WO2020151154A1 - 二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料及其制备方法 - Google Patents

二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料及其制备方法 Download PDF

Info

Publication number
WO2020151154A1
WO2020151154A1 PCT/CN2019/089675 CN2019089675W WO2020151154A1 WO 2020151154 A1 WO2020151154 A1 WO 2020151154A1 CN 2019089675 W CN2019089675 W CN 2019089675W WO 2020151154 A1 WO2020151154 A1 WO 2020151154A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
storage material
negative electrode
capacity
battery
Prior art date
Application number
PCT/CN2019/089675
Other languages
English (en)
French (fr)
Inventor
吴建民
周少雄
Original Assignee
江苏集萃安泰创明先进能源材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃安泰创明先进能源材料研究院有限公司 filed Critical 江苏集萃安泰创明先进能源材料研究院有限公司
Priority to US16/955,133 priority Critical patent/US11545661B2/en
Priority to EP19880932.9A priority patent/EP3712991B1/en
Priority to JP2020526060A priority patent/JP7311507B2/ja
Publication of WO2020151154A1 publication Critical patent/WO2020151154A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • H01M4/0485Casting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/466Magnesium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of battery materials, and relates to a high-capacity and long-life La-Mg-Ni negative hydrogen storage material for a secondary rechargeable nickel-hydrogen battery.
  • the metal hydride-nickel battery Since the metal hydride-nickel battery was put on the market in the 1990s, it has been widely welcomed due to its high capacity, long life, no memory effect, and no environmental pollution. The market share is getting higher and higher, and the types of batteries are also From AA, AAA ordinary batteries to other types of development, products are widely used in power tools, household appliances, computers, aerospace, communications and mopeds, etc., and the development is very rapid. With the increase in the application fields of metal hydride-nickel batteries, the requirements for battery performance are getting higher and higher. Especially in recent years, people have gradually realized that the storage performance and self-discharge characteristics of the battery have a great influence on the application of the battery.
  • the self-discharge of the battery is mainly due to the fact that the oxygen in the positive electrode is combined with the hydrogen in the negative electrode when the battery is not working, on the other hand, the negative electrode contains Co and Mn, or other soluble in alkaline electrolyte After being dissolved in the electrolyte, these elements will be deposited on the diaphragm, thus accelerating the reduction of the positive electrode. For this reason, many work has been done, such as coating the positive electrode powder with cobalt, improving the diaphragm and electrolyte, Some stability additives are added to the electrode. These work have indeed improved the self-discharge characteristics of the Ni-MH battery, but still have not fundamentally solved the problem.
  • the object of the present invention is to provide a high-capacity and long-life La-Mg-Ni type negative hydrogen storage material for secondary rechargeable nickel-hydrogen batteries, which can be stored for a long time and has low self-discharge.
  • La-Mg-Ni type negative electrode hydrogen storage material for secondary rechargeable nickel-hydrogen batteries.
  • the chemical formula (atomic ratio composition) of the La-Mg-Ni type negative electrode hydrogen storage material is La 1- xy Re x Mg y (Ni 1-ab Al a M b ) z , where Re is at least one of Ce, Pr, Nd, Sm, and Y, and M is Ti, Cr, Mo, Nb, Ga, V, At least one of Si, Zn, and Sn; 0 ⁇ x ⁇ 0.10, 0.3 ⁇ y ⁇ 0.5, 0 ⁇ a ⁇ 0.05, 0 ⁇ b ⁇ 0.02, 2.3 ⁇ z ⁇ 3.0.
  • La-Mg-Ni anode hydrogen storage material for secondary rechargeable nickel-hydrogen batteries as a preferred embodiment, 2.7 ⁇ z ⁇ 3.0, more preferably, 2.75 ⁇ z ⁇ 3.0.
  • the chemical formula (atomic) of the La-Mg-Ni anode hydrogen storage material is:
  • the chemical formula of the La-Mg-Ni anode hydrogen storage material is:
  • the La-Mg-Ni anode hydrogen storage material includes LaMgNi 4- phase , LaMg 12 phase, Ce 2 Ni 7 type La 2 Ni 7 phase and LaNi 5 phase, preferably, the content of LaMgNi 4 phase and LaMg 12 phase increases as the z value decreases.
  • the present invention is mainly composed of LaMgNi 4- phase, LaMg 12- phase, Ce 2 Ni 7 -type La 2 Ni 7- phase and LaNi 5- phase compound.
  • the composite negative electrode hydrogen storage material can be prepared by a conventional intermediate frequency induction melting method, or a rapid Prepared by coagulating flake method and single-roller spinning method.
  • a method for preparing a high-capacity and long-life La-Mg-Ni negative hydrogen storage material for a secondary rechargeable nickel-hydrogen battery comprising:
  • Raw material preparation steps Weigh the raw materials containing the corresponding elements according to the atomic ratio of each element in La 1-xy Re x Mg y (Ni 1-ab Al a M b ) z , where Re is Ce, Pr, Nd, Sm, At least one of Y, M is at least one of Ti, Cr, Mo, Nb, Ga, V, Si, Zn, Sn; 0 ⁇ x ⁇ 0.10, 0.3 ⁇ y ⁇ 0.5, 0 ⁇ a ⁇ 0.05, 0 ⁇ b ⁇ 0.02, 2.3 ⁇ z ⁇ 3.0;
  • Melting step Melting the raw materials in a protective atmosphere to obtain a molten liquid
  • Casting step pouring the molten liquid into a water-cooled ingot mold under a protective atmosphere for casting to form an ingot.
  • the preparation method further includes: a homogenization treatment step,
  • the homogenization treatment step is: the ingot is homogenized in a protective atmosphere and then cooled; preferably, in the homogenization treatment step, the temperature of the homogenization treatment is 850-1000°C (such as 860°C).
  • the holding time is 1-30 hours (such as 2h, 5h, 8h, 10h, 13h, 15h, 18h, 20h, 22h , 25h, 27h, 29h); preferably, the holding time is 7-12 hours; preferably, the cooling is: passing a low-temperature protective gas into the equipment for homogenization treatment and stirring with a fan for cooling , Or cooled with the furnace; more preferably, the protective gas is argon, helium, or a mixed gas composed of argon and helium (which can be mixed in any ratio); the faster the cooling rate, the electrochemical absorption and release of the material The better the hydrogen kinetic performance, the longer the cycle life.
  • the raw material preparation step in the raw material preparation step, the raw material containing Mg element It is pure Mg, La-Mg alloy, Re-Mg alloy or Ni-Mg alloy; preferably, 2.75 ⁇ z ⁇ 3.0.
  • the highest temperature of the smelting It should be controlled at 1400 ⁇ 20°C; preferably, the protective atmosphere is argon, helium, or a mixed gas composed of argon and helium (which can be mixed in any ratio).
  • the thickness of the ingot is ⁇ 35mm; the thinner the thickness of the ingot, the better, and the faster the cooling rate, the better, in order to obtain an ingot with uniform composition.
  • a secondary rechargeable nickel-hydrogen battery which comprises the above-mentioned La-Mg-Ni type negative electrode hydrogen storage material.
  • the present invention is a nickel-hydrogen rechargeable secondary battery negative electrode hydrogen storage materials La 1-xy Re x Mg y (Ni 1-ab Al a M b) z with a high capacity and a long life La-Mg-Ni type is easily generated by a stable hydride Intermetallic elements (such as La, Ce, Pr, Nd, Sm, Y, Mg, etc.) and other elements (such as Ni, Ti, Cr, Mo, Nb, Ga, V, Si, Zn, Sn, etc.)
  • the electrochemical charge and discharge capacity of the compound is mainly derived from the electron transfer in the redox process of the hydrogen ions in the electrolyte during the hydrogen absorption and desorption process on the hydrogen storage alloy electrode.
  • the electrochemical charge and discharge reaction of the nickel-metal hydride battery is usually It is expressed as follows:
  • the water in the electrolyte is decomposed into hydrogen ions and hydroxide ions.
  • the hydrogen ions obtain electrons on the surface of the negative electrode hydrogen storage material and become hydrogen atoms, which are absorbed into the alloy.
  • the hydroxide ions are left in the electrolyte:
  • Alloy represents hydrogen storage alloy.
  • the bivalent nickel in the nickel hydroxide loses an electron and is oxidized to trivalent nickel and combines with the hydroxide ions in the electrolyte to become nickel hydroxide:
  • the hydrogen absorbed in the hydrogen storage alloy is released and combined with the hydroxide ions in the electrolyte to form water, while contributing an electron to form a current.
  • nickel hydroxide obtains an electron and is reduced to a low-valence state nickel hydroxide and releases hydroxide ions into the electrolyte.
  • M is at least one of Ti, Cr, Mo, Nb, Ga, V, Si, Zn, Sn and other elements
  • the values of x, y, a, b, and z satisfy the following respectively Conditions: 0 ⁇ x ⁇ 0.10, 0.3 ⁇ y ⁇ 0.5, 0 ⁇ a ⁇ 0.05, 0 ⁇ b ⁇ 0.02, 2.3 ⁇ z ⁇ 3.0) have a higher electrochemical charge and discharge capacity, close to the electrochemical charge and discharge cycle life , And does not contain Co, Mn and other elements that can be dissolved in alkaline solutions.
  • the multi-phase hydrogen storage material of the present invention can be used to prepare the negative electrode of a metal hydride-nickel battery.
  • the multi-phase hydrogen storage material of the present invention can be used as a negative electrode to meet the application of ordinary high-capacity long-life secondary rechargeable nickel-hydrogen battery, and can also meet the application of secondary rechargeable nickel-hydrogen battery with excellent ultra-low self-discharge and long-term storage performance .
  • the present invention consists of LaMgNi 4- phase, LaMg
  • the values of a, b and z meet the following conditions respectively: 0 ⁇ x ⁇ 0.10, 0.3 ⁇ y ⁇ 0.5, 0 ⁇ a ⁇ 0.05, 0 ⁇ b ⁇ 0.02, 2.3 ⁇ z ⁇ 3.0)
  • the charge and discharge capacity is significantly improved, And has a good cycle life.
  • the nickel-hydrogen battery prepared by the multi-phase hydrogen storage material composed of LaMgNi 4 phase, LaMg 12 phase, Ce 2 Ni 7 type La 2 Ni 7 phase and LaNi 5 phase compound of the present invention has excellent long-term The storage characteristics and ultra-low self-discharge characteristics are much higher than those of commercially available Ni-MH batteries.
  • Figure 1 shows La 0.65 Ce 0.02 Mg 0.33 (Ni 0.96 Al 0.04 ) 2.99 in Example 2 of the present invention, La 0.60 Ce 0.02 Mg 0.38 (Ni 0.96 Al 0.04 ) 2.80 in Example 6 and La 0.54 Ce 0.02 Mg in Example 9 X-ray diffraction patterns of samples of 0.44 (Ni 0.96 Al 0.04 ) 2.57 and Example 10 La 0.49 Ce 0.01 Mg 0.50 (Ni 0.96 Al 0.04 ) 2.37 .
  • Figure 2a is a battery made of a La-Mg-Ni type La 0.53 Pr 0.03 Nd 0.06 Mg 0.38 (Ni 0.96 Al 0.04 ) 2.80 and a comparative example AB 5 type MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 hydrogen storage alloy in Example 7 of the present invention
  • Figure 2b is a battery made of La-Mg-Ni type La 0.53 Pr 0.03 Nd 0.06 Mg 0.38 (Ni 0.96 Al 0.04 ) 2.80 and the comparative example AB 5 type MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 hydrogen storage alloy in Example 7 of the present invention Graph of capacity recovery characteristics at 60°C.
  • Figure 2c is a battery made of a La-Mg-Ni type La 0.53 Pr 0.03 Nd 0.06 Mg 0.38 (Ni 0.96 Al 0.04 ) 2.80 and a comparative example AB 5 type MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 hydrogen storage alloy in Example 7 of the present invention
  • the prepared alloy raw materials are evacuated and fed into argon, helium, or a mixed gas composed of argon and helium (which can be mixed in any ratio)
  • the medium frequency induction melting furnace is used for smelting.
  • the maximum temperature of molten steel is controlled to 1400 ⁇ 20°C, and then cast into a water-cooled ingot mold to form an ingot with a thickness of no more than 35mm. After the ingot is cooled, the ingot is taken out from the melting furnace. Transfer to a vacuum heat treatment furnace for homogenization treatment.
