WO2020157914A1 - 下水処理装置および下水処理方法 - Google Patents

下水処理装置および下水処理方法 Download PDF

Info

Publication number
WO2020157914A1
WO2020157914A1 PCT/JP2019/003379 JP2019003379W WO2020157914A1 WO 2020157914 A1 WO2020157914 A1 WO 2020157914A1 JP 2019003379 W JP2019003379 W JP 2019003379W WO 2020157914 A1 WO2020157914 A1 WO 2020157914A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
ozone
tank
treated
excess
Prior art date
Application number
PCT/JP2019/003379
Other languages
English (en)
French (fr)
Inventor
恭平 明田川
黒木 洋志
諒 杉本
勇 平敷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019528146A priority Critical patent/JP6594591B1/ja
Priority to SG11202105910WA priority patent/SG11202105910WA/en
Priority to PCT/JP2019/003379 priority patent/WO2020157914A1/ja
Priority to CN201980088816.5A priority patent/CN113348151B/zh
Publication of WO2020157914A1 publication Critical patent/WO2020157914A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present application relates to a sewage treatment apparatus and a sewage treatment method.
  • the sewage that has flowed in is treated and discharged to rivers or the sea as treated water.
  • the sewage treatment plant In order to discharge the treated water, it is necessary to remove inorganic or organic suspended matter and soluble organic matter contained in the sewage to a standard level. Therefore, in the sewage treatment plant, suspended solids are removed by filtration and precipitation, and organic substances are decomposed and removed by biological treatment.
  • a biological treatment of organic matter a method called activated sludge method is used as a biological treatment of organic matter.
  • the activated sludge method is a method in which sewage is caused to flow into an aeration tank containing a large amount of microorganisms while aerating air to cause the microorganisms to decompose organic substances. After the decomposition of the organic matter, water and microorganisms are separated by settling in a settling tank to obtain treated water with the concentration of organic matter reduced to below a standard level.
  • Microorganisms used in the activated sludge method grow by obtaining energy by decomposing organic substances in sewage. As the concentration of microorganisms in the aeration tank increases, it becomes difficult to separate the microorganisms and the treated water by precipitation. In order to prevent this, sludge in which microorganisms have grown is extracted as excess sludge in the settling tank. Excess sludge is unnecessary sludge in sewage treatment. Therefore, excess sludge is disposed of as industrial waste by incineration, drying, landfilling, or other treatment. The disposal of such excess sludge requires a great deal of energy, cost, and new land.
  • the amount of excess sludge generated at the sewage treatment plant is 1 to 5%, and various volume reduction treatments are being performed to reduce the amount of excess sludge in order to reduce the disposal cost.
  • the most common volume reduction process is dehydration. By removing about 95% of the water contained in the excess sludge, the volume of the excess sludge is reduced to about 1/2500.
  • a method of modifying the excess sludge and introducing it into an aeration tank or an anaerobic digestion tank is used. Ozone gas is used to efficiently reform a large amount of excess sludge.
  • a method of injecting ozone gas into excess sludge using an ejector and providing a reaction tank in which the excess sludge infused with ozone is stored to reform the excess sludge is disclosed (for example, refer to Patent Document 1).
  • Patent Document 1 since the excess sludge is directly injected into the ejector and ozone gas is brought into contact with the excess sludge, the excess sludge can be reformed without complicating the equipment.
  • the present application has been made to solve the above problems, and an object thereof is to obtain a sewage treatment apparatus in which fine ozone gas bubbles are generated inside an ejector without increasing the load of ozone treatment. ..
  • the sewage treatment apparatus disclosed in the present application is a water treatment apparatus that treats sewage to obtain treated water, a dehydration treatment apparatus that performs a volume reduction treatment that reduces the amount of excess sludge generated in the treatment, and in the treatment.
  • a sludge treatment device configured to reduce the amount of excess sludge generated and/or the amount of concentrated excess sludge generated in the volume reduction treatment, wherein the sludge treatment device is the excess sludge.
  • an excess sludge tank that stores the concentrated excess sludge as a storage sludge
  • an ozone gas generator that generates ozone gas, a low-viscosity solution and the stored sludge supplied from the excess sludge tank are mixed to produce a mixed sludge.
  • a mixing section that generates, an ejector that injects the ozone gas into the mixed sludge that flows out from the mixing section to generate ozone-treated sludge, and an ozone-treated sludge tank that stores the ozone-treated sludge that flows out from the ejector.
  • the low-viscosity solution has a lower viscosity than the stored sludge.
  • FIG. 1 is a schematic diagram showing a configuration outline of a sludge treatment device which is a part of the sewage treatment device according to the first embodiment
  • FIG. 2 is a schematic diagram showing a configuration outline of the sewage treatment device.
  • the sewage treatment apparatus 300 is a water treatment apparatus 301 that obtains treated water 106 by treating the sewage 105 with an activated sludge method, and a dehydration treatment apparatus that performs a volume reduction treatment to reduce the amount of excess sludge 100 generated in the treatment. 302, and a sludge treatment device 200 that reduces the amount of excess sludge 100 generated in the treatment and/or the amount of concentrated excess sludge 110 generated in the volume reduction treatment.
  • the sludge 109 whose volume has been reduced is disposed of as industrial waste by incineration, drying, landfilling or the like.
  • the sludge treatment device 200 is a device that reforms the stored sludge using the ozone gas 104 in order to reduce the volume of the excess sludge 100 and/or the concentrated excess sludge 110 stored as the stored sludge in the excess sludge tank 1. Reforming means dissolving organic substances contained in excess sludge and making sludge particle size finer.
  • the sludge treatment device 200 includes a surplus sludge tank 1, a mixing tank 3 that is a mixing unit, a low-viscosity solution tank 5, an ejector 9, an ozone gas generator 12 that generates an ozone gas 104, and an ozone-treated sludge tank 13. Prepare
  • the surplus sludge tank 1 and the mixing tank 3 are connected by a surplus sludge supply pipe 2, and a surplus sludge supply pump 4 for supplying the stored sludge to the mixing tank 3 is installed in the surplus sludge supply pipe 2.
  • the low-viscosity solution tank 5 that stores the low-viscosity solution 101 having a lower viscosity than the storage sludge and the mixing tank 3 are connected by a low-viscosity solution supply pipe 6, and the low-viscosity solution 101 is mixed in the low-viscosity solution supply pipe 6.
  • a low-viscosity solution supply pump 7 for supplying 3 is installed.
  • the mixed sludge supply pipe 8 that mixes the supplied stored sludge and the low-viscosity solution 101 with an agitator (not shown) or a circulation pump (not shown) to generate the mixed sludge 102 and the ejector 9
  • a mixed sludge supply pump 10 that causes the mixed sludge 102 to flow into the ejector 9 is installed in the mixed sludge supply pipe 8.
  • the ejector 9 and the ozone gas generator 12 are connected by an ozone supply pipe 11.
  • the ejector 9 that injects the ozone gas 104 into the mixed sludge 102 that has flowed in to generate the ozone-treated sludge 103 and the ozone-treated sludge tank 13 are connected by the ozone-treated sludge inflow pipe 14.
  • An ozone-treated sludge outflow pipe 15 that discharges the ozone-treated sludge 103 is connected to the ozone-treated sludge tank 13 that stores the inflowed ozone-treated sludge 103.
  • FIG. 3 is a diagram showing a process in which the sludge treatment device 200, which is a part of the sewage treatment device 300 according to the first embodiment, reforms excess sludge.
  • the excess sludge supply pump 4 is operated to supply the storage sludge, which is composed of the excess sludge 100 and/or the concentrated excess sludge 110 generated in the treatment of sewage, to the mixing tank 3.
  • the low viscosity solution supply pump 7 is operated to supply the low viscosity solution 101 to the mixing tank 3.
  • the stored sludge and the low-viscosity solution 101 are efficiently mixed in the mixing tank 3 to generate the mixed sludge 102 (step S11).
  • the mixed sludge supply pump 10 is operated to cause the mixed sludge 102 to flow into the ejector 9, the ozone gas 104 is injected into the ejector 9 through the ozone supply pipe 11, and the ozone gas bubbles generated from the ozone gas 104 are generated in the mixed sludge 102 in the ejector 9.
  • Inject step S12
  • Excess sludge contained in the mixed sludge 102 is reformed with ozone gas bubbles to generate ozone-treated sludge 103 (step S13).
  • the ozone-treated sludge 103 is caused to flow into the ozone-treated sludge tank 13 through the ozone-treated sludge inflow pipe 14.
  • the ozone-treated sludge 103 is drawn to the outside through the ozone-treated sludge outflow pipe 15 in order to keep the amount of liquid in the ozone-treated sludge tank 13 constant (step S14).
  • the outside is the aeration tank 31 included in the water treatment device 301 or the anaerobic digestion tank 34 included in the dehydration treatment device 302, and the ozone-treated sludge 103 is further reduced in volume.
  • the mixed sludge 102 flowing into the ejector 9 is pressurized before passing through the narrow portion 9a of the ejector 9, and is depressurized after passing through the narrow portion 9a.
  • Ozone gas 104 is injected into the narrow portion 9a.
  • the shearing force is generated in the ozone gas bubbles injected into the mixed sludge 102 by pressurization and depressurization of the mixed sludge 102 generated around the narrow portion of the ejector 9.
  • Ozone gas bubbles are torn off by this shearing force to generate fine ozone gas bubbles.
  • the diameter of the generated ozone gas bubble is related to this shearing force and the flow rate of the ozone gas 104 injected into the ejector 9.
  • the diameter of the ozone gas bubble becomes smaller as the flow rate of the ozone gas 104 injected into the ejector 9 becomes smaller, and becomes smaller as the shearing force becomes larger.
  • the shearing force in the narrow portion of the ejector 9 increases as the flow velocity of the mixed sludge 102 flowing in the narrow portion 9a increases.
  • the flow velocity of the mixed sludge 102 flowing through the narrow portion 9a is determined by the flow rate of the mixed sludge 102 and the cross-sectional area of the narrow portion 9a.
  • the diameter of the ozone gas bubbles is determined by the flow rate of the ozone gas 104 injected into the ejector 9, the flow rate of the mixed sludge 102, and the cross-sectional area of the narrow portion 9a, when the ejector 9 having a constant cross-sectional area is used.
  • the diameter of the ozone gas bubbles can be controlled by controlling the flow rates of the ozone gas 104 and the mixed sludge 102.
