WO2020151000A1 - 数字化双面光刻或曝光系统和方法 - Google Patents

数字化双面光刻或曝光系统和方法 Download PDF

Info

Publication number
WO2020151000A1
WO2020151000A1 PCT/CN2019/073193 CN2019073193W WO2020151000A1 WO 2020151000 A1 WO2020151000 A1 WO 2020151000A1 CN 2019073193 W CN2019073193 W CN 2019073193W WO 2020151000 A1 WO2020151000 A1 WO 2020151000A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical engine
substrate
exposure
optical
exposure pattern
Prior art date
Application number
PCT/CN2019/073193
Other languages
English (en)
French (fr)
Inventor
汪孝军
杜卫冲
梅文辉
廖平强
Original Assignee
中山新诺科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山新诺科技股份有限公司 filed Critical 中山新诺科技股份有限公司
Priority to PCT/CN2019/073193 priority Critical patent/WO2020151000A1/zh
Priority to CN201980002735.9A priority patent/CN111742263A/zh
Priority to US17/425,726 priority patent/US20220163894A1/en
Publication of WO2020151000A1 publication Critical patent/WO2020151000A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/2032Simultaneous exposure of the front side and the backside
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2057Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using an addressed light valve, e.g. a liquid crystal device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70516Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Definitions

  • This application relates to the field of digital lithography, and more specifically, to a digital double-sided lithography or exposure system and method.
  • the digital lithography system or exposure system and method can refer to a system and method that directly controls the light output of the optical path system through digital control to expose a corresponding pattern on a substrate (such as a circuit board) coated with a photosensitive material.
  • the traditional double-sided exposure system usually uses film (mask) transfer to expose the double-sided circuit board. Before exposure, the film with the pattern to be transferred needs to be made; then, the film with the pattern on both sides is fixed on the upper and lower glass respectively; then, the circuit board with the pattern to be transferred is sandwiched between the upper and lower glass.
  • film mask
  • Digital lithography systems for single-sided exposure have appeared on the market. The advantage is that it reduces the use of the mask, but it can only be exposed on one side each time. Most printed circuit boards (PCBs) require double-sided exposure.
  • PCBs printed circuit boards
  • the use of a single-sided digital lithography system not only requires at least two exposures on the first and second sides, but also on the first side. After the exposure, a flip operation is required to perform the second side exposure. The reversal operation will also cause the problem of the need to align the exposure patterns on both sides after the reversal. Therefore, the use of a digital lithography or exposure system for single-sided exposure not only increases the exposure process, but also requires high-precision double-sided alignment, which greatly reduces the production yield and output of the equipment.
  • the double-sided digital lithography or exposure system and method do not require pattern alignment on both sides (double-sided alignment), and can be compatible with traditional double-sided exposure equipment and other processes. Therefore, the use of digital double-sided lithography or exposure systems and methods for double-sided exposure has broad development prospects. How to use double-sided lithography or exposure systems for double-sided exposure of substrates has become an urgent problem to be solved.
  • the present application provides a digital lithography or exposure system and method, which can improve the alignment accuracy of exposure patterns on the upper and lower sides of a substrate.
  • a digital double-sided lithography or exposure system including: a first optical engine 110 for exposing the front side of a substrate 910; a second optical engine 120 for exposing the back side of the substrate 910 Exposure; the control system 710 is configured to generate a first exposure pattern and a second exposure pattern according to the position information of the first optical engine 110 and the second optical engine 120, the first exposure pattern and the first exposure pattern The two exposure patterns are aligned on the front and back surfaces of the substrate 910; the control system 710 is also used to control the first optical engine 110 and the second optical engine 120 to use the first exposure pattern and the The second exposure pattern exposes the front and back surfaces of the substrate 910.
  • the exposure patterns generated by the optical engines on the front and back sides are not fixed, but can be adjusted according to the positions of the two optical engines to compensate for the deviation of the two optical engines. Shift, so that the first exposure pattern projected on the substrate by the first optical engine and the second exposure pattern projected on the substrate by the second optical engine are accurately aligned, so as to achieve precise exposure on both sides of the substrate.
  • the system further includes a calibration system, and the calibration system is used to obtain position information of the first optical engine 110 and the second optical engine 120.
  • the calibration system 610 includes a first imaging device 410, and the first imaging device 410 is configured to acquire position information of a reference mark on the substrate 910, and the control The system 710 is configured to generate the first exposure according to the position offset of the first optical engine 110 relative to the reference mark and the position offset of the second optical engine 120 relative to the reference mark Pattern and the second exposure pattern.
  • the calibration system 610 includes a first beam splitting device 210 and a second beam splitting device 220, and a first imaging device 410 and a second imaging device 420.
  • the beam splitting device 210 and the first imaging device 410 are located on one side of the first optical engine 110, and the second beam splitting device 220 and the second imaging device 420 are located on one side of the second optical engine 120.
  • the first imaging device 410 is used for receiving the first light beam that has passed through the first optical engine 110 and reflected by the first beam splitting device 210
  • the second imaging device 420 is used for receiving Two optical engines 120 and the second light beam reflected by the second beam splitting device 220;
  • the control system 710 is also used to determine the position of the first light beam and the position of the second light beam as the first The position of an optical engine 110 and the position of the second optical engine 120.
  • control system 710 is further configured to control the operation of the first optical engine 110 and the second optical engine 120 in the process of exposing the substrate 910 The position remains unchanged, or the relative position of the first optical engine 110 and the second optical engine 120 is controlled to remain unchanged.
  • the optical axis of the first optical engine 110 and the optical axis of the second optical engine 120 are both perpendicular to the substrate 910.
  • the system includes a first optical engine array and a second optical engine array, the first optical engine array is used to expose the front surface of the substrate 910, The second optical engine array is used to expose the reverse side of the substrate, and the optical engines included in the first optical engine array and the second optical engine array are all arranged in an (M, N) array, where M and N are Natural numbers, where the first optical engine array includes the first optical engine 110, and the second optical engine array includes the second optical engine 120.
  • the normal direction of the substrate 910 is a horizontal direction, a vertical direction, or a direction inclined at any angle.
  • the carrier of the substrate 910 includes two glass plates, and the substrate 910 is disposed between the two glass plates and is flattened by the two glass plates. .
  • the carrier of the substrate 910 includes a glass plate and a plywood, the substrate 910 is disposed on the glass plate, and the plywood is used to fix the substrate on the glass plate.
  • the glass plate includes a glass plate and a plywood, the substrate 910 is disposed on the glass plate, and the plywood is used to fix the substrate on the glass plate.
  • the carrier board of the substrate 910 includes four clamping plates, the substrate 910 is fixed by the four clamping plates, and the four clamping plates clamp the substrate 910 respectively. At different positions, the substrate 910 is flattened by using pulling forces in different directions.
  • the substrate 910 is a soft plate
  • the carrier of the substrate 910 is a roller
  • the substrate 910 is fixed by a pair of rollers.
  • the exposure method adopted by the system includes any one of the following: an exposure method based on a digital micro-mirror DMD, a method based on a single-beam laser scanning imaging, and a semiconductor laser The way of fiber coupled laser.
  • a digital double-sided lithography or exposure system including: a first optical engine 110 for exposing the front side of a substrate 910; a second optical engine 120 for exposing the back side of the substrate 910 Perform exposure; a calibration system 610, used to obtain position information of the first optical engine 110 and the second optical engine 120; a control system 710, used according to the first optical engine 110 and the second optical engine 120 position information, a first exposure pattern and a second exposure pattern are generated, and the first exposure pattern and the second exposure pattern are aligned on the front and back of the substrate 910.
  • the calibration system provided in this application can be used to calibrate the installation position of the optical engine. After calibration, all optical engines can have a precise position definition in the exposure system coordinates.
  • the control system can decompose and align the exposure patterns according to the position of the engine, so as to realize the precise exposure of the patterns on both sides of the substrate.
  • the exposure patterns generated by the optical engines on the front and back sides are not fixed, but can be adjusted according to the positions of the two optical engines to compensate for the deviation of the two optical engines. Shift, so that the first exposure pattern projected on the substrate by the first optical engine and the second exposure pattern projected on the substrate by the second optical engine are accurately aligned, so as to achieve precise exposure on both sides of the substrate.
  • a digital double-sided lithography or exposure method is provided, which is applied to the digital double-sided lithography or exposure system of the first aspect or any one of the first aspects, and the method includes: According to the position information of the first optical engine 110 and the second optical engine 120, a first exposure pattern and a second exposure pattern are generated, and the first exposure pattern and the second exposure pattern are on the substrate 910 The front and back surfaces are aligned; the first optical engine 110 and the second optical engine 120 are controlled to expose the front and back surfaces of the substrate 910 with the first exposure pattern and the second exposure pattern, respectively.
  • the method further includes: acquiring position information of the first optical engine 110 and the second optical engine 120.
  • the method further includes: acquiring position information of a reference mark on the substrate 910; according to the first optical engine 110 and the second optical engine 120 Generating the first exposure pattern and the second exposure pattern, including: according to the position offset of the first optical engine 110 relative to the reference mark, and the second optical engine 120 relative to the reference mark The position shift amount of the mark generates the first exposure pattern and the second exposure pattern.
  • the acquiring position information of the first optical engine 110 and the second optical engine 120 includes: receiving the first optical engine 110 and receiving the position information from the first optical engine 110.
  • the method further includes: during the process of exposing the substrate 910, controlling the position of the first optical engine 110 and the second optical engine 120 to maintain No change, or control the relative position of the first optical engine 110 and the second optical engine 120 to remain unchanged.
  • the optical axis of the first optical engine 110 and the optical axis of the second optical engine 120 are both perpendicular to the substrate 910.
  • a digital double-sided lithography or exposure method is provided.
  • the method is applied to the digital double-sided lithography or exposure system of the second aspect or any one of the second aspects.
  • the method includes: Acquire the position information of the first optical engine 110 and the second optical engine 120; according to the position information of the first optical engine 110 and the second optical engine 120, generate a first exposure pattern and a second exposure pattern, the first An exposure pattern and the second exposure pattern are aligned on the front and back of the substrate 910.
  • a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the method of the third aspect or the fourth aspect or any one of its possible implementation manners.
  • a system chip including: a processing unit and a communication unit, the processing unit can execute computer instructions so that the chip executes the third aspect or the fourth aspect or any one of its possibilities The method of realization.
  • a computer program product includes instructions for executing the method of the third aspect or the fourth aspect or any one of the possible implementation manners thereof.
  • FIG. 1 is a schematic structural diagram of a digital double-sided lithography or exposure system provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of another digital double-sided lithography or exposure system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another digital double-sided lithography or exposure system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another digital double-sided lithography or exposure system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another digital double-sided lithography or exposure system provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an arrangement of optical engines according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another arrangement of optical engines provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another arrangement of optical engines provided by an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of another arrangement of optical engines provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a stitched area formed by scanning by a digital double-sided lithography or exposure system provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the stitched area formed after the entire scanning area of the digital double-sided lithography or exposure system provided by the embodiment of the present application is scanned and exposed by two rows of optical engines.
  • FIG. 12 is a schematic structural diagram of a placement position of a substrate provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a board carrier mechanism provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a flexible board roll-to-roll substrate feed provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a DMD-based digital lithography or exposure system provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a digital lithography or exposure system based on a single laser scanning provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a digital lithography system based on fiber-coupled close-packed laser lattice imaging according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of an optical fiber provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a closely packed fiber coupled laser lattice provided by an embodiment of the present application.
  • FIG. 20 is a schematic flowchart of a digital double-sided lithography or exposure method provided by an embodiment of the present application.
  • FIG. 21 is a schematic flowchart of another digital double-sided lithography or exposure method provided by an embodiment of the present application.
  • the embodiments of the present application relate to digital lithography or direct-write digital imaging technology, in particular to a digital double-sided lithography system, which is also called a digital double-sided exposure system or a double-sided maskless exposure system .
  • the system can simultaneously expose both surfaces of a substrate, such as a substrate for a printed circuit board (PCB), or a sheet for a lead frame.
  • PCB printed circuit board
  • the embodiments of the present application can be applied to double-sided exposure in printed circuit boards, integrated circuit (IC) packaging and liquid crystal display manufacturing, and can also be applied to document printing, photocopying, and the like.
  • Fig. 1 is a schematic block diagram of a digital double-sided lithography or exposure system provided by an embodiment of the present application.
  • the digital double-sided lithography or exposure system includes: a first optical engine 110 and a second optical engine 120.
  • the first optical engine 110 and the second optical engine 120 are respectively disposed on both sides of the substrate 910 and used for exposing the front and back sides of the substrate 910.
  • the first optical engine 110 may be used to expose the front surface of the substrate 910
  • the second optical engine 120 may be used to expose the reverse surface of the substrate 910.
  • the first optical engine 110 is disposed on the first side of the substrate 910.
  • the first optical engine 110 is disposed on the substrate 910, and is used to generate a first exposure pattern and project the first exposure pattern onto the first surface 911 of the substrate 910, so as to realize the alignment of the substrate 910.
  • the second optical engine 120 is arranged on the second side of the substrate 911.
  • the second optical engine 120 is disposed under the substrate 910, and is used to generate a second exposure pattern and project the second exposure pattern onto the second surface 912 of the substrate 910 to realize the Exposure of the second side 912.
  • the technical solution provided by the embodiment of the present application does not use one optical engine to separately expose the two sides of the substrate.
  • the first optical engine 110 and the second optical engine 120 are provided on both sides of the substrate 910 to realize the first optical engine.
  • the 110 and the second optical engine 120 simultaneously expose the front and back surfaces of the substrate 910, which can simplify the exposure process.
  • the digital double-sided lithography or exposure system may further include a control system 710, which may be used to generate the first exposure pattern and the second exposure pattern according to the position information of the first optical engine 110 and the second optical engine 120, and The generated first exposure pattern and second exposure pattern are aligned on the front and back surfaces of the substrate 910.
  • a control system 710 which may be used to generate the first exposure pattern and the second exposure pattern according to the position information of the first optical engine 110 and the second optical engine 120, and The generated first exposure pattern and second exposure pattern are aligned on the front and back surfaces of the substrate 910.
  • the control system 710 is also used to control the first optical engine 110 and the second optical engine 120 to expose the front and back surfaces of the substrate 910 with the first exposure pattern and the second exposure pattern, respectively.
  • control system 710 can be used to generate a first exposure pattern according to the position information of the first optical engine 110, and control the first optical engine 110 to expose the front surface of the substrate 910 with the first exposure pattern; the control system The 710 can also be used to generate a second exposure pattern according to the position information of the second optical engine 120, and control the second optical engine 120 to expose the reverse surface of the substrate 910 with the second exposure pattern.
  • control system can be a computer device connected to the digital double-sided lithography or exposure system, and the computer device can control the system in the form of software.
  • the control system may control the first optical engine to generate the exposure pattern when it controls the optical engine.
  • the first exposure pattern generated by the optical engine 110 is offset by ⁇ 1 mm on the X axis relative to the second exposure pattern generated by the second optical engine 120. In this way, the adjusted first exposure pattern and second exposure pattern can be accurately aligned on the front and back sides of the substrate 910.
  • the first optical engine and the second optical engine cannot be completely aligned after installation, that is, the optical axes of the first optical engine and the second optical engine are not completely aligned. If the first optical engine and the second optical engine are used to directly expose the substrate, the exposure patterns of the upper and lower substrates may not be aligned, which affects the exposure quality.
  • a calibration mechanism is used to calibrate the optical axes of the first optical engine and the second optical engine, so that the optical axes of the first optical engine and the second optical engine are Alignment, using the calibrated optical engine to achieve precise exposure of the substrate. This method requires the use of an additional mechanism to control the optical axis of the optical engine for alignment, which is complicated and not easy to implement.
  • the process of aligning the optical axes of the first optical engine and the second optical engine can be omitted, and the process of aligning
  • the system performs data processing on the exposure pattern, and digitally generates the front and back exposure patterns, so that the generated first and second exposure patterns can compensate for the position offset between the first optical engine and the second optical engine, and realize the alignment Accurate exposure of the front and back surfaces of the substrate simplifies the exposure process.
  • the control system 710 in the embodiment of the present application does not specifically limit the manner of acquiring the positions of the first optical engine and the second optical engine.
  • the positions of the first optical engine 110 and the second optical engine 120 are stored in the control system 710 in advance.
  • the positions of the first optical engine 110 and the second optical engine 120 are basically fixed and will not change. Therefore, the position information of the first optical engine 110 and the second optical engine 120 can be stored in the system when the digital double-sided lithography or exposure system leaves the factory. During the exposure process, the position information can be directly used to generate The exposure pattern is aligned.
  • the first optical engine 110 and the second optical engine 120 may respectively expose an exposure pattern on the upper and lower sides of the substrate 910.
  • the first optical engine 110 exposes a pattern on the front surface of the substrate
  • the second optical engine exposes a pattern on the substrate.
  • a pattern is exposed on the reverse side of the 910, and the offset between the two optical engines can be determined by measuring the distance between the two exposure patterns.
  • the control system can generate the first exposure pattern and the second exposure pattern according to the distance between the two exposure patterns, such as the misalignment distance between the two exposure patterns.
  • the digital double-sided lithography or exposure system may also include a calibration system 610, which may be used to obtain the first optical engine 110 and the second optical engine 120 before exposure. Position information, and send the position information of the first optical engine 110 and the second optical engine 120 to the control system 710. Through the calibration system 610, the spatial position or installation position of the first optical engine 110 and the second optical engine 120 can be clearly calibrated.
  • the calibration system can also be an external component of the digital double-sided lithography or exposure system, rather than a necessary component of the system.
  • the calibration system may be a detachable component. In the case where the position needs to be calibrated before exposure, the calibration system is installed on the system, and after the calibration is completed, the calibration system is disassembled.
  • first optical engine 110 and the second optical engine 120 expose the substrate 910
  • the alignment of the exposure pattern can be achieved by the calibration system 610.
  • the calibration system 610 can clearly calibrate the spatial position or installation position of the first optical engine 110 and the second optical engine 20. After calibration, all optical engines can have a precise position definition in the exposure system coordinates for use in The subsequent alignment of the exposure pattern.
  • the calibration system 610 can be used to obtain position information of the first optical engine 110 and the second optical engine 120.
  • the calibration system 610 may also send the position information of the first optical engine 110 and the second optical engine 120 to the control system 710, so that the control system 710 can generate the first optical engine 110 and the second optical engine 120 according to the position information
  • the control system 710 can control the position of the first exposure pattern generated by the first optical engine 110 to remain unchanged. By adjusting the position of the second exposure pattern generated by the second optical engine 120, the first exposure pattern and the second exposure pattern are The front and back sides of the substrate 910 are aligned. Alternatively, the control system 710 may control the position of the second exposure pattern generated by the second optical engine 120 to remain unchanged, and adjust the position of the first exposure pattern generated by the first optical engine 110 so that the first exposure pattern and the second exposure pattern are Align the front and back sides of the substrate 910.
  • control system 710 may simultaneously control the position of the first exposure pattern generated by the first optical engine 110 and the position of the second exposure pattern generated by the second optical engine 120, so that the first exposure pattern and the second exposure pattern are on the substrate 910. The front and back are aligned.
  • the position information of the first optical engine 110 and the second optical engine 120 may refer to the spatial absolute position information of the first optical engine 110 and the second optical engine 120 and/or the relative position information of the first optical engine 110 and the second optical engine 120 .
  • the relative position of the first optical engine 110 and the second optical engine 120 may refer to the position offset of the first optical engine 110 relative to the second optical engine 120.
  • the exposure patterns generated by the optical engines on the front and back sides are not fixed, but can be adjusted according to the positions of the two optical engines to compensate for the offset of the two optical engines, so that the first The first exposure pattern projected by an optical engine on the substrate is precisely aligned with the second exposure pattern projected by the second optical engine on the substrate, so as to achieve precise exposure on both sides of the substrate.
  • the calibration system can be used to align the exposure pattern before the optical engine exposes the substrate, and the control system can control the optical engine to use the aligned pattern to expose the substrate, so as to achieve precise exposure on both sides of the substrate.
  • the embodiment of the present application does not specifically limit the manner in which the calibration system 610 obtains the position information of the first optical engine 110 and the second optical engine 120.
  • the calibration system 610 may include an imaging device, and the imaging device may be used to respectively image the optical mark emitted by the first optical engine 110 and the optical mark emitted by the second optical engine 120 to obtain the first The relative position information of the optical engine 110 and the second optical engine 120.
  • the optical mark may be, for example, a circle or cross light signal emitted by an optical engine.
  • the digital double-sided lithography or exposure system provided by the embodiment of the present application can also set a reference mark on the substrate 910, and the calibration system 910 can obtain the optical mark emitted by the first optical engine 110 relative to the reference mark.
  • the position information, and the position information of the optical mark from the second optical engine 120 relative to the reference mark. Since the position information of the optical mark issued by the first optical engine and the optical mark issued by the second optical engine are relative to the same reference mark, the calibration system can obtain the relative position of the first optical engine 110 relative to the second optical engine 120 Location information.
  • the reference mark may be some marking points provided on the substrate 910, or the reference mark may be some marking points provided on the carrying mechanism 920.
  • a marker ruler can be placed on the surface of the carrying mechanism 920, and some marker points are set on the marker ruler as reference marks.
  • the reference mark can be some "cross" marks etched on the marker ruler, or other marks of any shape.
  • the marking ruler may be translucent, and the surface of the marking ruler may be coated with a reflective film, and the coated marking ruler can better reflect the light emitted by the optical engine.
  • the marking ruler after coating may be a semi-transparent marking ruler, which can be translucent and translucent to the optical signal.
  • the marker ruler can be placed in the non-exposed area, for example, it can be placed on the edge of the substrate.
  • the exposure pattern on the substrate 910 can be used as a reference mark to determine the position of the optical engine.
  • the imaging device may include, for example, a charge coupled device image sensor (charge coupled device, CCD).
  • CCD charge coupled device
  • the calibration system 610 provided by the embodiment of this application will be described in detail below with reference to FIG. 3.
  • the calibration system may include a first imaging device 410, and the first imaging device 410 may be used to receive a first light beam passing through the first optical engine 110 and a second light beam passing through the second optical engine 120 to obtain the first light beam and the second light beam.
  • the relative position of the beam may include, for example, an imaging device such as a camera or a video camera.
  • the first imaging device 410 may further include an image lens, which can better focus the received light beam onto the imaging interface. The first imaging device 410 can thus capture light beams passing through the first optical engine 110 and the second optical engine 120.
  • the first imaging device 410 can send the relative position of the first beam and the second beam to the control system, and the control system can generate the first exposure pattern of the first optical engine 110 according to the relative position of the first beam and the second beam And the second exposure pattern of the second optical engine 120, the first exposure pattern and the second exposure pattern are precisely aligned on the upper and lower surfaces of the substrate. It can be understood that the alignment may include complete alignment, or may include slight deviations or offsets within the error range.
  • the spatial position of the first optical engine and the second optical engine can be clearly calibrated through a set of beam splitting device and imaging device, which can save costs.
  • the above technical solutions can be applied to scenarios where the positional deviation between the first optical engine 110 and the second optical engine 120 is not very large, for example, the imaging of the lens center of the first optical engine 110 and the imaging of the lens center of the second optical engine 120 are both It can fall within the field of view of the first imaging device 410, so that the first imaging device 410 can simultaneously receive the light emitted by the first optical engine and the light emitted by the second optical engine for aligning the exposure pattern.
  • the first imaging device 410 may be arranged between the first optical engine 110 and the second optical engine 120 to receive the light beams passing through the first optical engine 110 and the second optical engine 120, so as to facilitate the alignment of the optical engine Before the substrate is exposed, the exposure pattern is aligned.
  • the calibration system may further include a first beam splitting device 210, which can be used to split the first light beam passing through the first optical engine 110 and the second light beam passing through the second optical engine 120, and the first imaging The device 410 can be used to receive the first light beam and the second light beam after being split by the first beam splitting device 210 to determine the relative position of the first light beam and the second light beam.
  • a first beam splitting device 210 which can be used to split the first light beam passing through the first optical engine 110 and the second light beam passing through the second optical engine 120, and the first imaging The device 410 can be used to receive the first light beam and the second light beam after being split by the first beam splitting device 210 to determine the relative position of the first light beam and the second light beam.
  • the first beam splitting device 210 and the first imaging device 410 are located on the same side of the substrate.
  • the first beam splitting device 210 may be located on the first optical engine 110 and the substrate (or Between the bearing mechanism 920).
  • the carrying mechanism 920 is used to carry the substrate.
  • the carrying mechanism 920 can also drive the substrate to move relative to the optical engine to realize the optical engine's exposure to the entire surface of the substrate.
  • the substrate may not have been placed on the supporting mechanism 920, or the substrate may have been placed on the supporting mechanism 920. This is not the case in this application. Make specific restrictions.
  • the carrying mechanism 920 may be transparent or hollow in the exposure area, so that the exposure light beam passing through the second optical engine 120 can reach the second surface 912 of the substrate 910, so as to contact the second surface of the substrate 910. Make an exposure.
  • the first beam splitting device 210 may be a transflective beam splitter, for example, the reflectance and light transmittance of the beam splitter are respectively 50% and 50%; or the first beam splitting device 210 may also be a pair of A beam splitter in which the exposure beam is rarely reflected or almost completely transmitted.
  • the first beam splitting device 210 can also be understood as a prism.
  • the first optical engine 110 the first light beam passing through the first exposure engine 110 passes through the first beam splitting device 210 and then reaches the supporting mechanism 920, and then returns to the first beam splitting device 210 after being reflected by the supporting mechanism 920 , The first beam splitting device 210 can reflect the first light beam to the first imaging device 410.
  • the second light beam passing through the second optical engine 120 can pass through the carrying mechanism 920 to the first beam splitting device 210, and the first beam splitting device 210 can reflect the second light beam to the first beam splitting device 210.
  • Imaging device 410 can obtain the positions of the first light beam and the second light beam, thereby obtaining the relative positions of the centers of the first optical engine 110 and the second optical engine 120.
  • first beam splitting device 210 and the first imaging device 410 may also be located on the same side as the second optical engine 120, and the method of acquiring the positions of the first optical engine 110 and the second optical engine 120 is similar to the process described above. , I won’t repeat it here.
  • a marker ruler 810 can also be placed on the carrying mechanism 920.
  • the process of acquiring the first optical engine 110 and the second optical engine 120 by the calibration system can be as follows: placing a marker on the carrying mechanism 920
  • the translucent marking ruler 810 which can semi-transmit and semi-reflect the optical signal.
  • the marks on the marker ruler 810 can be presented in the field of view of the first imaging device 410 and the second imaging device 420, and both the first imaging device 410 and the second imaging device 420 can acquire the markers on the marker ruler 810.
  • the optical axes of the first optical engine 110 and the second optical engine 120 are adjusted so that the optical axis of the first optical engine 110 and the optical axis of the second optical engine 120 are perpendicular to the middle supporting mechanism 920.
  • the first beam splitting device 210 can reflect the first light beam to the first imaging device 410.
  • the second light beam passing through the second optical engine 120 may pass through the carrying mechanism 920 and the marker ruler 810 and then reach the first beam splitting device 210, and the first beam splitting device 210 may reflect the second light beam to the first imaging device 410.
  • the first imaging device 410 can obtain the first light beam passing through the first optical engine 110, and can determine the position of the first light beam in the marking ruler 810.
  • the first imaging device 410 can also obtain the second light beam passing through the second optical engine 120, and can determine the position of the second light beam in the marker ruler 810. Since the first light beam and the second light beam use the same reference object as the position reference mark, the first imaging device 410 can obtain the positions of the first optical engine 110 and the second optical engine 120 relative to the same mark. Therefore, after the first imaging device 410 sends the position information of the first optical engine 110 and the second optical engine 120 relative to the same mark to the control system, the control system can generate the first exposure pattern and the first exposure pattern according to the two position information. Two exposure patterns, so that the generated first exposure pattern and second exposure pattern are aligned on the front and back sides of the substrate 910.
  • the calibration system may further include a second beam splitting device 220 and a second imaging device 420.
  • the second beam splitting device 220 and the second imaging device 420 may be located on the same side as the second optical engine 120.
  • the second light beam passing through the second optical engine 120 passes through the second beam splitting device 220 and then reaches the marking ruler 810. After being reflected by the marking ruler 810, the second light beam returns to the second beam splitting device 220.
  • the second beam splitting device 220 can The second light beam is reflected to the second imaging device 420.
  • the marker ruler 810 shown in FIG. 4 may be a transflective marker ruler, or a marker ruler that almost completely reflects the optical signal.
  • the process of acquiring the first optical engine 110 and the second optical engine 120 by the calibration system may be as follows: placing a marking ruler 810 with a mark on the carrying mechanism 920, and the marking may be presented on the first imaging device 410 and the second optical engine 410 In the field of view of the second imaging device 420, both the first imaging device 410 and the second imaging device 420 can acquire the marks on the marker ruler 810.
  • the optical axes of the first optical engine 110 and the second optical engine 120 are adjusted so that the optical axis of the first optical engine 110 and the optical axis of the second optical engine 120 are perpendicular to the middle supporting mechanism 920.
  • the first imaging device 410 can obtain the first light beam passing through the first optical engine 110 and can determine the position of the first light beam in the marking ruler 810.
  • the second imaging device 420 can obtain the second light beam passing through the second optical engine 120, and can determine the position of the second light beam in the marker ruler 810. Since the information of the marker ruler acquired by the first imaging device 410 and the second imaging device 420 is the same, that is, the first beam and the second beam use the same reference object as the position reference mark, the first imaging device 410 and The second imaging device 420 can acquire the positions of the first optical engine 110 and the second optical engine 120 relative to the same mark.
  • the control system can generate the second position information according to the two position information.
  • An exposure pattern and a second exposure pattern such that the generated first exposure pattern and second exposure pattern are aligned on the front and back sides of the substrate 910.
  • the first imaging device can obtain the light signal emitted by the first optical engine
  • the second imaging device can also obtain the light signal emitted by the second optical engine, and thus can align the exposure pattern. Therefore, the solution shown in FIG. 4 does not have any limitation on the positional deviation between the first optical engine and the second optical engine, and can be applied to scenarios where the positional deviation between the first optical engine and the second optical engine is any value.
  • the embodiment of the present application also provides a digital double-sided lithography or exposure system, which can be used to clearly calibrate the spatial position of the optical engine before exposing the substrate.
  • the digital double-sided lithography or exposure system includes a first optical engine 110 and a second optical engine 120.
  • the first optical engine 110 is used to expose the front surface of the substrate 910
  • the second optical engine 120 Used to expose the reverse side of the substrate 910.
  • the digital double-sided lithography or exposure system may also include a calibration system 610, which may be used to calibrate the position information of the first optical engine 110 and the second optical engine 120.
  • the digital double-sided lithography or exposure system also includes a control system 710 for generating a first exposure pattern and a second exposure pattern according to the position information of the first optical engine 110 and the second optical engine 120, wherein, The first exposure pattern and the second exposure pattern are aligned on the front and back surfaces of the substrate 910.
  • the digital double-sided lithography or exposure system provided by the embodiments of the present application can use a calibration system to clearly calibrate the position of the optical engine.
  • the control system can generate the first exposure pattern and the second exposure pattern, so that the first exposure pattern and the second exposure pattern compensate the positional deviation of the first optical engine and the second optical engine, so that the exposure pattern is accurate on both sides of the substrate Alignment can realize accurate exposure on both sides of the substrate during the exposure process of the substrate.
  • the calibration system 610 can also be used to re-calibrate the position of the optical engine after the relative position of the first optical engine 110 and the second optical engine 120 changes during subsequent use, so as to achieve accurate exposure of the substrate 910.
  • the manner in which the calibration system 610 obtains the position information of the first optical engine 110 and the second optical engine 120 can refer to the above description, and in order to avoid repetition, it will not be repeated here.
  • the structures and functions of the first optical engine 110 and the second optical engine 120 on the upper and lower sides of the substrate 910 are completely the same, it can be based on the relative relationship between the optical centers of the optical engines. Position, adjust the relative position of the exposure pattern generated by the optical engine to compensate for the offset between the two optical engines, so that the exposure patterns of the two optical engines are precisely aligned on both sides of the substrate. Therefore, on the basis of improving productivity and yield, the exposure quality of the exposure system can be significantly improved.
  • the digital double-sided lithography or exposure system can both generate exposure patterns according to the previously acquired position information.
  • the digital double-sided lithography or exposure system can acquire the position information of the two optical engines in real time, and adjust the exposure patterns generated by the two optical engines in real time.
  • the digital double-sided lithography or exposure system may further include a first light source system 310 that provides an exposure light beam for the first optical engine 110.
  • the first light source system 310 may include an exposure light source 311, such as Ultraviolet Rays (UV) may be provided to expose the substrate 910 coated with a photosensitive material such as photoresist.
  • the first light source system 310 may, for example, further include an optical fiber 312 and a light collimation and homogenization device 313.
  • the exposure light beam emitted by the exposure light source 311 enters the collimation and homogenization device 313 through the optical fiber 312 to collimate and/or uniform the exposure light beam. ⁇ Treatment.
  • the first light source system 310 may only include the exposure light source 311, or may include an exposure light source whose output beam has been collimated and/or homogenized, and the embodiment of the present application is not limited thereto.
  • the second light source system 320 that provides the exposure light beam to the second optical engine 120 may include: an exposure light source 321, an optical fiber 322, and a light collimation and homogenization device 323.
  • the first optical engine 110 may include a spatial light modulator 111 for generating the first exposure pattern, a mirror 112 for changing the transmission direction of the light beam, and a mirror 112 for projecting the first exposure pattern onto the substrate 910
  • the projection system 113 of the first surface 911 may include a spatial light modulator 121 for generating a second exposure pattern, a mirror 122 for changing the light beam transmission direction, and a second exposure pattern for projecting the second exposure pattern onto the substrate 910.
  • Two-sided 912 projection system 123 Two-sided 912 projection system 123.
  • the light emitted by the exposure light sources 310 and 320 is reflected by the reflecting mirrors 112 and 122 and then received by the spatial light modulators 111 and 121.
  • the spatial light modulators 111 and 121 can generate the required pixel patterns or pixel mask patterns, and the pixel mask patterns can continue to exist for a specific time synchronized with the movement of the carrying mechanism 920.
  • the light generated by the pixel mask patterns of the spatial light modulators 111 and 121 is input to the projection systems 113 and 123.
  • the light passing through the projection system 113 is focused on the first surface 911 of the substrate 910 to achieve exposure of the first surface 911 of the substrate 910.
  • the light passing through the projection system 123 will pass through the carrying mechanism 920 and be focused on the second surface 912 of the substrate 910 to achieve exposure of the second surface 912 of the substrate 910.
  • the pixel mask pattern is projected on both sides of the substrate 910.
  • the first light beam and the second light beam in the calibration process described above may also be exposure light beams, and the exposure light beams can carry information of the exposure pattern.
  • the marker ruler 810 can be placed in the non-exposed area of the substrate. During the exposure process, the marker ruler 810 will not affect the exposure of the optical engine to the substrate. And during the exposure process, the calibration system can also use the marker 810 to calibrate the spatial positions of the two optical engines in real time to align the exposure patterns in real time, so that the substrate can be exposed more accurately.
  • the beam splitting device shown in FIG. 4 is disposed between the optical engine and the substrate, but the embodiment of the present application is not limited to this.
  • the first beam splitting device 210 may also be arranged in the first optical engine 110.
  • the first beam splitting device 210 may be arranged between the spatial light modulator 111 of the first optical engine 110 and the projection system 113.
  • the second beam splitting device 310 may also be arranged in the second optical engine 120. Specifically, the second beam splitting device 310 may be arranged between the spatial light modulator 121 of the second optical engine 120 and the projection system 123.
  • the digital double-sided lithography or exposure system may further include a carrying mechanism 920 capable of moving the substrate 910 relative to the first optical engine 110 and the second optical engine 120.
  • the carrying mechanism 920 may include an XY moving platform and a Z-axis console.
  • the XY moving platform can realize the relative movement of the optical engine on the plane where the substrate is located.
  • the Z-axis console can control the optical engine to move in a direction perpendicular to the plane where the substrate 910 is located to change the relative distance or height from the substrate 910, so that the light beam passing through the optical engine can be focused on the substrate 910.
  • the two side surfaces 921 and 922 of the carrying mechanism 920 may be transparent or hollow in the exposure area, so that the exposure light beam passing through the second optical engine 120 can reach the second surface 912 of the substrate 910, so that the second surface 912 of the substrate 910 can be affected. Face exposure.
  • the two sides 911 and 912 of the substrate 910 may include an etching layer or a coating layer sensitive to the exposure light beam.
  • the substrate may be a PCB board or wafer used for manufacturing PCBs, a sheet board used for lead frames, or various other flat panels used for liquid crystal display manufacturing, document printing, photocopying, and the like.
  • the exposure beam carrying the pattern information is irradiated on the substrate sensitive to the exposure beam, and the pattern information can be etched on the substrate, thereby realizing the exposure of the substrate.
  • the optical axes of the first optical engine 110 and the second optical engine 120 may have been pre-aligned during design and manufacturing. This alignment can be understood as a rough alignment.
  • the optical axis of the optical engine 120 is perpendicular to the plane where the substrate 910 is located.
  • a marker ruler 810 may be placed on the carrying mechanism 920 as a reference mark. Turn on the exposure light sources 311, 321, and make the exposure light sources 311, 321 generate appropriate light intensity, and then adjust the Z-axis position of the first optical engine 110 and the second optical engine 120 so that the first optical engine 110 and the second optical engine The light of the engine 120 can be focused on the surface 921 of the platform 920.
  • Part of the light beam passing through the first optical engine 110 will pass through the first beam splitter 210, and after irradiating the marking ruler 810, it will carry the information of the reference mark and reflect on the surface of the marking ruler 810.
  • the reflected light ie, the first The light beam
  • the first beam splitting device 210 is reflected by the first beam splitting device 210 into the first imaging device 410, and the camera of the first imaging device 410 obtains the position of the optical center of the first light beam relative to the reference mark, thereby obtaining the first optical engine 110 The position of the optical axis.
  • Part of the light beam passing through the second optical engine 120 will pass through the second beam splitter 310 and irradiate the marking ruler 810, carrying the information of the reference mark, and reflecting on the surface of the marking ruler 810, the reflected light (ie, the second The light beam) is reflected by the second beam splitting device 220 into the second imaging device 420, and the camera of the second imaging device 420 obtains the position of the optical center of the second light beam relative to the reference mark, thereby obtaining the second optical engine 120 The position of the optical axis.
  • the position information of the optical axis of the first optical engine 110 and the position information of the optical axis of the second optical engine 120 may be stored in a computer control system for pattern alignment during exposure.
  • the control system may control the relative position of the exposure pattern generated by the first optical engine 110 and the exposure pattern generated by the second optical engine 120 to compensate for the deviation of the optical axes of the first optical engine 110 and the second optical engine 120, so that The pattern projected on the substrate 910 by the first optical engine 110 and the pattern projected on the substrate 910 by the second optical engine 120 are accurately aligned.
  • the embodiments of the present application do not specifically limit the execution process of the calibration process and the exposure process.
  • the calibration process and the exposure process can be operated in the same beat.
  • the calibration system calibrates the position of the optical engine, and then the control system can decompose and align the exposure pattern according to the position adjustment of the optical engine, and then the optical engine can adjust the exposure pattern after alignment.
  • the substrate is exposed. This method can ensure that the exposure patterns generated by the optical engine can be accurately aligned each time.
  • the position of the optical engine can be calibrated only once, and there is no need to calibrate the position of the optical engine in the subsequent exposure process, and the exposure pattern is directly generated according to the previously calibrated position information to expose the substrate.
  • This exposure method is simple to operate, easy to implement, and can increase the exposure speed.
  • the position of the optical engine may change.
  • the position of the optical engine in order to ensure the exposure accuracy, can be recalibrated before exposure, and then the position information after the recalibration can be used to generate an exposure pattern to expose the substrate.
  • the exposure light sources 310, 320 may provide energy radiation including at least one of ultraviolet light, infrared light, visible light, electron beam, ion beam, and X-ray.
  • the exposure pattern can also be used for calibration.
  • the exposure pattern may be sent to the spatial light modulators 111 and 121, and after the light emitted by the exposure light source passes through the spatial light modulator, the exposure pattern may be projected onto the substrate 910. Then, the Z-axis position of the optical engine can be adjusted so that the exposure pattern can be focused on the surface of the platform 920.
  • the first imaging device 410 and the second imaging device 420 can acquire the relative positions of the exposure pattern and the reference mark, so as to calibrate the positions of the first optical engine and the second optical engine, thereby aligning the exposure patterns.
  • the absolute positions of the first optical engine 110 and the second optical engine 120 can be controlled to remain unchanged to ensure accurate exposure of the exposure patterns on the upper and lower sides.
  • the substrate 910 on the carrying mechanism 920 can be controlled to move in the XY direction to realize the exposure of the entire substrate by the optical engine.
  • the relative positions of the first optical engine 110 and the second optical engine 120 can also be kept unchanged to ensure accurate exposure of the exposure patterns on both sides of the substrate 910.
  • a set of control mechanisms can be used to control the simultaneous movement of the first optical engine 110 and the second optical engine 120, so that the relative positions of the first optical engine 110 and the second optical engine 120 remain unchanged, which can ensure The exposure patterns projected on the substrate 910 by the first exposure engine 110 and the second exposure engine 120 are always kept aligned.
  • the first imaging device and the second imaging device may further include an image lens to better focus the first light beam and the second light beam on the imaging interface.
  • the embodiment of the present application does not limit the arrangement of optical engines.
  • an optical engine may be provided on the front and back sides of the exposed substrate.
  • the first optical engine 110 provided on the front side is used to expose the front side of the substrate 910
  • the second optical engine 120 provided on the reverse side is used to expose the reverse side of the substrate 910.
  • multiple optical engines are provided on the front and back sides of the exposed substrate, and 2 to N optical engines can be provided on one side of the substrate, where N ⁇ 2, and N is a natural number.
  • a row of optical engines can be arranged on both sides of the substrate.
  • a row of optical engines can increase the exposure rate. Compared with the solution with an optical engine, the exposure rate can be shortened by 1/N.
  • the setting direction of the marker ruler can be set along the arrangement direction of the optical engine.
  • the length direction of the marker ruler is parallel to the arrangement direction of the optical engine.
  • the length direction of the marker ruler can also be any other direction.
  • multiple rows of optical engines may be arranged on the front and back sides of the exposure substrate.
  • the optical engines on each side of the exposure substrate may be arranged in an M ⁇ N array, and M and N are integers greater than or equal to 2. Setting multiple rows of optical engines can further increase the exposure rate of the optical engines.
  • the setting direction of the marker ruler can be set along the arrangement direction of the optical engines, or perpendicular to the arrangement direction of the optical engines, or at any angle.
  • the physical positions of the first optical engine and the second optical engine may not be completely aligned. Therefore, the multiple engines and the lower surface of the upper surface of the substrate shown in FIGS. 5 and 6 The positions of the multiple engines may not be completely aligned, and a certain offset is allowed.
  • the offset of the optical engine position can be compensated by adjusting the relative position of the exposure pattern, so that the optical engine on the upper surface of the substrate is projected onto the substrate The pattern is aligned with the pattern projected on the substrate by the optical engine corresponding to the lower surface.
  • the optical engines of two adjacent rows may be arranged alternately.
  • it in the process of exposing the substrate, it only needs to move along one direction of the plane where the substrate is located to complete the exposure of the entire substrate, which can greatly increase the exposure speed and simplify the exposure process.
  • the use of multiple rows of optical engines for exposure can greatly shorten the exposure time.
  • the oblique scanning technology can be used to expose the substrate.
  • the exposure area of a maskless optical engine is a rectangular area.
  • the oblique scanning technique means that the rectangle is inclined with respect to the scanning direction, and the angle of the inclination can be 1-10 degrees.
  • the scanning path of the optical engine may be to scan along the direction 603 first, then scan along the direction 604 perpendicular to the direction 603, and then scan along the direction 605.
  • the exposure area 601 and the exposure area 606 are inclined, and their arrangement in the scanning directions 603 and 605 makes the sum of the widths of the exposure areas in the direction perpendicular to the scanning directions 603 and 605 constant. Between the two scans 603 and 605 there is a stitched area 602,607.
  • the stitched area between the lines 602 and 607 is a smooth transition between two scans, so multiple scan exposures can get a large exposure area, and the exposure on the entire substrate is accurate and flat .
  • Use a compact maskless optical engine so you can get a small exposure area.
  • the use of oblique scanning technology can reduce aberrations, improve the resolution of the exposure pattern, and ensure excellent imaging results.
  • one or more rows of optical engines described above can also be used for exposure. Further, the multiple rows of optical engines can be arranged in a staggered manner.
  • FIG. 11 is a schematic diagram of a stitched area formed after one exposure of two rows of optical engines using oblique scanning technology according to an embodiment of the present application.
  • the two rows of optical engines are arranged in a staggered arrangement, and the exposure of the entire substrate requires only one scan, that is, only one scan along the Y direction is required to complete the exposure of the entire substrate.
  • the exposure areas 701, 721, 720, and 719 are the first row, and the exposure areas 713, 712, and 711 are the second row.
  • the first row scans along paths 703, 705, 708, 710, and the second row scans along paths 705, 707, 709.
  • the stitching areas are 702, 714, 715, 716, 717, and 718. Since the pitch of the optical engines is the same as the effective scanning width of each optical engine, this staggered arrangement of optical engines only requires a single scan exposure, and the X platform may not be required.
  • the use of oblique scanning technology can not only improve the lithography accuracy, but also increase the exposure area.
  • the embodiment of the present application does not specifically limit the placement position of the exposed substrate.
  • the exposed substrate can be placed horizontally, vertically, or placed at any angle.
  • the exposed substrate can be accurately exposed.
  • the position of the supporting mechanism can also be placed horizontally, vertically or inclined at any angle.
  • the substrate may be fixed by a carrier mechanism, so that the first optical engine and the second optical engine can better expose the front and back surfaces of the substrate.
  • the embodiment of the present application does not specifically limit the form of the board carrier mechanism.
  • the carrier mechanism can be understood as a mechanism for carrying or fixing a substrate.
  • the board carrier mechanism may be a mechanism that uses two pieces of glass to fix the substrate.
  • the exposure substrate can be placed between two glass plates, and then the middle area of the two glass plates can be evacuated, and the two glass plates can be used to flatten the exposure substrate.
  • the optical axis of the exposure engine is perpendicular to the plane of the glass plate to achieve exposure of the substrate.
  • the glass plate may be transparent, and the glass plate is not sensitive to the exposure light source, and the exposure beam can pass through the glass plate to reach the surface of the substrate, so that the front and back sides of the substrate can be exposed.
  • a glass plate and a clamping plate mechanism can be used to fix the substrate.
  • a clamping mechanism for a fixed base on one side of the glass plate there is a clamping mechanism for a fixed base, and on the other side there is a clamping mechanism for a movable base.
  • the substrate can be set on the glass plate, and then fixed on the glass plate by a fixed clamping mechanism and a movable clamping mechanism.
  • This carrier mechanism can be compatible with exposure substrates of different sizes, and can flexibly adjust the position of the movable base according to the actual width of the substrate.
  • one side of the substrate can be fixed on the glass plate by a fixed base, and the other side can be fixed by a movable base, which can make the substrate flatten on the glass plate.
  • the projection direction of the optical lens of the optical engine is perpendicular to the exposed substrate, thereby realizing the exposure of the substrate.
  • two fixed clamping mechanisms can also be used to fix the substrate. In this way, a substrate with a specific size can be fixed.
  • the exposure light source emitted by the optical engine can pass through the glass plate to reach a surface of the substrate to achieve exposure to the surface.
  • the clamping mechanism is located at the edge of the substrate, such as the non-exposed area, it will not affect the exposure of the optical engine to the substrate. Therefore, this carrier mechanism can realize double-sided exposure of the substrate by the optical engine.
  • a clamping mechanism may be used to realize the fixation of the substrate. As shown in FIG. 13, four clamping mechanisms can be used, each clamping mechanism clamps a corner of the exposed substrate, and the substrate is flattened by using different pulling directions.
  • the four clamping mechanisms can all be movable, and the four clamping mechanisms can use a diagonal outward direction to flatten the substrate.
  • one of the four splints is a fixed splint, and the other three can be movable splints.
  • the tension direction of the three substrates can be the direction shown in FIG. 13, or other directions, as long as the substrate can be flattened.
  • the projection direction of the optical lens of the optical engine can be perpendicular to the substrate to achieve exposure of the substrate.
  • the four clamping mechanisms can also be located at other positions of the substrate, as long as the substrate can be flattened in different directions.
  • the four clamping mechanisms are all located at the edge of the substrate, for example, the four corners of the substrate, it is possible to realize the double-sided exposure of the substrate by the optical engine.
  • the substrate in the case where the exposed substrate is a full-rolled flexible plate, can be flattened by means of rolls or rollers as shown in FIG. 14.
  • the substrate can be rolled in from one side of the roller and rolled out on the other side, and the exposed area in the middle can be flattened by the roller.
  • the optical engine can realize the double-sided exposure of the substrate.
  • the embodiment of the present application does not specifically limit the placement position of the roller.
  • the direction in which the roller flattens the substrate may be horizontal, vertical, or inclined at any angle, as long as the optical axis of the optical engine is perpendicular to the substrate.
  • the embodiment of the present application does not specifically limit the method for the optical engine to scan the substrate. As long as the optical engine and the substrate can move relative to each other and can achieve complete exposure to the surface of the substrate.
  • the specific scanning method can be shown in Table 1.
  • the moving direction of the optical engine drives the movement direction of the substrate 1 Z direction moves, X, Y direction does not move X, Y direction
  • the optical engine can move in the Z direction, which can refer to the direction perpendicular to the substrate or the carrying mechanism.
  • the optical engine adjusts the position of the Z axis so that the exposure pattern can be focused on the substrate to achieve exposure to the substrate. .
  • the optical engine remains motionless in the X and Y directions, and the carrier mechanism drives the substrate to move in the X and Y directions, thereby realizing the optical engine to expose the entire surface of the substrate.
  • the optical engine since the position of the optical engine in the X and Y directions remains unchanged, if the position of the exposure pattern is aligned before exposure, the optical engine can follow the alignment after the alignment during subsequent exposures. The position of the exposure pattern to achieve precise exposure on both sides of the substrate.
  • the substrate remains stationary in the X and Y directions, that is, the position of the substrate remains unchanged, which can be achieved by controlling the optical engine to move in the X and Y directions. Exposure to the entire surface of the substrate.
  • the control system needs to control the movement of the optical engine on the front of the substrate and the optical engine on the back of the substrate to be the same, that is, control the front and back.
  • the optical engine on the surface moves at the same time to achieve precise exposure of the front and back surfaces of the substrate by the optical engine.
  • the optical engine can move in the X direction to realize the optical engine's exposure to the substrate in the X direction, and the substrate can move along the Y direction to realize the optical engine's exposure to the substrate in the Y direction, so as to realize the optical engine Exposure to the entire surface of the substrate.
  • the optical engine can move in the Y direction to realize the optical engine's exposure to the substrate in the Y direction, and the substrate can move along the X direction to realize the optical engine's exposure to the substrate in the X direction, so as to realize the optical engine Exposure to the entire surface of the substrate.
  • the third and fourth cases are similar to the second case. Because the position of the optical engine changes during the exposure process, for the double-sided lithography system, the control system needs to control the optical engine on the front of the substrate and the optical engine on the back of the substrate to move simultaneously , In order to realize the precise exposure of the front and back surfaces of the substrate by the optical engine.
  • the scanning methods described above all mean that one of the optical engine and the substrate can move in the X direction and the other can move in the Y direction.
  • the optical engine and the substrate can also move in both the X and Y directions.
  • the optical engine can move in the positive direction of the X axis, and at the same time the substrate can move in the negative direction of the X axis, so that the optical engine can expose the substrate in the X direction.
  • the optical engine can move in the positive direction of the Y axis, while the substrate can move in the negative direction of the Y axis, so as to realize the optical engine's exposure to the substrate in the Y direction. Therefore, the optical engine can expose the entire surface of the substrate.
  • the change in the position of the optical engine described above may refer to the change in the position of the optical lens in the optical engine.
  • Controlling the movement of the optical engine may refer to controlling the movement of the optical lens in the optical engine.
  • the embodiment of the present application does not specifically limit the implementation of the digital double-sided lithography or exposure system.
  • the digital double-sided lithography or exposure system may be a system based on digital micro-mirror device (DMD) laser imaging.
  • the system may include a laser light source 1100, an optical engine, and a carrying mechanism 1500, and the optical engine may include a light source collimation system 1300, a DMD chip 1200 and an optical imaging system 1400.
  • the laser light source may include a high-power laser light source formed by coupling multiple low-power lasers through an optical fiber.
  • the DMD chip may include a programmable micro-mirror array, and the optical imaging system may include two sets of upper and lower lenses and a micro-lens array in the middle.
  • the micro-lens array corresponds to the micro-mirror array on the DMD chip 1200, mainly to reduce micro-reflection The size of the specular spot.
  • the system can be that the laser beam is collimated and expanded and projected onto the spatial light modulator DMD at a certain angle. After the DMD, the beam is modulated into multiple beams of light by the micro mirror array, and the multiple beams of light can be separated by the micro mirror. control. Then, the light beam can be converged on the substrate in the form of a dot matrix spot.
  • the system can control the on-off of the multiple beams of the micro-mirror array on the DMD chip 1200 according to the required exposure pattern.
  • the computer can synchronously control the carrying mechanism with the substrate to scan the graphic area, form the required pattern on the photosensitive material of the substrate 1500, and then splice the scanned graphics between the optical engines or the optical engine itself to obtain The required large area exposure pattern.
  • a digital double-sided lithography or exposure system can be realized by a single laser scanning method.
  • the system may include a laser light source 2100, acousto-optical modulators (AOM) 2800, a beam shaping system, a rotating mirror system 2400, an F- ⁇ lens system 2700, a motion platform 2600, and the like.
  • the single laser beam emitted by the laser light source enters the acousto-optic modulation system 2800 after adjusting the light path by beam shaping systems 2200, 2300, filtering, changing the laser direction, and so on.
  • the acousto-optic modulation system uses the principle of acousto-optic interaction to modulate the laser beam by ultrasonic waves to form an on-off switch for the beam.
  • the light beam modulated by the acousto-optic modulation system is reflected by the polygon mirror 2900 and then enters the F- ⁇ lens system 2700.
  • This technology uses the rotating mirror system 2400, the F- ⁇ lens system 2700 and the condenser lens 2500 to make the laser beam perpendicular to the moving platform
  • the movement direction of the 2600 forms a uniform scan, and then the exposure pattern signal is used to synchronously control the on-off scanning laser beam of the acousto-optic modulation system 2800 and the movement of the machine, which can realize the photosensitive of different positions on the substrate surface on the moving platform 2600, and realize the pattern of photoresist Conversion.
  • the system uses a high-power single-number laser light source, with strong exposure power, high precision, large depth of focus, better exposure uniformity, and high graphics quality.
  • the laser light source can generate 355nm UV light.
  • the digital double-sided lithography or exposure system may also be a system based on semiconductor laser fiber coupled close-packed laser dot matrix imaging.
  • Figure 18 is a physical diagram of the optical fiber.
  • Figure 19 is a schematic diagram of a tightly packed fiber coupled laser lattice.
  • the main structure of the system can be as shown in Figure 17: multiple optical fibers can be arranged into a single row or a multi-row optical fiber array through the fiber bundle 3400, and the multiple optical fibers can be single-mode fibers or multi-mode fibers.
  • Each fiber at the other end of the fiber bundle may have fiber connectors 3300, 4300, and a single semiconductor laser can be coupled to a single fiber through the connector.
  • the pattern is output at the light-emitting end of the optical fiber bundle, and the image is imaged on the surface of the substrate through the imaging lens 3200 and 4200.
  • the digital double-sided lithography or exposure system of the embodiment of the present application can also use this lithography system to realize double-sided exposure of the substrate.
  • FIG. 20 is the digital double-sided lithography or exposure system provided by the present application.
  • a schematic flowchart of a photolithography or exposure method, as shown in FIG. 20, the method includes:
  • S5200 Control the first optical engine and the second optical engine to expose the front and back surfaces of the substrate using the first exposure pattern and the second exposure pattern.
  • the digital double-sided lithography or exposure method provided by the embodiment of the present application can adjust the position of the generated exposure pattern according to the positions of the two optical engines to compensate for the offset of the two optical engines, so that the first optical engine is projected onto the substrate
  • the first exposure pattern is precisely aligned with the second exposure pattern projected by the second optical engine onto the substrate, so as to achieve precise exposure on both sides of the substrate.
  • the method further includes: acquiring position information of the first optical engine 110 and the second optical engine 120.
  • the method further includes: acquiring position information of a reference mark on the substrate 910; and generating a first exposure pattern according to the position information of the first optical engine 110 and the second optical engine 120 And the second exposure pattern, including: generating the corresponding position according to the position offset of the first optical engine 110 relative to the reference mark and the position offset of the second optical engine 120 relative to the reference mark The first exposure pattern and the second exposure pattern.
  • the acquiring position information of the first optical engine 110 and the second optical engine 120 includes: receiving a first light beam that passes through the first optical engine 110 and is reflected by the first beam splitting device 210 Receiving the second light beam passed through the second optical engine 120 and reflected by the second beam splitting device 220; determining the position of the first light beam and the position of the second light beam as the first optical engine 110 The position and the position of the second optical engine 120.
  • the method further includes: during the process of exposing the substrate 910, controlling the positions of the first optical engine 110 and the second optical engine 120 to remain unchanged, or controlling the first The relative position of the optical engine 110 and the second optical engine 120 remains unchanged.
  • the optical axis of the first optical engine 110 and the optical axis of the second optical engine 120 are both perpendicular to the substrate 910.
  • FIG. 21 is the digital double-sided lithography or exposure system provided by this application.
  • a schematic flowchart of the method or exposure, as shown in FIG. 21, the method includes:
  • the positions of the two optical engines can be clearly calibrated by using a calibration system.
  • the positions of the generated exposure patterns can be adjusted according to the positions of the two optical engines to compensate for the two
  • the offset of the optical engine enables the first exposure pattern projected by the first optical engine to the substrate and the second exposure pattern projected by the second optical engine to the substrate to be accurately aligned to achieve precise exposure of both sides of the substrate.
  • the method further includes: acquiring position information of a reference mark on the substrate 910; and generating a first exposure pattern according to the position information of the first optical engine 110 and the second optical engine 120 And the second exposure pattern, including: generating the corresponding position according to the position offset of the first optical engine 110 relative to the reference mark and the position offset of the second optical engine 120 relative to the reference mark The first exposure pattern and the second exposure pattern.
  • the acquiring position information of the first optical engine 110 and the second optical engine 120 includes: receiving a first light beam that passes through the first optical engine 110 and is reflected by the first beam splitting device 210 Receiving the second light beam passed through the second optical engine 110 and reflected by the second beam splitting device 220; determining the position of the first light beam and the position of the second light beam as the first optical engine 110 The position and the position of the second optical engine 120.
  • the method further includes: during the process of exposing the substrate 910, controlling the positions of the first optical engine 110 and the second optical engine 120 to remain unchanged, or controlling the first The relative position of the optical engine 110 and the second optical engine 120 remains unchanged.
  • the optical axis of the first optical engine 110 and the optical axis of the second optical engine 120 are both perpendicular to the substrate 910.
  • the embodiment of the present application also provides a computer-readable medium for storing computer program code, and the computer program includes instructions for executing the above-mentioned digital double-sided lithography method of the present application.
  • the readable medium may be a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), which is not limited in the embodiment of the present application.
  • the embodiments of the present application also provide a computer program product, which includes instructions for executing the digital lithography method in any of the above embodiments.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

一种数字化双面光刻或曝光系统和方法,系统包括:第一光学引擎(110),用于对基板(910)的正面进行曝光;第二光学引擎(120),用于对基板(910的反面进行曝光;控制系统(710),用于根据第一光学引擎(110)和第二光学引擎(120)的位置信息,生成在基板(910)的正反面对准的第一曝光图案和第二曝光图案,并控制第一光学引擎(110)和第二光学引擎(120)以第一曝光图案和第二曝光图案对基板(910)的正反面进行曝光。这种系统能够根据两个光学引擎的位置调整生成的曝光图案的位置,通过图形数据生成系统,数据化生成正反两面的曝光图案,使得第一光学引擎投影到基板的第一曝光图案与第二光学引擎投影到基板的第二曝光图案精确对准,实现对基板正反两面的精准曝光。

Description

数字化双面光刻或曝光系统和方法 技术领域
本申请涉及数字化光刻领域,更为具体的,涉及一种数字化双面光刻或曝光系统和方法。
背景技术
数字化光刻系统或曝光系统和方法,可以指通过数字化控制,直接控制光路系统的出光情况,在涂有感光材料的基板(如电路板)上曝光出对应的图案的系统和方法。
传统的双面曝光系统,通常采用菲林(掩模版)转印进行双面电路板的曝光。在曝光前,需要先制作待转印图案的菲林;然后,将带有两面图案的菲林分别固定在上下两面玻璃上;接着,将待转印图案的电路板夹在上下两块玻璃之间,使用蓝紫色高亮度光源进行曝光,将线路图案转印到线路板上,完成双面曝光。
当前市场上已出现用于单面曝光的数字化光刻系统。其优点是减少了掩模版的使用,但是每次只能进行单面曝光。而大多数印制电路板(printed circuit board,PCB)都需要双面曝光,采用单面数字化光刻系统不仅需要对第一面和第二面采取至少两次曝光,并且在对第一面进行曝光之后需进行翻转操作,进行第二面的曝光。而翻转操作还会产生翻转后需要进行两面曝光图案对位的问题。因此,采用单面曝光的数字化光刻或曝光系统,不仅增加了曝光流程,同时需要高精度的双面对位,从而大大降低设备的生产良率和产量。而双面数字化光刻或曝光系统和方法不需要进行两侧图案对齐(双面对位),并且能够与传统的双面曝光设备和其他工艺兼容。因此,采用数字化双面光刻或曝光系统和方法进行双面曝光具有广阔的发展前景,如何利用双面光刻或曝光系统对基板进行双面曝光成为亟需解决的问题。
发明内容
本申请提供一种数字化光刻或曝光系统和方法,能够提高基板上下两面曝光图形的对位精度。
第一方面,提供了一种数字化双面光刻或曝光系统,包括:第一光学引 擎110,用于对基板910的正面进行曝光;第二光学引擎120,用于对所述基板910的反面进行曝光;控制系统710,用于根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,所述第一曝光图案和所述第二曝光图案在所述基板910的正反表面对准;所述控制系统710还用于控制所述第一光学引擎110和所述第二光学引擎120分别以所述第一曝光图案和所述第二曝光图案对所述基板910的正反面进行曝光。
本申请提供的数字化双面光刻或曝光系统,正反两面的光学引擎生成的曝光图案不是固定不变的,而是可以根据两个光学引擎的位置进行调整,以补偿两个光学引擎的偏移,使得第一光学引擎投影到基板的第一曝光图案与第二光学引擎投影到基板的第二曝光图案精确对准,实现对基板正反两面的精准曝光。
在第一方面的一种可能的实现方式中,所述系统还包括标定系统,所述标定系统用于获取所述第一光学引擎110和第二光学引擎120的位置信息。
在第一方面的一种可能的实现方式中,所述标定系统610包括第一成像装置410,所述第一成像装置410用于获取所述基板910上的参考标记的位置信息,所述控制系统710用于根据所述第一光学引擎110相对于所述参考标记的位置偏移量,以及所述第二光学引擎120相对于所述参考标记的位置偏移量,生成所述第一曝光图案和所述第二曝光图案。
在第一方面的一种可能的实现方式中,所述标定系统610包括第一分束装置210和第二分束装置220,以及第一成像装置410和第二成像装置420,所述第一分束装置210和所述第一成像装置410位于所述第一光学引擎110的一侧,所述第二分束装置220和所述第二成像装置420位于所述第二光学引擎120的一侧,所述第一成像装置410用于接收经过所述第一光学引擎110并由所述第一分束装置210反射的第一光束,所述第二成像装置420用于接收经过所述第二光学引擎120并由所述第二分束装置220反射的第二光束;所述控制系统710还用于将所述第一光束的位置和所述第二光束的位置分别确定为所述第一光学引擎110的位置和所述第二光学引擎120的位置。
在第一方面的一种可能的实现方式中,所述控制系统710还用于在对所述基板910进行曝光的过程中,控制所述第一光学引擎110和所述第二光学引擎120的位置保持不变,或控制所述第一光学引擎110和所述第二光学引 擎120的相对位置保持不变。
在第一方面的一种可能的实现方式中,所述第一光学引擎110的光轴和所述第二光学引擎120的光轴均垂直于所述基板910。
在第一方面的一种可能的实现方式中,所述系统包括第一光学引擎阵列和第二光学引擎阵列,所述第一光学引擎阵列用于对所述基板910的正面进行曝光,所述第二光学引擎阵列用于对所述基板的反面进行曝光,所述第一光学引擎阵列和所述第二光学引擎阵列包括的光学引擎均以(M,N)阵列排布,M和N为自然数,其中,所述第一光学引擎阵列包括所述第一光学引擎110,所述第二光学引擎阵列包括所述第二光学引擎120。
在第一方面的一种可能的实现方式中,所述基板910的法线方向为水平方向、垂直方向或倾斜任意角度的方向。
在第一方面的一种可能的实现方式中,所述基板910的载板包括两块玻璃板,所述基板910设置于所述两块玻璃板之间,被所述两块玻璃板压平整。
在第一方面的一种可能的实现方式中,所述基板910的载板包括玻璃板和夹板,所述基板910设置在所述玻璃板上,所述夹板用于将所述基板固定在所述玻璃板上。
在第一方面的一种可能的实现方式中,所述基板910的载板包括4个夹板,所述基板910通过所述4个夹板固定,所述4个夹板分别夹住所述基板910的不同位置,通过使用不同方向的拉力将所述基板910拉平整。
在第一方面的一种可能的实现方式中,所述基板910为软板,所述基板910的载板为轧辊,所述基板910通过一对轧辊进行固定。
在第一方面的一种可能的实现方式中,所述系统采用的曝光方式包括以下中的任意一种:基于数字微型反射镜DMD的曝光方式、基于单束激光扫描成像的方式、基于半导体激光光纤耦合激光器的方式。
第二方面,提供了一种数字化双面光刻或曝光系统,包括:第一光学引擎110,用于对基板910的正面进行曝光;第二光学引擎120,用于对所述基板910的反面进行曝光;标定系统610,用于获取所述第一光学引擎110和所述第二光学引擎120的位置信息;控制系统710,用于根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,所述第一曝光图案和所述第二曝光图案在所述基板910的正反面对准。
本申请提供的标定系统可用于对光学引擎的安装位置进行标定。标定之后,所有的光学引擎在曝光的系统坐标中可以有一个精确的位置定义。控制系统就可以按照引擎的位置对曝光图案进行分解和对准,从而实现对基板正反两面图案的精准曝光。
本申请提供的数字化双面光刻或曝光系统,正反两面的光学引擎生成的曝光图案不是固定不变的,而是可以根据两个光学引擎的位置进行调整,以补偿两个光学引擎的偏移,使得第一光学引擎投影到基板的第一曝光图案与第二光学引擎投影到基板的第二曝光图案精确对准,实现对基板正反两面的精准曝光。
第三方面,提供了一种数字化双面光刻或曝光的方法,该方法应用于上述第一方面或者第一方面任意一种实现方式的数字化双面光刻或曝光系统中,该方法包括:根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,所述第一曝光图案和所述第二曝光图案在所述基板910的正反表面对准;控制所述第一光学引擎110和所述第二光学引擎120分别以所述第一曝光图案和所述第二曝光图案对基板910的正反面进行曝光。
在第三方面的一种可能的实现方式中,所述方法还包括:获取所述第一光学引擎110和第二光学引擎120的位置信息。
在第三方面的一种可能的实现方式中,所述方法还包括:获取所述基板910上的参考标记的位置信息;所述根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,包括:根据所述第一光学引擎110相对于所述参考标记的位置偏移量,以及所述第二光学引擎120相对于所述参考标记的位置偏移量,生成所述第一曝光图案和所述第二曝光图案。
在第三方面的一种可能的实现方式中,所述获取所述第一光学引擎110和所述第二光学引擎120的位置信息,包括:接收经过所述第一光学引擎110并由第一分束装置210反射的第一光束;接收经过所述第二光学引擎120并由第二分束装置220反射的第二光束;将所述第一光束的位置和所述第二光束的位置分别确定为所述第一光学引擎110的位置和所述第二光学引擎120的位置。
在第三方面的一种可能的实现方式中,所述方法还包括:在对所述基板 910进行曝光的过程中,控制所述第一光学引擎110和所述第二光学引擎120的位置保持不变,或控制所述第一光学引擎110和所述第二光学引擎120的相对位置保持不变。
在第三方面的一种可能的实现方式中,所述第一光学引擎110的光轴和所述第二光学引擎120的光轴均垂直于所述基板910。
第四方面,提供了一种数字化双面光刻或曝光的方法,该方法应用于上述第二方面或者第二方面任意一种实现方式的数字化双面光刻或曝光系统中,该方法包括:获取第一光学引擎110和第二光学引擎120的位置信息;根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,所述第一曝光图案和所述第二曝光图案在基板910的正反面对准。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第三方面或第四方面或其任一种可能的实现方式的方法的指令。
第六方面,提供了一种系统芯片,包括:处理单元和通信单元,该处理单元,该处理单元可执行计算机指令,以使该芯片执行上述第三方面或第四方面或其任一种可能的实现方式的方法。
第七方面,提供一种计算机程序产品,该产品包括用于执行上述第三方面或第四方面或其任一种可能的实现方式的方法的指令。
附图说明
图1是本申请实施例提供的一种数字化双面光刻或曝光系统的示意性结构图。
图2是本申请实施例提供的另一种数字化双面光刻或曝光系统的示意性结构图。
图3是本申请实施例提供的另一种数字化双面光刻或曝光系统的示意性结构图。
图4是本申请实施例提供的另一种数字化双面光刻或曝光系统的示意性结构图。
图5是本申请实施例提供的另一种数字化双面光刻或曝光系统的示意性结构图。
图6是本申请实施例提供的一种光学引擎排列方式的示意性结构图。
图7是本申请实施例提供的另一种光学引擎排列方式的示意性结构图。
图8是本申请实施例提供的另一种光学引擎排列方式的示意性结构图。
图9是本申请实施例提供的另一种光学引擎排列方式的示意性结构图。
图10是本申请实施例提供的数字化双面光刻或曝光系统扫描形成的缝合区域的示意图。
图11是本申请实施例提供的数字化双面光刻或曝光系统的整个扫描区域被两排光学引擎一次扫描曝光以后形成的缝合区域的示意图。
图12是本申请实施例提供的基板的摆放位置的示意性结构图。
图13是本申请实施例提供的一种载板机构的示意性结构图。
图14是本申请实施例提供的一种软板卷对卷基板进板的示意性结构图。
图15是本申请实施例提供的一种基于DMD的数字化光刻或曝光系统的示意性结构图。
图16是本申请实施例提供的基于单束激光扫描的数字化光刻或曝光系统的示意性结构图。
图17是本申请实施例提供的一种基于光纤耦合密排激光点阵成像的数字化光刻系统的示意性结构图。
图18是本申请实施例提供的一种光纤的示意图。
图19是本申请实施例提供的光纤耦合密排的激光点阵示意图。
图20是本申请实施例提供的一种数字化双面光刻或曝光的方法的示意性流程图。
图21是本申请实施例提供的另一种数字化双面光刻或曝光的方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例涉及数字化光刻或直写数字成像技术,特别涉及数字化双面光刻系统,该数字化双面光刻系统也称为数字化双面曝光系统或双面无掩膜曝光系统。该系统能够同时对基板的两个表面进行曝光,该基板例如为用于印刷电路板(printed circuit board,PCB)的基板,或用于引线框的片版等。本申请实施例可以应用于印刷电路板、集成电路(integrated  circuit,IC)封装和液晶显示器制造中的双面曝光,还可以应用于文件印刷、照相复制等。
图1是本申请实施例提供的数字化双面光刻或曝光系统的示意性框图。如图1所示,该数字化双面光刻或曝光系统包括:第一光学引擎110和第二光学引擎120。
第一光学引擎110和第二光学引擎120分别设置在基板910的两侧,用于对基板910的正反两面进行曝光。例如,第一光学引擎110可用于对基板910的正面进行曝光,第二光学引擎120可用于对基板910的反面进行曝光。
第一光学引擎110设置在基板910的第一侧。例如,如图1所示,第一光学引擎110设置在基板910的上面,用于生成第一曝光图案并将该第一曝光图案投影到该基板910的第一面911,以实现对基板910的第一面911的曝光。第二光学引擎120设置在该基板911的第二侧。例如,如图1所示,第二光学引擎120设置在基板910的下面,用于生成第二曝光图案并将该第二曝光图案投影到基板910的第二面912,以实现对基板910的第二面912的曝光。
本申请实施例提供的技术方案,不是使用一个光学引擎对基板的两面进行分别曝光,而是通过在基板910两侧分别设置第一光学引擎110和第二光学引擎120,可以实现第一光学引擎110和第二光学引擎120对基板910的正反面同时曝光,能够简化曝光过程。
该数字化双面光刻或曝光系统还可以包括控制系统710,该控制系统710可用于根据第一光学引擎110和第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,且生成的第一曝光图案和第二曝光图案在基板910的正反表面对准。
该控制系统710还用于控制第一光学引擎110和第二光学引擎120分别以第一曝光图案和第二曝光图案对基板910的正反面进行曝光。
换句话说,该控制系统710可用于根据第一光学引擎110的位置信息,生成第一曝光图案,并控制第一光学引擎110以该第一曝光图案对基板910的正面进行曝光;该控制系统710还可用于根据第二光学引擎120的位置信息,生成第二曝光图案,并控制第二光学引擎120以该第二曝光图案对基板910的反面进行曝光。
可选地,该控制系统可以是与该数字化双面光刻或曝光系统相连接的计 算机设备,该计算机设备可通过软件的形式实现对系统的控制。
举例说明,如果控制系统确定出第一光学引擎110的光心相对于第二光学引擎120的光心在X轴上偏移1mm,则控制系统在控制光学引擎生成曝光图案时,可以控制第一光学引擎110生成的第一曝光图案相对于第二光学引擎120生成的第二曝光图案在X轴上偏移-1mm。这样,经过调整之后的第一曝光图案和第二曝光图案能够在基板910的正反两面精确对准。
由于光学引擎存在安装误差,因此,第一光学引擎和第二光学引擎在安装完毕之后,不能够完全对准,也就是说,第一光学引擎和第二光学引擎的光轴没有完全对准。如果采用第一光学引擎和第二光学引擎直接对基板进行曝光,会存在上下基板的曝光图案不能对准的情况,影响曝光质量。在相关技术中,为了实现对基板正反表面的精准曝光,采用的是校准机构对第一光学引擎和第二光学引擎的光轴进行校准,使得第一光学引擎和第二光学引擎的光轴对准,采用校准之后的光学引擎实现对基板的精准曝光。这种方式需要使用额外的机构来控制光学引擎的光轴进行对准,操作复杂,不容易实现。
而本申请实施例提供的技术方案,在对基板的正反表面进行精准曝光的过程中,可以省去对第一光学引擎和第二光学引擎的光轴进行对准的过程,而是通过控制系统对曝光图案进行数据处理,数据化生成正反两面的曝光图案,使得生成的第一曝光图案和第二曝光图案能够补偿第一光学引擎和第二光学引擎之间的位置偏移,实现对基板正反表面的精准曝光,简化曝光流程。
此外,参照之前的专利(申请号为201210159451.0),该专利中的上下光学引擎的精准曝光需要依赖于一套复杂的对准系统,通过该对准系统对准上下光学引擎的光轴,实现对基板的精准曝光。而本申请实施例的数字化双面光刻或曝光系统,可以省去该复杂的对准机构,通过软件的方式,直接生成对准的曝光图案,实现对基板的精准曝光,这种方式能够简化双面光刻或曝光系统的设计,降低成本。
本申请实施例控制系统710对获取第一光学引擎和第二光学引擎的位置的方式不做具体限定。
作为一个示例,第一光学引擎110和第二光学引擎120的位置是提前存储在控制系统710中的。例如,由于在该数字化双面光刻或曝光系统出厂之后,第一光学引擎110和第二光学引擎120的位置就基本固定,不会发生改变。因此,可以在数字化双面光刻或曝光系统出厂时,就将第一光学引擎110 和第二光学引擎120的位置信息存储在系统中,在曝光过程中,可以直接使用该位置信息对生成的曝光图案进行对准。
作为另一个示例,第一光学引擎110和第二光学引擎120可以分别在基板910的上下两面曝光一个曝光图案,例如,第一光学引擎110在基板的正面曝光一个图案,第二光学引擎在基板910的反面曝光一个图案,可以通过测量两个曝光图案之间的距离,确定两个光学引擎之间的偏移。控制系统可以根据两个曝光图案之间的距离,如两个曝光图案之间的错位距离,生成第一曝光图案和第二曝光图案。
作为又一个示例,如图2所示,该数字化双面光刻或曝光系统还可以包括标定系统610,该标定系统610可用于在曝光之前,获取第一光学引擎110和第二光学引擎的120位置信息,并将第一光学引擎110和第二光学引擎120的位置信息发送给控制系统710。通过该标定系统610,能够将第一光学引擎110和第二光学引擎120的空间位置或安装位置标定清楚。
当然,该标定系统也可以是数字化双面光刻或曝光系统的一个外置部件,不是该系统的必须存在的一个部件。例如,该标定系统可以是可拆卸的部件,在曝光前需要标定位置的情况下,将该标定系统安装在该系统上,在标定完之后,将该标定系统拆卸。
下面通过标定系统610对曝光图案进行对准的过程进行详细描述。
在第一光学引擎110和第二光学引擎120对基板910进行曝光之前,还需要对第一光学引擎110和第二光学引擎120对基板910上下两面的曝光图形进行对准,以保证基板910上下两面曝光图形的对位精度。
对曝光图案的对准可以通过标定系统610来实现。该标定系统610可以将第一光学引擎110和第二光学引擎20的空间位置或安装位置标定清楚,标定之后,所有的光学引擎在曝光的系统坐标中可以有一个精确的位置定义,以用于后续对曝光图案的对准。
该标定系统610可用于获取第一光学引擎110和第二光学引擎120的位置信息。该标定系统610还可以将第一光学引擎110和第二光学引擎120的位置信息发送给控制系统710,以便于控制系统710根据第一光学引擎110和第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,其中,第一曝光图案和第二曝光图案在基板910的正反两面对准。
该控制系统710可以控制第一光学引擎110生成的第一曝光图案的位置 保持不变,通过调节第二光学引擎120生成的第二曝光图案的位置,使得第一曝光图案和第二曝光图案在基板910的正反两面对准。或者,控制系统710可以控制第二光学引擎120生成的第二曝光图案的位置保持不变,通过调节第一光学引擎110生成的第一曝光图案的位置,使得第一曝光图案和第二曝光图案在基板910的正反两面对准。或者,控制系统710可以同时控制第一光学引擎110生成的第一曝光图案的位置,以及第二光学引擎120生成的第二曝光图案的位置,使得第一曝光图案和第二曝光图案在基板910的正反两面对准。
第一光学引擎110和第二光学引擎120的位置信息可以指第一光学引擎110和第二光学引擎120的空间绝对位置信息和/或第一光学引擎110和第二光学引擎120的相对位置信息。第一光学引擎110和第二光学引擎120的相对位置可以指第一光学引擎110相对于第二光学引擎120的位置偏移量。
本申请实施例提供的技术方案,正反两面的光学引擎生成的曝光图案不是固定不变的,而是可以根据两个光学引擎的位置进行调整,以补偿两个光学引擎的偏移,使得第一光学引擎投影到基板的第一曝光图案与第二光学引擎投影到基板的第二曝光图案精确对准,实现对基板正反两面的精准曝光。标定系统可用于在光学引擎对基板进行曝光之前对曝光图案进行对准,控制系统可以控制光学引擎使用对准之后的图案对基板进行曝光,从而实现对基板正反两面的精准曝光。
本申请实施例对标定系统610获取第一光学引擎110和第二光学引擎120的位置信息的方式不做具体限定。
作为一个示例,该标定系统610可以包括成像装置,该成像装置可用于分别对第一光学引擎110发出的光学标记(mark),和第二光学引擎120发出的光学mark进行成像,以得到第一光学引擎110和第二光学引擎120的相对位置信息。其中,光学mark例如可以是光学引擎发出的圆或十字光信号等。
作为另一个示例,本申请实施例提供的数字化双面光刻或曝光系统还可以在基板910上设置参考标记,该标定系统910可以获取第一光学引擎110发出的光学mark相对于该参考标记的位置信息,以及第二光学引擎120发出的光学mark相对于该参考标记的位置信息。由于第一光学引擎发出的光学mark和第二光学引擎发出的光学mark的位置信息都是相对于同一个参考 标记的,因此,该标定系统能够得到第一光学引擎110相对于第二光学引擎120的位置信息。
本申请实施例对参考标记的设置方式不做具体限定。例如,该参考标记可以是在基板910上设置的一些标记点,或者该参考标记可以是在承载机构920上设置的一些标记点。又例如,在该承载机构920的表面可以放置标记尺,该标记尺上设置一些标记点作为参考标记。该参考标记可以是在标记尺上刻蚀的一些“十字”标记,或者其他任意形状的标记。该标记尺可以是半透明的,标记尺的表面可以镀有反光膜,镀膜后的标记尺能够更好地反射光学引擎发射的光。可选地,该镀膜之后的标记尺可以为半透明标记尺,能够对光信号半透半反。该标记尺可以放置在非曝光区域,例如,可以放置在基板的边缘位置。再例如,如果基板910上已经有曝光图案,则可以以基板910上的曝光图案作为参考标记确定光学引擎的位置。
可选地,该成像装置例如可以包括电荷耦合器件图像传感器(charge coupled device,CCD)。
下面结合附图3,对本申请化实施例提供的标定系统610进行详细描述。
该标定系统可以包括第一成像装置410,该第一成像装置410可用于接收经过第一光学引擎110的第一光束和经过第二光学引擎120的第二光束,以获取第一光束和第二光束的相对位置。该第一成像装置例如可以包括诸如照相机、摄像机的成像装置。在一些实施例中,该第一成像装置410还可以包括图像透镜,该图像透镜能够将接收到的光束更好地聚焦至成像界面上。该第一成像装置410由此可以捕获经过第一光学引擎110和第二光学引擎120的光束。
该第一成像装置410可以将该第一光束和第二光束的相对位置发送给控制系统,控制系统可根据第一光束和第二光束的相对位置,生成第一光学引擎110的第一曝光图案和第二光学引擎120的第二曝光图案,该第一曝光图案和第二曝光图案在基板的上下表面精确对准。可以理解的是,该对准可以包括完全对准,也可以包括误差范围内的微小偏差或偏移。
本申请实施例提供的技术方案,可以通过一套分束装置和成像装置就能够将第一光学引擎和第二光学引擎的空间位置标定清楚,能够节约成本。
上述技术方案可以适用于第一光学引擎110和第二光学引擎120的位置偏差不是很大的场景,例如,第一光学引擎110的镜头中心的成像和第二光 学引擎120的镜头中心的成像均能够落在第一成像装置410的视场内,这样第一成像装置410就能够同时接收到第一光学引擎发出的光和第二光学引擎发出的光,以用于对曝光图案进行对准。
可选地,该第一成像装置410可设置在第一光学引擎110和第二光学引擎120之间,以接收经过第一光学引擎110和第二光学引擎120的光束,以便于在光学引擎对基板进行曝光之前,对曝光图案进行对准。
该标定系统还可以包括第一分束装置210,该第一分束装置210可用于对经过第一光学引擎110的第一光束和第二光学引擎120的第二光束进行分光,该第一成像装置410可用于接收经过第一分束装置210分光之后的第一光束和第二光束,以确定第一光束和第二光束的相对位置。
可选地,该第一分束装置210和第一成像装置410位于基板的同一侧。
如图3所示,以该第一分束装置210和第一成像装置410与第一光学引擎110位于同一侧为例,该第一分束装置210可以位于第一光学引擎110和基板(或承载机构920)之间。该承载机构920用于承载基板,在一些实施例中,该承载机构920还可以带动基板相对于光学引擎发生移动,以实现光学引擎对基板整个表面的曝光。
可以理解的是,在光学引擎在对基板进行曝光之前的标定过程中,该基板可以是还未放置到承载机构920上,或者该基板已经放置到承载机构920上,本申请实施例对此不做具体限定。
可选地,该承载机构920在曝光区域可以是透明的或者可以是镂空的,以使得经过第二光学引擎120的曝光光束能够到达基板910的第二面912,以对基板910的第二面进行曝光。
该第一分束装置210可以为半透半反的分束镜,如该分束镜的反射率和透光率分别为50%和50%;或者该第一分束装置210也可以为对曝光光束很少反射或几乎全透射的分束镜。该第一分束装置210也可以理解为一个棱镜。就第一光学引擎110而言,经过第一曝光引擎110的第一光束透过第一分束装置210后到达承载机构920,经过承载机构920的反射后再回到该第一分束装置210,该第一分束装置210可以将该第一光束反射至第一成像装置410。就第二光学引擎120而言,经过第二光学引擎120的第二光束可以穿过承载机构920到达第一分束装置210,该第一分束装置210可以将该第二光束反射至第一成像装置410。由此,该第一成像装置410能够获得第一光 束和第二光束的位置,从而获得第一光学引擎110和第二光学引擎120的中心的相对位置。
当然,第一分束装置210和第一成像装置410也可以与第二光学引擎120位于同一侧,其获取第一光学引擎110和第二光学引擎120的位置的方式和上文描述的过程类似,此处不再赘述。
可选地,也可以在承载机构920上放置标记尺810,在此情况下,标定系统获取第一光学引擎110和第二光学引擎120的过程可以如下:在承载机构920上放置带有标记的半透明标记尺810,该半透明标记尺可以对光信号进行半透射半反射。标记尺810上的标记可以呈现在第一成像装置410和第二成像装置420的视野中,第一成像装置410和第二成像装置420均可以获取该标记尺810上的标记。调整第一光学引擎110和第二光学引擎120的光轴,使得第一光学引擎110的光轴和第二光学引擎120的光轴垂直于中间的承载机构920。经过第一光学引擎的第一光束到达标记尺810后,经过标记尺810的反射后,回到第一分束装置210。第一分束装置210可以将该第一光束反射至第一成像装置410中。经过第二光学引擎120的第二光束可以穿过承载机构920和标记尺810后到达第一分束装置210,第一分束装置210可以将第二光束反射至第一成像装置410中。由此,第一成像装置410可以获取经过第一光学引擎110的第一光束,并能够确定该第一光束在该标记尺810中的位置。第一成像装置410还可以获取经过第二光学引擎120的第二光束,并能够确定该第二光束在该标记尺810中的位置。由于第一光束和第二光束是采用相同的参照物作为位置参考标记,第一成像装置410能够获取第一光学引擎110和第二光学引擎120相对于同一标记的位置。因此,在第一成像装置410将第一光学引擎110和第二光学引擎120相对于同一标记的位置信息发送给控制系统后,控制系统能够根据这两个位置信息来生成第一曝光图案和第二曝光图案,以使得生成的第一曝光图案和第二曝光图案在基板910的正反两面对准。
作为另一种实现方式,如图4所示,该标定系统还可以包括第二分束装置220和第二成像装置420。该第二分束装置220和第二成像装置420可以与第二光学引擎120位于同一侧。经过第二光学引擎120的第二光束透过第二分束装置220后到达标记尺810,经过标记尺810的反射后再回到该第二分束装置220,该第二分束装置220可以将该第二光束反射至第二成像装置 420。
可以理解的是,图4所示的标记尺810可以是半透半反的标记尺,也可以是对光信号几乎完全反射的标记尺。
在此情况下,标定系统获取第一光学引擎110和第二光学引擎120的过程可以如下:在承载机构920上放置带有标记的标记尺810,该标记可以呈现在第一成像装置410和第二成像装置420的视野中,第一成像装置410和第二成像装置420均可以获取该标记尺810上的标记。调整第一光学引擎110和第二光学引擎120的光轴,使得第一光学引擎110的光轴和第二光学引擎120的光轴垂直于中间的承载机构920。第一成像装置410可以获取经过第一光学引擎110的第一光束,并能够确定该第一光束在该标记尺810中的位置。第二成像装置420可以获取经过第二光学引擎120的第二光束,并能够确定该第二光束在该标记尺810中的位置。由于第一成像装置410和第二成像装置420获取的标记尺的信息是相同的,也就是说,第一光束和第二光束是采用相同的参照物作为位置参考标记,第一成像装置410和第二成像装置420能够获取第一光学引擎110和第二光学引擎120相对于同一标记的位置。因此,第一成像装置410和第二成像装置420将第一光学引擎110和第二光学引擎120相对于同一标记的位置信息发送给控制系统后,控制系统能够根据这两个位置信息来生成第一曝光图案和第二曝光图案,以使得生成的第一曝光图案和第二曝光图案在基板910的正反两面对准。
图4所示的技术方案,由于基板的上下表面均设置有标定系统,即在基板的上下表面分别设置一套分束装置和成像装置,因此,不论第一光学引擎和第二光学引擎的位置偏差是多大,第一成像装置都能够获取第一光学引擎发出的光信号,第二成像装置也能够获取第二光学引擎发出的光信号,进而能够对曝光图案进行对准。因此,图4所示的方案对第一光学引擎和第二光学引擎的位置偏差不会有任何限定,能够适用于第一光学引擎和第二光学引擎的位置偏差为任意值的场景。
本申请实施例还提供一种数字化双面光刻或曝光系统,可用于在对基板曝光之前将光学引擎的空间位置标定清楚。
如图2所示,该数字化双面光刻或曝光系统包括第一光学引擎110和第二光学引擎120,该第一光学引擎110用于对基板910的正面进行曝光,该第二光学引擎120用于对基板910的反面进行曝光。
该数字化双面光刻或曝光系统还可以包括标定系统610,该标定系统610可用于标定第一光学引擎110和第二光学引擎120的位置信息。
该数字化双面光刻或曝光系统还包括控制系统710,该控制系统710用于根据第一光学引擎110和第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,其中,第一曝光图案和第二曝光图案在基板910的正反表面对准。
本申请实施例提供的数字化双面光刻或曝光系统,可以采用标定系统将光学引擎的位置标定清楚。这样控制系统可以生成第一曝光图案和第二曝光图案,使得第一曝光图案和第二曝光图案补偿第一光学引擎和第二光学引擎的位置偏移,使得曝光图案在基板的正反两面精确对准,因此能够在对基板的曝光过程中,实现对基板正反两面的精准曝光。
该标定系统610还可用于在后续使用过程中,第一光学引擎110和第二光学引擎120的相对位置发生变化后,重新对光学引擎的位置进行标定,实现对基板910的精准曝光。
可选地,标定系统610获取第一光学引擎110和第二光学引擎120的位置信息的方式可以参见上文的描述,为避免重复,此处不再赘述。
本申请实施例提供的技术方案,由于通常情况下,基板910上下两面的第一光学引擎110和第二光学引擎120的结构和功能是完全一致的,因此可以根据光学引擎光心之间的相对位置,调整光学引擎生成的曝光图案的相对位置,以补偿两个光学引擎之间的偏移量,使得两个光学引擎的曝光图案在基板的两侧精确对准。由此能够在提高生产率和产量的基础之上,显著地提高曝光系统的曝光质量。
可选地,在后续的曝光过程中,该数字化双面光刻或曝光系统可以均按照之前获取的位置信息生成曝光图案。或者,该数字化双面光刻或曝光系统可以实时地获取两个光学引擎的位置信息,并实时的调整两个光学引擎生成的曝光图案。
如图5所示,数字化双面光刻或曝光系统还可以包括为第一光学引擎110提供曝光光束的第一光源系统310,该第一光源系统310可以包括曝光光源311,该曝光光源311例如可以提供紫外光(Ultraviolet Rays,UV),以对涂有诸如光刻胶的光敏材料的基板910进行曝光。该第一光源系统310例如还可以包括光纤312以及光准直匀化装置313,曝光光源311发射的曝光 光束通过光纤312进入准直匀化装置313,以对曝光光束进行准直和/或均匀化处理。应理解,第一光源系统310可以仅包括曝光光源311,也可以包括输出光束已经经过准直和/或均匀化处理的曝光光源,本申请实施例并不限于此。类似地,对第二光学引擎120提供曝光光束的第二光源系统320可以包括:曝光光源321、光纤322以及光准直匀化装置323。
可选地,第一光学引擎110可以包括用于生成第一曝光图案的空间光调制器111,用于改变光束传输方向的反射镜112,以及用于将该第一曝光图案投影到基板910的第一面911的投影系统113。类似地,第二光学引擎120可以包括用于生成第二曝光图案的空间光调制器121,用于改变光束传输方向的反射镜122,以及用于将该第二曝光图案投影到基板910的第二面912的投影系统123。
曝光光源310、320发出的光经过反射镜112、122的反射后,被空间光调制器111、121接收到。空间光调制器111、121可以产生需要的像素图形或像素掩膜图形,该像素掩膜图形可以在与承载机构920运动同步的特定时间内持续存在。由空间光调制器111、121的像素掩膜图形产生的光输入到投影系统113、123。通过投影系统113的光会聚焦到基板910的第一面911上,以实现对基板910第一面911的曝光。通过投影系统123的光会穿过承载机构920并聚焦到基板910的第二面912上,以实现对基板910第二面912的曝光。由此,像素掩膜图形就被投影到基板910的两侧。
可选地,上文描述的标定过程中的第一光束和第二光束也可以是曝光光束,该曝光光束可携带曝光图案的信息。
在图4所示的系统中,标记尺810可以放置在基板的非曝光区域,在曝光过程中,该标记尺810不会影响光学引擎对基板的曝光。并且在曝光过程中,标定系统还可以通过标记尺810实时地标定两个光学引擎的空间位置,以对曝光图案进行实时对准,从而能够对基板进行更精准地曝光。
图4所示的分束装置设置于光学引擎与基板之间,但本申请实施例并不限于此。例如,第一分束装置210还可以设置在该第一光学引擎110内。具体地,该第一分束装置210可以设置在第一光学引擎110的空间光调制器111和投影系统113之间。
类似地,第二分束装置310也可以设置在第二光学引擎120内,具体地,第二分束装置310可以设置在第二光学引擎120的空间光调制器121和投影 系统123之间。
该数字化双面光刻或曝光系统还可以包括承载机构920,能够相对于第一光学引擎110和第二光学引擎120移动该基板910。该承载机构920可以包括XY移动平台以及Z轴控制台,该XY移动平台可以实现光学引擎在基板所在的平面,与基板产生相对移动。Z轴控制台可以控制光学引擎在与基板910所在平面相垂直的方向移动,以改变与基板910的相对距离或高度,使得经过光学引擎的光束能够聚焦至基板910上。承载机构920的两侧面921和922在曝光区域可以是透明,也可以是镂空的,以使得经过第二光学引擎120的曝光光束能够到达基板910的第二面912,以对基板910的第二面进行曝光。
基板910的两面911和912上可以包括对曝光光束敏感的蚀刻层或涂覆层。该基板可以是用于制造PCB的PCB板或晶片,也可以是用于引线框的片板,或者还可以是用于液晶显示器制造、文件印刷、照相复制等的各种其他平板。
在曝光过程中,携带有图案信息的曝光光束照射到对曝光光束敏感的基板上,能够在基板上刻蚀出该图案信息,从而实现对该基板的曝光。
下面结合图5,对曝光前的校准过程进行描述。
在曝光前的校准过程中,第一光学引擎110和第二光学引擎120的光轴在设计和制造中可以已经预先对齐,该对齐可以理解为一种粗对齐,第一光学引擎110和第二光学引擎120的光轴垂直于基板910所在的平面。本申请实施例可以在承载机构920上放置标记尺810,作为参考标记。打开曝光光源311、321,并使得曝光光源311、321产生适当的光强,然后,调整第一光学引擎110和第二光学引擎120的Z轴位置,使得经过第一光学引擎110和第二光学引擎120的光能够聚焦到平台920的表面921。
经过第一光学引擎110的部分光束将透过第一分束镜210,照射到标记尺810之后,会携带参考标记的信息,并在标记尺810的表面处产生反射,反射光(即第一光束)会由第一分束装置210反射到第一成像装置410中,并由第一成像装置410的相机获取该第一光束的光心相对于参考标记的位置,从而得到第一光学引擎110的光轴的位置。
经过第二光学引擎120的部分光束将透过第二分束镜310,照射到标记尺810之后,会携带参考标记的信息,并在标记尺810的表面处产生反射, 反射光(即第二光束)会由第二分束装置220反射到第二成像装置420中,并由第二成像装置420的相机获取该第二光束的光心相对于参考标记的位置,从而得到第二光学引擎120的光轴的位置。
第一光学引擎110的光轴的位置信息和第二光学引擎120的光轴的位置信息可以被存储在计算机控制系统中,用于曝光过程中的图案对准。例如,控制系统可以控制第一光学引擎110生成的曝光图案和第二光学引擎120生成的曝光图案的相对位置,以补偿第一光学引擎110和第二光学引擎120的光轴的偏移,使得第一光学引擎110投影到基板910上的图案和第二光学引擎120投影到基板910上的图案准确对齐。
本申请实施例对标定过程和曝光过程的执行过程不做具体限定。
作为一个示例,由于标记尺没有放置在基板的曝光区域,因此,标定过程和曝光过程可以在同一节拍中操作。例如,在每次曝光之前,标定系统都对光学引擎的位置进行标定,然后控制系统可以根据光学引擎的位置调整对曝光图案进行分解和对准,然后光学引擎可以以对准之后的曝光图案对基板进行曝光。这种方式能够保证光学引擎每次生成的曝光图案都能精确对准。
作为又一示例,由于光学引擎安装完之后,其位置基本不会变化。因此,可以只对光学引擎的位置进行一次标定,后续曝光过程就不需要再对光学引擎的位置进行标定,直接根据之前标定的位置信息生成曝光图案,对基板进行曝光。这种曝光方式操作简单,易于实现,能够提高曝光速度。
但是,有一些特殊情况,比如温度的变化,或者光学引擎使用了很长周期后等,光学引擎的位置可能会发生变化。对于这种情况,为了保证曝光精度,可以在曝光之前,对光学引擎的位置进行重新标定,后续可以使用重新标定之后的位置信息生成曝光图案对基板进行曝光。
曝光光源310、320可以提供包括紫外光、红外光、可见光、电子束、离子束和X射线中的至少一种能量辐射。
当然,在标定过程中,也可以使用曝光图形进行标定。例如,可以给空间光调制器111、121发送曝光图形,曝光光源发射的光经过空间光调制器后,可以将对曝光图形投影到基板910上。然后,可以调整光学引擎的Z轴位置,使得曝光图形能够聚焦至平台920的表面。第一成像装置410和第二成像装置420能够获取曝光图形与参考标记的相对位置,以对第一光学引擎和第二光学引擎的位置进行标定,从而对曝光图案进行对准。
在对准之后对基板910的曝光过程中,可以控制第一光学引擎110和第二光学引擎120的绝对位置保持不变,以保证上下两面曝光图案的精准曝光。例如,在曝光过程中,可以通过控制承载机构920上的基板910在XY方向移动,实现光学引擎对整个基板的曝光。
此外,还可以保持第一光学引擎110和第二光学引擎120的相对位置保持不变,来保证基板910正反两面曝光图案的精准曝光。例如,在曝光过程中,可以使用一套控制机构控制第一光学引擎110和第二光学引擎120同时移动,使得第一光学引擎110和第二光学引擎120的相对位置保持不变,这样能够保证第一曝光引擎110和第二曝光引擎120投影到基板910上的曝光图案一直保持对准的状态。
可选地,第一成像装置和第二成像装置还可以包括图像透镜,以更好地将第一光束和第二光束聚焦在成像界面上。
本申请实施例对光学引擎的排列方式并不限定。
例如,可以如图6所示,在曝光基板的正反两面各设置一个光学引擎。设置正面的第一光学引擎110用于对基板910正面进行曝光,设置在反面的第二光学引擎120用于对基板910反面进行曝光。
又例如,曝光基板的正反两面各设置多个光学引擎,可以在基板的一侧设置2~N个光学引擎,N≥2,N为自然数。如图7所示,可以在基板的两侧各设置一排光学引擎,就基板的一面而言,设置一排光学引擎能够提高曝光速率。相比于设置一个光学引擎的方案,曝光速率能够缩短1/N。
在该情况下,标记尺的设置方向可以沿着光学引擎的排列方向进行设置。例如,该标记尺的长度方向与光学引擎的排列方向平行。当然,该标记尺的长度方向也可以为其他任意方向。
再例如,可以在曝光基板的正反两面各设置多排光学引擎,例如,曝光基板每侧的光学引擎可以是M×N阵列排布,M、N均为大于等于2的整数。设置多排光学引擎,可以进一步提高光学引擎的曝光速率。
在该情况下,标记尺的设置方向可以沿着光学引擎的排列方向设置,或者垂直于光学引擎的排列方向,或者为任意角度的方向。
需要说明的是,根据上文的描述,第一光学引擎和第二光学引擎的物理位置可以不是完全对准的,因此,图5和图6所示的基板上表面的多个引擎和下表面的多个引擎的位置也可以不是完全对准的,允许有一定的偏移,可 以通过调整曝光图案的相对位置来补偿光学引擎位置的偏移,使得基板上表面的光学引擎投影到基板上的图案与下表面对应的光学引擎投影到基板上的图案对准。
可选地,对于有多排光学引擎的结构,相邻两排的光学引擎之间可以交错排列。如图8所示,第一排光学引擎和第二排光学引擎之间有一定的错位,这样可以通过单次扫描即可完成整个基板的曝光。换句话说,在对基板进行曝光的过程中,仅需要沿着基板所在平面的一个方向移动就可以完成整个基板的曝光,能够大大提高曝光速度,简化曝光流程。尤其是对于超大基板而言,采用多排光学引擎进行曝光,能够大大缩短曝光时间。
可选地,光学引擎在扫描曝光过程中,可以采用斜扫描的技术对基板进行曝光。一般来说,一个无掩膜光学引擎的曝光区域是一个矩形区域,斜扫描技术是指该矩形相对于扫描方向倾斜,该倾斜的角度可以是1~10度。
如图10所示,光学引擎的扫描路径可以为先沿着方向603扫描,之后沿着垂直于方向603的方向604扫描,然后再沿着方向605进行扫描。曝光区域601和曝光区域606是倾斜的,它们在扫描方向603和605的排列使得在垂直于扫描方向603和605的方向上的曝光区域的宽度之和是常数。两次扫描603和605之间有一个缝合区域602、607。由于长方形601、606是倾斜的,线602、607之间的缝合区域是两次扫描之间的平滑过渡,所以多次扫描曝光可以得到一个很大的曝光区域,整个基板上的曝光精确且平整,使用紧凑的无掩膜光学引擎,因此可以得到小的曝光区域。同时,由于每个无掩膜光学引擎结构紧凑,因此,采用斜扫描技术可以达到减少像差、提高曝光图案的分辨率以及确保优秀的成像效果。
当然,为了增加曝光速度,也可以采用上文描述的一排或多排光学引擎进行曝光。进一步地,该多排光学引擎可以采用交错排列的方式。
图11是本申请实施例提供的两排光学引擎采用斜扫描技术一次曝光以后形成的缝合区域的示意图。
在图11所示的例子中,两排光学引擎交错排列,整个基板的曝光只需要一次扫描,即只需要沿着Y方向进行一次扫描,即可完成整个基板的曝光。曝光区域701、721、720、719是第一排,曝光区域713、712、711是第二排。第一排沿着路径703、705、708、710扫描,第二排沿着路径705、707、709扫描。缝合区域为702、714、715、716、717、718。由于光学引擎的间 距和每个光学引擎的有效扫描宽度相同,这种光学引擎的交错排列方式只需要单次扫描曝光,可以不需要X平台。
采用斜扫描技术不仅能够提高光刻精度,还能够增加曝光面积。
可选地,本申请实施例对曝光基板的摆放位置不做具体限定。如图12所示,该曝光基板可以是水平放置,也可以是垂直放置,或者可以是倾斜任意角度进行放置。在曝光过程中,只要光学引擎的光轴垂直于曝光基板,就可以对该曝光基板进行精准曝光。同样地,由于曝光基板需要放置在承载机构上进行曝光,因此,承载机构的位置也可以是水平放置、垂直放置或者是倾斜任意角度放置。
可选地,基板可以通过载板机构进行固定,使得第一光学引擎和第二光学引擎能够更好地对基板的正反面进行曝光。本申请实施例对载板机构的形式不做具体限定。载板机构可以理解为用于承载或固定基板的机构。
作为一个示例,该载板机构可以是采用两块玻璃固定基板的机构。例如,可以将曝光基板放置在两块玻璃板之间,然后对两块玻璃的中间区域进行抽真空,利用两块玻璃压平曝光基板。在曝光过程中,曝光引擎的光轴垂直于玻璃板平面,从而实现对基板的曝光。
其中,该玻璃板可以是透明的,且该玻璃板对曝光光源不敏感,曝光光束能够透过玻璃板到达基板表面,从而能够实现对基板的正反面进行曝光。
作为另一个示例,可以采用玻璃板和夹板机构的方式来固定基板。例如,在玻璃板的一侧有固定基座的夹板机构,另一侧有可以活动基座的夹板机构。基板可以设置在玻璃板上,然后通过固定就做的夹板机构和活动的夹板机构固定在玻璃板上。这种载板机构能够兼容不同尺寸的曝光基板,能够根据基板的实际宽度灵活调整活动基座的位置。
基板放置在玻璃板上之后,基板的一边可以通过固定基座固定在玻璃板上,另一边通过活动基座进行固定,该活动基座可以使得基板在该玻璃板上被拉平。在曝光过程中,光学引擎的光学镜头的投影方向垂直于曝光基板,从而实现对基板的曝光。
当然,也可以采用两个固定的夹板机构来固定基板。这种方式可以对具有特定尺寸的基板进行固定。
由于玻璃板是透明的,且对曝光光源不敏感,因此,光学引擎发出的曝光光源能够透过玻璃板到达基板的一个表面,实现对该表面的曝光。对于基 板的另一个表面,由于夹板机构位于基板的边缘位置,例如非曝光区域,也不会影响光学引擎对基板的曝光。因此,这种载板机构能够实现光学引擎对基板的双面曝光。
作为又一示例,可以使用夹板机构实现对基板的固定。如图13所示,可以使用4个夹板机构,每个夹板机构夹住曝光基板的一个角,通过使用不同的拉力方向将基板拉平整。
可选地,该4个夹板机构可以都是活动的,该四个夹板机构可以使用沿着对角线向外的方向拉平基板。或者该4个夹板中有一个是固定夹板,其余3个可以是活动夹板。在拉平过程中,该3个基板的拉力方向可以是如图13所示的方向,或者,也可以是其他的方向,只要能够将基板拉平整即可。
同样地,在曝光过程中,光学引擎的光学镜头的投影方向可以与基板垂直,以实现对基板的曝光。
当然,该4个夹板机构也可以位于基板的其他位置,只要能够沿着不同的方向将基板拉平整即可。
由于4个夹板机构均位于基板的边缘位置,例如,基板的4个角,因此,能够实现光学引擎对基板的双面曝光。
作为又一示例,对于曝光基板是整卷的软板的情况下,可以采用图14所示的轧辊或辊轮的方式对基板拉平。例如,该基板可以从辊轮的一侧卷进,另一侧卷出,中间被曝光的区域可以通过辊轮将基板拉平。
由于中间的曝光区域均能够被光学引擎照射到,因此,能够实现光学引擎对基板的双面曝光。
本申请实施例对辊轮的摆放位置不做具体限定。如图14所示,该辊轮拉平基板的方向可以是水平的,也可以是垂直的,或者也可以是倾斜任意角度的方向,只要光学引擎的光轴垂直于基板即可。
可选地,本申请实施例对光学引擎扫描基板的方法不做具体限定。只要光学引擎和基板能够发生相对运动且能够实现对基板的表面的完整曝光即可。
具体的扫描方法可以如表1所示。
表1
序号 光学引擎的移动方向 承载机构带动基板的移动方向
1 Z方向动,X、Y方向不动 X、Y方向动
2 X、Y、Z方向动 X、Y方向不动
3 X、Z方向动 Y方向动
4 Y、Z方向动 X方向动
对于上述4种情况,光学引擎可以在Z方向移动,Z方向可以指垂直于基板或承载机构的方向,光学引擎通过调整Z轴的位置,使得曝光图案能够聚焦至基板上,实现对基板的曝光。
对于第一种情况,在对基板进行曝光的过程中,光学引擎在X、Y方向保持不动,由承载机构带动基板在X、Y方向移动,从而实现光学引擎对基板整个表面的曝光。
这种情况下,由于光学引擎在X、Y方向的位置保持不变,因此,如果在曝光之前对曝光图案的位置进行对准之后,光学引擎在后续的曝光过程中,均可以按照对准之后的曝光图案的位置来实现对基板正反两面的精准曝光。
对于第二种情况,在对基板进行曝光的过程中,基板在X、Y方向保持不动,也就是说,基板的位置保持不变,可以通过控制光学引擎在X、Y方向移动,从而实现对基板整个表面的曝光。
这种情况下,由于光学引擎在曝光过程中位置会发生变化,因此对于双面光刻系统,需要控制系统控制基板正面的光学引擎和基板反面的光学引擎的运动轨迹相同,也就是控制正反表面的光学引擎同时运动,以实现光学引擎对基板正反表面的精准曝光。
对于第三种情况,光学引擎可以在X方向移动,以实现光学引擎对基板X方向的曝光,而基板可以沿着Y方向移动,以实现光学引擎对基板Y方向的曝光,从而能够实现光学引擎对基板整个表面的曝光。
对于第四种情况,光学引擎可以在Y方向移动,以实现光学引擎对基板Y方向的曝光,而基板可以沿着X方向移动,以实现光学引擎对基板X方向的曝光,从而能够实现光学引擎对基板整个表面的曝光。
第三、第四种情况与第二种情况类似,由于光学引擎在曝光过程位置会发生变化,因此对于双面光刻系统,需要控制系统控制基板正面的光学引擎和基板反面的光学引擎同时运动,以实现光学引擎对基板正反表面的精准曝光。
上文描述的扫描方法均是指光学引擎和基板中有一个能够在X方向移 动,有一个能够在Y方向移动,当然,本申请实施例并不限于此。光学引擎和基板也可以在X、Y方向均能够发生移动。在曝光过程中,光学引擎可以在X轴的正方向移动,而同时基板可以在X轴的负方向移动,从而实现光学引擎对基板X方向的曝光。同样地,光学引擎可以在Y轴的正方向移动,而同时基板可以在Y轴的负方向移动,从而实现光学引擎对基板Y方向的曝光。因此,能够实现光学引擎对基板整个表面的曝光。
上文描述的光学引擎的位置发生变化可以指光学引擎中的光学镜头的位置发生变化。控制光学引擎移动可以指控制光学引擎中的光学镜头移动。
本申请实施例对数字化双面光刻或曝光系统的实现方式不做具体限定。
作为一个示例,该数字化双面光刻或曝光系统可以是基于数字微型反射镜(digital micro mirror device,DMD)激光成像的系统。如图15所示,该系统可以包括激光光源1100、光学引擎和承载机构1500,该光学引擎可以包括光源准直系统1300、DMD芯片1200和光学成像系统1400。该激光光源可以包括多个小功率激光器通过光纤耦合而成的高功率激光光源。DMD芯片可以包括可编程微反射镜阵列,光学成像系统可以包括上下两组镜头及中间的微透镜阵列,微透镜阵列与DMD芯片1200上的微反射镜阵列一一对应,主要是为了缩小微反射镜反射光斑的尺寸。该系统可以是由激光光束经过准直扩束,以一定角度投射到空间光调制器DMD上,经过DMD后光束被微反射镜阵列调制成多束光,该多束光可以被微反射镜单独控制。然后,光束可以以点阵光斑的形式汇聚到基板上。该系统可以根据所需曝光的图形控制DMD芯片1200上的微反射镜阵列的多光束的通断。同时,计算机可以同步控制带有基板的承载机构进行图形面阵扫描,在基板1500的感光材料上形成所需图案,再通过光学引擎之间或光学引擎自身对扫描出的图形进行拼接,即可得到所需要的大面积曝光图案。
作为另一个示例,数字化双面光刻或曝光系统可以采用单束激光扫描的方式来实现。如图16所示,该系统可以包括激光光源2100、声光调制系统(acousto-optical modulators,AOM)2800、光束整形系统、转镜系统2400、F-θ透镜系统2700、运动平台2600等。激光光源发出的单束激光经过光束整形系统2200、2300的整束、滤光、改变激光走向等调整光路之后,进入声光调制系统2800。声光调制系统利用声光相互作用原理,使激光束被超声波调制而形成光束的通断开关。经声光调制系统调制之后的光束被多边形反 射镜2900反射后进入F-θ透镜系统2700,该技术利用转镜系统2400、F-θ透镜系统2700和聚光透镜2500使得激光束垂直于运动平台2600的运动方向形成均匀扫描,再利用曝光图形信号同步控制声光调制系统2800的通断扫描激光光束和机台的运动,可实现运动平台2600上基底表面不同位置的感光,实现光阻的图形转换。该系统利用高功率单数激光光源,曝光功率较强,精度较高,焦深范围大,曝光均匀性较好,图形质量高。
该激光光源可以产生355nm的UV光。
作为又一示例,该数字化双面光刻或曝光系统还可以是基于半导体激光光纤耦合密排激光点阵成像的系统。图18为光纤的实物图。图19为光纤耦合密排的激光点阵示意图。该系统的主要结构可以如图17所示:多根光纤可以通过光纤集束3400排列成单排或多排光纤阵列,该多根光纤可以是单模光纤,也可以是多模光纤。光纤束的另一端的每一根光纤可以带有光纤连接器3300、4300,通过连接器可以将单个半导体激光耦合到单根光纤。然后可以通过控制半导体激光3100、4100的开关,即在光纤束的出光端输出图形,并通过成像镜头3200、4200成像在基板表面。本申请实施例的数字化双面光刻或曝光系统也可以采用这种光刻系统实现对基板的双面曝光。
本申请实施例还提供了另一种数字化双面光刻或曝光的方法,该方法可以应用在上述本申请实施例提供的数字化双面光刻或曝光系统中,图20是本申请提供的数字化光刻或曝光的方法的示意性流程图,如图20所示,该方法包括:
S5100、根据第一光学引擎和第二光学引擎的位置信息,生成第一曝光图案和第二曝光图案,所述第一曝光图案和所述第二曝光图案在所述基板的正反表面对准。
S5200、控制所述第一光学引擎和所述第二光学引擎以所述第一曝光图案和所述第二曝光图案对所述基板的正反面进行曝光。
本申请实施例提供的数字化双面光刻或曝光的方法,可以根据两个光学引擎的位置调整生成的曝光图案的位置,以补偿两个光学引擎的偏移,使得第一光学引擎投影到基板的第一曝光图案与第二光学引擎投影到基板的第二曝光图案精确对准,实现对基板正反两面的精准曝光。
对第一光学引擎和第二光学引擎的获取方式可以参照上文的描述,此处不再赘述。
可选地,所述方法还包括:获取所述第一光学引擎110和第二光学引擎120的位置信息。
可选地,所述方法还包括:获取所述基板910上的参考标记的位置信息;所述根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,包括:根据所述第一光学引擎110相对于所述参考标记的位置偏移量,以及所述第二光学引擎120相对于所述参考标记的位置偏移量,生成所述第一曝光图案和所述第二曝光图案。
可选地,所述获取所述第一光学引擎110和所述第二光学引擎120的位置信息,包括:接收经过所述第一光学引擎110并由第一分束装置210反射的第一光束;接收经过所述第二光学引擎120并由第二分束装置220反射的第二光束;将所述第一光束的位置和所述第二光束的位置分别确定为所述第一光学引擎110的位置和所述第二光学引擎120的位置。
可选地,所述方法还包括:在对所述基板910进行曝光的过程中,控制所述第一光学引擎110和所述第二光学引擎120的位置保持不变,或控制所述第一光学引擎110和所述第二光学引擎120的相对位置保持不变。
可选地,所述第一光学引擎110的光轴和所述第二光学引擎120的光轴均垂直于所述基板910。
本申请还提供了另一种数字化双面光刻或曝光的方法,该方法可以应用在上述本申请实施例提供的数字化双面光刻或曝光系统中,图21是本申请提供的数字化光刻的方法或曝光的示意性流程图,如图21所示,该方法包括:
S6100、获取第一光学引擎110和第二光学引擎120的位置信息;
S6200、根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,所述第一曝光图案和所述第二曝光图案在基板910的正反面对准。
本申请实施例提供的数字化双面光刻的方法,采用标定系统可以将两个光学引擎的位置标定清楚,另外,可以根据两个光学引擎的位置调整生成的曝光图案的位置,以补偿两个光学引擎的偏移,使得第一光学引擎投影到基板的第一曝光图案与第二光学引擎投影到基板的第二曝光图案精确对准,实现对基板正反两面的精准曝光。
可选地,所述方法还包括:获取所述基板910上的参考标记的位置信息; 所述根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,包括:根据所述第一光学引擎110相对于所述参考标记的位置偏移量,以及所述第二光学引擎120相对于所述参考标记的位置偏移量,生成所述第一曝光图案和所述第二曝光图案。
可选地,所述获取所述第一光学引擎110和所述第二光学引擎120的位置信息,包括:接收经过所述第一光学引擎110并由第一分束装置210反射的第一光束;接收经过所述第二光学引擎110并由第二分束装置220反射的第二光束;将所述第一光束的位置和所述第二光束的位置分别确定为所述第一光学引擎110的位置和所述第二光学引擎120的位置。
可选地,所述方法还包括:在对所述基板910进行曝光的过程中,控制所述第一光学引擎110和所述第二光学引擎120的位置保持不变,或控制所述第一光学引擎110和所述第二光学引擎120的相对位置保持不变。
可选地,所述第一光学引擎110的光轴和所述第二光学引擎120的光轴均垂直于所述基板910。
应理解,在本申请实施例中,术语“第一”、“第二”仅为了区分不同的器件,而不应对器件的数量构成任何限定,并且“第一”和“第二”可以互换,本申请实施例并不限于此。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,或者可以新加入某些步骤等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述本申请的数字化双面光刻的方法的指令。该可读介质可以是只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM),本申请实施例对此不做限制。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括用于执行上述任一实施例中的数字化光刻的方法的指令。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、 随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种数字化双面光刻或曝光系统,其特征在于,包括:
    第一光学引擎110,用于对基板910的正面进行曝光;
    第二光学引擎120,用于对所述基板910的反面进行曝光;
    控制系统710,用于根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,所述第一曝光图案和所述第二曝光图案在所述基板910的正反表面对准;
    所述控制系统710还用于控制所述第一光学引擎110和所述第二光学引擎120分别以所述第一曝光图案和所述第二曝光图案对所述基板910的正反面进行曝光。
  2. 根据权利要求1所述的系统,其特征在于,所述系统还包括标定系统,所述标定系统用于获取所述第一光学引擎110和第二光学引擎120的位置信息。
  3. 根据权利要求2所述的系统,其特征在于,所述标定系统610包括第一成像装置410,所述第一成像装置410用于获取所述基板910上的参考标记的位置信息,所述控制系统710用于根据所述第一光学引擎110相对于所述参考标记的位置偏移量,以及所述第二光学引擎120相对于所述参考标记的位置偏移量,生成所述第一曝光图案和所述第二曝光图案。
  4. 根据权利要求2或3所述的系统,其特征在于,所述标定系统610包括第一分束装置210和第二分束装置220,以及第一成像装置410和第二成像装置420,所述第一分束装置210和所述第一成像装置410位于所述第一光学引擎110的一侧,所述第二分束装置220和所述第二成像装置420位于所述第二光学引擎120的一侧,
    所述第一成像装置410用于接收经过所述第一光学引擎110并由所述第一分束装置210反射的第一光束,所述第二成像装置420用于接收经过所述第二光学引擎120并由所述第二分束装置220反射的第二光束;
    所述控制系统710还用于将所述第一光束的位置和所述第二光束的位置分别确定为所述第一光学引擎110的位置和所述第二光学引擎120的位置。
  5. 根据权利要求1-4中任一项所述的系统,其特征在于,所述控制系统710还用于在对所述基板910进行曝光的过程中,控制所述第一光学引擎 110和所述第二光学引擎120的位置保持不变,或控制所述第一光学引擎110和所述第二光学引擎120的相对位置保持不变。
  6. 根据权利要求1-5中任一项所述的系统,其特征在于,所述第一光学引擎110的光轴和所述第二光学引擎120的光轴均垂直于所述基板910。
  7. 根据权利要求1-6中任一项所述的系统,其特征在于,所述系统包括第一光学引擎阵列和第二光学引擎阵列,所述第一光学引擎阵列用于对所述基板910的正面进行曝光,所述第二光学引擎阵列用于对所述基板的反面进行曝光,所述第一光学引擎阵列和所述第二光学引擎阵列包括的光学引擎均以(M,N)阵列排布,M和N为自然数,其中,所述第一光学引擎阵列包括所述第一光学引擎110,所述第二光学引擎阵列包括所述第二光学引擎120。
  8. 根据权利要求1-7中任一项所述的系统,其特征在于,所述基板910的法线方向为水平方向、垂直方向或倾斜任意角度的方向。
  9. 根据权利要求1-8中任一项所述的系统,其特征在于,所述基板910的载板包括两块玻璃板,所述基板910设置于所述两块玻璃板之间,被所述两块玻璃板压平整。
  10. 根据权利要求1-9中任一项所述的系统,其特征在于,所述基板910的载板包括玻璃板和夹板,所述基板910设置在所述玻璃板上,所述夹板用于将所述基板固定在所述玻璃板上。
  11. 根据权利要求1-10中任一项所述的系统,其特征在于,所述基板910的载板包括4个夹板,所述基板910通过所述4个夹板固定,所述4个夹板分别夹住所述基板910的不同位置,通过使用不同方向的拉力将所述基板910拉平整。
  12. 根据权利要求1-11中任一项所述的系统,其特征在于,所述基板910为软板,所述基板910的载板为轧辊,所述基板910通过一对轧辊进行固定。
  13. 根据权利要求1-12中任一项所述的系统,其特征在于,所述系统采用的曝光方式包括以下中的任意一种:基于数字微型反射镜DMD的曝光方式、基于单束激光扫描成像的方式、基于半导体激光光纤耦合激光器的方式。
  14. 一种数字化双面光刻或曝光系统,其特征在于,包括:
    第一光学引擎110,用于对基板910的正面进行曝光;
    第二光学引擎120,用于对所述基板910的反面进行曝光;
    标定系统610,用于获取所述第一光学引擎110和所述第二光学引擎120的位置信息;
    控制系统710,用于根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,所述第一曝光图案和所述第二曝光图案在所述基板910的正反面对准。
  15. 一种数字化双面光刻或曝光的方法,其特征在于,所述方法应用于权利要求1-13中任一项所述的数字化双面光刻或曝光系统中,所述方法包括:
    根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,所述第一曝光图案和所述第二曝光图案在所述基板910的正反表面对准;
    控制所述第一光学引擎110和所述第二光学引擎120分别以所述第一曝光图案和所述第二曝光图案对基板910的正反面进行曝光。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    获取所述第一光学引擎110和第二光学引擎120的位置信息。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    获取所述基板910上的参考标记的位置信息;
    所述根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,包括:
    根据所述第一光学引擎110相对于所述参考标记的位置偏移量,以及所述第二光学引擎120相对于所述参考标记的位置偏移量,生成所述第一曝光图案和所述第二曝光图案。
  18. 根据权利要求16或17所述的方法,其特征在于,所述获取所述第一光学引擎110和所述第二光学引擎120的位置信息,包括:
    接收经过所述第一光学引擎110并由第一分束装置210反射的第一光束;
    接收经过所述第二光学引擎120并由第二分束装置220反射的第二光束;
    将所述第一光束的位置和所述第二光束的位置分别确定为所述第一光 学引擎110的位置和所述第二光学引擎120的位置。
  19. 根据权利要求15-18中任一项所述的方法,其特征在于,所述方法还包括:
    在对所述基板910进行曝光的过程中,控制所述第一光学引擎110和所述第二光学引擎120的位置保持不变,或控制所述第一光学引擎110和所述第二光学引擎120的相对位置保持不变。
  20. 根据权利要求15-19中任一项所述的方法,其特征在于,所述第一光学引擎110的光轴和所述第二光学引擎120的光轴均垂直于所述基板910。
  21. 一种数字化双面光刻或曝光的方法,其特征在于,所述方法应用于权利要求14所述的数字化双面光刻或曝光系统中,所述方法包括:
    获取第一光学引擎110和第二光学引擎120的位置信息;
    根据所述第一光学引擎110和所述第二光学引擎120的位置信息,生成第一曝光图案和第二曝光图案,所述第一曝光图案和所述第二曝光图案在基板910的正反面对准。
PCT/CN2019/073193 2019-01-25 2019-01-25 数字化双面光刻或曝光系统和方法 WO2020151000A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/073193 WO2020151000A1 (zh) 2019-01-25 2019-01-25 数字化双面光刻或曝光系统和方法
CN201980002735.9A CN111742263A (zh) 2019-01-25 2019-01-25 数字化双面光刻或曝光系统和方法
US17/425,726 US20220163894A1 (en) 2019-01-25 2019-01-25 System and method for double-sided digital lithography or exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073193 WO2020151000A1 (zh) 2019-01-25 2019-01-25 数字化双面光刻或曝光系统和方法

Publications (1)

Publication Number Publication Date
WO2020151000A1 true WO2020151000A1 (zh) 2020-07-30

Family

ID=71735396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073193 WO2020151000A1 (zh) 2019-01-25 2019-01-25 数字化双面光刻或曝光系统和方法

Country Status (3)

Country Link
US (1) US20220163894A1 (zh)
CN (1) CN111742263A (zh)
WO (1) WO2020151000A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI794734B (zh) * 2021-01-29 2023-03-01 川寶科技股份有限公司 決定基板之轉向的方法與曝光機台

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114518695A (zh) * 2020-11-20 2022-05-20 苏州源卓光电科技有限公司 一种双面曝光系统的校正方法和曝光方法
CN112684679A (zh) * 2020-12-30 2021-04-20 中山新诺科技股份有限公司 一种双面数字化光刻系统上下图形对准的标定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1318705A2 (en) * 1998-11-10 2003-06-11 ManiaBarco N.V. Optical detection module for measuring the cross-scan position of a moving optical beam in a scanning apparatus
CN1531039A (zh) * 2003-03-12 2004-09-22 新光电气工业株式会社 图形绘制装置和方法以及在该装置中使用的测试装置
CN102944978A (zh) * 2011-08-15 2013-02-27 中山新诺科技有限公司 曝光系统、校准系统、光学引擎、曝光方法和制造方法
US20180210345A1 (en) * 2015-10-26 2018-07-26 Esko-Graphics Imaging Gmbh Process and apparatus for controlled exposure of flexographic printing plates and adjusting the floor thereof
CN104635431B (zh) * 2013-11-06 2018-09-28 阿卢蒂克斯公司 用于曝光机的托盘
CN209297103U (zh) * 2019-01-25 2019-08-23 中山新诺科技股份有限公司 数字化双面光刻或曝光系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509955B2 (en) * 2000-05-25 2003-01-21 Ball Semiconductor, Inc. Lens system for maskless photolithography
EP1486826A3 (en) * 2003-06-10 2006-12-13 Fuji Photo Film Co., Ltd. Pixel position specifying method, method of correcting image offset, and image forming device
JP2006337614A (ja) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp 描画方法および装置
US8235695B2 (en) * 2009-07-17 2012-08-07 Nikon Corporation Pattern forming device, pattern forming method, and device manufacturing method
JP5431179B2 (ja) * 2010-01-15 2014-03-05 日置電機株式会社 回路基板固定装置および回路基板検査装置
KR101202319B1 (ko) * 2010-07-26 2012-11-16 삼성전자주식회사 노광 장치 및 그 제어 방법
TW201224678A (en) * 2010-11-04 2012-06-16 Orc Mfg Co Ltd Exposure device
JP6342310B2 (ja) * 2014-11-20 2018-06-13 津田駒工業株式会社 ワーク固定用治具
CN107664924B (zh) * 2016-07-29 2020-06-16 上海微电子装备(集团)股份有限公司 一种曝光装置及方法
CN106737310B (zh) * 2017-03-30 2018-05-04 漳州建鑫机械有限公司 一种旋转结构固定定位装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1318705A2 (en) * 1998-11-10 2003-06-11 ManiaBarco N.V. Optical detection module for measuring the cross-scan position of a moving optical beam in a scanning apparatus
CN1531039A (zh) * 2003-03-12 2004-09-22 新光电气工业株式会社 图形绘制装置和方法以及在该装置中使用的测试装置
CN102944978A (zh) * 2011-08-15 2013-02-27 中山新诺科技有限公司 曝光系统、校准系统、光学引擎、曝光方法和制造方法
CN104635431B (zh) * 2013-11-06 2018-09-28 阿卢蒂克斯公司 用于曝光机的托盘
US20180210345A1 (en) * 2015-10-26 2018-07-26 Esko-Graphics Imaging Gmbh Process and apparatus for controlled exposure of flexographic printing plates and adjusting the floor thereof
CN209297103U (zh) * 2019-01-25 2019-08-23 中山新诺科技股份有限公司 数字化双面光刻或曝光系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI794734B (zh) * 2021-01-29 2023-03-01 川寶科技股份有限公司 決定基板之轉向的方法與曝光機台

Also Published As

Publication number Publication date
CN111742263A (zh) 2020-10-02
US20220163894A1 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
CN209297103U (zh) 数字化双面光刻或曝光系统
US8994916B2 (en) Double-sided maskless exposure system and method
US8363209B2 (en) Method and apparatus to adjust misalignment of the maskless exposure apparatus
CN103048885B (zh) 无掩膜曝光系统及方法
JP5326259B2 (ja) 照明光学装置、露光装置、およびデバイス製造方法
WO2020151000A1 (zh) 数字化双面光刻或曝光系统和方法
JP6465591B2 (ja) 描画装置
JP3320262B2 (ja) 走査露光装置及び方法並びにそれを用いたデバイス製造方法
US20090021656A1 (en) Exposure method and apparatus
US20130088704A1 (en) Ultra-Large Size Flat Panel Display Maskless Photolithography System and Method
KR101446484B1 (ko) 묘화 시스템
WO2019218676A1 (zh) 数字化光刻系统和方法
KR101234932B1 (ko) 마스크리스 노광 장치와 방법, 및 평판 디스플레이 패널의제조 방법
KR20040002800A (ko) 주사노광장치 및 방법
US8072580B2 (en) Maskless exposure apparatus and method of manufacturing substrate for display using the same
JP4144059B2 (ja) 走査型露光装置
WO2019169733A1 (zh) 一种无掩模光刻系统及其曝光方法
KR20110095571A (ko) 디지털 노광 방법 및 이를 수행하기 위한 디지털 노광 장치
JP5326928B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2008152010A (ja) 鮮鋭化素子の製造方法
JP5064862B2 (ja) アライメントマーク測定方法および装置並びに描画方法および装置
CN218547250U (zh) 晶圆对准装置及光刻装置
JP2011119596A (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2005175264A (ja) パターン露光装置
TW202309675A (zh) 曝光裝置、曝光方法及平面顯示器之製造方法、以及曝光資料作成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912172

Country of ref document: EP

Kind code of ref document: A1