  • the heat treatment furnace Before treatment, the heat treatment furnace needs to be evacuated and fed with argon, helium, or a mixed gas composed of argon and helium (mixed in any proportion).
  • the homogenization treatment temperature is 850 ⁇ 1000°C, holding time is 1 ⁇ 30 hours. After the holding time is over, cool argon, helium, or a mixed gas composed of argon and helium (which can be mixed in any ratio) into the heat treatment furnace for cooling, and take out the ingot after cooling to room temperature.
  • the homogenization treatment temperature and time of the ingots of each example in Table 3 were determined according to the synthetic composition and the thickness of the ingots.
  • Example 10 1) For La 0.65 Ce 0.02 Mg 0.33 (Ni 0.96 Al 0.04 ) 2.99 of Example 2, La 0.60 Ce 0.02 Mg 0.38 (Ni 0.96 Al 0.04 ) 2.80 of Example 6 and La 0.54 Ce 0.02 Mg 0.44 ( The samples of Ni 0.96 Al 0.04 ) 2.57 and La 0.49 Ce 0.01 Mg 0.50 (Ni 0.96 Al 0.04 ) 2.37 of Example 10 were tested by X-ray diffraction, and the results are shown in FIG. 1. The X-ray diffraction results of Figure 1 show that the compounds shown in Examples 2, 6, 9, and 10 are mainly composed of LaMgNi 4 phase, LaMg 12 phase, Ce 2 Ni 7 type La 2 Ni 7 phase and LaNi 5 phase compounds. , The content of LaMgNi 4 phase and LaMg 12 phase increase with the decrease of z value.
  • the hydrogen storage anode material is fully activated at 30°C with a current density of 60mA/g.
  • the activation system is as follows: charge with a current density of 60mA/g for 450min, pause for 15 minutes after charging, and then use 60mA The current density of /g is discharged until the electrode potential of the negative electrode hydrogen storage alloy powder is -0.5 volts relative to the electrode potential of the reference electrode, and then the next charge and discharge cycle is performed.
  • the electrochemical discharge capacity of the negative electrode hydrogen storage alloy powder will gradually increase and will be relatively stable after reaching a maximum value. At this time, the activation ends, and the maximum value is defined as the material's electrical discharge capacity at 30°C.
  • the chemical hydrogen absorption and desorption capacity, the number of charge and discharge cycles required to obtain the maximum value is called the number of activation; the hydrogen storage materials of Examples 1-10 and Comparative Example 1 were charged and discharged at a current density of 60mA/g at 30°C according to the above method.
  • the results of the maximum electrochemical capacity and the number of activations are shown in Table 4.
  • Cycle life test First, the test sample is activated at 30°C with a current density of 60mA/g according to the above-mentioned test capacity and activation times. After activation, at 30°C, a current density of 300mA/g is used for the hydrogen storage anode material Charge for 85 minutes, pause for 15 minutes after charging, then discharge at a current density of 300mA/g until the electrode potential of the hydrogen storage negative electrode material is -0.5 volts relative to the electrode potential of the reference electrode, and then proceed to the next cycle of charging and discharging
  • the cycle life of the sample is defined as the number of cycles when its capacity drops to 60% of the maximum capacity when discharged at a current density of 300mA/g; the hydrogen storage materials of Examples 1-10 and Comparative Example 1
  • Table 4 The cycle life results obtained by the above method are shown in Table 4.
  • the hydrogen storage material obtained in the present invention has a relatively high capacity, especially when the content of the B side is 2.75 ⁇ z ⁇ 3.0, the capacity and cycle life of the multiphase hydrogen storage material are very good, with a small amount of Ce
  • the substitution of Pr and Nd for La can improve the capacity and life of the material, especially Pr and Nd are more beneficial to the increase of capacity and cycle life.
  • the capacity has been greatly increased. Its highest electrochemical capacity exceeds 370mAh/g, which is much higher than the electrochemical capacity of the AB 5 type hydrogen storage materials currently on the market. value.
  • composition used in the present invention is La 0.53 Pr 0.03 Nd 0.06 Mg 0.38 (Ni 0.96 Al 0.04 ) 2.80 sample (Example 7) and AB 5 type MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 (Comparative Example 1) hydrogen storage alloys were made separately Take AAA800 battery to investigate its self-discharge performance
  • the battery manufacturing method is specifically as follows:
  • total pole piece weight (g) 4.40 ⁇ 4.45g, net powder amount 3.68 ⁇ 3.73g;
  • Copper mesh 37.6(mm) ⁇ 0.25(mm); copper mesh surface density is 260 ⁇ 20(g/m2), take 260(g/m2)
  • Pole piece weight (tail edging): 3.82 ⁇ 3.87g;
  • Cobalt-coated spherical nickel hydroxide Ni(OH) 2 45%;
  • Yttrium oxide 1%.
  • the battery is left for 48 to 60 hours in an environment of 25 to 30°C, and then charged and discharged twice for activation.
  • First charge-discharge activation 0.05C charge for 3h, then 0.2C charge for 4h, then 0.1C charge for 5h, 1C discharge to 1V, and then 0.2C discharge to 1V.
  • the second charge and discharge activation 0.5C charge for 2h, then 0.2C charge for 2h, 1C discharge to 1V, and then 0.2C discharge to 1V.
  • the La-Mg-Ni type La 0.53 Pr 0.03 Nd 0.06 Mg 0.38 (Ni 0.96 Al 0.04 ) 2.80 alloy of the present invention is used.
  • the prepared battery maintains a high level of capacity retention rate, capacity recovery rate, and discharge state voltage storage characteristics, especially the capacity retention rate and discharge state voltage storage characteristics have very significant advantages, so the alloy is also suitable To produce nickel-metal hydride batteries with ultra-low self-discharge and long-term storage performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料及其制备方法。所述La-Mg-Ni型负极储氢材料的化学式为La1-x-yRexMgy(Ni1-a-bAlaMb)z,其中,Re为Ce、Pr、Nd、Sm、Y中的至少一种,M为Ti、Cr、Mo、Nb、Ga、V、Si、Zn、Sn中的至少一种;0≤x≤0.10、0.3≤y≤0.5、0<a≤0.05、0≤b≤0.02、2.3≤z<3.0。本发明La-Mg-Ni型负极储氢材料具有优异的充放电容量、循环寿命,该La-Mg-Ni型负极储氢材料既可以应用于普通二次可充电镍氢电池,又可以应用于具有超低自放电和长时间存储性能的二次可充电镍氢电池。

Description

二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料及其制备方法 技术领域
本发明属于电池材料领域,涉及一种二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料。
背景技术
金属氢化物-镍电池自上世纪90年代投入市场以来,由于其具有容量高、寿命长,无记忆效应、无环境污染等特点,广泛受到欢迎,市场占有率越来越高,电池的类型也由AA、AAA普通电池向其他多种类型发展,产品广泛应用于电动工具、家用电器、计算机、航天、通讯和助力车等,发展十分迅速。随着金属氢化物-镍电池应用领域的增加,对电池性能的要求也越来越高。特别是近年来人们逐步认识到电池的存储性能和自放电特性对电池的应用有很大的影响,电池的存储性能不好将直接导致电池的报废,而电池的自放电太大将不利于电池的使用,同时也将导致电能的浪费。因此研究开发具有长期存放特性和低自放电特性的电池成为近年来的热点。
电池的自放电主要是由于电池在非工作状态下,一方面是正极的氧析出与负极的氢相结合产生,另一方面是负极中含有Co和Mn,或其他在碱性电解液中可溶解的元素,这些元素溶解到电解液中后将沉积在隔膜上,从而加速了正电极的还原,为此人们做了许多工作,如对正极粉包覆钴,改善隔膜和电解液,在正负极中添加一些稳定性添加剂等,这些工作对镍氢电池的自放电特性确实起了一些改善作用,但依然没有从根本上解决问题。
另外,如下表1、2所示,AB x(LaNi 2,LaNi 3,La 2Ni 7,La 5Ni 19,LaNi 5)构成的稀土金属间化合物,随A侧稀土含量的增加,化合物的吸氢量增加,理论电化学容量也高,但平衡氢压和吸放氢温度也随之增加(见表1),使其难以得到实际应用。
表1 LaNi 2、LaNi 3、La 2Ni 7和LaNi 5合金及氢化物的结构和性能
Figure PCTCN2019089675-appb-000001
表2 AB x(LaNi 2、LaNi 3、La 2Ni 7、La 5Ni 19和LaNi 5)合金的理论电化学容量
Figure PCTCN2019089675-appb-000002
发明内容
本发明的目的在于提供一种二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料,该负极储氢材料可长期存放且自放电较低。
本发明的技术解决方案:
一种二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料,所述La-Mg-Ni型负极储氢材料的化学式(原子比成分组成)为La 1-x-yRe xMg y(Ni 1-a-bAl aM b) z,其中,Re为Ce、Pr、Nd、Sm、Y中的至少一种,M为Ti、Cr、Mo、Nb、Ga、V、Si、Zn、Sn中的至少一种;0≤x≤0.10、0.3≤y≤0.5、0<a≤0.05、0≤b≤0.02、2.3≤z<3.0。
在上述二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料中,作为一种优选实施方式,2.7≤z<3.0,更优选地,2.75≤z<3.0。
在上述二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料中,作为一种优选实施方式,所述La-Mg-Ni型负极储氢材料的化学式(原子 比成分组成)为:
La 0.66Mg 0.34(Ni 0.96Al 0.04) 2.99
La 0.65Ce 0.02Mg 0.33(Ni 0.96Al 0.04) 2.99
La 0.57Ce 0.04Mg 0.39(Ni 0.95Al 0.04Si 0.01) 2.83
La 0.53Nd 0.08Mg 0.39(Ni 0.95Al 0.04Si 0.01) 2.83
La 0.57Ce 0.02Sm 0.03Mg 0.38(Ni 0.95Al 0.04Si 0.01) 2.83
La 0.60Ce 0.02Mg 0.38(Ni 0.96Al 0.04) 2.80
La 0.53Pr 0.03Nd 0.06Mg 0.38(Ni 0.96Al 0.04) 2.80
La 0.58Ce 0.02Nd 0.02Mg 0.38(Ni 0.96Al 0.04) 2.75
La 0.54Ce 0.02Mg 0.44(Ni 0.96Al 0.04) 2.57
La 0.49Ce 0.01Mg 0.50(Ni 0.96Al 0.04) 2.37
在上述二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料中,作为一种优选实施方式,所述La-Mg-Ni型负极储氢材料的化学式为:
La 0.66Mg 0.34(Ni 0.96Al 0.04) 2.99
La 0.53Pr 0.03Nd 0.06Mg 0.38(Ni 0.96Al 0.04) 2.80
La 0.58Ce 0.02Nd 0.02Mg 0.38(Ni 0.96Al 0.04) 2.75
La 0.65Ce 0.02Mg 0.33(Ni 0.96Al 0.04) 2.99
La 0.53Nd 0.08Mg 0.39(Ni 0.95Al 0.04Si 0.01) 2.83
La 0.60Ce 0.02Mg 0.38(Ni 0.96Al 0.04) 2.80
在上述二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料中,作为一种优选实施方式,所述La-Mg-Ni型负极储氢材料包括LaMgNi 4相、LaMg 12相、Ce 2Ni 7型La 2Ni 7相和LaNi 5相,优选地,LaMgNi 4相、LaMg 12相含量随z值得减少而增多。
本发明主要由LaMgNi 4相、LaMg 12相、Ce 2Ni 7型La 2Ni 7相和LaNi 5相化合物共同组成的复相负极储氢材料可采用常规的中频感应熔炼法制备,也可以采用速凝鳞片法、单辊甩带法制备。
一种二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料的制备方法,包括:
原料准备步骤:按照La 1-x-yRe xMg y(Ni 1-a-bAl aM b) z中各元素的原子比称取包 含相应元素的原料,其中,Re为Ce、Pr、Nd、Sm、Y中的至少一种,M为Ti、Cr、Mo、Nb、Ga、V、Si、Zn、Sn中的至少一种;0≤x≤0.10、0.3≤y≤0.5、0<a≤0.05、0≤b≤0.02、2.3≤z<3.0;
熔炼步骤:将所述原料在保护气氛下进行熔炼得到熔炼液;
浇铸步骤:将所述熔炼液在保护气氛下倒入水冷锭模中进行浇铸形成铸锭。
在二次可充电镍氢电池用高容量、长寿命La-Mg-Ni型负极储氢材料的制备方法中,作为一种优选实施方式,所述制备方法还包括:均匀化处理步骤,所述均匀化处理步骤为:将所述铸锭在保护气氛下进行均匀化处理,之后冷却;优选地,在所述均匀化处理步骤中,所述均匀化处理的温度为850~1000℃(比如860℃、880℃、900℃、920℃、940℃、960℃、980℃、990℃),保温时间为1~30小时(比如2h、5h、8h、10h、13h、15h、18h、20h、22h、25h、27h、29h);优选地,所述保温时间为7~12小时;优选地,所述冷却为:向用于均匀化处理的设备内通入温度低的保护气体并用风扇搅拌进行冷却,或随炉冷却;更优选地,所述保护气体为氩气、氦气、或氩气与氦气组成的混合气体(可以以任意比例混合);冷却速度越快,材料的电化学吸放氢动力学性能越好,循环寿命越长。
在上述二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料的制备方法中,作为一种优选实施方式,在所述原料准备步骤中,包含Mg元素的原料为纯Mg、La-Mg合金、Re-Mg合金或Ni-Mg合金;优选地,2.75≤z<3.0。
在上述二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料的制备方法中,作为一种优选实施方式,在所述熔炼步骤中,所述熔炼的最高温度应控制在1400±20℃;优选地,所述保护气氛为氩气、氦气、或氩气与氦气组成的混合气体(可以以任意比例混合)。
在上述二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料的制备方法中,作为一种优选实施方式,在所述浇铸步骤中,所述铸锭厚度为≤35mm;铸锭厚度越薄越好,冷却速度越快越好,以利于获得成分均匀的铸锭。
一种二次可充电镍氢电池,所述电池包括上述La-Mg-Ni型负极储氢材料。
本发明二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料La 1-x-yRe xMg y(Ni 1-a-bAl aM b) z是由易生成稳定氢化物的元素(如La,Ce、Pr、Nd、Sm、Y、Mg等)与其他元素(如Ni,Ti、Cr、Mo、Nb、Ga、V、Si、Zn、Sn等)组成的金属间化合物,其电化学充放电容量主要来自于吸放氢过程中电解液中的氢离子在储氢合金电极上发生氧化还原过程中的电子转移,镍-金属氢化物电池的电化学充放电反应通常表示如下:
充电反应:
在负极,当给负电极施加一个电极势时,电解液中的水被分解成氢离子和氢氧根离子,氢离子在负极储氢材料表面获得电子变成氢原子,被吸入到合金中,氢氧根离子被留在电解液中:
Alloy+H 2O+e -→Alloy[H]+OH -                   (1)
式中Alloy表示储氢合金。
在正极,氢氧化亚镍中的两价镍失去一个电子被氧化成三价镍与电解液中的氢氧根离子结合变成氢氧化镍:
Ni(OH) 2+OH -→NiOOH+H 2O+e -                 (2)
放电反应:
在负极,吸收在储氢合金中的氢被释放并与电解液中的氢氧根离子结合成水,同时贡献出一个电子形成电流。
Alloy[H]+OH -→Alloy+H 2O+e -                  (3)
在正极,氢氧化镍得到一个电子被还原成低价态氢氧化亚镍并释放出氢氧根离子进入电解液中。
NiOOH+H 2O+e -→Ni(OH) 2+OH -                  (4)
与目前市场上销售的AB 5型储氢材料(如以相同的熔炼工艺制备得到的传统负极储氢材料MmNi 3.55Co 0.75Mn 0.4Al 0.3,Mm为混合稀土金属元素,由La、Ce、Nd、Pr元素组成)相比,采用本发明的复相负极储氢材料La 1-x-yRe xMg y(Ni 1-a-bAl aM b) z,(Re为Ce、Pr、Nd、Sm、Y等稀土元素中的至少一种,M为Ti、Cr、Mo、Nb、Ga、V、Si、Zn、Sn等元素中的至少一种、且x、y、a、b和z的值分别满足下列条件:0≤x≤0.10、0.3≤y≤0.5、0<a≤0.05、0≤b≤0.02、2.3≤z<3.0)具有更高的电化学充放电容量,接近的电化学充放电循环寿命,且不含有Co、Mn等在碱性溶液中可以溶解的元素。
本发明的复相储氢材料可用于制备金属氢化物-镍电池的负极。采用本发 明复相储氢材料可以作为负极满足普通高容量长寿命二次可充电镍氢电池应用,还可以满足具有优异的超低自放电和长时间存储性能的二次可充电镍氢电池应用。
本发明与现有技术相比的有益效果:
(1)与目前市场上销售的AB 5型储氢材料(如以相同的熔炼工艺制备得到的传统负极储氢材料MmNi 3.55Co 0.75Mn 0.4Al 0.3)相比,本发明由LaMgNi 4相、LaMg 12相、Ce 2Ni 7型La 2Ni 7相和LaNi 5相化合物共同组成的复相负极储氢材料La 1-x-yRe xMg y(Ni 1-a-bAl aM b) z(x、y、a、b和z的值分别满足下列条件:0≤x≤0.10、0.3≤y≤0.5、0<a≤0.05、0≤b≤0.02、2.3≤z<3.0)的充放电容量显著提高,并有很好的循环寿命。
(2)采用本发明由LaMgNi 4相、LaMg 12相、Ce 2Ni 7型La 2Ni 7相和LaNi 5相化合物共同组成的复相储氢材料制备得到的镍氢电池所具有的优异的长期存放特性和超低自放电特性远远高于市售镍氢电池。
附图说明
图1为本发明实施例2的La 0.65Ce 0.02Mg 0.33(Ni 0.96Al 0.04) 2.99、实施例6的La 0.60Ce 0.02Mg 0.38(Ni 0.96Al 0.04) 2.80、实施例9的La 0.54Ce 0.02Mg 0.44(Ni 0.96Al 0.04) 2.57和实施例10的La 0.49Ce 0.01Mg 0.50(Ni 0.96Al 0.04) 2.37样品的X-射线衍射图谱。
图2a为采用本发明实施例7La-Mg-Ni型La 0.53Pr 0.03Nd 0.06Mg 0.38(Ni 0.96Al 0.04) 2.80与对比例AB 5型MmNi 3.55Co 0.75Mn 0.4Al 0.3储氢合金所制的电池在60℃温度下容量随时间的变化图。
图2b为采用本发明实施例7La-Mg-Ni型La 0.53Pr 0.03Nd 0.06Mg 0.38(Ni 0.96Al 0.04) 2.80与对比例AB 5型MmNi 3.55Co 0.75Mn 0.4Al 0.3储氢合金所制的电池在60℃温度下的容量恢复特性图。
图2c为采用本发明实施例7La-Mg-Ni型La 0.53Pr 0.03Nd 0.06Mg 0.38(Ni 0.96Al 0.04) 2.80与对比例AB 5型MmNi 3.55Co 0.75Mn 0.4Al 0.3储氢合金所制的电池在60℃温度下放电态电压随时间的变化图。
具体实施方式
以下结合附图和具体实例对本发明进行详细说明。
实施例
根据表3中合金各元素的重量百分比进行配料,将配好的合金原料于抽真空后并通入氩气、氦气、或氩气与氦气组成的混合气体(可以以任意比例混合)的中频感应熔炼炉进行熔炼,熔炼过程中控制熔化钢液的最高温度为1400±20℃,然后浇铸到水冷锭模中形成厚度不超过35mm的铸锭;待钢锭冷却后将钢锭从熔炼炉取出,转移到真空热处理炉进行均匀化处理,处理前热处理炉需抽真空后并通入氩气、氦气、或氩气与氦气组成的混合气体(可以以任意比例混合),均匀化处理温度为850~1000℃,保温时间为1~30小时。保温时间结束后向热处理炉中通入凉的氩气、氦气、或氩气与氦气组成的混合气体(可以以任意比例混合)进行冷却,待冷却到室温后取出铸锭。表3中各实施例铸锭的均匀化处理温度和时间根据合成成分和铸锭厚度来定。
表3 本发明实施例1-10与对比例1的成分比较(wt%)
Figure PCTCN2019089675-appb-000003
测试例
1)对实施例2的La 0.65Ce 0.02Mg 0.33(Ni 0.96Al 0.04) 2.99、实施例6的La 0.60Ce 0.02Mg 0.38(Ni 0.96Al 0.04) 2.80、实施例9的La 0.54Ce 0.02Mg 0.44(Ni 0.96Al 0.04) 2.57和实施例10的La 0.49Ce 0.01Mg 0.50(Ni 0.96Al 0.04) 2.37样品进行X-射线衍射测试,其结果见附图1。附图1的X-射线衍射结果表明,实施例2、6、9、10所示化合物主要由LaMgNi 4相、LaMg 12相、Ce 2Ni 7型La 2Ni 7相和LaNi 5相化合物共同组成,其中LaMgNi 4相、LaMg 12相含量随z值的减少而增多。
2)最大电化学容量和活化次数测试:首先将上述实施例所得的储氢合金铸锭于室温研磨成小于200目的合金粉,然后将小于200目的负极合金粉0.25g和镍粉按1:4的比例混合,冷压成直径为(d=15mm)的圆饼,然后用焊接有镍带的泡沫镍将该圆饼完全包裹住,泡沫镍开口的地方用点焊机焊死,做为负电极使用,所用的正电极为与镍氢电池相同的[Ni(OH) 2-NiOOH]电极,正电极的容量设计为远高于负电极的容量,以使负电极材料在充电时达到充分饱和,[Hg/HgO/6M KOH]为参比电极。在电极性能测试过程中,首先在30℃以60mA/g的电流密度对储氢负极材料进行充分活化,活化制度如下:采用60mA/g的电流密度充电450min,充电后停顿15分钟,然后以60mA/g的电流密度放电到负电极储氢合金粉的电极电位相对于参比电极的电极电位为-0.5伏为止,再进行下一轮充、放电循环。随着活化次数的增加,负极储氢合金粉的电化学放电容量将逐步增加并在达到一个最大值后相对稳定下来,此时活化结束,并将该最大值定义为材料在30℃下的电化学吸放氢容量,将得到该最大值所需要的充放电循环次数称为活化次数;实施例1-10和对比例1的储氢材料按照上述方法在30℃、60mA/g充放电电流密度下的最大电化学容量和活化次数结果见表4。
循环寿命测试:首先将测试样品在30℃采用60mA/g的电流密度按上述测试容量和活化次数的方法进行活化,在活化好后,在30℃采用300mA/g的电流密度对储氢负极材料进行充电85min,充电后停顿15分钟,然后以300mA/g的电流密度放电到储氢负极材料的电极电位相对于参比电极的电极电位为-0.5伏为止,再进行下一轮充、放电循环,为了对比方便,将样品的循环寿命定义当其容量下降到以300mA/g的电流密度放电时的最大容量的60%时的循环次数;实施例1-10和对比例1的储氢材料按照上述方法所得的循环寿命结果见表4。
表4
Figure PCTCN2019089675-appb-000004
由表4的数据可知:本发明所得的储氢材料具有较高的容量,特别是当B侧含量2.75≤z<3.0时,该复相储氢材料的容量和循环寿命均很好,少量Ce、Pr、Nd对La的替代可以改善材料的容量和寿命,特别是Pr和Nd对容量和循环寿命的提高更有好处。与常规AB 5型合金相比,虽然寿命稍差,容量却有很大增加,其最高电化学容量超过了370mAh/g,远高于目前市场上销售的AB 5型储氢材料的电化学容量值。
3)本发明用成分为La 0.53Pr 0.03Nd 0.06Mg 0.38(Ni 0.96Al 0.04) 2.80样品(实施例7)和AB 5型MmNi 3.55Co 0.75Mn 0.4Al 0.3(对比例1)储氢合金分别制取了AAA800电池考察其自放电性能
电池制作方法具体为:
(a)负极:
连续浸胶烘干辊压,极片总重(g)=4.40~4.45g,净粉量3.68~3.73g;
尺寸:68±0.5(mm)×38±0.1(mm)×(0.25~0.28)(mm);
铜网:37.6(mm)×0.25(mm);铜网面密度260±20(g/㎡),取260(g/㎡)
计算;
基体重为:m=0.068×(0.038+0.005)×260/1.05=0.72(g);
(b)正极:
极片重量(尾部包边):3.82~3.87g;
配方质量比:球型氢氧化镍Ni(OH) 2:51%;
覆钴球型氢氧化镍Ni(OH) 2:45%;
氧化亚钴:3%;
氧化钇:1%。
尺寸:43.5±0.3×38±0.2×0.72~0.75(mm);泡沫镍面密度:280g/㎡
基体:m=0.0435×0.038×280/1.05+0.10=0.54(g);
净粉重:3.28~3.33g。
(c)电解液:
Figure PCTCN2019089675-appb-000005
注入电液量:m=1.15~1.17g/只。
(d)隔膜:FV4384;116×41×0.12(mm);
(e)盖帽压力:2.6~2.8MPa;
(f)钢壳:
Figure PCTCN2019089675-appb-000006
(g)电池活化:
电池在25~30℃环境下搁置48~60小时,之后进行充放电活化两次。
第一次充放电活化:0.05C充电3h,然后0.2C充电4h,再0.1C充电5h,1C放电至1V,再用0.2C放电至1V。
第二次充放电活化:0.5C充电2h,再0.2C充电2h,1C放电至1V,再用0.2C放电至1V。
(h)容量保持率、容量恢复率测试:
将La-Mg-Ni型La 0.53Pr 0.03Nd 0.06Mg 0.38(Ni 0.96Al 0.04) 2.80储氢材料和AB 5型MmNi 3.55Co 0.75Mn 0.4Al 0.3储氢合金所制的电池,分别取25支,做好标记,然后在室温0.5C充电2h,再0.2C充电2h,0.2C放电至1V,如此循环3次,记录每只电池的容量,并以最后一次的放电容量为准。记录后的电池在室温0.5C充电2h,再0.2C充电2h,充电后存放在温度为60℃恒温箱中,分别在搁置的第7天、14天、24天、31天和60天每次取出5只电池,在室温用0.2C放 电至1V,记录其容量,并与存放前记录的最后一次容量相除所得的比值,即为该电池的在该存储时间段的容量保持率,将5只电池的结果去除最大值和最小值,剩下3只的结果计算出平均值做为该电池的容量保持率,其结果如图2a所示。
然后再将这些电池在室温按照0.5C充电2h,再0.2C充电2h,用0.2C放电至1V,如此循环两次,用第二次循环所得到的容量结果与存放前记录的最后一次容量相除所得的比值,即为该电池的在该存储时间段的容量恢复率,将5只电池的结果去除最大值和最小值,剩下3只的结果计算出平均值做为该电池的容量恢复率,其结果如图2b所示。
(h)放电态电压存储特性测试:
将La-Mg-Ni型La 0.53Pr 0.03Nd 0.06Mg 0.38(Ni 0.96Al 0.04) 2.80储氢材料和AB 5型MmNi 3.55Co 0.75Mn 0.4Al 0.3储氢合金所制的电池,分别取45支,做好标记,然后在室温0.5C充电2h,再0.2C充电2h,0.2C放电至1V,放电后搁置20分钟,如此循环3次,记录每只电池每次循环放电后搁置20分钟时的电压,并以最后一次的电压为准,记录后的电池存放在温度为60℃恒温箱中,分别在搁置的第7天、12天、17天、27天、34天、40天、45天、54天和62天每次取出5只电池,在室温放置1小时,然后测试每只电池的电压,即为该电池的在该存储时间段的放电态电压存储特性,将5只电池的结果去除最大值和最小值,剩下3只的结果计算出平均值做为该电池的放电态电压存储特性,其结果如图2c所示。
由图可见,与AB 5型MmNi 3.55Co 0.75Mn 0.4Al 0.3储氢合金所制的电池对比,用本发明La-Mg-Ni型La 0.53Pr 0.03Nd 0.06Mg 0.38(Ni 0.96Al 0.04) 2.80合金制取的电池无论是容量保持率、容量恢复率、还是放电态电压存储特性均保持着较高的水平,特别是容量保持率和放电态电压存储特性有着非常显著的优势,因此该合金也适合于制取具有超低自放电和长时间存储性能的镍氢电池。

Claims (10)

  1. 一种二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料,其特征在于,
    所述La-Mg-Ni型负极储氢材料的化学式为La 1-x-yRe xMg y(Ni 1-a-bAl aM b) z,其中,Re为Ce、Pr、Nd、Sm、Y中的至少一种,M为Ti、Cr、Mo、Nb、Ga、V、Si、Zn、Sn中的至少一种;0≤x≤0.10、0.3≤y≤0.5、0<a≤0.05、0≤b≤0.02、2.3≤z<3.0。
  2. 根据权利要求1所述的La-Mg-Ni型负极储氢材料,其特征在于,2.7≤z<3.0。
  3. 根据权利要求2所述的La-Mg-Ni型负极储氢材料,其特征在于,2.75≤z<3.0。
  4. 根据权利要求1所述的La-Mg-Ni型负极储氢材料,其特征在于,所述La-Mg-Ni型负极储氢材料的化学式为:
    La 0.66Mg 0.34(Ni 0.96Al 0.04) 2.99
    La 0.65Ce 0.02Mg 0.33(Ni 0.96Al 0.04) 2.99
    La 0.57Ce 0.04Mg 0.39(Ni 0.95Al 0.04Si 0.01) 2.83
    La 0.53Nd 0.08Mg 0.39(Ni 0.95Al 0.04Si 0.01) 2.83
    La 0.57Ce 0.02Sm 0.03Mg 0.38(Ni 0.95Al 0.04Si 0.01) 2.83
    La 0.60Ce 0.02Mg 0.38(Ni 0.96Al 0.04) 2.80
    La 0.53Pr 0.03Nd 0.06Mg 0.38(Ni 0.96Al 0.04) 2.80
    La 0.58Ce 0.02Nd 0.02Mg 0.38(Ni 0.96Al 0.04) 2.75
    La 0.54Ce 0.02Mg 0.44(Ni 0.96Al 0.04) 2.57
    La 0.49Ce 0.01Mg 0.50(Ni 0.96Al 0.04) 2.37
  5. 根据权利要求4所述的La-Mg-Ni型负极储氢材料,其特征在于,所述La-Mg-Ni型负极储氢材料的化学式为:
    La 0.66Mg 0.34(Ni 0.96Al 0.04) 2.99
    La 0.53Pr 0.03Nd 0.06Mg 0.38(Ni 0.96Al 0.04) 2.80
    La 0.58Ce 0.02Nd 0.02Mg 0.38(Ni 0.96Al 0.04) 2.75
    La 0.65Ce 0.02Mg 0.33(Ni 0.96Al 0.04) 2.99
    La 0.53Nd 0.08Mg 0.39(Ni 0.95Al 0.04Si 0.01) 2.83
    La 0.60Ce 0.02Mg 0.38(Ni 0.96Al 0.04) 2.80
  6. 根据权利要求1-5中任一项所述的La-Mg-Ni型负极储氢材料,其特征在于,所述La-Mg-Ni型负极储氢材料包括LaMgNi 4相、LaMg 12相、Ce 2Ni 7型La 2Ni 7相和LaNi 5相。
  7. 一种权利要求1-6中任一项所述的La-Mg-Ni型负极储氢材料的制备方法,其特征在于,采用感应熔炼法制备如权利要求1-6中任一项所述的La-Mg-Ni型负极储氢材料;
    优选地,所述感应熔炼法包括:
    原料准备步骤:按照La 1-x-yRe xMg y(Ni 1-a-bAl aM b) z中各元素的原子比称取包含相应元素的原料,其中,Re为Ce、Pr、Nd、Sm、Y中的至少一种,M为Ti、Cr、Mo、Nb、Ga、V、Si、Zn、Sn中的至少一种;0≤x≤0.10、0.3≤y≤0.5、0<a≤0.05、0≤b≤0.02、2.3≤z<3.0;
    熔炼步骤:将所述原料在保护气氛下进行熔炼得到熔炼液;
    浇铸步骤:将所述熔炼液在保护气氛下倒入水冷锭模中进行浇铸形成铸锭。
  8. 根据权利要求7所述的制备方法,其特征在于,所述制备方法还包括:均匀化处理步骤,所述均匀化处理步骤为:将所述铸锭在保护气氛下进行均匀化处理,之后冷却;优选地,在所述均匀化处理步骤中,所述均匀化处理的温度为850~1000℃,保温时间为1~30小时;更优选地,所述保温时间为7~12小时;优选地,所述冷却为:向用于均匀化处理的设备内通入温度低的保护气体并用风扇搅拌进行冷却,或随炉冷却;更优选地,所述保护气体为氩气、氦气、或氩气与氦气组成的混合气体。
  9. 一种权利要求1-6中任一项所述的La-Mg-Ni型负极储氢材料的制备方法,其特征在于,采用速凝鳞片法制备权利要求1-6中任一项所述的La-Mg-Ni型负极储氢材料。
  10. 一种二次可充电镍氢电池,其特征在于,所述电池包括权利要求1-6中任一项所述的La-Mg-Ni型负极储氢材料。
PCT/CN2019/089675 2019-01-21 2019-05-31 二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料及其制备方法 WO2020151154A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/955,133 US11545661B2 (en) 2019-01-21 2019-05-31 High-capacity and long-life negative electrode hydrogen storage material of La—Mg—Ni type for secondary rechargeable nickel-metal hydride battery and method for preparing the same
EP19880932.9A EP3712991B1 (en) 2019-01-21 2019-05-31 High-capacity long-life la-mg-ni negative electrode hydrogen storage material for use in secondary rechargeable nickel-metal hydride battery, and preparation method therefor
JP2020526060A JP7311507B2 (ja) 2019-01-21 2019-05-31 二次充電可能なニッケル水素電池用大容量且つ長寿命のLa-Mg-Ni型負極水素吸蔵材料及びそれを作製する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910053205.9A CN109830676B (zh) 2019-01-21 2019-01-21 二次可充电镍氢电池用La-Mg-Ni型负极储氢材料及其制备方法
CN201910053205.9 2019-01-21

Publications (1)

Publication Number Publication Date
WO2020151154A1 true WO2020151154A1 (zh) 2020-07-30

Family

ID=66860396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089675 WO2020151154A1 (zh) 2019-01-21 2019-05-31 二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料及其制备方法

Country Status (5)

Country Link
US (1) US11545661B2 (zh)
EP (1) EP3712991B1 (zh)
JP (1) JP7311507B2 (zh)
CN (1) CN109830676B (zh)
WO (1) WO2020151154A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952609A (zh) * 2020-08-13 2020-11-17 内蒙古师范大学 直接硼氢化物燃料电池的阳极催化剂及其制备方法
CN111996429A (zh) * 2020-09-27 2020-11-27 钢铁研究总院 一种高吸放氢速率的La-Y-Mg-Ni四元贮氢合金及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1718814A (zh) * 2005-05-31 2006-01-11 广州有色金属研究院 一种稀土镁基贮氢合金
CN105274395A (zh) * 2014-07-24 2016-01-27 北京有色金属研究总院 一种La-Mg-Ni型储氢材料
CN107275626A (zh) * 2017-05-22 2017-10-20 燕山大学 一种单相ab4型超晶格储氢合金电极材料及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323469A (ja) * 1997-06-17 1999-11-26 Toshiba Corp 水素吸蔵合金及び二次電池
US6703164B2 (en) * 1997-11-28 2004-03-09 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy, secondary battery, hybrid car and electromobile
JP3247933B2 (ja) * 1999-02-05 2002-01-21 東芝電池株式会社 水素吸蔵合金、水素吸蔵合金の製造方法およびアルカリ二次電池
JP2006100115A (ja) * 2004-09-29 2006-04-13 Sanyo Electric Co Ltd アルカリ蓄電池
JP5148553B2 (ja) * 2008-05-08 2013-02-20 パナソニック株式会社 電極用複合材料およびその製造法、ならびにそれを用いるアルカリ蓄電池
CN101626076A (zh) * 2008-07-07 2010-01-13 北京有色金属研究总院 一种高容量长寿命低成本稀土镁基储氢合金
CN104195372B (zh) * 2014-05-23 2016-09-28 四会市达博文实业有限公司 一种镍氢电池用稀土-镁-镍系多相储氢合金及其制备方法
CN108149073B (zh) * 2017-11-17 2020-06-23 安泰科技股份有限公司 低温镍氢电池用La-Mg-Ni系储氢合金及其制备方法
CN108893656B (zh) * 2018-05-30 2021-11-05 安泰科技股份有限公司 La-Mg-Ni系A2B7型储氢合金及其制备方法
JP6736065B2 (ja) * 2018-11-15 2020-08-05 日本重化学工業株式会社 アルカリ蓄電池用水素吸蔵合金およびそれを用いたアルカリ蓄電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1718814A (zh) * 2005-05-31 2006-01-11 广州有色金属研究院 一种稀土镁基贮氢合金
CN105274395A (zh) * 2014-07-24 2016-01-27 北京有色金属研究总院 一种La-Mg-Ni型储氢材料
CN107275626A (zh) * 2017-05-22 2017-10-20 燕山大学 一种单相ab4型超晶格储氢合金电极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3712991A4 *

Also Published As

Publication number Publication date
EP3712991B1 (en) 2023-12-13
EP3712991A1 (en) 2020-09-23
EP3712991C0 (en) 2023-12-13
JP7311507B2 (ja) 2023-07-19
JP2021516845A (ja) 2021-07-08
CN109830676A (zh) 2019-05-31
CN109830676B (zh) 2020-10-13
US20210218020A1 (en) 2021-07-15
US11545661B2 (en) 2023-01-03
EP3712991A4 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
CN104115312B (zh) 电极用合金粉末、采用了该粉末的碱性蓄电池用负极及碱性蓄电池
CN108172807B (zh) 一种多元素单相a5b19型超晶格储氢合金电极材料及其制备方法
CN104532095A (zh) 一种钇-镍稀土系储氢合金
CN111471895B (zh) 含钆和镍的储氢合金、负极、电池及制备方法
CN102104146B (zh) 一种镍氢电池用无钴ab3.5型储氢合金负极材料及其制备方法
CN111471894B (zh) 掺杂的a5b19型含钐储氢合金、电池及制备方法
CN111471913B (zh) Ab3型稀土-钐-镍储氢合金、负极、电池及制备方法
WO2020151154A1 (zh) 二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料及其制备方法
CN111118341A (zh) 稀土-钐-镍型储氢合金、负极、电池及制备方法
CN101626078B (zh) 镍氢电池用La-Mg-Ni型负极储氢材料
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP2003132940A (ja) ニッケル−水素蓄電池
JP2004079463A (ja) リチウムイオン二次電池用負極活物質、その製造法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
US5753054A (en) Hydrogen storage alloy and electrode therefrom
CN111471912B (zh) 掺杂的ab3型储氢合金、负极、电池及制备方法
JP3010724B2 (ja) 電池用水素吸蔵合金極
CN109616642B (zh) 复合正极材料、其制备方法及锂离子电池
JP2792955B2 (ja) 水素電極用水素吸蔵合金
WO2010057367A1 (zh) RE-Fe-B系储氢合金及其用途
JP2983426B2 (ja) 水素吸蔵合金の製造法および電極
JPH11269501A (ja) 水素吸蔵合金粉末の製造方法及び水素吸蔵合金電極
CN111471892B (zh) A5b19型含钐储氢合金、电池及制备方法
JP3369148B2 (ja) アルカリ蓄電池
JP2001196092A (ja) 密閉型ニッケル水素蓄電池とその製造方法
JP2000243386A (ja) 水素吸蔵合金電極及びその製造法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020526060

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019880932

Country of ref document: EP

Effective date: 20200513

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE