WO2020158859A1 - 共振型コンバータ、その制御回路及び制御方法 - Google Patents
共振型コンバータ、その制御回路及び制御方法 Download PDFInfo
- Publication number
- WO2020158859A1 WO2020158859A1 PCT/JP2020/003418 JP2020003418W WO2020158859A1 WO 2020158859 A1 WO2020158859 A1 WO 2020158859A1 JP 2020003418 W JP2020003418 W JP 2020003418W WO 2020158859 A1 WO2020158859 A1 WO 2020158859A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- signal
- resonant converter
- control circuit
- wave signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33571—Half-bridge at primary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0012—Control circuits using digital or numerical techniques
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0043—Converters switched with a phase shift, i.e. interleaved
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/01—Resonant DC/DC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/285—Single converters with a plurality of output stages connected in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0032—Control circuits allowing low power mode operation, e.g. in standby mode
- H02M1/0035—Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Definitions
- the present invention relates to a resonance converter control circuit, a control method thereof, and a resonance converter.
- hysteresis control is generally known as a method of controlling the output voltage of a resonance type DCDC converter (for example, see Non-Patent Documents 1 and 2).
- the output voltage Vo is detected, and the switching circuit is controlled so that the detected output voltage Vo falls within a predetermined allowable range including the target voltage Vd.
- the resonant converter can be controlled while suppressing the error between the output voltage Vo and the target voltage Vd to a predetermined value or less.
- Non-Patent Documents 1 and 2 there is a limit in the control accuracy because the output voltage has a predetermined allowable width. Furthermore, due to factors such as the magnitude of the input voltage or the magnitude of the load, the duty and cycle of the drive signal that controls the resonant converter can change, so the behavior of the resonant converter and the behavior such as the transition of the output voltage can be predicted. Difficult, which also makes control difficult.
- An object of the present invention is to solve the above problems and to control the output voltage of a resonant converter more precisely and easily than in the prior art, a resonant converter control circuit, a control method therefor, and a resonant converter. To provide.
- a resonant converter control circuit is a resonance converter that converts an input DC voltage into an AC voltage, causes the converted AC voltage to resonate through a resonance circuit, and then converts the AC voltage into a DC voltage for output.
- a quiescent period for pausing the resonant converter and the resonant converter control circuit generates first oscillation means for generating a clock signal having a predetermined fundamental frequency, and a sawtooth wave signal synchronized with the clock signal.
- Second oscillating means a third oscillating means for generating a rectangular wave signal having a predetermined duty and a predetermined frequency higher than the frequency of the sawtooth signal, an output voltage of the resonant converter, and a target of the output voltage.
- a sawtooth signal is generated based on a voltage difference between the target voltage and the target voltage, and the comparison signal indicating the drive period is obtained by comparing the sawtooth signal with a threshold signal indicating the ratio of the drive period and the rest period.
- a comparison means for outputting, a logic operation means for calculating a logical product between the comparison signal and the rectangular wave signal, generating a drive control signal indicating the calculation result, and controlling the drive of the resonant converter.
- the above difference voltage is the voltage that has passed through the compensator for compensating and stabilizing the target voltage waveform.
- the above rectangular wave signal has a duty of 50%.
- the third oscillating means multiplies the clock signal to generate the rectangular wave signal.
- a control method for a resonant converter control circuit converts an input DC voltage into an AC voltage, causes the converted AC voltage to resonate through a resonance circuit, and then converts the DC voltage into a DC voltage.
- a control method of a resonance converter control circuit for controlling an output resonance type converter so that an output DC voltage reaches a predetermined target voltage, wherein each cycle in drive control of the resonance type converter is a resonance type The control method has a driving period for driving the converter and a rest period for stopping the resonant converter, and the control method generates a clock signal having a predetermined fundamental frequency, and generates a sawtooth wave signal in synchronization with the clock signal.
- the output voltage of the resonant converter and a target voltage that is a target value of the output voltage are a target value of the output voltage. Comparing the sawtooth wave signal generated based on the difference voltage with a threshold value signal indicating the ratio of the drive period and the idle period, outputting a comparison signal indicating the drive period, and a comparison signal, Calculating a logical product with the rectangular wave signal and generating a drive control signal as a result of the calculation to drive and control the resonant converter.
- the control method of the resonant converter control circuit described above further includes a step of generating a differential voltage which is a voltage that has passed through a compensator for compensating and stabilizing the target voltage waveform.
- the rectangular wave signal has a duty of 50%.
- the step of generating the rectangular wave signal includes multiplying the clock signal to generate the rectangular wave signal.
- a resonant converter includes any one of the resonant converter control circuits described above, converts an input DC voltage into an AC voltage, and converts the converted AC voltage via the resonant circuit. After resonating, a main circuit for converting to a DC voltage and outputting the DC voltage is provided.
- the resonance type converter includes a plurality of N main circuits connected in parallel and N resonance type converter control circuits for controlling the N main circuits, respectively.
- the resonant converter control circuits generate sawtooth signals having a phase difference of 360/N degrees with each other.
- the N resonance type converter control circuits include one first oscillating means and one second oscillating means, and N resonance type converter control circuits are provided. At least a portion of the circuit shares the first and second oscillating means.
- the output voltage of the resonant converter can be controlled more accurately and easily than in the conventional technique.
- FIG. 3 is a block diagram showing a configuration example of a resonant converter 10 according to the first embodiment.
- 2 is a circuit diagram showing a configuration example of a main circuit 100 of FIG. 1.
- FIG. 2 is a block diagram showing a configuration example of a resonant converter control circuit 140 in FIG. 1.
- FIG. 3 is a timing chart showing an example of operation waveforms of signals and the like in each unit of the resonant converter control circuit 140 of FIG. 1.
- 7 is a block diagram showing a configuration example of a resonance converter 10L according to a second embodiment.
- FIG. 6 is a timing chart showing an example of operation waveforms of signals and the like in each unit of the resonance converter 10L of FIG.
- FIG. 1 is a block diagram showing a configuration example of a resonance converter 10 according to the first embodiment.
- a resonant converter DCDC converter that converts an input DC voltage into an AC voltage, causes the AC voltage to resonate through a resonance circuit 120, and then converts the DC voltage into a DC voltage for output.
- the resonant converter 10 includes a main circuit 100 and a resonant converter control circuit 140.
- the main circuit 100 includes a switching circuit 110, a resonance circuit 120, and a rectifying/smoothing circuit 130. Further, the DC voltage source 5, the load 15 and the controller 20 are connected to the resonance converter 10.
- an external DC voltage source 5 generates a DC voltage Vi and outputs it to the switching circuit 110 of the resonant converter 10. Further, the controller 20 outputs a signal Svd indicating the target voltage Vd, which is the target value of the output voltage of the resonant converter 10, to the resonant converter 10.
- the resonance converter 10 converts the input DC voltage Vi into a DC output voltage Vo based on the signal Svd indicating the target voltage and supplies the DC output voltage Vo to the external load 15.
- the resonance converter control circuit 140 generates a drive signal Sdrv for controlling the main circuit 100 based on the output voltage Vo of the main circuit 100 and the signal Svd indicating the target voltage Vd, and outputs the drive signal Sdrv to the main circuit 100.
- the main circuit 100 is feedback-controlled. As a result, the main circuit 100 converts the input voltage Vi into the output voltage Vo based on the drive signal Sdrv from the resonant converter control circuit 140 and supplies the output voltage Vo to the load 15.
- the drive signal Sdrv is an example of the “drive control signal” in the present invention.
- the switching circuit 110 switches the DC input voltage Vi according to the drive signal Sdrv from the resonant converter control circuit 140, and outputs the AC voltage generated by the switching to the rectifying and smoothing circuit 130 via the resonant circuit 120.
- the rectifying/smoothing circuit 130 rectifies and smoothes the input AC voltage, generates a DC output voltage Vo, and outputs the DC output voltage Vo to the load 15.
- FIG. 2 is a circuit block diagram showing a configuration example of the main circuit 100 of FIG.
- the main circuit 100 is an asymmetric half-bridge type LLC converter.
- the main circuit 100 has MOSFETs 111 and 112, a transformer Tr, a resonance capacitor C1, diodes D1 and D2, and a smoothing capacitor C2.
- MOSFETs 111 and 112 are n-channel type MOSFETs.
- the MOSFETs 111 and 112 are respectively driven by the drive signal Sdrv and switch ON/OFF of conduction.
- the MOSFET 112 is controlled to be off while the MOSFET 111 is on, and conversely, the MOSFET 112 is controlled to be on while the MOSFET 111 is off.
- the switching circuit 110 switches the input voltage Vi according to the drive signal Sdrv, and outputs the AC voltage generated by the switching to the rectifying and smoothing circuit 130 via the resonance circuit 120.
- the diodes D1 and D2 and the smoothing capacitor C2 of the rectifying and smoothing circuit 130 supply the output voltage Vo to the load 15 after full-wave rectifying and smoothing the AC voltage from the resonance circuit 120.
- FIG. 3 is a block diagram showing a configuration example of the resonant converter control circuit 140 of FIG.
- the resonant converter control circuit 140 includes a control signal generator 150 and a drive signal generator 160.
- the control signal generator 150 includes an output voltage detection circuit 151, a comparator 152, a compensator 153, a clock oscillator 154, and a resonant converter oscillator 155.
- the drive signal generator 160 also includes a burst control oscillator 161, a comparator 162, an AND gate 163, and a drive circuit 164.
- the output voltage detection circuit 151 generates an output voltage signal Svo corresponding to the output voltage Vo of the main circuit 100 and outputs it to the comparator 152.
- the comparator 152 compares the output voltage signal Svo with the target voltage signal Svd from the controller 20 and based on the difference between the output voltage Vo and the target voltage Vd, for example, is a low-pass filter and compensates the target voltage waveform.
- a threshold signal Sth indicating a control amount for achieving the target voltage Vd is generated and output to the comparator 162.
- the clock oscillator 154 generates a clock signal Sclk which is a pulse signal having a predetermined basic frequency and outputs it to the resonant converter oscillator 155 and the burst control oscillator 161.
- the burst control oscillator 161 generates a sawtooth signal Ssaw having a predetermined cycle Tsaw, a predetermined maximum value Asaw, and a minimum value of 0 in synchronization with the clock signal Sclk, and outputs the sawtooth signal Ssaw to the comparator 162.
- the maximum value Asaw of the sawtooth signal Ssaw will be described later.
- the comparator 162 compares the sawtooth wave signal Ssaw with the threshold value signal Sth and has a high level during a period when the value of the sawtooth wave signal Ssaw is equal to or less than the value of the threshold value signal Sth and the value of the sawtooth wave signal Ssaw is In a period larger than the value of the threshold signal Sth, the comparison signal Scmp having a low level is generated and output to the AND gate 163.
- a period in which the comparison signal Scmp has a high level is called a drive period Pbst
- a period in which the comparison signal Scmp has a low level is called an idle period Pslp.
- the maximum value Asaw of the sawtooth wave signal Ssaw output from the burst control oscillator 161 is when the voltage indicated by the target voltage signal Svd is equal to the output voltage Vo when the resonant converter 10 is controlled to have the maximum output.
- And is set equal to the value of the threshold signal Sth output from the compensator 153.
- the duty of the comparison signal Scmp becomes equal to the ratio of the value of the threshold signal Sth to the maximum value Asaw of the sawtooth wave signal Ssaw.
- the resonance converter oscillator 155 multiplies the clock signal Sclk to generate a rectangular wave signal Srec which is a pulse signal having a duty of 50% and outputs the rectangular wave signal Srec to the AND gate 163.
- the frequency of the rectangular wave signal Srec is set to be an integral multiple (for example, 5 times, 8 times or 10 times) of the frequency of the sawtooth wave signal Ssaw. That is, the cycle Trec of the rectangular wave signal Srec is set to be an integral multiple of the cycle Tsaw of the sawtooth wave signal Ssaw (for example, 1/5, 1/8, or 1/10). To be done.
- the frequency of the sawtooth wave signal Ssaw may be set to 10 kilohertz and the frequency of the rectangular wave signal Srec may be set to 80 kilohertz.
- the resonant converter oscillator 155 is an example of the "first oscillating means" in the present invention.
- the AND gate 163 takes the logical product of the comparison signal Scmp and the rectangular wave signal Srec to generate the gate signal Sg, and outputs the gate signal Sg to the drive circuit 164.
- the drive circuit 164 generates a drive signal Sdrv based on the gate signal Sg to drive and control the switching circuit 110.
- FIG. 4 is a timing chart showing an example of operation waveforms of signals and the like in each unit of the resonant converter control circuit 140 of FIG.
- the comparator 162 compares the sawtooth wave signal Ssaw from the burst control oscillator 161 with the threshold signal Sth from the compensator 153 to generate a comparison signal Scmp shown in FIG.
- a period in which the comparison signal Scmp has a high level is a drive period Pbst, and a period in which the comparison signal Scmp has a low level is a rest period Pslp.
- the resonant converter oscillator 155 generates a rectangular wave signal Srec which is a pulse signal having a predetermined cycle Trec and a duty of 50%, and outputs the rectangular wave signal Srec to the AND gate 163.
- the resonant converter oscillator 155 is an example of the "third oscillating means" in the present invention.
- the gate signal Sg of the AND gate 163 is a signal obtained as a result of calculating the logical product of the comparison signal Scmp and the rectangular wave signal Srec. Therefore, the gate signal Sg of the AND gate 163 is a signal having the rectangular wave signal Srec in the driving period Pbst and always having the low level in the rest period Pslp.
- the drive circuit 164 drives and controls the switching circuit 110 of the main circuit 100 by generating a drive signal Sdrv based on the gate signal Sg and outputting the drive signal Sdrv to the main circuit 100.
- the resonant converter is controlled by the rectangular wave signal Srec during the driving period Pbst, and is not driven and pauses during the pausing period Pslp.
- the duty of the comparison signal Scmp indicates the ratio of the driving period Pbst to the cycle Tsaw of the sawtooth wave signal Ssaw. Further, the value of the threshold signal Sth changes due to the difference between the output voltage Vo and the target voltage Vd, and the duty of the comparison signal Scmp also changes accordingly. Thereby, the drive circuit 164 can generate the drive signal Sdrv for controlling so as to correct the difference between the current output voltage Vo and the target voltage Vd.
- the output voltage Vo is higher than the target voltage Vd
- the value of the threshold signal Sth becomes smaller than the value immediately before, and the duty of the comparison signal Scmp decreases. Therefore, the drive period Pbst in the gate signal Sg becomes shorter than the immediately preceding period, and the number of pulse waves included in the drive signal Sdrv decreases. Therefore, the output voltage Vo of the main circuit 100 is controlled to decrease and approach the target voltage Vd.
- each cycle in the drive control of the resonant converter 10 has the drive period Pbst for driving the resonant converter 10 and the pause period Pslp for suspending the resonant converter 10.
- the resonance converter 10 is controlled by the rectangular wave signal Srec which is a periodic pulse signal having a predetermined duty.
- the value of the threshold signal Sth indicating the ratio between the drive period Pbst and the rest period Pslp changes based on the difference voltage between the output voltage Vo and the target voltage Vd.
- the output voltage Vo of the resonant converter 10 is controlled to be the target voltage Vd.
- the output voltage Vo of the resonant converter 10 is compared with the conventional technique so that it becomes the target voltage Vd. Control with high accuracy. Further, the cycle of drive control of the resonant converter 10 is always constant regardless of factors such as the magnitude of the input voltage Vi or the magnitude of the load 15. Therefore, the ripples in the output voltage Vo of the main circuit 100 are periodic and can be easily predicted. As described above, according to the present embodiment, it is possible to precisely and easily control the output voltage Vo of the resonance converter 10 so as to reach the target voltage Vd, as compared with the related art.
- FIG. 5 is a block diagram showing a configuration example of the resonant converter 10L according to the second embodiment. 5, the resonant converter 10L differs from the resonant converter 10 of FIG. 1 in the following points.
- the resonant converter 10L further includes a main circuit 100A.
- the resonant converter 10L further includes a resonant converter control circuit 140A (not shown) that drives and controls the main circuit 100A.
- the burst control oscillator 161A of the resonant converter control circuit 140A operates with a phase shifted by 180 degrees from the burst control oscillator 161 of the resonant converter control circuit 140.
- the main circuit 100A has the same configuration and operation as the main circuit 100.
- Resonant converter control circuit 140A is configured similarly to resonant converter control circuit 140, and includes control signal generation unit 150 and drive signal generation unit 160A.
- the control signal generator 150 is shared with the resonant converter control circuit 140.
- FIG. 6 is a timing chart showing an example of operation waveforms of signals and the like in the resonant converter 10L of FIG.
- the burst control oscillator 161A operates with a phase shifted by 180 degrees compared with the burst control oscillator 161. Therefore, the sawtooth signals Ssaw and SsawA operate with a shift of Tsaw/2. This causes a shift of Tsaw/2 between the gate signals Sg and SgA. Therefore, the driving period in the main circuit 100A is shifted from the driving period Pbst (not shown) in the main circuit 100 by Tsaw/2. By doing so, a phase difference of 180 degrees occurs between the ripples in the output voltages of the two main circuits 100 and 100A. Since the ripples cancel each other out in the combined output voltage Vo, the error due to the ripples is reduced, and control with higher accuracy than in the first embodiment becomes possible.
- resonant converter control circuits 140 and 140A share control signal generating unit 150, but the present invention is not limited to this, and these may not be shared.
- the resonant converter control circuit 140A may newly include a control signal generation unit 150A that operates in the same manner as the control signal generation unit 150.
- the resonant converter 10L includes two main circuits.
- the present invention is not limited to this, and the number of main circuits included in the resonant converter 10L may be three or more.
- the resonant converter 10L may include two or more N main circuits connected in parallel and N resonant converter control circuits that control the N main circuits.
- the N resonant converter control circuits may each have a phase difference of 360/N degrees from each other.
- at least some of the N resonant converter control circuits may at least partially share their components with each other.
- the rectangular wave signal Srec and the sawtooth wave signal Ssaw are synchronized with the clock signal Sclk.
- the present invention is not limited to this, and the rectangular wave signal Srec and the sawtooth wave signal Ssaw may not be synchronized with the clock signal Sclk as long as the frequency of the rectangular wave signal Srec is an integral multiple of the frequency of the sawtooth wave signal Ssaw. ..
- the rectangular wave signal Srec may not be synchronized with the sawtooth wave signals Ssaw and SsawA.
- the rectangular wave signal Srec is generated without being synchronized with the clock signal Sclk.
- the sawtooth wave signal Ssaw and the sawtooth wave signal SsawA are synchronized with each other in order to keep the phase shift between the burst control oscillators 161 and 161A.
- the comparison signal Scmp is generated using the comparator 162 that compares the sawtooth wave signal Ssaw with the threshold signal Sth.
- the comparison signals Scmp and ScmpA are generated by using the comparators 162 and 162A that compare the sawtooth wave signals Ssaw and SsawA with the threshold signal Sth.
- the comparison signals Scmp and ScmpA are merely examples of the “signal indicating the driving period”. Further, these comparators 162 and 162A are merely an example of "comparing means" for generating a signal indicating the driving period. Therefore, the present invention is not limited to this, and the signal indicating the drive period may be any signal as long as it can distinguish the drive period Pbst from the rest period Pslp.
- an LLC converter is used as the main circuits 100 and 100A.
- the present invention is not limited to this, and as the main circuit controlled by the resonant converter control circuit, for example, a main circuit such as an E2 class converter, a ⁇ 2 class converter, a series resonant converter, and a parallel resonant converter can be used. ..
- Controller 100 100A Main circuit 110, 110A Switching circuit 120, 120A Resonant circuit 130, 130A Rectifying and smoothing circuit 140, 140A Resonant type converter control circuit 150 Control signal generator 151 Output Voltage detection circuit 152 Comparator 153 Compensator 154 Clock oscillator 155 Resonant converter oscillator 160, 160A Drive signal generator 161, 161A Burst control oscillator 162, 162A Comparator 163, 163A AND gate 164, 164A Drive circuit
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
共振型コンバータ制御回路において、共振型コンバータの駆動制御における各周期は、共振型コンバータを駆動する駆動期間と休止させる休止期間とを有し、共振型コンバータ制御回路は、基本周波数のクロック信号を発生する第1の発振手段と、クロック信号に同期する鋸波信号を発生する第2の発振手段と、所定のデューティ及び鋸波信号の周波数よりも高い所定の周波数を有する矩形波信号を発生する第3の発振手段と、共振型コンバータの出力電圧と目標電圧との差電圧に基づいて発生されかつ、鋸波信号を駆動期間と休止期間との比率を示すしきい値信号と比較することで、駆動期間を示す比較信号を出力する比較手段と、比較信号と矩形波信号とに基づいて駆動制御信号を発生して共振型コンバータを駆動制御する論理演算手段とを備える。
Description
本発明は、共振型コンバータの制御回路とその制御方法及び共振型コンバータに関する。
現在、共振型DCDCコンバータの出力電圧を制御する方法として、ヒステリシス制御が一般に知られている(例えば、非特許文献1及び2参照)。ヒステリシス制御では、出力電圧Voを検出し、検出された出力電圧Voが目標電圧Vdを含む所定の許容幅の間に収まるようスイッチング回路を制御する。これにより共振型コンバータを、出力電圧Voと目標電圧Vdとの間の誤差を所定の値以下に抑えながら制御することができる。
Helen Ding、"Application Note AN-1160"、[online]、平成22年10月9日、Infineon Technologies、[平成30年10月30日検索]、インターネット〈URL:https://www.infineon.com/dgdl/an-1160.pdf?fileId=5546d462533600a40153559a85df1115〉
平地克也、"LLC方式DC/DCコンバータの回路構成と動作原理"、[online]、平成26年5月29日、舞鶴高等工業専門学校、[平成30年10月30日検索]、インターネット〈URL:http://hirachi.cocolog-nifty.com/kh/files/20140529-3.pdf〉
非特許文献1及び2に係る共振型コンバータの制御では、出力電圧に所定の許容幅が存在するため制御の精度に限界がある。さらに、入力電圧の大きさ又は負荷の大きさなどの要因により、共振型コンバータを制御するドライブ信号のデューティ及び周期が変化し得るため、共振型コンバータの動作及び出力電圧の推移といった挙動の予測が難しく、これも制御を困難にしている。
本発明の目的は以上の問題点を解決し、共振型コンバータの出力電圧を、従来技術に比較して精密かつ容易に制御することができる共振型コンバータ制御回路とその制御方法、並びに共振型コンバータを提供することにある。
第1の発明に係る共振型コンバータ制御回路は、入力された直流電圧を交流電圧に変換し、変換された交流電圧を共振回路を介して共振させた後、直流電圧に変換して出力する共振型コンバータを、出力される直流電圧が所定の目標電圧になるように制御するための共振型コンバータ制御回路であって、共振型コンバータの駆動制御における各周期は、共振型コンバータを駆動する駆動期間と、共振型コンバータを休止させる休止期間とを有し、共振型コンバータ制御回路は、所定の基本周波数を有するクロック信号を発生する第1の発振手段と、クロック信号に同期する鋸波信号を発生する第2の発振手段と、所定のデューティ及び鋸波信号の周波数よりも高い所定の周波数を有する矩形波信号を発生する第3の発振手段と、共振型コンバータの出力電圧と、出力電圧の目標値である目標電圧との間の差電圧に基づいて発生されかつ、鋸波信号を、駆動期間と休止期間との比率を示すしきい値信号と比較することで、駆動期間を示す比較信号を出力する比較手段と、比較信号と、矩形波信号との間の論理積を計算し、計算結果を示す駆動制御信号を発生して共振型コンバータを駆動制御する論理演算手段とを備える。
上記の共振型コンバータ制御回路において、上記の差電圧は、目標電圧波形の補償及び安定化を行う補償器を通過した電圧である。
また、上記の共振型コンバータ制御回路において、上記の矩形波信号は、50%のデューティを有する。
さらに、上記の共振型コンバータ制御回路において、上記の第3の発振手段は、クロック信号を逓倍して上記の矩形波信号を発生する。
第2の発明に係る共振型コンバータ制御回路の制御方法は、入力された直流電圧を交流電圧に変換し、変換された交流電圧を共振回路を介して共振させた後、直流電圧に変換して出力する共振型コンバータを、出力される直流電圧が所定の目標電圧になるように制御するための共振型コンバータ制御回路の制御方法であって、共振型コンバータの駆動制御における各周期は、共振型コンバータを駆動する駆動期間と、共振型コンバータを休止させる休止期間とを有し、制御方法は、所定の基本周波数を有するクロック信号を発生するステップと、クロック信号に同期する鋸波信号を発生するステップと、所定のデューティ及び鋸波信号の周波数よりも高い所定の周波数を有する矩形波信号を発生するステップと、共振型コンバータの出力電圧と、出力電圧の目標値である目標電圧との間の差電圧に基づいて発生されかつ、鋸波信号を、駆動期間と休止期間との比率を示すしきい値信号と比較することで、駆動期間を示す比較信号を出力するステップと、比較信号と、矩形波信号との間の論理積を計算し、計算結果の駆動制御信号を発生して共振型コンバータを駆動制御するステップとを含む。
上記の共振型コンバータ制御回路の制御方法において、目標電圧波形の補償及び安定化を行う補償器を通過した電圧である差電圧を発生するステップをさらに含んでいる。
また、上記の共振型コンバータ制御回路の制御方法において、上記の矩形波信号は、50%のデューティを有している。
さらに、上記の共振型コンバータ制御回路の制御方法において、上記の矩形波信号を発生するステップは、上記のクロック信号を逓倍して矩形波信号を発生することを含んでいる。
第3の発明に係る共振型コンバータは、上記の共振型コンバータ制御回路のいずれか1つを備え、入力された直流電圧を交流電圧に変換し、前記変換された交流電圧を共振回路を介して共振させた後、直流電圧に変換して出力する主回路を備える。
上記の共振型コンバータにおいて、共振型コンバータは、並列に接続された複数N個の前記主回路と、N個の主回路をそれぞれ制御するN個の共振型コンバータ制御回路とを備え、N個の共振型コンバータ制御回路はそれぞれ互いに360/N度の位相差を有する鋸波信号を発生する。
また、上記の共振型コンバータにおいて、上記のN個の共振型コンバータ制御回路は、1個の第1の発振手段と、1個の第2の発振手段とを備え、N個の共振型コンバータ制御回路のうちの少なくとも一部は、第1及び第2の発振手段を共有している。
本発明によれば、共振型コンバータの出力電圧を、従来技術に比較して精密かつ容易に制御することができる。
以下、本発明に係る実施の形態を、図面に基づいて説明する。ただし、以下で説明する各実施の形態は、あらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。つまり、本発明の実施にあたって、実施の形態に応じた具体的構成が適宜採用されてもよい。
(実施の形態1)
図1は、実施の形態1に係る共振型コンバータ10の構成例を示すブロック図である。図1において、共振型コンバータ10は、入力された直流電圧を交流電圧に変換し、当該交流電圧を共振回路120を介して共振させた後、直流電圧に変換して出力する、共振型DCDCコンバータである。共振型コンバータ10は、主回路100と、共振型コンバータ制御回路140とを備える。主回路100は、スイッチング回路110と、共振回路120と、及び整流平滑回路130とを備える。また、共振型コンバータ10には、直流電圧源5、負荷15及びコントローラ20が接続されている。
図1は、実施の形態1に係る共振型コンバータ10の構成例を示すブロック図である。図1において、共振型コンバータ10は、入力された直流電圧を交流電圧に変換し、当該交流電圧を共振回路120を介して共振させた後、直流電圧に変換して出力する、共振型DCDCコンバータである。共振型コンバータ10は、主回路100と、共振型コンバータ制御回路140とを備える。主回路100は、スイッチング回路110と、共振回路120と、及び整流平滑回路130とを備える。また、共振型コンバータ10には、直流電圧源5、負荷15及びコントローラ20が接続されている。
図1において、外部の直流電圧源5は直流電圧Viを発生し、共振型コンバータ10のスイッチング回路110に出力する。また、コントローラ20は、共振型コンバータ10の出力電圧の目標値である目標電圧Vdを示す信号Svdを、共振型コンバータ10に出力する。共振型コンバータ10は、目標電圧を示す信号Svdに基づいて、入力された直流電圧Viを直流の出力電圧Voに変換して外部の負荷15に供給する。
共振型コンバータ制御回路140は、主回路100の出力電圧Vo及び目標電圧Vdを示す信号Svdに基づいて、主回路100を制御するためのドライブ信号Sdrvを発生して主回路100に出力することで、主回路100をフィードバック制御する。これにより主回路100は、共振型コンバータ制御回路140からのドライブ信号Sdrvに基づいて、入力電圧Viを出力電圧Voに変換して負荷15に供給する。ドライブ信号Sdrvは、本発明の「駆動制御信号」の一例である。
スイッチング回路110は、共振型コンバータ制御回路140からのドライブ信号Sdrvに従って直流の入力電圧Viをスイッチングし、スイッチングにより発生された交流電圧を、共振回路120を介して整流平滑回路130に出力する。整流平滑回路130は、入力された交流電圧を整流した後平滑化し、直流の出力電圧Voを発生して負荷15に出力する。
図2は、図1の主回路100の構成例を示す回路ブロック図である。図2において、主回路100は非対称ハーフブリッジ型のLLCコンバータである。主回路100は、MOSFET111,112と、トランスTrと、共振コンデンサC1と、ダイオードD1,D2と、平滑化コンデンサC2とを有する。
図2において、MOSFET111,112はnチャネル型のMOSFETである。MOSFET111,112はドライブ信号Sdrvによって各々駆動され、導通のオンオフを切り替える。MOSFET111がオンの間MOSFET112はオフに制御され、逆にMOSFET111がオフの間MOSFET112はオンに制御される。こうすることでスイッチング回路110は、ドライブ信号Sdrvに従って入力電圧Viをスイッチングし、スイッチングにより発生された交流電圧を、共振回路120を介して整流平滑回路130に出力する。整流平滑回路130のダイオードD1,D2及び平滑化コンデンサC2は、共振回路120からの交流電圧を全波整流して平滑化した後、出力電圧Voを負荷15に供給する。
図3は、図1の共振型コンバータ制御回路140の構成例を示すブロック図である。図3において、共振型コンバータ制御回路140は、制御信号発生部150及び駆動信号発生部160を備える。制御信号発生部150は、出力電圧検出回路151、比較器152、補償器153、クロック発振器154、及び共振型コンバータ用発振器155を含む。また、駆動信号発生部160は、バースト制御用発振器161、コンパレータ162、アンドゲート163、及びドライブ回路164を含む。
図3において、出力電圧検出回路151は、主回路100の出力電圧Voに対応する出力電圧信号Svoを発生して比較器152に出力する。比較器152は、出力電圧信号Svoと、コントローラ20からの目標電圧信号Svdとを比較して出力電圧Vo及び目標電圧Vdの間の差に基づいて、例えばローパスフィルタであり目標電圧波形の補償及び安定化を行う補償器153を介して、目標電圧Vdを達成するための制御量を示すしきい値信号Sthを発生してコンパレータ162に出力する。
クロック発振器154は、所定の基本周波数を有するパルス信号であるクロック信号Sclkを発生して共振型コンバータ用発振器155及びバースト制御用発振器161に出力する。バースト制御用発振器161は、クロック信号Sclkに同期し、かつ所定の周期Tsawと、所定の最大値Asawと、0である最小値とを持つ鋸波信号Ssawを発生してコンパレータ162に出力する。鋸波信号Ssawの最大値Asawについては後述する。
コンパレータ162は、鋸波信号Ssawをしきい値信号Sthと比較し、鋸波信号Ssawの値がしきい値信号Sthの値以下である期間ではハイレベルを有し、鋸波信号Ssawの値がしきい値信号Sthの値よりも大きい期間ではローレベルを有する比較信号Scmpを生成してアンドゲート163に出力する。本明細書では、比較信号Scmpがハイレベルを有する期間を駆動期間Pbst、ローレベルを有する期間を休止期間Pslpという。
上記バースト制御用発振器161が出力する鋸波信号Ssawの最大値Asawは、目標電圧信号Svdが示す電圧と、共振型コンバータ10を最大出力となるよう制御した場合の出力電圧Voとが等しい場合に、補償器153から出力されるしきい値信号Sthの値と等しく設定される。これにより、比較信号Scmpのデューティは、鋸波信号Ssawの最大値Asawに対するしきい値信号Sthの値の比と等しくなる。
共振型コンバータ用発振器155は、クロック信号Sclkを逓倍し、デューティが50%のパルス信号である矩形波信号Srecを発生してアンドゲート163に出力する。矩形波信号Srecの周波数は、鋸波信号Ssawの周波数の整数倍(たとえば5倍、8倍又は10倍など)となるように設定される。つまり、矩形波信号Srecの周期Trecは、鋸波信号Ssawの周期Tsawの整数分の1倍(たとえば5分の1倍、8分の1倍又は10分の1倍など)となるように設定される。例えば、鋸波信号Ssawの周波数は10キロヘルツに設定され、矩形波信号Srecの周波数は80キロヘルツに設定されてよい。共振型コンバータ発振器155は、本発明の「第1の発振手段」の一例である。
アンドゲート163は、比較信号Scmp及び矩形波信号Srecの論理積をとってゲート信号Sgを発生し、当該ゲート信号Sgをドライブ回路164に出力する。ドライブ回路164はゲート信号Sgに基づいて、ドライブ信号Sdrvを発生してスイッチング回路110を駆動制御する。
以上のように構成された共振型コンバータ10について、その動作を以下説明する。
図4は、図1の共振型コンバータ制御回路140の各部における信号等の動作波形の例を示すタイミングチャートである。コンパレータ162は、バースト制御用発振器161からの鋸波信号Ssawと、補償器153からのしきい値信号Sthとを比較して、図4に示す比較信号Scmpを発生する。比較信号Scmpがハイレベルを有する期間は駆動期間Pbstであり、比較信号Scmpがローレベルを有する期間は休止期間Pslpである。
また、共振型コンバータ用発振器155は図4に示すように、所定の周期Trecと、50%のデューティとを有するパルス信号である矩形波信号Srecを発生してアンドゲート163に出力している。共振型コンバータ用発振器155は、本発明の「第3の発振手段」の一例である。
図4において、アンドゲート163のゲート信号Sgは、比較信号Scmpと矩形波信号Srecの論理積を計算した結果の信号である。従って、アンドゲート163のゲート信号Sgは、駆動期間Pbstでは矩形波信号Srecを有し、休止期間Pslpでは常にローレベルを有する信号となる。ドライブ回路164は、ゲート信号Sgに基づいてドライブ信号Sdrvを発生して主回路100に出力することで、主回路100のスイッチング回路110を駆動制御する。これにより共振型コンバータは、駆動期間Pbstにおいては矩形波信号Srecで制御され、休止期間Pslpにおいては駆動されずに休止する。
比較信号Scmpのデューティは、鋸波信号Ssawの周期Tsawに占める駆動期間Pbstの比率を示す。また、出力電圧Vo及び目標電圧Vdの間の差によってしきい値信号Sthの値は変化し、それに従い比較信号Scmpのデューティも変化する。これによりドライブ回路164は、現在の出力電圧Voと目標電圧Vdとの差を補正するように制御するドライブ信号Sdrvを発生することができる。
例えば、出力電圧Voが目標電圧Vdよりも大きい場合、しきい値信号Sthの値は直前の値よりも小さくなり、比較信号Scmpのデューティは減少する。従ってゲート信号Sgにおける駆動期間Pbstは直前の周期よりも短くなり、ドライブ信号Sdrvに含まれるパルス波の数は減少する。従って、主回路100の出力電圧Voは、低下して目標電圧Vdに近づくよう制御される。
以上のように、本実施の形態では、共振型コンバータ10の駆動制御における各周期は、共振型コンバータ10を駆動する駆動期間Pbstと、共振型コンバータ10を休止させる休止期間Pslpとを有する。駆動期間Pbstにおいて共振型コンバータ10は、所定のデューティを有する周期的なパルス信号である矩形波信号Srecで制御される。駆動期間Pbstと休止期間Pslpとの比率を示すしきい値信号Sthの値は、出力電圧Vo及び目標電圧Vdの間の差電圧に基づいて変化する。これにより共振型コンバータ10の出力電圧Voは目標電圧Vdになるように制御される。
このように制御することで、出力電圧Voにおける目標電圧Vdからの誤差は常にフィードバック制御に反映されるため、共振型コンバータ10の出力電圧Voを目標電圧Vdになるように、従来技術に比較して高い精度で制御できる。また、共振型コンバータ10の駆動制御における周期は、入力電圧Viの大きさ又は負荷15の大きさなどの要因によらず常に一定である。従って、主回路100の出力電圧Voにおけるリップルは周期的なものとなるため、容易に予測が可能である。以上のように、本実施の形態によれば、共振型コンバータ10の出力電圧Voを目標電圧Vdになるように、従来技術に比較して精密かつ容易に制御することができる。
(実施の形態2)
図5は、実施の形態2に係る共振型コンバータ10Lの構成例を示すブロック図である。図5において、共振型コンバータ10Lは、図1の共振型コンバータ10と比較して以下の点が異なる。
(1)共振型コンバータ10Lは、さらに主回路100Aを備える。
(2)共振型コンバータ10Lは、さらに主回路100Aを駆動制御する共振型コンバータ制御回路140A(図示なし)を備える。
(3)共振型コンバータ制御回路140Aのバースト制御用発振器161Aは、共振型コンバータ制御回路140のバースト制御用発振器161と比較して180度ずれた位相を伴って動作する。
図5は、実施の形態2に係る共振型コンバータ10Lの構成例を示すブロック図である。図5において、共振型コンバータ10Lは、図1の共振型コンバータ10と比較して以下の点が異なる。
(1)共振型コンバータ10Lは、さらに主回路100Aを備える。
(2)共振型コンバータ10Lは、さらに主回路100Aを駆動制御する共振型コンバータ制御回路140A(図示なし)を備える。
(3)共振型コンバータ制御回路140Aのバースト制御用発振器161Aは、共振型コンバータ制御回路140のバースト制御用発振器161と比較して180度ずれた位相を伴って動作する。
図5において、主回路100Aは主回路100と同様の構成及び動作を有する。共振型コンバータ制御回路140Aは共振型コンバータ制御回路140と同様に構成され、制御信号発生部150と、駆動信号発生部160Aとを備える。制御信号発生部150は共振型コンバータ制御回路140と共有されている。
図6は、図5の共振型コンバータ10Lにおける信号等の動作波形の例を示すタイミングチャートである。
図6において、バースト制御用発振器161Aは、バースト制御用発振器161と比較して180度ずれた位相を伴って動作する。従って、鋸波信号Ssaw及びSsawAはTsaw/2ずれて動作する。これにより、ゲート信号Sg及びSgAの間にも、Tsaw/2のずれが生じる。従って、主回路100Aにおける駆動期間は主回路100における駆動期間Pbst(図示なし)に対してTsaw/2だけタイミングがずれる。こうすることで、2つの主回路100,100Aの出力電圧におけるリップル同士に180度の位相差が生じる。合成の出力電圧Voではこれらのリップルが互いに打ち消し合うため、リップルに起因する誤差が低減されて、実施の形態1よりもさらに精度の高い制御が可能となる。
なお、実施の形態2では、共振型コンバータ制御回路140及び140Aは、制御信号発生部150を共有するが、本発明はこれに限らず、これらは共有されなくてもよい。例えば共振型コンバータ制御回路140Aは、制御信号発生部150と同一の動作をする制御信号発生部150Aを新たに備えていてもよい。
また、共振型コンバータ10Lは2個の主回路を備える。しかしながら、本発明はこれに限らず、共振型コンバータ10Lが備える主回路の数は3つ又はそれ以上であってもよい。例えば、共振型コンバータ10Lは、並列に接続された2以上のN個の主回路と、N個の主回路をそれぞれ制御するN個の共振型コンバータ制御回路とを備えていてよい。その場合、N個の共振型コンバータ制御回路は、それぞれ互いに360/N度ずつの位相差を伴っていてよい。また、N個の共振型コンバータ制御回路のうちの少なくとも一部は、互いにその構成要素を少なくとも部分的に共有していてよい。
(変形例)
以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施の形態と同様の構成要素に関しては同様の符号を用い、上記実施の形態と同様の点については、適宜説明を省略した。以下の変形例は適宜組み合わせ可能である。
以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施の形態と同様の構成要素に関しては同様の符号を用い、上記実施の形態と同様の点については、適宜説明を省略した。以下の変形例は適宜組み合わせ可能である。
例えば、実施の形態1では、矩形波信号Srec及び鋸波信号Ssawは、クロック信号Sclkに同期されている。しかしながら、本発明はこれに限らず、矩形波信号Srecの周波数が鋸波信号Ssawの周波数の整数倍である限り、矩形波信号Srec及び鋸波信号Ssawはクロック信号Sclkと同期されなくてもよい。
同様に、実施の形態2でも、矩形波信号Srecは各鋸波信号Ssaw,SsawAと同期されなくてもよい。この場合、矩形波信号Srecはクロック信号Sclkに同期せずに発生させる。なお、リップルが互いに打ち消し合う効果を得るためには、バースト制御用発振器161,161Aの間で位相のずれを保つため、鋸波信号Ssaw及び鋸波信号SsawAは互いに同期させる。
また、実施の形態1では、鋸波信号Ssawをしきい値信号Sthと比較するコンパレータ162を用いて比較信号Scmpを発生する。同様に、実施の形態2では、鋸波信号Ssaw,SsawAをしきい値信号Sthと比較するコンパレータ162,162Aを用いて比較信号Scmp,ScmpAを発生する。これらの比較信号Scmp,ScmpAは、「駆動期間を示す信号」の一例に過ぎない。また、これらのコンパレータ162,162Aは、駆動期間を示す信号を発生するための「比較手段」の一例に過ぎない。従って、本発明はこれに限らず、駆動期間を示す信号は駆動期間Pbstと休止期間Pslpとを区別することができればどのようなものでもよい。
また、実施の形態1及び2では、主回路100,100AとしてLLCコンバータを用いている。しかしながら、本発明はこれに限らず、共振型コンバータ制御回路により制御する主回路には、例えばE2級コンバータ、Φ2級コンバータ、直列共振型コンバータ、並列共振型コンバータなどの主回路を用いることができる。
このように、当業者は、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。
5 直流電圧源
10、10L 共振型コンバータ
15 負荷
20 コントローラ
100、100A 主回路
110、110A スイッチング回路
120、120A 共振回路
130、130A 整流平滑回路
140、140A 共振型コンバータ制御回路
150 制御信号発生部
151 出力電圧検出回路
152 比較器
153 補償器
154 クロック発振器
155 共振型コンバータ用発振器
160、160A 駆動信号発生部
161、161A バースト制御用発振器
162、162A コンパレータ
163、163A アンドゲート
164、164A ドライブ回路
10、10L 共振型コンバータ
15 負荷
20 コントローラ
100、100A 主回路
110、110A スイッチング回路
120、120A 共振回路
130、130A 整流平滑回路
140、140A 共振型コンバータ制御回路
150 制御信号発生部
151 出力電圧検出回路
152 比較器
153 補償器
154 クロック発振器
155 共振型コンバータ用発振器
160、160A 駆動信号発生部
161、161A バースト制御用発振器
162、162A コンパレータ
163、163A アンドゲート
164、164A ドライブ回路
Claims (11)
- 入力された直流電圧を交流電圧に変換し、前記変換された交流電圧を共振回路を介して共振させた後、直流電圧に変換して出力する共振型コンバータを、前記出力される直流電圧が所定の目標電圧になるように制御するための共振型コンバータ制御回路であって、
前記共振型コンバータの駆動制御における各周期は、前記共振型コンバータを駆動する駆動期間と、前記共振型コンバータを休止させる休止期間とを有し、
前記共振型コンバータ制御回路は、
所定の基本周波数を有するクロック信号を発生する第1の発振手段と、
前記クロック信号に同期する鋸波信号を発生する第2の発振手段と、
所定のデューティ及び前記鋸波信号の周波数よりも高い所定の周波数を有する矩形波信号を発生する第3の発振手段と、
前記共振型コンバータの出力電圧と、前記出力電圧の目標値である目標電圧との間の差電圧に基づいて発生されかつ、前記鋸波信号を、前記駆動期間と前記休止期間との比率を示すしきい値信号と比較することで、前記駆動期間を示す比較信号を出力する比較手段と、
前記比較信号と、前記矩形波信号との間の論理積を計算し、計算結果を示す駆動制御信号を発生して前記共振型コンバータを駆動制御する論理演算手段と
を備える共振型コンバータ制御回路。 - 前記差電圧は、目標電圧波形の補償及び安定化を行う補償器を通過した電圧である
請求項1に記載の共振型コンバータ制御回路。 - 前記矩形波信号は、50%のデューティを有する
請求項1又は2に記載の共振型コンバータ制御回路。 - 前記第3の発振手段は、前記クロック信号を逓倍して前記矩形波信号を発生する
請求項1~3のいずれか1つに記載の共振型コンバータ制御回路。 - 入力された直流電圧を交流電圧に変換し、前記変換された交流電圧を共振回路を介して共振させた後、直流電圧に変換して出力する共振型コンバータを、前記出力される直流電圧が所定の目標電圧になるように制御するための共振型コンバータ制御回路の制御方法であって、
前記共振型コンバータの駆動制御における各周期は、前記共振型コンバータを駆動する駆動期間と、前記共振型コンバータを休止させる休止期間とを有し、
前記制御方法は、
所定の基本周波数を有するクロック信号を発生するステップと、
前記クロック信号に同期する鋸波信号を発生するステップと、
所定のデューティ及び前記鋸波信号の周波数よりも高い所定の周波数を有する矩形波信号を発生するステップと、
前記共振型コンバータの出力電圧と、前記出力電圧の目標値である目標電圧との間の差電圧に基づいて発生されかつ、前記鋸波信号を、前記駆動期間と前記休止期間との比率を示すしきい値信号と比較することで、前記駆動期間を示す比較信号を出力するステップと、
前記比較信号と、前記矩形波信号との間の論理積を計算し、計算結果の駆動制御信号を発生して前記共振型コンバータを駆動制御するステップと
を含む共振型コンバータ制御回路の制御方法。 - 目標電圧波形の補償及び安定化を行う補償器を通過した電圧である差電圧を発生するステップを
さらに含む請求項5に記載の共振型コンバータ制御回路の制御方法。 - 前記矩形波信号は、50%のデューティを有する
請求項5又は6に記載の共振型コンバータ制御回路の制御方法。 - 前記矩形波信号を発生するステップは、前記クロック信号を逓倍して矩形波信号を発生することを
含む請求項5~7のいずれか1つに記載の共振型コンバータ制御回路の制御方法。 - 請求項1~4のいずれか1つに記載の共振型コンバータ制御回路を備える共振型コンバータであって、
入力された直流電圧を交流電圧に変換し、前記変換された交流電圧を共振回路を介して共振させた後、直流電圧に変換して出力する主回路を備える
共振型コンバータ。 - 前記共振型コンバータは、
並列に接続された複数N個の前記主回路と、
前記N個の主回路をそれぞれ制御するN個の前記共振型コンバータ制御回路とを備え、
前記N個の共振型コンバータ制御回路はそれぞれ互いに360/N度の位相差を有する鋸波信号を発生する
請求項9に記載の共振型コンバータ。 - 前記N個の共振型コンバータ制御回路において、1個の前記第1の発振手段と、1個の前記第2の発振手段とを備え、
前記N個の共振型コンバータ制御回路のうちの少なくとも一部は、前記第1及び第2の発振手段を共有する
請求項10に記載の共振型コンバータ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20749384.2A EP3836378A4 (en) | 2019-02-01 | 2020-01-30 | RESONANT CONVERTER, AND CONTROL CIRCUIT AND CONTROL METHOD THEREOF |
CN202080004899.8A CN112640287B (zh) | 2019-02-01 | 2020-01-30 | 共振型转换器、其控制电路以及控制方法 |
US17/274,643 US11515799B2 (en) | 2019-02-01 | 2020-01-30 | Resonant converter controller circuit for controlling resonant converter converting input DC voltage into DC voltage |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019017333A JP6988839B2 (ja) | 2019-02-01 | 2019-02-01 | 共振型コンバータ制御回路とその制御方法及び共振型コンバータ |
JP2019-017333 | 2019-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020158859A1 true WO2020158859A1 (ja) | 2020-08-06 |
Family
ID=71841361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/003418 WO2020158859A1 (ja) | 2019-02-01 | 2020-01-30 | 共振型コンバータ、その制御回路及び制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11515799B2 (ja) |
EP (1) | EP3836378A4 (ja) |
JP (1) | JP6988839B2 (ja) |
CN (1) | CN112640287B (ja) |
WO (1) | WO2020158859A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115085553A (zh) * | 2021-03-16 | 2022-09-20 | 宁德时代新能源科技股份有限公司 | 双向dc/dc变换器及其控制方法、装置、存储介质 |
US12126247B2 (en) | 2021-03-16 | 2024-10-22 | Contemporary Amperex Technology (Hong Kong) Limited | Bi-directional DC/DC converter, control method and apparatus thereof, and storage medium |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023049712A (ja) * | 2021-09-29 | 2023-04-10 | 国立大学法人 岡山大学 | 制御方法、制御装置及び制御システム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010035299A (ja) * | 2008-07-28 | 2010-02-12 | Sanken Electric Co Ltd | スイッチング電源装置 |
JP2013078228A (ja) | 2011-09-30 | 2013-04-25 | Shindengen Electric Mfg Co Ltd | スイッチング電源装置 |
JP2014027819A (ja) * | 2012-07-27 | 2014-02-06 | Rohm Co Ltd | Dc/dcコンバータおよびその制御回路、それを用いた電源装置、電源アダプタおよび電子機器 |
JP2016152642A (ja) * | 2015-02-16 | 2016-08-22 | Tdk株式会社 | 制御回路およびスイッチング電源装置 |
JP2018148648A (ja) * | 2017-03-02 | 2018-09-20 | 京セラドキュメントソリューションズ株式会社 | 画像形成装置 |
WO2018198594A1 (ja) * | 2017-04-28 | 2018-11-01 | ローム株式会社 | Ledドライバ、並びに、これを用いるled駆動回路装置および電子機器 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07110132B2 (ja) * | 1991-08-22 | 1995-11-22 | 日本モトローラ株式会社 | 電圧変換装置 |
JP2007151381A (ja) * | 2005-10-27 | 2007-06-14 | Matsushita Electric Ind Co Ltd | Dc−dcコンバータ及びその制御回路 |
CN1992493B (zh) * | 2005-12-30 | 2011-05-18 | 艾默生网络能源系统北美公司 | 一种谐振直流/直流变换器及其控制方法 |
US7848117B2 (en) * | 2007-01-22 | 2010-12-07 | Power Integrations, Inc. | Control arrangement for a resonant mode power converter |
CN101291110B (zh) * | 2007-04-20 | 2010-06-02 | 台达电子工业股份有限公司 | 具有相对较佳效率的谐振转换器系统及其控制方法 |
CN101897239A (zh) * | 2007-12-14 | 2010-11-24 | 皇家飞利浦电子股份有限公司 | 可调光发光设备 |
CN102136801B (zh) * | 2010-01-21 | 2014-02-19 | 台达电子工业股份有限公司 | 谐振转换器以及其间歇模式控制方法 |
CN101951159B (zh) * | 2010-09-20 | 2013-04-24 | 浙江大学 | 电容隔离型多路恒流输出谐振式直流/直流变流器 |
KR101198309B1 (ko) * | 2010-11-10 | 2012-11-07 | 한국전기연구원 | 스위칭모드 파워서플라이의 스위칭소자 구동장치 |
US9276480B2 (en) * | 2013-04-23 | 2016-03-01 | Virginia Polytechnic Institute And State University | Optimal trajectory control for LLC resonant converter for LED PWM dimming |
US9960673B2 (en) | 2015-02-16 | 2018-05-01 | Tdk Corporation | Control circuit and switching power supply |
CN106358354B (zh) * | 2016-11-15 | 2018-04-03 | 上海联影医疗科技有限公司 | X射线高压发生器、谐振变换器的控制电路和控制方法 |
US11081966B2 (en) * | 2018-12-13 | 2021-08-03 | Power Integrations, Inc. | Multi zone secondary burst modulation for resonant converters |
-
2019
- 2019-02-01 JP JP2019017333A patent/JP6988839B2/ja active Active
-
2020
- 2020-01-30 EP EP20749384.2A patent/EP3836378A4/en active Pending
- 2020-01-30 CN CN202080004899.8A patent/CN112640287B/zh active Active
- 2020-01-30 WO PCT/JP2020/003418 patent/WO2020158859A1/ja unknown
- 2020-01-30 US US17/274,643 patent/US11515799B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010035299A (ja) * | 2008-07-28 | 2010-02-12 | Sanken Electric Co Ltd | スイッチング電源装置 |
JP2013078228A (ja) | 2011-09-30 | 2013-04-25 | Shindengen Electric Mfg Co Ltd | スイッチング電源装置 |
JP2014027819A (ja) * | 2012-07-27 | 2014-02-06 | Rohm Co Ltd | Dc/dcコンバータおよびその制御回路、それを用いた電源装置、電源アダプタおよび電子機器 |
JP2016152642A (ja) * | 2015-02-16 | 2016-08-22 | Tdk株式会社 | 制御回路およびスイッチング電源装置 |
JP2018148648A (ja) * | 2017-03-02 | 2018-09-20 | 京セラドキュメントソリューションズ株式会社 | 画像形成装置 |
WO2018198594A1 (ja) * | 2017-04-28 | 2018-11-01 | ローム株式会社 | Ledドライバ、並びに、これを用いるled駆動回路装置および電子機器 |
Non-Patent Citations (3)
Title |
---|
HELEN DING: "Application Note AN-1160", INFINEON TECHNOLOGIES, 9 October 2010 (2010-10-09), Retrieved from the Internet <URL:https://www.infineon.com/dgdl/an-1160.pdf?fileld=5546d462533600a40153559a85df1115> |
KATSUYA HIRACHI: "Circuit Configuration and Operating Principles of LLC DC/DC Converter", MAIZURU COLLEGE OF TECHNOLOGY, 29 May 2014 (2014-05-29), Retrieved from the Internet <URL:http://hirachi.cocolog-nifty.com/kh/files/20140529-3.pdf> |
See also references of EP3836378A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115085553A (zh) * | 2021-03-16 | 2022-09-20 | 宁德时代新能源科技股份有限公司 | 双向dc/dc变换器及其控制方法、装置、存储介质 |
CN115085553B (zh) * | 2021-03-16 | 2023-12-22 | 宁德时代新能源科技股份有限公司 | 双向dc/dc变换器及其控制方法、装置、存储介质 |
US12126247B2 (en) | 2021-03-16 | 2024-10-22 | Contemporary Amperex Technology (Hong Kong) Limited | Bi-directional DC/DC converter, control method and apparatus thereof, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN112640287B (zh) | 2024-07-05 |
EP3836378A4 (en) | 2022-04-27 |
US11515799B2 (en) | 2022-11-29 |
US20210351709A1 (en) | 2021-11-11 |
JP6988839B2 (ja) | 2022-01-05 |
CN112640287A (zh) | 2021-04-09 |
JP2020127268A (ja) | 2020-08-20 |
EP3836378A1 (en) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102225011B1 (ko) | 공진형 변환기들에서의 버스트 모드 제어 | |
RU2427068C2 (ru) | Резонансный преобразователь постоянного тока и способ управления этим преобразователем | |
JP4767294B2 (ja) | 共振型dc/dcコンバータに用いられるコントローラ | |
KR101811740B1 (ko) | 직렬 공진 컨버터에 대한 하이브리드 제어 기술 | |
WO2019198360A1 (ja) | 力率改善回路及びこれを使用したスイッチング電源装置 | |
JP6767867B2 (ja) | 共振電力変換装置及び制御方法 | |
WO2020158859A1 (ja) | 共振型コンバータ、その制御回路及び制御方法 | |
US9966864B2 (en) | Electronic apparatus and control method of electronic apparatus | |
US20110085356A1 (en) | Switching element driving control circuit and switching power supply device | |
JP2014064353A (ja) | スイッチング電源装置 | |
JP6115637B2 (ja) | Pwm制御回路およびスイッチング電源装置 | |
US20160241144A1 (en) | Switching power supply, method for controlling switching power supply, and power supply system | |
JP2008295276A (ja) | スイッチング電源とその制御回路及び制御方法 | |
KR101391874B1 (ko) | 용량성 부하특성을 갖는 공진형 고전압 제어 장치 | |
TWI469478B (zh) | 用於控制功率轉換器的方法及其裝置 | |
US11070147B2 (en) | Resonant inverter apparatus | |
TWI481165B (zh) | 可調抖動幅度的電源轉換器的控制器及其產生可調抖動幅度的方法 | |
RU2662228C1 (ru) | Способ частотно-импульсного регулирования резонансного преобразователя с фазовой автоподстройкой ширины импульса | |
JP7511233B2 (ja) | 交流基準電圧波形生成回路 | |
JP7211111B2 (ja) | 電源装置、画像形成装置及び電圧制御方法 | |
RU2661495C1 (ru) | Способ широтно-импульсного регулирования резонансного преобразователя с фазовой автоподстройкой частоты коммутации | |
JP7545608B1 (ja) | パルス電源装置 | |
JP7339859B2 (ja) | スイッチング制御回路 | |
JP2009142134A (ja) | コンデンサ充電装置 | |
JP2010269314A (ja) | 溶接電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20749384 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020749384 Country of ref document: EP Effective date: 20210310 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |