WO2022267246A1 - 一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法 - Google Patents
一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法 Download PDFInfo
- Publication number
- WO2022267246A1 WO2022267246A1 PCT/CN2021/119232 CN2021119232W WO2022267246A1 WO 2022267246 A1 WO2022267246 A1 WO 2022267246A1 CN 2021119232 W CN2021119232 W CN 2021119232W WO 2022267246 A1 WO2022267246 A1 WO 2022267246A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sludge
- tank
- micro
- low
- biochemical
- Prior art date
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 186
- 238000001035 drying Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000006385 ozonation reaction Methods 0.000 title abstract 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 53
- 238000006243 chemical reaction Methods 0.000 claims abstract description 52
- 230000003750 conditioning effect Effects 0.000 claims abstract description 50
- 239000010865 sewage Substances 0.000 claims abstract description 27
- 238000004062 sedimentation Methods 0.000 claims abstract description 22
- 239000008394 flocculating agent Substances 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 239000007789 gas Substances 0.000 claims description 32
- 230000003647 oxidation Effects 0.000 claims description 31
- 238000007254 oxidation reaction Methods 0.000 claims description 31
- 230000018044 dehydration Effects 0.000 claims description 15
- 238000006297 dehydration reaction Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 239000006228 supernatant Substances 0.000 claims description 5
- 238000005273 aeration Methods 0.000 claims description 4
- 239000000706 filtrate Substances 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 229920002401 polyacrylamide Polymers 0.000 description 15
- 208000005156 Dehydration Diseases 0.000 description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000001291 vacuum drying Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/06—Treatment of sludge; Devices therefor by oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/121—Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
- C02F11/122—Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/13—Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/14—Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
- C02F11/148—Combined use of inorganic and organic substances, being added in the same treatment step
Definitions
- the invention relates to the technical field of sludge treatment, in particular to a device and method for combining micro-bubble ozone oxidation with low-temperature drying of sludge.
- Sewage treatment is the process of concentrating the impurities in sewage into semi-solid form and then separating them from the fluid.
- the separated paste concentrate is sludge.
- Sludge treatment has always been a difficult problem in the sewage treatment industry. Sludge treatment equipment accounts for about 40%-60% of the infrastructure investment of sewage treatment plants, and about 50% of the cost of sewage treatment plants is sludge treatment costs.
- the traditional sludge treatment method is to firstly dehydrate and dry the sludge, and then incinerate or landfill it. There are following disadvantages and difficulties in such processing method:
- the moisture content of the original sludge is as high as 95%, and it must be dehydrated and dried many times, requiring expensive dehydration and drying equipment, huge energy consumption, and a huge processing site;
- the object of the present invention is to provide a device and method that uses micro-bubble ozone oxidation combined with low-temperature drying sludge, and uses micro-bubble ozone oxidation combined with low-temperature drying sludge to treat sludge
- the treatment has the advantages of a large amount of excess sludge, short treatment procedures, and less use of chemicals. It can effectively reduce the sludge treatment process and the sludge odor after treatment, and improve resource utilization.
- the present invention provides a device that adopts microbubble ozone oxidation combined with low-temperature drying sludge, comprising: biochemical tank (16), sedimentation tank (17), sludge reaction tank (1), preconditioning tank ( 2), conditioning pool (3) and plate and frame dehydrator (4), add sewage in described biochemical pool (16), the sludge to be treated is produced by described biochemical pool (16), and sewage is in biochemical pool (16) ) enters the sedimentation tank (17) together with the generated sludge after undergoing biochemical treatment, the remaining sludge after the treatment in the sedimentation tank (17) enters the sludge reaction tank (1), and the remaining sludge enters the
- the sludge reaction tank (1) utilizes ozone gas microbubbles to circulate with it for reaction, and the sludge treated in the sludge reaction tank (1) is sent to the preconditioning tank (2) for pretreatment.
- the flocculants used in the conditioning tank (3) are two kinds of PAC and PAM, or one kind of PAM.
- the low temperature drying dehydration utilizes a hot water generating device (5) to generate hot water to enter the plate and frame dehydrator (4), and a vacuum pump (10) acts in the plate and frame dehydrator (4) Under the condition of forming water vapor not higher than 60 degrees Celsius, the concentrated sludge is dehydrated.
- the device further includes a condenser (6), one side of the condenser (6) is connected to the plate and frame dehydrator (4) through a gas pipeline, and the other side is connected to the dehydrator through a gas pipeline.
- the vacuum pump (10) is connected, and the water vapor not higher than 60 degrees Celsius produced by the plate and frame dehydrator (4) is condensed by a condenser (6) to form condensed water and sent to the biochemical pool (16).
- the press filtrate produced by the plate and frame dehydrator (4) is sent into the biochemical pool (16).
- the supernatant produced by the sludge reaction tank (1), the pre-conditioning tank (2) and the conditioning tank (3) is sent into the biochemical tank (16).
- the tail gas produced by the sludge reaction tank (1) is sent to the biochemical tank (16) for aeration treatment.
- the present invention also provides a method using microbubble ozone oxidation combined with low-temperature drying sludge, comprising the following steps:
- Step S1 adding sewage into the biochemical pool (16), and the sludge to be treated is produced by the biochemical pool (16);
- Step S2 the sewage enters the sedimentation tank (17) together with the generated sludge after biochemical treatment in the biochemical tank (16), and the remaining sludge treated by the sedimentation tank (17) is sent into the sludge reaction tank ( 1);
- Step S3 using ozone gas microbubbles to circulate the remaining sludge entering the sludge reaction tank (1) to react;
- Step S4 sending the sludge treated by the sludge reaction tank (1) into the preconditioning tank (2) for pretreatment, and sending the pretreated sludge into the conditioning tank (3);
- Step S6 sending the formed concentrated sludge into the plate and frame dehydrator (4) for low-temperature drying and dehydration, and then discharging.
- the present invention uses micro-bubble ozone oxidation combined with low-temperature sludge drying device and method.
- micro-bubble ozone oxidation combined with low-temperature sludge drying method the extracellular polymerization in the sludge is oxidized by ozone.
- the substances are separated from the surface of the sludge and returned to the biochemical pool through the supernatant, and reused as a carbon source in the biochemical pool.
- Fig. 1 is a structure diagram of a device using micro-bubble ozone oxidation combined with low-temperature drying sludge in the present invention
- Fig. 2 is a flow chart of the steps of a method of combining micro-bubble ozone oxidation with low-temperature drying of sludge according to the present invention.
- Fig. 1 is a structure diagram of a device using micro-bubble ozone oxidation combined with low-temperature sludge drying according to the present invention.
- a device of the present invention that uses microbubble ozone oxidation combined with low-temperature drying sludge includes a biochemical tank 16, a sedimentation tank 17, a sludge reaction tank 1, a pre-conditioning tank 2, a conditioning tank 3, and a frame dehydrator4.
- sewage is added to the biochemical pool 16 through the water inlet 11, and the sludge to be treated is produced by the biochemical pool 16.
- the sewage enters the sedimentation tank 17 together with the sludge produced, and the sedimentation tank 17- One side is connected to the biochemical tank 16 through pipelines, and the other side is connected to the sludge reaction tank 1 through pipelines.
- the remaining sludge treated in the sedimentation tank 17 enters the sludge reaction tank 1.
- the sedimentation tank 17 can also be connected to the pre-conditioning tank 2 through pipelines, the biochemical effluent produced by the sedimentation tank 17 can enter the pre-conditioning tank 2 or be directly discharged through the outlet 13, and the remaining sludge enters the sludge reaction tank 1 for use Ozone gas micro-bubbles circulate and react with it.
- the sludge reaction tank 1 is connected with the micro-bubble generator 7 and the circulation pump 9 through a return line.
- one side of the micro-bubble generator 7 passes The return pipeline is connected to the sludge reaction tank 1, and the other side is connected to the circulation pump 9 through the return pipeline, and the other side of the circulation pump 9 is connected to the sludge reaction tank 1 through the gas pipeline.
- the circulation The pump 9 continuously extracts the remaining sludge from the sludge reaction tank 1, and the ozone gas micro-bubbles generated by the micro-bubble generator 7 and the remaining sludge are circulated into the sludge reaction tank 1 continuously by the circulation pump 9, and the micro-bubbles generate
- the ozone gas used by the device 7 can be produced by oxidation of the oxygen that enters the ozone generator 8 through the oxygen inlet 12, and the sludge treated by the sludge reaction tank 1 is sent to the pre-conditioning pool 2 for pre-treatment, and the pre-conditioning pool 2-
- One side is connected to the sludge reaction tank 1 through a pipeline, and the other side is connected to the conditioning tank 3 through a pipeline.
- the pretreated sludge enters the conditioning tank 3, and one side of the conditioning tank 3 is connected to the preconditioning tank 2 through a pipeline, and the other side is connected to the conditioning tank 3 through a pipeline.
- the side is connected with the plate and frame dehydrator 4 through pipelines, adding flocculant into the conditioning tank 3, and using the flocculant in the conditioning tank 3 to make the sludge in the conditioning tank 3 form concentrated sludge, and the moisture content of the concentrated sludge is about 97 %
- the flocculant can be two kinds of PAC (poly aluminum chloride, polyaluminum chloride) and PAM (polyacrylamide), or one of PAM, and the concentrated sludge formed enters the plate and frame dehydrator 4 for low-temperature drying
- the low-temperature drying dehydration mainly utilizes the hot water generated by the hot water generating device 5 to enter the plate and frame dehydrator 4, and simultaneously utilizes the vacuum pump 10 to draw a vacuum to the plate and
- the tail gas produced by the above-mentioned sludge reaction tank 1 is sent into the biochemical tank 16 for aeration treatment; Utilized as a carbon source, that is, returning to the biochemical pool 16 for further processing; the press filtrate produced by the plate and frame dehydrator 4 can also be sent into the biochemical pool 16 for further processing, and the hot water generating device 5 can adopt a hot water boiler,
- the hot water boiler can be heated by natural gas, electric heating or steam heating, and the present invention is not limited thereto.
- Step S1 add sewage into the biochemical pool 16 through the water inlet 11 on the biochemical pool 16, and the sludge to be treated is produced by the biochemical pool 16.
- Step S2 the sewage is biochemically treated in the biochemical tank 16 and enters the sedimentation tank 17 together with the generated sludge, and the remaining sludge treated in the sedimentation tank 17 is sent into the sludge reaction tank 1 .
- the water content of the remaining sludge is about 99-99.5%.
- the biochemical effluent produced by the sedimentation tank 17 can be output to the preconditioning tank 2 or discharged through the water outlet 13.
- step S4 the sludge treated in the sludge reaction tank 1 is sent to the preconditioning tank 2 for pretreatment, and the pretreated sludge is sent to the conditioning tank 3 .
- step S4 the tail gas generated by the sludge reaction tank 1 is also sent to the biochemical tank 16 for aeration treatment.
- the water content of the formed thickened sludge is about 97%.
- the flocculant can be two kinds of PAC and PAM, or one kind of PAM.
- step S6 the formed concentrated sludge is sent into the plate and frame dehydrator 4 for low-temperature drying and dehydration, and then discharged.
- the hot water produced by the hot water generating device 5 enters the plate and frame dehydrator 4, and under the action of the vacuum pump 10, water vapor not higher than 60 degrees Celsius is formed to dehydrate the concentrated sludge, so that The moisture content of the sludge from the plate and frame dehydrator 4 is less than 30% (practice has proved that after a long enough drying time, the moisture content of the sludge is even lower than 10%), and the sludge dehydrated by the plate and frame dehydrator 4 is processed Outbound disposal after mud outlet 15 discharges mud.
- the hot water generating device 5 may adopt a hot water boiler, and the hot water boiler may be heated by natural gas, electric heating or steam, and the present invention is not limited thereto.
- step S6 the water vapor not higher than 60 degrees Celsius generated from the plate and frame dehydrator 4 is condensed by the condenser 6 to form condensed water and sent to the biochemical pool 16, and the plate and frame dehydrator 4
- the produced press filtrate is sent into the biochemical pool 16; the waste gas generated by vacuuming by the vacuum pump 10 is discharged through the exhaust port 14 and then sent to the waste gas treatment device for purification.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Treatment Of Sludge (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
本发明公开了一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法,该装置包括:生化池(16)、沉淀池(17)、污泥反应罐(1)、预调理池(2)、调理池(3)及板框脱水机(4),向生化池内加入污水,待处理的污泥由生化池产生,污水在生化池内经过生化处理后连同产生的污泥进入沉淀池(17),经沉淀池(17)处理过后的剩余污泥进入污泥反应罐(1),剩余污泥进入污泥反应罐(1)内利用臭氧气体微气泡与之循环进行反应,经污泥反应罐(1)处理过后的污泥送入预调理池(2)进行预处理后进入调理池(3),在调理池(3)利用絮凝剂形成浓缩污泥,浓缩污泥进入到板框脱水机(4)内进行低温干化脱水后排出。
Description
本发明涉及污泥处理技术领域,特别是涉及一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法。
污水处理是将污水中的杂质浓缩成半固体形态,再从流体中分离出来的过程,分离出来的糊状浓缩质即为污泥。目前,污泥处理一直是困扰污水处理行业的难题,污泥处理设备大约占污水处理厂40%-60%的基建投资,污水处理厂50%左右成本是污泥处理费用。
传统的污泥处理方法是首先对污泥进行脱水、干燥,然后再进行焚烧或者填埋。这样的处理方法存在以下缺点和困难:
(1)由于污泥呈糊状,原污泥的含水率高达95%以上,必须进行多次脱水和干燥,需要昂贵的脱水和干燥设备以及巨大的能量消耗,并且需要巨大的处理 场地;
(2)焚烧污泥会严重污染空气;
(3)因污泥中含有多种重金属和其他有毒有害物质,填埋后,这些重金属和有毒有害物质会渗入地下水,严重污染地下水;
(4)脱水和干燥完毕的污泥作为废物进行焚烧和填埋,不仅没有使污泥得到循环利用,而且巨额的脱水、干燥、焚烧、填埋以及其他成本和费用无疑是严重的浪费。
在城市不断发展过程中,城市污水产量在不断增加,目前全国各大城市的污水处置量都在进行爆发式的增长,国内目前大规模污水处理厂采用的主要方法是活性污泥方法,因此在污水处理的过程中必然产生剩余污泥,随着污水处理行业的不断发展和环保要求的不断提高,目前污水处理厂产生的剩余污泥已经是污水处理行业面临的另一个重大难题和挑战。因此,实有必要提出一种技术手段,以高效地处理污水处理厂产生的剩余污泥。
发明内容
为克服上述现有技术存在的不足,本发明之目的在于提供一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法,使用微气泡臭氧氧化联合低温干化污泥的方法对污泥进行处理,具有对剩余污泥的处理量大、处理工序短、药剂使用量少等优点,能够有效减少污泥处理过程和处理后的污泥臭味,提高了资源利用率。
为达上述目的,本发明提供一种采用微气泡臭氧氧化联合低温干化污泥的装置,包括:生化池(16)、沉淀池(17)、污泥反应罐(1)、预调理池(2)、调理池(3)以及板框脱水机(4),向所述生化池(16)内加入污水,待处理的污泥由所述生化池(16)产生,污水在生化池(16)内经过生化处理后连同产生的污泥进入所述沉淀池(17),经所述沉淀池(17)处理过后的剩余污泥进入所述污泥反应罐(1),剩余污泥进入所述污泥反应罐(1)内利用臭氧气体微气泡与之循环进行反应,经过所述污泥反应罐(1)处理过后的污泥送入所述预调理池(2)进行预处理,预处理后的污泥进入所述调理池(3),在所述调理池(3)利用絮凝剂使得调理池(3)内的污泥形成浓缩污泥,最后所述浓缩污泥进入到所述板框脱水机(4)内进行低温干化脱水后排出。
优选地,所述沉淀池(17)产生的生化出水送入所述预调理池(2)或者经过排水口(13)直接排出。
优选地,所述装置还包括一微气泡发生器(7)及循环泵(9),所述微气泡发生器(7)一侧通过回流管路与污泥反应罐(1)连接,另一侧通过回流管路与所述循环泵(9)相连接,所述循环泵(9)另一侧则通过气体管路与污泥反应罐(1)相连,在反应过程中,利用所述微气泡发生器(7)对输入的臭氧气体产生臭氧气体微气泡,并利用所述循环泵(9)持续地将所述微气泡发生器(7)产生的臭氧气体微气泡连同剩余污泥循环送入所述污泥反应罐(1)内。
优选地,所述微气泡发生器(7)所使用的臭氧气体是通过将氧气送入一臭氧发生器(8)内经过氧化产生的。
优选地,所述调理池(3)内使用的絮凝剂为PAC和PAM两种,或者PAM一种。
优选地,所述低温干化脱水利用一热水产生装置(5)产生热水进入所述板框脱水机(4),于所述板框脱水机(4)内在一真空泵(10)的作用下形成不高于60摄氏度的水蒸气对浓缩污泥进行脱水。
优选地,所述装置还包括一冷凝器(6),所述冷凝器(6)一侧通过气体管路与所述板框脱水机(4)相连,另一侧通过气体管路与所述真空泵(10)相连,所述板框脱水机(4)产生的不高于60摄氏度的水蒸气经过一冷凝器(6)冷凝处理后形成冷凝水送入所述生化池(16),所述板框脱水机(4)产生的压滤液送入到所述生化池(16)内。
优选地,所述污泥反应罐(1)、预调理池(2)以及调理池(3)产生的 上清液则送入到所述生化池(16)内。
优选地,所述污泥反应罐(1)产生的尾气送入所述生化池(16)进行曝气处理。
为达到上述目的,本发明还提供一种采用微气泡臭氧氧化联合低温干化污泥的方法,包括如下步骤:
步骤S1,向所述生化池(16)内加入污水,待处理的污泥由生化池(16)产生;
步骤S2,污水在生化池(16)内经过生化处理后连同产生的污泥进入所述沉淀池(17),经过所述沉淀池(17)处理过后的剩余污泥送入污泥反应罐(1);
步骤S3,将进入所述污泥反应罐(1)内的剩余污泥利用臭氧气体微气泡与之循环进行反应;
步骤S4,将经过所述污泥反应罐(1)处理过后的污泥送入预调理池(2)进行预处理,并将预处理过后的污泥送入调理池(3);
步骤S5,向所述调理池(3)内加入絮凝剂,在所述调理池(3)利用絮凝剂使得所述调理池(3)内的污泥形成浓缩污泥;
步骤S6,将形成的浓缩污泥送入到板框脱水机(4)内进行低温干化脱水后排出。
与现有技术相比,本发明一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法使用微气泡臭氧氧化联合低温干化污泥的方法通过臭氧氧化将污泥中 的胞外聚合物从污泥表面分离,并通过上清液返回到生化池,在生化池内作为碳源进行了回用,同时,臭氧降污泥细胞进行了破坏,污泥的胞内水更容易从胞内分离;通过以上调理池的药剂PAC和PAM使用量大幅度降低,结合低温真空干化环节,PAM的使用量甚至可以为0,为后续的污泥处置减少了PAM使用量,减少了污泥粘性;同时,臭氧氧化能氧化掉污泥中的臭味,真空干化脱水过程是密闭空间,且空间小,整个过程产生的臭味量少,最终脱水出来的污泥由于已经臭氧破壁、消毒,并且脱水过程中PAM使用量极少,资源化利用率高。
图1为本发明一种采用微气泡臭氧氧化联合低温干化污泥的装置的架构图;
图2为本发明一种采用微气泡臭氧氧化联合低温干化污泥的方法的步骤流程图。
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。
图1为本发明一种采用微气泡臭氧氧化联合低温干化污泥的装置的架构图。如图1所示,本发明一种采用微气泡臭氧氧化联合低温干化污泥的装置,包括生化池16、沉淀池17、污泥反应罐1、预调理池2、调理池3以及板框脱水机4。
具体地,通过进水口11向生化池16内加入污水,待处理的污泥由生化池16产生,污水在生化池16内经过生化处理后连同产生的污泥进入沉淀池17,沉淀池17一侧通过管道连接生化池16,另一侧则通过管道连接污泥反应罐1,经过沉淀池17处理过后的剩余污泥进入污泥反应罐1,此时剩余污泥的含水率约为99-99.5%,同时,沉淀池17还可通过管道连接预调理池2,沉淀池17产生的生化出水可进入预调理池2或者经过排水口13直接排出,剩余污泥进入污泥反应罐1内利用臭氧气体微气泡与之循环进行反应,在本发明具体实施例中,污泥反应罐1通过回流管路与微气泡发生器7、循环泵9连接,具体地,微气泡发生器7一侧通过回流管路与污泥反应罐1连接,另一侧通过回流管路与循环泵9相连接,循环泵9另一侧则通过气体管路与污泥反应罐1相连,在反应过程中,循环泵9持续从污泥反应罐1抽取剩余污泥,利用循环泵9持续循环地将微气泡发生器7产生的臭氧气体微气泡连同剩余污泥循环送入污泥反应罐1内,微气泡发生器7所使用的臭氧气体可由氧气进口12进入到臭氧发生器8内的氧气经过氧化产生,经过污泥反应罐1处理过后的污泥送入预调理池2进行预处理,预调理池2一侧通过管道与污泥反应罐1连接,另一侧通过管道与调 理池3相连,经预处理过后的污泥进入调理池3,调理池3一侧通过管道与预调理池2连接,另一侧通过管道与板框脱水机4相连,向调理池3内加入絮凝剂,在调理池3利用絮凝剂使得调理池3内的污泥形成浓缩污泥,该浓缩污泥的含水率约为97%,所述絮凝剂可以为PAC(poly aluminum chloride,聚合氯化铝)和PAM(聚丙烯酰胺)两种,或者PAM一种,形成的浓缩污泥进入到板框脱水机4内进行低温干化脱水,在本发明具体实施例中,所述低温干化脱水主要利用热水产生装置5产生的热水进入板框脱水机4,同时利用真空泵10对板框脱水机4抽取真空,在真空泵10的抽真空作用下形成不高于60摄氏度的水蒸气对浓缩污泥进行脱水,使得板框脱水机4出来的污泥含水率小于30%,经板框脱水机4脱水处理过后的污泥经过出泥口15出泥后外运处置,并且板框脱水机4出来的不高于60摄氏度的水蒸气可通过冷凝器6冷凝处理后形成冷凝水送入生化池16,该冷凝器6一侧通过气体管路与板框脱水机4相连,另一侧通过气体管路与真空泵10相连,同时真空泵10抽真空所产生的废气则经过排气口14排出后送入废气处理装置净化处理。
优选地,上述污泥反应罐1产生的尾气送入生化池16进行曝气处理;上述污泥反应罐1、预调理池2以及调理池3产生的上清液则送入到生化池16内作为碳源被利用,即返回生化池16再处理;所述板框脱水机4产生的压滤液也可送入到生化池16内再处理,所述热水产生装置5可以采用热水锅炉,该热水锅炉可以通过天然气加热、电加热或者蒸汽加热,本发明不以此为限。
图2为本发明一种采用微气泡臭氧氧化联合低温干化污泥的方法的步骤流程图。如图2所示,本发明一种采用微气泡臭氧氧化联合低温干化污泥的方法,包括如下步骤:
步骤S1,通过生化池16上的进水口11向生化池16内加入污水,待处理的污泥由生化池16产生。
步骤S2,污水在生化池16内经过生化处理后连同产生的污泥进入所述沉淀池17,经过沉淀池17处理过后的剩余污泥送入污泥反应罐1。
在本发明具体实施例中,此时剩余污泥的含水率约为99-99.5%,同时,可将沉淀池17产生的生化出水输出到预调理池2或者经过排水口13排出。
步骤S3,将进入污泥反应罐1内的剩余污泥利用臭氧气体微气泡与之循环进行反应。
在本发明具体实施例中,在反应过程中,利用循环泵9持续地将微气泡发生器7产生的臭氧气体微气泡连同剩余污泥循环送入污泥反应罐1内,优选地,该微气泡发生器7所使用的臭氧气体可由氧气进口12进入到臭氧发生器8内的氧气经过氧化产生。
步骤S4,将经过污泥反应罐1处理过后的污泥送入预调理池2进行预处理,并将预处理过后的污泥送入调理池3。
优选地,于步骤S4中,还将污泥反应罐1产生的尾气送入生化池16进行曝气处理。
步骤S5,向调理池3内加入絮凝剂,在调理池3利用絮凝剂使得调理池3内的污泥形成浓缩污泥。
在本发明具体实施例中,所形成的浓缩污泥的含水率约为97%。具体地,所述絮凝剂可以是PAC和PAM两种,或者PAM一种。
步骤S6,将形成的浓缩污泥送入到板框脱水机4内进行低温干化脱水后排出。
在本发明具体实施例中,利用热水产生装置5产生的热水进入板框脱水机4,在真空泵10的作用下形成不高于60摄氏度的水蒸气对浓缩污泥进行脱水,这样可使得板框脱水机4出来的污泥含水率小于30%(实践证明,当经过足够长的干化时间,出来的含水甚至低于10%),经板框脱水机4脱水处理过后的污泥经过出泥口15出泥后外运处置。所述热水产生装置5可以采用热水锅炉,该热水锅炉可以通过天然气加热、电加热或者蒸汽加热,本发明不以此为限。
优选地,于步骤S6中,还将从板框脱水机4产生的不高于60摄氏度的水蒸气经过冷凝器6冷凝处理后形成冷凝水送入生化池16,将所述板框脱水机4产生的压滤液送入到生化池16内;真空泵10抽真空所产生的废气则经过排气口14排出后送入废气处理装置净化处理。
优选地,将所述污泥反应罐1、预调理池2以及调理池产生的上清液送入到生化池16内。
综上所述,本发明一种采用微气泡臭氧氧化联合低温干化污泥的装置及方 法使用微气泡臭氧氧化联合低温干化污泥的方法通过臭氧氧化将污泥中的胞外聚合物从污泥表面分离,并通过上清液返回到生化池,在生化池内作为碳源进行了回用,同时,臭氧降污泥细胞进行了破坏,污泥的胞内水更容易从胞内分离;通过以上调理池的药剂PAC和PAM使用量大幅度降低,结合低温真空干化环节,PAM的使用量甚至可以为0,为后续的污泥处置减少了PAM使用量,减少了污泥粘性;同时,臭氧氧化能氧化掉污泥中的臭味,真空干化脱水过程是密闭空间,且空间小,整个过程产生的臭味量少,最终脱水出来的污泥由于已经臭氧破壁、消毒,并且脱水过程中PAM使用量极少,资源化利用率高。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。
所属领域技术人员根据上文的记载容易得知,本发明技术方案适合在工业中制造并在生产、生活中使用,因此本发明具备工业实用性。
Claims (10)
- 一种采用微气泡臭氧氧化联合低温干化污泥的装置,包括:生化池(16)、沉淀池(17)、污泥反应罐(1)、预调理池(2)、调理池(3)以及板框脱水机(4),向所述生化池(16)内加入污水,待处理的污泥由所述生化池(16)产生,污水在生化池(16)内经过生化处理后连同产生的污泥进入所述沉淀池(17),经所述沉淀池(17)处理过后的剩余污泥进入所述污泥反应罐(1),剩余污泥进入所述污泥反应罐(1)内利用臭氧气体微气泡与之循环进行反应,经过所述污泥反应罐(1)处理过后的污泥送入所述预调理池(2)进行预处理,预处理后的污泥进入所述调理池(3),在所述调理池(3)利用絮凝剂使得调理池(3)内的污泥形成浓缩污泥,最后所述浓缩污泥进入到所述板框脱水机(4)内进行低温干化脱水后排出。
- 如权利要求1所述的一种采用微气泡臭氧氧化联合低温干化污泥的装置,其特征在于:所述沉淀池(17)产生的生化出水送入所述预调理池(2)或者经过排水口(13)直接排出。
- 如权利要求2所述的一种采用微气泡臭氧氧化联合低温干化污泥的装置,其特征在于:所述装置还包括一微气泡发生器(7)及循环泵(9),所述微气泡发生器(7)一侧通过回流管路与污泥反应罐(1)连接,另一侧通过回流管路与所述循环泵(9)相连接,所述循环泵(9)另一侧则通过气体管路与污泥反应罐(1)相连,在反应过程中,利用所述微气泡发生器(7)对输入的臭氧气体产生臭氧气体微气泡,并利用所述循环泵(9)持续地将所述微气泡发生器(7)产生的臭氧气体微气泡连同剩余污泥循环送入所述污泥反应罐(1)内。
- 如权利要求3所述的一种采用微气泡臭氧氧化联合低温干化污泥的装置,其特征在于:所述微气泡发生器(7)所使用的臭氧气体是通过将氧气送入一臭氧发生器(8)内经过氧化产生的。
- 如权利要求3所述的一种采用微气泡臭氧氧化联合低温干化污泥的装 置,其特征在于:所述调理池(3)内使用的絮凝剂为PAC和PAM两种,或者PAM一种。
- 如权利要求3所述的一种采用微气泡臭氧氧化联合低温干化污泥的装置,其特征在于:所述低温干化脱水利用一热水产生装置(5)产生热水进入所述板框脱水机(4),于所述板框脱水机(4)内在一真空泵(10)的作用下形成不高于60摄氏度的水蒸气对浓缩污泥进行脱水。
- 如权利要求6所述的一种采用微气泡臭氧氧化联合低温干化污泥的装置,其特征在于:所述装置还包括一冷凝器(6),所述冷凝器(6)一侧通过气体管路与所述板框脱水机(4)相连,另一侧通过气体管路与所述真空泵(10)相连,所述板框脱水机(4)产生的不高于60摄氏度的水蒸气经过一冷凝器(6)冷凝处理后形成冷凝水送入所述生化池(16),所述板框脱水机(4)产生的压滤液送入到所述生化池(16)内。
