WO2020156496A1 - 一种多极消融装置 - Google Patents

一种多极消融装置 Download PDF

Info

Publication number
WO2020156496A1
WO2020156496A1 PCT/CN2020/074075 CN2020074075W WO2020156496A1 WO 2020156496 A1 WO2020156496 A1 WO 2020156496A1 CN 2020074075 W CN2020074075 W CN 2020074075W WO 2020156496 A1 WO2020156496 A1 WO 2020156496A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
temperature
radio frequency
impedance
electrode
Prior art date
Application number
PCT/CN2020/074075
Other languages
English (en)
French (fr)
Inventor
王捷
Original Assignee
苏州信迈医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州信迈医疗器械有限公司 filed Critical 苏州信迈医疗器械有限公司
Priority to AU2020214940A priority Critical patent/AU2020214940B2/en
Priority to KR1020217021930A priority patent/KR102385797B1/ko
Priority to JP2021544888A priority patent/JP2022508668A/ja
Priority to CA3126878A priority patent/CA3126878C/en
Priority to EP20749064.0A priority patent/EP3900658A4/en
Priority to US17/425,326 priority patent/US20220087740A1/en
Publication of WO2020156496A1 publication Critical patent/WO2020156496A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B18/1233Generators therefor with circuits for assuring patient safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • A61B2018/0025Multiple balloons
    • A61B2018/00261Multiple balloons arranged in a line
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/00267Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00541Lung or bronchi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00898Alarms or notifications created in response to an abnormal condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/0091Handpieces of the surgical instrument or device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1266Generators therefor with DC current output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/144Wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1467Probes or electrodes therefor using more than two electrodes on a single probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1475Electrodes retractable in or deployable from a housing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension

Definitions

  • Chronic obstructive pulmonary disease is a progressive disease that can cause obstruction of the lung airways and restrict airflow in and out of the lungs, such as asthma, emphysema, and COPD. Therefore, patients with chronic obstructive pulmonary disease have difficulty breathing, as well as symptoms such as coughing, wheezing, shortness of breath, chest tightness, and mucus (asthma attacks), which require clinical treatment and treatment, consume a lot of medical resources, and may cause Hospitalization and life-threatening.
  • the causes of chronic obstructive pulmonary disease are: airway smooth muscle contraction, airway glands secrete too much mucus, airway wall smooth muscle thickening due to inflammation, and changes in the anatomical structure of the tissues around the airway.
  • the main method of clinical treatment of chronic obstructive pulmonary diseases such as asthma, emphysema, and COPD is to use drug treatments such as adrenaline drugs, theophylline drugs and hormones, or sputum, anti-inflammatory, etc. for symptomatic treatment, not only Long-term medication is required, and this type of disease cannot be cured. More patients are still unable to effectively control their condition after using inhaled corticosteroids (ICS) and long-acting beta agonists (LABA).
  • ICS inhaled corticosteroids
  • LAA long-acting beta agonists
  • the existing minimally invasive ablation technique can reduce the pathologically hyperplastic airway smooth muscle.
  • the catheter When performing this treatment, the catheter is positioned in the airway and the electrode array on the end of the catheter is expanded to contact the airway wall. By moving the catheter, energy is gradually transferred to multiple parts of the trachea to remove the pathologically hyperplastic airway smooth muscle.
  • the safety and effectiveness of the ablation equipment used in the bronchial radiofrequency ablation based on the prior art have defects, such as the inability to monitor and display the adherence of the ablation electrode; and the application of large radiofrequency energy immediately after the ablation starts, After reaching the set temperature, the temperature overshoot is greater.
  • This sudden application and/or sudden change of radio frequency energy has a stimulating effect on the patient's respiratory tract, and the greater temperature overshoot poses a threat to the safety of the patient.
  • the temperature of the ablation electrode is affected by the changes in the airflow caused by the patient’s breathing movement, the sliding of the electrode caused by the patient’s chest movement, and the change in the degree of adhesion caused by the surgeon’s unstable grip.
  • the usual proportional integral control algorithm is prone to oscillation and overshoot, and it is difficult to adapt to these complex external disturbances, thereby interfering with the effect of ablation treatment.
  • the purpose of the present invention is to provide a safer and more effective device with the function of transmitting energy in the trachea and bronchus against the defects of the prior art.
  • a radio frequency ablation instrument that can generate and control direct current, alternating current and radio frequency energy, and collect, process and display temperature, impedance or tension signals, and judge the effectiveness of ablation based on changes in impedance or tension signals, and the changes in the impedance It is selected from one or more of the decreasing value of impedance, the rate of change of impedance, the change of rate of change of impedance, or the change of impedance from decreasing to increasing.
  • the drop value of the impedance exceeds 20 ⁇ -50 ⁇ , or the impedance change rate is higher than -5 ⁇ /s ⁇ -50 ⁇ /s, or the impedance change changes from falling to rising, it is determined that the ablation is effective.
  • the radio frequency ablation instrument uses a closed-loop control system to adjust the radio frequency output power to control the ablation temperature by using a segmented control method.
  • the segmented control includes (1) a rapid heating phase: from the beginning of ablation lasting 0.5s to 2s, The end temperature of the rapid heating stage reaches 50%-80% of the ablation temperature, preferably 65%; (2) Slow heating stage: after the rapid heating stage lasts 0.5s to 2s, the end temperature of the slow heating stage reaches 70% of the ablation temperature -99%, preferably 90%, or 0.1°C to 10°C, preferably 2°C lower than the ablation temperature; (3) Stability maintenance phase: after the slow temperature rise phase, the temperature is stably maintained until the ablation stops.
  • the above-mentioned stages can be optimized according to the inherent characteristics of the equipment according to the actual treatment needs.
  • the RF output power changes smoothly from 0, the RF output power rises rapidly during the rapid heating phase, the RF output power gradually rises slowly during the slow heating phase, and then gradually decreases, and the RF output power continues to decrease slowly during the stable maintenance phase. becoming steady.
  • the segmented proportional-integral control algorithm is used to determine the degree of adhesion of the various treatable parts of the bronchus and different electrodes.
  • the bronchial radio frequency ablation instrument can control the radio frequency output power so that the ablation electrode temperature reaches the set temperature within 3 seconds, and reaches the set temperature.
  • the temperature upshoot after the set temperature is less than 3°C, usually 0.5°C to 1.5°C; the temperature is maintained at the set temperature stably, and the fluctuation is less than 1°C, usually less than 0.5°C; the radio frequency output power changes smoothly during the entire ablation treatment without sudden application And/or sudden changes in radio frequency energy.
  • the upper limit of the threshold value of the dynamic smoothing is 0.1°C/s to 20°C/s, preferably 5°C/s, and the lower limit of the threshold value is -0.1°C/s to -20°C/, preferably -5°C/s, when the temperature change rate When it is less than the lower threshold, the smoothing time window is extended; when the temperature change rate is greater than the upper threshold, the smoothing time window is shortened; when the temperature change rate is between the lower and upper thresholds, the smoothing time window remains unchanged.
  • the dynamic range of the smoothing time window is preferably 0s to 10s, more preferably 0s to 2.5s.
  • the above-mentioned dynamic temperature smoothing process can cope with various complex disturbances.
  • the radio frequency output power changes smoothly during the entire ablation treatment process, and there will be no sudden changes in radio frequency energy.
  • the temperature remains stable with small fluctuations, even if it is very frequent and severe disturbances. There is no oscillation and overshoot. And it can well suppress the temperature upshoot that may be caused by the disturbance, even if it is a severe and complex disturbance, the temperature upshoot does not exceed 3°C. So as to ensure the safety and effectiveness of the ablation energy to remove the pathological hyperplasia process.
  • the radiofrequency ablation apparatus of the present invention has a protection mechanism to prevent repeated ablation.
  • the temperature of the part to be ablated is detected before each application of ablation. If the temperature of the part to be ablated is higher than 40°C-60°C, preferably 45°C, no ablation is started. .
  • radio frequency ablation instrument uses: Method 1: Continuously weak AC signal to detect impedance, calculate impedance through voltage and current when outputting radio frequency, and/or Method 2: Directly detect impedance without outputting radio frequency.
  • the radio frequency ablation instrument has a radio frequency energy transmission/feedback control mechanism: the radio frequency energy output is 2-4 seconds to the temperature of the ablated tissue to reach the set temperature for 6-8 seconds, and when the temperature of the ablated tissue is higher than the over-temperature threshold, the over-temperature Alarm, the ablation system automatically interrupts the RF energy output.
  • the set temperature is 60°C to 70°C
  • the over-temperature threshold is 1°C to 10°C higher than the set temperature.
  • the set temperature is 65°C
  • the over-temperature threshold is 3°C higher than the set temperature.
  • radio frequency ablation apparatus adopts a design of multiple central controllers, dual temperature circuits, and dual voltage and current circuits.
  • the radio frequency ablation instrument has a data transmission interface, and can be connected to a computer to obtain various parameter information (such as temperature, impedance, power, time, whether ablation is successful, etc.) in real time.
  • various parameter information such as temperature, impedance, power, time, whether ablation is successful, etc.
  • the radio frequency ablation instrument has a touch screen to display the state of the electrodes and the resistance value of the adhesion between the electrodes and the tissue, and can control one or more electrodes to release energy by clicking the touch screen.
  • the handle is connected to the connector and a set of more than one set of electrode assemblies, and includes one or more manipulation components, which are used to control the contraction, expansion, and release of energy of the electrode set and can control the extension or retraction of the electrode assembly. catheter;
  • the joint is used to provide energy to the electrode.
  • the radio frequency ablation instrument can display the impedance or tension of the electrode, and prompt whether the electrode assembly is well attached to the tracheal wall: when the bronchial radio frequency ablation instrument electrode is attached to the tissue, the impedance value is less than or equal to the threshold, indicating that the electrode assembly is well attached to the tracheal wall .
  • the impedance threshold is 500 ohms to 1,000 ohms, more preferably 900 ohms.
  • the radio frequency ablation apparatus can measure the impedance of each electrode. If the impedance is the same, the electrode is in good contact with the tracheal wall; if a certain electrode is not in contact with the tracheal wall Good, the impedance will be different from other good contacts.
  • the radio frequency ablation apparatus uses two impedance detection methods at the same time: Method 1: Continuously weak AC signal detects impedance, and calculates impedance through voltage and current when outputting radio frequency; Method 2: Impedance can be detected without outputting radio frequency.
  • the detection device includes a temperature detection device, an impedance detection device and a tension detection device.
  • the electrode group includes one electrode or multiple electrodes, and each electrode is connected to a handle through an independent electrode wire.
  • the electrode group expands into a basket, spiral or balloon shape under the control of the control component.
  • the electrode groups are arranged in series; the closer the electrode group is to the handle, the larger the outer diameter after opening, and the outer diameter is 1-20 mm.
  • the tip of the electrode group farthest from the handle is provided with an anti-damage structure, and the electrode group and the electrode group are connected by a supporting member.
  • a pressure sensor is provided on the traction wire.
  • the electrode assembly further includes a balloon, the balloon is arranged between the electrodes, the balloon passes through the airway of the balloon through the guide catheter to connect the handle, and can be connected to the air intake device through the handle.
  • the group is opened; when there are multiple electrode groups, multiple balloons are arranged in series in sequence, and the multiple balloons are respectively connected to the handles through independent balloon airways.
  • control component of the handle includes a control circuit board and a control button, the control circuit is connected to the electrode assembly and the control button, and the control button respectively controls different components in different electrode assemblies.
  • the present invention provides a multipolar ablation device for transmitting energy in the trachea and bronchus, which mainly includes a first electrode assembly, a second electrode assembly, a guide tube body, a handle, and a joint.
  • the first electrode assembly and the second electrode assembly are continuously arranged in the axial direction of the guide tube, and the head end of the electrode assembly is provided with an anti-damage structure, which is also used to fix the first electrode assembly, the first electrode assembly and the second electrode assembly
  • the proximal end of the first electrode assembly and the distal end of the second electrode assembly are fixed on the support member, the distal end of the traction wire is connected with the head end damage prevention structure, the proximal end is fixed with the support member, and the guide The tube body enters the handle.
  • the proximal end of the second electrode assembly is fixed on the tube body.
  • the handle controls the traction wire to contract proximally, it first drives the first electrode assembly to expand, while the second electrode assembly also expands simultaneously.
  • the electrode assembly is set to have a small distal end and a large proximal end with a diameter difference of approximately It is 1 ⁇ 5mm.
  • the first electrode assembly and the second electrode assembly are provided with a plurality of electrodes, the first electrode, the second electrode, the third electrode, the fourth electrode, the fifth electrode, the sixth electrode, the seventh electrode, and the eighth electrode.
  • the electrodes are It is made of stainless steel and has a certain degree of flexibility.
  • Each electrode is connected to a handle with an independent electrode wire, and the handle is transmitted to the bronchial radiofrequency ablation device through the joint.
  • each electrode forms a loop through the tracheal tissue and the control circuit board, and each electrode can independently detect the adhesion resistance between the electrode and the tissue.
  • the bronchial radio frequency ablation instrument When the electrodes are in good contact (the resistance value is between 500 ohms and 1000 ohms or less), the bronchial radio frequency ablation instrument will emit radio frequency energy to ablate the lesion tissue.
  • the first electrode assembly and the second electrode assembly are respectively provided with a temperature sensor, which can Independently detect the temperature of the tissue surrounding the electrode assembly.
  • the first electrode, the second electrode, the third electrode, the fourth electrode, the fifth electrode, the sixth electrode, the seventh electrode, and the eighth electrode expand under pressure, the electrode assembly expands, and the gas intake is from the outside
  • the gas equipment is controlled, and the expansion size of the electrode assembly can be set by the air intake volume, and the first electrode assembly and the second electrode assembly are independently controlled to meet the needs of different sizes of tracheal lesions.
  • the first electrode, the second electrode, the third electrode, the fourth electrode, the fifth electrode, the sixth electrode, the seventh electrode, and the eighth electrode have independent electrode wires.
  • each electrode is formed by the tracheal tissue and the control circuit board. Loop, each electrode can independently detect the adhesion resistance between the electrode and the tissue.
  • a temperature sensor is respectively arranged on the electrode assembly and the electrode assembly, which can independently detect the temperature of the tissue around the electrode assembly.
  • a ring electrode is used, the first ring electrode and the second ring electrode are spirally arranged on the first balloon and the second balloon, and the outer diameters of the first ring electrode and the second ring electrode become larger when the balloon is inflated.
  • the first ring electrode and the second ring electrode are provided with independent electrode wires, each electrode forms a loop through the tracheal tissue and the control circuit board during use, and each electrode can independently detect the adhesion resistance between the electrode and the tissue.
  • a temperature sensor is respectively arranged on the ring electrode and the ring electrode, which can independently detect the temperature of the tissue around the electrode assembly.
  • an indicator light is provided on the handle. Theoretically, when the impedance value of the electrode and the tissue is below 500 ohms to 1,000 ohms, it prompts that radio frequency ablation can be performed.
  • the bronchial radio frequency ablation instrument detects the electrode adhesion impedance of 500 ohms
  • the indicator light turns green, indicating that ablation can be performed.
  • the detection electrode of the bronchial radiofrequency ablation instrument is attached to an impedance of 500 ohms to more than 1000 ohms, the indicator light turns red, indicating that ablation cannot be performed.
  • a pressure sensor is arranged in a local area of the traction wire, and the two ends of the pressure sensor are respectively connected to the two ends of the traction wire.
  • the touch screen of the radio frequency ablation instrument displays the state of the electrodes and the resistance value of the adhesion between the electrodes and the tissue, and one or more electrodes can be controlled to release energy by clicking the touch screen.
  • the guide tube body can be used as a guide tube.
  • the guide tube has a lumen capable of accommodating the electrode assembly and the electrode assembly.
  • the electrode assembly can expand and contract freely in the guide tube.
  • Liquids, such as anti-inflammatory drugs, anesthetics, etc., can enter the ablated lesion tissue through the lumen of the guide tube to relieve the patient's pain and complications.
  • the drop value of the impedance exceeds 10 ⁇ -100 ⁇ , more preferably 20 ⁇ -50 ⁇ , or the impedance change rate is higher than -1 ⁇ /s ⁇ -50 ⁇ /s, more preferably -5 ⁇ /s ⁇ -50 ⁇ /s, or The change in impedance changes from falling to rising, that is, it is judged that the ablation is effective.
  • Another object of the present invention is to provide an anti-disturbance method for radio frequency ablation temperature: dynamically smoothing the temperature during the process of controlling the ablation temperature, including averaging, weighted average, or median averaging of sampled temperature values, according to dynamic smoothing
  • the processed temperature value guides the radio frequency ablation instrument to adjust the power output of the radio frequency, so as to ensure the smooth change of the radio frequency output power during the ablation process.
  • Another object of the present invention is to provide a method for preventing repeated ablation: detecting the temperature of the part to be ablated before each application of ablation. If the temperature of the part to be ablated is higher than 40°C-60°C, preferably 45°C, no ablation is started.
  • the present invention finely controls the generated and controlled DC current, AC current and radio frequency energy, and collects, processes and displays temperature, impedance or tension signals based on impedance or tension
  • the change of signal judges the effectiveness of ablation.
  • the change in impedance is selected from one or more of the decreasing value of impedance, the rate of change of impedance, the change of rate of change of impedance, or the change of impedance from decreasing to increasing.
  • the closed-loop control system adopts a segmented control method to adjust the radio frequency output power to control the ablation temperature; the temperature dynamic smoothing process is used to counter various disturbances. Thereby, the safety and effectiveness of the system are further guaranteed, that is, there will be no erroneous ablation or failure to ablate, and no repeated ablation or excessive ablation.
  • the present invention adopts a segmented proportional integral control algorithm.
  • the bronchial radio frequency ablation instrument can control the radio frequency output power so that the ablation electrode temperature reaches the ablation temperature within 3 seconds.
  • the temperature upshoot after reaching the ablation temperature is less than 3°C, usually 0.5°C to 1.5°C; the temperature is maintained at the ablation temperature stably, and the fluctuation is less than 1°C, usually less than 0.5°C; the radio frequency output power changes smoothly throughout the ablation treatment process without sudden changes Application and/or sudden changes of radio frequency energy.
  • the present invention can deal with various complex disturbances through temperature dynamic smoothing.
  • the radio frequency output power changes smoothly throughout the ablation treatment process without sudden changes in radio frequency energy.
  • the temperature remains stable and the fluctuation is small, even if it is very frequent and very frequent. Severe disturbance, no oscillation and overshoot. And it can well suppress the temperature upshoot that may be caused by the disturbance, even if it is a severe and complex disturbance, the temperature upshoot does not exceed 3°C.
  • Fig. 1 is an overall schematic diagram of the multipolar ablation device of Example 1.
  • Fig. 2 is an unexpanded schematic diagram of the basket-shaped electrode assembly of Example 1.
  • Fig. 3 is a schematic diagram 1 of the expansion of the basket-shaped electrode assembly in Example 1.
  • Fig. 4 is a schematic diagram 2 of the expansion of the basket-shaped electrode assembly in embodiment 1.
  • Fig. 5 is a partial cross-sectional view of the supporting member of the first embodiment.
  • Example 6 is a schematic diagram 1 of the balloon electrode assembly of Example 2.
  • Example 7 is a schematic diagram 2 of the balloon electrode assembly of Example 2.
  • Fig. 8 is a partial cross-sectional view of the supporting member of the second embodiment.
  • Example 9 is a schematic diagram of the spiral electrode assembly of Example 3.
  • Figure 10 is a schematic diagram of the handle.
  • Fig. 11 is a sectional view of the pressure sensor arrangement.
  • Figure 12 is the touch screen of the radiofrequency ablation instrument.
  • Figure 13 is the first case of the impedance detection value of the left lobe of the pig lung with different handle grips.
  • Figure 14 is the first case of the impedance detection value of the right lobe of the pig lung with different handle grips.
  • Figure 15 shows the impedance measurement values of different handle grips in the left lobe of the second pig lung.
  • Figure 16 shows the impedance detection values of different handle grips in the right lobe of the second pig lung.
  • Figure 17 is the relationship between the number of electrodes attached to the isolated pig lung and the impedance.
  • Figure 18 is the relationship between the number of saline electrodes attached to the impedance.
  • Fig. 20 is the change curve of tissue impedance during ablation in animal experiments.
  • Figure 21 is a curve of tissue temperature and RF output power during ablation without segmented control and temperature dynamic smoothing.
  • Figure 22 is a curve of tissue temperature and RF output power during ablation after segmented control and temperature dynamic smoothing.
  • Figure 23 is a record of the ablation process where the tissue temperature is higher than the overtemperature threshold and the ablation is stopped in the animal experiment.
  • the radio frequency ablation instrument of the present invention can generate and control direct current, alternating current and radio frequency energy, and collect, process and display temperature, impedance or tension signals, and judge the effectiveness of ablation based on changes in impedance or tension signals.
  • the change of is selected from one or more of the decreasing value of impedance, the rate of change of impedance, the change of rate of change of impedance, or the change of impedance from decreasing to increasing. Further, when the drop value of the impedance exceeds 10 ⁇ -100 ⁇ , or the impedance change rate is higher than -1 ⁇ /s ⁇ -50 ⁇ /s, or the impedance change changes from falling to rising, it is determined that the ablation is effective.
  • the radio frequency ablation instrument of the present invention uses a closed-loop control system to adjust the radio frequency output power to control the ablation temperature.
  • the segmented control includes (1) a rapid heating stage: from the start of ablation lasting 0.5s to 2s, fast The end temperature of the warming stage reaches 50%-80% of the ablation temperature; (2) Slow warming stage: after the rapid warming stage lasts 0.5s to 2s, the end temperature of the slow warming stage reaches 70%-99% of the ablation temperature, or It is 0.1°C to 10°C lower than the ablation temperature; (3) Stable maintenance stage: After the slow temperature rise stage, the temperature is stably maintained until the ablation stops.
  • the radio frequency ablation instrument performs dynamic smoothing of the temperature during the process of controlling the ablation temperature, including averaging, weighted average, or median averaging processing on sampled temperature values, and instructs the radio frequency ablation instrument according to the temperature value obtained by dynamic smoothing Adjust the power output of the radio frequency to ensure smooth changes in the radio frequency output power during the ablation process.
  • the upper threshold of dynamic smoothing is 0.1°C/s to 20°C/s, and the lower limit of the threshold is -0.1°C/s to -20°C/.
  • the smoothing time window When the temperature change rate is less than the lower threshold of the threshold, the smoothing time window is extended; when the temperature changes When the rate is greater than the upper threshold, the smoothing time window is shortened; when the temperature change rate is between the lower and upper thresholds, the smoothing time window remains unchanged.
  • the upper limit of the dynamic smoothing threshold is 5°C/s, and the lower limit is -5°C/s.
  • the smoothing processing time window has a dynamic range of 0s to 10s, preferably 0s to 2.5s.
  • the radio frequency ablation apparatus has a protection mechanism to prevent repeated ablation.
  • the temperature of the part to be ablated is detected before each application of ablation. If the temperature of the part to be ablated is higher than 40°C-60°C, ablation is not started.
  • the multipolar ablation device shown in the embodiment of the present invention can be used to achieve the objective of the present invention.
  • the following embodiments are only preferred embodiments of the present invention, and do not limit the present invention in any form. Any simple modifications, equivalent changes and modifications made to the above embodiments based on the essence of the technology and method of the present invention still fall within the scope of the technical and method solutions of the present invention.
  • the present invention relates to a device for transmitting energy in the trachea and bronchus, and further relates to a multipolar ablation device.
  • the device mainly includes a first electrode assembly 2, a second electrode assembly 3, and a guide tube Body 6, handle 17, joint 18.
  • the first electrode assembly 2 and the second electrode assembly 3 are continuously arranged in the axial direction of the guide tube body 6, and the head end of the electrode assembly is provided with an anti-damage structure 1, which is used to fix the first electrode assembly 2 at the same time.
  • the first electrode assembly 2 and the second electrode assembly 3 are connected by a supporting member 4.
  • the proximal end of the first electrode assembly 2 and the distal end of the second electrode assembly 3 are fixed on the supporting member 4, and the distal end of the pulling wire 5 It is connected with the head-end anti-damage structure 1, the proximal end is fixed with the supporting member 4 (as shown in FIG. 5), and the handle 17 is entered through the guide tube body 6.
  • the proximal end of the second electrode assembly 2 is fixed on the tube body 6.
  • the handle 17 controls the traction wire 5 to contract proximally, it first drives the first electrode assembly 2 to expand, while the second electrode assembly 3 also expands simultaneously.
  • the electrode assembly is set to the distal end. The end is small, the proximal end is large, and the diameter difference is about 1 to 5 mm.
  • the first electrode assembly 2 and the second electrode assembly 3 are provided with a plurality of electrodes, the first electrode 21, the second electrode 22, the third electrode 23, the fourth electrode 24, the fifth electrode 31, the sixth electrode 32, and the seventh electrode.
  • the electrodes 33 and the eighth electrode 34 are made of stainless steel and have certain elasticity.
  • Each electrode is connected to a handle with an independent electrode wire, and the handle is transmitted to the bronchial radiofrequency ablation device through the joint 18.
  • each electrode forms a loop through the tracheal tissue and the control circuit board, and each electrode can independently detect the adhesion resistance between the electrode and the tissue.
  • a temperature sensor 201 is provided on the first electrode assembly 2 and the second electrode assembly 3 respectively. And 202, can independently detect the temperature of the tissue around the electrode assembly.
  • Figures 6 to 8 show the second embodiment of the device.
  • a first balloon 11 and a second balloon 12 are provided below the first electrode assembly 2 and the second electrode assembly 3, and a first balloon 11 is provided at the proximal end of the first balloon 11.
  • An airway 15 is provided with a second balloon airway 16 at the proximal end of the second balloon 12.
  • the first balloon 11 and the second balloon 12 are isolated from each other.
  • the first airway 15 and the second trachea 16 are independent of each other to provide gas for the first balloon 11 and the second balloon 12, when the gas passes through the balloon gas
  • the first electrode 71, the second electrode 72, the third electrode 73, the fourth electrode 74, the fifth electrode 81, the sixth electrode 82, the seventh electrode 83, and the eighth electrode 84 are compressed and expanded
  • the electrode assembly expands, and the gas intake volume is controlled by the external intake equipment.
  • the size of the electrode assembly expansion can be set through the intake volume, and the first electrode assembly 2 and the second electrode assembly 3 are independently controlled to adapt to The size requirements of different tracheal lesions.
  • the first electrode 71, the second electrode 72, the third electrode 73, the fourth electrode 74, the fifth electrode 81, the sixth electrode 82, the seventh electrode 83, and the eighth electrode 84 have independent electrode wires, and each electrode is in use After the tracheal tissue and the control circuit board form a loop, each electrode can independently detect the adhesion resistance between the electrode and the tissue.
  • a temperature sensor 201 and 202 are respectively provided on the electrode assembly 2 and the electrode assembly 3, which can independently detect the temperature of the tissue around the electrode assembly.
  • Figure 9 shows the third embodiment.
  • the first ring electrode 1 and the second ring electrode 2 are spirally arranged on the first balloon 11 and the second balloon 12.
  • the first ring electrode 1 The outer diameter of the second ring electrode 2 becomes larger.
  • the first ring electrode 1 and the second ring electrode 2 are provided with independent electrode wires.
  • each electrode forms a loop through the tracheal tissue and the control circuit board.
  • Each electrode can independently detect the adhesion resistance between the electrode and the tissue .
  • the ring electrode 1 and the ring electrode 2 are respectively provided with a temperature sensor 201 and 202, which can independently detect the temperature of the tissue around the electrode assembly.
  • the handle 17 is provided with an indicator light 19.
  • the impedance value is 500 ohms to 1000 ohms or less, and radiofrequency ablation can be performed.
  • the indicator light turns green to indicate that ablation can be performed.
  • the detection electrode of the bronchial radiofrequency ablation instrument is attached to an impedance of 500 ohms to 1,000 ohms or more, the indicator light is red, indicating that discharge ablation cannot be performed.
  • a pressure sensor 20 is set in a local area of the traction wire 5.
  • the two ends of the pressure sensor are respectively connected to the 2 ends of the traction wire.
  • the traction wire 5 is stressed.
  • the pulling force will be displayed to determine the degree of adhesion.
  • the degree of adhesion between the electrode arm and the tissue can be judged by judging the pulling force.
  • the touch screen of the radio frequency ablation instrument displays the state of the electrodes and the impedance value of the electrodes and the tissue.
  • One or more electrodes can be controlled to release energy by clicking on the touch screen.
  • the guide tube body 6 can be used as a guide tube.
  • the guide tube has a lumen that can accommodate the electrode assembly 2 and the electrode assembly 3.
  • the electrode assembly can expand and contract freely in the guide tube, and the lumen of the guide tube can pass liquid.
  • anti-inflammatory drugs and anesthetics can enter the ablated lesion tissue through the guide tube lumen to relieve the patient's pain and complications.
  • the clinical application of the multipolar ablation device is simulated through the in vitro tissue test, and the impedance detection value of the ablation catheter in different parts of the bronchus, different grip strength of the handle and different number of electrodes attached is observed.
  • Test environment temperature: 15°C ⁇ 20°C; humidity: 55%RH ⁇ 60%RH.
  • Test organization 2 freshly isolated pig lungs.
  • Test principle The isolated pig lung is immersed in saline, the ablation catheter is connected to the radiofrequency ablation instrument, and the ablation catheter is operated. Observe and record the radiofrequency ablation instrument in different parts of the bronchus, different grip strength of the handle, and different number of electrodes attached. Impedance display value.
  • Test site left upper lobe ⁇ left lower lobe ⁇ right upper lobe ⁇ right lower lobe.
  • Table 1 The impedance test values of the grip strength of different handles in the left lobe of the first pig lung
  • the results are shown in Table 7 and Figure 19.
  • the results show that the radiofrequency ablation causes the impedance detection value to decrease.
  • the effectiveness of the ablation can be judged based on the change in impedance or tension signal.
  • the impedance change is selected from impedance One or more of the drop value, the impedance change rate, the change in the impedance change rate, or the impedance change from falling to rising.
  • the generated and controlled DC current, AC current and radio frequency energy are finely controlled, and collected and processed
  • display temperature and impedance signal judge the effectiveness of ablation according to the change of impedance signal, the drop of impedance exceeds 10 ⁇ 100 ⁇ , or the rate of impedance change is higher than -1 ⁇ /s ⁇ -50 ⁇ /s, or the change of impedance changes from drop to Ascend, that is, judge that the ablation is effective.
  • the electrodes of the multipolar ablation device of the present invention enter the lungs of the dog to be tested, and the data interface of the multipolar ablation device is connected to a computer. Operate the multipolar ablation device for ablation, and the computer displays and records the temperature, power and impedance data during the test. The whole process of the bronchoscope endoscope was observed.
  • FIG. 20 is the change curve of tissue impedance during the ablation process in an animal experiment.
  • the abscissa is time
  • the left ordinate is the tissue temperature and RF output power
  • the right ordinate is the tissue impedance.
  • the tissue impedance begins to decrease after the ablation starts, and the rate of tissue impedance decrease gradually slows down and gradually begins to rise, indicating that the multipolar ablation device of the present invention is effective for ablation.
  • the invention relates to a device for transmitting energy in the trachea and bronchus.
  • the device adopts a segmented proportional-integral control algorithm and dynamically smoothes the temperature.
  • the ablation start 0s ⁇ 1s is a rapid heating stage, and the RF output power starts from 0 quickly
  • the tissue temperature starts to rise rapidly; 1s to 2s is the slow heating stage, the RF output power rises slowly and begins to gradually decrease, and the tissue temperature rises slowly: after 2s, it is the stable maintenance stage until the ablation stops.
  • the output power is slowly decreased and adjusted slightly to maintain tissue temperature.
  • the dynamic range of the temperature dynamic smoothing time window is 0s ⁇ 2.5s, whenever the temperature change rate is greater than 5°C/s, the smoothing time window is shortened by 0.01s; whenever the temperature change rate is less than -5°C/s, the smoothing processing time The window is extended by 0.01s; the temperature change rate is between -5°C/s and 5°C/s, and the smoothing time window remains unchanged.
  • the temperature in the smoothing time window is averaged to achieve dynamic temperature smoothing.
  • the animal experiment operation is the same as in Example 5.
  • Figure 21 is the ablation process tissue temperature and RF output power curve without segmented control and temperature dynamic smoothing in animal experiments.
  • Figure 22 is after segmented control and temperature dynamic smoothing are used.
  • the curve of tissue temperature and RF output power during the ablation process the abscissa is time, the left ordinate is the tissue temperature, and the right ordinate is the RF output power.
  • the RF output power rises rapidly within 1s at the beginning of ablation, slowly rises and begins to fall within 2s, and then slowly decreases after 2s with a small adjustment; while the tissue temperature begins to rise rapidly within 1s from the beginning of ablation, and the temperature rises slowly within 2s, and within 3s Reach and maintain the ablation temperature.
  • the device controls the radio frequency output power so that the temperature of the ablation electrode reaches the ablation temperature within 3 seconds, and the temperature upset after reaching the ablation temperature is less than 1°C, and the tissue temperature is stably maintained at the ablation temperature with a fluctuation less than 1°C.
  • the radio frequency output power changes smoothly throughout the ablation treatment process, and there is no sudden application and/or sudden change of radio frequency energy. Without the use of segmented control and dynamic temperature smoothing, the tissue temperature will oscillate significantly, and the temperature will rise significantly. After using segmented control and dynamic temperature smoothing, the tissue temperature remains stable and the temperature upshoot is small.
  • the present invention successfully uses the closed-loop control system to adjust the radio frequency output power by the segmented control method to control the ablation temperature; and uses the temperature dynamic smoothing process to counter various disturbances.
  • the safety and effectiveness of the system are further guaranteed, that is, there will be no erroneous ablation or failure to ablate, and no repeated ablation or excessive ablation.
  • the radio frequency ablation device of the present invention has a radio frequency energy transfer/feedback control mechanism: the radio frequency energy is output for 2-4 seconds, and the temperature of the ablated tissue reaches the set temperature of 60°C ⁇ 70°C for 6-8 seconds.
  • the temperature of the ablated tissue is higher than the overtemperature Threshold (1°C ⁇ 10°C higher than the set temperature) will alarm over temperature, and the ablation system will automatically interrupt the radio frequency energy output.
  • the animal experiment operation is the same as in Example 5.
  • Figure 23 is a record of the ablation aborted when the tissue temperature in the ablation process is higher than the overtemperature threshold in the animal experiment.
  • the abscissa is time
  • the left ordinate is the tissue temperature
  • the right ordinate is the RF output power.
  • the tissue temperature is higher than 68°C
  • the RF output power quickly drops to 0 and the ablation is terminated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Surgical Instruments (AREA)

Abstract

一种射频消融仪,用于向病灶递送直流电流、交流电流以及射频能量,用于治疗肺部疾病。射频消融仪能够依据阻抗的下降值、阻抗变化率、阻抗变化率的变化或者阻抗由下降变为上升中的一种或几种判断消融的有效性。该射频消融仪采用分段式控制方法和动态平滑处理调节射频输出功率来控制消融温度,避免消融组织在短时间内快速升温,以保证消融过程射频输出功率平滑变化。其还具有防止重复消融的特有保护机制,每次施加消融前探测待消融部位温度,若待消融部位温度高于40℃~60℃,不启动消融。还同时公开了包含该射频消融仪的多极消融装置。

Description

一种多极消融装置 技术领域
本发明属于微创医疗设备领域,特别涉及一种用于在气管和支气管内传送能量的射频消融仪以及多极消融装置。
背景技术
慢性阻塞性肺病是一种可导致肺气道阻塞从而限制气流进出肺部的进行性疾病,例如哮喘、肺气肿、慢阻肺。因此,患有慢性阻塞性肺病的患者表现为呼吸困难,同时有诸如咳嗽,喘息,气短,胸闷,产生粘液(哮喘发作)等症状,需要临床处理和治疗,耗费大量医疗资源,并有可能导致住院治疗与生命危险。引起慢性阻塞性肺病的原因有:气道平滑肌收缩,气道腺体分泌过多粘液,气道壁平滑肌由于炎症而变厚,以及气道周围组织解剖结构的改变等。
患者肺气道壁内的气道平滑肌病理性增生、过度且不适当的收缩是慢性阻塞性肺病的病理机制之一。因此,减少或消除病理性增生的气道平滑肌是治疗慢性阻塞性肺病的一种选择。
目前临床上治疗慢性阻塞性肺病如哮喘、肺气肿、慢阻肺的主要方法是采用药物治疗如拟肾上腺素药物,茶碱类药物及激素,或排痰,抗炎等进行对症处理,不仅需要长期服药,且不能治愈这一类疾病。更有的患者在使用吸入性皮质类固醇(ICS)与长效β受体激动剂(LABA)后仍无法有效的控制病情。
现有的微创消融技术能减少病理性增生的气道平滑肌。在实施该治疗时,导管定位在气道内并使导管末端上的电极阵列扩张以接触气道壁。通过移动导管逐步对气管内的多处部位进行能量传递,以去除病理性增生的气道平滑肌。
基于现有技术的支气管射频消融术所使用的消融设备的安全性和有效性均存在缺陷,如无法对消融电极的贴壁状况进行监测和显示;又如开始消融瞬间施加较大的射频能量,使得到达设定温度后温度上冲较大,这种突然施加和(或)突然变化的射频能量对患者的呼吸道有刺激作用,温度上冲较大对患者的安全存在威胁。此外,支气管射频消融术治疗过程中,由于患者呼吸运动所导致的气流变化、患者胸腔运动所导致的电极滑动、术者握力不稳所导致的贴靠程度变化等原因,使得消融电极的温度受到频繁而复杂的扰动,通常的比例积分控制算法容易产生振荡和超调,难以适应这些复杂的外部扰动,从而干扰消融治疗的效果。
理想的支气管射频消融术应避免在同一部位重复消融,然而临床实际操作中由于术者疏忽或误操作或所使用的设备没有提示功能,在完成一次消融后,没有移送导管(电极)或者移送量不足,就再次启动消融,造成在同一部位重复消融,会导致气道组织的永久性、不可逆损伤,甚至造成气道瘘。本发明通过界定阻抗、功率、温度之间的逻辑关系、每次施加消融前探测待消融部位温度,如当待消融部位温度高于40℃~60℃时,优选45℃,即不启动消融,等等控制机制,从而使得本发明所述的射频消融仪具有防止重复消融的保护机制。发明内容
本发明的目的是针对现有技术的缺陷,提供一种更为安全、有效的具有在气管和支气管内传送能量功能的装置。
为了实现上述目的,本发明采用以下技术方案:
一种射频消融仪,能够产生和控制直流电流、交流电流以及射频能量,并收集、处理和显示温度、阻抗或张力信号,依据阻抗或张力信号的变化判断消融的有效性,所述阻抗的变化选自阻抗的下降值、阻抗变化率、阻抗变化率的变化或者阻抗由下降变为上升中的一种或几种。
进一步的,当所述阻抗的下降值超过10Ω~100Ω,或者阻抗变化率高于-1Ω/s~-50Ω/s,或者阻抗变化由下降转为上升,即判断消融是有效的。
进一步的,当所述阻抗的下降值超过20Ω~50Ω,或者阻抗变化率高于-5Ω/s~-50Ω/s,或者阻抗变化由下降转为上升,即判断消融是有效的。
进一步的,所述射频消融仪通过闭环控制系统采用分段式控制方法调节射频输出功率来控制消融温度,所述分段式控制包括(1)快速升温阶段:从开始消融持续0.5s到2s,快速升温阶段终点温度达到消融温度的50%-80%,优选65%;(2)慢速升温阶段:在快速升温阶段之后持续0.5s到2s,慢速升温阶段终点温度达到消融温度的70%-99%,优选90%,或者是低于消融温度0.1℃到10℃,优选2℃;(3)稳定维持阶段:慢速升温阶段之后稳定维持温度直至消融停止。
上述各阶段可以按照设备的固有特性根据实际治疗的需要分别进行优化。整个消融治疗过程,射频输出功率从0开始平滑变化,快速升温阶段射频输出功率快速上升,慢速升温阶段射频输出功率逐渐缓慢上升进而逐渐转为缓慢下降,稳定维持阶段射频输出功率继续缓慢下降逐渐趋于稳定。
采用分段式比例积分控制算法,判定在支气管各个可治疗部位以及不同的电极贴靠程度,支气管射频消融仪均能控制射频输出功率使消融电极温度在3秒内到达设定温度,且 到达设定温度后的温度上冲小于3℃,通常为0.5℃~1.5℃;温度稳定维持在设定温度,波动小于1℃,通常小于0.5℃;整个消融治疗过程射频输出功率平滑变化,没有突然施加和(或)突然变化的射频能量。
进一步的,本发明所述的射频消融仪在控制消融温度的过程中对温度进行动态平滑处理,包括对取样温度值进行平均、加权平均或中位值平均处理,根据动态平滑处理得到的温度值指导射频消融仪调节射频的功率输出,以此保证消融过程射频输出功率平滑变化。
所述动态平滑处理的阈值上限为0.1℃/s到20℃/s,优选5℃/s,阈值下限为-0.1℃/s到-20℃/,优选-5℃/s,当温度变化率小于阈值下限时,延长平滑处理的时间窗;当温度变化率大于阈值上限时缩短平滑处理的时间窗;温度变化率处与阈值下限和上限之间时,平滑处理的时间窗保持不变。
优选平滑处理的时间窗动态范围为0s到10s,更优选0s到2.5s。
上述温度动态平滑处理可以应对各种复杂的扰动,整个消融治疗过程射频输出功率平滑变化,不会出现突然变化的射频能量,温度保持稳定,波动很小,即使是很频繁很剧烈的扰动,也不出现振荡和超调。而且能够很好地抑制扰动可能造成的温度上冲,即使是剧烈而复杂的扰动,温度上冲也不超过3℃。从而保证消融能量去除病理性增生过程的安全性和有效性。
进一步的,本发明所述的射频消融仪具有防止重复消融的保护机制,每次施加消融前探测待消融部位温度,若待消融部位温度高于40℃~60℃,优选45℃,不启动消融。
进一步的,所述的射频消融仪使用:方法1:持续微弱交流信号检测阻抗,输出射频时通过电压和电流计算阻抗和/或方法2:不输出射频直接检测阻抗。
进一步的,所述的射频消融仪具有射频能量传递/反馈控制机制:射频能量输出2-4秒消融组织温度到达设定温度维持6-8秒,当消融组织温度高于超温阈值则超温报警,消融系统自动中断射频能量输出。优选的,所述设定温度为60℃~70℃,超温阈值是为高于设定温度1℃~10℃。
更优选的,所述设定温度为65℃,超温阈值是为高于设定温度3℃。
进一步的,所述的射频消融仪采用多中央控制器、温度双路、电压、电流双路设计。
进一步的,所述的射频消融仪具有数据传输接口,可外接电脑,实时获取各项参数信息(如:温度、阻抗、功率、时间、是否消融成功等)。
进一步的,所述的射频消融仪具有触摸显示屏显示电极状态、电极与组织的贴靠阻 抗值,并通过点击触摸屏能够控制一个或多个电极释放能量。
本发明另一目的在于提供一种多极消融装置,包括:本发明所述的射频消融仪、电极组件、引导导管、手柄和接头。
其中所述引导导管内至少有一个腔;
所述电极组件设置在引导导管前端,并通过线路穿过引导导管内连接手柄,所述电极组件包括一组以上的电极组和一个以上的探测装置,所述电极组能够施加电能、射频能量、激光能量、高密度聚焦超声或低温消融,所述探测装置用于检测温度、阻抗或张力;
所述手柄连接接头和一组以上的电极组件,并包含一个或多个操控部件,所述操控部件是用于控制电极组的收缩、张开以及释放能量并且可控制电极组件伸出或退回引导导管;
所述接头是用于向电极提供能量。
进一步的,所述射频消融仪可显示电极的阻抗或张力,并提示电极组件是否贴气管壁良好:当支气管射频消融仪电极与组织贴靠后阻抗值小于等于阈值,提示电极组件贴气管壁良好。
优选的,所述阻抗阈值是500欧~1000欧,更优选900欧。
进一步的,所述射频消融仪判断电极与气管壁接触是否良好的方法:射频消融仪可测出每个电极阻抗,阻抗一致,则电极与气管壁接触良好;如某个电极与气管壁接触不好,则阻抗会与其他接触良好的不同。
进一步的,所述射频消融仪同时使用两种阻抗检测方法:方法1:持续微弱交流信号检测阻抗,输出射频时通过电压和电流计算阻抗;方法2:不输出射频也能检测到阻抗的大小。
进一步的,探测装置包括温度探测装置、阻抗探测装置和张力探测装置。
进一步的,电极组包括一个电极或多个电极,每个电极通过独立的电极导线连接手柄,电极组在操控部件的控制下张开呈网篮状、螺旋状或球囊状,在多组电极组存在的情况下,电极组依次串联排列;电极组距手柄越近,张开后的外径尺寸越大,所述外径的尺寸为1~20mm。
进一步的,电极组件还包括牵引钢丝,所述电极的两端固定在牵引钢丝上,所述牵引钢丝穿过引导导管连接手柄,手柄通过拉动和放松牵引钢丝控制电极组的收缩和张开。
进一步的,在多组电极组存在的情况下,距离手柄最远端的电极组的头端设置有防损伤结构,电极组和电极组之间通过支撑部件连接。
进一步的,牵引钢丝上设置有压力传感器。
进一步的,电极组件还包括球囊,所述球囊设置在电极之间,球囊通过球囊气道穿过引导导管连接手柄,能够通过手柄连接进气设备,气囊被充气胀大后使电极组张开;在多组电极组存在的情况下,多个球囊依次串联排列,多个气囊分别通过独立的球囊气道连接手柄。
进一步的,引导导管距离手柄越近,硬度越大,其硬度分布从邵氏硬度90A~80D。
进一步的,手柄的操控部件包括控制电路板和控制按钮,所述控制电路连接电极组件和控制按钮,所述控制按钮分别控制不同电极组件内的不同部件。
进一步的,电极组在手柄操控部件控制下,能够控制一个或多个电极释放能量。
为了实现本发明目的,本发明提供了一种用于在气管和支气管内传送能量功能的多极消融装置,主要包括第一电极组件、第二电极组件、引导管体、手柄、接头。第一电极组件和第二电极组件呈连续性的布置在引导管体轴向上,电极组件头端设置防损伤结构,同时用于固定第一电极组件,第一电极组件与第二电极组件之间用支撑部件进行连接,第一电极组件的近端与第二电极组件的远端固定在支撑部件上,牵引钢丝远端与头端防损伤结构连接,近端与支撑部件固定,并通过引导管体进入到手柄。第二电极组件近端固定在管体上。当手柄控制牵引钢丝向近端收缩时,首先带动第一电极组件扩张,同时第二电极组件也同步扩张,根据气管管道的特征,将电极组件设置为远端小,近端大,直径差异约为1~5mm。
第一电极组件与第二电极组件上设置有多个电极,第一电极、第二电极、第三电极、第四电极,第五电极、第六电极、第七电极、第八电极,电极为不锈钢材料制成,具有一定的弹性,每个电极与独立的电极导线连接手柄,手柄经接头传输至支气管射频消融仪。使用时每个电极经过气管组织与控制电路板形成回路,每个电极均能独立的检测出电极与组织的贴靠阻值。当电极贴靠好时(检测到阻值在500欧~1000欧以下),支气管射频消融仪将发放射频能量消融病灶组织,第一电极组件与第二电极组件上分别设置有一个温度传感器,能独立检测电极组件周围组织的温度。
或者,第一电极组件与第二电极组件下方设置第一球囊与第二球囊,第一球囊近端设置球囊第一气道,第二球囊近端设置球囊第二气道。第一球囊与第二球囊中间相互隔离,第一气道与第二气管彼此的独立的为第一球囊与第二球囊提供气体,当气体通过球囊气道进入球囊中时,第一电极、第二电极、第三电极、第四电极,第五电极、第六电极、第七电极、第八电极,受压扩张,电极组件扩张,气体的进气量为外部的进气设备进行控制,可以通过进气量进行设置电极组件扩张的大小,且第一电极组件与第二电极组件为独立控制,以适应不同气管病灶部位大小的需求。第一电极、第二电极、第三电极、第四电极,第五电 极、第六电极、第七电极、第八电极有独立的电极导线,使用时每个电极经过气管组织与控制电路板形成回路,每个电极均能独立的检测出电极与组织的贴靠阻值。电极组件与电极组件上分别设置有一个温度传感器,能独立检测电极组件周围组织的温度。
或者,采用环形电极,第一环形电极与第二环形电极螺旋的设置在第一球囊与第二球囊上,当球囊充气时第一环形电极与第二环形电极外径变大。第一环形电极与第二环形电极上设置独立的电极导线,使用时每个电极经过气管组织与控制电路板形成回路,每个电极均能独立的检测出电极与组织的贴靠阻值。环形电极与环形电极上分别设置有一个温度传感器,能独立检测电极组件周围组织的温度。
本发明一个优选的方案,手柄上设置有指示灯,理论上电极与组织贴靠后阻抗值在500欧~1000欧以下时提示可以进行射频消融,当支气管射频消融仪检测电极贴靠阻抗500欧~1000欧以下时,指示灯变绿,提示可以进行消融,当支气管射频消融仪检测电极贴靠阻抗500欧~1000欧以上时,指示灯显示为红色,提示不能进行消融。
本发明一个优选的方案,在牵引钢丝的局部区域内设置一压力传感器,压力传感器两端分别连接牵引钢丝的两端,当牵引电极组件时,牵引钢丝受力,此时压力传感器将受到相同的拉力,经过支气管射频消融仪处理,拉力将被显示以做贴靠程度的判定.电极贴靠组织时,可以通过判断牵引的拉力进行判别电极臂与组织的贴靠程度。
本发明一个优选的方案,射频消融仪触摸显示屏显示电极状态、电极与组织的贴靠阻抗值,并通过点击触摸屏能够控制一个或多个电极释放能量。
本发明一个优选的方案,引导管体可以作为导引管,导引管具有能容纳电极组件与电极组件的管腔,电极组件能在导引管中能进行自由伸缩,导引管管腔中可以通过液体,如消炎药物、麻醉药等能通过导引管腔进入消融的病灶组织,以缓解病人痛苦以及并发症。
本发明另一目的在于提供一种射频消融有效性的判断方法:对消融部位给予电刺激,并探测、收集和处理消融部位的阻抗值,依据阻抗的变化判断消融的有效性,所述阻抗的变化选自阻抗的下降值、阻抗变化率、阻抗变化率的变化或者阻抗由下降变为上升中的一种或几种。
优选的,当所述阻抗的下降值超过10Ω~100Ω,更优选20Ω~50Ω,或者阻抗变化率高于-1Ω/s~-50Ω/s,更优选-5Ω/s~-50Ω/s,或者阻抗变化由下降转为上升,即判断消融是有效的。
本发明另一目的在于提供一种射频消融温度的控制方法:通过闭环控制系统采用分段式控制方法调节射频输出功率来控制消融温度,所述分段式控制包括(1)快速升温阶 段:从开始消融持续0.5s到2s,快速升温阶段终点温度达到消融温度的50%-80%;(2)慢速升温阶段:在快速升温阶段之后持续0.5s到2s,慢速升温阶段终点温度达到消融温度的70%-99%,或者是低于消融温度0.1℃到10℃;(3)稳定维持阶段:慢速升温阶段之后稳定维持温度直至消融停止。
优选的,所述分段式控制包括(1)快速升温阶段:从开始消融持续1s;快速升温阶段终点温度达到消融温度的65%;(2)慢速升温阶段:在快速升温阶段之后持续1s,慢速升温阶段终点温度达到消融温度的90%,或者是低于消融温度2℃;(3)稳定维持阶段:慢速升温阶段之后稳定维持温度直至消融停止。
本发明另一目的在于提供一种射频消融温度抗扰方法:在控制消融温度的过程中对温度进行动态平滑处理,包括对取样温度值进行平均、加权平均或中位值平均处理,根据动态平滑处理得到的温度值指导射频消融仪调节射频的功率输出,以此保证消融过程射频输出功率平滑变化。
优选的,动态平滑处理的阈值上限为0.1℃/s到20℃/s,更优选5℃/s,阈值下限为-0.1℃/s到-20℃/,更优选-5℃/s,当温度变化率小于阈值下限时,延长平滑处理的时间窗;当温度变化率大于阈值上限时缩短平滑处理的时间窗;温度变化率处与阈值下限和上限之间时,平滑处理的时间窗保持不变。
上述方法一个优选的方案,当温度变化率大于1℃/s到50℃/s时,平滑处理的时间窗为0s到10s。更优选的,当温度变化率大于20℃/s时,平滑处理的时间窗为2.5s。
本发明另一目的在于提供一种防止重复消融的方法:每次施加消融前探测待消融部位温度,若待消融部位温度高于40℃~60℃,优选45℃,不启动消融。
本发明优点:
(1)本发明通过界定阻抗、功率、温度之间的逻辑关系,精细控制所产生和控制直流电流、交流电流以及射频能量,并收集、处理和显示温度、阻抗或张力信号,依据阻抗或张力信号的变化判断消融的有效性。其中阻抗的变化选自阻抗的下降值、阻抗变化率、阻抗变化率的变化或者阻抗由下降变为上升中的一种或几种。利用闭环控制系统采用分段式控制方法调节射频输出功率来控制消融温度;利用温度动态平滑处理对抗各种扰动。从而进一步保证本系统的安全性和有效性,即不会产生错误消融、或无法消融的情况,也不会产生重复消融、或过度消融的情况。
(2)本发明采用分段式比例积分控制算法,在支气管各个可治疗部位以及不同的电极贴靠程度,支气管射频消融仪均能控制射频输出功率使消融电极温度在3秒内到达消融温 度,且到达消融温度后的温度上冲小于3℃,通常为0.5℃~1.5℃;温度稳定维持在消融温度,波动小于1℃,通常小于0.5℃;整个消融治疗过程射频输出功率平滑变化,没有突然施加和(或)突然变化的射频能量。
(3)本发明通过温度动态平滑处理可以应对各种复杂的扰动,整个消融治疗过程射频输出功率平滑变化,不会出现突然变化的射频能量,温度保持稳定,波动很小,即使是很频繁很剧烈的扰动,也不出现振荡和超调。而且能够很好地抑制扰动可能造成的温度上冲,即使是剧烈而复杂的扰动,温度上冲也不超过3℃。
(4)本发明所述射频消融仪还具有防止重复消融的保护机制,每次施加消融前探测待消融部位温度,当待消融部位温度高于40℃~60℃时,不启动消融。简单有效地避免术者由于疏忽或误操作造成同一部位重复消融。
本发明提供了一种具有在气管和支气管内传送能量功能的装置,本装置可以用于向病灶递送直流电流、交流电流以及射频能量,从而去除病理性增生的支气管平滑肌,增加气管静息时的直径,减小气管壁的病理性收缩和呼吸阻力,增加气管的调节顺应性。可用于阻塞性肺部疾病的非药物治疗,如用于治疗服用药物(如皮质类固醇与及长效β受体激动剂)后仍无法有效控制的持续性哮喘患者,肺气肿患者,慢阻肺等患者。
附图说明
图1是实施例1多极消融装置的整体示意图。
图2是实施例1网篮状电极组件未扩张示意图。
图3是实施例1网篮状电极组件扩张示意图1。
图4是实施例1网篮状电极组件扩张示意图2。
图5是实施例1支撑部件的局部剖视图。
图6是实施例2球囊电极组件示意图1。
图7是实施例2球囊电极组件示意图2。
图8是实施例2支撑部件的局部剖视。
图9是实施例3螺旋状电极组件示意图。
图10是手柄示意图。
图11是压力传感器设置剖视图。
图12是射频消融仪触摸显示屏。
图13是第一例猪肺左肺叶不同手柄握力的阻抗检测值。
图14是第一例猪肺右肺叶不同手柄握力的阻抗检测值。
图15是第二例猪肺左肺叶不同手柄握力的阻抗检测值。
图16是第二例猪肺右肺叶不同手柄握力的阻抗检测值。
图17是离体猪肺的电极贴靠数量与阻抗的关系。
图18是盐水电极贴靠数量与阻抗的关系。
图19是射频消融对阻抗的检测值。
图20是动物试验消融过程的组织阻抗变化曲线。
图21是未采用分段控制和温度动态平滑处理的消融过程组织温度和射频输出功率曲线。
图22是采用分段控制和温度动态平滑处理后的消融过程组织温度和射频输出功率曲线。
图23是动物试验中消融过程组织温度高于超温阈值中止消融的记录。
具体实施方式
本发明所述射频消融仪,能够产生和控制直流电流、交流电流以及射频能量,并收集、处理和显示温度、阻抗或张力信号,依据阻抗或张力信号的变化判断消融的有效性,所述阻抗的变化选自阻抗的下降值、阻抗变化率、阻抗变化率的变化或者阻抗由下降变为上升中的一种或几种。进一步的,当所述阻抗的下降值超过10Ω~100Ω,或者阻抗变化率高于-1Ω/s~-50Ω/s,或者阻抗变化由下降转为上升,即判断消融是有效的。
本发明所述射频消融仪通过闭环控制系统采用分段式控制方法调节射频输出功率来控制消融温度,所述分段式控制包括(1)快速升温阶段:从开始消融持续0.5s到2s,快速升温阶段终点温度达到消融温度的50%-80%;(2)慢速升温阶段:在快速升温阶段之后持续0.5s到2s,慢速升温阶段终点温度达到消融温度的70%-99%,或者是低于消融温度0.1℃到10℃;(3)稳定维持阶段:慢速升温阶段之后稳定维持温度直至消融停止。
同时,所述射频消融仪在控制消融温度的过程中对温度进行动态平滑处理,包括对取样温度值进行平均、加权平均或中位值平均处理,根据动态平滑处理得到的温度值指导射频消融仪调节射频的功率输出,以此保证消融过程射频输出功率平滑变化。动态平滑处理的阈值上限为0.1℃/s到20℃/s,阈值下限为-0.1℃/s到-20℃/,当温度变化率小于阈值下限时,延长平滑处理的时间窗;当温度变化率大于阈值上限时缩短平滑处理的时间窗;温度变化率处与阈值下限和上限之间时,平滑处理的时间窗保持不变。所述动态平滑处理的阈值上限为5℃/s,下限为-5℃/s。平滑处理的时间窗动态范围为0s到10s,优选0s到2.5s。
进一步的,所述的射频消融仪具有防止重复消融的保护机制,每次施加消融前探测 待消融部位温度,若待消融部位温度高于40℃~60℃,不启动消融。
进一步的,所述的射频消融仪具有射频能量传递/反馈控制机制:射频能量输出2-4秒消融组织温度到达设定温度维持6-8秒,当消融组织温度高于超温阈值则超温报警,消融系统自动中断射频能量输出。所述设定温度为60℃~70℃,超温阈值是为高于设定温度1℃~10℃。优选所述设定温度为65℃,超温阈值是为高于设定温度3℃。
可采用本发明实施例所示的多极消融装置实现本发明目的。以下实施例仅是本发明的较佳实施例而已,并非对本发明做任何形式的限制。凡是依据本发明的技术和方法实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明的技术和方法方案的范围内。
实施例1
本发明涉及用于在气管和支气管内传送能量功能的装置,更进一步的涉及一种多极消融装置,如图1所示,装置主要包括第一电极组件2、第二电极组件3、引导管体6、手柄17、接头18。如图2所示,第一电极组件2和第二电极组件3呈连续性的布置在引导管体6轴向上,电极组件头端设置防损伤结构1,同时用于固定第一电极组件2,第一电极组件2与第二电极组件3之间用支撑部件4进行连接,第一电极组件2的近端与第二电极组件3的远端固定在支撑部件4上,牵引钢丝5远端与头端防损伤结构1连接,近端与支撑部件4固定(如图5),并通过引导管体6进入到手柄17。第二电极组件2近端固定在管体6上。如图3所示,当手柄17控制牵引钢丝5向近端收缩时,首先带动第一电极组件2扩张,同时第二电极组件3也同步扩张,根据气管管道的特征,将电极组件设置为远端小,近端大,直径差异约为1~5mm。
第一电极组件2与第二电极组件3上设置有多个电极,第一电极21、第二电极22、第三电极23、第四电极24,第五电极31、第六电极32、第七电极33、第八电极34,电极为不锈钢材料制成,具有一定的弹性,每个电极与独立的电极导线连接手柄,手柄经接头18传输至支气管射频消融仪。使用时每个电极经过气管组织与控制电路板形成回路,每个电极均能独立的检测出电极与组织的贴靠阻值。当电极贴靠好时(检测到阻值在500欧~1000欧),支气管射频消融仪将发放射频能量消融病灶组织,第一电极组件2与第二电极组件3上分别设置有一个温度传感器201和202,能独立检测电极组件周围组织的温度。
实施例2
如图6至8是装置的第二种实施例,第一电极组件2与第二电极组件3下方设置第一球囊11与第二球囊12,第一球囊11近端设置球囊第一气道15,第二球囊12近端设置球囊第二 气道16。第一球囊11与第二球囊12中间相互隔离,第一气道15与第二气管16彼此的独立的为第一球囊11与第二球囊12提供气体,当气体通过球囊气道进入球囊中时,第一电极71、第二电极72、第三电极73、第四电极74,第五电极81、第六电极82、第七电极83、第八电极84,受压扩张,电极组件扩张,气体的进气量为外部的进气设备进行控制,可以通过进气量进行设置电极组件扩张的大小,且第一电极组件2与第二电极组件3为独立控制,以适应不同气管病灶部位大小的需求。
第一电极71、第二电极72、第三电极73、第四电极74,第五电极81、第六电极82、第七电极83、第八电极84有独立的电极导线,使用时每个电极经过气管组织与控制电路板形成回路,每个电极均能独立的检测出电极与组织的贴靠阻值。电极组件2与电极组件3上分别设置有一个温度传感器201和202,能独立检测电极组件周围组织的温度。
实施例3
如图9所示是第三种实施例,第一环形电极1与第二环形电极2螺旋的设置在第一球囊11与第二球囊12上,当球囊充气时第一环形电极1与第二环形电极2外径变大。第一环形电极1与第二环形电极2上设置独立的电极导线,使用时每个电极经过气管组织与控制电路板形成回路,每个电极均能独立的检测出电极与组织的贴靠阻值。环形电极1与环形电极2上分别设置有一个温度传感器201和202,能独立检测电极组件周围组织的温度。
如图10所示,手柄17上设置有指示灯19,理论上电极与组织贴靠后阻抗值在500欧~1000欧以下可以进行射频消融,当支气管射频消融仪检测电极贴靠阻抗500欧~1000欧以下时,指示灯变绿,提示可以进行消融,当支气管射频消融仪检测电极贴靠阻抗500欧~1000欧以上时,指示灯显示为红色,提示不能进行放电消融。
如图11所示,在牵引钢丝5的局部区域内设置一压力传感器20,压力传感器两端分别连接牵引钢丝的2端,当牵引电极组件时,牵引钢丝5受力,此时压力传感器20将受到相同的拉力,经过支气管射频消融仪处理,拉力将被显示以做贴靠程度的判定.电极贴靠组织时,可以通过判断牵引的拉力进行判别电极臂与组织的贴靠程度。
如图12所示,射频消融仪触摸显示屏显示电极状态、电极与组织的贴靠阻抗值,并通过点击触摸屏能够控制一个或多个电极释放能量。
引导管体6可以作为导引管,导引管具有能容纳电极组件2与电极组件3的管腔,电极组件能在导引管中能进行自由伸缩,导引管管腔中可以通过液体,如消炎药物、麻醉药等能通过导引管腔进入消融的病灶组织,以缓解病人痛苦以及并发症。
实施例4考察本发明所述多极消融装置阻抗与电极数量和张力的关系
通过离体组织试验模拟多极消融装置的临床应用,观察消融导管在支气管不同部位,不同手柄握力和不同电极贴靠数量情况下的阻抗检测值。
试验环境:温度:15℃~20℃;湿度:55%RH~60%RH。
试验组织:新鲜离体猪肺2只。
试验原理:离体猪肺浸泡在盐水中,消融导管连接到射频消融仪上,操作消融导管,在支气管不同部位、不同手柄握力和不同电极贴靠数量情况下,观察和记录射频消融仪上的阻抗显示值。
试验部位:左肺上叶→左肺下叶→右肺上叶→右肺下叶。
1.考察不同电极张力与阻抗的关系
在不同支气管部位,观察和记录导管手柄在自然松弛状态和完全捏紧状态下的阻抗检测值。结果如表1-4和图13-16所示。结果表明,电极张力和阻抗检测值之间存在关联。
表1第一例猪肺左肺叶不同手柄握力的阻抗检测值
Figure PCTCN2020074075-appb-000001
表2第一例猪肺右肺叶不同手柄握力的阻抗检测值
Figure PCTCN2020074075-appb-000002
表3第二例猪肺左肺叶不同手柄握力的阻抗检测值
Figure PCTCN2020074075-appb-000003
表4第二例猪肺右肺叶不同手柄握力的阻抗检测值
Figure PCTCN2020074075-appb-000004
2.考察不同电极贴靠数量与阻抗的关系
将不同数量的电极贴靠到支气管,观察和记录阻抗检测值,结果如表5和图17所示。将不同数量的电极浸入盐水中,观察和记录阻抗检测值(排除贴靠压力的影响),结果如表6和图18所示。结果表明,不同电极贴靠数量对阻抗检测值影响明显,电极贴靠数量越多,阻抗检测值越小,可以根据阻抗检测值判断电极贴靠数量。
表5离体猪肺的电极贴靠数量与阻抗的关系
Figure PCTCN2020074075-appb-000005
表6盐水的电极贴靠数量与阻抗的关系
Figure PCTCN2020074075-appb-000006
3.考察射频消融对阻抗的影响
输出射频,观察和记录阻抗检测值,结果如表7和图19所示,结果表明射频消融引起阻抗 检测值下降,可依据阻抗或张力信号的变化判断消融的有效性,阻抗的变化选自阻抗的下降值、阻抗变化率、阻抗变化率的变化或者阻抗由下降变为上升中的一种或几种。
表7射频消融对阻抗的检测值
Figure PCTCN2020074075-appb-000007
实施例5考察本发明所述多极消融装置的消融有效性
采用动物试验,考察本发明所述多极消融装置消融的有效性,通过界定阻抗、功率、温度之间的逻辑关系,精细控制所产生和控制直流电流、交流电流以及射频能量,并收集、处理和显示温度、阻抗信号,依据阻抗信号的变化判断消融的有效性,阻抗的下降值超过10Ω~100Ω,或者阻抗变化率高于-1Ω/s~-50Ω/s,或者阻抗变化由下降转为上升,即判断消融是有效的。
具体操作如下:
本发明所述多极消融装置的电极进入狗的肺脏待试验部位,多极消融装置的数据接口连接电脑。操作多极消融装置进行消融,电脑显示和记录试验过程中的温度、功率和阻抗数据。支气管内窥镜全程观察试验过程。
结果如图20所示,图20是动物试验中消融过程的组织阻抗变化曲线,横坐标是时间,左侧纵坐标是组织温度和射频输出功率,右侧纵坐标是组织阻抗。如图所示,消融开始后组织阻抗开始下降,且组织阻抗下降速度逐渐变缓并逐渐开始转为上升,说明采用本发明所述的多极消融装置进行消融是有效的。
实施例6考察本发明所述多极消融装置的安全性以及温度抗扰能力
本发明涉及用于在气管和支气管内传送能量功能的装置,该装置采用分段式比例积分控制算法并对温度动态平滑处理,消融开始0s~1s是快速升温阶段,射频输出功率从0开始快速升高到10W以上,组织温度开始快速升温;1s~2s是慢速升温阶段,射频输出功率缓慢上升并开始逐渐下降,组织温度升温速度开始减慢:2s之后直至消融停止是稳定维持阶段,射频输出功率缓慢下降并小幅调整以维持组织温度。
温度动态平滑时间窗的动态范围是0s~2.5s,每当温度变化率大于5℃/s,平滑处理的时间窗缩短0.01s;每当温度变化率小于-5℃/s,平滑处理的时间窗加长0.01s;温度变化率 在-5℃/s~5℃/s之间,平滑处理的时间窗保持不变。平滑处理时间窗内的温度进行平均运算,从而实现温度动态平滑处理。
动物试验操作同实施例5。
结果如图21、图22所示,图21是动物试验中未采用分段控制和温度动态平滑处理的消融过程组织温度和射频输出功率曲线,图22是采用分段控制和温度动态平滑处理后的消融过程组织温度和射频输出功率曲线,横坐标是时间,左侧纵坐标是组织温度,右侧纵坐标是射频输出功率。如图所示,消融开始1s内射频输出功率快速上升,2s内缓慢上升并开始下降,2s之后缓慢下降并小幅调整;而消融开始1s内组织温度开始快速上升,2s内升温变缓,3s内到达并维持在消融温度。该装置控制射频输出功率使消融电极温度在3秒内到达消融温度,且到达消融温度后的温度上冲小于1℃,组织温度稳定维持在消融温度,波动小于1℃。整个消融治疗过程射频输出功率平滑变化,没有突然施加和(或)突然变化的射频能量。而未采用分段控制和温度动态平滑处理,组织温度出现明显振荡,温度上冲较大。采用分段控制和温度动态平滑处理后,组织温度维持平稳,温度上冲很小。
结果表明本发明成功地利用闭环控制系统采用分段式控制方法调节射频输出功率来控制消融温度;利用温度动态平滑处理对抗各种扰动。从而进一步保证本系统的安全性和有效性,即不会产生错误消融、或无法消融的情况,也不会产生重复消融、或过度消融的情况。
实施例7考察本发明所述的射频消融装置的安全控制能力
本发明所述的射频消融装置具有射频能量传递/反馈控制机制:射频能量输出2-4秒消融组织温度到达设定温度60℃~70℃维持6-8秒,当消融组织温度高于超温阈值(高于设定温度1℃~10℃)则超温报警,消融系统自动中断射频能量输出。
动物试验操作同实施例5。
结果如图23所示,图23是动物试验中消融过程组织温度高于超温阈值中止消融的记录。横坐标是时间,左侧纵坐标是组织温度,右侧纵坐标是射频输出功率。如图所示,组织温度高于68℃,射频输出功率迅速下降到0,中止消融。

Claims (45)

  1. 一种射频消融仪,其特征在于:能够产生和控制直流电流、交流电流以及射频能量,并收集、处理和显示温度、阻抗或张力信号,依据阻抗或张力信号的变化判断消融的有效性,所述阻抗的变化选自阻抗的下降值、阻抗变化率、阻抗变化率的变化或者阻抗由下降变为上升中的一种或几种。
  2. 根据权利要求1所述的射频消融仪,其特征在于:当所述阻抗的下降值超过10Ω~100Ω,或者阻抗变化率高于-1Ω/s~-50Ω/s,或者阻抗变化由下降转为上升,即判断消融是有效的。
  3. 根据权利要求2所述的射频消融仪,其特征在于:当所述阻抗的下降值超过20Ω~50Ω,或者阻抗变化率高于-5Ω/s~-50Ω/s,或者阻抗变化由下降转为上升,即判断消融是有效的。
  4. 根据权利要求1所述的射频消融仪,其特征在于:所述射频消融仪通过闭环控制系统采用分段式控制方法调节射频输出功率来控制消融温度,所述分段式控制包括(1)快速升温阶段:从开始消融持续0.5s到2s,快速升温阶段终点温度达到消融温度的50%-80%;(2)慢速升温阶段:在快速升温阶段之后持续0.5s到2s,慢速升温阶段终点温度达到消融温度的70%-99%,或者是低于消融温度0.1℃到10℃;(3)稳定维持阶段:慢速升温阶段之后稳定维持温度直至消融停止。
  5. 根据权利要求4所述的射频消融仪,其特征在于:所述分段式控制包括(1)快速升温阶段:从开始消融持续1s;快速升温阶段终点温度达到消融温度的65%;(2)慢速升温阶段:在快速升温阶段之后持续1s,慢速升温阶段终点温度达到消融温度的90%,或者是低于消融温度2℃;(3)稳定维持阶段:慢速升温阶段之后稳定维持温度直至消融停止。
  6. 根据权利要求4所述的射频消融仪,其特征在于:所述射频消融仪在控制消融温度的过程中对温度进行动态平滑处理,包括对取样温度值进行平均、加权平均或中位值平均处理,根据动态平滑处理得到的温度值指导射频消融仪调节射频的功率输出,以此保证消融过程射频输出功率平滑变化。
  7. 根据权利要求6所述的射频消融仪,其特征在于:动态平滑处理的阈值上限为0.1℃/s到20℃/s,阈值下限为-0.1℃/s到-20℃/,当温度变化率小于阈值下限时,延长平滑处理的时间窗;当温度变化率大于阈值上限时缩短平滑处理的时间窗;温度变化率处与阈值下限和上限之间时,平滑处理的时间窗保持不变。
  8. 根据权利要求7所述的射频消融仪,其特征在于:所述动态平滑处理的阈值上限为5℃/s,下限为-5℃/s。
  9. 根据权利要求7所述的射频消融仪,其特征在于:平滑处理的时间窗动态范围为0s到 10s。
  10. 根据权利要求9所述的射频消融仪,其特征在于:平滑处理的时间窗动态范围为0s到2.5s。
  11. 根据权利要求1-10任一项所述的射频消融仪,其特征在于:具有防止重复消融的保护机制,每次施加消融前探测待消融部位温度,若待消融部位温度高于40℃~60℃,不启动消融。
  12. 根据权利要求11所述的射频消融仪,其特征在于:在每次施加消融前探测待消融部位温度,若待消融部位温度高于45℃,不启动消融。
  13. 根据权利要求1所述的射频消融仪,其特征在于使用:方法1:持续微弱交流信号检测阻抗,输出射频时通过电压和电流计算阻抗和/或方法2:不输出射频直接检测阻抗。
  14. 根据权利要求1所述的射频消融仪,其特征在于:具有射频能量传递/反馈控制机制:射频能量输出2-4秒消融组织温度到达设定温度维持6-8秒,当消融组织温度高于超温阈值则超温报警,消融系统自动中断射频能量输出。
  15. 根据权利要求14所述的射频消融仪,其特征在于:所述设定温度为60℃~70℃,超温阈值是为高于设定温度1℃~10℃。
  16. 根据权利要求15所述的射频消融仪,其特征在于:所述设定温度为65℃,超温阈值是为高于设定温度3℃。
  17. 根据权利要求1所述的射频消融仪,其特征在于:所述射频消融仪采用多中央控制器、温度双路、电压、电流双路设计。
  18. 根据权利要求1所述的射频消融仪,其特征在于:所述射频消融仪具有数据传输接口,可外接电脑,实时获取各项参数信息。
  19. 根据权利要求1所述的射频消融仪,其特征在于:射频消融仪具有触摸显示屏显示电极状态、电极与组织的贴靠阻抗值,并通过点击触摸屏能够控制一个或多个电极释放能量。
  20. 一种多极消融装置,其特征在于包括:根据权利要求1-19任一项所述的射频消融仪;电极组件、引导导管、手柄和接头;
    其中所述引导导管内至少有一个腔;
    所述电极组件设置在引导导管前端,并通过线路穿过引导导管内连接手柄,所述电极组件包括一组以上的电极组和一个以上的探测装置,所述电极组能够施加电能、射频能量、激光能量、高密度聚焦超声或低温消融,所述探测装置用于检测温度、阻抗或张力;
    所述手柄连接接头和一组以上的电极组件,并包含一个或多个操控部件,所述操控部件是用 于控制电极组的收缩、张开以及释放能量并且可控制电极组件伸出或退回引导导管;
    所述接头是用于向电极提供能量。
  21. 根据权利要求20所述的多极消融装置,其特征在于:所述探测装置包括温度探测装置、阻抗探测装置和张力探测装置。
  22. 根据权利要求21所述的多极消融装置,其特征在于:所述电极组包括一个电极或多个电极,每个电极通过独立的电极导线连接手柄,电极组在操控部件的控制下张开呈网篮状、螺旋状或球囊状,在多组电极组存在的情况下,电极组依次串联排列;电极组距手柄越近,张开后的外径尺寸越大,所述外径的尺寸为1~20mm。
  23. 根据权利要求22所述的多极消融装置,其特征在于:所述电极组件还包括牵引钢丝,所述电极的两端固定在牵引钢丝上,所述牵引钢丝穿过引导导管连接手柄,手柄通过拉动和放松牵引钢丝控制电极组的收缩和张开。
  24. 根据权利要求23所述的多极消融装置,其特征在于:在多组电极组存在的情况下,距离手柄最远端的电极组的头端设置有防损伤结构,电极组和电极组之间通过支撑部件连接。
  25. 根据权利要求23所述的多极消融装置,其特征在于:所述牵引钢丝上设置有压力传感器。
  26. 根据权利要求22所述的多极消融装置,其特征在于:所述电极组件还包括球囊,所述球囊设置在电极之间,球囊通过球囊气道穿过引导导管连接手柄,能够通过手柄连接进气设备,气囊被充气胀大后使电极组张开;在多组电极组存在的情况下,多个球囊依次串联排列,多个气囊分别通过独立的球囊气道连接手柄。
  27. 根据权利要求20所述的多极消融装置,其特征在于:所述引导导管距离手柄越近,硬度越大,其硬度分布从邵氏硬度90A~80D。
  28. 根据权利要求20所述的多极消融装置,其特征在于:所述手柄的操控部件包括控制电路板和控制按钮,所述控制电路连接电极组件和控制按钮,所述控制按钮分别控制不同电极组件内的不同部件。
  29. 根据权利要求22所述的多极消融装置,其特征在于:所述电极组在手柄操控部件控制下,能够控制一个或多个电极释放能量。
  30. 根据权利要求20所述的多极消融装置,其特征在于:所述射频消融仪可显示电极的阻抗或张力,并提示电极组件是否贴气管壁良好:当支气管射频消融仪电极与组织贴靠后阻抗值小于等于阈值,提示电极组件贴气管壁良好。
  31. 根据权利要求30所述的多极消融装置,其特征在于:所述阻抗阈值是500欧~1000欧。
  32. 根据权利要求31所述的多极消融装置,其特征在于:所述阻抗阈值是900欧。
  33. 根据权利要求20所述的多极消融装置,其特征在于:所述射频消融仪判断电极与气管壁接触是否良好的方法:射频消融仪可测出每个电极阻抗,阻抗一致,则电极与气管壁接触良好;如某个电极与气管壁接触不好,则阻抗会与其他接触良好的不同。
  34. 一种射频消融有效性的判断方法,其特征在于:对消融部位给予电刺激,并探测、收集和处理消融部位的阻抗值,依据阻抗的变化判断消融的有效性,所述阻抗的变化选自阻抗的下降值、阻抗变化率、阻抗变化率的变化或者阻抗由下降变为上升中的一种或几种。
  35. 根据权利要求34所述的方法,其特征在于:当所述阻抗的下降值超过10Ω~100Ω,或者阻抗变化率高于-1Ω/s~-50Ω/s,或者阻抗变化由下降转为上升,即判断消融是有效的。
  36. 根据权利要求35所述的方法,其特征在于:当所述阻抗的下降值超过20Ω~50
    Ω,或者阻抗变化率高于-5Ω/s~-50Ω/s,或者阻抗变化由下降转为上升,即判断消融是有效的。
  37. 一种射频消融温度的控制方法,其特征在于:通过闭环控制系统采用分段式控制方法调节射频输出功率来控制消融温度,所述分段式控制包括(1)快速升温阶段:从开始消融持续0.5s到2s,快速升温阶段终点温度达到消融温度的50%-80%;(2)慢速升温阶段:在快速升温阶段之后持续0.5s到2s,慢速升温阶段终点温度达到消融温度的70%-99%,或者是低于消融温度0.1℃到10℃;(3)稳定维持阶段:慢速升温阶段之后稳定维持温度直至消融停止。
  38. 根据权利要求33所述的方法,其特征在于:所述分段式控制包括(1)快速升温阶段:从开始消融持续1s;快速升温阶段终点温度达到消融温度的65%;(2)慢速升温阶段:在快速升温阶段之后持续1s,慢速升温阶段终点温度达到消融温度的90%,或者是低于消融温度2℃;(3)稳定维持阶段:慢速升温阶段之后稳定维持温度直至消融停止。
  39. 一种射频消融温度抗扰方法,其特征在于:在控制消融温度的过程中对温度进行动态平滑处理,包括对取样温度值进行平均、加权平均或中位值平均处理,根据动态平滑处理得到的温度值指导射频消融仪调节射频的功率输出,以此保证消融过程射频输出功率平滑变化。
  40. 根据权利要求39所述的方法,其特征在于:动态平滑处理的阈值上限为0.1℃/s到20℃/s,阈值下限为-0.1℃/s到-20℃/,当温度变化率小于阈值下限时,延长平滑处理的时间窗;当温度变化率大于阈值上限时缩短平滑处理的时间窗;温度变化率处与阈值下限和上限之间时,平滑处理的时间窗保持不变。
  41. 根据权利要求40所述的方法,其特征在于:所述动态平滑处理的阈值上限为5℃/s,下 限为-5℃/s。
  42. 根据权利要求39所述的方法,其特征在于:平滑处理的时间窗动态范围为0s到10s。
  43. 根据权利要求42所述的方法,其特征在于:平滑处理的时间窗动态范围为0s到2.5s。
  44. 一种防止重复消融的方法,其特征在于:每次施加消融前探测待消融部位温度,若待消融部位温度高于40℃~60℃,不启动消融。
  45. 根据权利要求44所述的方法,其特征在于:在每次施加消融前探测待消融部位温度,若待消融部位温度高于45℃,不启动消融。
PCT/CN2020/074075 2019-01-30 2020-01-30 一种多极消融装置 WO2020156496A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2020214940A AU2020214940B2 (en) 2019-01-30 2020-01-30 Multi-electrode ablation device
KR1020217021930A KR102385797B1 (ko) 2019-01-30 2020-01-30 다 극성 절제장치
JP2021544888A JP2022508668A (ja) 2019-01-30 2020-01-30 多極焼灼装置
CA3126878A CA3126878C (en) 2019-01-30 2020-01-30 Multi-electrode ablation device
EP20749064.0A EP3900658A4 (en) 2019-01-30 2020-01-30 MULTIPOLAR ABLATION DEVICE
US17/425,326 US20220087740A1 (en) 2019-01-30 2020-01-30 Multi-electrode ablation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910089932.0 2019-01-30
CN201910089932 2019-01-30
CN201910096490.2A CN109793568B (zh) 2019-01-30 2019-01-31 一种多极消融装置
CN201910096490.2 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020156496A1 true WO2020156496A1 (zh) 2020-08-06

Family

ID=66560725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074075 WO2020156496A1 (zh) 2019-01-30 2020-01-30 一种多极消融装置

Country Status (8)

Country Link
US (1) US20220087740A1 (zh)
EP (1) EP3900658A4 (zh)
JP (1) JP2022508668A (zh)
KR (1) KR102385797B1 (zh)
CN (4) CN112168335A (zh)
AU (1) AU2020214940B2 (zh)
CA (1) CA3126878C (zh)
WO (1) WO2020156496A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112767659A (zh) * 2020-12-31 2021-05-07 杭州堃博生物科技有限公司 射频操作系统示警方法、装置、系统和射频主机
CN112773497A (zh) * 2020-12-31 2021-05-11 杭州堃博生物科技有限公司 射频操作中的数据调整方法和射频主机
CN112807071A (zh) * 2020-12-31 2021-05-18 杭州堃博生物科技有限公司 射频操作中的数据调整方法和射频主机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112168335A (zh) * 2019-01-30 2021-01-05 苏州信迈医疗器械有限公司 一种具有防止重复消融功能的射频消融仪
CN113295925A (zh) * 2021-05-08 2021-08-24 上海微创医疗器械(集团)有限公司 状态检测及控制装置
CN113855220B (zh) * 2021-11-01 2022-05-24 北京博莱德光电技术开发有限公司 一种射频消融方法、系统、存储介质及智能终端
CN115024814B (zh) * 2022-05-05 2023-07-11 以诺康医疗科技(苏州)有限公司 实时计算高频电刀输出系统控制参数的方法、发生器及电刀
CN114831725B (zh) * 2022-05-05 2024-01-26 以诺康医疗科技(苏州)有限公司 一种电外科发生器、电外科系统及其控制方法
CN114886553A (zh) * 2022-05-23 2022-08-12 南京诺源医疗器械有限公司 一种温度控制方法、装置、电子设备和存储介质
CN115500934B (zh) * 2022-11-23 2023-03-10 昆山雷盛医疗科技有限公司 射频热消融系统及其分段功率控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162216A (en) * 1998-03-02 2000-12-19 Guziak; Robert Andrew Method for biopsy and ablation of tumor cells
US20010031961A1 (en) * 2000-04-27 2001-10-18 Hooven Michael D. Method for transmural ablation
CN101610735A (zh) * 2006-06-28 2009-12-23 阿迪安公司 用于热诱导的肾神经调制的方法和系统
CN203089369U (zh) * 2011-08-26 2013-07-31 苏州信迈医疗器械有限公司 一种用于标测和消融位于肾动脉上所分布的肾神经的装置
EP2942023A2 (en) * 2014-05-06 2015-11-11 Jr. Eric R. Cosman Electrosurgical generator
CN107374725A (zh) * 2017-08-31 2017-11-24 苏州信迈医疗器械有限公司 一种多极消融装置
CN109793568A (zh) * 2019-01-30 2019-05-24 苏州信迈医疗器械有限公司 一种多极消融装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584830A (en) * 1994-03-30 1996-12-17 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US6989010B2 (en) * 2001-04-26 2006-01-24 Medtronic, Inc. Ablation system and method of use
US7601149B2 (en) * 2005-03-07 2009-10-13 Boston Scientific Scimed, Inc. Apparatus for switching nominal and attenuated power between ablation probes
US8406866B2 (en) * 2005-12-06 2013-03-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing coupling between an electrode and tissue
US20070239233A1 (en) * 2006-04-07 2007-10-11 Life Without Pain L.L.C. Surface mount light emitting diode medical apparatus
EP2063781A4 (en) 2006-09-01 2010-07-28 Voyage Medical Inc ELECTROPHYSIOLOGY CARTOGRAPHY AND VISUALIZATION SYSTEM
CN104707263B (zh) * 2007-12-12 2017-09-12 美丽华实验室公司 能量传播系统
US20090306643A1 (en) * 2008-02-25 2009-12-10 Carlo Pappone Method and apparatus for delivery and detection of transmural cardiac ablation lesions
GB0809461D0 (en) * 2008-05-23 2008-07-02 Gyrus Medical Ltd An electrosurgical generator and system
US9226791B2 (en) * 2012-03-12 2016-01-05 Advanced Cardiac Therapeutics, Inc. Systems for temperature-controlled ablation using radiometric feedback
US10575893B2 (en) * 2010-04-06 2020-03-03 Nuvaira, Inc. System and method for pulmonary treatment
US20110306969A1 (en) * 2010-06-09 2011-12-15 Tyco Healthcare Group Lp System and method for directing energy to tissue and method of assessing ablation size as a function of temperature information associated with an energy applicator
CN107007348B (zh) * 2010-10-25 2019-05-31 美敦力Af卢森堡有限责任公司 用于神经调节治疗的估算及反馈的装置、系统及方法
US8998893B2 (en) * 2010-12-07 2015-04-07 Boaz Avitall Catheter systems for cardiac arrhythmia ablation
US9265557B2 (en) * 2011-01-31 2016-02-23 Medtronic Ablation Frontiers Llc Multi frequency and multi polarity complex impedance measurements to assess ablation lesions
WO2013074813A1 (en) * 2011-11-15 2013-05-23 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9131980B2 (en) 2011-12-19 2015-09-15 Medtronic Advanced Energy Llc Electrosurgical devices
CN104135959A (zh) * 2011-12-29 2014-11-05 波士顿科学西美德公司 用于肾神经调变监测的装置和方法
WO2014121664A1 (zh) * 2013-02-07 2014-08-14 上海魅丽纬叶医疗科技有限公司 射频消融方法、系统及其射频消融设备
CN103767787B (zh) * 2014-01-24 2016-05-11 上海魅丽纬叶医疗科技有限公司 用于神经消融的射频消融方法和射频消融系统
JP2014184134A (ja) * 2013-02-25 2014-10-02 Inter Noba Kk 生体環境を監視するためのカテーテル
US9119628B1 (en) * 2015-01-21 2015-09-01 Serene Medical, Inc. Systems and devices to identify and limit nerve conduction
ES2951175T3 (es) * 2015-10-22 2023-10-18 Shanghai Golden Leaf Med Tec Co Ltd Dispositivo de ablación por radiofrecuencia que comprende un catéter de bloqueo de balón y un método de ablación para el mismo
CN105997235A (zh) * 2016-05-06 2016-10-12 上海安臻医疗科技有限公司 支气管热成形系统
CN206482659U (zh) * 2016-10-28 2017-09-12 王进安 一种热玛吉
EP3551109A4 (en) * 2016-12-07 2020-07-22 Nuvaira, Inc. METHODS AND SYSTEMS FOR REDUCING TREATMENT VARIABILITY AND INCREASING THE EFFECTIVENESS AND EFFECT DURATION OF A TREATMENT
CN108784829A (zh) * 2017-05-05 2018-11-13 上海安通医疗科技有限公司 一种射频消融装置以及射频消融控制方法
CN107184270A (zh) * 2017-05-05 2017-09-22 上海安臻医疗科技有限公司 一种射频消融系统的贴壁反馈方法
CN208243625U (zh) * 2017-08-31 2018-12-18 苏州信迈医疗器械有限公司 一种多极消融装置
CN208404829U (zh) * 2017-09-18 2019-01-22 四川锦江电子科技有限公司 一种具备毁损灶深度控制和评估的心脏射频消融设备
CN209154848U (zh) * 2018-10-09 2019-07-26 卢坤 一种介入微创导丝导管结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162216A (en) * 1998-03-02 2000-12-19 Guziak; Robert Andrew Method for biopsy and ablation of tumor cells
US20010031961A1 (en) * 2000-04-27 2001-10-18 Hooven Michael D. Method for transmural ablation
CN101610735A (zh) * 2006-06-28 2009-12-23 阿迪安公司 用于热诱导的肾神经调制的方法和系统
CN203089369U (zh) * 2011-08-26 2013-07-31 苏州信迈医疗器械有限公司 一种用于标测和消融位于肾动脉上所分布的肾神经的装置
EP2942023A2 (en) * 2014-05-06 2015-11-11 Jr. Eric R. Cosman Electrosurgical generator
CN107374725A (zh) * 2017-08-31 2017-11-24 苏州信迈医疗器械有限公司 一种多极消融装置
CN109793568A (zh) * 2019-01-30 2019-05-24 苏州信迈医疗器械有限公司 一种多极消融装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3900658A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112767659A (zh) * 2020-12-31 2021-05-07 杭州堃博生物科技有限公司 射频操作系统示警方法、装置、系统和射频主机
CN112773497A (zh) * 2020-12-31 2021-05-11 杭州堃博生物科技有限公司 射频操作中的数据调整方法和射频主机
CN112807071A (zh) * 2020-12-31 2021-05-18 杭州堃博生物科技有限公司 射频操作中的数据调整方法和射频主机
CN112773497B (zh) * 2020-12-31 2022-04-12 杭州堃博生物科技有限公司 射频操作中的数据调整方法和射频主机

Also Published As

Publication number Publication date
CA3126878C (en) 2022-04-05
CN112168335A (zh) 2021-01-05
KR20210093357A (ko) 2021-07-27
KR102385797B1 (ko) 2022-04-14
US20220087740A1 (en) 2022-03-24
CN112168334B (zh) 2021-12-03
CA3126878A1 (en) 2020-08-06
EP3900658A1 (en) 2021-10-27
AU2020214940A1 (en) 2021-08-05
AU2020214940B2 (en) 2021-12-23
JP2022508668A (ja) 2022-01-19
CN109793568A (zh) 2019-05-24
CN109793568B (zh) 2020-12-01
CN112168334A (zh) 2021-01-05
EP3900658A4 (en) 2022-06-08
CN112155712A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
WO2020156496A1 (zh) 一种多极消融装置
US5738114A (en) Method and apparatus for treatment of air way obstructions
US5728094A (en) Method and apparatus for treatment of air way obstructions
CN107374725B (zh) 一种多极消融装置
US5817049A (en) Method for treatment of airway obstructions
US5707349A (en) Method for treatment of air way obstructions
US6682501B1 (en) Submucosal tonsillectomy apparatus and method
JP3879055B2 (ja) 電気外科的な括約筋処置器具
US20140088588A1 (en) Systems and methods for controlling energy application
JP2001526077A (ja) エネルギーの使用により組織体積を減じるための装置
CN208243625U (zh) 一种多极消融装置
JP2000511089A (ja) 気道閉塞の治療方法および装置
CN103519882B (zh) 肾动脉多极消融导管
CN103536352A (zh) 球囊扩张型肾动脉交感神经消融导管
CN110575251B (zh) 球囊型柔性微波消融导管及采用其的消融系统和方法
US20010051783A1 (en) Method and apparatus for treatment of air way obstructions
JP2003502105A (ja) 粘膜下高周波扁桃切除装置
AU702374B2 (en) Method and apparatus for treatment of air way obstructions
WO1997030645A1 (en) Apparatus and method for treating airway insufficiency in the laringeal/oral cavity region by electromagnetic energy
CN208212070U (zh) 一种低温等离子剥离刀手术系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217021930

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3126878

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021544888

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020749064

Country of ref document: EP

Effective date: 20210723

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020214940

Country of ref document: AU

Date of ref document: 20200130

Kind code of ref document: A