝刈機、草刈機、除雪機、ゴルフボール回収機など)であり、作業エリア内で所定の作業を行う。管理装置20は、サーバ装置であり、作業車10から収集した様々な情報を処理する。なお、本実施形態では作業車10として芝刈機を例に説明を行うが、他の種類の作業機にも本発明を適用することが可能である。
 <作業車の構成>
 図2Aは、本発明の一実施形態に係る作業車のハードウェア構成例を示す図である。ECU100は、回路基板上に構成されたマイクロコンピュータを含む電子制御ユニットであり、作業車10の動作を制御する。ECU100は、CPU100aと、I/O100bと、メモリ100cとを備えている。I/O100bは、各種情報の入出力を行う。メモリ100cは、ROM(Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)等である。メモリ100cには、作業車10の作業日程、作業エリアに関する情報、作業モード情報、作業車10の動作を制御するための各種プログラム等が記憶される。ECU100は、メモリ100cに格納されているプログラムを読み出して実行することにより、本発明を実現するための各処理部として動作することができる。
 ECU100は各種のセンサ群Sと接続されている。センサ群Sは、方位センサ110、GPSセンサ111、車輪速センサ112、角速度センサ113、加速度センサ114、及びブレード高さセンサ115を含んで構成されている。
 方位センサ110及びGPSセンサ111は、作業車10の位置や向きの情報を取得するためのセンサである。方位センサ110は、地磁気に応じた方位を検出する。GPSセンサ111は、GPS衛星からの電波を受信して作業車10の現在位置(緯度、経度)を示す情報を検出する。
 車輪速センサ112、角速度センサ113、及び加速度センサ114は、作業車10の移動状態に関する情報を取得するためのセンサである。車輪速センサ112は、左右の後輪の車輪速を検出する。角速度センサ113は、作業車10の重心位置の上下方向の軸(鉛直方向のz軸)回りの角速度を検出する。加速度センサ114は、作業車10に作用する直交3軸方向の加速度を検出する。
 ブレード高さセンサ115は、作業車10の接地面に対する、芝刈り作業用のロータリブレードの高さを検出する。ブレード高さセンサ115の検出結果はECU100へ出力される。ECU100の制御に基づいてブレード高さ調節モータ119が駆動され、ブレードが上下方向に上下して接地面からの高さが調節される。
 各種センサ群Sの出力は、I/O100bを介してECU100へ入力される。ECU100は、各種センサ群Sの出力に基づいて、作業モータ117、走行モータ118、高さ調節モータ119を制御する。ECU100は、I/O100bを介して制御値を出力して作業モータ117を制御することで、ブレードの回転を制御する。また、I/O100bを介して制御値を出力して走行モータ118を制御することで、作業車10の走行を制御する。また、I/O100bを介して制御値を出力してブレード高さ調節モータ119を制御することで、ブレードの高さを調節する。ここで、I/O100bは、通信インタフェースとして機能することができ、ネットワーク30を介して有線又は無線で管理装置20又は他の装置(例えば作業車10のユーザが保持する通信装置(スマートフォン))と接続することが可能である。
 また、作業車10は、複数のカメラを含むカメラユニット116を備えており、視差がある複数のカメラにより撮影された画像を用いて、前方に存在する物体と、作業車10との距離情報を算出して取得する。そして、撮影された画像と、予め保持されている物体認識モデルとに基づいて、作業車10の動作を制御する。
 作業モータ117は、芝刈り作業用のロータリブレードの上方に配置された電動モータである。ブレードは、作業モータ117と接続されており、作業モータ117によって回転駆動される。走行モータ118は、作業車10に取り付けられている2個の電動モータ(原動機)である。2個の電動モータは、左右の後輪とそれぞれ接続されている。前輪を従動輪、後輪を駆動輪として左右の車輪を独立に正転(前進方向への回転)あるいは逆転(後進方向への回転)させることで、作業車10を種々の方向に移動させることができる。ブレード高さ調節モータ119は、接地面に対するブレードの上下方向の高さを調節するためのモータである。
 続いて、図2Bは、本発明の一実施形態に係る作業車の機能構成例を示す図である。作業車10は、制御部151、記憶部152、受付部153、切替部154、送信部155、及び受信部156を備えている。
 制御部151は、CPU100aに対応しており、作業車10の動作を制御する。制御部151は、通常時には、診断用データを収集せずに作業を行う第1の作業モードで作業車10に作業を実行させる。一方、診断時には、診断用データを収集しながら作業を行う第2の作業モードで作業車10に作業を実行させる。記憶部152は、メモリ100cに対応しており、様々な情報を記憶する。
 受付部153は、診断指示を受け付ける。ここで、診断指示とは、診断用データの収集を開始するための指示である。ユーザ操作により診断指示が受け付けられてもよいし、或いは、制御部151により作業車10に故障の可能性があると判定された場合に、制御部151から診断指示が受け付けられてもよい。故障の可能性の判定は、通常時に第1の作業モードで収集されたデータに基づいて行うことができる。
 切替部154は、作業車10の作業モードを、診断用データを収集せずに作業を行う第1の作業モードから、診断用データを収集しながら作業を行う第2の作業モードへ切り替える。送信部155は、作業車10により収集されたデータを管理装置20へ送信する。また、送信部155は、ユーザへの各種の報知を行う報知部としても機能する。例えばユーザの保持する不図示の通信装置(例えばスマートフォン)へ報知を行うことができる。或いは、作業車10がスピーカ(不図示)による音声や表示部(不図示)による表示によって作業車10の周囲にいるユーザへ報知を行うことが可能であるように構成してもよい。受信部156は、管理装置20から送信された指示を受信する。
 ここで、通常時の収集データの一例について、図6Aを参照して説明する。通常時の収集データは、作業車10が通常の作業を行いながら収集されるデータであり、例えば、スリップ率、合計の衝突回数、ブレード負荷、作業完了率などである。
 スリップ率とは、作業車10の車輪がスリップした割合である。例えばスリップ回数/走行時間として算出することができる。合計の衝突回数とは、作業車10が作業を行う中、作業車10が作業エリア内で障害物等に衝突することがあるが、その衝突の回数をカウントしたものである。ブレード負荷とは、例えばブレードに対して草や芝が接触することによりブレードにかかる負荷である。ブレード負荷は、例えば作業モータ117による所定出力に対する実際のブレードの回転数が、負荷がかからない場合の理想値に対してどの程度減少しているかを算出することにより判定することができる。
 作業完了率は、作業がどの程度完了しているかを示す割合である。例えばGPSセンサ111により作業車10の走行履歴をプロットすることで、作業エリアの面積のうち作業車10が走行した面積の割合を算出することにより取得することができる。
 なお、通常時の収集データは図示の例に限定されない。その他のデータがさらに含まれてもよい。例えば、通常時には、周辺の気温や湿度のデータをさらに収集してもよい。或いは、図6Aに示されるようなデータの一部が収集されなくてもよい。
 次に、診断用データの一例について、図6Bを参照して説明する。診断用データとは、作業車10の状態を診断するために収集されるデータである。収集された診断用データに基づいて、作業車10の動作を制御することで、状況に応じたより適切な制御を行うことが可能となる。
 診断用データは、例えば、作業車10が備える車輪がスリップした回数を示す作業エリア内の地点ごとのスリップ回数、作業エリア内の地点ごとの作業車10の衝突回数、作業エリア内の地点ごとの作業回数である。ここで地点とは、例えば作業エリアをグリッドで区切り、矩形の小領域(グリッド領域)の集合体として考えた場合、その1つの小領域のことである。
 地点ごとのスリップ回数は、作業車10が各地点を走行中にスリップが発生した場合にカウントを行い、作業エリアを構成する各地点についてカウントを集計したデータである。これにより、どの地点でスリップが発生しやすいかを認識することができる。
 地点ごとの衝突回数とは、作業車10が各地点を走行中に障害物等の衝突した場合にカウントを行い、作業エリアを構成する各地点についてカウントを集計したデータである。これにより、どの地点で衝突が発生しやすいかを認識することができる。
 地点ごとの作業回数とは、作業車10が作業を行いながら各地点を走行した場合にカウントを行い、作業エリアを構成する各地点についてカウントを集計したデータである。これにより、どの地点でまだ作業が行われていないかを認識することができる。
 <管理装置の構成>
 図3Aは、本発明の一実施形態に係る管理装置のハードウェア構成例を示す図である。管理装置20は、例えばサーバ装置であり、CPU200a、I/O200b、及びメモリ200cを備えている。
 CPU200aは、管理装置20の動作を制御する。I/O200bは、各種情報の入出力を行う。メモリ200cは、ROM(Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)等である。メモリ200cには、作業車10の作業モード情報、管理装置20の動作を制御するための各種プログラム等が記憶される。CPU200aは、メモリ200cに格納されているプログラムを読み出して実行することにより、本発明を実現するための各処理部として動作することができる。
 続いて、図3Bは、本発明の一実施形態に係る管理装置の機能構成例を示す図である。管理装置20は、制御部251、記憶部252、受信部253、及び送信部254を備えている。
 制御部251は、CPU200aに対応しており、管理装置20の動作を制御すると共に、作業車10を動作させる作業モードの変更指示を作業車10に送信することで、作業車10の動作を制御することも可能である。
 記憶部252は、メモリ200cに対応しており、様々な情報を記憶する。例えば、作業車10から送信された通常時の収集データや、診断時の収集データ(診断用データ)を記憶する。受信部253は、作業車10から送信されたデータを受信する。送信部254は、作業車10から受信されたデータに基づいて解析された解析内容に応じた指示を作業車10へ送信する。
 <作業車の処理>
 次に、図4のフローチャートを参照して、本実施形態に係る作業車10が実施する処理の手順を説明する。
 S101において、制御部151は、診断用データを収集せずに作業を行う第1の作業モードで作業車10に作業を実行させる。なお、この作業中には、診断用データは収集されないが、図6Aに例示したような通常時の収集データの収集は行われる。記憶部152は当該収集データを記憶し、送信部155は収集された通常時の収集データを管理装置20へ送信する。
 S102において、受付部153は、診断指示が受け付けられたか否かを判定する。診断指示とは、診断用データの収集を開始するための指示である。ユーザ操作により診断指示が受け付けられもよい。或いは、制御部151により作業車10に故障の可能性があると判定された場合に、制御部151から診断指示が自動的に受け付けられてもよい。故障の可能性の判定は、通常時に第1の作業モードで収集されたデータに基づいて行うことができる。例えば、制御部151は、ブレード負荷の大きさが閾値以上である場合に、故障の可能性があると判定し、制御部151から受付部153へ診断指示が受け付けられてもよい。或いは、所定の時間間隔で制御部151から診断指示が自動的に受け付けられてもよい。診断指示が受け付けられた場合、S103へ進む。一方、診断指示が受け付けられていない場合、S105へ進む。
 S103において、切替部154は、作業車10の作業モードを、診断用データを収集せずに作業を行う第1の作業モードから、診断用データを収集しながら作業を行う第2の作業モードへ切り替える。
 S104において、制御部151は、診断用データを収集しながら作業を行う第2の作業モードで作業車10に作業を実行させる。第2の作業モードでは、通常時の収集データに加えて診断用データをさらに収集するように作業車10を制御する。或いは、第2の作業モードでは、通常時の収集データの少なくとも一部の種類のデータを削減して収集すると共に診断用データをさらに収集するように作業車10を制御してもよい。これにより制御部151の処理負荷を軽減することができる。記憶部152は収集されたデータを記憶し、送信部155は当該データを管理装置20へ送信する。