- 如权利要求1所述的一种采用微气泡臭氧氧化联合低温干化污泥的装置,其特征在于:所述污泥反应罐(1)、预调理池(2)以及调理池(3)产生的上清液则送入到所述生化池(16)内。
- 如权利要求1所述的一种采用微气泡臭氧氧化联合低温干化污泥的装置,其特征在于:所述污泥反应罐(1)产生的尾气送入所述生化池(16)进行曝气处理。
- 一种采用微气泡臭氧氧化联合低温干化污泥的方法,包括如下步骤:步骤S1,将污水加入生化池(16),待处理的污泥由生化池(16)处理污水的过程中产生;步骤S2,将所述在生化池(16)内产生的待处理的污泥送入沉淀池(17),经过所述沉淀池(17)处理过后的剩余污泥送入污泥反应罐(1);步骤S3,将进入所述污泥反应罐(1)内的剩余污泥利用臭氧气体微气泡与之循环进行反应;步骤S4,将经过所述污泥反应罐(1)处理过后的污泥送入预调理池(2) 进行预处理,并将预处理过后的污泥送入调理池(3);步骤S5,向所述调理池(3)内加入絮凝剂,在所述调理池(3)利用絮凝剂使得所述调理池(3)内的污泥形成浓缩污泥;步骤S6,将形成的浓缩污泥送入到板框脱水机(4)内进行低温干化脱水后排出。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110715020.7 | 2021-06-25 | ||
CN202110715020.7A CN113277697A (zh) | 2021-06-25 | 2021-06-25 | 一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022267246A1 true WO2022267246A1 (zh) | 2022-12-29 |
Family
ID=77285928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/119232 WO2022267246A1 (zh) | 2021-06-25 | 2021-09-18 | 一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113277697A (zh) |
WO (1) | WO2022267246A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113277697A (zh) * | 2021-06-25 | 2021-08-20 | 上海城市水资源开发利用国家工程中心有限公司 | 一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法 |
CN114956499B (zh) * | 2022-04-29 | 2023-07-04 | 同济大学 | 一种有机污泥的臭氧化调理耦合水热快速稳定化处理工艺 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020094421A (ko) * | 2001-06-11 | 2002-12-18 | 한국과학기술연구원 | 오존 처리에 의한 슬러지 감량화 및 재활용 시스템과 그방법 |
CN105948436A (zh) * | 2016-06-29 | 2016-09-21 | 崔恩喜 | 一种污水处理厂剩余污泥稳定和资源化利用的处理系统及方法 |
CN205710358U (zh) * | 2016-06-29 | 2016-11-23 | 崔恩喜 | 一种污水处理厂剩余污泥稳定和资源化利用的处理系统 |
CN106186638A (zh) * | 2016-07-28 | 2016-12-07 | 上海交通大学 | 微气泡/絮凝剂耦合强化污泥脱水性能的方法 |
CN110746069A (zh) * | 2019-09-29 | 2020-02-04 | 中原环资科技有限公司 | 一种污泥改性工艺 |
CN111620537A (zh) * | 2020-07-06 | 2020-09-04 | 第一环保(深圳)股份有限公司 | 一种带热回收的低温干化污泥压滤设备 |
CN212581736U (zh) * | 2020-07-06 | 2021-02-23 | 第一环保(深圳)股份有限公司 | 一种带热回收的低温干化污泥压滤设备 |
CN113277697A (zh) * | 2021-06-25 | 2021-08-20 | 上海城市水资源开发利用国家工程中心有限公司 | 一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107892457B (zh) * | 2017-12-19 | 2023-06-09 | 上海城市水资源开发利用国家工程中心有限公司 | 一种污泥微气泡臭氧稳定化装置及方法 |
CN110066095A (zh) * | 2018-01-19 | 2019-07-30 | 深圳市深水生态环境技术有限公司 | 一种市政污泥低温干化处理系统 |
JP7254580B2 (ja) * | 2019-03-27 | 2023-04-10 | 日立セメント株式会社 | 有機性汚泥の処理方法及び処理装置 |
-
2021
- 2021-06-25 CN CN202110715020.7A patent/CN113277697A/zh active Pending
- 2021-09-18 WO PCT/CN2021/119232 patent/WO2022267246A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020094421A (ko) * | 2001-06-11 | 2002-12-18 | 한국과학기술연구원 | 오존 처리에 의한 슬러지 감량화 및 재활용 시스템과 그방법 |
CN105948436A (zh) * | 2016-06-29 | 2016-09-21 | 崔恩喜 | 一种污水处理厂剩余污泥稳定和资源化利用的处理系统及方法 |
CN205710358U (zh) * | 2016-06-29 | 2016-11-23 | 崔恩喜 | 一种污水处理厂剩余污泥稳定和资源化利用的处理系统 |
CN106186638A (zh) * | 2016-07-28 | 2016-12-07 | 上海交通大学 | 微气泡/絮凝剂耦合强化污泥脱水性能的方法 |
CN110746069A (zh) * | 2019-09-29 | 2020-02-04 | 中原环资科技有限公司 | 一种污泥改性工艺 |
CN111620537A (zh) * | 2020-07-06 | 2020-09-04 | 第一环保(深圳)股份有限公司 | 一种带热回收的低温干化污泥压滤设备 |
CN212581736U (zh) * | 2020-07-06 | 2021-02-23 | 第一环保(深圳)股份有限公司 | 一种带热回收的低温干化污泥压滤设备 |
CN113277697A (zh) * | 2021-06-25 | 2021-08-20 | 上海城市水资源开发利用国家工程中心有限公司 | 一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113277697A (zh) | 2021-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022267246A1 (zh) | 一种采用微气泡臭氧氧化联合低温干化污泥的装置及方法 | |
Abelleira et al. | Advanced thermal hydrolysis of secondary sewage sludge: a novel process combining thermal hydrolysis and hydrogen peroxide addition | |
CN103922543B (zh) | 垃圾沥滤液处理方法 | |
CN110002639B (zh) | 一种中晚期生活垃圾填埋场垃圾渗滤液的处理装置及方法 | |
CN109293148B (zh) | 一种含硫含盐废水的处理装置及其处理方法 | |
CN101186423A (zh) | 城镇污水污泥的热处理-脱水-制肥方法 | |
CN103723897B (zh) | 一种对污泥进行杀菌除臭脱水去重金属的处理工艺 | |
CN105800909B (zh) | 污泥浓缩与深度脱水药剂及其污泥浓缩与深度脱水方法 | |
CN106673387A (zh) | 含酚污泥的资源化处理工艺 | |
WO2022267282A1 (zh) | 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置及方法 | |
CN205133326U (zh) | 含盐废水处理系统 | |
CN205133216U (zh) | 含盐废水处理系统 | |
CN108675587B (zh) | 一种污泥水热催化氧化深度脱水的方法 | |
CN104671607A (zh) | 一种稠油废水处理回用电站锅炉的系统及方法 | |
CN106242181A (zh) | 一种经济高效的煤化工废水治理方法 | |
CN109399887A (zh) | 一种轧钢酸洗废水污泥资源化处理方法 | |
CN112960874A (zh) | 一种污水处理厂污泥分质收集及处理方法 | |
CN219174370U (zh) | 一种膜浓水浓缩蒸发系统 | |
Ding et al. | A comparative study of waste activated sludge conditioning with Fe (II)-peroxymonosulfate oxidative process | |
CN215403739U (zh) | 一种联合微气泡臭氧氧化与薄层干化的剩余污泥处理装置 | |
CN104529033B (zh) | 一种用盐析法处理己内酰胺废水的方法 | |
CN217556033U (zh) | 一种采用微气泡臭氧氧化联合低温干化污泥的装置 | |
CN201301261Y (zh) | 硝酸铵冷凝液废水回收治理装备 | |
CN105541044A (zh) | 一种处理己内酰胺生产废水的方法 | |
CN216472713U (zh) | 一种制药废水分盐零排放处理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21946729 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21946729 Country of ref document: EP Kind code of ref document: A1 |