WO2022267282A1 - 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法 - Google Patents
一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法 Download PDFInfo
- Publication number
- WO2022267282A1 WO2022267282A1 PCT/CN2021/126592 CN2021126592W WO2022267282A1 WO 2022267282 A1 WO2022267282 A1 WO 2022267282A1 CN 2021126592 W CN2021126592 W CN 2021126592W WO 2022267282 A1 WO2022267282 A1 WO 2022267282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sludge
- thin
- layer drying
- tank
- pipeline
- Prior art date
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 266
- 238000001035 drying Methods 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000006385 ozonation reaction Methods 0.000 title claims abstract description 5
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 73
- 238000006243 chemical reaction Methods 0.000 claims abstract description 68
- 230000003750 conditioning effect Effects 0.000 claims abstract description 67
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 61
- 239000007789 gas Substances 0.000 claims description 45
- 239000006228 supernatant Substances 0.000 claims description 27
- 230000003647 oxidation Effects 0.000 claims description 24
- 238000007254 oxidation reaction Methods 0.000 claims description 24
- 238000005273 aeration Methods 0.000 claims description 19
- 230000018044 dehydration Effects 0.000 claims description 11
- 238000006297 dehydration reaction Methods 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- 208000005156 Dehydration Diseases 0.000 description 10
- 230000001143 conditioned effect Effects 0.000 description 10
- 229920002401 polyacrylamide Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000008394 flocculating agent Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/06—Treatment of sludge; Devices therefor by oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/121—Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
- C02F11/122—Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/13—Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/14—Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
- C02F11/148—Combined use of inorganic and organic substances, being added in the same treatment step
Definitions
- the invention relates to the technical field of sludge treatment, in particular to an excess sludge treatment device and method combined with micro-bubble ozone oxidation and thin-layer drying.
- Thin-layer sludge drying as a new type of sludge mechanical dehydration method, can reduce the moisture content of sludge to below 50%, but there is a lack of pretreatment measures to stabilize and reduce sludge, resulting in sludge resources The degree of utilization is low.
- the object of the present invention is to provide a residual sludge treatment device and method that combines micro-bubble ozone oxidation and thin-layer drying, by using the ozone process as the pretreatment of the thin-layer drying technology
- the method realizes the purpose of stabilization and reduction of sludge, and at the same time improves the oxidation efficiency of ozone in the process of sludge treatment.
- the present invention provides a kind of excess sludge treatment device combined with micro-bubble ozone oxidation and thin layer drying, comprising:
- the sludge reaction tank (1) is used to send the remaining sludge entering the sludge reaction tank (1) into the pre-conditioning tank (4) after reacting with ozone gas microbubbles to circulate with it;
- Pre-conditioning tank (4) used for pre-treating the sludge treated in the sludge reaction tank (1), and feeding the pre-treated sludge into the conditioning tank (5);
- Conditioning tank (5) used for using flocculant to condition the sludge entering the conditioning tank (5) to form concentrated sludge
- Plate and frame filter press (7) used to dehydrate the sludge entering the plate and frame filter press (7), and send the dehydrated sludge to the thin layer dryer (9) for thin layer drying drying;
- the thin-layer drying machine (9) is used for thin-layer drying of the sludge fed through the plate-and-frame filter press (7) using the hot water vapor generated by the steam generating device.
- the excess sludge treatment device further includes a microbubble generator (2) and a circulating pump (12), and one side of the microbubble generator (2) is connected to the sludge reaction tank (1) through a return line , the other side is connected to the circulation pump (12) through the return pipeline, and the other side of the circulation pump (12) is connected to the sludge reaction tank (1) through the gas pipeline.
- a microbubble generator (2) is connected to the sludge reaction tank (1) through a return line
- the other side is connected to the circulation pump (12) through the return pipeline
- the other side of the circulation pump (12) is connected to the sludge reaction tank (1) through the gas pipeline.
- the excess sludge treatment device further includes an ozone generator (3), one side of the ozone generator (3) is connected to the microbubble generator (2) through a gas pipeline, and the other side is connected to the microbubble generator (2) through a gas pipeline.
- the tubing is connected to an oxygen source.
- the tail gas generated after the ozone aeration in the sludge reaction tank (1) enters the biochemical tank through the gas pipeline for aeration, and the remaining sludge in it is separated from the mud and water, and the supernatant produced is passed through the pipeline Return to the biochemical pool.
- the pre-conditioning tank (4) sends sludge with a moisture content of about 97% to the conditioning tank (5) after pre-conditioning, and the supernatant after sludge-water separation is returned to the biochemical tank through pipelines.
- the thin-layer drying machine (9) is connected to the steam generating device (8) through a gas pipeline, and the steam generating device (8) supplies hot water vapor to the thin-layer drying machine (9) through a pipeline, and the In the thin-layer drying machine (9), it is heated and dried by hot water vapor, and the supernatant liquid treated by the thin-layer drying machine (9) is returned to the biochemical pool through the pipeline.
- the excess sludge treatment device further includes a condenser (6), one side of which is connected to the thin-layer drying machine (9) through a gas pipeline, and the thin-layer drying machine (9) produces The water vapor is condensed by the condenser (6) to form condensed water and sent to the biochemical pool.
- a condenser (6) one side of which is connected to the thin-layer drying machine (9) through a gas pipeline, and the thin-layer drying machine (9) produces The water vapor is condensed by the condenser (6) to form condensed water and sent to the biochemical pool.
- the present invention also provides a method for treating excess sludge combined with microbubble ozone oxidation and thin layer drying, comprising the following steps:
- Step S1 the remaining sludge entering the sludge reaction tank (1) is sent to the pre-conditioning tank (4) after reacting with ozone gas microbubbles to circulate with it;
- Step S2 using the preconditioning tank (4) to pretreat the sludge treated in the sludge reaction tank (1), and put the pretreated sludge into the conditioning tank (5);
- Step S3 use a flocculant in the conditioning tank (5) to condition the sludge entering the conditioning tank (5) to form concentrated sludge and send it to the plate and frame filter press (7);
- Step S4 dehydrating the sludge entering the plate and frame filter press, and sending the dehydrated sludge into a thin-layer drying machine (9) for thin-layer drying;
- Step S5 drying the sludge fed through the plate-and-frame filter press (7) in the thin-layer drying machine (9) using hot water steam.
- step S1 the excess sludge with a moisture content of about 99-99.5% is passed into the sludge reaction tank (1) to allow it to stay in the sludge reaction tank (1) for 2- 3h, and then continue to aerate it with ozone through a microbubble generator (2), so that the remaining sludge in the sludge reaction tank (1) realizes sludge-water separation.
- the present invention returns the supernatant in the sludge reaction tank, pre-conditioning tank, conditioning tank and plate-and-frame filter press to the biochemical tank, thereby improving the resource utilization rate of the sludge.
- the present invention uses ozone micro-bubble oxidation as a thin-layer drying pretreatment process to break the sludge cells to dissolve them and improve the drying performance of the sludge.
- the present invention utilizes the micro-bubble generator to carry out ozone aeration, improves the utilization rate of ozone, and makes ozone fully react with sludge. Compared with the prior art, the amount of ozone is reduced, and sludge can be reduced by pretreatment with a small amount of ozone emissions and reduce costs.
- Fig. 1 is a structure diagram of a residual sludge treatment device combined with micro-bubble ozone oxidation and thin-layer drying of the present invention
- Fig. 2 is a sludge recycling flow chart of an excess sludge treatment device combined with excess sludge ozonation and thin-layer drying according to the present invention
- Fig. 3 is a flow chart of the steps of the residual sludge treatment method of a kind of combined micro-bubble ozonation and thin-layer drying of the present invention
- Fig. 4 is an application environment layout diagram of a surplus sludge treatment device combined with micro-bubble ozone oxidation and thin-layer drying in an embodiment of the present invention.
- Embodiment 1 Through the mud inlet pipe, the remaining sludge with a moisture content of about 99% is passed into the sludge reaction tank 1, so that it stays in the sludge reaction tank 1 for 2 hours, and the amount of ozone added is related to the quality of the sludge The ratio range is about 1:400.
- the tail gas After the aeration is over, the tail gas enters the biochemical tank through the gas pipeline for aeration, the remaining sludge is separated from the mud and water, and the supernatant is returned to the biochemical tank through the pipeline.
- the aerated sludge enters the pre-conditioning tank 4 through the pipeline, and is washed with the effluent of the biochemical tank.
- the sludge is separated from the mud and water, and the supernatant is returned to the biochemical tank through the pipeline.
- the preconditioned sludge enters the conditioning tank 5 through the pipeline, and is conditioned by adding flocculants. After conditioning, the sludge is separated from sludge and water, and the supernatant is returned to the biochemical tank through the pipeline.
- the conditioned sludge enters the plate and frame filter press 7 through the pipeline for dehydration.
- the sludge exiting the plate and frame filter press 7 enters the thin-layer drying machine 9 and uses the water vapor generated by the hot water boiler for drying. After drying, the sludge is transported outside for disposal, and the supernatant is returned to the biochemical pool through the pipeline. .
- the water vapor enters the condenser 6, forms condensed water and returns to the biochemical pool through the pipeline.
- Ozone is a strong oxidizing gas that can kill organisms by destroying the cell walls of microorganisms and dissolve intracellular substances. Therefore, the present invention uses the ozone process as the pretreatment method of the thin-layer drying technology, and releases the proteoglycan in the sludge through the ozone cracking and lysing technology, which can realize the stabilization of the sludge; The liquid or the cracked sludge is returned to the biochemical system, and the reduction of sludge is realized through recessive growth.
- Fig. 1 is a structural diagram of an excess sludge treatment device combined with micro-bubble ozone oxidation and thin-layer drying according to the present invention.
- a kind of excess sludge treatment device of the present invention combines microbubble ozone oxidation and thin layer drying, comprises:
- Sludge reaction tank 1 one side of which is connected to the mud inlet pipe of excess sludge, and the other side is connected to pre-conditioning tank 4, and the excess sludge entering sludge reaction tank 1 is used in the sludge reaction tank 1 to utilize ozone
- the gas microbubbles circulate and react with them, and then are sent to the pre-conditioning tank 4 .
- the sludge reaction tank 1 is connected with the microbubble generator 2 and the circulation pump 12 through the return line, and in the reaction process, the ozone gas produced by the microbubble generator 2 is continuously discharged by the circulation pump 12.
- the microbubbles and the remaining sludge are circulated into the sludge reaction tank 1.
- one side of the microbubble generator 2 is connected to the sludge reaction tank 1 through the return pipeline, and the other side is connected to the circulation pump 12 through the return pipeline.
- the other side of the circulation pump 12 is connected to the sludge reaction tank 1 through a gas pipeline, and the circulation pump 12 continuously and cyclically draws the remaining sludge entering the sludge reaction tank 1 into the microbubble generator 2 and the microbubble generator 2 to generate After the ozone gas is mixed, it is sent into the sludge reaction tank 1.
- the ozone gas used by the microbubble generator 7 is produced by the oxidation of oxygen in the ozone generator 3. Specifically, the ozone generator 3, one side passes through the gas pipe The airway is connected with the microbubble generator 2, and the other side is connected with the oxygen source through the gas pipeline. Bubble generator 2.
- one side of the sludge reaction tank 1 passes through the sludge inlet pipe, and the remaining sludge with a moisture content of about 99 ⁇ 99.5% is passed into the sludge reaction tank 1, so that it stays in the sludge reaction tank 1 for 2- 3h, and then continuously carry out ozone aeration through the micro-bubble generator 2, preferably, the mass ratio range of the ozone dosage and the sludge is about 1:800 ⁇ 1:400, thereby the remaining sludge in the sludge reaction tank 1
- the sludge realizes the separation of mud and water, and the separated sludge is sent to the preconditioning tank 4 .
- the tail gas produced enters the biochemical tank through the gas pipeline for aeration, and after the remaining sludge in the sludge reaction tank 1 is separated from the mud and water, the supernatant is passed through
- the pipeline returns to the biochemical tank 10, as shown in Figure 2, the sludge enters the sedimentation tank (11) after biochemical treatment in the biochemical tank (10), and the remaining sludge after the treatment in the sedimentation tank (11) enters the sludge reaction tank ( 1).
- the pre-conditioning tank 4 is connected to the sludge reaction tank 1 through a pipeline on one side, and connected to the conditioning tank 5 through a pipeline on the other side, which is used for pretreatment of the sludge treated in the sludge reaction tank 1, and the pretreatment Afterwards, the sludge enters the conditioning tank 5.
- the pre-conditioning tank 4 is also connected to the biochemical tank through a pipeline, and the sludge treated by the ozone aeration of the sludge reaction tank 1 enters the pre-conditioning tank 4 through the pipeline, and can use the biochemical tank effluent for elutriation . After the elutriation, the sludge is separated from the mud and water, the supernatant is returned to the biochemical tank through the pipeline, and the preconditioned sludge enters the conditioning tank 5 through the pipeline.
- the conditioning tank 5 is connected to the pre-conditioning tank 4 through pipelines on one side, and connected to the plate-and-frame filter press 7 through pipelines on the other side, which is used to condition the sludge entering the conditioning tank 5 with a flocculant to form concentrated sludge.
- the pre-conditioned sludge enters the conditioning tank through a pipeline, and is conditioned by adding a flocculant.
- the sludge is separated from sludge and water, and the formed concentrated sludge enters the plate-and-frame filter press 7 through a pipeline, and the resulting supernatant
- the liquid is returned to the biochemical pool through the pipeline, and the flocculant can be PAC (poly aluminum chloride, polyaluminum chloride) and PAM (polyacrylamide), or PAM one.
- Plate and frame filter press 7 one side is connected to the conditioning tank 5 through pipelines, and the other side is connected to the thin layer dryer through pipelines, which is used to dehydrate the sludge entering the plate and frame filter press, and dehydrate the sludge after dehydration
- the sludge is sent into the thin layer drying machine 9 for thin layer drying.
- the conditioned sludge enters the plate-and-frame filter press 7 through a pipeline, and is dehydrated in the plate-and-frame filter press 7, and the generated compressed liquid is returned to the biochemical pool through the pipeline.
- the sludge exiting the plate and frame filter press 7 enters the thin-layer drying machine 9 and uses hot water vapor for thin-layer drying.
- One side of the thin-layer drying machine 9 is connected to the plate-and-frame filter press through pipes, and is used for thin-layer drying of the sludge fed through the plate-and-frame filter press 7 by using the hot water vapor generated by the steam generating device.
- the hot water vapor generated by the steam generating device 8 enters the thin-layer dryer 9 to dehydrate the sludge entering the thin-layer dryer 9, and after the dehydration treatment by the thin-layer dryer 9
- the sludge is transported outside for disposal after being discharged from the sludge outlet.
- the excess sludge treatment device of the present invention also includes a condenser 6, one side of which is connected to a thin-layer drying machine 9 through a gas pipeline, and is dried through a thin layer.
- the water vapor from the chemical machine 9 is condensed by the condenser 6 to form condensed water and sent to the biochemical pool.
- the steam generating device 8 can be a hot water boiler, one side of which uses natural gas, electricity, and steam as energy sources, and the other side supplies hot water to the thin-layer dryer 9 through pipelines.
- Fig. 3 is a step flow chart of a method for treating excess sludge combined with microbubble ozone oxidation and thin-layer drying according to the present invention.
- a method for treating residual sludge combined with micro-bubble ozone oxidation and thin-layer drying of the present invention comprises the following steps:
- step S1 the excess sludge entering the sludge reaction tank 1 is sent to the pre-conditioning tank 4 after being reacted with ozone gas micro-bubbles.
- one side of the sludge reaction tank 1 is connected to the sludge inlet pipe of the excess sludge, and the other side is connected to the preconditioning tank 4, and the sludge reaction tank 1 is connected to the microbubble through the return line.
- the generator 2 and the circulation pump 12 are connected. During the reaction process, the ozone gas microbubbles produced by the microbubble generator 2 are continuously sent into the sludge reaction tank 1 together with the circulating residual sludge by the circulation pump 12.
- the microbubble One side of the bubble generator 2 is connected to the sludge reaction tank 1 through the return pipeline, the other side is connected to the circulation pump 12 through the return pipeline, and the other side of the circulation pump 12 is connected to the ozone generator through the gas pipeline, and the circulation pump 12 Continuously cyclically extract the remaining sludge entering the sludge reaction tank 1 and send it to the micro-bubble generator 2 to mix with the ozone gas generated by the micro-bubble generator 2 and then send it into the sludge reaction tank 1.
- the ozone used by the micro-bubble generator 7 The gas is produced by oxidation of oxygen in the ozone generator 8.
- the ozone generator 3 is connected to the microbubble generator 2 through a gas pipeline on one side, and the other side is connected to an oxygen source through a gas pipeline.
- the oxygen that enters the ozone generator 3 from the oxygen source is oxidized in the ozone generator 8 to generate ozone and enters the microbubble generator 2 through the gas pipeline.
- one side of the sludge reaction tank 1 passes through the sludge inlet pipe, and the remaining sludge with a moisture content of about 99 ⁇ 99.5% is passed into the sludge reaction tank 1, so that it stays in the sludge reaction tank 1 for 2- 3h, and then continue ozone aeration through the micro-bubble generator 2, the mass ratio range of ozone dosage to sludge is about 1:800 ⁇ 1:400, so that the remaining sludge in the sludge reaction tank 1 realizes mud-water separation , and the separated sludge is sent to the pre-conditioning tank 4.
- the tail gas produced enters the biochemical tank through the gas pipeline for aeration, and after the remaining sludge in the sludge reaction tank 1 is separated from the mud and water, the supernatant is passed through Pipeline returns to biochemical tank.
- step S2 the preconditioning tank 4 is used to pretreat the sludge treated in the sludge reaction tank 1 , and the pretreated sludge enters the conditioning tank 5 .
- one side of the pre-conditioning tank 4 is connected to the sludge reaction tank 1 through a pipeline, and the other side is connected to the conditioning tank 5 through a pipeline, and the pre-conditioning tank 4 is also connected to the biochemical tank through a pipeline.
- the sludge treated by ozone aeration in the tank 1 enters the preconditioning tank 4 through the pipeline, and can use the effluent of the biochemical tank for elutriation. After the elutriation, the sludge is separated from the mud and water, the supernatant is returned to the biochemical tank through the pipeline, and the preconditioned sludge enters the conditioning tank 5 through the pipeline.
- Step S3 use flocculant in the conditioning tank 5 to condition the sludge entering the conditioning tank 3 to form concentrated sludge and send it to the plate and frame filter press 7 .
- one side of the conditioning tank 5 is connected to the pre-conditioning tank 4 through a pipeline, and the other side is connected to the plate-and-frame filter press 7 through a pipeline, and the preconditioned sludge with a moisture content of about 97% enters the conditioning tank 5 through the pipeline.
- add flocculant for conditioning After entering the tank, add flocculant for conditioning.
- the sludge After the conditioning, the sludge is separated from mud and water.
- the formed concentrated sludge enters the plate and frame filter press 7 through the pipeline, and the resulting supernatant is returned to the biochemical tank through the pipeline.
- the agent can be PAC (poly aluminum chloride, polyaluminum chloride) and PAM (polyacrylamide), or PAM one.
- step S4 the sludge entering the plate and frame filter press 7 is dehydrated, and the dehydrated sludge is sent to the thin-layer drying machine 9 for thin-layer drying.
- one side of the plate and frame filter press 7 is connected to the conditioning tank 5 through a pipeline, and the other side is connected to the thin layer dryer 9 through a pipeline, and the conditioned sludge enters the plate and frame filter press through the pipeline.
- pressing and dehydration are carried out in the plate and frame filter press 7.
- step S5 the sludge dehydrated by the plate and frame filter press 7 is dried in a thin layer in the thin layer drying machine 9 by using the hot water steam generated by the steam generating device.
- one side of the thin layer drying machine 9 is connected to the plate and frame filter press through a pipeline, and the steam generating device 8 is connected with the pipeline, and the hot water vapor generated by the steam generating device 8 enters the thin layer drying machine.
- the dehydration machine 9 dehydrates the sludge, and the sludge dehydrated by the thin-layer drying machine 9 is transported outside for disposal after being discharged from the sludge outlet.
- the excess sludge treatment device of the present invention also includes a condenser 6, One side is connected to the thin-layer dryer 9 through the gas pipeline, and the water vapor from the thin-layer dryer 9 is condensed by the condenser 6 to form condensed water and sent to the biochemical pool.
- the treated supernatant is returned to the biochemical pool through the pipeline.
- the steam generating device 8 may be a hot water boiler, one side of which uses natural gas, electricity, and steam as energy sources, and the other side supplies hot water to the plate and frame filter press 7 through pipelines.
- Fig. 4 is an application environment layout diagram of a surplus sludge treatment device combined with micro-bubble ozone oxidation and thin-layer drying in an embodiment of the present invention.
- the ozone generator 3 and the microbubble generator 2 are set in the ozone machine room, and the plate-and-frame filter press 7, thin-layer drying machine 9, condenser 6, and hot water boiler 8 are set in the dehydration machine room.
- Embodiment 1 Through the mud inlet pipe, the remaining sludge with a moisture content of about 99% is passed into the sludge reaction tank 1, so that it stays in the sludge reaction tank 1 for 2 hours, and the amount of ozone added is related to the quality of the sludge The ratio range is about 1:400.
- the tail gas After the aeration is over, the tail gas enters the biochemical tank through the gas pipeline for aeration, the remaining sludge is separated from the mud and water, and the supernatant is returned to the biochemical tank through the pipeline.
- the aerated sludge enters the pre-conditioning tank 4 through the pipeline, and is washed with the effluent of the biochemical tank.
- the sludge is separated from the mud and water, and the supernatant is returned to the biochemical tank through the pipeline.
- the preconditioned sludge enters the conditioning tank 5 through the pipeline, and is conditioned by adding flocculants. After conditioning, the sludge is separated from sludge and water, and the supernatant is returned to the biochemical tank through the pipeline.
- the conditioned sludge enters the plate and frame filter press 7 through the pipeline for dehydration.
- the sludge exiting the plate and frame filter press 7 enters the thin-layer drying machine 9 and uses the water vapor generated by the hot water boiler for drying. After drying, the sludge is transported outside for disposal, and the supernatant is returned to the biochemical pool through the pipeline. .
- the water vapor enters the condenser 6, forms condensed water and returns to the biochemical pool through the pipeline.
- Embodiment 2 Through the mud inlet pipe, the remaining sludge with a moisture content of about 99.5% is passed into the sludge reaction tank 1, so that it stays in the sludge reaction tank 1 for 3 hours, the amount of ozone added and the quality of the sludge The ratio range is about 1:800.
- the tail gas After the aeration is over, the tail gas enters the biochemical tank through the gas pipeline for aeration, the remaining sludge is separated from the mud and water, and the supernatant is returned to the biochemical tank through the pipeline.
- the aerated sludge enters the pre-conditioning tank 4 through the pipeline, and is washed with the effluent of the biochemical tank.
- the sludge is separated from the mud and water, and the supernatant is returned to the biochemical tank through the pipeline.
- the preconditioned sludge enters the conditioning tank 5 through the pipeline, and is conditioned by adding flocculants. After the conditioning, the sludge is separated from the sludge and water, and the supernatant is returned to the biochemical tank through the pipeline.
- the conditioned sludge enters the plate and frame filter press 7 through the pipeline for dehydration.
- the sludge exiting the plate and frame filter press 7 enters the thin-layer drying machine 9 and uses the water vapor generated by the hot water boiler for drying. After drying, the sludge is transported outside for disposal, and the supernatant is returned to the biochemical pool through the pipeline.
- the water vapor enters the condenser 6, forms condensed water and returns to the biochemical pool through the pipeline.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Treatment Of Sludge (AREA)
Abstract
本发明公开了一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法,该装置包括:污泥反应罐(1),用于将进入所述污泥反应罐(1)内的剩余污泥利用臭氧气体微气泡与之循环进行反应后送入预调理池(4);预调理池(4),用于对经过污泥反应罐(1)处理过后的污泥进行预处理,并将预处理过后的污泥进入调理池(5);调理池(5),用于利用絮凝剂对进入调理池(5)内的污泥进行调理形成浓缩污泥;板框压滤机(7),用于对进入所述板框压滤机(7)内的污泥进行脱水,并将脱水后的污泥送入薄层干化机(9)进行薄层干化;薄层干化机(9),用于对经板框压滤机(7)送入的污泥利用热水蒸气进行薄层干化。
Description
本发明涉及污泥处理技术领域,特别是涉及一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法。
随着我国社会经济与工业生产水平的不断进步,污水处理规模持续增加,剩余污泥的产量也进一步上升,但是目前对污泥的处理还存在较多不足之处。目前常见的处理流程是浓缩、脱水及消化,这种处理方法过程繁琐,处理成本高昂。
污泥薄层干化作为一种新型的污泥机械脱水方式,能将污泥含水率降到50%以下,但是缺少对污泥进行稳定化、减量化的预处理措施,导致污泥资源化利用程度低。
为克服上述现有技术存在的不足,本发明之目的在于提供一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法,通过将臭氧工艺作为薄层干化技术的预处理方法,实现污泥的稳定化与减量化的目的,同时在污泥处理过程中,提高了臭氧的氧化效率。
为达上述目的,本发明提供一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置,包括:
污泥反应罐(1),用于将进入所述污泥反应罐(1)内的剩余污泥利用臭氧气体微气泡与之循环进行反应后送入预调理池(4);
预调理池(4),用于对经过污泥反应罐(1)处理过后的污泥进行预处理,并将预处理过后的污泥进入调理池(5);
调理池(5),用于利用絮凝剂对进入调理池(5)内的污泥进行调理形成浓缩污泥;
板框压滤机(7),用于对进入所述板框压滤机(7)内的污泥进行脱水,并将脱水后的污泥送入薄层干化机(9)进行薄层干化;
薄层干化机(9),用于对经板框压滤机(7)送入的污泥利用蒸汽产生装置产生的热水蒸气进行薄层干化。
优选地,所述剩余污泥处理装置还包括微气泡发生器(2)、循环泵(12),所述微气泡发生器(2)一侧通过回流管路与污泥反应罐(1)连接,另一侧通过回流管路与循环泵(12)相连接,循环泵(12)另一侧通过气体管路与污泥反应罐(1)相连。
优选地,所述剩余污泥处理装置还包括臭氧发生器(3),所述臭氧发生器(3)一侧通过气体管路与所述微气泡发生器(2)连接,另一侧通过气体管路与氧气源相连。
优选地,所述污泥反应罐(1)中臭氧曝气结束后产生的尾气通过气体管路进入生化池进行曝气,其中的剩余污泥进行泥水分离后,产生的上清液则通过管道返回至生化池。
优选地,所述预调理池(4)经预调理后的将含水率约为97%的污泥送入调理池(5),泥水分离后的上清液通过管道返回至生化池。
优选地,所述薄层干化机(9)通过气体管道连接蒸汽产生装置(8),所述蒸汽产生装置(8)通过管道供给薄层干化机(9)热水蒸气,在所述薄层干化机(9)内,经过热水蒸气进行加热干化,经所述薄层干化机(9)处理后的上清液通过管道返回至生化池内。
优选地,所述剩余污泥处理装置还包括冷凝器(6),其一侧通过气体管路与所述薄层干化机(9)相连,所述薄层干化机(9)产生的水蒸气则经过所述冷凝器(6)冷凝处理后形成冷凝水送入生化池。
为达到上述目的,本发明还提供一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理方法,包括如下步骤:
步骤S1,将进入污泥反应罐(1)内的剩余污泥利用臭氧气体微气泡与之循环进行反应后送入预调理池(4);
步骤S2,利用所述预调理池(4)对经过所述污泥反应罐(1)处理过后的污泥进行预处理,并将预处理过后的污泥进入调理池(5)内;
步骤S3,于所述调理池(5)内利用絮凝剂对进入所述调理池(5)内污泥进行调理形成浓缩污泥送入板框压滤机(7);
步骤S4,对进入所述板框压滤机内的污泥进行脱水,并将脱水后的污泥送入薄层干化机(9)进行薄层干化;
步骤S5,于所述薄层干化机(9)内对经板框压滤机(7)送入的污泥利用热水蒸气进行薄层干化。
优选地,于步骤S1中,将含水率约为99~99.5%的剩余污泥通入所述污泥反应罐(1)中,使其在所述污泥反应罐(1)中停留2-3h,然后通过一微气泡发生器(2)对其持续进行臭氧曝气,从而污泥反应罐(1)中的剩余污泥实现泥水分离。
一、本发明将污泥反应罐、预调理池、调理池与板框压滤机中的上清液回流至生化池,提高了污泥的资源化利用率。
二、本发明将臭氧微气泡氧化作为薄层干化的预处理工艺,对污泥细胞进行破壁使其溶出,提高了污泥的干化性能。
三、本发明利用微气泡发生器进行臭氧曝气,提高了臭氧利用率,使臭氧与污泥充分反应,与现有技术相比,臭氧用量降低,用少量的臭氧预处理即可减少污泥排放量,降低成本。
图1为本发明一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置的架构图;
图2为本发明一种剩余污泥臭氧氧化与薄层干化联用的剩余污泥处理装置的污泥资源化流程图;
图3为本发明一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理方法的步骤流程图;
图4为本发明实施例中联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置的应用环境布置图。
实施例1:通过进泥管,将含水率约为99%的剩余污泥通入污泥反应罐1中,使其在污泥反应罐1中停留2h,臭氧投加量与污泥的质量比范围约为1:400。曝气结束后,尾气通过气体管路进入生化池进行曝气,剩余污泥进行泥水分离,上清液通过管道返回至生化池。经过曝气处理的污泥通过管道进入预调理池4内,使用生化池出水进行淘洗。淘洗结束后,污泥进行泥水分离,上清液通过管道返回至生化池。经过预调理的污泥通过管道进入调理池5内,加入絮凝剂进行调理。调理结束后,污泥进行泥水分离,上清液通过管道返回至生化池。经过调理的污泥通过管道进入板框压滤机7内,进行脱水。出板框压滤机7后的污泥进入薄层干化机9利用热水锅炉产生的水蒸气进行干化,干化结束后,污泥外运处置,上清液通过管道返回至生化池内。水蒸气进入冷凝器6,形成冷凝水后通过管道返回至生化池内。
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。
臭氧是一种具有强氧化性的气体,可以通过破坏微生物的细胞壁,杀死生物体,使胞内物质溶出。因此,本发明将臭氧工艺作为薄层干化技术的预处理方法,通过臭氧破解溶胞技术,使污泥内的蛋白多糖释放出来,可实现污泥的稳定化;同时本发明还将上清液或者是破解后的污泥回流至生化系统,通过隐性增长实现污泥的减量化。
图1为本发明一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置的架构图。如图1所示,本发明一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置,包括:
污泥反应罐1,其一侧与剩余污泥的进泥管连接,另一侧与预调理池4相连,在污泥反应罐1内将进入污泥反应罐1内的剩余污泥利用臭氧气体微气泡与之循环进行反应后送入预调理池4。
在本发明具体实施例中,污泥反应罐1通过回流管路与微气泡发生器2、循环泵12连接,在反应过程中,利用循环泵12持续地将微气泡发生器2产生的臭氧气体微气泡连同剩余污泥循环送入污泥反应罐1内,具体地,微气泡发生器2一侧通过回流管路与污泥反应罐1连接,另一侧通过回流管路与循环泵12相连接,循环泵12另一侧通过气体管路与污泥反应罐1相连,循环泵12持续循环地抽取进入污泥反应罐1的剩余污泥送入微气泡发生器2与微气泡发生器2产生臭氧气体混合后送入污泥反应罐1 内,微气泡发生器7所使用的臭氧气体是由臭氧发生器3内的氧气经过氧化产生的,具体地,臭氧发生器3,一侧通过气体管路与微气泡发生器2连接,另一侧通过气体管路与氧气源相连,本发明中,由氧气源进入臭氧发生器3的氧气在臭氧发生器3经过氧化产生臭氧通过气体管路进入微气泡发生器2。
具体地说,污泥反应罐1一侧通过进泥管,将含水率约为99~99.5%的剩余污泥通入污泥反应罐1中,使其在污泥反应罐1中停留2-3h,然后通过微气泡发生器2持续进行臭氧曝气,较佳地,臭氧投加量与污泥的质量比范围约为1:800~1:400,从而将污泥反应罐1中的剩余污泥实现泥水分离,分离后的污泥送入预调理池4。
优选地,当污泥反应罐1中臭氧曝气结束后,产生的尾气通过气体管路进入生化池进行曝气,污泥反应罐1中的剩余污泥进行泥水分离后,上清液则通过管道返回至生化池10,如图2所示,污泥在生化池(10)内生化处理后进入沉淀池(11),经过沉淀池(11)处理过后的剩余污泥进入污泥反应罐(1)。
预调理池4,一侧通过管道与污泥反应罐1连接,另一侧通过管道与调理池5相连,用于对经过污泥反应罐1处理过后的污泥进行预处理,并将预处理过后的污泥进入调理池5。
在本发明具体实施例中,预调理池4还通过管道连接生化池,经过污泥反应罐1的臭氧曝气处理的污泥通过管道进入预调理池4内,可使用生化池出水进行淘洗。淘洗结束后,污泥进行泥水分离,上清液通过管道返回至生化池,经过预调理的污泥通过管道进入调理池5内。
调理池5,侧通过管道与预调理池4连接,另一侧通过管道与板框压滤机7相连,用于利用絮凝剂对进入调理池5内污泥进行调理形成浓缩污泥。
具体地,经过预调理的污泥通过管道进入调理池内,加入絮凝剂进行调理, 调理结束后,污泥进行泥水分离,形成的浓缩污泥通过管道进入板框压滤机7,产生的上清液则通过管道返回至生化池,所述絮凝剂可以为PAC(poly
aluminum chloride,聚合氯化铝)和PAM(聚丙烯酰胺)两种,或者PAM一种。
板框压滤机7,一侧通过管道与调理池5连接,另一侧通过管道与薄层干化机相连,用于对进入板框压滤机内的污泥进行脱水,并将脱水后的污泥送入薄层干化机9进行薄层干化。
在本发明具体实施例中,经过调理的污泥通过管道进入板框压滤机7内,在板框压滤机7内进行脱水,产生的压缩液通过管道返回生化池内。出板框压滤机7后的污泥进入薄层干化机9利用热水蒸气进行薄层干化。
薄层干化机9, 一侧通过管道与板框压滤机相连,用于对经板框压滤机7送入的污泥利用蒸汽产生装置产生的热水蒸气进行薄层干化。
在本发明具体实施例中,利用蒸汽产生装置8产生的热水蒸气进入薄层干化机9,对进入薄层干化机9的污泥进行脱水,经薄层干化机9脱水处理过后的污泥经过出泥口出泥后外运处置,优选地,本发明之剩余污泥处理装置还包括冷凝器6,一侧通过气体管路与薄层干化机9相连,经薄层干化机9出来的水蒸气则经过冷凝器6冷凝处理后形成冷凝水送入生化池,同时,经薄层干化机9处理后的上清液通过管道返回至生化池内。在本发明具体实施例中,蒸汽产生装置8可以是热水锅炉,其一侧以天然气、电、蒸气为能源,另一侧通过管道供给薄层干化机9热水。
图3为本发明一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理方法的步骤流程图。如图3所示,本发明一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理方法,包括如下步骤:
步骤S1,将进入污泥反应罐1内的剩余污泥利用臭氧气体微气泡与之循环进行反应后送入预调理池4。
在本发明具体实施例中,将污泥反应罐1一侧与剩余污泥的进泥管连接,另一侧与预调理池4相连,并将污泥反应罐1通过回流管路与微气泡发生器2、循环泵12连接,在反应过程中,利用循环泵12持续地将微气泡发生器2产生的臭氧气体微气泡连同循环剩余污泥送入污泥反应罐1内,具体地,微气泡发生器2一侧通过回流管路与污泥反应罐1连接,另一侧通过回流管路与循环泵12相连接,循环泵12另一侧通过气体管路与臭氧发生器相连,循环泵12持续循环地抽取进入污泥反应罐1的剩余污泥送入微气泡发生器2与微气泡发生器2产生臭氧气体混合后送入污泥反应罐1 内,微气泡发生器7所使用的臭氧气体是由臭氧发生器8内的氧气经过氧化产生的,具体地,臭氧发生器3,一侧通过气体管路与微气泡发生器2连接,另一侧通过气体管路与氧气源相连,本发明中,由氧气源进入臭氧发生器3的氧气在臭氧发生器8经过氧化产生臭氧通过气体管路进入微气泡发生器2。
具体地说,污泥反应罐1一侧通过进泥管,将含水率约为99~99.5%的剩余污泥通入污泥反应罐1中,使其在污泥反应罐1中停留2-3h,然后通过微气泡发生器2持续进行臭氧曝气,臭氧投加量与污泥的质量比范围约为1:800~1:400,从而污泥反应罐1中的剩余污泥实现泥水分离,分离后的污泥送入预调理池4。
优选地,当污泥反应罐1中臭氧曝气结束后,产生的尾气通过气体管路进入生化池进行曝气,污泥反应罐1中的剩余污泥进行泥水分离后,上清液则通过管道返回至生化池。
步骤S2,利用预调理池4对经过污泥反应罐1处理过后的污泥进行预处理,并将预处理过后的污泥进入调理池5内。
在本发明具体实施例中,预调理池4一侧通过管道与污泥反应罐1连接,另一侧通过管道与调理池5相连,预调理池4还通过管道连接生化池,经过污泥反应罐1的臭氧曝气处理的污泥通过管道进入预调理池4内,可使用生化池出水进行淘洗。淘洗结束后,污泥进行泥水分离,上清液通过管道返回至生化池,经过预调理的污泥通过管道进入调理池5内。
步骤S3,于调理池5内利用絮凝剂对进入调理池3内污泥进行调理形成浓缩污泥送入板框压滤机7。
具体地,将调理池5一侧通过管道与预调理池4连接,另一侧通过管道与板框压滤机7相连,将经过预调理的含水率约为97%的污泥通过管道进入调理池内后,加入絮凝剂进行调理, 调理结束后,污泥进行泥水分离,形成的浓缩污泥通过管道进入板框压滤机7,产生的上清液则通过管道返回至生化池,所述絮凝剂可以为PAC(poly
aluminum chloride,聚合氯化铝)和PAM(聚丙烯酰胺)两种,或者PAM一种。
步骤S4,对进入板框压滤机7内的污泥进行脱水,并将脱水后的污泥送入薄层干化机9进行薄层干化。
在本发明具体实施例中,将板框压滤机7一侧通过管道与调理池5连接,另一侧通过管道与薄层干化机9相连,经过调理的污泥通过管道进入板框压滤机7内,在板框压滤机7内进行压榨脱水。
步骤S5,于薄层干化机9内对经板框压滤机7脱水后送入的污泥利用蒸汽产生装置产生的热水蒸气进行薄层干化。
在本发明具体实施例中,将薄层干化机9一侧通过管道与板框压滤机相连,并利用管道连接蒸汽产生装置8,利用蒸汽产生装置8产生的热水蒸气进入薄层干化机9对污泥进行脱水,经薄层干化机9脱水处理过后的污泥经过出泥口出泥后外运处置,优选地,本发明之剩余污泥处理装置还包括冷凝器6,一侧通过气体管路与薄层干化机9相连,薄层干化机9出来的水蒸气则经过冷凝器6冷凝处理后形成冷凝水送入生化池,同时,经薄层干化机9处理后的上清液通过管道返回至生化池内。在本发明具体实施例中,蒸汽产生装置8可以是热水锅炉,其一侧以天然气、电、蒸气为能源,另一侧通过管道供给板框压滤机7热水。
图4为本发明实施例中联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置的应用环境布置图。在本实施例中,臭氧发生器3与微气泡发生器2设置在臭氧机房,板框压滤机7、薄层干化机9、冷凝器6、热水锅炉8设置在脱水机房。
实施例1:通过进泥管,将含水率约为99%的剩余污泥通入污泥反应罐1中,使其在污泥反应罐1中停留2h,臭氧投加量与污泥的质量比范围约为1:400。曝气结束后,尾气通过气体管路进入生化池进行曝气,剩余污泥进行泥水分离,上清液通过管道返回至生化池。经过曝气处理的污泥通过管道进入预调理池4内,使用生化池出水进行淘洗。淘洗结束后,污泥进行泥水分离,上清液通过管道返回至生化池。经过预调理的污泥通过管道进入调理池5内,加入絮凝剂进行调理。调理结束后,污泥进行泥水分离,上清液通过管道返回至生化池。经过调理的污泥通过管道进入板框压滤机7内,进行脱水。出板框压滤机7后的污泥进入薄层干化机9利用热水锅炉产生的水蒸气进行干化,干化结束后,污泥外运处置,上清液通过管道返回至生化池内。水蒸气进入冷凝器6,形成冷凝水后通过管道返回至生化池内。
实施例2:通过进泥管,将含水率约为99.5%的剩余污泥通入污泥反应罐1中,使其在污泥反应罐1中停留3h,臭氧投加量与污泥的质量比范围约为1:800。曝气结束后,尾气通过气体管路进入生化池进行曝气,剩余污泥进行泥水分离,上清液通过管道返回至生化池。经过曝气处理的污泥通过管道进入预调理池4内,使用生化池出水进行淘洗。淘洗结束后,污泥进行泥水分离,上清液通过管道返回至生化池。经过预调理的污泥通过管道进入调理池5内,加入絮凝剂进行调理。调理结束后,污泥经行泥水分离,上清液通过管道返回至生化池。经过调理的污泥通过管道进入板框压滤机7内,进行脱水。出板框压滤机7后的污泥进入薄层干化机9利用热水锅炉产生的水蒸气进行干化,干化结束后,污泥外运处置,上清液通过管道返回至生化池内,水蒸气进入冷凝器6,形成冷凝水后通过管道返回至生化池内。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。
所属领域技术人员根据上文的记载容易得知,本发明技术方案适合在工业中制造并在生产、生活中使用,因此本发明具备工业实用性。
Claims (10)
- 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置,包括:污泥反应罐(1),用于将进入所述污泥反应罐(1)内的剩余污泥利用臭氧气体微气泡与之循环进行反应后送入预调理池(4);预调理池(4),用于对经过污泥反应罐(1)处理过后的污泥进行预处理,并将预处理过后的污泥进入调理池(5);调理池(5),用于利用絮凝剂对进入调理池(5)内的污泥进行调理形成浓缩污泥;板框压滤机(7),用于对进入所述板框压滤机(7)内的污泥进行脱水,并将脱水后的污泥送入薄层干化机(9)进行薄层干化;薄层干化机(9),用于对经板框压滤机(7)脱水后送入的污泥利用热水蒸气进行薄层干化。
- 如权利要求1所述的一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置,其特征在于:所述剩余污泥处理装置还包括微气泡发生器(2)、循环泵(12),所述微气泡发生器(2)一侧通过回流管路与污泥反应罐(1)连接,另一侧通过回流管路与循环泵(12)相连接,循环泵(12)另一侧通过气体管路与污泥反应罐(1)相连。
- 如权利要求2所述的一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置,其特征在于:所述剩余污泥处理装置还包括臭氧发生器(3),所述臭氧发生器(3)一侧通过气体管路与所述微气泡发生器(2)连接,另一侧通过气体管路与氧气源相连。
- 如权利要求2所述的一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置,其特征在于:所述污泥反应罐(1)中臭氧曝气结束后产生的尾气通过气体管路进入生化池进行曝气,其中的剩余污泥进行泥水分离后,产生的上清液则通过管道返回至生化池。
- 如权利要求2所述的一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置,其特征在于:所述预调理池(4)经预调理后的将含水率约为97%的污泥送入调理池(5),泥水分离后的上清液通过管道返回至生化池。
- 如权利要求2所述的一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置,其特征在于:在所述板框压滤机(7)内脱水后的污泥进入薄层干化机(9)进行薄层干化,产生的压缩液通过管道返回生化池内。
- 如权利要求6所述的一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置,其特征在于:所述薄层干化机(9)通过管道连接一蒸汽产生装置(8),利用所述蒸汽产生装置(8)产生的热水蒸气在薄层干化机(9)对污泥进行薄层干化脱水。
- 如权利要求7所述的一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置,其特征在于:所述剩余污泥处理装置还包括冷凝器(6),其一侧通过气体管路与所述薄层干化机(9)相连,所述薄层干化机(9)产生的水蒸气则经过所述冷凝器(6)冷凝处理后形成冷凝水送入生化池,经所述薄层干化机(9)处理后的上清液通过管道返回至生化池内。
- 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理方法,包括如下步骤:步骤S1,将进入污泥反应罐(1)内的剩余污泥利用臭氧气体微气泡与之循环进行反应后送入预调理池(4);步骤S2,利用所述预调理池(4)对经过所述污泥反应罐(1)处理过后的污泥进行预处理,并将预处理过后的污泥进入调理池(5)内;步骤S3,于所述调理池(5)内利用絮凝剂对进入所述调理池(5)内污泥进行调理形成浓缩污泥送入板框压滤机(7);步骤S4,对进入所述板框压滤机内的污泥进行脱水,并将脱水后的污泥送入薄层干化机(9)进行薄层干化;步骤S5,于所述薄层干化机(9)内对经板框压滤机(7)送入的污泥利用蒸汽产生装置产生的热水蒸气进行薄层干化。
- 如权利要求9所述的一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理方法,其特征在于,于步骤S1中,将含水率约为99~99.5%的剩余污泥通入所述污泥反应罐(1)中,使其在所述污泥反应罐(1)中停留2-3h,然后通过一微气泡发生器(2)对其持续进行臭氧曝气,从而污泥反应罐(1)中的剩余污泥实现泥水分离。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110713765.X | 2021-06-25 | ||
CN202110713765.XA CN113292215A (zh) | 2021-06-25 | 2021-06-25 | 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022267282A1 true WO2022267282A1 (zh) | 2022-12-29 |
Family
ID=77329686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/126592 WO2022267282A1 (zh) | 2021-06-25 | 2021-10-27 | 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113292215A (zh) |
WO (1) | WO2022267282A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113292215A (zh) * | 2021-06-25 | 2021-08-24 | 上海城市水资源开发利用国家工程中心有限公司 | 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法 |
CN114956499B (zh) * | 2022-04-29 | 2023-07-04 | 同济大学 | 一种有机污泥的臭氧化调理耦合水热快速稳定化处理工艺 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103011546A (zh) * | 2012-12-05 | 2013-04-03 | 上海巴安水务股份有限公司 | 一种两段式污泥干化及能量回收系统及其干化工艺 |
CN103011545A (zh) * | 2012-12-05 | 2013-04-03 | 上海巴安水务股份有限公司 | 一种污泥干化及能量回收系统及其能量回收干化工艺 |
CN104609693A (zh) * | 2014-12-29 | 2015-05-13 | 东莞市东元新能源科技有限公司 | 一种高浓度有机质污泥处理方法 |
WO2017213024A1 (ja) * | 2016-06-08 | 2017-12-14 | 三菱電機株式会社 | 汚泥処理装置および汚泥処理方法 |
CN207811525U (zh) * | 2017-10-30 | 2018-09-04 | 泸州市聚源电力设备有限公司 | 一种污泥无臭处理系统 |
CN110746069A (zh) * | 2019-09-29 | 2020-02-04 | 中原环资科技有限公司 | 一种污泥改性工艺 |
CN111072249A (zh) * | 2019-12-27 | 2020-04-28 | 广州中科建禹环保有限公司 | 一种污泥干化处理装置及干化方法 |
WO2020157914A1 (ja) * | 2019-01-31 | 2020-08-06 | 三菱電機株式会社 | 下水処理装置および下水処理方法 |
CN113292215A (zh) * | 2021-06-25 | 2021-08-24 | 上海城市水资源开发利用国家工程中心有限公司 | 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100413593B1 (ko) * | 2001-06-11 | 2003-12-31 | 금호산업주식회사 | 오존 처리에 의한 슬러지 감량화 및 재활용 시스템과 그방법 |
CN104649524B (zh) * | 2015-03-17 | 2016-06-29 | 山西澳科特环境工程有限公司 | 一种畜禽养殖污水处理方法 |
CN107892457B (zh) * | 2017-12-19 | 2023-06-09 | 上海城市水资源开发利用国家工程中心有限公司 | 一种污泥微气泡臭氧稳定化装置及方法 |
CN109052902B (zh) * | 2018-09-06 | 2022-02-08 | 西安墙体材料研究设计院有限公司 | 一种利用隧道窑余热干化污泥的方法 |
CN109399887A (zh) * | 2018-12-07 | 2019-03-01 | 中国矿业大学(北京) | 一种轧钢酸洗废水污泥资源化处理方法 |
CN211645010U (zh) * | 2019-09-29 | 2020-10-09 | 中原环资科技有限公司 | 一种污泥改性系统 |
CN110835184A (zh) * | 2019-11-27 | 2020-02-25 | 南通汇佰川工程技术有限公司 | 便捷式垃圾中转站污水处理及循环回用系统与方法 |
CN215403739U (zh) * | 2021-06-25 | 2022-01-04 | 上海城市水资源开发利用国家工程中心有限公司 | 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置 |
-
2021
- 2021-06-25 CN CN202110713765.XA patent/CN113292215A/zh active Pending
- 2021-10-27 WO PCT/CN2021/126592 patent/WO2022267282A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103011546A (zh) * | 2012-12-05 | 2013-04-03 | 上海巴安水务股份有限公司 | 一种两段式污泥干化及能量回收系统及其干化工艺 |
CN103011545A (zh) * | 2012-12-05 | 2013-04-03 | 上海巴安水务股份有限公司 | 一种污泥干化及能量回收系统及其能量回收干化工艺 |
CN104609693A (zh) * | 2014-12-29 | 2015-05-13 | 东莞市东元新能源科技有限公司 | 一种高浓度有机质污泥处理方法 |
WO2017213024A1 (ja) * | 2016-06-08 | 2017-12-14 | 三菱電機株式会社 | 汚泥処理装置および汚泥処理方法 |
CN207811525U (zh) * | 2017-10-30 | 2018-09-04 | 泸州市聚源电力设备有限公司 | 一种污泥无臭处理系统 |
WO2020157914A1 (ja) * | 2019-01-31 | 2020-08-06 | 三菱電機株式会社 | 下水処理装置および下水処理方法 |
CN110746069A (zh) * | 2019-09-29 | 2020-02-04 | 中原环资科技有限公司 | 一种污泥改性工艺 |
CN111072249A (zh) * | 2019-12-27 | 2020-04-28 | 广州中科建禹环保有限公司 | 一种污泥干化处理装置及干化方法 |
CN113292215A (zh) * | 2021-06-25 | 2021-08-24 | 上海城市水资源开发利用国家工程中心有限公司 | 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113292215A (zh) | 2021-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Enhancement of anaerobic digestion sludge dewatering performance using in-situ crystallization in combination with cationic organic polymers flocculation | |
WO2022267282A1 (zh) | 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法 | |
Pilli et al. | Pre-treatment technologies to enhance anaerobic digestion | |
CN105693029A (zh) | 垃圾渗滤液处理工艺 | |
CN103663840B (zh) | 一种丙烯腈及其聚合废水的处理方法 | |
CN105293845A (zh) | 一种污泥减量化的处理方法 | |
CN210048640U (zh) | 污泥热水解处理系统 | |
CN106746483A (zh) | 复合型污泥减量剂、制备方法及其应用 | |
CN105967292A (zh) | 一种污水用絮凝剂及其制备方法 | |
CN102134142A (zh) | 一种空间生保系统尿液废水处理装置及方法 | |
CN112661366B (zh) | 一种垃圾填埋场老龄渗滤液协同污泥脱水处理的方法与系统 | |
CN104891774A (zh) | 一种聚合氯化铝和超声联用技术对污泥处理的方法 | |
CN102616998B (zh) | 一种apmp制浆废水的处理装置 | |
CN110117149A (zh) | 一种催化氧化型污泥调理剂及污泥的调理方法 | |
WO2022267246A1 (zh) | 一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法 | |
CN106186638A (zh) | 微气泡/絮凝剂耦合强化污泥脱水性能的方法 | |
CN215403739U (zh) | 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置 | |
Bień et al. | Dewatering of sewage sludge treated by the combination of ultrasonic field and chemical methods | |
CN107540170B (zh) | 一种印染废水处理方法 | |
Song et al. | Improved degradation of anaerobically digested sludge during post aerobic digestion using ultrasonic pretreatment | |
CN112441714A (zh) | 一种污泥热水解-湿式氧化耦合处理方法 | |
CN103626365B (zh) | 一种利用剩余污泥碱中和能力调节碱预处理污泥pH的方法 | |
CN106746407B (zh) | 一种改善剩余污泥脱水性能的工艺 | |
CN110015803A (zh) | 一种碳化废水处理工艺技术 | |
CN112624545A (zh) | 一种厌氧消化污泥的处理方法和处理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21946764 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21946764 Country of ref document: EP Kind code of ref document: A1 |