 S105において、制御部151は、処理を終了するか否かを判定する。処理を終了する場合とは、例えば予定していた作業スケジュールに従った終了時間が到来した場合や、ユーザにより作業車10に備えられた不図示の電源オフボタンが押下された場合などである。処理を終了する場合、図4の一連の処理を終了する。一方、処理を終了しない場合、S101に戻って処理を繰り返す。
 なお、制御部151は、診断用データの収集後に、収集された診断用データを解析し、その解析結果に基づいて作業車10の動作を制御してもよい。或いは、管理装置20が、作業車10から受信した診断用データを解析し、その解析結果に基づいて作業車10の動作を制御する指示を作業車10へ送信してもよい。作業車10は管理装置20から受信した指示に応じて動作を制御してもよい。これにより、作業車10の処理負荷を軽減することができる。
 例えば、診断用データである地点ごとのスリップ回数に基づいて、どの地点でスリップが発生しやすいかを解析し、スリップ回数が閾値以上の地点の周囲では、作業車10の走行速度がより遅くなるように作業車10の動作を制御してもよい。
 また、診断用データである地点ごとの衝突回数に基づいて、どの地点で衝突が発生しやすいかを解析し、衝突回数が閾値以上の地点の周囲では、作業車10の走行速度がより遅くなるように作業車10の動作を制御してもよい。
 また、診断用データである地点ごとの作業回数に基づいて、どの地点でまだ作業が行われていないかを解析し、作業回数がより少ない複数の地点を順に走行するように作業車10の動作を制御してもよい。例えば、作業回数が少ない5つの地点を抽出し、この5地点を作業回数が少ない順に走行するように作業車10の動作を制御してもよい。また、作業回数がより少ない複数の地点の何れかを作業車10による作業の開始地点に設定してもよい。例えば、作業回数が少ない5つの地点を抽出し、この5地点の何れかを作業車10による作業の開始地点に設定してもよい。これにより、作業残しが多い地点、例えば芝刈機や草刈機の場合は刈り残しが多い地点で優先的に作業を行うことが可能となり、全体の作業効率を向上させることができる。
 以上説明したように、本実施形態に係る作業車10は、診断指示に応じて、診断用データを収集しながら作業を行う第2の作業モードで作業を行う。従って、作業をしながら診断を行うことが可能となる。また、診断用データに基づいて作業車10の動作を適切に制御することが可能となる。
 なお、S104において、制御部151は、第2の作業モードでは作業車10の機能の一部を停止するとともに、通常時の収集データと診断用データとを収集するように作業車10を制御してもよい。例えば、ユーザが保持する通信装置(例えばスマートフォン)と通信する通信機能を一時的に停止してもよい。機能の一部を停止することで、制御部151の処理負荷を軽減することができる。そのため、CPUの発熱を低減することができ、バッテリ寿命を延ばすことも可能となる。
 また、制御部151の処理負荷の軽減のために、作業モードに応じてデータの収集頻度を変更してもよい。例えば、第1の作業モードでは通常時の収集データを第1の頻度で収集し、第2の作業モードでは通常時の収集データを第1の頻度よりも低い第2の頻度で収集すると共に診断用データをさらに収集するように構成してもよい。例えば、通常時は通常時の収集データを1分ごとに収集し、診断時には通常時の収集データを30分ごと或いは1時間ごとに取集するようにしてもよい。
 また、制御部151は、診断用データが所定量以上収集された場合、又は、診断用データの収集を開始してから所定時間が経過した場合に、第2の作業モードから第1の作業モードへ切り替えるように構成してもよい。これにより、診断が不要になった場合に元の作業モードに自動的に戻すことが可能となり、ユーザの監視負担を軽減することが可能となる。
 <管理装置の処理>
 続いて、図5のフローチャートを参照して、本実施形態に係る管理装置20が実施する処理の手順を説明する。
 S201において、受信部253は、作業車10から送信された、作業車10の通常時の収集データ、すなわち第1の作業モードで収集されたデータを受信したか否かを判定する。通常時の収集データが受信された場合、S202へ進む。一方、通常時の収集データが受信されていない場合、S204へ進む。
 S202において、制御部251は、S201で収集されて記憶部252に蓄積された通常時の収集データに基づいて解析を行う。例えば、通常時の収集データである、ブレード負荷が閾値以上である場合に、作業車10に故障が発生する可能性があると判定してもよい。そして、解析された結果に基づく指示を生成する。例えば、作業車10に故障が発生する可能性がある場合には、診断指示を生成する。
 S203において、送信部254は、S202で生成された指示を作業車10へ送信する。作業車10は、当該診断指示に応じて、診断用データを収集しながら作業を行う第2の作業モードへ、作業モードを切り替える。なお、解析結果を蓄積するだけで指示が生成されない場合、本ステップはスキップしてもよい。
 S204において、受信部253は、作業車10から送信された、作業車10の診断時の収集データである診断用データ、すなわち第2の作業モードで収集されたデータを受信したか否かを判定する。診断用データが受信された場合、S205へ進む。一方、診断用データが受信されていない場合、S207へ進む。
 S205において、制御部251は、S204で収集されて記憶部252に蓄積された診断用データに基づいて解析を行い、作業車10へ送信するための指示を生成する。例えば、診断用データである地点ごとのスリップ回数に基づいて、どの地点でスリップが発生しやすいかを解析し、スリップ回数が閾値以上の地点の周囲では、作業車10の走行速度がより遅くなるように作業車10の動作を制御する指示を生成してもよい。
 また、診断用データである地点ごとの衝突回数に基づいて、どの地点で衝突が発生しやすいかを解析し、衝突回数が閾値以上の地点の周囲では、作業車10の走行速度がより遅くなるように作業車10の動作を制御する指示を生成してもよい。
 また、診断用データである地点ごとの作業回数に基づいて、どの地点でまだ作業が行われていないかを解析し、作業回数がより少ない複数の地点を順に走行するように作業車10の動作を制御する指示を生成してもよい。或いは、作業回数がより少ない複数の地点の何れかを作業車10による作業の開始地点に設定する指示を生成してもよい。或いは、これらの少なくとも一部を組み合わせた指示を生成してもよい。
 S206において、送信部254は、S205で生成された指示を作業車10へ送信する。作業車10は、当該指示に基づいて作業車10の動作を制御する。
 S207において、制御部251は、処理を終了するか否かを判定する。処理を終了する場合とは、例えば作業車10が予定していた作業スケジュールに従った終了時間が到来した場合などである。処理を終了する場合、図5の一連の処理を終了する。一方、処理を終了しない場合、S201に戻って処理を繰り返す。
 以上説明したように、本実施形態に係る管理装置20は、作業車10で収集された各種の収集データ(通常時の収集データ又は診断用データ)を受信し、その解析結果に基づいて、作業車10の動作を制御するための指示を作業車10へ送信する。これにより、通常時の収集データ又は診断用データに基づいて作業車10の動作を適切に制御することが可能となる。
 [変形例]
 上述した実施形態では、診断用データとして、地点ごとのスリップ回数、地点ごとの作業車10の衝突回数、作業エリア内の地点ごとの作業回数を例に説明を行った。ただし、診断用データはこれらの例に限定されない。例えば、診断用データとして、「地点ごとの障害物回避回数」をカウントして格納してもよい。障害物回避回数とは、作業車10に設けられたセンサ(例えばカメラやレーダー等)により障害物を検出して、検出された障害物との衝突の回避を行うことができた回数である。
 作業車10の衝突回数と、障害物回避回数とを、地点ごとにカウントして格納しておくことで以下のことを推定できる。例えば、ある地点において、衝突回数が多く且つ障害物回避回数が少ない場合には、地形的に障害物を検出しにくい地点であると推測できる。例えば、作業車10の進行方向において死角に岩などの障害物が存在している場合である。このような場合、カメラの視野やレーダーの走査範囲から障害物が外れてしまうことがある。或いは、2つの障害物の間を通過する際に、レーダーでは作業車10の通過方向に障害物が検出されないものの、作業車10が通り抜けるには障害物同士の間隔が狭く、衝突が発生してしまう場合である。
 衝突回数が多く且つ障害物回避回数が少ない場合に、そのことをユーザへ報知するようにしてもよい。具体的には、ある地点において、衝突回数が閾値以上、且つ、障害物回避回数が別の閾値以下となった場合に、ユーザへの報知を行ってもよい。これにより、岩などの障害物を除去したり、狭路をふさいだりすることで、衝突の発生を抑制することが可能となる。
 なお、ある地点において、衝突回数が少なく且つ障害物回避回数が多い場合には、その地点は問題無く障害物を検出できる地点であると推測できる。また、ある地点において、衝突回数が少なく且つ障害物衝突回数も少ない場合には、その地点は障害物が存在しないか、存在しても無視できる程度のものであると推測できる。従って、例えば衝突回数が閾値以下であり且つ障害物衝突回数が別の閾値以下である場合には、制御部251は、作業車10の走行速度がより速くなるように作業車10の動作を制御する指示を生成してもよい。これにより、より障害物の状況を推定した適応的な制御を行うことが可能となる。
 また、上述した実施形態では、自律作業機の一例として、芝刈機を例に説明を行ったが、芝刈機に限定されるものではない。例えば、自律型の除雪機、ゴルフボールの回収機など、他の種類の自律作業機に対しても本発明を適用することができる。また、上述した各実施形態では、複数のカメラから取得した画像に基づいて作業機を自律制御する例を説明したが、本発明を適用できる作業機はカメラ画像を用いる場合に限定されるものではない。例えば、超音波センサや赤外線センサなどの障害物センサ(距離計測センサ)を用いて自律制御を行う作業機にも本発明を適用することができる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 <実施形態のまとめ>
 1.上記実施形態の作業機(例えば10)は、
 作業機であって、
 診断用データを収集せずに作業を行う第1の作業モードで前記作業機に作業を実行させる制御手段(例えば151)と、
 診断指示を受け付ける受付手段(例えば153)と、
 前記受付手段により前記診断指示が受け付けられた場合、前記第1の作業モードから、前記診断用データを収集しながら作業を行う第2の作業モードへ切り替える切替手段(例えば154)と、
 を備え、
 前記制御手段は、前記切替手段により前記第2の作業モードへ切り替えられた場合、前記第2の作業モードで前記作業機に作業を実行させる。
 この実施形態によれば、作業を継続しながら作業機を診断するためのデータを収集することが可能となる。従って、作業を中断する必要なく作業機の状態を診断することが可能となる。[0]また、この実施形態によれば、必要時にのみ作業モードを切り替えて診断用データを収集するので、常時診断用データを収集する場合と比較して通常時の負荷を低減することが可能となる。
 2.上記実施形態の作業機(例えば10)では、
 前記制御手段は、前記第1の作業モードでは所定のデータを収集し、前記第2の作業モードでは前記所定のデータに加えて前記診断用データをさらに収集するように前記作業機を制御する。
 この実施形態によれば、何れの作業モードにおいても所定のデータの収集が可能となり、作業機が動作中に収集が必要なデータを継続的に収集することが可能となる。
 3.上記実施形態の作業機(例えば10)では、
 前記制御手段は、前記第1の作業モードでは所定のデータを収集し、前記第2の作業モードでは前記所定のデータの少なくとも一部の種類のデータを削減して収集すると共に前記診断用データをさらに収集するように前記作業機を制御する。
 この実施形態によれば、第2の作業モードでの処理負荷を低減することが可能となる。
 4.上記実施形態の作業機(例えば10)では、
 前記制御手段は、前記第1の作業モードでは所定のデータを収集し、前記第2の作業モードでは前記作業機の機能の一部を停止するとともに前記所定のデータと前記診断用データとを収集するように前記作業機を制御する。
 この実施形態によれば、第2の作業モードでの処理負荷を低減することが可能となる。
 5.上記実施形態の作業機(例えば10)では、
 前記制御手段は、前記第1の作業モードでは所定のデータを第1の頻度で収集し、第2の作業モードでは前記所定のデータを前記第1の頻度よりも低い第2の頻度で収集すると共に前記診断用データをさらに収集する。
 この実施形態によれば、第2の作業モードでの処理負荷を低減することが可能となる。
 6.上記実施形態の作業機(例えば10)では、
 前記受付手段は、ユーザ指示に基づいて前記診断指示を受け付ける。
 この実施形態によれば、ユーザの意図したタイミングで第2の作業モードへ移行することが可能となる。
 7.上記実施形態の作業機(例えば10)では、
 前記制御手段は、前記第1の作業モードでの作業で収集された所定のデータに基づいて前記作業機の故障の可能性をさらに判定し、
 前記受付手段は、前記作業機に故障の可能性があると判定されたことに応じて前記診断指示を受け付ける。
 この実施形態によれば、故障が発生する前に第2の作業モードへ移行するため、自動的に診断を行うことが可能となる。
 8.上記実施形態の作業機(例えば10)では、
 前記受付手段は、所定の時間間隔で前記診断指示を受け付ける。
 この実施形態によれば、定期的に第2の作業モードへ移行することができるため、自動的に診断を行うことが可能となる。
 9.上記実施形態の作業機(例えば10)では、
 前記制御手段は、予め設定された作業スケジュールの範囲内で、前記第2の作業モードで前記作業機に作業を実行させる。
 この実施形態によれば、作業スケジュール外の時間帯に診断用データの収集を行うことを防止することができる。例えば、作業スケジュールが昼間の時間帯である場合、診断用データの収集も昼間の時間帯に行うことが推奨されるが、例えば夜間の時間帯に診断用データを収集してしまうことを防止することができる。
 10.上記実施形態の作業機(例えば10)では、
 前記制御手段は、前記診断用データの収集後、当該診断用データに基づいて前記作業機の動作を制御する。
 この実施形態によれば、作業機自身で診断を行い、診断結果に基づく適切な制御を行うことが可能となる。
 11.上記実施形態の作業機(例えば10)では、
 前記診断用データは、作業エリア内の地点ごとの作業回数であり、
 前記制御手段は、前記作業回数がより少ない複数の地点を順に走行するように前記作業機の動作を制御する。
 この実施形態によれば、作業が残っている地点で優先的に作業を実施することが可能となる。
 12.上記実施形態の作業機(例えば10)では、
 前記診断用データは、作業エリア内の地点ごとの作業回数であり、
 前記制御手段は、前記作業回数がより少ない複数の地点の何れかを前記作業機による作業の開始地点に設定する。
 この実施形態によれば、作業が実施されにくい地点から作業を実施することで、早期に作業を完了することが可能となる。
 13.上記実施形態の作業機(例えば10)では、
 前記診断用データは、作業エリア内の地点ごとの前記作業機の衝突回数であり、
 前記制御手段は、前記衝突回数が閾値以上の地点の周囲では、前記作業機の走行速度がより遅くなるように前記作業機の動作を制御する。
 この実施形態によれば、走行時に回避しにくい障害物への衝突を抑制し、故障を回避することが可能となる。
 14.上記実施形態の作業機(例えば10)では、
 前記診断用データは、前記作業機が備える車輪がスリップした回数である、作業エリア内の地点ごとのスリップ回数であり、
 前記制御手段は、前記スリップ回数が閾値以上の地点の周囲では、前記作業機の走行速度がより遅くなるように前記作業機の動作を制御する。
 この実施形態によれば、スリップが発生しやすい地点での走行速度を遅くすることで、スリップの発生を抑制することができる。従って、自己位置推定の精度を向上させることが可能となる。
 15.上記実施形態の作業機(例えば10)では、
 前記診断用データは、作業エリア内の地点ごとの前記作業機の衝突回数と、前記作業エリア内の地点ごとの前記作業機の障害物衝突回避回数とを含み、
 前記制御手段は、前記衝突回数と、前記障害物衝突回避回数とに基づいて前記作業機の動作を制御する。
 この実施形態によれば、より障害物の状況を推定した適応的な制御を行うことが可能となる。
 16.上記実施形態の作業機(例えば10)では、
 前記衝突回数が閾値以上、且つ、前記障害物衝突回避回数が別の閾値以下となった場合に、ユーザへの報知を行う報知手段(例えば155、102b)をさらに備える。
 この実施形態によれば、衝突回数が多く且つ障害物衝突回数が少ない場合に、障害物の除去などをユーザに促すことで、衝突の発生を抑制することが可能となる。
 17.上記実施形態の作業機(例えば10)では、
 前記制御手段は、前記診断用データが所定量以上収集された場合、又は、前記診断用データの収集を開始してから所定時間が経過した場合に、前記第2の作業モードから前記第1の作業モードへ切り替える。
 この実施形態によれば、診断用データの収集が完了したタイミングで、或いは完了しているであろうタイミングで、自動的に元の作業モードに戻ることができる。従って、ユーザは診断が終わった後に作業機の作業モードを元に戻すといった手間を省くことが可能となる。
 18.上記実施形態の作業機(例えば10)では、
 前記第2の作業モードで収集された前記診断用データを管理装置(例えば20)へ送信する送信手段(例えば155)と、
 前記診断用データを解析した前記管理装置から指示を受信する受信手段(例えば156)と、をさらに備え、
 前記制御手段は、前記管理装置から受信された前記指示に基づいて前記作業機の動作を制御する。
 この実施形態によれば、管理装置が処理を行うことにより、作業機の処理負荷を軽減することが可能となる。
 19.上記実施形態の作業機(例えば10)の制御方法は、
 作業機の制御方法であって、
 診断用データを収集せずに作業を行う第1の作業モードで前記作業機に作業を実行させる工程と、
 診断指示を受け付ける受付工程と、
 前記診断指示が受け付けられた場合、前記第1の作業モードから、前記診断用データを収集しながら作業を行う第2の作業モードへ切り替える工程と、
 前記第2の作業モードに切り替えられた場合、前記第2の作業モードで前記作業機に作業を実行させる工程と、
 を有する。
 この実施形態によれば、作業を継続しながら作業機を診断するためのデータを収集することが可能となる。従って、作業を中断する必要なく作業機の状態を診断することが可能となる。また、この実施形態によれば、必要時にのみ作業モードを切り替えて診断用データを収集するので、常時診断用データを収集する場合と比較して通常時の負荷を低減することが可能となる。
 20.上記実施形態のプログラムは、
 コンピュータを、上記実施形態に係る作業機として機能させるためのプログラムである。
 この実施形態によれば、本発明に係る作業機をコンピュータにより実現することができる。

Claims (20)

  1.  作業機であって、
     診断用データを収集せずに作業を行う第1の作業モードで前記作業機に作業を実行させる制御手段と、
     診断指示を受け付ける受付手段と、
     前記受付手段により前記診断指示が受け付けられた場合、前記第1の作業モードから、前記診断用データを収集しながら作業を行う第2の作業モードへ切り替える切替手段と、
     を備え、
     前記制御手段は、前記切替手段により前記第2の作業モードへ切り替えられた場合、前記第2の作業モードで前記作業機に作業を実行させることを特徴とする作業機。
  2.  前記制御手段は、前記第1の作業モードでは所定のデータを収集し、前記第2の作業モードでは前記所定のデータに加えて前記診断用データをさらに収集するように前記作業機を制御することを特徴とする請求項1に記載の作業機。
  3.  前記制御手段は、前記第1の作業モードでは所定のデータを収集し、前記第2の作業モードでは前記所定のデータの少なくとも一部の種類のデータを削減して収集すると共に前記診断用データをさらに収集するように前記作業機を制御することを特徴とする請求項1に記載の作業機。
  4.  前記制御手段は、前記第1の作業モードでは所定のデータを収集し、前記第2の作業モードでは前記作業機の機能の一部を停止するとともに前記所定のデータと前記診断用データとを収集するように前記作業機を制御することを特徴とする請求項1に記載の作業機。
  5.  前記制御手段は、前記第1の作業モードでは所定のデータを第1の頻度で収集し、第2の作業モードでは前記所定のデータを前記第1の頻度よりも低い第2の頻度で収集すると共に前記診断用データをさらに収集することを特徴とする請求項1に記載の作業機。
  6.  前記受付手段は、ユーザ指示に基づいて前記診断指示を受け付けることを特徴とする請求項1乃至5の何れか1項に記載の作業機。
  7.  前記制御手段は、前記第1の作業モードでの作業で収集された所定のデータに基づいて前記作業機の故障の可能性をさらに判定し、
     前記受付手段は、前記作業機に故障の可能性があると判定されたことに応じて前記診断指示を受け付けることを特徴とする請求項1乃至5の何れか1項に記載の作業機。
  8.  前記受付手段は、所定の時間間隔で前記診断指示を受け付けることを特徴とする請求項1乃至5の何れか1項に記載の作業機。
  9.  前記制御手段は、予め設定された作業スケジュールの範囲内で、前記第2の作業モードで前記作業機に作業を実行させることを特徴とする請求項1乃至8の何れか1項に記載の作業機。
  10.  前記制御手段は、前記診断用データの収集後、当該診断用データに基づいて前記作業機の動作を制御することを特徴とする請求項1乃至9の何れか1項に記載の作業機。
  11.  前記診断用データは、作業エリア内の地点ごとの作業回数であり、
     前記制御手段は、前記作業回数がより少ない複数の地点を順に走行するように前記作業機の動作を制御することを特徴とする請求項10に記載の作業機。
  12.  前記診断用データは、作業エリア内の地点ごとの作業回数であり、
     前記制御手段は、前記作業回数がより少ない複数の地点の何れかを前記作業機による作業の開始地点に設定することを特徴とする請求項10に記載の作業機。
  13.  前記診断用データは、作業エリア内の地点ごとの前記作業機の衝突回数であり、
     前記制御手段は、前記衝突回数が閾値以上の地点の周囲では、前記作業機の走行速度がより遅くなるように前記作業機の動作を制御することを特徴とする請求項10乃至12の何れか1項に記載の作業機。
  14.  前記診断用データは、前記作業機が備える車輪がスリップした回数である、作業エリア内の地点ごとのスリップ回数であり、
     前記制御手段は、前記スリップ回数が閾値以上の地点の周囲では、前記作業機の走行速度がより遅くなるように前記作業機の動作を制御することを特徴とする請求項10乃至13の何れか1項に記載の作業機。
  15.  前記診断用データは、作業エリア内の地点ごとの前記作業機の衝突回数と、前記作業エリア内の地点ごとの前記作業機の障害物衝突回避回数とを含み、
     前記制御手段は、前記衝突回数と、前記障害物衝突回避回数とに基づいて前記作業機の動作を制御することを特徴とする請求項10に記載の作業機。
  16.  前記衝突回数が閾値以上、且つ、前記障害物衝突回避回数が別の閾値以下となった場合に、ユーザへの報知を行う報知手段をさらに備えることを特徴とする請求項15に記載の作業機。
  17.  前記制御手段は、前記診断用データが所定量以上収集された場合、又は、前記診断用データの収集を開始してから所定時間が経過した場合に、前記第2の作業モードから前記第1の作業モードへ切り替えることを特徴とする請求項10乃至16の何れか1項に記載の作業機。
  18.  前記第2の作業モードで収集された前記診断用データを管理装置へ送信する送信手段と、
     前記診断用データを解析した前記管理装置から指示を受信する受信手段と、をさらに備え、
     前記制御手段は、前記管理装置から受信された前記指示に基づいて前記作業機の動作を制御することを特徴とする請求項10乃至17の何れか1項に記載の作業機。
  19.  作業機の制御方法であって、
     診断用データを収集せずに作業を行う第1の作業モードで前記作業機に作業を実行させる工程と、
     診断指示を受け付ける受付工程と、
     前記診断指示が受け付けられた場合、前記第1の作業モードから、前記診断用データを収集しながら作業を行う第2の作業モードへ切り替える工程と、
     前記第2の作業モードに切り替えられた場合、前記第2の作業モードで前記作業機に作業を実行させる工程と、
     を有することを特徴とする作業機の制御方法。
  20.  コンピュータを、請求項1乃至18の何れか1項に記載の作業機として機能させるためのプログラム。
PCT/JP2019/004407 2019-02-07 2019-02-07 作業機、作業機の制御方法、及びプログラム WO2020161856A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19914498.1A EP3901723A4 (en) 2019-02-07 2019-02-07 WORK MACHINE, WORK MACHINE CONTROL PROCEDURE AND PROGRAM
PCT/JP2019/004407 WO2020161856A1 (ja) 2019-02-07 2019-02-07 作業機、作業機の制御方法、及びプログラム
JP2020570288A JP7317053B2 (ja) 2019-02-07 2019-02-07 作業機、作業機の制御方法、及びプログラム
US17/377,354 US20210341931A1 (en) 2019-02-07 2021-07-15 Working machine, working machine control method, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004407 WO2020161856A1 (ja) 2019-02-07 2019-02-07 作業機、作業機の制御方法、及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/377,354 Continuation US20210341931A1 (en) 2019-02-07 2021-07-15 Working machine, working machine control method, and storage medium

Publications (1)

Publication Number Publication Date
WO2020161856A1 true WO2020161856A1 (ja) 2020-08-13

Family

ID=71947669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004407 WO2020161856A1 (ja) 2019-02-07 2019-02-07 作業機、作業機の制御方法、及びプログラム

Country Status (4)

Country Link
US (1) US20210341931A1 (ja)
EP (1) EP3901723A4 (ja)
JP (1) JP7317053B2 (ja)
WO (1) WO2020161856A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020161856A1 (ja) * 2019-02-07 2021-12-02 本田技研工業株式会社 作業機、作業機の制御方法、及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09128044A (ja) 1995-11-02 1997-05-16 Hitachi Ltd 走行作業機械の半自動制御方式
WO2018011999A1 (ja) * 2016-07-15 2018-01-18 株式会社小松製作所 作業車両、遠隔診断システム、及び遠隔診断方法
JP2018503194A (ja) * 2015-01-13 2018-02-01 ▲広▼州▲極飛▼科技有限公司Guangzhou Xaircraft Technology Co., Ltd. 無人航空機をスケジューリングする方法及びシステム、無人航空機
JP2018105782A (ja) * 2016-12-27 2018-07-05 川崎重工業株式会社 減速機の故障診断装置及び故障診断方法並びに前記故障診断装置を備える機械装置
JP2018169826A (ja) * 2017-03-30 2018-11-01 ヤンマー株式会社 農用作業車両

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447412A (ja) * 1990-06-14 1992-02-17 Tokyo Electric Power Co Inc:The 作業ロボット支援装置
JP2005304515A (ja) * 2004-04-16 2005-11-04 Funai Electric Co Ltd 自走式掃除機
JP4939862B2 (ja) * 2006-07-18 2012-05-30 日立オートモティブシステムズ株式会社 車載システム及びそれを搭載した車両
JP5147613B2 (ja) * 2008-09-12 2013-02-20 ヤンマー株式会社 農作業用トラクタ
KR101324166B1 (ko) * 2011-07-25 2013-11-08 엘지전자 주식회사 로봇 청소기 및 이의 자가 진단 방법
KR101303158B1 (ko) * 2011-07-25 2013-09-09 엘지전자 주식회사 로봇 청소기 및 이의 자가 진단 방법
KR101303159B1 (ko) * 2011-07-25 2013-09-17 엘지전자 주식회사 로봇 청소기 및 이의 자가 진단 방법
KR101371036B1 (ko) * 2011-07-25 2014-03-10 엘지전자 주식회사 로봇 청소기 및 이의 자가 진단 방법
EP3295781B1 (en) * 2012-07-04 2022-08-31 Husqvarna AB Robotic mower
JP2015184563A (ja) * 2014-03-25 2015-10-22 シャープ株式会社 対話型家電システム、サーバ装置、対話型家電機器、家電システムが対話を行なうための方法、当該方法をコンピュータに実現させるためのプログラム
EP3245856B1 (de) * 2014-06-18 2019-11-20 Deere & Company Anordnung zur kontrolle einer geräteschnittstelle eines landwirtschaftlichen arbeitsfahrzeugs
JP6815279B2 (ja) * 2017-05-30 2021-01-20 株式会社クボタ 作業走行機能診断装置
EP3901723A4 (en) * 2019-02-07 2022-01-05 Honda Motor Co., Ltd. WORK MACHINE, WORK MACHINE CONTROL PROCEDURE AND PROGRAM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09128044A (ja) 1995-11-02 1997-05-16 Hitachi Ltd 走行作業機械の半自動制御方式
JP2018503194A (ja) * 2015-01-13 2018-02-01 ▲広▼州▲極飛▼科技有限公司Guangzhou Xaircraft Technology Co., Ltd. 無人航空機をスケジューリングする方法及びシステム、無人航空機
WO2018011999A1 (ja) * 2016-07-15 2018-01-18 株式会社小松製作所 作業車両、遠隔診断システム、及び遠隔診断方法
JP2018105782A (ja) * 2016-12-27 2018-07-05 川崎重工業株式会社 減速機の故障診断装置及び故障診断方法並びに前記故障診断装置を備える機械装置
JP2018169826A (ja) * 2017-03-30 2018-11-01 ヤンマー株式会社 農用作業車両

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020161856A1 (ja) * 2019-02-07 2021-12-02 本田技研工業株式会社 作業機、作業機の制御方法、及びプログラム
JP7317053B2 (ja) 2019-02-07 2023-07-28 本田技研工業株式会社 作業機、作業機の制御方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2020161856A1 (ja) 2021-12-02
JP7317053B2 (ja) 2023-07-28
EP3901723A4 (en) 2022-01-05
EP3901723A1 (en) 2021-10-27
US20210341931A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
US11513189B2 (en) Systems and methods for intelligently calibrating infrastructure devices using onboard sensors of an autonomous agent
US9563204B2 (en) Mower with object detection system
US10321625B2 (en) Autonomous working machine such as autonomous lawn mower
US7706963B2 (en) System for and method of updating traffic data using probe vehicles having exterior sensors
WO2020110247A1 (ja) 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム
CN106444746A (zh) 自主机器人、检测故障的装置和方法
CN113766825B (zh) 节能草坪养护车辆
US20210235617A1 (en) Autonomous work machine
US20200149919A1 (en) Environmental state estimation device, method for environmental state estimation, and environmental state estimation program
CN110930689A (zh) 基于行车记录仪的路况数据动态采集方法和装置
WO2020161856A1 (ja) 作業機、作業機の制御方法、及びプログラム
AU2015201735A1 (en) System for remotely controlling a machine
JP2022546326A (ja) ロボット作業工具の改善された操作
JP7460502B2 (ja) 経路設定装置、経路設定方法、記憶媒体及びプログラム
US11625963B2 (en) Management apparatus, control method for management apparatus, and non-transitory computer-readable storage medium
KR102458856B1 (ko) 통신 시스템에서 자율 주행을 수행하고 pto가 작동되는 농기계에 대하여 잠재적 사고를 예측하고 잠재적 사고를 회피하기 위한 동작을 제어하기 위한 방법 및 장치
JP2018128395A (ja) 車両用障害物検出装置
CN114937258B (zh) 割草机器人的控制方法、割草机器人以及计算机存储介质
EP3143469B1 (en) Automatic sensitivity adjustment in object detection system
KR102575026B1 (ko) 자율 주행 농기계에 연결된 제어기에 대해 예측된 잠재적 사고를 회피하는 제어
CN110774281A (zh) 自动跟随机器人、方法、装置和存储介质
CN112527002B (zh) 监控装置和监控方法
US20240187885A1 (en) Network use optimization
CN117806298A (zh) 行驶路线的调整方法及装置、存储介质及电子装置
WO2024119134A1 (en) Network use optimization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019914498

Country of ref document: EP

Effective date: 20210720

ENP Entry into the national phase

Ref document number: 2020570288

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE