WO2020153066A1 - ドライエッチング方法、ドライエッチング剤、及びその保存容器 - Google Patents

ドライエッチング方法、ドライエッチング剤、及びその保存容器 Download PDF

Info

Publication number
WO2020153066A1
WO2020153066A1 PCT/JP2019/049999 JP2019049999W WO2020153066A1 WO 2020153066 A1 WO2020153066 A1 WO 2020153066A1 JP 2019049999 W JP2019049999 W JP 2019049999W WO 2020153066 A1 WO2020153066 A1 WO 2020153066A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
dry etching
volume
gas
fluorine
Prior art date
Application number
PCT/JP2019/049999
Other languages
English (en)
French (fr)
Inventor
啓之 大森
辰徳 上田
晋也 池田
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to SG11202107622UA priority Critical patent/SG11202107622UA/en
Priority to US17/424,211 priority patent/US20220115240A1/en
Priority to JP2020567430A priority patent/JPWO2020153066A1/ja
Priority to KR1020217026264A priority patent/KR20210114509A/ko
Priority to CN201980090097.0A priority patent/CN113330539A/zh
Publication of WO2020153066A1 publication Critical patent/WO2020153066A1/ja
Priority to JP2023187736A priority patent/JP2024016143A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/16Acyclic saturated compounds containing halogen atoms containing fluorine and iodine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/02Etching, surface-brightening or pickling compositions containing an alkali metal hydroxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/361Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound

Definitions

  • the present disclosure relates to a method of plasma-etching a silicon-based material, a dry etching agent used for the method, and a storage container thereof.
  • an etching apparatus using plasma is widely used, and as a processing gas, only a SiO 2 or SiN film is highly selectively used with respect to a PR film or an aC film, for example, a selection ratio of 3.0. As described above, it is required to perform etching at a high speed, for example, at a SiO 2 etching rate of 50 nm/min or more.
  • etching gas a fluorine-containing saturated hydrocarbon such as CF 4 gas, c-C 4 F 8 gas, C 4 F 6 gas or the like, or a fluorine-containing unsaturated hydrocarbon is known.
  • CF 4 gas CF 4 gas
  • c-C 4 F 8 gas C 4 F 6 gas or the like
  • fluorine-containing unsaturated hydrocarbon is known.
  • the selection ratio is not sufficient, the etching shape during processing cannot be kept linear, and a sufficient etching rate cannot be obtained, making it difficult to support recent miniaturization technologies. ..
  • these fluorine-containing saturated hydrocarbons are substances with a long atmospheric life and have high global warming potential (GWP), so they are emission control substances under the Kyoto Protocol (COP3).
  • GWP global warming potential
  • COP3 Kyoto Protocol
  • Patent Document 1 discloses an etching method using CF 3 I as a method for generating desired amounts of desired radicals and ions in performing high aspect ratio etching.
  • Patent Document 2 CF 3 I is that the etching selectivity of the resist layer and the silicon-containing layer (organic silicon oxide layer) is higher than the CF 4 is disclosed.
  • Patent Document 3 discloses a method for producing CF 3 I, which comprises reacting a predetermined iodine source and a reaction product of the formula: CF 3 R in the presence of a metal salt catalyst. ..
  • CF 3 I is known as a stable compound, and in many cases, materials such as stainless steel, carbon steel, brass, and manganese steel are used for containers and valves because they are advantageous in terms of price.
  • CF 3 I is filled a manganese steel cylinder with high-purity CF 3 I obtained by purifying to 99.99% by volume or more and actually used it as an etching gas, the etching rate and etching shape were Although the expected result was obtained, it was found that metal contamination occurred on the wafer.
  • Patent Documents 1 to 3 make no mention of the purity of CF 3 I, impurities, and metal contamination on the wafer.
  • the present inventors have studied intensively, in the CF 3 I, by adding a predetermined amount of fluorine-containing straightforward chain nitrile compound having 2 or 3 carbon atoms having a C ⁇ N bond to CF 3 I in It was found that metal contamination from the storage container is suppressed, and that even in the etching using the mixed gas, it has sufficient selectivity between PR and SiO 2, and a good etching shape can be obtained.
  • the disclosure has been completed.
  • the present disclosure includes a step of converting a dry etching agent into plasma, and a step of etching silicon oxide or silicon nitride using the dry etching agent that has been converted into plasma.
  • a dry etching method or the like is provided, which comprises 3 I and a fluorine-containing linear nitrile compound having 2 or 3 carbon atoms in a concentration of 1 volume ppm to 1 volume% of the fluorine-containing linear nitrile compound with respect to CF 3 I. To do.
  • FIG. 1 is a schematic diagram of a storage test container 10 used in Examples and Comparative Examples. It is a schematic diagram of reaction device 20 used in an example and a comparative example.
  • the dry etching method according to the present embodiment is a dry etching method including a step of converting a dry etching agent into plasma and a step of etching silicon oxide or silicon nitride using the plasmaized dry etching agent.
  • the dry etching agent contains at least CF 3 I and a fluorine-containing linear nitrile compound having a C ⁇ N bond and having 2 or 3 carbon atoms.
  • CF 3 I used in this embodiment is also called trifluoroiodomethane or methyl trifluoroiodide, and can be produced by a conventionally known method.
  • an iodine source selected from the group consisting of hydrogen iodide, iodine and iodine monochloride, and a compound of the formula: CF 3 R [wherein R represents —SH, —SS—CF] 3 , --S-phenyl, and --SS--(CH 3 ) 3 ] in the presence of a metal salt catalyst. It is obtained by
  • Examples of the fluorine-containing linear nitrile compound having 2 or 3 carbon atoms used in the present embodiment include CH 2 FC ⁇ N, CHF 2 C ⁇ N, CF 3 C ⁇ N, CH 2 FCF 2 C ⁇ N, CHF 2 Examples thereof include CF 2 C ⁇ N and CF 3 CF 2 C ⁇ N. Among them, it is preferable to use CF 3 C ⁇ N and CF 3 CF 2 C ⁇ N. When the addition amount was 1 volume ppm or more with respect to CF 3 I, a sufficient effect of suppressing the occurrence of metal contamination was recognized.
  • Patent Document 1 suggests that a trace amount of impurities in CF 3 I may affect the generation of radical species other than the intended one. It can be seen that the etching characteristics are not significantly affected. However, since too much impurities affect the etching performance of CF 3 I, the content is preferably within 1 volume% (10,000 volume ppm), and more preferably below 0.1 volume% (1000 volume ppm). preferable. As another mode of the present disclosure, it is assumed that a fluorine-containing linear nitrile compound having 2 or 3 carbon atoms is previously sealed in a container and a passivation process is performed on the inner surface of the container.
  • Silicon oxide is represented by the chemical formula of SiO x (x is 1 or more and 2 or less), and is usually SiO 2 .
  • silicon nitride is represented by the chemical formula of SiN x (x is 0.3 or more and 9 or less), and is usually Si 3 N 4 .
  • a storage container for CF 3 I As long as it is a closed container capable of enclosing a gas-liquid mixture at atmospheric pressure or higher, it does not require a special structure and constituent materials and has a wide range of forms and functions. it can.
  • the present disclosure can be applied to the case where a cylinder made of manganese steel or stainless steel, which is a general high-pressure gas storage container, is used.
  • the manganese steel contains 97% by mass or more of iron and 1% by mass or more and 2% by mass or less of manganese. Even when nickel or chromium is inevitably mixed in the manganese steel, the nickel content is preferably 0.25% by mass or less and the chromium content is preferably 0.35% by mass or less.
  • the manganese steel for example, SMn420, SMn433, SMn438, SMn443 specified in JIS G4053:2016, STH11, STH12 specified in JIS G3429:2013, etc. can be used.
  • CF 3 I used is preferably highly purified to 99.95% by volume or more.
  • the fluorine-containing linear nitrile compound having 2 or 3 carbon atoms it is sufficient that a predetermined amount is contained, so that there is no problem if the purity is 90 vol% or more.
  • composition ratios of the mixed gas of CF 3 I and the fluorine-containing linear nitrile compound, or the dry etching agent obtained by adding the additive gas and/or the inert gas to the mixed gas are shown below.
  • the total volume% of various gases is 100% by volume.
  • a mixed gas of CF 3 I and a fluorine-containing linear nitrile compound may be used as a dry etching agent, it is usually used in combination with an additive gas and/or an inert gas from the viewpoint of cost efficiency and plasma stability.
  • an additive gas and/or an inert gas used.
  • the concentration of the mixed gas of CF 3 I and the fluorine-containing linear nitrile compound with respect to the total of the mixed gas, the additive gas and the inert gas is preferably 1 to 90% by volume, more preferably 5 to 80% by volume. %, and more preferably 10 to 60% by volume.
  • the concentration of the additive gas with respect to the total of the mixed gas, the additive gas and the inert gas is preferably 0 to 50% by volume, more preferably 0 to 10% by volume.
  • the concentration of the inert gas with respect to the total of the mixed gas, the additive gas and the inert gas is preferably 0 to 98% by volume, more preferably 5 to 80% by volume, and further preferably 300 to 50% by volume. %.
  • the etching method of the present embodiment can be carried out under various dry etching conditions. Further, for example, various additives and inert gases can be added by mixing an additive gas and an inert gas so as to obtain a desired etching rate, etching selectivity and etching shape.
  • the additive gas O 2 , O 3 , CO, CO 2 , COCl 2 , COF 2 , CF 2 (OF) 2 , CF 3 OF, NO 2 , NO, F 2 , NF 3 , Cl 2 , Br 2
  • one or more reducing gases, fluorocarbons, hydrofluorocarbons, halogen-containing compounds for example, H 2 , HF, HI, HBr, HCl, NH 3 , CF 4 , CF 3 H, CF 2 H 2 , CFH 3, C 2 F 6, C 2 F 4 H 2, C 2 F 5 H, C 3 F 8, C 3 F 7 H, C 3 F 6 H 2, C 3 F 5 H 3, C 3 F 4 H 4, C 3 F 3 H 5, C 3 F 5 H, C 3 F 3 H, C 3 ClF 3 H, C 4 F 8, C 4 F 6, C 5 F 8 , C 5 F 10 , C 3 F 6 , C 3 HF 5 , C 3 H 2 F 4 , and at least one gas selected from the group consisting of C 3 H 3 F 3 ) as an additive gas.
  • Etching may be performed.
  • the inert gas include N 2 , He, Ar, Ne, K
  • the etching method of this embodiment is various etching such as capacitively coupled plasma (CCP) etching, reactive ion etching (RIE), inductively coupled plasma (ICP) etching, electron cyclotron resonance (ECR) plasma etching, and microwave etching.
  • CCP capacitively coupled plasma
  • RIE reactive ion etching
  • ICP inductively coupled plasma
  • ECR electron cyclotron resonance
  • microwave etching microwave etching
  • the gas components contained in the dry etching agent may be introduced into the chamber independently, or may be prepared as a mixed gas in a later stage of the storage container and then introduced into the chamber.
  • the total flow rate of the dry etching agent introduced into the reaction chamber can be appropriately selected in consideration of the concentration condition and the pressure condition, depending on the volume of the reaction chamber and the exhaust capacity of the exhaust unit.
  • the pressure during etching is preferably 5 Pa or less, particularly preferably 1 Pa or less, in order to obtain stable plasma and to suppress the side etching by increasing the straightness of ions.
  • the pressure in the chamber is too low, the amount of ionized ions will decrease and a sufficient plasma density will not be obtained, so 0.05 Pa or more is preferable.
  • the substrate temperature during etching is preferably 100° C. or lower, and particularly preferably 50° C. or lower, particularly preferably 20° C. or lower for anisotropic etching.
  • a protective film containing CF n derived from fluorocarbon as a main component cannot be sufficiently formed on a mask material such as PR or aC, and the selectivity may decrease.
  • the sidewall protective film is not sufficiently formed, and a shape abnormality called so-called bowing may occur in which the etching shape becomes a rounded shape.
  • the negative DC self-bias voltage generated between electrodes during etching may be selected according to the desired etching shape. For example, when performing anisotropic etching, it is desirable to generate an interelectrode voltage of about 500 V to 10000 V in absolute value to increase the energy of ions. If the absolute value of the negative DC self-bias voltage is too large, the ion energy may be amplified and the selectivity may be lowered.
  • the etching time is preferably 200 minutes or less in consideration of the efficiency of the element manufacturing process.
  • the etching time is the time during which plasma is generated in the chamber and the dry etching agent reacts with the sample.
  • FIG. 1 is a schematic view of 10 storage containers used in Examples and Comparative Examples for temporarily storing purified CF 3 I.
  • a storage container a pressure-resistant container 10 made of manganese steel having an internal volume of 10 L was produced. 1000 g of CF 3 I, which was previously purified and highly purified to 99.99% by volume or more, was enclosed therein. Next, 2 volume ppm of CF 3 C ⁇ N was included in CF 3 I.
  • FIG. 2 is a schematic diagram of the reaction device 20 used in Examples and Comparative Examples. Inside the chamber 21, a lower electrode 24 having a function of holding a wafer and also functioning as a stage, an upper electrode 25, and a pressure gauge 22 are installed. A gas inlet 26 is connected to the upper part of the chamber 21. The pressure inside the chamber 21 can be adjusted, and the dry etching agent can be excited by a high frequency power source (13.56 MHz) 23.
  • a high frequency power source 13.56 MHz
  • the sample 28 placed on the lower electrode 24 can be etched by bringing the excited dry etching agent into contact with the sample 28.
  • a direct-current voltage called a self-bias voltage is generated between the upper electrode 25 and the lower electrode 24 due to the difference in moving speed of ions and electrons in the plasma. It is configured so that it can be generated.
  • the gas in the chamber 21 is discharged through the gas discharge line 27.
  • a silicon wafer A having a SiO 2 film, a silicon wafer B having a SiN (Si 3 N 4 ) film, and a silicon wafer C having a PR (photoresist) film were placed on a stage cooled to 15° C.
  • the SiO 2 film and the SiN film were formed by the CVD method.
  • the PR film was prepared by coating.
  • an etching agent a mixture of CF 3 I and CF 3 C ⁇ N, O 2 and Ar were adjusted to 25 sccm, 25 sccm and 500 sccm, respectively, and these sufficiently mixed gases were circulated in the chamber to supply high frequency power. was applied at 400 W to turn the etching agent into plasma, thereby performing etching.
  • the etching rate was obtained from the change in the thickness of the SiO 2 film of the silicon wafer A, the SiN film of the silicon wafer B, and the PR film of the silicon wafer C before and after the etching. Further, a value obtained by dividing the etching rate of SiO 2 and SiN by the etching rate of PR was determined as each etching selection ratio.
  • the amount of metal deposited on the silicon wafer A having the SiO 2 film was measured.
  • the method defined in JIS K0160:2009 was used. That is, hydrofluoric acid was placed in a plastic beaker and placed in a PFA (perfluoroalkoxy fluororesin) container called a VPD (vapor phase decomposition) container, and a SiO 2 film-formed wafer after etching was placed in the VPD container. Placed on the wafer stand. Next, the VPD container was closed, and the oxide film on the wafer was decomposed with hydrofluoric acid vapor for 10 minutes.
  • the oxide was decomposed, 100 ⁇ L of the scanning solution (ultra pure water) was dropped on the surface of the wafer to scan the entire surface of the wafer. After scanning, the entire scanned droplets were dried, dissolved again in ultrapure water, and then analyzed by ICP-MS (inductively coupled plasma mass spectrometer). The obtained analytical value was converted into the number of metal atoms per 1 cm 2 of the wafer from the amount of the solution and the surface area of the wafer. As a result, the analysis value of iron was 6.5 ⁇ 10 11 atms/cm 2 .
  • the wafer D is obtained by forming a SiO 2 film having a film thickness of 200 nm on a silicon wafer and then applying a photoresist film 300 nm having a circular hole-shaped opening having a diameter of 100 nm. After performing etching for 5 minutes by the method described in the item of etching test, a cross-sectional SEM photograph was taken and the etching shape was observed. As a result, it was confirmed that etching was performed without any abnormal etching shape such as shoulder drop and bowing.
  • Example 2 A storage test sample was prepared under the same conditions as in Example 1 except that CF 3 I obtained by adding CF 3 C ⁇ N to CF 3 I and having a CF 3 C ⁇ N content of 25 volume ppm was used. The etching test was also performed in the same manner as in Example 1. When the etching shape was evaluated in the same manner as in Example 1, it was confirmed that etching could be performed without any abnormal etching shape such as shoulder drop and bowing.
  • Example 3 CF 3 I obtained by adding CF 3 C ⁇ N in, except for using CF 3 I of CF 3 C ⁇ N content 129 ppm by volume of was prepared storage test samples under the same conditions as in Example 1. The etching test was also performed in the same manner as in Example 1. When the etching shape was evaluated in the same manner as in Example 1, it was confirmed that etching could be performed without any abnormal etching shape such as shoulder drop and bowing.
  • Example 4 CF 3 obtained by adding CF 3 C ⁇ N in I, CF 3 C ⁇ N CF 3 except for using the I the same conditions as in Example 1 of the content 1231 volume ppm (about 0.1% by volume) of A storage test sample was prepared in.
  • the etching test was also performed in the same manner as in Example 1. When the etching shape was evaluated in the same manner as in Example 1, it was confirmed that etching could be performed without any abnormal etching shape such as shoulder drop and bowing.
  • Example 5 CF 3 obtained by adding CF 3 C ⁇ N in I, CF 3 C ⁇ N content 7927 volume ppm CF 3 except for using the I the same conditions as in Example 1 (about 0.8% by volume) A storage test sample was prepared in. The etching test was also performed in the same manner as in Example 1. When the etching shape was evaluated in the same manner as in Example 1, it was confirmed that etching could be performed without any abnormal etching shape such as shoulder drop and bowing.
  • Example 6 CF 3 obtained by adding CF 3 C ⁇ N in I, CF 3 C ⁇ N content 9328 volume ppm CF 3 except for using the I the same conditions as in Example 1 (about 0.9% by volume) A storage test sample was prepared in. The etching test was also performed in the same manner as in Example 1. When the etching shape was evaluated in the same manner as in Example 1, it was confirmed that etching could be performed without any abnormal etching shape such as shoulder drop and bowing.
  • Example 7 CF 3 obtained by adding CF 3 CF 2 C ⁇ N in I, CF 3 CF 2 C ⁇ N storage test samples under the same conditions as in Example 1 except for using a CF 3 I content 235 ppm by volume of Was produced.
  • the etching test was also performed in the same manner as in Example 1. When the etching shape was evaluated in the same manner as in Example 1, it was confirmed that etching could be performed without any abnormal etching shape such as shoulder drop and bowing.
  • Example 1 A preservation test sample was prepared under the same conditions as in Example 1 except that CF 3 I having a CF 3 C ⁇ N content of less than 0.1 volume ppm obtained by purification was used. The etching test was also performed in the same manner as in Example 1. When the etching shape was evaluated in the same manner as in Example 1, it was confirmed that etching could be performed without any abnormal etching shape such as shoulder drop and bowing.
  • Example 3 CF 3 obtained by adding CF 3 C ⁇ N in I, save except for using CF 3 I of CF 3 content C ⁇ N 111,608 volume ppm (about 11% by volume) in the same conditions as in Example 1 A test sample was prepared. The etching test was also performed in the same manner as in Example 1. When the etching shape was evaluated in the same manner as in Example 1, there was no bowing, but the etching amount of the photoresist was significantly increased as compared with Examples 1 to 6 as the SiO 2 /PR selectivity was lowered. In some patterns, shoulder loss was seen.
  • Example 4 The test was carried out under the same conditions as in Example 1 except that CF 3 I containing 28 volume ppm of CF 3 C ⁇ CH was used instead of CF 3 C ⁇ N. The etching test was also performed in the same manner as in Example 1. When the etching shape was evaluated in the same manner as in Example 1, it was confirmed that etching could be performed without any abnormal etching shape such as shoulder drop and bowing.
  • Example 5 The test was conducted under the same conditions as in Example 1 except that CF 3 I containing 8523 volume ppm of fluorine-free CH 3 C ⁇ N was used instead of CF 3 C ⁇ N.
  • the etching test was also performed in the same manner as in Example 1. When the etching shape was evaluated in the same manner as in Example 1, there was no etching shape abnormality such as shoulder drop and bowing, but the etching amount of the photoresist was changed from that of Examples 1 to 6 as the SiO 2 /PR selectivity was lowered. There were many compared.
  • the fluorine-containing linear nitrile compound significantly reduces the vapor pressure of the substance contained in CF 3 I that becomes the contamination source of iron, and the fluorine-containing linear nitrile compound suppresses the adhesion of the iron component on the wafer. It is possible to do it.
  • Comparative Example 4 the effect of additives other than CF 3 C ⁇ N was investigated. As a result, with CF 3 C ⁇ CH, the effect of preventing iron contamination, which was observed with CF 3 C ⁇ N, was not recognized.
  • Comparative Example 5 the effect of additives containing no fluorine other than CF 3 C ⁇ N was investigated.
  • CH 3 C ⁇ N the etching selectivity of SiO 2 /PR deteriorated, probably because the protective film containing the CF n film as the main component was not sufficiently formed because fluorine was not contained.
  • the effect of preventing iron contamination was smaller than that of CF 3 C ⁇ N.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本開示の実施形態に係るドライエッチング方法は、ドライエッチング剤をプラズマ化する工程と、プラズマ化したプラズマガスを用いて、シリコン酸化物又はシリコン窒化物をエッチングする工程と、を有し、前記ドライエッチング剤が、CF3Iと、炭素数2又は3の含フッ素直鎖ニトリル化合物とを、CF3Iに対する前記含フッ素直鎖ニトリル化合物の濃度が1体積ppm以上1体積%以下で含むことを特徴とする。

Description

ドライエッチング方法、ドライエッチング剤、及びその保存容器
 本開示は、シリコン系材料をプラズマエッチングする方法や、それに用いるドライエッチング剤とその保存容器に関する。
 近年、半導体加工においては、微細化の検討が進められ、加工線幅が細くなると共に、加工線幅とトレンチまたはホールの深さとの比であるアスペクト比が劇的に増大する傾向にある。これらの半導体加工技術の発展に伴い、エッチング工程において使用されるエッチング剤についても開発が進められている。
 このエッチング工程では、プラズマを用いたエッチング装置が広く使用され、処理ガスとしては、PR膜やa-C膜に対して、SiO2やSiN膜のみを高選択的に、例えば選択比3.0以上で、かつ高速で、例えば、SiO2エッチング速度が50nm/min以上で、エッチングすることが求められる。
 従来、このようなエッチングガスとして、例えばCF4ガス、c-C48ガス、C46ガス等の含フッ素飽和炭化水素、若しくは、含フッ素不飽和炭化水素が知られている。しかしながら、従来のガスでは、選択比が十分でなく、加工時のエッチング形状が直線性を保てない、十分なエッチング速度が得られないなど、近年の微細化技術に対応が難しくなってきている。
 また、これらの含フッ素飽和炭化水素は、大気寿命の長い物質であり、高い地球温暖化係数(GWP)を有していることから京都議定書(COP3)において排出規制物質となっている。半導体産業においては、経済性が高く、微細化が可能な低GWPの代替物質が求められてきた。
 これらの要件を満たすガスとして例えば、特許文献1には、高アスペクト比エッチングを行う上で、所望のラジカル・イオンを所望の量だけ生成する方法としてCF3Iを用いたエッチング方法が開示されている。また、特許文献2には、CF3Iは、レジスト層とシリコン含有層(有機シリコン酸化層等)とのエッチング選択比がCF4に比べて高くなることが開示されている。
 なお、特許文献3には、所定のヨウ素源と、式:CF3Rの反応物とを、金属塩触媒の存在下で反応させることを特徴とするCF3Iの製造方法が開示されている。
特開平11-340211号公報 特開2009-123866号公報 特表2008-523089号公報(国際公開第2006/063184号)
 通常、CF3Iなどの液化高圧ガスを保管する場合、一般的に金属容器・金属バルブが使用される。CF3Iは安定な化合物として知られており、多くの場合、価格面で有利であることからステンレス鋼、炭素鋼、真鍮、マンガン鋼などの材質が容器やバルブに用いられている。しかしながら、本発明者らが、99.99体積%以上にまで精製して得られた高純度CF3Iをマンガン鋼製ボンベに充填し、実際にエッチングガスとして使用したところ、エッチング速度やエッチング形状については想定した結果が得られたものの、ウエハ上への金属のコンタミネーションが発生することが判明した。
 エッチングガスの開発においては、エッチング形状やマスクとの選択比を向上させることに加えて、ウエハ上に発生する金属のコンタミネーションの量を半導体製造工程において0にすることはできないまでも、半導体特性に影響を及ぼすので極力低減させることが求められている。一方で、特許文献1~3には、CF3Iの純度や不純物、ウエハ上への金属のコンタミネーションに関する記載がない。
 このような背景から、CF3Iを用いたエッチングにおいて、エッチング特性に対しても影響を及ぼすことなく、金属のコンタミネーションを低減させる方法が求められていた。
 これらの背景のもと、本発明者らが金属コンタミネーションの原因調査を行ったところ、高純度化した後にCF3Iを充填していた保存容器が原因であり、マンガン鋼やステンレス鋼との接触により、CF3I中に微量の金属成分がフッ化物又はヨウ化物として混入することが判明した。そこで、本発明者らが鋭意検討した結果、CF3I中に、C≡N結合を有する炭素数2又は3の含フッ素直鎖ニトリル化合物を所定量添加することにより、CF3I中への保存容器からの金属のコンタミネーションを抑制し、また、その混合ガスを用いたエッチングにおいても、十分なPRとSiO2との選択性を有し、良好なエッチング形状が得られることを見出し、本開示を完成するに至った。
 すなわち、本開示は、ドライエッチング剤をプラズマ化する工程と、プラズマ化したドライエッチング剤を用いて、シリコン酸化物又はシリコン窒化物をエッチングする工程と、を有し、前記ドライエッチング剤が、CF3Iと、炭素数2又は3の含フッ素直鎖ニトリル化合物とを、CF3Iに対する前記含フッ素直鎖ニトリル化合物の濃度が1体積ppm以上1体積%以下で含む、ドライエッチング方法などを提供する。
実施例・比較例で用いた保存試験容器10の概略図である。 実施例・比較例で用いた反応装置20の概略図である。
 以下、本開示の実施形態について以下に説明する。なお、本開示の範囲は、これらの説明に拘束されることはなく、以下の例示以外についても、本開示の趣旨を損なわない範囲で適宜変更し、実施することができる。
 本実施形態によるドライエッチング方法では、ドライエッチング剤をプラズマ化する工程と、プラズマ化したドライエッチング剤を用いて、シリコン酸化物又はシリコン窒化物をエッチングする工程と、を有するドライエッチング方法である。前記ドライエッチング剤は、少なくともCF3Iと、C≡N結合を有する炭素数2又は3の含フッ素直鎖ニトリル化合物とを含有する。
 本実施形態で使用するCF3Iは、トリフルオロヨードメタンまたはトリフルオロヨウ化メチルとも呼ばれ、従来公知の方法で製造することができる。例えば、特許文献4によれば、ヨウ化水素、ヨウ素および一塩化ヨウ素からなる群より選択されるヨウ素源と、式:CF3R[式中、Rは、-SH、-S-S-CF3、-S-フェニル、および-S-S-(CH33からなる群より選択される]の反応物からなる群より選択される反応物とを、金属塩触媒の存在下で反応させることにより得られる。
 本実施形態にて使用する炭素数2又は3の含フッ素直鎖ニトリル化合物としては、CH2FC≡N、CHF2C≡N、CF3C≡N、CH2FCF2C≡N、CHF2CF2C≡N、CF3CF2C≡Nなどを挙げられる。その中でも、CF3C≡NとCF3CF2C≡Nを用いることが好ましい。添加量が、CF3Iに対して1体積ppm以上であれば、金属コンタミネーションの発生を抑制する十分な効果が認められた。
 一方、エッチング特性に及ぼす影響に注目すると、特許文献1の記載において、目的とする以外のラジカル種の発生源としてCF3I中の微量の不純物が影響している可能性が示唆されているが、エッチング特性に大きな影響を与えていないことがわかる。しかしながら、多すぎる不純物はCF3Iのエッチング性能に影響を及ぼすため、1体積%(1万体積ppm)以内であることが好ましく、0.1体積%(1000体積ppm)以下であることがより好ましい。本開示の別形態として、予め、炭素数2又は3の含フッ素直鎖ニトリル化合物を容器内に封入し、容器内面にパッシベーション処理を行うことが想定される。
 シリコン酸化物はSiOx(xは1以上2以下)の化学式で表され、通常はSiO2である。また、シリコン窒化物はSiNx(xは0.3以上9以下)の化学式で表され、通常はSi34である。
 CF3Iの保存容器としては、大気圧以上において、気液混合物を封入することのできる密閉容器であれば、特別な構造及び構成材料を必要とせず、広い範囲の形態及び機能を有することができる。一般的な高圧ガスの保存容器であるマンガン鋼やステンレス鋼で作られたボンベを使用する際に本開示が適用できる。
 マンガン鋼は、鉄を97質量%以上含み、マンガンを1質量%以上2質量%以下含むことが好ましい。マンガン鋼にニッケルやクロムが不可避的に混入する場合であっても、ニッケルの含有量は0.25質量%以下、クロムの含有量は0.35質量%以下であることが好ましい。マンガン鋼として、例えば、JIS G 4053:2016にて規定されるSMn420、SMn433、SMn438、SMn443や、JIS G 3429:2013にて規定されるSTH11、STH12などを使用することができる。
 本実施形態において、使用するCF3Iは、99.95体積%以上に高純度化されていることが好ましい。炭素数2又は3の含フッ素直鎖ニトリル化合物については、所定量が含まれればよいため純度が90体積%以上であれば問題ない。
 次に、本実施形態におけるドライエッチング剤を用いたエッチング方法について説明する。
 CF3Iと含フッ素直鎖ニトリル化合物の混合ガス、又は、この混合ガスに添加ガス及び/又は不活性ガスを加えたドライエッチング剤の好ましい組成比を以下に示す。なお、各種ガスの体積%の総計は100体積%である。
 CF3Iと含フッ素直鎖ニトリル化合物の混合ガスのみをドライエッチング剤に用いてもよいが、通常は費用対効果や、プラズマの安定性の観点から、添加ガス及び/又は不活性ガスと併用して用いられる。例えば、CF3Iと含フッ素直鎖ニトリル化合物の混合ガスの、混合ガス、添加ガス及び不活性ガスの合計に対する濃度は、好ましくは、1~90体積%であり、より好ましくは、5~80体積%であり、更に好ましくは10~60体積%である。
 また、添加ガスの、混合ガス、添加ガス及び不活性ガスの合計に対する濃度は、好ましくは、0~50体積%、より好ましくは、0~10体積%である。
 また、不活性ガスの、混合ガス、添加ガス及び不活性ガスの合計に対する濃度は、好ましくは、0~98体積%、より好ましくは、5~80体積%であり、更に好ましくは300~50体積%である。
 本実施形態のエッチング方法は、各種ドライエッチング条件下で実施可能である。また、例えば、添加ガスや不活性ガスを混合して所望のエッチングレート、エッチング選択比及びエッチング形状となるように種々の添加剤や不活性ガスを加えることができる。添加ガスとしては、O2、O3、CO、CO2、COCl2、COF2、CF2(OF)2、CF3OF、NO2、NO、F2、NF3、Cl2、Br2、I2、及びYFn(式中YはCl、Br、または、Iを示しnは整数を表し、1≦n≦7である。)からなる群より選ばれる少なくとも1種のガスを使用することができる。また、所望のエッチング形状やエッチングレートを得るために、1種類以上の還元性ガス、フルオロカーボン、ハイドロフルオロカーボン、含ハロゲン化合物(例えば、H2、HF、HI、HBr、HCl、NH3、CF4、CF3H、CF22、CFH3、C26、C242、C25H、C38、C37H、C362、C353、C344、C335、C35H、C33H、C3ClF3H、C48、C46、C58、C510、C36、C3HF5、C324、及び、C333からなる群から選ばれる少なくとも1種のガス)を添加ガスとして加えてエッチングを行ってもよい。不活性ガスとしては、N2、He、Ar、Ne、Kr及びXeがあげられる。
 本実施形態のエッチング方法は、容量結合型プラズマ(CCP)エッチング、反応性イオンエッチング(RIE)、誘導結合型プラズマ(ICP)エッチング、電子サイクロトロン共鳴(ECR)プラズマエッチング及びマイクロ波エッチング等の各種エッチング方法に限定されず、行うことができる。
 ドライエッチング剤に含有されるガス成分についてはそれぞれ独立してチャンバー内に導入してもよく、または保存容器の後段において予め混合ガスとして調整した上で、チャンバー内に導入しても構わない。反応チャンバーに導入するドライエッチング剤の総流量は、反応チャンバーの容積、及び排気部の排気能力により、前記の濃度条件と圧力条件を考慮して適宜選択できる。
 エッチングを行う際の圧力は、安定したプラズマを得るため、及びイオンの直進性を高めてサイドエッチを抑制するため、5Pa以下が好ましく、1Pa以下が特に好ましい。一方で、チャンバー内の圧力が低すぎると、電離イオンが少なくなり十分なプラズマ密度が得られなくなることから、0.05Pa以上であることが好ましい。
 また、エッチングを行う際の基板温度は100℃以下が好ましく、特に異方性エッチングを行うためには50℃以下、特に好ましくは、20℃以下とすることが望ましい。100℃を超える高温では、PRやa-C等のマスク材上へのフルオロカーボン由来のCFnを主成分とする保護膜の形成が十分に行われず、選択性が低下することがある。また、高温では、側壁保護膜の形成が十分に行われず、エッチング形状が丸みを帯びた形状になる、いわゆるボウイングと呼ばれる形状異常が発生することがある。
 また、エッチングを行う際に発生させる電極間の負の直流の自己バイアス電圧については、所望するエッチング形状により選択すればよい。例えば異方性エッチングを行う際には絶対値で500V~10000V程度の電極間電圧を発生させイオンを高エネルギー化させることが望ましい。負の直流の自己バイアス電圧の絶対値が大きすぎると、イオンのエネルギーを増幅し、選択性の低下を招くことがある。
 エッチング時間は素子製造プロセスの効率を考慮すると、200分以内であることが好ましい。ここで、エッチング時間とは、チャンバー内にプラズマを発生させ、ドライエッチング剤と試料とを反応させている時間である。
 以下に本開示の実施例を比較例とともに挙げるが、本開示は以下の実施例に制限されるものではない。
 [実施例1]
 (保存容器での保存)
 図1は、一時的に精製後のCF3Iを保管するために実施例・比較例で用いた保存容器10容器の概略図である。保存容器として、内容積10Lのマンガン鋼製耐圧容器10を作製した。そこに、予め精製して99.99体積%以上に高純度化したCF3I 1000gを封入した。次に、CF3Iに対して、CF3C≡Nを2体積ppm含ませた。
 (エッチング試験)
 添加剤がエッチング特性に及ぼす影響について調査するため、CF3IとCF3C≡Nとの混合ガスを用いたエッチング試験を実施した。図2は、実施例・比較例で用いた反応装置20の概略図である。チャンバー21内には、ウエハを保持する機能を有し、ステージとしても機能する下部電極24と、上部電極25と、圧力計22が設置されている。また、チャンバー21上部には、ガス導入口26が接続されている。チャンバー21内は圧力を調整可能であると共に、高周波電源(13.56MHz)23によりドライエッチング剤を励起させることができる。これにより、下部電極24上に設置した試料28に対し励起させたドライエッチング剤を接触させ、試料28をエッチングすることができる。ドライエッチング剤を導入した状態で、高周波電源23から高周波電力を印加すると、プラズマ中のイオンと電子の移動速度の差から、上部電極25と下部電極24の間に自己バイアス電圧と呼ばれる直流電圧が発生させることができるように構成されている。チャンバー21内のガスはガス排出ライン27を経由して排出される。
 試料28として、SiO2膜を有するシリコンウエハA、SiN(Si34)膜を有するシリコンウエハB、PR(フォトレジスト)膜を有するシリコンウエハCを15℃に冷却したステージ上に設置した。SiO2膜とSiN膜はCVD法により作製した。また、PR膜は塗布により作製した。ここに、エッチング剤として、CF3IとCF3C≡Nとの混合物、O2及びArをそれぞれ、25sccm、25sccm、500sccmとし、十分に混合したこれらのガスをチャンバー内に流通させて高周波電力を400Wで印加してエッチング剤をプラズマ化させることにより、エッチングを行った。
 エッチング後に、シリコンウエハAのSiO2膜、シリコンウエハBのSiN膜、及びシリコンウエハCのPR膜のエッチング前後の厚さの変化からエッチング速度を求めた。さらに、SiO2とSiNのエッチング速度をPRのエッチング速度で除した値をそれぞれのエッチング選択比として求めた。
 (ウエハ上の金属量の測定)
 つぎに、SiO2膜を有するシリコンウエハA上に付着した金属の量を測定した。測定においては、JIS K0160:2009に規定された方法を用いて測定した。即ち、ふっ化水素酸をプラスチック製ビーカーに入れてVPD(気相分解)容器と呼ばれるPFA(ペルフルオロアルコキシフッ素樹脂)製の容器内に置き,エッチング後のSiO2成膜ウエハをVPD容器内に設置したウェーハスタンドに置いた。次に、VPD容器を閉じ、ふっ化水素酸蒸気で前記ウエハ上の酸化膜を10分間分解した。酸化物を分解した後のウエハの表面に、100μLの走査溶液(超純水)を滴下し、ウエハの表面全体を走査した。走査後,走査した液滴全体を乾燥し、再び超純水で溶解したのち、ICP-MS(誘導結合プラズマ質量分析計)で分析した。得られた分析値は溶解液量と、ウエハの表面積から、ウエハ1cm2あたりの金属原子数に換算した。その結果、鉄の分析値は、6.5×1011atms/cm2であった。
 (エッチング形状評価)
 前述のエッチング試験を行ったのち、ウエハA~Cを一度取り出し、エッチング形状評価用のウエハDを、ステージ上に設置した。ウエハDは、シリコンウエハ上に膜厚200nmのSiO2膜を成膜したのち、直径100nmの円形のホール状の開口部を有したフォトレジスト膜300nmを塗布して得られる。エッチング試験の項目に記載した方法で、5分間のエッチングを行ったのち、断面SEM写真を撮影し、そのエッチング形状を観察した。その結果、肩落ちやボウイングといったエッチング形状異常のない、エッチングができていることを確認した。
 [実施例2]
 CF3IにCF3C≡Nを加えて得られた、CF3C≡Nの含有量25体積ppmのCF3Iを使用した以外は実施例1と同じ条件で保存試験サンプルを作製した。また、エッチング試験も実施例1と同様に行った。エッチング形状についても実施例1と同様に評価したところ、肩落ちやボウイングといったエッチング形状異常のない、エッチングができていることを確認した。
 [実施例3]
 CF3IにCF3C≡Nを加えて得られた、CF3C≡Nの含有量129体積ppmのCF3Iを使用した以外は実施例1と同じ条件で保存試験サンプルを作製した。また、エッチング試験も実施例1と同様に行った。エッチング形状についても実施例1と同様に評価したところ、肩落ちやボウイングといったエッチング形状異常のない、エッチングができていることを確認した。
 [実施例4]
 CF3IにCF3C≡Nを加えて得られた、CF3C≡Nの含有量1231体積ppm(約0.1体積%)のCF3Iを使用した以外は実施例1と同じ条件で保存試験サンプルを作製した。また、エッチング試験も実施例1と同様に行った。エッチング形状についても実施例1と同様に評価したところ、肩落ちやボウイングといったエッチング形状異常のない、エッチングができていることを確認した。
 [実施例5]
 CF3IにCF3C≡Nを加えて得られた、CF3C≡Nの含有量7927体積ppm(約0.8体積%)のCF3Iを使用した以外は実施例1と同じ条件で保存試験サンプルを作製した。また、エッチング試験も実施例1と同様に行った。エッチング形状についても実施例1と同様に評価したところ、肩落ちやボウイングといったエッチング形状異常のない、エッチングができていることを確認した。
 [実施例6]
 CF3IにCF3C≡Nを加えて得られた、CF3C≡Nの含有量9328体積ppm(約0.9体積%)のCF3Iを使用した以外は実施例1と同じ条件で保存試験サンプルを作製した。また、エッチング試験も実施例1と同様に行った。エッチング形状についても実施例1と同様に評価したところ、肩落ちやボウイングといったエッチング形状異常のない、エッチングができていることを確認した。
 [実施例7]
 CF3IにCF3CF2C≡Nを加えて得られた、CF3CF2C≡Nの含有量235体積ppmのCF3Iを使用した以外は実施例1と同じ条件で保存試験サンプルを作製した。また、エッチング試験も実施例1と同様に行った。エッチング形状についても実施例1と同様に評価したところ、肩落ちやボウイングといったエッチング形状異常のない、エッチングができていることを確認した。
 [比較例1]
 精製して得られた、CF3C≡Nの含有量0.1体積ppm未満のCF3Iを使用した以外は実施例1と同じ条件で保存試験サンプルを作製した。また、エッチング試験も実施例1と同様に行った。エッチング形状についても実施例1と同様に評価したところ、肩落ちやボウイングといったエッチング形状異常のない、エッチングができていることを確認した。
 [比較例2]
 CF3IにCF3C≡Nを加えて得られた、CF3C≡Nの含有量25936体積ppm(約2.6体積%)のCF3Iを使用した以外は実施例1と同じ条件で保存試験サンプルを作製した。また、エッチング試験も実施例1と同様に行った。エッチング形状についても実施例1と同様に評価したところ、肩落ちやボウイングといったエッチング形状異常はなかったが、SiO2/PR選択比の低下にともない、フォトレジストのエッチング量が実施例1から6に比べて多かった。
 [比較例3]
 CF3IにCF3C≡Nを加えて得られた、CF3C≡Nの含有量111608体積ppm(約11体積%)のCF3Iを使用した以外は実施例1と同じ条件で保存試験サンプルを作製した。また、エッチング試験も実施例1と同様に行った。エッチング形状についても実施例1と同様に評価したところ、ボウイングはなかったが、SiO2/PR選択比の低下にともない、フォトレジストのエッチング量が実施例1から6に比べて大幅に増加し、一部のパターンにおいて、肩落ちが見られた。
 [比較例4]
 CF3C≡Nの代わりにCF3C≡CHを28体積ppm含むCF3Iを使用した以外は実施例1と同じ条件で試験を実施した。また、エッチング試験も実施例1と同様に行った。エッチング形状についても実施例1と同様に評価したところ、肩落ちやボウイングといったエッチング形状異常のない、エッチングができていることを確認した。
 [比較例5]
 CF3C≡Nの代わりに、フッ素を含まないCH3C≡Nを8523体積ppm含むCF3Iを使用した以外は実施例1と同じ条件で試験を実施した。また、エッチング試験も実施例1と同様に行った。エッチング形状についても実施例1と同様に評価したところ、肩落ちやボウイングといったエッチング形状異常はなかったが、SiO2/PR選択比の低下にともない、フォトレジストのエッチング量が実施例1から6に比べて多かった。
 以上の結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 比較例1と比較例4においては、エッチング特性は良好であったものの、ウエハ上から鉄成分が検出された。これは、炭素数2又は3の含フッ素直鎖ニトリル化合物による鉄成分のウエハ上へのコンタミネーションの抑止が生じなかったためと考えられる。一方、実施例1~7の結果にあるように、CF3C≡N又はCF3CF2C≡Nを含有するCF3Iでは、鉄のコンタミネーションが非常に少なかった。保存容器の腐食が抑制されたプロセスについては、不明な点もあるが、含フッ素直鎖ニトリル化合物が保存容器の内面に不動態膜を形成して保存容器から鉄成分の溶出を防止することや、含フッ素直鎖ニトリル化合物がCF3I中に含まれる鉄のコンタミネーション源となる物質の蒸気圧を大幅に下げることや、含フッ素直鎖ニトリル化合物がウエハ上への鉄成分の付着を抑制することなどが考えられる。
 しかしながら、CF3I中に含フッ素直鎖ニトリル化合物を含ませた場合、含有量に応じて、PRに対するSiO2とSiNのエッチング選択比が変化した。各実施例においては、PRのSiO2に対する選択比(SiO2/PR)が十分にあり、特に含フッ素直鎖ニトリル化合物の含有量が10000体積ppm(1体積%)以下の実施例1~7は、SiO2/PRエッチング選択比が3を超えており、良好であった。また、ホールパターンエッチングにおいても、エッチング形状の異常は生じなかった。従って、1体積ppm以上10000体積ppm以下の含フッ素直鎖ニトリル化合物を含むCF3Iを用いた場合には、良好なエッチング特性が得られたといえる。
 一方、比較例2及び比較例3にあるように、10000体積ppmを超えるCF3C≡Nを含んだ場合には、SiO2/PRのエッチング選択比が低下する傾向が顕著にみられた。パターンエッチングにおいては、レジスト部分のエッチング量が目に見えて増加しており、比較例3に至ってはSiO2膜表面がエッチングされており、エッチングガスとしての性能が大きく悪化する結果となった。
 多量のCF3C≡Nが混入した場合、前述のCFnを主成分とする保護膜の形成において、分子内の窒素がCFn膜の重合の阻害剤として作用し、保護膜の形成が不十分となる。そのため、CF3C≡Nにより、マスクに対するエッチングが促進され、選択性の低下につながったと考えられる。この現象は、他の含フッ素直鎖ニトリル化合物を用いた場合も同様に生じると考えられる。
 一方、比較例4では、CF3C≡N以外の添加剤による影響について調査した。その結果、CF3C≡CHでは、CF3C≡Nで見られたような、鉄のコンタミネーションを防止する効果が認められなかった。
 一方、比較例5では、CF3C≡N以外のフッ素を含まない添加剤による影響について調査した。その結果、CH3C≡Nでは、フッ素を含まないことにより、CFn膜を主成分とする保護膜の生成が不十分だったためか、SiO2/PRのエッチング選択比が悪化した。また、鉄のコンタミネーションを防止する効果についてもCF3C≡Nに比べて、小さかった。
 上述の通り、本開示によれば、CF3Iを用いたエッチングにおいて、エッチング特性に影響を与えることなく、金属のコンタミネーション量を低減させることが可能となる。
 10: 保存試験容器
 11: テストピース
 12: バルブ
 13: 蓋
 14: 耐圧容器
 20: 反応装置
 21: チャンバー
 22: 圧力計
 23: 高周波電源
 24: 下部電極
 25: 上部電極
 26: ガス導入口
 27: ガス排出ライン
 28: 試料

Claims (9)

  1.  ドライエッチング剤をプラズマ化する工程と、
     プラズマ化したドライエッチング剤を用いて、シリコン酸化物又はシリコン窒化物をエッチングする工程と、を有し、
     前記ドライエッチング剤が、CF3Iと、炭素数2又は3の含フッ素直鎖ニトリル化合物とを、CF3Iに対する前記含フッ素直鎖ニトリル化合物の濃度が1体積ppm以上1体積%以下で含む、ドライエッチング方法。
  2.  前記炭素数2又は3含フッ素直鎖ニトリル化合物が、CF3C≡N又はCF3CF2C≡Nであることを特徴とする請求項1に記載のドライエッチング方法。
  3.  前記エッチング剤が添加ガスを含み、
     前記添加ガスが、O2、O3、CO、CO2、COCl2、COF2、CF2(OF)2、CF3OF、NO2、NO、F2、NF3、Cl2、Br2、I2、及びYFn(式中YはCl、Br、または、Iを示しnは整数を表し、1≦n≦7である。)からなる群より選ばれる少なくとも1種のガスであることを特徴とする請求項1又は2に記載のドライエッチング方法。
  4.  前記エッチング剤が添加ガスを含み、
     前記添加ガスが、H2、HF、HI、HBr、HCl、NH3、CF4、CF3H、CF22、CFH3、C26、C242、C25H、C38、C37H、C362、C353、C344、C335、C35H、C33H、C3ClF3H、C48、C46、C58、C510、C36、C3HF5、C324、及び、C333からなる群から選ばれる少なくとも1種のガスであることを特徴とする請求項1~3のいずれか1項に記載のドライエッチング方法。
  5.  さらに、前記ドライエッチング剤が不活性ガスを含み、
     前記不活性ガスがN2、He、Ar、Ne、Kr及びXeからなる群より選ばれることを特徴とする請求項1~4のいずれか1項に記載のドライエッチング方法。
  6.  CF3Iと、炭素数2又は3の含フッ素直鎖ニトリル化合物とを、CF3Iに対する前記含フッ素直鎖ニトリル化合物の濃度が1体積ppm以上1体積%以下で含むドライエッチング剤。
  7.  請求項6に記載のドライエッチング剤が充填され密閉された保存容器。
  8.  CF3Iと、炭素数2又は3の含フッ素直鎖ニトリル化合物とを、CF3Iに対する前記含フッ素直鎖ニトリル化合物の濃度が1体積ppm以上1体積%以下で含む混合物が、充填され密閉された保存容器。
  9.  前記保存容器の材質が、マンガン鋼又はステンレス鋼であることを特徴とする請求項7又は8に記載の保存容器。
PCT/JP2019/049999 2019-01-23 2019-12-20 ドライエッチング方法、ドライエッチング剤、及びその保存容器 WO2020153066A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11202107622UA SG11202107622UA (en) 2019-01-23 2019-12-20 Dry etching method, and dry etching agent and storage container therefor
US17/424,211 US20220115240A1 (en) 2019-01-23 2019-12-20 Dry Etching Method, and Dry Etching Agent and Storage Container Therefor
JP2020567430A JPWO2020153066A1 (ja) 2019-01-23 2019-12-20 ドライエッチング方法、ドライエッチング剤、及びその保存容器
KR1020217026264A KR20210114509A (ko) 2019-01-23 2019-12-20 드라이 에칭 방법, 드라이 에칭제, 및 그 보존 용기
CN201980090097.0A CN113330539A (zh) 2019-01-23 2019-12-20 干蚀刻方法、干蚀刻剂及其保存容器
JP2023187736A JP2024016143A (ja) 2019-01-23 2023-11-01 ドライエッチング方法、ドライエッチング剤、及びその保存容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019008990 2019-01-23
JP2019-008990 2019-01-23

Publications (1)

Publication Number Publication Date
WO2020153066A1 true WO2020153066A1 (ja) 2020-07-30

Family

ID=71735737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049999 WO2020153066A1 (ja) 2019-01-23 2019-12-20 ドライエッチング方法、ドライエッチング剤、及びその保存容器

Country Status (7)

Country Link
US (1) US20220115240A1 (ja)
JP (2) JPWO2020153066A1 (ja)
KR (1) KR20210114509A (ja)
CN (1) CN113330539A (ja)
SG (1) SG11202107622UA (ja)
TW (1) TWI824098B (ja)
WO (1) WO2020153066A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956288B2 (ja) * 2020-04-30 2021-11-02 東京エレクトロン株式会社 基板処理方法、プラズマ処理装置、及びエッチングガス組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170110336A1 (en) * 2016-12-31 2017-04-20 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges CLuadeq Methods for minimizing sidewall damage during low k etch processes
WO2017159544A1 (ja) * 2016-03-15 2017-09-21 日本ゼオン株式会社 ドライエッチング用組成物およびドライエッチング用組成物充填済み容器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336975B2 (ja) 1998-03-27 2002-10-21 日本電気株式会社 基板処理方法
WO2005088185A1 (ja) * 2004-03-10 2005-09-22 Zeon Corporation ガス製造設備、ガス供給容器、及び電子装置製造用ガス
US6977316B1 (en) 2004-12-08 2005-12-20 Honeywell International Inc. Direct one-step synthesis of trifluoromethyl iodide
JP4826235B2 (ja) * 2005-12-01 2011-11-30 三菱瓦斯化学株式会社 半導体表面処理剤
US20080191163A1 (en) * 2007-02-09 2008-08-14 Mocella Michael T Laser-Assisted Etching Using Gas Compositions Comprising Unsaturated Fluorocarbons
JP2009123866A (ja) 2007-11-14 2009-06-04 Nec Electronics Corp 半導体装置の製造方法、および被エッチング膜の加工方法
US9685341B2 (en) * 2012-03-14 2017-06-20 Fujimi Incorporated Abrasive composition and method for producing semiconductor substrate
US9659788B2 (en) * 2015-08-31 2017-05-23 American Air Liquide, Inc. Nitrogen-containing compounds for etching semiconductor structures
US10607850B2 (en) * 2016-12-30 2020-03-31 American Air Liquide, Inc. Iodine-containing compounds for etching semiconductor structures
US10347498B2 (en) * 2016-12-31 2019-07-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Methods of minimizing plasma-induced sidewall damage during low K etch processes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159544A1 (ja) * 2016-03-15 2017-09-21 日本ゼオン株式会社 ドライエッチング用組成物およびドライエッチング用組成物充填済み容器
US20170110336A1 (en) * 2016-12-31 2017-04-20 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges CLuadeq Methods for minimizing sidewall damage during low k etch processes

Also Published As

Publication number Publication date
JPWO2020153066A1 (ja) 2021-12-02
US20220115240A1 (en) 2022-04-14
SG11202107622UA (en) 2021-08-30
CN113330539A (zh) 2021-08-31
TWI824098B (zh) 2023-12-01
JP2024016143A (ja) 2024-02-06
KR20210114509A (ko) 2021-09-23
TW202037759A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
TWI431686B (zh) Etching gas
JP6788177B2 (ja) ドライエッチング方法、ドライエッチング剤及び半導体装置の製造方法
KR100299488B1 (ko) 침적물제거용가스및이를이용한침적물제거방법
EP1437768A1 (en) Plasma cleaning gas and plasma cleaning method
WO2016163184A1 (ja) ドライエッチングガスおよびドライエッチング方法
JP2024016143A (ja) ドライエッチング方法、ドライエッチング剤、及びその保存容器
KR0174777B1 (ko) 건식에칭방법
US6428716B1 (en) Method of etching using hydrofluorocarbon compounds
JP2016139782A (ja) ドライエッチング方法
JP7445150B2 (ja) ドライエッチング方法及び半導体デバイスの製造方法
KR102316409B1 (ko) 드라이 에칭제 조성물 및 드라이 에칭 방법
TWI477485B (zh) 原位產生碳醯氟化物或其任何變異體之分子蝕刻劑之方法及其應用
JP5214316B2 (ja) プラズマ成膜装置のクリーニング方法
WO2023234305A1 (ja) エッチング方法
EP4207251A1 (en) Plasma etching method and method for manufacturing semiconductor element
JP2008235562A (ja) プラズマcvd成膜装置のクリーニング方法
US20220051898A1 (en) Etching method using halogen fluoride and method for producing semiconductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217026264

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19911342

Country of ref document: EP

Kind code of ref document: A1