  • the flow rate of the mixed sludge 102 needs to be 10 times or more the flow rate of the ozone gas 104 injected into the ejector 9. Since the excess sludge as it is has a high viscosity, the resistance when passing through the ejector 9 is large, a desired flow rate cannot be easily obtained, and fine ozone gas bubbles cannot be generated.
  • the storage sludge and the low-viscosity solution 101 are mixed in the mixing tank 3 to generate the mixed sludge 102 having a lower viscosity than the storage sludge. Since the low-viscosity solution 101 has a lower viscosity than the stored sludge, the viscosity of the mixed sludge 102 becomes lower than that of the stored sludge.
  • the viscosity of the mixed sludge 102 changes depending on the liquid amount ratio of the stored sludge and the low-viscosity solution 101, and as the mixing amount of the low-viscosity solution 101 increases, the viscosity of the mixed sludge 102 becomes closer to the viscosity of the low-viscosity solution 101.
  • the mixed sludge 102 has a lower pressure required to flow through the narrow portion 9a at a flow rate that generates fine ozone gas bubbles than the excess sludge 100, and therefore the load of ozone treatment of increasing the pressure applied by the mixed sludge supply pump is increased.
  • the excess sludge 100 and the ozone gas can be efficiently reacted with each other without increasing the amount.
  • the low-viscosity solution 101 can be used as long as it has a lower viscosity than the stored sludge.
  • As the low-viscosity solution 101 for example, treated water 106 after sewage treatment can be used, and sludge may be included as long as the viscosity is low.
  • chemicals such as acid and alkali can be used for the low-viscosity solution 101.
  • the chemicals are sulfuric acid solution and sodium hydroxide solution.
  • the water treatment device 301 includes an aeration tank 31 for treating the inflowing sewage 105 into the excess sludge 100 by the activated sludge method, and a settling tank 32 for separating the treated water 106 from the excess sludge 100 extracted from the aeration tank 31. Composed of.
  • the dehydration treatment device 302 concentrates the excess sludge 100 extracted from the settling tank 32 to generate a concentrated excess sludge 110, an anaerobic digestion tank 34 that processes the concentrated excess sludge 110 with the digested sludge 108, and an anaerobic property. It is composed of a dehydrator 35 that dehydrates and reduces the volume of sludge treated in the digestion tank 34.
  • the aeration tank 31 stores a group of microorganisms called activated sludge that decomposes organic substances.
  • the microorganism group decomposes the organic matter contained in the sewage using oxygen in the air aerated to the aeration tank 31 and grows using the energy obtained by the decomposition of the organic matter.
  • the excess sludge 100 is a group of microorganisms that have proliferated and increased in concentration.
  • the excess sludge 100 containing the treated water from which the organic matter has been removed is drawn to the settling tank 32. In the settling tank 32, the microorganism group is settled and separated from the treated water 106.
  • a part of the microorganism group is returned to the aeration tank 31 as the returned sludge 107, and the other part is withdrawn as the excess sludge 100 to the dehydration treatment device 302.
  • the treated water 106 is discharged from the settling tank 32, is sterilized, and is then discharged into a river or the sea.
  • Excess sludge 100 drawn out from the settling tank 32 to the dehydration treatment device 302 passes through the concentrator 33 and the anaerobic digestion tank 34, and is then dehydrated by the dehydrator 35 to reduce its volume and discarded.
  • the excess sludge 100 is directly charged to the dehydrator 35, the excess sludge 100 has a large amount of solids and a large amount of waste is generated. Therefore, the amount of waste generated is increased by passing through the concentrator 33 and the anaerobic digestion tank 34. Suppressed.
  • the concentrator 33 separates water and concentrates the volume of the excess sludge 100 to 1/3 to 1/10 to generate the concentrated excess sludge 110.
  • the size of the anaerobic digestion tank 34 in the subsequent stage can be reduced to 1/3 to 1/10 according to the volume of the concentrated excess sludge 110.
  • the concentrated excess sludge 110 is put into the anaerobic digestion tank 34.
  • the anaerobic digestion tank 34 stores a group of microorganisms called digested sludge 108 that decomposes the group of concentrated excess sludge 110 microorganisms.
  • the concentrated excess sludge 110 50 to 60% of the solids contained in the concentrated excess sludge 110 are dissolved by the microorganism group of the digested sludge 108 after a period of about 20 to 40 days, and decomposed into carbon dioxide and methane gas. The remaining sludge is put into the dehydrator 35 and discarded as sludge 109 whose volume has been reduced by dehydration.
  • the excess sludge tank 1 and the aeration tank 31 are connected by a first excess sludge storage pipe 36, and the excess sludge 100 in the aeration tank 31 is extracted and stored in the excess sludge tank 1.
  • the surplus sludge tank 1 and the settling tank 32 are connected by a second surplus sludge storage pipe 37, and the surplus sludge 100 in the settling tank 32 is extracted and stored in the surplus sludge tank 1.
  • the excess sludge tank 1 and the thickener 33 are connected by a third excess sludge storage pipe 38, and the thickened excess sludge 110 is withdrawn from the latter stage of the thickener 33 and stored in the excess sludge tank 1.
  • the amount of the excess sludge 100 to be extracted and the amount of the concentrated excess sludge 110 are arbitrarily determined.
  • the concentrations of the surplus sludge drawn from the first surplus sludge storage pipe 36, the second surplus sludge storage pipe 37, and the third surplus sludge storage pipe 38 are different from each other.
  • the concentration of the excess sludge 100 withdrawn from the aeration tank 31 is 0.5 g/L to 2 g/L
  • the concentration of the excess sludge 100 withdrawn from the settling tank 32 is 4 g/L to 8 g/L
  • the concentration of concentrated excess sludge 110 Is 30 g/L to 50 g/L.
  • any of the surplus sludge is a mixture of microorganisms used in the activated sludge to form flocs, and has a higher viscosity than water.
  • the sewage treatment apparatus 300 is configured to include all of the first surplus sludge storage pipe 36, the second surplus sludge storage pipe 37, and the third surplus sludge storage pipe 38, the present invention is not limited to this. A configuration including two pipes or any one pipe may be used. Therefore, these pipes are shown by dotted lines in FIG.
  • the low-viscosity solution tank 5 storing the low-viscosity solution 101 supplies the low-viscosity solution 101 to the mixing tank 3, but the present invention is not limited to this.
  • the configuration may be such that the mixing tank 3 and the precipitation tank 32 are connected by a pipe, and the treated water 106 as the low-viscosity solution 101 is supplied from the precipitation tank 32 to the mixing tank 3.
  • the low-viscosity solution tank 5 is not required, and thus the sludge treatment device 201 can be made compact.
  • the stored sludge is mixed with the low-viscosity solution 101 to generate the mixed sludge 102 having a lower viscosity than the stored sludge. Since it is injected into the ejector 9 as described above, fine ozone gas bubbles are generated inside the ejector 9 without increasing the load of the ozone treatment of increasing the pressure applied by the mixed sludge supply pump 10, and the excess sludge and the ozone gas 104 are efficiently generated. It can react well.
  • the low-viscosity solution tank 5 storing the low-viscosity solution 101 is configured to supply the low-viscosity solution 101 to the mixing tank 3, by preparing the low-viscosity solution 101 in the low-viscosity solution tank 5, the sludge treatment device 200 The operation can be started smoothly. Further, since the mixing sludge 102 is configured to generate the mixed sludge 102, the excess sludge and the low-viscosity solution 101 can be efficiently mixed by providing an agitator or a circulation pump in the mixing tank.
  • the volume reduction process can be efficiently performed even if the excess sludge having different concentrations is stored in the excess sludge tank 1.
  • FIG. 5 is a schematic diagram showing a schematic configuration of a sludge treatment device which is a part of the sewage treatment device according to the second embodiment.
  • the sludge treatment device 202 according to the second embodiment is configured to use the ozone-treated sludge 103 as the low-viscosity solution 101 without providing the low-viscosity solution tank 5 included in the sludge treatment device 200 of the first embodiment. There is.
  • the ozone treatment sludge tank 13 and the mixing tank 3 are connected by an ozone treatment sludge circulation pipe 16, and the ozone treatment sludge circulation pipe 16 supplies the ozone treated sludge 103 from the ozone treatment sludge tank 13 to the mixing tank 3.
  • a pump 17 is installed.
  • the ozone-treated sludge circulation pump 17 is operated, and the ozone-treated sludge 103 is supplied from the ozone-treated sludge tank 13 to the mixing tank 3 through the ozone-treated sludge circulation pipe 16.
  • the storage sludge and the ozone-treated sludge 103 are efficiently mixed in the mixing tank 3 to generate the mixed sludge 102.
  • the mixing tank 3 has a closed structure, the pressure by the ozone treatment sludge circulation pump 17 is also applied to the mixed sludge 102 in the mixing tank 3. Due to this pressure, the mixed sludge 102 is pushed out of the mixing tank 3 and flows into the ejector 9 through the mixed sludge supply pipe 8.
  • the mixing tank 3 has a closed structure, it is not necessary to provide the mixed sludge supply pump 10 included in the sludge treatment device 200 of the first embodiment.
  • ozone-treated sludge 103 can be used as a low-viscosity solution.
  • the viscosity of the excess sludge sharply decreases.
  • FIG. 6 is a diagram showing the relationship between the ozone gas injection time and the viscosity of the excess sludge in the excess sludge having a concentration of 35 g/L. The viscosity of excess sludge decreases with increasing ozone gas injection time. In FIG. 6, the viscosity of 4 Pa ⁇ s before the injection is reduced to 0.5 Pa ⁇ s after 140 minutes. Since the viscosity of the ozone-treated sludge 103 thus modified is lower than the viscosity of the excess sludge, it can be used as a low-viscosity solution.
  • the low-viscosity solution 101 is not newly added from the low-viscosity solution tank 5 unlike the sludge treatment device 200 according to the first embodiment shown in FIG. Contains only the original sludge contained in the excess sludge. Therefore, the liquid amount of the ozone-treated sludge 103 supplied from the ozone-treated sludge tank 13 to the mixing tank 3 becomes the same as the liquid amount of the surplus sludge first introduced from the surplus sludge tank 1. Since the liquid amount of the excess sludge and the liquid amount of the ozone-treated sludge 103 are the same, according to this configuration, it is possible to prevent the sludge treatment device from increasing in size.
  • the liquid amount of the ozone-treated sludge 103 is First, the liquid amount of the excess sludge that has flowed in from the excess sludge tank 1 becomes the same, and it is possible to suppress an increase in the size of the sludge treatment device.
  • FIG. 7 is a schematic diagram showing a configuration outline of a sludge treatment device which is a part of the sewage treatment device according to the third embodiment.
  • the sludge treatment device 203 according to the third embodiment has a configuration in which the mixing tank 3 included in the sludge treatment device 202 of the second embodiment is replaced with a mixer 18 that is a mixing unit.
  • the surplus sludge tank 1 and the mixer 18 are connected by a surplus sludge supply pipe 2, and a surplus sludge supply pump 4 for supplying the stored sludge to the mixer 18 is installed in the surplus sludge supply pipe 2.
  • the stored sludge is supplied from the surplus sludge tank 1 to the mixer 18 through the surplus sludge supply pipe 2 by operating the surplus sludge supply pump 4.
  • the ozone treatment sludge tank 13 and the mixer 18 are connected by an ozone treatment sludge circulation pipe 16, and the ozone treatment sludge circulation pipe 16 supplies the ozone treated sludge 103 from the ozone treatment sludge tank 13 to the mixer 18 A pump 17 is installed.
  • the ozone-treated sludge circulation pump 17 is operated, and the ozone-treated sludge 103 is supplied from the ozone-treated sludge tank 13 to the mixer 18 through the ozone-treated sludge circulation pipe 16.
  • the mixer 18 efficiently mixes the stored sludge and the ozone-treated sludge 103 to generate the mixed sludge 102.
  • the mixer 18 for example, a static mixer or a turbo mixer using a mechanical mechanism is used. Since the mixer 18 has a smaller size than the mixing tank and is installed in the sludge treatment device 203 as a part of piping, the sludge treatment device 203 can be downsized according to the configuration shown in the third embodiment. it can.
  • the mixer 18 is used to mix the excess sludge 100 and the ozone-treated sludge 103.
  • the present invention is not limited to this, and the mixer 18 is not provided as shown in FIG.
  • the supply pipe 2 and the ozone treatment sludge circulation pipe 16 may be connected to each other and the connecting portion 19 may be a mixing portion.
  • the excess sludge and the ozone-treated sludge 103 are mixed inside the connected pipes. Since the mixer 18 is not necessary in this configuration, the sludge treatment device 204 can be further downsized although the flow rate of the sludge is limited.
  • the sludge treatment device 203 can be downsized.
  • FIG. 9 is a schematic diagram showing a configuration outline of the sewage treatment apparatus according to the fourth embodiment
  • FIG. 10 is a schematic diagram showing another configuration outline of the sewage treatment apparatus according to the fourth embodiment.
  • the ozone-treated sludge 103 is introduced into the aeration tank 31 or the anaerobic digestion tank 34 from the ozone-treated sludge outflow pipe 15 of the sludge treatment device 202 shown in the second embodiment.
  • the upstream pipe of the aeration tank 31 into which the sewage 105 flows and the ozone-treated sludge tank 13 are connected by the ozone-treated sludge outflow pipe 15 for introducing the ozone-treated sludge 103 into the aeration tank 31. ..
  • the ozone-treated sludge 103 is returned to the aeration tank 31, the excess sludge 100 extracted from the aeration tank 31 or the sedimentation tank 32 before the treatment of the ozone-treated sludge 103 does not change the sewage treatment amount itself.
  • the ozone-treated sludge 103 charged into the aeration tank 31 is decomposed by the activated sludge, so that the amount of the surplus sludge 100 that has been disposed of is reduced.
  • the configuration shown in FIG. 10 may be used.
  • the pipe on the upstream side of the anaerobic digestion tank 34 into which the concentrated excess sludge flows and the ozone-treated sludge tank 13 feed the ozone-treated sludge 103 into the anaerobic digestion tank 34. It is connected by the outflow pipe 15.
  • the concentrated excess sludge 110 becomes the ozone-treated sludge 103 reformed by the ozone gas 104, is returned to the upstream side of the anaerobic digestion tank 34 through the ozone-treated sludge outflow pipe 15, and is then fed to the anaerobic digestion tank 34.
  • the ozone-treated sludge 103 has dissolved organic substances and has a smaller sludge particle size than the concentrated excess sludge 110, the volume reduction effect by anaerobic digestion is improved.
  • the concentrated excess sludge 110 generated by the concentrator 33 is divided into the excess sludge tank 1 and the anaerobic digestion tank 34 and input, but it is divided into the excess sludge tank 1 and the anaerobic digestion tank.
  • the amount of concentrated excess sludge 110 to be added can be set arbitrarily. Further, as shown in FIG. 11, the entire amount of the concentrated excess sludge 110 may be put into the excess sludge tank 1 to perform the ozone treatment.
  • the ozone-treated sludge 103 is introduced from the ozone-treated sludge outflow pipe 15 into the aeration tank 31, so that the ozone-treated sludge 103 is decomposed by the activated sludge and discarded. It is possible to reduce the amount of excess sludge that has been disposed of. Further, since the ozone-treated sludge 103 is introduced into the anaerobic digestion tank 34 from the ozone-treated sludge outflow pipe 15, the volume reduction effect by the anaerobic digestion in the anaerobic digestion tank 34 can be improved.
  • FIG. 12 is a schematic diagram showing a configuration outline of the sewage treatment apparatus according to the fifth embodiment.
  • a process when the ozone-treated sludge 103 is not stored in the ozone-treated sludge tank 13 in the sewage treatment device 300 of FIG. 10 using the sludge treatment device 202 shown in the second embodiment will be described. ..
  • the ozone treatment sludge tank 13 and the anaerobic digestion tank 34 are connected by a digestion sludge circulation pipe 39, and the digested sludge 108 of the anaerobic digestion tank 34 is extracted and stored in the ozone treatment sludge tank 13.
  • the low-viscosity solution supplied from the ozone treatment sludge tank 13 to the mixing tank 3 becomes digested sludge 108.
  • the ozone-treated sludge 103 may not be stored in the ozone-treated sludge tank 13.
  • the digested sludge 108 is used instead of the ozone-treated sludge 103, and the concentrated excess sludge 110 and the digested sludge 108 are mixed in the mixing tank 3 to generate the mixed sludge 102. Since the viscosity of the digested sludge 108 is lower than that of the concentrated excess sludge 110 subjected to ozone treatment in FIG. 12, the digested sludge 108 can be used as a low-viscosity solution.
  • the mixed sludge 102 is reformed with ozone gas 104, and is all returned to the anaerobic digestion tank 34 as ozone-treated sludge 103.
  • the digested sludge 108 initially stored in the ozone-treated sludge tank 13 is all returned to the anaerobic digester tank as the ozone-treated sludge 103 containing the digested sludge 108, and therefore the amount of digested sludge initially stored in the anaerobic digester tank 34. Does not increase.
  • the liquid amount of the ozone-treated sludge 103 to be fed into the anaerobic digestion tank 34 is the same as that when the concentrated excess sludge 110 is fed.
  • the digested sludge 108 is used for ozone treatment when the ozone-treated sludge 103 is not stored in the ozone-treated sludge tank 13, but the present invention is not limited to this.
  • the ozone-treated sludge 103 is not stored in the ozone-treated sludge tank 13
  • the excess sludge 100 is stored in the ozone-treated sludge tank 13
  • ozone gas is injected into the stored excess sludge 100 by an air diffuser or the like to perform the ozone-treated sludge 103. May be generated in the ozone treatment sludge tank 13.
  • the digested sludge 108 extracted from the anaerobic digestion tank 34 is used as a low-viscosity solution. Because of the configuration, there is nothing newly added to the anaerobic digestion tank 34 other than the concentrated excess sludge 110, and the dilution of the concentration of the digested sludge 108 stored in the anaerobic digestion tank 34 is suppressed, and the efficiency is improved. Volume reduction processing can be performed.
  • FIG. 13 is a schematic diagram showing a schematic configuration of a sludge treatment device which is a part of the sewage treatment device according to the sixth embodiment.
  • the sludge treatment device 205 according to the sixth embodiment has a configuration in which a pressure gauge 20 and a flow meter 21 are provided in the sludge treatment device 202 of the second embodiment to perform control such that the operating power of the sludge treatment device 205 becomes constant. ing.
  • the mixed sludge supply pipe 8 is provided with a pressure gauge 20 for measuring the pressure inside the pipe and a flow meter 21 for measuring the flow velocity of the mixed sludge 102. Measurement values obtained by the pressure gauge 20 and the flowmeter 21 are transmitted to the control device 22. Further, the controller 22 controls the excess sludge supply pump 4, the ozone gas generator 12, and the ozone treatment sludge circulation pump 17.
  • the control of the sludge treatment device 205 using the pressure gauge 20 and the flowmeter 21 will be described.
  • Generation of fine ozone gas bubbles inside the ejector 9 is performed by controlling the flow velocity of the mixed sludge 102 flowing through the narrow portion 9a and the flow rate of the ozone gas 104 injected into the ejector 9.
  • the flow velocity of the mixed sludge 102 can be measured using the flow meter 21.
  • the ease of flow related to the flow velocity due to the viscosity of the mixed sludge 102 flowing through the ejector 9 can be measured using the pressure gauge 20.
  • the sludge treatment device 205 can be operated with a constant operating power. Based on the measured values of the pressure gauge 20 and the flow meter 21, the control device 22 supplies the flow rate of the stored sludge supplied from the surplus sludge tank 1 to the mixing tank 3 and the ozone treatment sludge tank 13 to the mixing tank 3. The flow rate of the ozone-treated sludge 103 is controlled.
  • the control device 22 controls the ozone-treated sludge circulation pump 17 to increase the flow rate of the ozone-treated sludge circulation pump 17 and increase the amount of the ozone-treated sludge 103 discharged into the mixing tank 3.
  • the ratio of the ozone-treated sludge 103 in the mixing tank 3 can be increased. Alternatively, both controls may be performed in parallel.
  • the concentration and flow rate of the ozone gas 104 injected from the ozone gas generator 12 into the ejector 9 according to the flow rate of the mixed sludge 102, the amount of ozone used is optimized and the excess sludge 100 is efficiently reduced. Capacitor processing can be performed.
  • the sludge is supplied from the surplus sludge tank 1 to the mixing tank 3 based on the measurement values of the pressure gauge 20 and the flow meter 21 provided in the mixed sludge supply pipe 8. Since the flow rate of the stored sludge and the flow rate of the ozone-treated sludge 103 supplied from the ozone-treated sludge tank 13 to the mixing tank 3 are controlled, the operating power required for sludge treatment can be stably maintained at a constant value. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)

Abstract

下水(105)を処理して処理水(106)を得る水処理装置(301)と、処理において発生した余剰汚泥(100)の量を低減する減容化処理を行う脱水処理装置(302)と、処理において発生した余剰汚泥(100)の量および/または減容化処理において発生した濃縮余剰汚泥(110)の量を低減する汚泥処理装置(200)と、から構成される下水処理装置(300)であって、汚泥処理装置(200)は、余剰汚泥(100)および/または濃縮余剰汚泥(110)を貯留汚泥として貯留する余剰汚泥槽(1)と、オゾンガス(104)を発生するオゾンガス発生器(12)と、低粘度溶液(101)と余剰汚泥槽(1)から供給される貯留汚泥とを混合して混合汚泥(102)を生成する混合部と、混合部から流出される混合汚泥(102)にオゾンガス(104)を注入してオゾン処理汚泥(103)を生成するエジェクタ(9)と、エジェクタ(9)から流出されるオゾン処理汚泥(103)を貯留するオゾン処理汚泥槽(13)とを備え、低粘度溶液(101)は貯留汚泥よりも粘度が低い溶液である。

Description

下水処理装置および下水処理方法
 本願は、下水処理装置および下水処理方法に関するものである。
 下水処理場では流入した下水を処理し、処理水として河川または海に放流している。処理水を放流するためには、下水に含まれる無機系または有機系の浮遊物、および溶解性の有機物を基準レベルまで除去する必要がある。そのため、下水処理場では浮遊物をろ過および沈殿で除去し、有機物を生物処理により分解して除去している。有機物の生物処理としては、活性汚泥法と呼ばれる方法が用いられている。活性汚泥法は、微生物を多量に含む曝気槽に空気を曝気しながら下水を流入させて、微生物に有機物を分解させる方法である。有機物の分解後、沈殿槽において沈殿により水と微生物を分離することで、有機物濃度を基準レベル以下まで低減した処理水が得られる。
 活性汚泥法に使用する微生物は、下水中の有機物を分解することでエネルギーを得て増殖する。曝気槽の微生物濃度が増加すると、沈殿によって微生物と処理水を分離することが困難になる。これを防ぐために、沈殿槽では微生物が増殖した汚泥を余剰汚泥として引抜いている。余剰汚泥は下水処理において不必要な汚泥である。そのため、余剰汚泥は産業廃棄物として焼却、乾燥、埋め立て等の処理によって処分される。このような余剰汚泥の処分には、多大なエネルギー、コスト、および新たな用地等が必要となる。
 下水処理場で発生する余剰汚泥の量は下水の1~5%になっており、その処分費用を削減するために余剰汚泥の量を低減する様々な減容化処理が行われている。最も一般的な減容化処理は、脱水である。余剰汚泥に含まれる水分を約95%除去することで、余剰汚泥の量は約1/2500に減容される。さらに余剰汚泥を減容するために、余剰汚泥を改質して曝気槽または嫌気性消化槽に投入する方法が用いられている。大量の余剰汚泥を効率的に改質するためにオゾンガスが利用されている。エジェクタを用いて余剰汚泥にオゾンガスを注入し、オゾンが注入された余剰汚泥の貯留される反応槽を設けて余剰汚泥を改質する方法が開示されている(例えば、特許文献1参照)。
特開平02-222798号公報
 上記特許文献1においては、エジェクタに余剰汚泥を直接注入して余剰汚泥にオゾンガスを接触させているため、設備を複雑にすることなく余剰汚泥を改質することができる。オゾンガスと余剰汚泥を効率的に接触させて余剰汚泥を改質するにはエジェクタの内部で微細なオゾンガス気泡を生成する必要があり、そのためにはエジェクタの狭小部を通過する余剰汚泥の流速を高めて、せん断力によって気泡を引きちぎらなければならない。しかしながら、数ミリサイズの有機物のフロックを含む汚泥濃度が高い余剰汚泥をエジェクタに直接注入した場合、フロックによって余剰汚泥の粘度が高くなり、エジェクタ狭小部を余剰汚泥が流れる際に抵抗を生じるため、狭小部で汚泥の流速が遅くなり、注入したオゾンガスの気泡が微細化しなくなるという課題があった。エジェクタ狭小部で余剰汚泥の流速を高めて微細なオゾンガスの気泡を生成するためには、エジェクタに余剰汚泥を注入するポンプの圧力を高める必要があるものの、ポンプ圧力を高めるとオゾン処理のための動力を上げることになり、オゾン処理の負荷が増大するという課題があった。
 本願は前記のような課題を解決するためになされたものであり、オゾン処理の負荷を増大させることなく、エジェクタの内部で微細なオゾンガス気泡が生成される下水処理装置を得ることを目的とする。
 本願に開示される下水処理装置は、下水を処理して処理水を得る水処理装置と、前記処理において発生した余剰汚泥の量を低減する減容化処理を行う脱水処理装置と、前記処理において発生した余剰汚泥の量および/または前記減容化処理において発生した濃縮余剰汚泥の量を低減する汚泥処理装置と、から構成される下水処理装置であって、前記汚泥処理装置は、前記余剰汚泥および/または前記濃縮余剰汚泥を貯留汚泥として貯留する余剰汚泥槽と、オゾンガスを発生するオゾンガス発生器と、低粘度溶液と前記余剰汚泥槽から供給される前記貯留汚泥とを混合して混合汚泥を生成する混合部と、前記混合部から流出される前記混合汚泥に前記オゾンガスを注入してオゾン処理汚泥を生成するエジェクタと、前記エジェクタから流出される前記オゾン処理汚泥を貯留するオゾン処理汚泥槽とを備え、前記低粘度溶液は前記貯留汚泥よりも粘度が低い溶液である。
 本願に開示される下水処理装置によれば、オゾン処理の負荷を増大させることなく、エジェクタの内部で微細なオゾンガス気泡を生成することができる。
実施の形態1に係る下水処理装置の一部である汚泥処理装置の構成概要を示す模式図である。 実施の形態1に係る下水処理装置の構成概要を示す模式図である。 実施の形態1に係る下水処理装置の一部である汚泥処理装置が余剰汚泥を改質する過程を示す図である。 実施の形態1に係る下水処理装置の一部である汚泥処理装置の別の構成概要を示す模式図である。 実施の形態2に係る下水処理装置の一部である汚泥処理装置の構成概要を示す模式図である。 オゾンガス注入時間と余剰汚泥の粘度との関係を示す図である。 実施の形態3に係る下水処理装置の一部である汚泥処理装置の構成概要を示す模式図である。 実施の形態3に係る下水処理装置の一部である汚泥処理装置の別の構成概要を示す模式図である。 実施の形態4に係る下水処理装置の構成概要を示す模式図である。 実施の形態4に係る下水処理装置の別の構成概要を示す模式図である。 実施の形態4に係る下水処理装置の別の構成概要を示す模式図である。 実施の形態5に係る下水処理装置の構成概要を示す模式図である。 実施の形態6に係る下水処理装置の一部である汚泥処理装置の構成概要を示す模式図である。
 以下、本願の実施の形態による下水処理装置および下水処理方法を図に基づいて説明するが、各図において同一、または相当部材、部位については同一符号を付して説明する。
実施の形態1.
 図1は実施の形態1に係る下水処理装置の一部である汚泥処理装置の構成概要を示す模式図、図2は下水処理装置の構成概要を示す模式図である。下水処理装置300は、下水105を活性汚泥法で処理して処理水106を得る水処理装置301と、処理において発生した余剰汚泥100の量を低減するために減容化処理を行う脱水処理装置302と、処理において発生した余剰汚泥100の量および/または減容化処理において発生した濃縮余剰汚泥110の量を低減する汚泥処理装置200とを備える。減容した汚泥109は、産業廃棄物として焼却、乾燥、埋め立て等の処理によって処分される。
 汚泥処理装置200は、余剰汚泥槽1に貯留汚泥として貯留した余剰汚泥100および/または濃縮余剰汚泥110を減容するために、オゾンガス104を利用して貯留汚泥を改質する装置である。改質とは余剰汚泥に含まれる有機物の溶解、汚泥粒径の微細化などを行うことである。汚泥処理装置200は、余剰汚泥槽1と、混合部である混合槽3と、低粘度溶液槽5と、エジェクタ9と、オゾンガス104を発生するオゾンガス発生器12と、オゾン処理汚泥槽13とを備える。
 余剰汚泥槽1と混合槽3とは余剰汚泥供給配管2によって連結され、余剰汚泥供給配管2には貯留汚泥を混合槽3に供給する余剰汚泥供給ポンプ4が設置される。貯留汚泥よりも粘度の低い低粘度溶液101を貯留する低粘度溶液槽5と混合槽3とは低粘度溶液供給配管6によって連結され、低粘度溶液供給配管6には低粘度溶液101を混合槽3に供給する低粘度溶液供給ポンプ7が設置される。供給された貯留汚泥と低粘度溶液101とを攪拌機(図示せず)または循環ポンプ(図示せず)などで混合して混合汚泥102を生成する混合槽3とエジェクタ9とは混合汚泥供給配管8によって連結され、混合汚泥供給配管8には混合汚泥102をエジェクタ9に流入させる混合汚泥供給ポンプ10が設置される。エジェクタ9とオゾンガス発生器12とはオゾン供給配管11によって連結される。流入された混合汚泥102にオゾンガス104を注入してオゾン処理汚泥103を生成するエジェクタ9とオゾン処理汚泥槽13とはオゾン処理汚泥流入配管14で連結される。流入されたオゾン処理汚泥103を貯留するオゾン処理汚泥槽13には、オゾン処理汚泥103を排出するオゾン処理汚泥流出配管15が連結される。
 ここで汚泥処理装置200がオゾンガス104を利用して余剰汚泥100および/または濃縮余剰汚泥110を改質して減容する過程について説明する。図3は、実施の形態1に係る下水処理装置300の一部である汚泥処理装置200が余剰汚泥を改質する過程を示す図である。余剰汚泥供給ポンプ4を作動させて、下水の処理において発生した余剰汚泥100および/または濃縮余剰汚泥110から構成される貯留汚泥を混合槽3に供給する。また低粘度溶液供給ポンプ7を作動させて、低粘度溶液101を混合槽3に供給する。混合槽3で貯留汚泥と低粘度溶液101とを効率的に混合して混合汚泥102を生成する(ステップS11)。混合汚泥供給ポンプ10を作動させて混合汚泥102をエジェクタ9に流入させ、オゾン供給配管11を通して、オゾンガス104をエジェクタ9に注入し、エジェクタ9において混合汚泥102にオゾンガス104から生成されたオゾンガス気泡を注入する(ステップS12)。混合汚泥102に含まれる余剰汚泥をオゾンガス気泡で改質してオゾン処理汚泥103を生成する(ステップS13)。オゾン処理汚泥流入配管14を通して、オゾン処理汚泥103をオゾン処理汚泥槽13に流入させる。オゾン処理汚泥槽13の中ではオゾンガス気泡と余剰汚泥の反応による余剰汚泥の改質がさらに進む。オゾン処理汚泥103は、オゾン処理汚泥槽13内の液量を一定に保つために、オゾン処理汚泥流出配管15を通して外部に引抜かれる(ステップS14)。外部とは水処理装置301が備える曝気槽31、または脱水処理装置302が備える嫌気性消化槽34であり、オゾン処理汚泥103はさらに減容される。
 エジェクタ9での処理について説明する。エジェクタ9に流入した混合汚泥102は、エジェクタ9の狭小部9aを通過する前に加圧され、狭小部9aを通過した後に減圧される。狭小部9aにオゾンガス104が注入される。混合汚泥102が流れることでエジェクタ9の狭小部前後で発生した混合汚泥102の加圧と減圧により、混合汚泥102に注入されたオゾンガス気泡にせん断力が発生する。このせん断力によってオゾンガス気泡が引きちぎられて微細なオゾンガス気泡が生成される。生成されたオゾンガス気泡の直径は、このせん断力とエジェクタ9に注入されるオゾンガス104の流量に関係する。オゾンガス気泡の直径は、エジェクタ9に注入するオゾンガス104の流量が小さくなると小さくなり、せん断力が大きくなると小さくなる。エジェクタ9の狭小部におけるせん断力は、狭小部9aに流れる混合汚泥102の流速が速くなるほど大きくなる。狭小部9aに流れる混合汚泥102の流速は、混合汚泥102の流量と狭小部9aの断面積で決定される。つまりオゾンガス気泡の直径は、エジェクタ9に注入されるオゾンガス104の流量と、混合汚泥102の流量、および狭小部9aにおける断面積によって決定されるため、断面積が一定であるエジェクタ9を使用する際、オゾンガス104の流量と混合汚泥102の流量とを制御することでオゾンガス気泡の直径を制御することができる。
 エジェクタ9において、オゾンガス104と混合汚泥102を効率的に反応させてオゾン処理汚泥103を生成するためには、1ミクロンから1ミリの直径を持つ微細なオゾンガス気泡をエジェクタ9の内部で生成しなければならない。そのためには、エジェクタ9に注入するオゾンガス104の流量に対して混合汚泥102の流量を10倍以上にする必要がある。余剰汚泥のままでは粘度が高いためエジェクタ9を通過する際の抵抗が大きく、所望の流量が容易に得られず微細なオゾンガスの気泡を生成することができない。余剰汚泥のままエジェクタ9に汚泥を注入するのであれば、混合汚泥供給ポンプ10で加圧する圧力が余剰汚泥の濃度とともに高くなりオゾン処理の負荷が増大する。このため、混合槽3で貯留汚泥と低粘度溶液101とを混合して貯留汚泥よりも粘度が低い混合汚泥102を生成する。低粘度溶液101は貯留汚泥よりも粘度が低いため、混合汚泥102の粘度は貯留汚泥の粘度よりも低くなる。混合汚泥102の粘度は、貯留汚泥と低粘度溶液101の混合する液量比で変化し、低粘度溶液101の混合量が多くなるほど混合汚泥102の粘度は低粘度溶液101の粘度に近くなる。混合汚泥102は、狭小部9aを微細なオゾンガス気泡を生成させる流速で流すために必要な圧力が余剰汚泥100に比べて低いため、混合汚泥供給ポンプの加圧する圧力を高めるというオゾン処理の負荷を増大させることなく、余剰汚泥100とオゾンガスとを効率よく反応させることができる。
 低粘度溶液101は、貯留汚泥よりも粘度が低い溶液であれば利用することができる。低粘度溶液101としては、例えば下水処理後の処理水106が利用でき、粘度が低ければ汚泥を含んでいても構わない。また低粘度溶液101には、酸、アルカリなどの薬品を利用することもできる。例えば、薬品は硫酸溶液、水酸化ナトリウム溶液である。
 次に、余剰汚泥槽1に引き抜かれる余剰汚泥100および濃縮余剰汚泥110について説明する。図2において、水処理装置301は、流入した下水105を活性汚泥法により余剰汚泥100に処理する曝気槽31と、曝気槽31から引き抜いた余剰汚泥100から処理水106を分離する沈殿槽32とから構成される。脱水処理装置302は、沈殿槽32から引き抜いた余剰汚泥100を濃縮して濃縮余剰汚泥110を生成する濃縮機33と、濃縮余剰汚泥110を消化汚泥108で処理する嫌気性消化槽34と嫌気性消化槽34において処理された汚泥を脱水して減容する脱水機35とから構成される。
 水処理装置301と脱水処理装置302の詳細について説明する。曝気槽31には有機物を分解する活性汚泥と呼ばれる微生物群が貯留されている。微生物群は曝気槽31に曝気する空気中の酸素を利用して下水に含まれる有機物を分解するとともに、有機物の分解によって得たエネルギーを用いて増殖する。増殖して濃度が増加した微生物群は余剰汚泥100である。有機物が除去された処理水を含む余剰汚泥100は、沈殿槽32に引き抜かれる。沈殿槽32では、微生物群が沈殿して処理水106と分離される。微生物群の一部は返送汚泥107として曝気槽31に戻され、他は余剰汚泥100として脱水処理装置302に引抜かれる。処理水106は沈殿槽32から流出され、消毒などを行った後に河川または海に放流される。
 沈殿槽32から脱水処理装置302に引き抜かれた余剰汚泥100は、濃縮機33と嫌気性消化槽34とを経た後に、脱水機35にて脱水により減容して廃棄される。余剰汚泥100を脱水機35に直接投入すると余剰汚泥100には固形物の量が多く多量の廃棄物が発生するため、濃縮機33と嫌気性消化槽34を経ることで廃棄物の発生量は抑制される。濃縮機33は、水分を分離して余剰汚泥100の体積を1/3~1/10に濃縮して濃縮余剰汚泥110を生成する。余剰汚泥100の体積を減少させることで、後段の嫌気性消化槽34のサイズを濃縮余剰汚泥110の体積に応じて1/3~1/10にまで小型化することができる。濃縮余剰汚泥110は嫌気性消化槽34に投入される。嫌気性消化槽34には、消化汚泥108と呼ばれる濃縮余剰汚泥110の微生物群を分解する微生物群が貯留されている。濃縮余剰汚泥110は、20~40日程度の期間を経て消化汚泥108の微生物群によって濃縮余剰汚泥110に含まれる固形物の50~60%が溶解され、二酸化炭素とメタンガスに分解される。残った汚泥は脱水機35に投入され、脱水により減容した汚泥109として廃棄される。
 余剰汚泥槽1と曝気槽31とは第1の余剰汚泥貯留配管36によって連結され、曝気槽31の余剰汚泥100は引き抜かれて余剰汚泥槽1に貯留される。余剰汚泥槽1と沈殿槽32とは第2の余剰汚泥貯留配管37によって連結され、沈殿槽32の余剰汚泥100は引き抜かれて余剰汚泥槽1に貯留される。余剰汚泥槽1と濃縮機33とは第3の余剰汚泥貯留配管38によって連結され、濃縮余剰汚泥110は濃縮機33の後段から引抜かれて余剰汚泥槽1に貯留される。引き抜かれる余剰汚泥100の量、および濃縮余剰汚泥110の量は任意に定められる。第1の余剰汚泥貯留配管36、第2の余剰汚泥貯留配管37、第3の余剰汚泥貯留配管38のそれぞれから引き抜かれる余剰汚泥の濃度はそれぞれ異なる。曝気槽31から引抜かれた余剰汚泥100の濃度は0.5g/L~2g/L、沈殿槽32から引抜かれた余剰汚泥100の濃度は4g/L~8g/L、濃縮余剰汚泥110の濃度は30g/L~50g/Lである。何れの余剰汚泥も活性汚泥で使用した微生物が集まってフロックを形成したものであり、水に比べて粘性が高くなっている。なお、下水処理装置300は第1の余剰汚泥貯留配管36、第2の余剰汚泥貯留配管37、第3の余剰汚泥貯留配管38の全てを備える構成としたがこれに限るものではなく、何れか2つの配管、もしくは何れか1つの配管を備えた構成でも構わない。そのため、これらの配管は図2において点線で示した。
 なお、以上では低粘度溶液101を貯留した低粘度溶液槽5から低粘度溶液101を混合槽3に供給する構成としたがこれに限るものではない。例えば図4に示すように、混合槽3と沈殿槽32とを配管で連結して、沈殿槽32から低粘度溶液101としての処理水106を混合槽3に供給する構成でも構わない。この構成では低粘度溶液槽5が不要なため、汚泥処理装置201を小型に構成することができる。
 以上のように、実施の形態1による下水処理装置300の一部である汚泥処理装置200では、貯留汚泥と低粘度溶液101とを混合して貯留汚泥よりも粘度の低い混合汚泥102を生成してエジェクタ9に注入するため、混合汚泥供給ポンプ10の加圧する圧力を高めるというオゾン処理の負荷を増大させることなく、エジェクタ9の内部で微細なオゾンガス気泡が生成され、余剰汚泥とオゾンガス104を効率よく反応させることができる。また、低粘度溶液101を貯留した低粘度溶液槽5から低粘度溶液101を混合槽3に供給する構成としたため、低粘度溶液101を低粘度溶液槽5に準備することで汚泥処理装置200の稼働を滞りなく開始することができる。また、混合槽3で混合汚泥102を生成する構成としたため、撹拌機もしくは循環ポンプなどを混合槽に設けることで余剰汚泥と低粘度溶液101とを効率的に混合することができる。また、余剰汚泥と低粘度溶液101とを混合して粘度の低い混合汚泥102を生成するため、余剰汚泥槽1に濃度の異なる余剰汚泥が貯留されていても効率よく減容化処理を行うことができる。
実施の形態2.
 実施の形態2に係る汚泥処理装置202について説明する。図5は、実施の形態2に係る下水処理装置の一部である汚泥処理装置の構成概要を示す模式図である。実施の形態2に係る汚泥処理装置202は、実施の形態1の汚泥処理装置200が備えた低粘度溶液槽5を設けることなく、低粘度溶液101としてオゾン処理汚泥103を利用する構成になっている。
 オゾン処理汚泥槽13と混合槽3とはオゾン処理汚泥循環配管16によって連結され、オゾン処理汚泥循環配管16にはオゾン処理汚泥103をオゾン処理汚泥槽13から混合槽3に供給するオゾン処理汚泥循環ポンプ17が設置される。オゾン処理汚泥循環ポンプ17を作動させオゾン処理汚泥循環配管16を通して、オゾン処理汚泥103はオゾン処理汚泥槽13から混合槽3に供給される。混合槽3で貯留汚泥とオゾン処理汚泥103とを効率的に混合して混合汚泥102を生成する。混合槽3が密閉構造の場合、オゾン処理汚泥循環ポンプ17による圧力は混合槽3の混合汚泥102にも印加される。この圧力により、混合汚泥102は混合槽3から押し出され、混合汚泥供給配管8を通してエジェクタ9に流入される。混合槽3が密閉構造の場合は、実施の形態1の汚泥処理装置200が備えた混合汚泥供給ポンプ10を設ける必要はない。
 低粘度溶液としてオゾン処理汚泥103が利用できることについて説明する。余剰汚泥にオゾンガス104を注入して汚泥が改質されると、余剰汚泥の粘度は急激に低下する。図6は、濃度35g/Lの余剰汚泥におけるオゾンガス注入時間と余剰汚泥の粘度との関係を示す図である。余剰汚泥の粘度はオゾンガス注入時間の増加とともに減少する。図6において、注入前の粘度4Pa・sは、140分後に0.5Pa・sまで低下している。このように改質されたオゾン処理汚泥103の粘度は余剰汚泥の粘度よりも低いため、低粘度溶液として利用できる。
 図5に示す構成によると、図1に示した実施の形態1による汚泥処理装置200のように低粘度溶液槽5から新たに低粘度溶液101が追加される構成ではないため、オゾン処理汚泥103には余剰汚泥に含まれていた当初の汚泥だけが入っている。このため、オゾン処理汚泥槽13から混合槽3に供給されるオゾン処理汚泥103の液量は、最初に余剰汚泥槽1から流入された余剰汚泥の液量と同じになる。余剰汚泥の液量とオゾン処理汚泥103の液量が同じであるため、本構成によれば汚泥処理装置の大型化を抑制することができる。
 以上のように、実施の形態2による汚泥処理装置202では、改質され粘度の低下したオゾン処理汚泥103を低粘度溶液として混合槽3に供給する構成としたため、オゾン処理汚泥103の液量と最初に余剰汚泥槽1から流入された余剰汚泥の液量とが同じになり、汚泥処理装置の大型化を抑制することができる。
実施の形態3.
 実施の形態3に係る汚泥処理装置203について説明する。図7は、実施の形態3に係る下水処理装置の一部である汚泥処理装置の構成概要を示す模式図である。実施の形態3に係る汚泥処理装置203は、実施の形態2の汚泥処理装置202が備えた混合槽3に代えて、混合部である混合機18を設けた構成になっている。
 余剰汚泥槽1と混合機18とは余剰汚泥供給配管2によって連結され、余剰汚泥供給配管2には貯留汚泥を混合機18に供給する余剰汚泥供給ポンプ4が設置される。余剰汚泥供給ポンプ4を作動させ余剰汚泥供給配管2を通して、貯留汚泥は余剰汚泥槽1から混合機18に供給される。オゾン処理汚泥槽13と混合機18とはオゾン処理汚泥循環配管16によって連結され、オゾン処理汚泥循環配管16にはオゾン処理汚泥103をオゾン処理汚泥槽13から混合機18に供給するオゾン処理汚泥循環ポンプ17が設置される。オゾン処理汚泥循環ポンプ17を作動させオゾン処理汚泥循環配管16を通して、オゾン処理汚泥103はオゾン処理汚泥槽13から混合機18に供給される。混合機18で貯留汚泥とオゾン処理汚泥103とを効率的に混合して混合汚泥102を生成する。
 混合機18には、機械的な機構利用した、例えばスタティックミキサー、ターボミキサーが使用される。混合機18は混合槽と比較してサイズが小さく、配管の一部として汚泥処理装置203に設置されるため、実施の形態3に示した構成によれば汚泥処理装置203を小型にすることができる。
 なお、以上では混合機18を利用して余剰汚泥100とオゾン処理汚泥103とを混合する構成としたがこれに限るものではなく、図8に示すように混合機18を設けずに、余剰汚泥供給配管2とオゾン処理汚泥循環配管16とを連結して、連結部19を混合部とする構成でも構わない。連結された配管の内部において余剰汚泥とオゾン処理汚泥103とは混合される。この構成では混合機18が不要なため、汚泥の流量は制限されるものの汚泥処理装置204をさらに小型に構成することができる。
 以上のように、実施の形態3による汚泥処理装置203では、混合機18にて余剰汚泥とオゾン処理汚泥103とを混合する構成としたため、汚泥処理装置203の小型にすることができる。
実施の形態4.
 実施の形態4に係る汚泥処理装置について説明する。図9は実施の形態4に係る下水処理装置の構成概要を示す模式図、図10は実施の形態4に係る下水処理装置の別の構成概要を示す模式図である。実施の形態4は、実施の形態2で示した汚泥処理装置202のオゾン処理汚泥流出配管15からオゾン処理汚泥103を曝気槽31もしくは嫌気性消化槽34に投入する構成になっている。
 図9に示すように、下水105が流入する曝気槽31の上流側の配管とオゾン処理汚泥槽13とが、オゾン処理汚泥103を曝気槽31に投入するオゾン処理汚泥流出配管15で連結される。曝気槽31または沈殿槽32から引抜いた余剰汚泥100は、オゾンガス104によって改質されたオゾン処理汚泥103となり、オゾン処理汚泥流出配管15を通して曝気槽31の上流側に返送された後、曝気槽31に投入される。オゾン処理汚泥103を曝気槽31に戻しても、オゾン処理汚泥103の処理前は曝気槽31または沈殿槽32から引抜いた余剰汚泥100であるため、下水処理量そのものは変化しない。曝気槽31に投入したオゾン処理汚泥103は、活性汚泥によって分解されるため廃却処分されていた余剰汚泥100の量は減少する。
 また、図10に示す構成でもよい。図10に示す構成では、濃縮された余剰汚泥が流入する嫌気性消化槽34の上流側の配管とオゾン処理汚泥槽13とが、オゾン処理汚泥103を嫌気性消化槽34に投入するオゾン処理汚泥流出配管15で連結される。濃縮余剰汚泥110は、オゾンガス104によって改質されたオゾン処理汚泥103となり、オゾン処理汚泥流出配管15を通して嫌気性消化槽34の上流側に返送された後、嫌気性消化槽34に投入される。濃縮余剰汚泥110を改質しても元の余剰汚泥100とオゾン処理汚泥103の液量は変わらないため、オゾン処理汚泥103は濃縮余剰汚泥110と同じように嫌気性消化処理を行うことができる。オゾン処理汚泥103は、濃縮余剰汚泥110に比べて有機物の溶解および汚泥粒径の微細化が生じているため、嫌気性消化による減容効果が向上する。
 なお、図10では濃縮機33で生成した濃縮余剰汚泥110を余剰汚泥槽1と嫌気性消化槽34に分割して投入する構成としているが、余剰汚泥槽1と嫌気性消化槽に分割して投入する濃縮余剰汚泥110の量は任意に設定できる。また図11に示すように、濃縮余剰汚泥110の全量を余剰汚泥槽1に投入してオゾン処理を行っても構わない。
 以上のように、実施の形態4による下水処理装置では、オゾン処理汚泥流出配管15からオゾン処理汚泥103を曝気槽31に投入する構成としたため、オゾン処理汚泥103は活性汚泥によって分解され、廃却処分されていた余剰汚泥の量を減少させることができる。また、オゾン処理汚泥流出配管15からオゾン処理汚泥103を嫌気性消化槽34に投入する構成としたため、嫌気性消化槽34における嫌気性消化による減容効果を向上させることができる。
 実施の形態5.
 実施の形態5に係る汚泥処理装置について説明する。図12は実施の形態5に係る下水処理装置の構成概要を示す模式図である。実施の形態5では、実施の形態2で示した汚泥処理装置202を用いた図10の下水処理装置300において、オゾン処理汚泥103がオゾン処理汚泥槽13に貯留されていない際の処理について説明する。
 オゾン処理汚泥槽13と嫌気性消化槽34とが消化汚泥循環配管39で連結され、嫌気性消化槽34の消化汚泥108は引き抜かれてオゾン処理汚泥槽13に貯留される。混合槽3にオゾン処理汚泥槽13から供給される低粘度溶液は消化汚泥108となる。下水処理装置300の稼働時には、オゾン処理汚泥槽13にオゾン処理汚泥103が貯留されていない場合がある。そのため、オゾン処理汚泥103に代えて消化汚泥108を利用し、濃縮余剰汚泥110と消化汚泥108とを混合槽3で混合して混合汚泥102を生成する。図12においてオゾン処理を行う濃縮余剰汚泥110よりも消化汚泥108の粘度は低いため、消化汚泥108は低粘度溶液として使用することができる。
 混合汚泥102はオゾンガス104で改質され、オゾン処理汚泥103としてすべて嫌気性消化槽34に返送される。最初にオゾン処理汚泥槽13に貯留された消化汚泥108は、消化汚泥108を含むオゾン処理汚泥103としてすべて嫌気性消化槽に返送されるため、嫌気性消化槽34に当初貯留された消化汚泥量を増加させることはない。また、オゾン処理において消化汚泥108と濃縮余剰汚泥110とを混合させても、嫌気性消化槽34に投入するオゾン処理汚泥103の液量は濃縮余剰汚泥110を投入する場合と同じになる。
 なお、以上ではオゾン処理汚泥103がオゾン処理汚泥槽13に貯留されていない場合にオゾン処理に消化汚泥108を利用する構成としたがこれに限るものではない。オゾン処理汚泥103がオゾン処理汚泥槽13に貯留されていない場合、余剰汚泥100をオゾン処理汚泥槽13に貯留し、オゾンガスを散気装置などにより貯留した余剰汚泥100に注入してオゾン処理汚泥103をオゾン処理汚泥槽13の中で生成する構成でも構わない。
 以上のように、実施の形態5による汚泥処理装置では、オゾン処理汚泥103がオゾン処理汚泥槽13に貯留されていない場合に嫌気性消化槽34から引き抜いた消化汚泥108を低粘度溶液として利用する構成としたため、嫌気性消化槽34に濃縮余剰汚泥110以外に新たに追加して投入されるものがなく、嫌気性消化槽34に貯留された消化汚泥108の濃度の希釈が抑制され、効率よく減容化処理を行うことができる。
実施の形態6.
 実施の形態6に係る汚泥処理装置205について説明する。図13は、実施の形態6に係る下水処理装置の一部である汚泥処理装置の構成概要を示す模式図である。実施の形態6に係る汚泥処理装置205は、実施の形態2の汚泥処理装置202に圧力計20、流量計21を設けて、汚泥処理装置205の運転動力が一定になる制御を行う構成になっている。
 混合汚泥供給配管8に、配管内部の圧力を計測する圧力計20と、混合汚泥102の流速を計測する流量計21が設けられる。圧力計20と流量計21による計測値は制御装置22に伝えられる。また、制御装置22は余剰汚泥供給ポンプ4とオゾンガス発生器12とオゾン処理汚泥循環ポンプ17とを制御する。
 圧力計20と流量計21を利用した汚泥処理装置205の制御について説明する。エジェクタ9の内部での微細なオゾンガス気泡を生成は、狭小部9aを流れる混合汚泥102の流速とエジェクタ9に注入するオゾンガス104の流量の制御により行われる。混合汚泥102の流速は、流量計21を用いて計測することができる。また、エジェクタ9を流れる混合汚泥102の粘度に起因した、流速に係る流れ易さは、圧力計20を用いて計測できる。すなわち、圧力計20と流量計21の値がそれぞれ一定となるように制御すれば、汚泥処理装置205を一定の運転動力で稼働することができる。圧力計20および流量計21の計測値をもとに、制御装置22は余剰汚泥槽1から混合槽3に供給される貯留汚泥の流量と、オゾン処理汚泥槽13から混合槽3に供給されるオゾン処理汚泥103の流量とを制御する。
 貯留汚泥の濃度が上昇した場合の具体的な制御手順を説明する。汚泥処理装置205の稼働時に貯留汚泥の濃度が上昇すると、エジェクタ9を通過する混合汚泥102の濃度が上昇するため、狭小部9aで混合汚泥102が抵抗となり圧力計20で計測する圧力値が上昇し、流量計21で計測する流量値が低下する。混合槽3内のオゾン処理汚泥103の比率を高めることで、変動した圧力値と流量値を通常の稼働時の値に改善することができるため、制御装置22が余剰汚泥供給ポンプ4を制御して余剰汚泥供給ポンプ4の流量を下げて混合槽3に供給する貯留汚泥の量を低下させ、混合槽3内のオゾン処理汚泥103の比率を高める。また、制御装置22がオゾン処理汚泥循環ポンプ17を制御して、オゾン処理汚泥循環ポンプ17の流量を上げて混合槽3に流出されるオゾン処理汚泥103の量を増加させる制御を行うことでも、混合槽3内のオゾン処理汚泥103の比率を高めることができる。もしくは双方の制御を並行して実施しても構わない。
 さらに、混合汚泥102の流量に応じてオゾンガス発生器12からエジェクタ9に注入するオゾンガス104の濃度および流量を変化させる制御を行うことで、使用するオゾン量を最適化して効率よく余剰汚泥100の減容化処理を行うことができる。
 以上のように、実施の形態6による汚泥処理装置205では、混合汚泥供給配管8に設けた圧力計20および流量計21の計測値をもとに、余剰汚泥槽1から混合槽3に供給される貯留汚泥の流量とオゾン処理汚泥槽13から混合槽3に供給されるオゾン処理汚泥103の流量を制御する構成としたため、汚泥処理に要する運転動力を安定して一定の値に保つことができる。
 また本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 余剰汚泥槽、2 余剰汚泥供給配管、3 混合槽、4 余剰汚泥供給ポンプ、5 低粘度溶液槽、6 低粘度溶液供給配管、7 低粘度溶液供給ポンプ、8 混合汚泥供給配管、9 エジェクタ、9a 狭小部、10 混合汚泥供給ポンプ、11 オゾン供給配管、12 オゾンガス発生器、13 オゾン処理汚泥槽、14 オゾン処理汚泥流入配管、15 オゾン処理汚泥流出配管、16 オゾン処理汚泥循環配管、17 オゾン処理汚泥循環ポンプ、18 混合機、19 連結部、20 圧力計、21 流量計、22 制御装置、31 曝気槽、32 沈殿槽、33 濃縮機、34 嫌気性消化槽、35 脱水機、36 第1の余剰汚泥貯留配管、37 第2の余剰汚泥貯留配管、38 第3の余剰汚泥貯留配管、39 消化汚泥循環配管、100 余剰汚泥、101 低粘度溶液、102 混合汚泥、103 オゾン処理汚泥、104 オゾンガス、105 下水、106 処理水、107 返送汚泥、108 消化汚泥、109 減容した汚泥、110 濃縮余剰汚泥、200 汚泥処理装置、300 下水処理装置、301 水処理装置、302 脱水処理装置

Claims (12)

  1.  下水を処理して処理水を得る水処理装置と、
    前記処理において発生した余剰汚泥の量を低減する減容化処理を行う脱水処理装置と、
    前記処理において発生した余剰汚泥の量および/または前記減容化処理において発生した濃縮余剰汚泥の量を低減する汚泥処理装置と、から構成される下水処理装置であって、
    前記汚泥処理装置は、前記余剰汚泥および/または前記濃縮余剰汚泥を貯留汚泥として貯留する余剰汚泥槽と、
    オゾンガスを発生するオゾンガス発生器と、
    低粘度溶液と前記余剰汚泥槽から供給される前記貯留汚泥とを混合して混合汚泥を生成する混合部と、
    前記混合部から流出される前記混合汚泥に前記オゾンガスを注入してオゾン処理汚泥を生成するエジェクタと、
    前記エジェクタから流出される前記オゾン処理汚泥を貯留するオゾン処理汚泥槽と、を備え、前記低粘度溶液は前記貯留汚泥よりも粘度が低い溶液であることを特徴とする下水処理装置。
  2.  前記混合部に供給される前記低粘度溶液を貯留する低粘度溶液槽を備えたことを特徴とする請求項1に記載の下水処理装置。
  3.  前記混合部と前記オゾン処理汚泥槽とがオゾン処理汚泥循環配管で連結され、
    前記オゾン処理汚泥が前記低粘度溶液として前記混合部に供給されることを特徴とする請求項1に記載の下水処理装置。
  4.  前記混合部は前記貯留汚泥と前記低粘度溶液とを撹拌または循環させて前記混合汚泥を生成する混合槽であることを特徴とする請求項1から請求項3のいずれか1項に記載の下水処理装置。
  5.  前記混合部は前記貯留汚泥と前記低粘度溶液とを機械的な機構を利用して前記混合汚泥を生成する混合機であることを特徴とする請求項1から請求項3のいずれか1項に記載の下水処理装置。
  6.  前記混合機はスタティックミキサーであることを特徴とする請求項5に記載の下水処理装置。
  7.  前記混合部と前記エジェクタとが混合汚泥供給配管で連結され、
    前記混合汚泥供給配管に設けた圧力計および流量計の計測値をもとに、
    前記余剰汚泥槽から前記混合部に供給される前記貯留汚泥の流量、および/または前記オゾン処理汚泥槽から前記混合部に供給される前記オゾン処理汚泥の流量を制御する制御装置を備えたことを特徴とする請求項3に記載の下水処理装置。
  8.  前記余剰汚泥槽が貯留する前記余剰汚泥は、前記水処理装置において活性汚泥法により下水を前記余剰汚泥に処理する曝気槽および/または前記曝気槽から引き抜いた前記余剰汚泥から処理水を分離する沈殿槽から引き抜いた余剰汚泥であり、
    前記余剰汚泥槽が貯留する前記濃縮余剰汚泥は、前記脱水処理装置において前記沈殿槽から引き抜いた前記余剰汚泥を濃縮する濃縮機から引き抜いた濃縮余剰汚泥であることを特徴とする請求項1から請求項7のいずれか1項に記載の下水処理装置。
  9.  前記曝気槽と前記オゾン処理汚泥槽とが、前記オゾン処理汚泥を前記曝気槽に投入するオゾン処理汚泥流出配管で連結されたことを特徴とする請求項8に記載の下水処理装置。
  10.  前記脱水処理装置において前記濃縮余剰汚泥を消化汚泥で処理する嫌気性消化槽と前記オゾン処理汚泥槽とが、前記オゾン処理汚泥を前記嫌気性消化槽に投入するオゾン処理汚泥流出配管で連結されたことを特徴とする請求項8に記載の下水処理装置。
  11.  前記嫌気性消化槽と前記オゾン処理汚泥槽とが消化汚泥循環配管で連結され、
    前記混合部に供給される前記低粘度溶液は、前記嫌気性消化槽から前記オゾン処理汚泥槽に引き抜かれた前記消化汚泥であることを特徴とする請求項10に記載の下水処理装置。
  12.  低粘度溶液と、下水の処理において発生した余剰汚泥および/または濃縮余剰汚泥から構成される貯留汚泥とを混合して混合汚泥を生成するステップと、
    前記混合汚泥にオゾンガスから生成されたオゾンガス気泡を注入するステップと、
    前記混合汚泥に含まれる前記余剰汚泥および/または前記濃縮余剰汚泥を前記オゾンガス気泡で改質してオゾン処理汚泥を生成するステップと、を有し、
    前記低粘度溶液は前記貯留汚泥よりも粘度が低い溶液であることを特徴とする下水処理方法。
PCT/JP2019/003379 2019-01-31 2019-01-31 下水処理装置および下水処理方法 WO2020157914A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019528146A JP6594591B1 (ja) 2019-01-31 2019-01-31 下水処理装置および下水処理方法
SG11202105910WA SG11202105910WA (en) 2019-01-31 2019-01-31 Sewage treatment device and sewage treatment method
PCT/JP2019/003379 WO2020157914A1 (ja) 2019-01-31 2019-01-31 下水処理装置および下水処理方法
CN201980088816.5A CN113348151B (zh) 2019-01-31 2019-01-31 污水处理装置及污水处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003379 WO2020157914A1 (ja) 2019-01-31 2019-01-31 下水処理装置および下水処理方法

Publications (1)

Publication Number Publication Date
WO2020157914A1 true WO2020157914A1 (ja) 2020-08-06

Family

ID=68314135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003379 WO2020157914A1 (ja) 2019-01-31 2019-01-31 下水処理装置および下水処理方法

Country Status (4)

Country Link
JP (1) JP6594591B1 (ja)
CN (1) CN113348151B (ja)
SG (1) SG11202105910WA (ja)
WO (1) WO2020157914A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794598A (zh) * 2020-12-22 2021-05-14 广州环投设计研究院有限公司 一种氧化减量高效脱水的短程硝化污泥处理工艺
WO2022267282A1 (zh) * 2021-06-25 2022-12-29 上海城市水资源开发利用国家工程中心有限公司 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019497A (ja) * 2001-07-06 2003-01-21 Sumitomo Precision Prod Co Ltd 汚泥処理方法及びエジェクタ
JP2006305546A (ja) * 2005-03-29 2006-11-09 Yaskawa Electric Corp 汚水処理装置
JP2007136276A (ja) * 2005-11-15 2007-06-07 Yaskawa Electric Corp 汚水処理システム
JP2008221114A (ja) * 2007-03-12 2008-09-25 Yaskawa Electric Corp 燐分離装置と燐含有有機性廃水の処理方法およびその装置
EP2354096A1 (en) * 2010-02-08 2011-08-10 Prominent Italiana S.R.L. A method and a plant for reducing sludge produced in a water purification process
WO2015166784A1 (ja) * 2014-04-29 2015-11-05 三菱電機株式会社 汚泥処理装置および汚泥処理方法
WO2016185533A1 (ja) * 2015-05-18 2016-11-24 三菱電機株式会社 水処理システム及び水処理方法
JP2016209800A (ja) * 2015-05-01 2016-12-15 株式会社安川電機 余剰汚泥減量化装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724572B2 (ja) * 2002-03-15 2005-12-07 日立プラント建設株式会社 汚泥処理装置及びそれを備えた廃水処理装置
WO2017213024A1 (ja) * 2016-06-08 2017-12-14 三菱電機株式会社 汚泥処理装置および汚泥処理方法
CN206244624U (zh) * 2016-12-02 2017-06-13 泸州市聚源电力设备有限公司 臭氧微气泡污泥减量处理系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019497A (ja) * 2001-07-06 2003-01-21 Sumitomo Precision Prod Co Ltd 汚泥処理方法及びエジェクタ
JP2006305546A (ja) * 2005-03-29 2006-11-09 Yaskawa Electric Corp 汚水処理装置
JP2007136276A (ja) * 2005-11-15 2007-06-07 Yaskawa Electric Corp 汚水処理システム
JP2008221114A (ja) * 2007-03-12 2008-09-25 Yaskawa Electric Corp 燐分離装置と燐含有有機性廃水の処理方法およびその装置
EP2354096A1 (en) * 2010-02-08 2011-08-10 Prominent Italiana S.R.L. A method and a plant for reducing sludge produced in a water purification process
WO2015166784A1 (ja) * 2014-04-29 2015-11-05 三菱電機株式会社 汚泥処理装置および汚泥処理方法
JP2016209800A (ja) * 2015-05-01 2016-12-15 株式会社安川電機 余剰汚泥減量化装置
WO2016185533A1 (ja) * 2015-05-18 2016-11-24 三菱電機株式会社 水処理システム及び水処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794598A (zh) * 2020-12-22 2021-05-14 广州环投设计研究院有限公司 一种氧化减量高效脱水的短程硝化污泥处理工艺
WO2022267282A1 (zh) * 2021-06-25 2022-12-29 上海城市水资源开发利用国家工程中心有限公司 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法

Also Published As

Publication number Publication date
JPWO2020157914A1 (ja) 2021-02-18
CN113348151B (zh) 2023-05-09
JP6594591B1 (ja) 2019-10-23
CN113348151A (zh) 2021-09-03
SG11202105910WA (en) 2021-07-29

Similar Documents

Publication Publication Date Title
JP5916971B2 (ja) 汚泥処理装置および汚泥処理方法
JP4840563B2 (ja) 汚水処理装置
JP2007136276A (ja) 汚水処理システム
WO2020157914A1 (ja) 下水処理装置および下水処理方法
CN104787981A (zh) 一种dmto装置低bc比废水的深度处理方法及处理装置
KR20010056230A (ko) 일체식 타워형 수처리 장치 및 방법
US8758618B2 (en) Method and a device for biologically treating a contaminated liquid feedstock including a dispersible and digestible organic liquid phase
Sheldon et al. Treatment of paper mill effluent using an anaerobic/aerobic hybrid side-stream membrane bioreactor
JP2008018378A (ja) 有機性汚泥の処理方法および処理設備
JP6670192B2 (ja) 有機汚泥の処理方法及び処理装置
JP2010162463A (ja) 嫌気処理方法及び装置
WO2010134143A1 (ja) 汚泥の削減方法および削減装置
KR102005213B1 (ko) 탈수 전 슬러지 처리 방법
Moussavi et al. Effect of ozonation on reduction of volume and mass of waste activated sludge
KR101208683B1 (ko) 생활용수와 염수의 재활용 장치 및 방법
JP4666228B2 (ja) 汚泥処理装置
KR101346535B1 (ko) 유기성 폐기물 전처리 방법과 그 장치
KR100710488B1 (ko) 용존오존부상 및 가압오존산화와 생물처리를 연계한하폐수처리장치 및 방법
KR100902632B1 (ko) 오폐수처리장치 및 이를 이용한 오폐수처리방법
WO2001062676A1 (fr) Procede de traitement des eaux d'egout organiques
JP3971657B2 (ja) 有機性廃液の処理方法および処理装置
CN112119042A (zh) 将液体介质中的臭氧氧化分为三个单元操作用于工艺优化
JP4365617B2 (ja) 有機性廃液の処理方法および処理装置
JP2004275996A (ja) 汚泥減容方法
JP2004141865A (ja) 余剰汚泥のオゾン処理方法、及び余剰汚泥の処理装置、及び汚泥−オゾン混合器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019528146

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912902

Country of ref document: EP

Kind code of ref document: A1