WO2020153253A1 - 多孔質ジルコニア粒子及びタンパク質固定用凝集体 - Google Patents

多孔質ジルコニア粒子及びタンパク質固定用凝集体 Download PDF

Info

Publication number
WO2020153253A1
WO2020153253A1 PCT/JP2020/001498 JP2020001498W WO2020153253A1 WO 2020153253 A1 WO2020153253 A1 WO 2020153253A1 JP 2020001498 W JP2020001498 W JP 2020001498W WO 2020153253 A1 WO2020153253 A1 WO 2020153253A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous zirconia
zirconia particles
protein
pore volume
igg
Prior art date
Application number
PCT/JP2020/001498
Other languages
English (en)
French (fr)
Inventor
加藤 且也
永田 夫久江
真二郎 笠原
大塚 淳
由紀 廣部
Original Assignee
日本特殊陶業株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 日本特殊陶業株式会社
Priority to KR1020217024722A priority Critical patent/KR102621949B1/ko
Priority to EP20745718.5A priority patent/EP3915940A4/en
Priority to CN202080009669.0A priority patent/CN113329974A/zh
Priority to US17/424,640 priority patent/US20220089453A1/en
Publication of WO2020153253A1 publication Critical patent/WO2020153253A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/14Peptides being immobilised on, or in, an inorganic carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production

Definitions

  • the present invention relates to a porous zirconia particle and a protein-immobilizing aggregate.
  • Patent Document 1 discloses a technique that employs porous zirconia particles for this purpose.
  • the selectivity (specificity) is improved by binding protein A as a ligand for adsorbing a protein to the surface of the porous zirconia particles.
  • Patent Document 1 has a problem of high cost because it uses protein A.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a porous zirconia particle that is inexpensive and has high specificity for fixing a specific protein.
  • the present invention can be implemented as the following modes.
  • a porous zirconia particle used for protein immobilization In the pore size distribution measured by the BET method, The pore diameter D50 at which the cumulative pore volume is 50% of the total pore volume is 3.20 nm or more and 6.50 nm or less, While the pore diameter D90 at which the cumulative pore volume is 90% of the total pore volume is 10.50 nm or more and 100.00 nm or less, Porous zirconia particles having a total pore volume of more than 0.10 cm 3 /g.
  • the protein-immobilized porous zirconia particle of the present invention does not use a protein as a ligand, and thus has a low cost. Moreover, since the porous zirconia particles of the present invention have D50, D90, and the total pore volume within the specific ranges, the selectivity (specificity) is high.
  • the porous zirconia particles of the present invention have very high selectivity when the protein to be immobilized is immunoglobulin.
  • the porous zirconia particles of the present invention have extremely high selectivity when the protein to be immobilized is at least one selected from the group consisting of IgG, IgE, and IgD.
  • the selectivity is further increased.
  • the protein-immobilizing aggregate formed by aggregating the porous zirconia particles of the present invention is inexpensive and has high selectivity.
  • a description using “to” for a numerical range includes a lower limit value and an upper limit value unless otherwise specified.
  • the description “10 to 20” includes both the lower limit “10” and the upper limit “20”. That is, “10 to 20” has the same meaning as “10 or more and 20 or less”.
  • porous Zirconia Particles are protein-immobilized porous zirconia particles used for protein immobilization.
  • the porous zirconia particles have a pore diameter D50 in which the cumulative pore volume is 50% of the total pore volume in the pore size distribution measured by the BET method, and the pore diameter D50 is 3.20 nm or more. It is 6.50 nm or less, and the pore diameter D90 at which the cumulative pore volume is 90% of the total pore volume is 10.50 nm or more and 100.00 nm or less.
  • the pore diameter D50 is preferably 3.35 nm or more and 6.30 nm or less, and more preferably 3.50 nm or more and 5.00 nm or less.
  • the pore diameter D90 is preferably 10.80 nm or more and 50.00 nm or less, and more preferably 11.00 nm or more and 30.00 nm or less.
  • Porous zirconia particles have a total pore volume greater than 0.10 cm 3 /g. Total pore volume, preferably larger than 0.15 cm 3 / g, more preferably greater than 0.30 cm 3 / g.
  • the upper limit of the total pore volume is not particularly limited, but is usually 10 cm 3 /g.
  • the selectivity of the adsorbed protein is high.
  • D90 is 100.00 nm or less
  • the protein monomer is easily immobilized selectively. Protein monomers are on the order of 10 nm, while protein aggregates are on the order of 100 nm. Therefore, by setting D90 to 100.00 nm or less, it becomes easy to fix only the monomer of the protein while avoiding the fixing of the protein aggregate.
  • D50 log(Xb)+ ((log(Xa)-log(Xb))*[(50-(Yb))/((Ya)-(Yb))]
  • D90 is obtained. That is, first, from the data of the pore size distribution, the cumulative pore volume (X (%)) and pore diameter of C and D, which are the two points closest to the cumulative pore volume of 90%, sandwiching the cumulative pore volume of 90%. Read (Y (nm)).
  • the particle size of the porous zirconia particles is not particularly limited, but the primary particles are usually 10 nm to 100 nm, preferably 10 nm to 50 nm, and more preferably 10 nm to 30 nm. When the primary particle diameter is within this range, the specific surface area of the porous zirconia particles is significantly increased, and the amount of immobilized protein tends to increase.
  • the protein to be immobilized is not particularly limited.
  • the porous zirconia particles of the present invention are excellent in selectively immobilizing immunoglobulins, particularly at least one selected from the group consisting of IgG, IgE, and IgD.
  • “fixation” includes physical fixation and chemical fixation.
  • the porous zirconia particles of the present invention utilize, for immobilization of proteins within their pores, physical immobilization in which proteins are inserted by capillary action and chemical immobilization utilizing chemical bonds such as covalent bonds on the zirconia surface. And has a high protein immobilizing ability.
  • a chelating agent may be supported on the surface of the porous zirconia particles. By supporting the chelating agent, the selectivity is further increased.
  • the chelating agent is not particularly limited.
  • the chelating agent is selected from the group consisting of a compound represented by the following general formula (1), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DETPA), diethylenetriaminepentamethylenephosphonic acid (DETPPA), and salts thereof. At least one kind is preferable.
  • EDTA ethylenediaminetetraacetic acid
  • DETPA diethylenetriaminepentaacetic acid
  • DETPPA diethylenetriaminepentamethylenephosphonic acid
  • salts thereof At least one kind is preferable.
  • the salt for example, a salt of an alkali metal (sodium etc.) is preferably exemplified.
  • R 1 is an alkylene group having 1 to 10 carbon atoms
  • R 2 to R 5 are alkylene groups having 1 to 10 carbon atoms, which may be the same or different. Good too.
  • Examples of the alkylene group having 1 to 10 carbon atoms in R 1 of the general formula (1) include methylene group, ethylene group, trimethylene group, tetramethylene group, hexamethylene group, isobutylene group and the like.
  • Examples of the alkylene group having 1 to 10 carbon atoms in R 2 to R 5 include methylene group, ethylene group, trimethylene group, tetramethylene group, hexamethylene group, isobutylene group and the like.
  • the compound represented by the general formula (1) is preferable from the viewpoint of further increasing the selectivity for immunoglobulin.
  • ethylenediaminetetramethylenephosphonic acid EDTPA; N,N,N′,N′-Ethylenediamineminetrakis(methylenephosphonic Acid) is particularly preferable.
  • the amount of the chelating agent supported is not particularly limited.
  • the amount of the chelating agent supported is preferably 0.01 ⁇ g to 10 ⁇ g, more preferably 0.02 ⁇ g to 5 ⁇ g, and further preferably 0.05 ⁇ g to 1 mg of zirconia, from the viewpoint of further increasing the selectivity for immunoglobulin. More preferably, it is 3 ⁇ g.
  • the amount of the chelating agent supported can be calculated from the weight reduction of TG-DTA (thermogravimetric differential thermal analysis).
  • the supported mode of the chelating agent is not clear, but it is presumed that a ligand derived from the chelating agent is bound to the zirconium atom.
  • a ligand derived from the chelating agent is bound to the zirconium atom.
  • the chelating agent is ethylenediaminetetramethylenephosphonic acid, it is assumed that the structure is as shown in FIG.
  • Aggregates for protein immobilization are formed by aggregating porous zirconia particles.
  • the diameter (size) of the protein-immobilizing aggregate is not particularly limited.
  • the diameter of the aggregate is usually 50 nm to 20000 nm, preferably 100 nm to 15000 nm, and more preferably 500 nm to 10000 nm.
  • the diameter of the agglomerate is within this range, precipitation separation by the centrifugal method is easy, and the cost of the entire purification process can be reduced.
  • it When it is used as a column, it may be granulated to have a particle size of 20 ⁇ m to 100 ⁇ m.
  • the method for producing the porous zirconia particles is not particularly limited.
  • the porous zirconia particles can be produced, for example, by the following method.
  • a zirconium oxychloride (ZrOCl 2 ⁇ 8H 2 O) solution is obtained using zircon as a raw material.
  • Zr(OH) 4 fine particles are formed and fired to obtain porous zirconia particles.
  • Pore size distribution and pore volume were measured using a Micromeritics automatic specific surface area/pore distribution measuring device (TriStarII Shimadzu Corporation). About 50 mg of each porous zirconia particle was weighed and degassed and dried at 80° C. for 3 hours, which was used as a sample. Each value was calculated by the BET method from the nitrogen adsorption experiment. D50 and D90 were calculated by the method described in “1. (1) D50, D90, and total pore volume” in the column “Modes for carrying out the invention”.
  • Immobilization of IgG and measurement of IgG amount IgG was immobilized on each porous zirconia particle as follows, and the immobilized IgG amount was determined. Immobilization of IgG on the porous zirconia particles was performed as follows. 500 ⁇ L of a 10 mM phosphate buffer solution (pH 7.0) was put into a spitz, and 3 mg of porous zirconia particles was added to this solution. After sufficiently dispersing the porous zirconia particles, 500 ⁇ L of IgG (500 ⁇ g/500 ⁇ L) was added, and the mixture was stirred overnight at 4° C. in the dark.
  • a 10 mM phosphate buffer solution pH 7.0
  • the spitz was centrifuged at 12,000 rpm for 10 minutes to precipitate and separate the porous zirconia particles.
  • the amount of unfixed IgG remaining in the supernatant solution was quantified by a microplate reader (Infinite F200PRO, TECAN) using a protein assay staining solution (BIO-RAD). The difference between the initially added IgG amount and the unfixed IgG amount was defined as the fixed IgG amount.
  • FIG. 2 shows the pore size distribution (pore distribution) of Experimental Example 3 (Example).
  • FIG. 3 shows the pore size distribution (pore distribution) of Experimental Example 13 (comparative example). It can be seen from FIG. 2 that in Experimental Example 3, D50 is 3.20 nm or more and 6.50 nm or less, and D90 is 10.50 nm or more and 100.00 nm or less. On the other hand, it can be seen from FIG. 3 that in Experimental Example 13, D50 is 3.20 nm or more and 6.50 nm or less, and D90 is less than 10.50 nm. The results are also shown in Table 1. Experimental Examples 1 to 9 which are Examples satisfy all the following requirements [1] to [3].
  • the pore diameter D50 is 3.20 nm or more and 6.50 nm or less.
  • the pore diameter D90 is 10.50 nm or more and 100.00 nm or less.
  • the total pore volume is larger than 0.10 cm 3 /g.
  • Comparative Examples 10 to 17 do not meet the following requirements.
  • Experimental Example 10 the requirements [2] and [3] are not satisfied.
  • Experimental Example 11 the requirements [2] and [3] are not satisfied.
  • Experimental Example 12 does not satisfy the requirements [2] and [3].
  • Experimental Example 13 does not satisfy the requirements [2] and [3].
  • Experimental example 14 does not satisfy the requirements [2] and [3].
  • Experimental Example 15 does not satisfy the requirement [2].
  • Experimental example 16 does not satisfy the requirements [1] and [2].
  • Experimental example 17 does not satisfy the requirements [2] and [3].
  • Experimental Examples 1 to 9 as Examples showed excellent protein immobilizing ability as compared with Experimental Examples 10 to 17 as Comparative Examples.
  • Experiment B In order to measure the maximum fixed amount of IgG, by the same operation as in Example A, IgG (750 ⁇ g/500 ⁇ L) with an increased amount of IgG to be input was used, and 500 ⁇ L of this was added, and Experiment B was performed. Experiment B was performed in the same manner as Experiment A, except for the input amount of IgG. Table 2 shows the experimental results.
  • Porous zirconia particles The following porous zirconia particles shown in Table 3 were used as the porous zirconia particles.
  • RC100 is a porous zirconia particle manufactured by Daiichi Rare Element Chemical Industry Co., Ltd., which is the same as Experimental Example 6 in Table 1.
  • UDP100 is a porous zirconia particle manufactured by Daiichi Rare Element Chemical Industry Co., Ltd. and is the same as Experimental Example 2 in Table 1.
  • "RC100-P (0.00125M)” was obtained by treating porous zirconia particles (RC100, raw material) manufactured by Daiichi Rare Element Chemical Industry Co., Ltd. with a 0.00125M EDTPA solution.
  • EDTPA-supporting porous zirconia particles EDTPA-supporting porous zirconia particles.
  • EDTPA-supporting porous zirconia particles In Table 3, "UEP100-P (0.00125M)" means EDTPA supported obtained by treating porous zirconia particles (UEP100) manufactured by Daiichi Rare Element Chemical Industry Co., Ltd. with a 0.00125M EDTPA solution. Of the porous zirconia particles. The "RC100-P (0.00125M)” was prepared as follows. 10 mL of 0.00125M EDTPA solution was added to 250 mg of porous zirconia particles (RC100) that had been degassed and dried at 100° C. for 2 hours in advance, and after degassing for 15 minutes, stirring and/or shaking for 17 hours.
  • RC100-P (0.00125M)
  • “UEP100-P (0.00125M)” was also prepared in the same manner as “RC100-P (0.00125M)". That is, “UEP100-P (0.00125M)” was prepared in the same manner as in “RC100-P (0.00125M)” except that "UEP100” was used as a raw material instead of "RC100". Further, except that the concentration of the EDTPA solution was changed to 0.00125M, 0.0025M, 0.005M, and 0.01M, the same procedure as RC100-P (0.00125M) was performed, and four types of PCS140 (SD) were used.
  • SD PCS140
  • EDTPA concentration was adjusted.
  • the amount of EDTPA supported was calculated from the weight reduction of TG-DTA (thermogravimetric differential thermal analysis). That is, about 10 mg of EDTPA-supporting porous zirconia particles were weighed, and a differential thermal analysis (TG-DTA; Thermo plus TG8120, Rigaku) was performed while measuring the weight change from room temperature to 1000°C. As a result of calculation from the weight loss amount at 200° C. to 600° C., 0.06 ⁇ g to 2.2 ⁇ g of EDTPA was carried per 1 mg of the porous zirconia particles.
  • TG-DTA thermogravimetric differential thermal analysis
  • Trf was not fixed to the porous zirconia particles UEP100-P supporting EDTPA. From this result, it is found that the selective specificity of IgG is improved by supporting EDTPA on the porous zirconia particles UEP100 to obtain the EDTPA-supporting porous zirconia particles UEP100-P.
  • Porous zirconia particles having D50, D90, and total pore volume within a specific range can selectively immobilize IgG as an example of protein.
  • EDTPA as an example of a chelating agent is carried on the surface of the porous zirconia particles, the selectivity is further increased.
  • the porous zirconia particles of the present invention when used for antibody separation and purification, have advantageous effects that the conventional technology does not have, such as chemical resistance, high structural strength, and reusability by firing, which the zirconia crystal phase has. Therefore, it is expected to greatly contribute to the cost reduction of the manufacturing process of antibody products. It may be applied not only as a column product used for the purification and separation of antibodies such as antibody drugs, but also for removal of specific proteins such as allergens in foods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Peptides Or Proteins (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

特定タンパク質を固定する特異性が高い多孔質ジルコニア粒子を提供する。 タンパク質の固定に用いられる多孔質ジルコニア粒子である。BET法により測定された孔径分布において、累積細孔容積が全細孔容積の50%となる細孔径D50が3.20nm以上6.50nm以下であり、累積細孔容積が全細孔容積の90%となる細孔径D90が10.50nm以上100.00nm以下である。全細孔容積は、0.10cm3/gより大きい。

Description

多孔質ジルコニア粒子及びタンパク質固定用凝集体
 本発明は多孔質ジルコニア粒子及びタンパク質固定用凝集体に関する。
 特定のタンパク質を選択的に吸着させることで、特定タンパク質を分離精製するカラムが検討されている。
 例えば、特許文献1では、この目的のために多孔質ジルコニア粒子を採用した技術が開示されている。この技術では、多孔質ジルコニア粒子の表面に、タンパク質を吸着させるリガンドとしてのプロテインAを結合させることで、選択性(特異性)を向上させている。
特開2017-47365号公報
 しかし、特許文献1の技術は、プロテインAを用いているため、コストが高いという課題があった。
 本発明は、上記実情に鑑みてなされたものであり、安価であり、しかも、特定タンパク質を固定する特異性が高い多孔質ジルコニア粒子を提供することを目的とする。本発明は、以下の形態として実現することが可能である。
〔1〕タンパク質の固定に用いられる多孔質ジルコニア粒子であって、
 BET法により測定された孔径分布において、
 累積細孔容積が全細孔容積の50%となる細孔径D50が3.20nm以上6.50nm以下であり、
 累積細孔容積が全細孔容積の90%となる細孔径D90が10.50nm以上100.00nm以下であるとともに、
 全細孔容積が0.10cm/gより大きいことを特徴とする多孔質ジルコニア粒子。
〔2〕前記タンパク質は、免疫グロブリンであることを特徴とする〔1〕に記載の多孔質ジルコニア粒子。
〔3〕前記免疫グロブリンは、IgG、IgE、及びIgDからなる群より選択される少なくとも1種であることを特徴とする〔2〕に記載の多孔質ジルコニア粒子。
〔4〕表面に、キレート剤が担持されていることを特徴とする請求項1~3のいずれか1項に記載の多孔質ジルコニア粒子。
〔5〕〔1〕~〔4〕のいずれか1項に記載の多孔質ジルコニア粒子が凝集してなることを特徴とするタンパク質固定用凝集体。
 本発明のタンパク質固定用の多孔質ジルコニア粒子は、リガンドとしてプロテインを用いていないから、低コストである。しかも、本発明の多孔質ジルコニア粒子は、D50、D90、及び全細孔容積が特定範囲内にあるから、選択性(特異性)が高い。
 本発明の多孔質ジルコニア粒子は、固定されるタンパク質が、免疫グロブリンである場合には、選択性が非常に高い。
 本発明の多孔質ジルコニア粒子は、固定されるタンパク質が、IgG、IgE、及びIgDからなる群より選択される少なくとも1種である場合には、選択性が極めて高い。
 本発明の多孔質ジルコニア粒子の表面に、キレート剤が担持されていると、選択性がより高まる。
 本発明の多孔質ジルコニア粒子が凝集してなるタンパク質固定用凝集体は、安価であり、しかも選択性が高い。
エチレンジアミンテトラメチレンホスホン酸(EDTPA)の推定担持構造を示す模式図である。 実験例3(実施例)の孔径分布(細孔分布)を示すグラフである。 実験例13(比較例)の孔径分布(細孔分布)を示すグラフである。
 以下、本発明を詳しく説明する。なお、本明細書において、数値範囲について「~」を用いた記載では、特に断りがない限り、下限値及び上限値を含むものとする。例えば、「10~20」という記載では、下限値である「10」、上限値である「20」のいずれも含むものとする。すなわち、「10~20」は、「10以上20以下」と同じ意味である。
1.多孔質ジルコニア粒子
 本発明の多孔質ジルコニア粒子は、タンパク質の固定に用いられるタンパク質固定用の多孔質ジルコニア粒子である。
(1)D50、D90、及び全細孔容積
 多孔質ジルコニア粒子は、BET法により測定された孔径分布において、累積細孔容積が全細孔容積の50%となる細孔径D50が3.20nm以上6.50nm以下であり、累積細孔容積が全細孔容積の90%となる細孔径D90が10.50nm以上100.00nm以下である。細孔径D50は、3.35nm以上6.30nm以下であることが好ましく、3.50nm以上5.00nm以下であることがより好ましい。細孔径D90は、10.80nm以上50.00nm以下であることが好ましく、11.00nm以上30.00nm以下であることがより好ましい。
 多孔質ジルコニア粒子は、全細孔容積が0.10cm/gより大きい。全細孔容積は、0.15cm/gより大きいことが好ましく、0.30cm/gより大きいことがより好ましい。なお、全細孔容積の上限値は、特に限定されないが、通常10cm/gである。
 D50、D90、及び全細孔容積が上記範囲内であると、吸着するタンパク質の選択性が高くなる。なお、D90を100.00nm以下とすることで、タンパク質の単量体が選択的に固定されやすくなる。タンパク質の単量体は10nm程度の大きさであり、他方、タンパク質の凝集体は100nm程度の大きさである。よって、D90を100.00nm以下とすることで、タンパク質の凝集体の固定を避けて、タンパク質の単量体のみが固定されやすくなる。
(2)測定装置、及びD50、D90の算出方法
 孔径分布と細孔容積は、例えば、細孔分布測定装置(マイクロメリティックス 自動比表面積/細孔分布測定装置(TriStarII 島津製作所))を用いて測定できる。
 ここで、この算出方法について説明する。
 D50の算出方法を説明する。まず、孔径分布のデータから、累積細孔容積50%を挟んで、累積細孔容積50%に最も近い2点であるA,Bの累積細孔容積(X(%))及び細孔径(Y(nm))を読み取る。具体的には、A(Xa(%)、Ya(nm))、B(Xb(%)、Yb(nm))を読み取る(但し、Xa>Xb,Ya>Ybである)。そして、これらの値を用いて下記式(1)によりD50が求められる。

式(1)
   D50=log(Xb)+((log(Xa)-log(Xb))*[(50-(Yb))/((Ya)-(Yb))]
 同様にして、D90を求める。すなわち、まず、孔径分布のデータから、累積細孔容積90%を挟んで、累積細孔容積90%に最も近い2点であるC,Dの累積細孔容積(X(%))及び細孔径(Y(nm))を読み取る。具体的には、C(Xc(%)、Yc(nm))、D(Xd(%)、Yd(nm))を読み取る(但し、Xc>Xd,Yc>Ydである)。そして、これらの値を用いて下記式(2)によりD90が求められる。

式(2)
   D90=log(Xd)+((log(Xc)-log(Xd))*[(90-(Yd))/((Yc)-(Yd))]
(3)粒子径
 多孔質ジルコニア粒子の粒子径は特に限定されないが、一次粒子は、通常10nm~100nmであり、好ましくは、10nm~50nmであり、さらに好ましくは10nm~30nmである。一次粒子径が、この範囲内であると、多孔質ジルコニア粒子の比表面積が大幅に増大するため、タンパク質の固定量が増加する傾向にある。
2.タンパク質
 固定の対象となるタンパク質は、特に限定されない。本発明の多孔質ジルコニア粒子は、免疫グロブリン、特に、IgG、IgE、及びIgDからなる群より選択される少なくとも1種を選択的に固定することに優れている。
 なお、本発明において、「固定」とは、物理的固定と、化学的固定を含む。本発明の多孔質ジルコニア粒子は、その細孔内でのタンパク質の固定に、毛細管現象によりタンパク質が挿入される物理的固定と、ジルコニア表面に共有結合などの化学結合を利用した化学的固定を利用しており、高いタンパク質固定能を有している。
3.キレート剤
 多孔質ジルコニア粒子の表面には、キレート剤が担持されていてもよい。キレート剤を担持することで、選択性がより高まる。
 キレート剤は、特に限定されない。キレート剤として、下記一般式(1)で表される化合物、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DETPA)、ジエチレントリアミンペンタメチレンホスホン酸(DETPPA)、及びそれらの塩からなる群より選択される少なくとも1種であることが好ましい。なお、塩としては、例えば、アルカリ金属(ナトリウム等)の塩が好適に例示される。
Figure JPOXMLDOC01-appb-C000001

(一般式(1)中、Rは炭素数1~10のアルキレン基である。また、R~Rは炭素数1~10のアルキレン基であり、互いに同一であっても異なっていてもよい。)
 一般式(1)のRにおける炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基、イソブチレン基等が例示される。
 また、R~Rにおける炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基、イソブチレン基等が例示される。
 キレート剤としては、免疫グロブリンに対する選択性をより高めるという観点から、一般式(1)で表される化合物が好ましい。一般式(1)で表される化合物の中でも、エチレンジアミンテトラメチレンホスホン酸(EDTPA;N,N,N’,N’-Ethylenediaminetetrakis(methylenephosphonic Acid))が特に好ましい。
 キレート剤の担持量は、特に限定されない。キレート剤の担持量は、免疫グロブリンに対する選択性をより高めるという観点から、ジルコニア1mgあたり、0.01μg~10μgであることが好ましく、0.02μg~5μgであることがより好ましく、0.05μg~3μgであることが更に好ましい。
 なお、キレート剤の担持量は、TG-DTA(熱重量示差熱分析)の重量減少から算出できる。
 キレート剤の担持態様は、明らかではないが、ジルコニウム原子に、キレート剤に由来する配位子が結合しているものと推測される。例えば、キレート剤がエチレンジアミンテトラメチレンホスホン酸の場合には、図1の構造であると推測される。
4.タンパク質固定用凝集体
 タンパク質固定用凝集体は、多孔質ジルコニア粒子が凝集してなる。タンパク質固定用凝集体の径(サイズ)は、特に限定されない。
 凝集体の径は、通常50nm~20000nmであり、好ましくは、100nm~15000nmであり、さらに好ましくは500nm~10000nmである。凝集体の径が、この範囲内であると、遠心法による沈殿分離が容易であり、精製プロセス全体の低コスト化が図れる。また、カラムとして使用する場合は、20μm~100μmに造粒してもよい。
5.多孔質ジルコニア粒子の製造方法
 多孔質ジルコニア粒子の製造方法は、特に限定されない。多孔質ジルコニア粒子は、例えば、次の方法によって製造できる。ジルコンを原料として、オキシ塩化ジルコニウム(ZrOCl・8HO)溶液を得る。そして、加水分解反応により、Zr(OH)微粒子とし、これを焼成して、多孔質ジルコニア粒子とする。
 実施例により本発明を更に具体的に説明する。
1.実験A
(1)多孔質ジルコニア粒子
 多孔質ジルコニア粒子には、表1に記載の多孔質ジルコニア粒子を用いた。
 なお、実験例1~9が実施例に相当し、実験例10~17は比較例である。比較例については、表1において、実験例の番号を示す数字の後に「10*」のように「*」を付している。
Figure JPOXMLDOC01-appb-T000002
 表1において、「新日本電工」は「新日本電工株式会社」、「第一稀元素」は「第一稀元素化学工業株式会社」、「共立マテリアル」は「共立マテリアル株式会社」、「丸美陶料」は「丸美陶料株式会社」、「東ソー」は「東ソー株式会社」、「Zir Chrom」は「Zir Chrom Seperations Inc.」、「アルドリッチ」は「シグマ アルドリッチ ジャパン」、「信越化学」は「信越化学工業株式会社」をそれぞれ意味する。
(2)孔径分布と細孔容積
 孔径分布と細孔容積(全細孔容積)は、マイクロメリティックス 自動比表面積/細孔分布測定装置(TriStarII 島津製作所)を用いて測定した。各多孔質ジルコニア粒子を50mg程度秤量し、80℃で3時間脱気乾燥した物を試料として用いた。各値は、窒素吸着実験からBET法により算出した。
 D50、D90は、「発明を実施するための形態」の欄における「1.(1)D50、D90、及び全細孔容積」に記載の方法で算出した。
(3)IgGの固定、及びIgG量の測定
 各多孔質ジルコニア粒子に対して、それぞれ次のようにして、IgGを固定し、固定されたIgG量を求めた。
 多孔質ジルコニア粒子へのIgGの固定は、以下のように行った。スピッツに500μLの10mMリン酸緩衝液(pH7.0)を入れて、この液に多孔質ジルコニア粒子3mgを加えた。多孔質ジルコニア粒子を十分に分散させた後、IgG(500μg/500μL)を500μL加えて、遮光下、4℃で一晩撹拌した。
 スピッツを、12,000回転で10分間遠心して、多孔質ジルコニア粒子を沈殿分離した。上澄み溶液に残存する未固定のIgG量を、プロテインアッセイ染色液(BIO-RAD)を用い、マイクロプレートリーダー(InfiniteF200PRO,TECAN)により定量した。始めに加えたIgG量と、未固定のIgG量との差分を固定されたIgG量とした。
(4)実験結果
 図2に実験例3(実施例)の孔径分布(細孔分布)を示す。図3に実験例13(比較例)の孔径分布(細孔分布)を示す。図2から実験例3では、D50が3.20nm以上6.50nm以下であり、かつD90が10.50nm以上100.00nm以下であることが分かる。他方、図3から実験例13では、D50が3.20nm以上6.50nm以下であり、D90が10.50nm未満であることが分かる。
 表1に結果を併記する。実施例である実験例1~9は、次の〔1〕~〔3〕の全ての要件を満たしている。
〔1〕細孔径D50が3.20nm以上6.50nm以下である。
〔2〕細孔径D90が10.50nm以上100.00nm以下である。
〔3〕全細孔容積が0.10cm/gより大きい。
 これに対して、比較例である実験例10~17は以下の要件を満たしていない。
 実験例10では、〔2〕〔3〕の要件を満たしてない。
 実験例11では、〔2〕〔3〕の要件を満たしてない。
 実験例12では、〔2〕〔3〕の要件を満たしてない。
 実験例13では、〔2〕〔3〕の要件を満たしてない。
 実験例14では、〔2〕〔3〕の要件を満たしてない。
 実験例15では、〔2〕の要件を満たしてない。
 実験例16では、〔1〕〔2〕の要件を満たしてない。
 実験例17では、〔2〕〔3〕の要件を満たしてない。
 実施例である実験例1~9は、比較例である実験例10~17と比べて、優れたタンパク質固定能を示した。
2.実験B
 IgGの最大固定量を測定するため、実施例Aと同様の操作にて、投入するIgGの量を増したIgG(750μg/500μL)を用い、これを500μL加えて、実験Bを実施した。実験Bは、IgGの投入量以外は、実験Aと同様に実施した。
 表2に実験結果を示す。
Figure JPOXMLDOC01-appb-T000003
 全細孔容積が0.2cm/g以上の多孔質ジルコニア粒子(実験例1,2,4,5,7)では、IgGの仕込み量(投入量)が500μgの場合よりも、IgGの仕込み量(投入量)が750μgの場合の方が、より多くのIgGを固定できることが分かった。
3.実験C
 次に、キレート剤としてのエチレンジアミンテトラメチレンホスホン酸(EDTPA)の担持が、タンパク質の選択性に与える影響について検討した。
(1)多孔質ジルコニア粒子
 多孔質ジルコニア粒子には、表3に記載の次の多孔質ジルコニア粒子を用いた。
 表3において、「RC100」は、第一稀元素化学工業株式会社製の多孔質ジルコニア粒子であり、表1の実験例6と同じである。「UEP100」は、第一稀元素化学工業株式会社製の多孔質ジルコニア粒子であり、表1の実験例2と同じである。
 表3において、「RC100-P(0.00125M)」は、第一稀元素化学工業株式会社製の多孔質ジルコニア粒子(RC100、原料)を、0.00125MのEDTPA溶液で処理して得られたEDTPA担持の多孔質ジルコニア粒子である。
 表3において、「UEP100-P(0.00125M)」は、第一稀元素化学工業株式会社製の多孔質ジルコニア粒子(UEP100)を、0.00125MのEDTPA溶液で処理して得られたEDTPA担持の多孔質ジルコニア粒子である。
 なお、「RC100-P(0.00125M)」の調製は以下のように行った。予め100℃で2時間、脱気乾燥した多孔質ジルコニア粒子(RC100)250mgに対し、0.00125MのEDTPA溶液を10mL加え、15分脱気後、17時間、攪拌及び/又は振とうした。その後、更に、4時間還流した後、純水で洗浄し、凍結乾燥して、RC100-P(0.00125M)を得た。
 「UEP100-P(0.00125M)」の調製も「RC100-P(0.00125M)」と同様に行った。すなわち、原料として「RC100」の代わりに「UEP100」を用いた以外は、「RC100-P(0.00125M)」の場合と同様にして「UEP100-P(0.00125M)」を調製した。
 また、EDTPA溶液の濃度を0.00125M、0.0025M、0.005M、0.01Mに変化させた以外は、RC100-P(0.00125M)と同様に行い、計4種のPCS140(SD)P(EDTA濃度)を調整した。
 なお、EDTPAの担持量は、TG-DTA(熱重量示差熱分析)の重量減少から算出した。すなわち、EDTPA担持の多孔質ジルコニア粒子を10mg程度秤量し、常温~1000℃までの重量変化を測定しつつ、示差熱分析(TG-DTA;Thermo plus TG8120,リガク)を行った。200℃~600℃での重量減少量から算出した結果、多孔質ジルコニア粒子1mgあたり0.06μg~2.2μgのEDTPAを担持していた。
Figure JPOXMLDOC01-appb-T000004
(2)タンパク質の選択性試験
 多孔質ジルコニア粒子(RC100、UEP100)、EDTPA担持の多孔質ジルコニア粒子(RC100-P、UEP100-P)を用いて、タンパク質の選択性試験を実施した。
 上記4種の各多孔質ジルコニア粒子について、IgG、HAS(Albumin from human serum)、Trf(Transferrin human)の3種のタンパク質に対して、それぞれ次の試験を実施した。
 スピッツに500μLの10mMリン酸緩衝液(pH7.0)を入れて、この液に多孔質ジルコニア粒子3mgを加えた。多孔質ジルコニア粒子を十分に分散させた後、タンパク質(500μg/500μL)を500μL加えて、遮光下、4℃で一晩撹拌した。
 スピッツを、14,000回転で5分間遠心して、多孔質ジルコニア粒子を沈殿分離した。上澄み溶液に残存する未固定のタンパク質の量を、プロテインアッセイ染色液(BIO-RAD)を用い、マイクロプレートリーダー(InfiniteF200PRO,TECAN)により定量した。始めに加えたタンパク質の量と、未固定のタンパク質の量との差分を固定されたタンパク質の量とした。
(3)実験結果
 表3に結果を示す。
 まず、多孔質ジルコニア粒子RC100、及びEDTPA担持の多孔質ジルコニア粒子RC100-Pの結果を考察する。
 多孔質ジルコニア粒子RC100には、IgGの他にも、HAS、Trfが固定されることが確認された。
 他方、EDTPA担持の多孔質ジルコニア粒子RC100-Pには、IgGは固定されるが、HAS、Trfは固定されないことが確認された。
 この結果から、多孔質ジルコニア粒子RC100にEDTPAを担持して、EDTPA担持の多孔質ジルコニア粒子RC100-Pとすることで、IgGの選択特異性が向上することが分かる。
 次に、多孔質ジルコニア粒子UEP100、及びEDTPA担持の多孔質ジルコニア粒子UEP100-Pの結果を考察する。
 多孔質ジルコニア粒子UEP100には、IgGの他にも、HAS、Trfが固定されることが確認された。HASの固定量は、64.3μgであり、Trfの固定量は、28.5μgであった。
 他方、EDTPA担持の多孔質ジルコニア粒子UEP100-Pには、IgGの他にHASが固定されるが、HASの固定量は4.1μgであった。このHASの固定量4.1μgは、多孔質ジルコニア粒子UEP100の場合の64.3μgよりも格段に少なくなっていた。また、EDTPA担持の多孔質ジルコニア粒子UEP100-Pには、Trfは固定されないことが確認された。
 この結果から、多孔質ジルコニア粒子UEP100にEDTPAを担持して、EDTPA担持の多孔質ジルコニア粒子UEP100-Pとすることで、IgGの選択特異性が向上することが分かる。
4.実施例の効果
 D50、D90、及び全細孔容積が特定範囲内にある多孔質ジルコニア粒子は、タンパク質の一例としてのIgGを選択的に固定できる。
 多孔質ジルコニア粒子の表面に、キレート剤の一例としてのEDTPAが担持されていると、選択性がより高まる。
<他の実施形態(変形例)>
 なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
 本発明の多孔質ジルコニア粒子は、抗体分離精製に用いる場合に、ジルコニア結晶相が持つ、耐薬品性、高い構造強度、焼成による再生利用可能性など、従来技術にはない有利な効果を奏する。よって、抗体製品の製造プロセスの低コスト化に大きく貢献するものと期待される。抗体医薬を始めとする抗体の精製と分離に利用されるカラム製品としての応用としてのみならず、食品中アレルゲン等の特異的なタンパク質の除去への利用も考えられる。

Claims (5)

  1.  タンパク質の固定に用いられる多孔質ジルコニア粒子であって、
     BET法により測定された孔径分布において、
     累積細孔容積が全細孔容積の50%となる細孔径D50が3.20nm以上6.50nm以下であり、
     累積細孔容積が全細孔容積の90%となる細孔径D90が10.50nm以上100.00nm以下であるとともに、
     全細孔容積が0.10cm/gより大きいことを特徴とする多孔質ジルコニア粒子。
  2.  前記タンパク質は、免疫グロブリンであることを特徴とする請求項1に記載の多孔質ジルコニア粒子。
  3.  前記免疫グロブリンは、IgG、IgE、及びIgDからなる群より選択される少なくとも1種であることを特徴とする請求項2に記載の多孔質ジルコニア粒子。
  4.  表面に、キレート剤が担持されていることを特徴とする請求項1~3のいずれか1項に記載の多孔質ジルコニア粒子。
  5.  請求項1~4のいずれか1項に記載の多孔質ジルコニア粒子が凝集してなることを特徴とするタンパク質固定用凝集体。
PCT/JP2020/001498 2019-01-24 2020-01-17 多孔質ジルコニア粒子及びタンパク質固定用凝集体 WO2020153253A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217024722A KR102621949B1 (ko) 2019-01-24 2020-01-17 다공질 지르코니아 입자 및 단백질 고정용 응집체
EP20745718.5A EP3915940A4 (en) 2019-01-24 2020-01-17 POROUS ZIRCONIA PARTICLES AND AGGREGATE FOR IMMOBILIZING PROTEINS
CN202080009669.0A CN113329974A (zh) 2019-01-24 2020-01-17 多孔氧化锆粒子和蛋白质固定用聚集体
US17/424,640 US20220089453A1 (en) 2019-01-24 2020-01-17 Porous zirconia particles, and aggregate for immobilizing protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-010342 2019-01-24
JP2019010342A JP7422989B2 (ja) 2019-01-24 2019-01-24 多孔質ジルコニア粒子及びタンパク質固定用凝集体

Publications (1)

Publication Number Publication Date
WO2020153253A1 true WO2020153253A1 (ja) 2020-07-30

Family

ID=71736073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001498 WO2020153253A1 (ja) 2019-01-24 2020-01-17 多孔質ジルコニア粒子及びタンパク質固定用凝集体

Country Status (6)

Country Link
US (1) US20220089453A1 (ja)
EP (1) EP3915940A4 (ja)
JP (1) JP7422989B2 (ja)
KR (1) KR102621949B1 (ja)
CN (1) CN113329974A (ja)
WO (1) WO2020153253A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294532A (ja) * 1988-02-03 1989-11-28 Univ Minnesota 高安定性の多孔質酸化ジルコニウム小球体
JPH09503989A (ja) * 1993-07-28 1997-04-22 モナシュ・ユニバーシティー ジルコニア粒子
WO2007021037A1 (ja) * 2005-08-19 2007-02-22 Kyoto University 無機系多孔質体及びその製造方法
JP2015189655A (ja) * 2014-03-28 2015-11-02 第一稀元素化学工業株式会社 ジルコニア系多孔質体及びその製造方法
JP2017047365A (ja) 2015-09-01 2017-03-09 国立研究開発法人産業技術総合研究所 タンパク質固定化用担体及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4339703B2 (ja) * 2002-04-18 2009-10-07 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド スライダの製造に使用するラッピングキャリヤ
JP4660135B2 (ja) * 2004-07-26 2011-03-30 第一稀元素化学工業株式会社 ジルコニア系多孔質体及びその製造方法
JP4817254B2 (ja) * 2006-12-01 2011-11-16 大日本塗料株式会社 酸化ジルコニウム粒子分散液、酸化ジルコニウム粒子含有光硬化性組成物及び硬化膜
GB201518996D0 (en) * 2015-10-27 2015-12-09 Magnesium Elektron Ltd Zirconia-based compositions for use as three-way catalysts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294532A (ja) * 1988-02-03 1989-11-28 Univ Minnesota 高安定性の多孔質酸化ジルコニウム小球体
JPH09503989A (ja) * 1993-07-28 1997-04-22 モナシュ・ユニバーシティー ジルコニア粒子
WO2007021037A1 (ja) * 2005-08-19 2007-02-22 Kyoto University 無機系多孔質体及びその製造方法
JP2015189655A (ja) * 2014-03-28 2015-11-02 第一稀元素化学工業株式会社 ジルコニア系多孔質体及びその製造方法
JP2017047365A (ja) 2015-09-01 2017-03-09 国立研究開発法人産業技術総合研究所 タンパク質固定化用担体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3915940A4

Also Published As

Publication number Publication date
EP3915940A1 (en) 2021-12-01
CN113329974A (zh) 2021-08-31
KR20210109623A (ko) 2021-09-06
US20220089453A1 (en) 2022-03-24
JP7422989B2 (ja) 2024-01-29
KR102621949B1 (ko) 2024-01-05
JP2020116530A (ja) 2020-08-06
EP3915940A4 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
Li et al. Affinity monolith chromatography: A review of general principles and applications
JP3809177B2 (ja) アフィニティー粒子及びアフィニティー分離方法
Altıntaş et al. Efficient removal of albumin from human serum by monosize dye-affinity beads
EP0172730B1 (en) Metal oxide stabilized chromatography packings
Özkara et al. A novel magnetic adsorbent for immunoglobulin‐G purification in a magnetically stabilized fluidized bed
JP3922648B2 (ja) アフィニティー粒子及びアフィニティー分離方法
EP2128616A1 (en) Support having protein immobilized thereon and method of producing the same
WO2020153253A1 (ja) 多孔質ジルコニア粒子及びタンパク質固定用凝集体
Bereli et al. Antibody purification by concanavalin A affinity chromatography
EP0153763B1 (en) Affinity chromatography matrix with built-in reaction indicator
JP2007003410A (ja) ヘモグロビンA1cの測定方法及びヘモグロビンA1c測定用キット
US20120043496A1 (en) Porous, magnetic silica gel molded parts, production thereof, and application thereof
JP4984080B2 (ja) 免疫化学反応のシグナル増強剤および免疫学的測定方法
JP7090300B2 (ja) 免疫グロブリン精製方法及び免疫グロブリン精製装置、並びに免疫グロブリン製造方法及び免疫グロブリン製造装置
JP2024031825A (ja) 多孔質ジルコニア粒子
JP6710823B2 (ja) タンパク質固定化用担体及びその製造方法
Koskinen et al. A novel separation-free assay technique for serum antibodies using antibody bridging assay principle and two-photon excitation fluorometry
JP7399675B2 (ja) 粒子およびその製造方法
JP2024030366A (ja) 多孔質ジルコニア粒子
JP3429545B2 (ja) アフィニティー吸脱着用担体
WO2017034024A1 (ja) リガンドの固定化方法
JP6604081B2 (ja) N型糖鎖が付加している膵臓リボヌクレアーゼ1の測定方法
Sun et al. Preparation of nitrocellulose (NC) immuno‐affinity membrane for purification of rAPC antibody
Gomez et al. Surface modification on poly (EGDMA-co-HEMA) synthetic matrices to be used as specific adsorbents
TWI849092B (zh) 磁響應性粒子及使用其之免疫測定方法、免疫測定用試藥

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217024722

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020745718

Country of ref document: EP

Effective date: 20210824