WO2020149724A1 - 리튬이차전지용 음극 활물질 및 이를 포함한 리튬이차전지 - Google Patents

리튬이차전지용 음극 활물질 및 이를 포함한 리튬이차전지 Download PDF

Info

Publication number
WO2020149724A1
WO2020149724A1 PCT/KR2020/000961 KR2020000961W WO2020149724A1 WO 2020149724 A1 WO2020149724 A1 WO 2020149724A1 KR 2020000961 W KR2020000961 W KR 2020000961W WO 2020149724 A1 WO2020149724 A1 WO 2020149724A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
grains
sio
silicon oxide
powder
Prior art date
Application number
PCT/KR2020/000961
Other languages
English (en)
French (fr)
Inventor
오일근
김동혁
이용주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190007121A external-priority patent/KR102682363B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/420,592 priority Critical patent/US11942640B2/en
Priority to CN202080009651.0A priority patent/CN113728465A/zh
Priority to JP2021539674A priority patent/JP7239712B2/ja
Priority to EP20740917.8A priority patent/EP3902035A4/en
Publication of WO2020149724A1 publication Critical patent/WO2020149724A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/22Magnesium silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium secondary battery and a lithium secondary battery including the same.
  • Carbon-based materials obtained by calcining graphite or organic materials as a negative electrode material for a nonaqueous electrolyte battery have excellent charging and discharging efficiency and excellent cycle life, and have been widely used in practice.
  • the negative electrode material to replace the carbon-based material having low battery capacity due to structural characteristics There has been a need for.
  • the silicon-based negative electrode is the most actively studied because the theoretical capacity of silicon is 4,200mAh/g, which is 10 times higher than the theoretical capacity of the carbon-based negative electrode, 370mAh/g.
  • silicon expands by more than 300% in volume during reaction with lithium during charging, and contracts during discharge, which causes problems such as cracking of the negative electrode material particles and electrode dropping due to such rapid expansion and contraction. There is a fatal problem that occurs and the cycle life decreases rapidly.
  • the silicon oxide negative electrode proposed to improve this problem has a smaller capacity than silicon, but is very superior to the capacity of the carbon-based negative electrode, and has a low volume expansion rate compared to metal, and thus is receiving attention as a material having excellent cycle life characteristics.
  • this silicon oxide is applied as a negative electrode material for a secondary battery, the capacity is only half the capacity of the silicon negative electrode material, but is about 5 times larger than that of the carbon-based negative electrode material.
  • silicon oxide is used as a negative electrode material for a secondary battery, there is still a problem in that the volume change during charging and discharging is still large compared to a carbon-based negative electrode material.
  • lithium and silicon oxide react during initial charging to generate lithium silicide and lithium oxide (lithium oxide and lithium silicate), of which lithium oxide is subsequently electrochemical Since it is not involved in the reaction, an irreversible reaction occurs in which a part of lithium transferred to the negative electrode during initial charging does not return to the positive electrode during discharge, resulting in a problem of depleting lithium.
  • the present invention is to solve the above problems, provides a silicon-silicon oxide-magnesium silicate (Si-SiOx-Mg silicate) composite for use as a negative electrode active material for a lithium secondary battery, included in the composite It is an invention for providing a negative electrode active material for a lithium secondary battery that improves initial efficiency, capacity and cycle of a lithium secondary battery by including the two types of magnesium-silicates in a predetermined configuration and amount.
  • Si-SiOx-Mg silicate silicon-silicon oxide-magnesium silicate
  • the present invention is to provide a method for manufacturing a negative electrode active material for the lithium secondary battery.
  • a silicon oxide (SiO x , 0 ⁇ x ⁇ 2) matrix a silicon oxide (SiO x , 0 ⁇ x ⁇ 2) matrix; And a silicon-silicon oxide-magnesium silicate composite comprising silicon (Si) grains, MgSiO 3 grains, and Mg 2 SiO 4 grains in the silicon oxide matrix, wherein the content of MgSiO 3 grains versus Mg 2 SiO 4 grains Ratio is provided by the negative electrode active material for a lithium secondary battery that is included in an amount ranging from 2:1 to 1:1 by weight.
  • the ratio of the content of the MgSiO 3 grains to the Mg 2 SiO 4 grains is included in an amount ranging from 1.5:1 to 1:1 based on weight. Active material is provided.
  • MgSiO 3 crystal grains having a crystal size in the range of 5 to 30 nm are negative electrode active materials for lithium secondary batteries. Is provided.
  • the Mg 2 SiO 4 crystal grains have a crystal size in the range of 20 to 50 nm, and a negative electrode active material for a lithium secondary battery is provided. .
  • the Mg 2 SiO 4 crystal grains having a crystal size of 1 to 2 times that of the MgSiO 3 crystal grains A negative electrode active material is provided.
  • the total Mg metal is in an amount of 4% to 20% by weight based on the weight of the silicon-silicon oxide-magnesium silicate composite particles. It is provided with a negative electrode active material for a lithium secondary battery that is included as.
  • the ratio of the content of MgSiO 3 grains to Mg 2 SiO 4 grains in any one of the first to sixth aspects is an amount ranging from 1.5:1 to 1:1 by weight. It is provided with a negative electrode active material for a lithium secondary battery that is included as.
  • a negative electrode for a lithium secondary battery comprising the negative electrode active material for a lithium secondary battery according to any one of the first to seventh aspects.
  • a lithium secondary battery comprising the negative electrode for a lithium secondary battery according to the eighth aspect.
  • a method for producing a silicon-silicon oxide-magnesium silicate composite described in the first aspect wherein the silicon powder and silicon dioxide powder (SiO 2 ) have a molar ratio of 1:0.5 to 1:1.5.
  • the non-aqueous electrolyte secondary battery including the Si-SiOx-Mg silicate composite according to the present invention as a negative electrode active material can satisfy all of high battery capacity, excellent cycle characteristics, and high charge/discharge efficiency.
  • D50 average particle diameter in the present specification means a value measured by a weight average value D50 (particle diameter or median diameter when the cumulative weight becomes 50% of the total weight) in measuring the particle size distribution by laser light diffraction. do.
  • a silicon oxide (SiO x , 0 ⁇ x ⁇ 2) matrix In the negative electrode active material for a lithium secondary battery of the present invention, a silicon oxide (SiO x , 0 ⁇ x ⁇ 2) matrix; And a silicon-silicon oxide-magnesium silicate composite comprising silicon (Si) grains, MgSiO 3 grains, and Mg 2 SiO 4 grains in the silicon oxide matrix, wherein the content of MgSiO 3 grains versus Mg 2 SiO 4 grains Ratio is provided by the negative electrode active material for a lithium secondary battery that is included in an amount ranging from 2:1 to 1:1 by weight.
  • 'Crystal size' in the present specification was determined by analyzing a diffraction peak intensity ratio by X-ray diffraction analysis, and refer to Evaluation Example 1 below for a specific determination method.
  • silicon grains, MgSiO 3 grains and Mg 2 SiO 4 grains are evenly distributed and distributed in the silicon oxide matrix, and more preferably, the silicon grains, MgSiO 3 grains and Mg 2
  • the SiO 4 crystal grains are evenly distributed and distributed in the silicon oxide matrix and are present in a buried/embedded form.
  • the MgSiO 3 crystal grains and the Mg 2 SiO 4 crystal grains are in a state in which the elements of each phase are diffused with each other so that the interface of each phase is bonded, that is, each phase is bonded at an atomic level.
  • the MgSiO 3 crystal grains have a crystal size of 5 nm to 30 nm range or 5 nm to 25 nm range or 8 nm to 17 nm range or 11 nm to 17 nm.
  • initial efficiency is increased and life characteristics can be improved.
  • it may be determined by a Shirer equation (see Equation 1 below) based on the full width at half maximum (FWHM) of the diffraction peak of MgSiO 3 (310), and the precipitation temperature during the manufacturing process Is based on the silicon-silicon oxide-magnesium silicate complex obtained at 25°C.
  • the X-ray diffraction analysis can be measured according to the XRD method.
  • the XRD measurement can be measured using a CuK ⁇ ray (eg, a wavelength of the source is 1.5406 kHz) in a range of 2 ⁇ of 10° to 90°.
  • the scan speed can be appropriately selected.
  • the Mg 2 SiO 4 grains have a crystal size of 20 nm to 100 nm range or 22 nm to 50 nm range or 22 to 40 nm range or 22 to 33 nm.
  • initial efficiency may be increased and life characteristics may be improved.
  • X-ray diffraction analysis it can be determined by the Sirah method (see Equation 1 below) based on the half-width (FWHM) of the diffraction peak of Mg 2 SiO 4 (130). It is based on the silicon-silicon oxide-magnesium silicate complex.
  • each of the MgSiO 3 grains and the Mg 2 SiO 4 grains has the above-described D50 average particle size, and at the same time, the Mg 2 SiO 4 grains are at least one or more times larger than the MgSiO 3 grains. Or it has a crystal size of 1 to 2 times larger. Even if each of the MgSiO 3 grains and the Mg 2 SiO 4 grains has the above-described crystal size, the effect of improving electrical conductivity when the Mg 2 SiO 4 grains have a D50 average particle size at least 1 times larger than the MgSiO 3 grains, It can exhibit the effect of improving the life characteristics by improving the physical strength.
  • the MgSiO 3 crystal grains and Mg 2 SiO 4 crystal grains are distributed in a silicon oxide matrix.
  • silicon oxide refers to a general compound represented by SiO x (0 ⁇ x ⁇ 2).
  • the silicon oxide matrix is composed of silicon oxide (SiO x , 0 ⁇ x ⁇ 2), and is an inert component to Li so that insertion/desorption of Li does not occur during charging of the battery.
  • Si crystal grains are dispersed and distributed in the silicon oxide matrix.
  • the size of the Si crystal grain is preferably in the range of 1 nm to 15 nm or 5 nm to 12 nm or 10 nm to 12 nm. When the size of the Si crystal, that is, the size of the crystal exceeds the above range, deterioration in life characteristics can be observed.
  • the size of the Si crystal grains can be determined by a Shira method (see equation 1 below) based on the half-width (FWHM) of the diffraction peak of Si(111) during X-ray diffraction analysis, and the precipitation temperature during the manufacturing process is 25. It is based on the silicon-silicon oxide-magnesium silicate complex obtained at °C.
  • the total Mg metal is 4% by weight to 20% by weight, or 6% by weight to 16% by weight, or 8% by weight to 12% by weight of the silicon-silicon oxide-magnesium silicate composite particles It is included in an amount by weight.
  • the silicon-silicon oxide-magnesium silicate composite may have an effect of improving efficiency while minimizing capacity reduction of a lithium secondary battery using the negative electrode active material.
  • the ratio of the content of MgSiO 3 grains to Mg 2 SiO 4 grains in the silicon-silicon oxide-magnesium silicate composite particles is 2:1 to 1:1 or 1.5:1 to 1 by weight. :1 or 1.4:1 to 1:1.
  • MgSiO 3 crystal grains and Mg 2 SiO 4 grains are included in a ratio in the above range, initial efficiency is increased and life characteristics are improved.
  • the silicon-silicon oxide-magnesium silicate composite particles may have an average particle diameter (D50) in the range of 0.1 ⁇ m to 20 ⁇ m or 0.5 ⁇ m to 15 ⁇ m.
  • D50 average particle diameter
  • the silicon-silicon oxide-magnesium silicate composite has an average particle diameter in the above range, it can be uniformly distributed in the slurry when preparing a slurry for cathode preparation and requires only an appropriate amount of binder, and silicon crystal grains during charge and discharge This expansion can minimize the problem of the silicon-silicon oxide-magnesium silicate composite particles being detached from the current collector.
  • the silicon-silicon oxide-magnesium silicate composite particles may have a BET specific surface area by nitrogen measurement in the range of 1 m 2 /g to 50 m 2 /g.
  • a uniform negative electrode may be formed from the coating of the slurry for preparing the negative electrode, and side reactions in the battery during charging and discharging of the lithium secondary battery Can be minimized.
  • the silicon-silicon oxide-magnesium silicate composite particles may further include a coating layer or a deposition layer comprising a carbon-based material on the surface.
  • a silicon-based material is used as the negative electrode active material for a lithium secondary battery, electrical resistance may be increased, so that the surface of the particles containing the silicon-based material can be coated with a carbon-based material to improve conductivity.
  • the type of the carbon-based material is not particularly limited, but may be carbon black and carbon fibers such as graphite such as natural graphite, artificial graphite, and expanded graphite, acetylene black, and ketjen black.
  • carbon-based materials such as methane, ethane, ethylene, propane, butane, acetylene, carbon monoxide, benzene, toluene, and xylene can be used. Since the conductivity of the silicon-silicon oxide-magnesium silicate composite particles can be increased, a form of a coating layer or a deposition layer made of a carbon-based material on the surface of the particles is preferable.
  • the carbon-based material per 100 parts by weight of the silicon-silicon oxide-magnesium silicate composite particles may be used in an amount ranging from 1 part by weight to 20 parts by weight or 1 part by weight to 10 parts by weight.
  • the carbon-based material is used in the above-described content range, it becomes advantageous in terms of the conductivity of the electrode, the charge and discharge characteristics of the battery, and the cycle characteristics, so that the problem of unnecessarily increasing the electrode specific surface area does not occur.
  • the present invention is a silicon powder and silicon dioxide powder (SiO 2 ) in a molar ratio of 1:0.5 to 1:1.5, and a molar ratio of silicon powder and Mg powder is 1: 0.01 to 1:1.
  • the temperature for heating the mixture of the raw material mixture powder of silicon and silicon dioxide (SiO 2 ) and Mg is less than 1,000° C., it may be difficult to improve initial efficiency by heat treatment, and when it exceeds 1,800° C., the silicon crystal grows excessively. Due to the expansion and contraction of the volume of silicon crystals due to the storage of lithium ions, cracks may occur in the silicon oxide composite structure, thereby deteriorating cycle characteristics.
  • the gaseous silicon oxide (SiO x ) and the gaseous Mg may be formed by a heating process in a reduced pressure atmosphere of -50 to -200 torr, respectively.
  • the temperature of depositing the silicon-silicon oxide-magnesium silicate composite by heating the mixture of the raw material mixture powder of silicon and silicon dioxide (SiO 2 ) and Mg, and cooling, may be 650°C to 900°C.
  • the temperature at which the silicon-silicon oxide-magnesium silicate complex is precipitated may be controlled from 650°C to 900°C.
  • the temperature at which the silicon-silicon oxide-magnesium silicate complex is precipitated by cooling is less than 650°C, the silicon oxide and the Mg are rapidly cooled after reaction in the gas phase to form nano powders, thereby producing a ratio of the silicon-silicon oxide-magnesium silicate complex.
  • the temperature at which the silicon-silicon oxide-magnesium silicate composite is precipitated by cooling the surface may be deteriorated due to a rapid increase in surface area, and the temperature of the silicon silicate composite is greater than 900°C, the lifespan characteristics of the battery rapidly increase as the size of the silicon crystal increases to several tens of nm or more. It may degrade.
  • the method of forming a coating layer or a deposition layer containing a carbon-based material on the surface of the silicon-silicon oxide-magnesium silicate composite is not particularly limited, but after forming an organic polymer film on the surface of the silicon-silicon oxide-magnesium silicate composite It can be thermally decomposed in an inert atmosphere, or heat treated with a hydrocarbon or organic gas to form a coating layer or a deposition layer containing a carbon-based material by a chemical vapor deposition method. In a preferred embodiment of the present invention, no additional heat treatment is performed after forming the coating layer or the deposition layer.
  • the carbon-based material when the temperature is in the range of 600° C. to 1,200° C., the carbon-based material can be produced at an appropriate rate without decomposing the raw material gas too quickly.
  • hydrocarbon-based materials such as benzene, toluene, xylene, methane, ethane, ethylene, propane, butane, acetylene, and carbon monoxide may be used, and a cheaper liquefied petroleum gas (LPG) or liquefied natural gas ( LNG).
  • LPG liquefied petroleum gas
  • LNG liquefied natural gas
  • the carbon-based material formed on the surface of the silicon-silicon oxide-magnesium silicate composite particles is crystalline carbon, amorphous carbon, carbon fiber, carbon whisker, carbon nanofiber, carbon nanotube, graphene, graphene oxide, and reduced graphene oxide It may include any one or a combination of pins.
  • a lithium secondary battery comprising a positive electrode, a separator located between the positive electrode and the negative electrode, and an electrolyte, together with a negative electrode comprising the silicon-silicon oxide-magnesium silicate composite particles as a negative electrode active material Is provided.
  • the positive electrode may include a mixture of a positive electrode current collector, a positive electrode active material, a conductive material, and a binder on the positive electrode current collector.
  • the positive electrode current collector should be highly conductive and the mixture can be easily adhered to and should not be reactive in the voltage range of the battery.
  • Specific examples of the positive electrode current collector include aluminum, nickel, or alloys thereof.
  • the thickness of the positive electrode current collector may be 3 ⁇ m to 500 ⁇ m.
  • the conductive material is a material having conductivity without causing a chemical change in the lithium secondary battery of the present invention.
  • Specific examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive materials such as polyphenylene derivatives.
  • the binder is a component that assists in the bonding of the positive electrode active material and the conductive material and the like to the current collector.
  • Specific examples of the binder include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, reclaimed cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene monomer (EPDM) rubber, hydrogenated nitrile butadiene rubber (HNBR), sulfonated ethylene propylene diene, styrene butadiene rubber (SBR), fluorine rubber, various copolymers, etc. Can.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material positioned on the negative electrode current collector.
  • the negative electrode current collector should have high conductivity and easily adhere to the negative electrode active material, and should not be reactive in the voltage range of the battery.
  • Specific examples of the negative electrode current collector include copper, gold, nickel, or alloys thereof.
  • the description of the negative electrode active material is the same as the description of the negative electrode active materials of the above-described embodiments.
  • the separator prevents a short circuit between the positive electrode and the negative electrode, and provides a passage for lithium ions.
  • An insulating thin film having high ion permeability and mechanical strength may be used as the separator.
  • Specific examples of the separation membrane include polyolefin-based polymer membranes such as polypropylene and polyethylene, or multiple membranes thereof, microporous films, woven fabrics, or nonwoven fabrics.
  • the solid electrolyte such as a polymer is used as the electrolyte to be described later, the solid electrolyte may also serve as a separator.
  • the electrolyte may be an electrolyte containing a lithium salt.
  • the lithium salt of the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 - , and the like -, CF 3 CO 2 -, SCN - or (CF 3 CF 2 SO 2) 2 N.
  • the external shape of the lithium secondary battery according to another embodiment of the present invention is not particularly limited, but specific examples include a cylindrical shape, a square shape, a pouch shape or a coin shape using a can.
  • the lithium secondary battery according to another embodiment of the present invention can be used not only for a battery cell used as a power source for a small device, but also for a medium-to-large-sized battery module including a plurality of battery cells.
  • the medium and large-sized devices may include an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle or a power storage system, but are not limited thereto.
  • a molar ratio of 1, the silicon powder and the Mg powder 1 : a silicon powder and a silicon dioxide powder (SiO 2) 1 a mixture of a silicon powder, silicon dioxide powder (SiO 2) and Mg powder so that the mole ratio of 0.5 It was injected into the reactor.
  • the mixture of the silicon powder, silicon dioxide powder (SiO 2 ) and Mg powder is heated to 1,500° C. under a reduced pressure atmosphere of ⁇ 100 torr under vacuum, resulting in a mixture powder of the silicon powder and silicon dioxide powder (SiO 2 ).
  • the gaseous reaction was performed by simultaneously generating silicon oxide vapor and magnesium vapor, and then cooled to precipitate a silicon-silicon oxide-magnesium silicate complex at 800°C.
  • the silicon-silicon oxide-magnesium silicate composite was pulverized to a mean particle size (D50) of 5 ⁇ m with a jet mill, and then the silicon-silicon oxide-magnesium silicate composite particle powder was recovered.
  • the Mg content was 10.2% based on the weight of the silicon-silicon oxide-magnesium silicate composite particles.
  • the recovered silicon-silicon oxide-magnesium silicate composite particle powder was subjected to CVD treatment under a mixed gas of argon (Ar) and methane (CH 4 ) at a temperature of 1,000° C. for 2 hours using a tube type electric furnace, resulting in a carbon content of 5 wt. %, the silicon-silicon oxide-magnesium silicate composite particles on which the carbon coating layer was formed were prepared. No additional heat treatment was performed on the silicon-silicon oxide-magnesium silicate composite particles on which the prepared carbon coating layer was formed.
  • the obtained silicon-silicon oxide-magnesium silicate complex includes a silicon oxide (SiO x , 0 ⁇ x ⁇ 2) matrix; And silicon (Si) grains, MgSiO 3 grains, and Mg 2 SiO 4 grains in the silicon oxide matrix; and the size of each of the MgSiO 3 grains and Mg 2 SiO 4 grains in the silicon-silicon oxide-magnesium silicate complex , And the ratio of the Mg 2 SiO 4 grain size to the MgSiO 3 grain size was as described in [Table 1].
  • a silicon-silicon oxide-magnesium silicate composite particle powder was prepared in the same manner as in Example 1, except that the heat treatment temperature of the mixed powder was 1400°C.
  • Silicon-silicon oxide-magnesium silicate composite particles were prepared in the same manner as in Example 1, except that the cooling temperature after gas phase reaction was generated by simultaneously generating silicon oxide vapor and magnesium vapor to be 600°C.
  • a molar ratio of 1, the silicon powder and the Mg powder 1 : a silicon powder and a silicon dioxide powder (SiO 2) 1 a mixture of a silicon powder, silicon dioxide powder (SiO 2) and Mg powder so that the mole ratio of 0.5 It was injected into the reactor.
  • the mixture of the silicon powder, silicon dioxide powder (SiO 2 ) and Mg powder is heated to 1,500° C. under a reduced pressure atmosphere of ⁇ 100 torr under vacuum, resulting in a mixture powder of the silicon powder and silicon dioxide powder (SiO 2 ). After gas phase reaction by simultaneously generating silicon oxide vapor and magnesium vapor, it was cooled at 400° C. to precipitate a silicon-silicon oxide-magnesium silicate complex.
  • the recovered silicon-silicon oxide-magnesium silicate composite particles were subjected to CVD treatment under a mixed gas of argon (Ar) and methane (CH 4 ) at a condition of 1,000° C. and 2 hours using a tube type electric furnace to have a carbon content of 5 wt%.
  • a silicon-silicon oxide-magnesium silicate composite particle powder on which a phosphorus carbon coating layer was formed was prepared.
  • the silicon-silicon oxide-magnesium silicate composite particle powder having a carbon coating layer was further heat-treated at 1000° C. for 5 hours under an argon (Ar) atmosphere to prepare a final product, silicon-silicon oxide-magnesium silicate composite particle powder. .
  • silicon-silicon oxide-magnesium silicate composite particle powders were prepared in the same manner as in Comparative Example 1, except that further heat treatment was performed at 1200° C. for 5 hours in an argon (Ar) atmosphere.
  • Each of the samples prepared in Examples 1 to 2 and Comparative Examples 1 to 4 was used as a negative electrode active material, and Super-P black as a conductive material and PAA (Poly Acrylic acid) as a binder were used in a weight ratio of 80:10:10.
  • a slurry-like composition was prepared by mixing with N-methylpyrrolidone as much as possible.
  • an active material layer having a thickness of 30 ⁇ m was formed on one side of the copper foil, and a test electrode was prepared by punching in a circular shape with a diameter of 14 ⁇ , and having a thickness of the opposite electrode A metal lithium foil of 0.3 mm was used.
  • a porous polyethylene sheet having a thickness of 0.1 mm was used as the separator, and LiPF 6 was used as a lithium salt in a mixed solvent having a volume ratio of ethylene carbonate (EC) and diethylene carbonate (DEC) of 1:1 as an electrolyte, and a concentration of about 1 mol/L of LiPF 6 . What was dissolved in was used.
  • EC ethylene carbonate
  • DEC diethylene carbonate
  • Equation 1 the full width at half maximum (FWHM) of the diffraction peak of MgSiO 3 (310), and the precipitation temperature during the manufacturing process was based on the silicon-silicon oxide-magnesium silicate complex obtained at 25°C.
  • the size of the Si crystal grains can be determined by a Shira method (see equation 1 below) based on the half-width (FWHM) of the diffraction peak of Si(111) during X-ray diffraction analysis, and the precipitation temperature during the manufacturing process is 25. It was based on the silicon-silicon oxide-magnesium silicate complex obtained at °C.
  • the contents of each of Mg, MgSiO 3 and Mg 2 SiO 4 were measured through an inductively coupled plasma (ICP).
  • ICP inductively coupled plasma
  • Example 1 10.2 10.8 16.2 32.4 2 24.7 17.3 1.4
  • Example 2 10.6 11.2 11.2 22.4 2 24.3 17.5 1.4 Comparative Example 1 10.5 10.7 No MgSiO 3 grain 32.1 Not applicable Not applicable 18.0 Not applicable Comparative Example 2 10.1 10.3 5.4 10.9 2 14.8 24.3 0.6 Comparative Example 3 10.4 10.1 21.1 23.4 1.1 17.8 22.2 0.8
  • the coin cells produced using the silicon-silicon oxide-magnesium silicate composite particle powders of Examples 1 to 2 and Comparative Examples 1 to 3 were charged at a constant current of 0.05 C until the voltage became 0.01 V, and The discharge capacity and initial efficiency were obtained by discharging until the voltage became 1.5 V with a constant current.
  • the coin cell produced for each sample is charged with a constant current of 0.2C until the voltage becomes 0.01V, and discharged until the voltage becomes 1.5V with a constant current of 0.2C, and after charging/discharging once.
  • the 50 cycle characteristics were determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

본 발명에서는 리튬 이차전지용 음극 활물질에 있어서, 산화규소(SiO x, 0<x≤2) 매트릭스; 및 상기 규소 산화물 매트릭스에 있는 규소(Si) 결정립, MgSiO 3 결정립 및 Mg 2SiO 4 결정립;을 포함하는 규소-산화규소-마그네슘 실리케이트 복합체를 포함하되, 상기 규소-산화규소-마그네슘 실리케이트 복합체에서 MgSiO 3 결정립이 5 내지 30 nm 범위의 결정크기를 갖고 Mg 2SiO 4 결정립이 20 내지 100 nm 범위의 결정크기를 가지며, MgSiO 3 결정립 대 Mg 2SiO 4 결정립의 함량의 비는 중량 기준으로 2:1 내지 1:1 범위의 양으로 포함되는 것인 리튬 이차전지용 음극 활물질 및 그의 제조방법이 제공된다.

Description

리튬이차전지용 음극 활물질 및 이를 포함한 리튬이차전지
본 출원은 2019년 1월 18일에 출원된 한국특허출원 제10-2019-0007121호에 기초한 우선권을 주장한다. 본 발명은 리튬이차전지용 음극 활물질 및 이를 포함한 리튬이차전지에 관한 것이다.
비수전해질 전지의 음극재로서 흑연(graphite)이나 유기물을 소성해서 얻어지는 탄소계 소재는 충방전 효율이 뛰어나며 사이클 수명이 우수하여 광범위하게 실용화되고 있다. 그러나, 휴대용 전자통신기기나 전동공구 등이 점점 소형화, 경량화, 고성능화되고 전기차의 실용화를 위한 고용량에 대한 요구가 증가함에 따라, 구조적인 특성으로 인해 낮은 전지 용량을 갖는 탄소계 소재를 대체할 음극재에 대한 필요성이 있어왔다.
최근에는 금속 음극이 갖고 있는 여러 문제에도 불구하고 Si, Sn 등의 금속에 대한 연구가 활발하게 진행되고 있다. 특히, 규소계 음극은 규소의 이론 용량이 4,200mAh/g으로 탄소계 음극의 이론용량인 370mAh/g에 비해 10배 이상 높기 때문에 가장 활발히 연구되고 있다.
음극재로서 규소는 충전시 리튬과의 반응으로 부피가 300% 이상 팽창되었다가 방전시 수축되기 때문에, 이러한 급격한 팽창 및 수축 현상으로 인해 음극재 입자의 크랙이 발생되고 전극이 탈락되는 등의 문제가 발생하며 결국 사이클 수명이 급격히 떨어지는 치명적인 문제가 있다.
이러한 문제를 개선하기 위해 제안된 산화규소 음극은 규소에 비하여 용량이 작지만, 탄소계 음극의 용량에 비해 매우 우수하고, 금속에 비해 부피팽창율이 낮아 사이클 수명 특성도 우수한 소재로 각광을 받고 있다. 이러한 산화규소를 이차전지의 음극재로 적용하면, 용량이 규소 음극재의 용량의 절반 수준에 불과하지만 탄소계 음극재의 용량보다는 5배 정도로 크다. 그러나, 산화규소가 이차전지의 음극재로 적용시 탄소계 음극재에 비해, 여전히 충방전시의 부피변화가 큰 문제가 있다.
또한, 산화규소가 이차전지의 음극재로 적용시, 초기 충전시에 리튬과 산화규소가 반응하여 리튬실리사이드와 리튬산화물(산화리튬 및 규산리튬)을 생성시키고, 이 중 리튬산화물은 이후의 전기화학 반응에 관여하지 않게 되므로 초기 충전시에 음극으로 이동된 리튬의 일부가 방전시에 양극으로 돌아오지 않는 비가역 반응을 발생시켜, 결과적으로 리튬을 고갈시키는 문제가 발생한다.
또한, 산화규소의 경우 다른 규소계 음극에 비하여 이와 같은 비가역 용량이 커서 초기효율(ICE, 초기의 충전 용량 대비 방전 용량의 비율)이 70 내지 75%로 매우 낮다. 이러한 낮은 초기 효율은 이차전지를 구성하는데 있어서 양극의 용량을 과잉으로 필요로 하게 되어 음극이 갖는 단위 질량당의 용량을 상쇄하게 되는 문제가 있었다.
이러한 문제를 해결하기 위해 마그네슘 도핑된 규소-산화규소 복합체가 당업계에서 제조되어 왔으나, 사이클 특성 측면에서 여전히 개선이 필요한 실정이다.
일 측면에서, 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 리튬이차전지용 음극활물질로 사용하기 위한 규소-산화규소-마그네슘 실리케이트(Si-SiOx-Mg silicate) 복합체를 제공하되, 상기 복합체에 포함된 2종의 마그네슘-실리케이트를 소정의 구성 및 양으로 포함시킴으로써 리튬이차전지의 초기효율, 용량 및 사이클을 개선시키는 리튬이차전지용 음극활물질을 제공하기 위한 발명이다.
다른 측면에서, 본 발명은 상기 리튬이차전지용 음극활물질의 제조방법을 제공하기 위한 발명이다.
본 발명의 제1 양태에 따르면, 산화규소(SiO x, 0<x≤2) 매트릭스; 및 상기 규소 산화물 매트릭스에 있는 규소(Si) 결정립, MgSiO 3 결정립 및 Mg 2SiO 4 결정립;을 포함하는 규소-산화규소-마그네슘 실리케이트 복합체를 포함하되, MgSiO 3 결정립 대 Mg 2SiO 4 결정립의 함량의 비는 중량 기준으로 2:1 내지 1:1 범위의 양으로 포함되는 것인 리튬 이차전지용 음극 활물질이 제공된다.
본 발명의 제2 양태에 따르면, 상기 제1 양태에서 MgSiO 3 결정립 대 Mg 2SiO 4 결정립의 함량의 비는 중량 기준으로 1.5:1 내지 1:1 범위의 양으로 포함되는 것인 리튬 이차전지용 음극 활물질이 제공된다.
본 발명의 제3 양태에 따르면, 상기 제1 양태 또는 제2 양태에서 상기 규소-산화규소-마그네슘 실리케이트 복합체에서 MgSiO 3 결정립이 5 내지 30 nm 범위의 결정크기를 갖는 것인 리튬 이차전지용 음극 활물질이 제공된다.
본 발명의 제4 양태에 따르면, 상기 제1 양태 내지 제3 양태 중 어느 하나의 양태에서 상기 Mg 2SiO 4 결정립은 20 내지 50 nm 범위의 결정크기를 갖는 것인 리튬 이차전지용 음극 활물질이 제공된다.
본 발명의 제5 양태에 따르면, 상기 제1 양태 내지 제4 양태 중 어느 하나의 양태에서 상기 Mg 2SiO 4 결정립이 상기 MgSiO 3 결정립의 1배 내지 2배의 결정크기를 갖는 것인 리튬 이차전지용 음극 활물질이 제공된다.
본 발명의 제6 양태에 따르면, 상기 제1 양태 내지 제5 양태 중 어느 하나의 양태에서 상기 규소-산화규소-마그네슘 실리케이트 복합체 입자의 중량 기준으로 전체 Mg 금속은 4 중량% 내지 20 중량%의 양으로 포함되는 것인 리튬 이차전지용 음극 활물질이 제공된다.
본 발명의 제7 양태에 따르면, 상기 제1 양태 내지 제6 양태 중 어느 하나의 양태에서 MgSiO 3 결정립 대 Mg 2SiO 4 결정립의 함량의 비는 중량 기준으로 1.5:1 내지 1:1 범위의 양으로 포함되는 것인 리튬 이차전지용 음극 활물질이 제공된다.
본 발명의 제8 양태에 따르면, 상기 제1 양태 내지 제7 양태 중 어느 하나의 양태에 기재된 리튬이차전지용 음극 활물질을 포함하는 리튬이차전지용 음극이 제공된다.
본 발명의 제9 양태에 따르면, 상기 제8양태에 기재된 리튬이차전지용 음극을 포함하는 리튬이차전지가 제공된다.
본 발명의 제10 양태에 따르면, 상기 제1양태에 기재된 기재된 규소-산화규소-마그네슘 실리케이트 복합체의 제조방법으로, 규소 분말과 이산화규소 분말(SiO 2)을 1:0.5 내지 1:1.5의 몰비가 되고, 규소 분말과 Mg 분말의 몰비가 1:0.01 내지 1:1로 되도록 규소 분말, 이산화규소 분말(SiO 2) 및 Mg 분말을 혼합한 혼합물을 반응기에 주입하는 단계(S1); 상기 규소 분말, 이산화규소 분말(SiO 2) 및 Mg 분말을 혼합한 혼합물을 진공 분위기에서 1,000℃ 내지 1,800℃로 가열시켜서, 상기 규소 분말, 이산화규소 분말(SiO 2)의 혼합 분말에 의한 산화규소 증기와 마그네슘 증기를 동시에 발생시킴으로써 기상반응시킨 후, 냉각하여 650℃ 내지 900℃에서 규소-산화규소-마그네슘 실리케이트 복합체를 석출하는 단계(S2); 및 상기 석출된 규소-산화규소-마그네슘 실리케이트 복합체를 평균입경 0.1㎛ 내지 20㎛로 분쇄하는 단계(S3);를 포함하는 방법이 제공된다.
본 발명에 의한 Si-SiOx-Mg 실리케이트 복합체를 음극 활물질로 포함하는 비수전해질 이차전지는 높은 전지 용량, 우수한 사이클 특성 및 높은 충방전 효율을 모두 만족시킬 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본원 명세서에서 "D50 평균 입경"은, 레이저 광회절법에 의한 입도 분포 측정에 있어서의 중량 평균치 D50(누적 중량이 전 중량의 50%가 될 때의 입자 직경 또는 메디안 직경)으로 측정한 값을 의미한다.
본 발명의 리튬 이차전지용 음극 활물질에 있어서, 산화규소(SiO x, 0<x≤2) 매트릭스; 및 상기 산화규소 매트릭스에 있는 규소(Si) 결정립, MgSiO 3 결정립 및 Mg 2SiO 4 결정립;을 포함하는 규소-산화규소-마그네슘 실리케이트 복합체를 포함하되, MgSiO 3 결정립 대 Mg 2SiO 4 결정립의 함량의 비는 중량 기준으로 2:1 내지 1:1 범위의 양으로 포함되는 것인 리튬 이차전지용 음극 활물질이 제공된다.
본원 명세서에서 '결정 크기'는 X선 회절 분석에 의한 회절피크 강도 비를 분석하여 결정하였으며, 구체적인 결정방법은 하기 평가예 1을 참조한다.
바람직하게, 상기 규소-산화규소-마그네슘 실리케이트 복합체에서 규소 결정립, MgSiO 3 결정립 및 Mg 2SiO 4 결정립이 산화규소 매트릭스에 고르게 분산 분포되어 있으며, 보다 바람직하게는 상기 규소 결정립, MgSiO 3 결정립 및 Mg 2SiO 4 결정립이 산화규소 매트릭스 내에 고르게 분산 분포되어 매립/매몰되어 있는 형태로 존재한다.
본 발명의 일 실시양태에서 상기 MgSiO 3 결정립과 Mg 2SiO 4 결정립은 각 상들의 원소가 서로 확산되어 각 상들의 경계면이 결합되어 있는 상태, 즉 각 상이 원자 레벨로 결합하고 있다. 그 결과, 리튬 이온이 흡장 방출되더라도 규소-산화규소-마그네슘 실리케이트 복합체의 체적 변화가 적게 발생하고 충방전의 반복에 의해서도 입자 균열이 잘 발생하지 않게 된다.
본 발명의 일 실시양태에서, 상기 MgSiO 3 결정립은 5nm 내지 30 nm 범위 또는 5nm 내지 25 nm 범위 또는 8nm 내지 17 nm 범위 또는 11nm 내지 17 nm의 결정크기를 갖는다. MgSiO 3 결정립이 상기 범위의 결정크기를 갖는 경우에 초기효율이 상승되고 수명특성이 개선되는 효과를 나타낼 수 있다. X선 회절 분석시 MgSiO 3 (310)의 회절 피크의 반가폭(FWHM, Full Width at Half Maximum)을 기초로 시라법(sherrer equation, 하기 수식 1 참조)에 의해 결정될 수 있으며, 제조 공정중 석출 온도를 25 ℃로 하여 수득한 규소-산화규소-마그네슘 실리케이트 복합체를 기준으로 한다. 상기 X선 회절 분석은 XRD 방법에 따라 측정될 수 있다. 본 발명의 일 실시양태에 있어서, 상기 XRD 측정은 2θ가 10°∼90°인 범위에서 CuKα선(예를 들면, 선원의 파장이 1.5406Å)을 이용해 측정할 수 있다. 이때, 스캔 스피드는 적절하게 선택할 수 있다.
수식 1: C.S.[㎚] = K ·λ/ B · cosθ
상기에서, K= 0.9, λ= 0.154㎚, B= 반가폭(FWHM, rad), θ= 피크위치(각도)이다.
본 발명의 일 실시양태에서, 상기 Mg 2SiO 4 결정립은 20nm 내지 100 nm 범위 또는 22nm 내지 50 nm 범위 또는 22 내지 40 nm 범위 또는 22 내지 33 nm의 결정크기를 갖는다. Mg 2SiO 4 결정립이 상기 범위의 D50 평균 입경을 갖는 경우에 초기효율이 상승되고 수명특성이 개선되는 효과를 나타낼 수 있다. X선 회절 분석시 Mg 2SiO 4 (130)의 회절 피크의 반가폭(FWHM)을 기초로 시라법(하기 수식 1 참조)에 의해 결정될 수 있으며, 제조 공정중 석출 온도를 25 ℃로 하여 수득한 규소-산화규소-마그네슘 실리케이트 복합체를 기준으로 한다.
수식 1: C.S.[㎚] = K ·λ/ B · cosθ
상기에서, K= 0.9, λ= 0.154㎚, B= 반가폭(FWHM, rad), θ= 피크위치(각도)이다.
본 발명의 일 실시양태에서, 상기 MgSiO 3 결정립과 Mg 2SiO 4 결정립 각각은 전술한 D50 평균 입경을 갖는 동시에 상기 Mg 2SiO 4 결정립이 상기 MgSiO 3 결정립보다 최소 1배 또는 1배보다 큰 결정크기 또는 1배 내지 2배 큰 결정크기를 갖는다. 상기 MgSiO 3 결정립과 Mg 2SiO 4 결정립 각각은 전술한 결정크기를 갖더라도 Mg 2SiO 4 결정립이 상기 MgSiO 3 결정립보다 최소 1배 이상 큰 D50 평균 입경을 갖는 경우에 전기전도도가 향상되는 효과와, 물리적 강도 향상에 의해 수명특성이 개선되는 효과를 나타낼 수 있다.
본 발명에 따르면, 상기 MgSiO 3 결정립과 Mg 2SiO 4 결정립은 산화규소 매트릭스에 분포되어 있다. 본 명세서에서 사용된 용어 "산화규소"는 SiO x (0<x≤2)로 표시되는 일반적인 화합물을 지칭한다. 본 발명의 일 실시양태에서 산화규소 매트릭스는 산화규소(SiO x, 0<x≤2)로 구성되며, Li에 대해 불활성인 성분으로 전지의 충전 중 Li의 삽입/탈리가 일어나지 않는다.
본 발명에 따르면, 상기 산화규소 매트릭스에, MgSiO 3 결정립과 Mg 2SiO 4 결정립 이외에, Si 결정립이 분산되어 분포되어 있다. Si 결정립의 크기는 1nm 내지 15nm 또는 5nm 내지 12 nm 범위 또는 10nm 내지 12 nm 범위인 것이 바람직하다. Si 결정의 크기, 즉, 결정의 크기가 상기 범위를 초과하는 경우에는 수명 특성 저하가 관찰될 수 있다. Si 결정립의 크기는 X선 회절 분석시 Si(111)의 회절 피크의 반가폭(FWHM)을 기초로 시라법(sherrer equation, 하기 수식 1 참조)에 의해 결정될 수 있으며, 제조 공정중 석출 온도를 25 ℃로 하여 수득한 규소-산화규소-마그네슘 실리케이트 복합체를 기준으로 한다.
C.S.[㎚] = K ·λ/ B · cosθ
상기에서, K= 0.9, λ= 0.154㎚, B= 반가폭(FWHM, rad), θ= 피크위치(각도)이다.
본 발명의 일 실시양태에 있어서, 상기 규소-산화규소-마그네슘 실리케이트 복합체 입자의 중량 기준으로 전체 Mg 금속은 4 중량% 내지 20 중량%, 또는 6 중량% 내지 16 중량%, 또는 8 중량% 내지 12 중량%의 양으로 포함된다. 상기 Mg 금속의 함량이 이러한 범위를 만족하는 경우, 상기 규소-산화규소-마그네슘 실리케이트 복합체를 음극 활물질로 사용하는 리튬이차전지의 용량 감소를 최소화하면서 효율 개선 효과를 가질 수 있다.
본 발명의 일 실시양태에 있어서, 상기 규소-산화규소-마그네슘 실리케이트 복합체 입자에서 MgSiO 3 결정립 대 Mg 2SiO 4 결정립의 함량의 비는 중량 기준으로 2:1 내지 1:1 또는 1.5:1 내지 1:1 또는 1.4:1 내지 1:1의 범위의 양으로 존재할 수 있다. MgSiO 3 결정립 대 Mg 2SiO 4 결정립이 상기 범위의 비로 포함되는 경우에 초기효율이 상승되고 수명특성이 개선되는 효과를 나타낼 수 있다.
본 발명의 일 실시양태에서 규소-산화규소-마그네슘 실리케이트 복합체 입자는 0.1㎛ 내지 20㎛ 또는 0.5㎛ 내지 15㎛ 범위의 평균 입경(D50)을 가질 수 있다. 상기 규소-산화규소-마그네슘 실리케이트 복합체가 상기 범위의 평균 입경을 갖는 경우에 음극 제조를 위한 슬러리 제조시에 슬러리 내에 균일하게 분포될 수 있고 적정한 양의 바인더만을 필요로 하게 되며, 충방전시 규소 결정립이 팽창되어 규소-산화규소-마그네슘 실리케이트 복합체 입자가 집전체로부터 탈리되는 문제가 최소화될 수 있다.
본 발명의 일 실시양태에서, 상기 규소-산화규소-마그네슘 실리케이트 복합체 입자는 1m 2/g 내지 50m 2/g 범위의, 질소 측정에 의한 BET 비표면적을 가질 수 있다. 상기 규소-산화규소-마그네슘 실리케이트 복합체 입자가 전술한 범위의 BET 비표면적을 갖는 경우에 음극 제조를 위한 슬러리의 코팅으로부터 균일한 음극이 형성될 수 있고 리튬이차전지의 충, 방전시 전지내 부반응을 최소화할 수 있다.
본 발명의 일 실시양태에서, 상기 규소-산화규소-마그네슘 실리케이트 복합체 입자의 표면에 탄소계 물질을 포함하는 코팅층 또는 증착층을 더 포함할 수 있다. 리튬이차전지용 음극 활물질로 규소계 물질을 사용하는 경우에는 전기저항이 커질 수 있기 때문에, 상기 규소계 물질을 포함하는 입자의 표면을 탄소계 물질로 피복하여 전도성을 향상시킬 수 있다.
상기 탄소계 물질의 종류는 특별히 한정되지 않으나, 천연 흑연, 인조 흑연, 팽창 흑연 등의 그래파이트, 아세틸렌블랙, 케첸블랙 등의 카본 블랙 및 탄소 섬유류일 수 있다. 또는, 메탄, 에탄, 에틸렌, 프로판, 부탄, 아세틸렌, 일산화탄소, 벤젠, 톨루엔, 자일렌 등 탄화수소계 물질을 사용할 수 있다. 상기 규소-산화규소-마그네슘 실리케이트 복합체 입자의 도전성을 높일 수 있다는 점에서 상기 입자의 표면에 탄소계 물질로 된 코팅층 또는 증착층 형태가 바람직하다.
본 발명의 일 실시양태에서, 상기 규소-산화규소-마그네슘 실리케이트 복합체 입자 100 중량부 당 상기 탄소계 물질이 1 중량부 내지 20 중량부 또는 1 중량부 내지 10 중량부 범위의 양으로 사용될 수 있다. 상기 탄소계 물질이 전술한 함량 범위로 사용되는 경우에 전극의 도전성, 전지의 충방전 특성, 및 사이클 특성 측면에서 유리해지면서 전극 비표면적이 불필요하게 증가하는 문제가 발생하지 않게 된다.
본 발명의 다른 측면에 따르면, 리튬이차전지용 음극활물질로 사용하기 위한 상기 규소-산화규소-마그네슘 실리케이트 복합체 입자의 제조방법이 제공된다. 상기 제조방법의 일 실시양태에서, 본 발명은 규소 분말과 이산화규소 분말(SiO 2)을 1:0.5 내지 1:1.5의 몰비가 되고, 규소 분말과 Mg 분말의 몰비가 1: 0.01 내지 1:1로 되도록 규소 분말, 이산화규소 분말(SiO 2) 및 Mg 분말을 혼합한 혼합물을 반응기에 주입하는 단계(S1); 상기 규소 분말, 이산화규소 분말(SiO 2) 및 Mg 분말을 혼합한 혼합물을 진공 분위기에서 1,000℃ 내지 1,800℃로 가열시켜서, 상기 규소 분말, 이산화규소 분말(SiO 2)의 혼합 분말에 의한 산화규소 증기와 마그네슘 증기를 동시에 발생시킴으로써 기상 반응시킨 후, 냉각하여 650℃ 내지 900℃에서 규소-산화규소-마그네슘 실리케이트 복합체를 석출하는 단계(S2); 및 상기 석출된 규소-산화규소-마그네슘 실리케이트 복합체를 평균입경 0.1㎛ 내지 20㎛로 분쇄하는 단계(S3);를 포함한다.
상기 규소, 이산화규소(SiO 2)의 원료 혼합 분말과 Mg을 혼합한 혼합물을 가열시키는 온도가 1,000℃ 미만인 경우 열처리에 의한 초기 효율 향상이 어려울 수 있고, 1,800℃ 초과인 경우 규소 결정이 지나치게 성장하여 리튬이온의 흡장에 따른 규소 결정의 부피 팽창 및 수축에 의해 상기 산화규소 복합체 구조에 균열이 발생하여 사이클 특성이 저하될 수 있다.
상기 가스 상의 산화규소(SiO x)와 가스 상의 Mg은 각각 -50 내지 -200 torr의 감압 분위기에서의 가열공정에 의해 형성될 수 있다.
상기 규소, 이산화규소(SiO 2)의 원료 혼합 분말과 Mg을 혼합한 혼합물을 가열시킨 후, 냉각하여 규소-산화규소-마그네슘 실리케이트 복합체를 석출하는 온도는 650℃ 내지 900℃일 수 있다. 본 발명의 일 실시양태에 있어서, 규소-산화규소-마그네슘 실리케이트 복합체가 석출되는 온도가 650℃ 내지 900℃로 제어될 수 있다. 상기 냉각하여 규소-산화규소-마그네슘 실리케이트 복합체를 석출하는 온도가 650℃ 미만인 경우 상기 산화규소와 상기 Mg가 기상에서 반응 후 급속히 냉각되어 나노 분말이 생성됨으로써 상기 규소-산화규소-마그네슘 실리케이트 복합체의 비표면적이 급격히 증가하여 전지 특성이 저하될 수 있고, 냉각하여 규소-산화규소-마그네슘 실리케이트 복합체를 석출되는 온도가 900℃ 초과인 경우 규소 결정의 크기가 수십 ㎚ 이상으로 커짐으로써 전지의 수명특성이 급격히 저하될 수 있다.
상기 규소-산화규소-마그네슘 실리케이트 복합체 표면에 탄소계 물질을 포함하는 코팅층 또는 증착층을 형성하는 방법은 특별히 한정되는 것은 아니나, 상기 규소-산화규소-마그네슘 실리케이트 복합체 표면에 유기고분자 피막을 형성시킨 후 불활성 분위기에서 열분해시킬 수 있고, 또는 탄화수소 또는 유기물 가스를 열처리하여 화학증착(chemical vapor deposition) 방법으로 탄소계 물질을 포함하는 코팅층 또는 증착층을 형성할 수 있다. 본 발명의 바람직한 양태에서, 상기 코팅층 또는 증착층을 형성한 후에 추가적인 열처리를 수행하지 않는다.
상기 화학증착 방법에 의하는 경우 온도가 600℃ 내지 1,200℃ 범위로 있는 경우에 원료 가스 분해가 지나치게 빠르게 일어나지 않으면서 상기 탄소계 물질이 적절한 속도로 생산될 수 있다.
상기 탄소계 원료 가스는 벤젠, 톨루엔, 자일렌, 메탄, 에탄, 에틸렌, 프로판, 부탄, 아세틸렌, 및 일산화탄소 등 탄화 수소계 물질을 이용할 수 있고, 보다 저렴한 액화석유가스(LPG) 또는 액화천연가스(LNG) 등의 가스를 사용할 수 있다.
상기 규소-산화규소-마그네슘 실리케이트 복합체 입자의 표면에 형성된 탄소계 물질은 결정질탄소, 비정질탄소, 탄소섬유, 탄소휘스커, 탄소나노파이버, 탄소나노튜브, 그래핀, 산화그래핀, 및 환원된 산화그래핀 중에서 선택되는 어느 하나 또는 이들의 조합을 포함할 수 있다.
본 발명의 또 다른 실시양태에 따르면, 상기 규소-산화규소-마그네슘 실리케이트 복합체 입자를 음극 활물질로 포함하는 음극과 함께, 양극, 및 상기 양극과 음극 사이에 위치한 분리막, 및 전해질을 포함하는 리튬이차전지가 제공된다.
상기 양극은 양극 집전체와 상기 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 포함할 수 있다.
상기 양극 집전체는 전도성이 높고 상기 혼합물이 용이하게 접착할 수 있고 전지의 전압 범위에서 반응성이 없어야 한다. 상기 양극 집전체의 구체적인 예로는 알루미늄, 니켈 또는 이들의 합금 등을 들 수 있다. 상기 양극 집전체의 두께는 3㎛ 내지 500㎛일 수 있다.
상기 양극 활물질의 구체적인 예로는 Li xCoO 2(0.5<x<1.3) 등의 리튬코발트산화물; LixNiO 2(0.5<x<1.3) 등의 리튬니켈산화물; Li 1+xMn 2-xO 4(x는 0 이상 0.33 이하), LiMnO 3, LiMn 2O 3, LiMn 2O 4 또는 Li xMnO 2(0.5<x<1.3) 등의 리튬망간산화물; Li 2CuO 2 등의 리튬구리산화물; LiFe 3O 4 등의 리튬철산화물; Li[Ni xCo yMn z]O 2(x+y+z=1, 0<x<1, 0<y<1, 0<z<1) 등의 리튬니켈코발트망간산화물; Li[Ni xCo yAl z]O 2(x+y+z=1, 0<x<1, 0<y<1, 0<z<1) 등의 리튬니켈코발트알루미늄산화물; LiV 3O 8 등의 리튬바나듐화합물; LiNi 1-xM xO 2(M=Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga, x는 0.01 이상 0.3이하) 등의 니켈 사이트형리튬니켈산화물; LiMn 2-xM xO 2(M=Co, Ni, Fe, Cr, Zn 또는 Ta, x는 0.01 이상이고 0.1 이하) 또는 Li 2Mn 3MO 8(M=Fe, Co, Ni, Cu 또는 Zn) 등의 리튬망간복합산화물; 리튬의 일부가 알칼리토금속이온으로 치환된 리튬망간복합 산화물; 디설파이드 화합물; V 2O 5 또는 Cu 2V 2O 7 등의 바나듐산화물; 또는 Fe 2(MoO 4) 3 등을 들 수 있고, 보다 구체적으로는 Li[Ni xCo yMn z]O 2(x+y+z=1, x, y 및 z는 각각 독립적으로 0.3 이상이고 0.4 이하) 등의 리튬니켈코발트망간산화물 또는 Li[Ni xCo yAl z]O 2(x+y+z=1, x, y 및 z는 각각 독립적으로 0.3 이상 0.4 이하) 등의 리튬니켈코발트알루미늄산화물일 수 있다. 이들은 상기 양극 활물질 내에 1종 또는 2종 이상이 포함될 수 있다.
상기 도전재는 본 발명의 리튬이차전지에 화학적 변화를 유발하지 않으면서 도전성을 가지는 물질이다. 상기 도전재의 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 도전성 소재 등을 들 수 있다.
상기 바인더는 양극 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분이다. 상기 바인더의 구체적인 예로는 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재상 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM) 고무, 수소첨가 니트릴 부타디엔 고무(HNBR), 술폰화 에틸렌 프로필렌 디엔, 스티렌 부타디엔 고무(SBR: Styrene butadiene rubber), 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 음극은 음극 집전체와 상기 음극 집전체 상에 위치하는 음극 활물질을 포함한다.
상기 음극 집전체는 전도성이 높고 상기 음극 활물질이 용이하게 접착할 수 있고 전지의 전압 범위에서 반응성이 없어야 한다. 상기 음극 집전체의 구체적인 예로는 구리, 금, 니켈 또는 이들의 합금 등을 들 수 있다.
상기 음극 활물질에 대한 설명은 전술한 실시예들의 음극 활물질들에 대한 설명과 동일하다.
상기 분리막은 상기 양극과 음극 사이의 단락을 방지하고, 리튬 이온의 이동통로를 제공한다. 상기 분리막은 높은 이온 투과도, 기계적 강도를 가지는 절연성 박막이 이용될 수 있다. 상기 분리막의 구체적인 예로는 폴리프로필렌, 폴리에틸렌 등의 폴리올레핀계 고분자막 또는 이들의 다중막, 미세다공성 필름, 직포, 또는 부직포 등을 들 수 있다. 후술할 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수 있다.
상기 전해질은 리튬염을 함유하는 전해질일 수 있다. 상기 리튬염의 음이온의 구체적인 예로는 F -, Cl -, Br -, I -, NO 3 -, N(CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2PF 4 -, (CF 3) 3PF 3 -, (CF 3) 4PF 2 -, (CF 3) 5PF -, (CF 3) 6P -, CF 3SO 3 -, CF 3CF 2SO 3 -, (CF 3SO 2) 2N -, (FSO 2) 2N -, CF 3CF 2(CF 3) 2CO -, (CF 3SO 2) 2CH -, (SF 5) 3C -, (CF 3SO 2) 3C -, CF 3(CF 2) 7SO 3 -, CF 3CO 2 -, SCN - 또는 (CF 3CF 2SO 2) 2N - 등을 들 수 있다. 이들은 전해질 내에 1종 또는 2종 이상이 포함될 수 있다.
본 발명의 또 다른 실시예에 따른 리튬 이차전지의 외형은 특별히 한정하지는 않으나, 구체적인 예로는 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등을 들 수 있다.
본 발명의 또 다른 실시예에 따른 리튬이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로 바람직하게 사용될 수 있다. 상기 중대형 다비이스의 구체적인 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력 저장용 시스템 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
이하, 본 발명의 실시예에 관하여 상세히 설명하기로 한다.
<실시예 1>
규소 분말과 이산화규소 분말(SiO 2)을 1:1의 몰비가 되고, 규소 분말과 Mg 분말을 1:0.5의 몰비가 되도록 규소 분말, 이산화규소 분말(SiO 2) 및 Mg 분말을 혼합한 혼합물을 반응기에 주입하였다. 상기 규소 분말, 이산화규소 분말(SiO 2) 및 Mg 분말을 혼합한 혼합물을 진공하에 -100 torr의 감압 분위기에서 1,500℃로 가열시켜서, 상기 규소 분말, 이산화규소 분말(SiO 2)의 혼합 분말에 의한 산화규소 증기와 마그네슘 증기를 동시에 발생시킴으로써 기상반응시킨 후, 냉각하여 800℃에서 규소-산화규소-마그네슘 실리케이트 복합체를 석출하였다. 이어서, 상기 규소-산화규소-마그네슘 실리케이트 복합체를 제트밀로 평균입경(D50) 5㎛ 로 분쇄한 후에 규소-산화규소-마그네슘 실리케이트 복합체 입자 분말을 회수했다. 이 때, 규소-산화규소-마그네슘 실리케이트 복합체 입자의 중량 기준으로 Mg 함량은 10.2% 이었다.
회수된 규소-산화규소-마그네슘 실리케이트 복합체 입자 분말을 튜브 형태의 전기로를 이용하여 1,000℃, 2시간의 조건으로 아르곤(Ar)과 메탄(CH 4)의 혼합가스 하에서 CVD 처리를 하여 탄소 함량이 5wt%인 탄소 코팅층이 형성된 규소-산화규소-마그네슘 실리케이트 복합체 입자를 제조하였다. 제조된 탄소 코팅층이 형성된 규소-산화규소-마그네슘 실리케이트 복합체 입자에 대해서는 추가적인 열처리가 수행되지 않았다.
상기 규소-산화규소-마그네슘 실리케이트 복합체 입자 분말(시료 1)에 대해 ICP-AES(유도결합플라즈마 원자방출분광기) 분석 결과 마그네슘 농도가 10.2wt%임을 확인하였고, X선 회절 분석(CuKα)한 결과 Si 결정립의 크기가 10.8㎚임을 확인하였다.
수득된 규소-산화규소-마그네슘 실리케이트 복합체는, 산화규소(SiO x, 0<x≤2) 매트릭스; 및 상기 규소 산화물 매트릭스에 있는 규소(Si) 결정립, MgSiO 3 결정립 및 Mg 2SiO 4 결정립;을 포함하고, 상기 규소-산화규소-마그네슘 실리케이트 복합체에서 MgSiO 3 결정립과 Mg 2SiO 4 결정립 각각의 결정크기, 및 MgSiO 3 결정립 결정크기에 대한 Mg 2SiO 4 결정립 결정크기의 비 각각은 [표 1]에 기재된 바와 같았다.
<실시예 2>
혼합 분말의 열처리 온도를 1400 ℃로 하여 제조한 것을 제외하고 실시예 1과 동일한 방법으로 규소-산화규소-마그네슘 실리케이트 복합체 입자 분말을 제조하였다.
<비교예 1>
산화규소 증기와 마그네슘 증기를 동시에 발생시킴으로써 기상반응시킨 후의 냉각 온도를 600 ℃로 한 것을 제외하고 실시예 1과 동일한 방법으로 규소-산화규소-마그네슘 실리케이트 복합체 입자를 제조하였다.
<비교예 2>
규소 분말과 이산화규소 분말(SiO 2)을 1:1의 몰비가 되고, 규소 분말과 Mg 분말을 1:0.5의 몰비가 되도록 규소 분말, 이산화규소 분말(SiO 2) 및 Mg 분말을 혼합한 혼합물을 반응기에 주입하였다. 상기 규소 분말, 이산화규소 분말(SiO 2) 및 Mg 분말을 혼합한 혼합물을 진공하에 -100 torr의 감압 분위기에서 1,500℃로 가열시켜서, 상기 규소 분말, 이산화규소 분말(SiO 2)의 혼합 분말에 의한 산화규소 증기와 마그네슘 증기를 동시에 발생시킴으로써 기상반응시킨 후, 400℃에서 냉각하여 규소-산화규소-마그네슘 실리케이트 복합체를 석출하였다.
회수된 규소-산화규소-마그네슘 실리케이트 복합체 입자를 튜브 형태의 전기로를 이용하여 1,000℃, 2시간의 조건으로 아르곤(Ar)과 메탄(CH 4)의 혼합가스 하에서 CVD 처리를 하여 탄소 함량이 5wt%인 탄소 코팅층이 형성된 규소-산화규소-마그네슘 실리케이트 복합체 입자 분말을 제조하였다.
이어서, 탄소 코팅층이 형성된 규소-산화규소-마그네슘 실리케이트 복합체 입자 분말을 아르곤(Ar) 분위기 하에서 1000 ℃에서 5시간동안 추가 열처리를 수행하여 최종 생성물인 규소-산화규소-마그네슘 실리케이트 복합체 입자 분말을 제조하였다.
<비교예 3>
최종 단계에서 아르곤(Ar) 분위기에서 1200 ℃에서 5시간 추가 열처리를 더 진행하는 것을 제외하고 비교예 1과 동일한 방법으로 규소-산화규소-마그네슘 실리케이트 복합체 입자 분말을 제조하였다.
<제조예: 코인셀 제작>
상기 실시예 1~2 및 비교예 1~4에서 제조한 시료 각각을 음극 활물질로 사용하고, 도전재로 Super-P black, 바인더로 PAA(Poly Acrylic acid)를 중량 기준으로 80:10:10 비가 되도록 N-메틸피롤리돈과 혼합하여 슬러리 상태 조성물을 제조하였다.
상기 조성물을 두께 18㎛의 구리 호일의 일면에 도포해서 건조시킴으로써, 상기 구리 호일의 일면에 두께 30㎛의 활물질층을 형성하였고, 직경 14Φ의 원형으로 펀칭해서 시험용 전극을 제조하였고, 반대극으로 두께 0.3㎜의 금속 리튬박을 사용하였다.
분리막으로 두께 0.1㎜의 다공질 폴리에틸렌 시트를 사용하였고, 전해액으로 에틸렌 카보네이트(EC)와 디에틸렌 카보네이트(DEC)의 체적비 1:1의 혼합 용매에, 리튬염으로써 LiPF 6를 약 1몰/L의 농도로 용해시킨 것을 사용하였다. 이들 구성 요소를 스테인리스제 용기에 내장하고, 두께 2㎜, 직경 32㎜(소위 2032형)의 일반적 형상의 평가용 코인 셀을 제조하였다.
평가예 1: X선 회절 분석에 의한 회절피크 강도 비 분석
상기 실시예 1~2 및 비교예 1~3 각각에서 제조된 시료에 대해 X선 회절 분석결과를 하기 표 1에 나타내었다.
X선 회절 분석시 MgSiO 3 (310)의 회절 피크의 반가폭(FWHM, Full Width at Half Maximum)을 기초로 시라법(sherrer equation, 하기 수식 1 참조)에 의해 결정될 수 있으며, 제조 공정중 석출 온도를 25 ℃로 하여 수득한 규소-산화규소-마그네슘 실리케이트 복합체를 기준으로 하였다.
수식 1: C.S.[㎚] = K ·λ/ B · cosθ
상기에서, K= 0.9, λ= 0.154㎚, B= 반가폭(FWHM, rad), θ= 피크위치(각도)이다.
X선 회절 분석시 Mg 2SiO 4 (130)의 회절 피크의 반가폭(FWHM)을 기초로 시라법(하기 수식 1 참조)에 의해 결정될 수 있으며, 제조 공정중 석출 온도를 25 ℃로 하여 수득한 규소-산화규소-마그네슘 실리케이트 복합체를 기준으로 하였다.
수식 1: C.S.[㎚] = K ·λ/ B · cosθ
상기에서, K= 0.9, λ= 0.154㎚, B= 반가폭(FWHM, rad), θ= 피크위치(각도)이다.
Si 결정립의 크기는 X선 회절 분석시 Si(111)의 회절 피크의 반가폭(FWHM)을 기초로 시라법(sherrer equation, 하기 수식 1 참조)에 의해 결정될 수 있으며, 제조 공정중 석출 온도를 25 ℃로 하여 수득한 규소-산화규소-마그네슘 실리케이트 복합체를 기준으로 하였다.
수식 1: C.S.[㎚] = K ·λ/ B · cosθ
상기에서, K= 0.9, λ= 0.154㎚, B= 반가폭(FWHM, rad), θ= 피크위치(각도)이다.
Mg, MgSiO 3 및 Mg 2SiO 4 각각의 함량은 ICP(inductively coupled plasma) 를 통해 측정되었다.
Mg 함량(중량%) Si 결정립 크기 MgSiO 3결정립의 결정크기(nm) Mg 2SiO 4 결정립의 결정크기(nm) Mg 2SiO 4 결정립의 결정크기/MgSiO 3 결정립의 결정크기의 비 MgSiO 3결정립의 함량 (중량%) Mg 2SiO 4 결정립의 함량(중량%) MgSiO 3 결정립/Mg 2SiO 4 결정립의 함량비 (중량 기준)
실시예1 10.2 10.8 16.2 32.4 2 24.7 17.3 1.4
실시예2 10.6 11.2 11.2 22.4 2 24.3 17.5 1.4
비교예1 10.5 10.7 MgSiO 3결정립 없음 32.1 해당없음 해당없음 18.0 해당없음
비교예2 10.1 10.3 5.4 10.9 2 14.8 24.3 0.6
비교예3 10.4 10.1 21.1 23.4 1.1 17.8 22.2 0.8
평가예 2: 전지 특성 평가
상기 실시예 1~2 및 비교예 1~3 각각의 규소-산화규소-마그네슘 실리케이트 복합체 입자 분말을 사용하여 제작한 코인 셀을 0.05C의 정전류로 전압이 0.01V가 될 때까지 충전하고 0.05C의 정전류로 전압이 1.5V가 될 때까지 방전하여 방전 용량 및 초기 효율을 구하였다.
또한, 상기 제조예에서 샘플마다 제작한 코인 셀을 0.2C의 정전류로 전압이 0.01V가 될 때까지 충전하고 0.2C의 정전류로 전압이 1.5V가 될 때까지 방전하여 1회 충전/방전 이후의 50회 사이클 특성을 구하였다.
상기 방전 용량, 초기 효율, 및 사이클 특성을 하기와 같이 계산하였고, 그 결과를 하기 표 2에 나타내었다.
초기 방전용량: 1th 사이클에서의 방전 용량
초기효율: 100 x (1th 사이클에서의 방전 용량) / (1th 사이클에서의 충전 용량)
초기 효율 (%) 용량 mAh/g 수명 특성(%, 50회 사이클)
실시예1 90.8 405.2 82
실시예2 90.6 404.8 80
비교예1 88.1 401.9 77
비교예2 85.1 392.7 62
비교예3 87.2 398.4 70
상기 [표 2]에서 나타낸 바와 같이 본 발명의 실시예 1~2의 규소-산화규소-마그네슘 실리케이트 복합체 입자를 음극 활물질로 사용한 코인 셀 전지의 경우에는 비교예 1~3의 규소-산화규소-마그네슘 실리케이트 복합체 입자를 음극 활물질로 사용한 코인 셀 전지에 비해, 초기 충방전 효율이 향상되었으며, 용량 및 수명 특성도 우수한 것으로 나타났다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의해 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (10)

  1. 리튬 이차전지용 음극 활물질에 있어서,
    산화규소(SiO x, 0<x≤2) 매트릭스; 및 상기 산화규소 매트릭스에 있는 규소(Si) 결정립, MgSiO 3 결정립 및 Mg 2SiO 4 결정립;을 포함하는 규소-산화규소-마그네슘 실리케이트 복합체를 포함하되,
    상기 규소-산화규소-마그네슘 실리케이트 복합체에서 MgSiO 3 결정립이 5 내지 30 nm 범위의 결정크기를 갖고 Mg 2SiO 4 결정립이 20 내지 100 nm 범위의 결정크기를 가지며,
    MgSiO 3 결정립 대 Mg 2SiO 4 결정립의 함량의 비는 중량 기준으로 2:1 내지 1:1 범위의 양으로 포함되는 것인
    리튬 이차전지용 음극 활물질.
  2. 제1항에 있어서,
    상기 규소 결정립, MgSiO 3 결정립 및 Mg 2SiO 4 결정립이 산화규소 매트릭스 내에 매립되어 있는 것인 리튬 이차전지용 음극 활물질.
  3. 제1항에 있어서,
    상기 MgSiO 3 결정립은 5 내지 25 nm 범위의 결정크기를 갖는 것인 리튬 이차전지용 음극 활물질.
  4. 제1항에 있어서,
    상기 Mg 2SiO 4 결정립은 20 내지 50 nm 범위의 결정크기를 갖는 것인 리튬 이차전지용 음극 활물질.
  5. 제1항에 있어서,
    상기 Mg 2SiO 4 결정립이 상기 MgSiO 3 결정립의 1배 내지 2배의 결정크기를 갖는 것인 리튬 이차전지용 음극 활물질.
  6. 제1항에 있어서,
    상기 규소-산화규소-마그네슘 실리케이트 복합체 입자의 중량 기준으로 전체 Mg 금속은 4 중량% 내지 20 중량%의 양으로 포함되는 것인 리튬 이차전지용 음극 활물질.
  7. 제1항에 있어서,
    MgSiO 3 결정립 대 Mg 2SiO 4 결정립의 함량의 비는 중량 기준으로 1.4:1 내지 1:1 범위의 양으로 포함되는 것인 리튬 이차전지용 음극 활물질.
  8. 제1항 내지 제7항중 어느 한 항에 기재된 리튬이차전지용 음극 활물질을 포함하는 리튬이차전지용 음극.
  9. 제8항에 기재된 리튬이차전지용 음극을 포함하는 리튬이차전지.
  10. 제1항에 기재된 규소-산화규소-마그네슘 실리케이트 복합체의 제조방법으로,
    규소 분말과 이산화규소 분말(SiO 2)을 1:0.5 내지 1:1.5의 몰비가 되고, 규소 분말과 Mg 분말의 몰비가 1:0.01 내지 1:1로 되도록 규소 분말, 이산화규소 분말(SiO 2) 및 Mg 분말을 혼합한 혼합물을 반응기에 주입하는 단계(S1);
    상기 규소 분말, 이산화규소 분말(SiO 2) 및 Mg 분말을 혼합한 혼합물을 진공 분위기에서 1,000℃ 내지 1,800℃로 가열시켜서, 상기 규소 분말, 이산화규소 분말(SiO 2)의 혼합 분말에 의한 산화규소 증기와 마그네슘 증기를 동시에 발생시킴으로써 기상반응시킨 후, 650℃ 내지 900℃에서 냉각하여 규소-산화규소-마그네슘 실리케이트 복합체를 석출하는 단계(S2); 및
    상기 석출된 규소-산화규소-마그네슘 실리케이트 복합체를 평균입경 0.1㎛ 내지 20㎛로 분쇄하는 단계(S3);를 포함하는 방법.
PCT/KR2020/000961 2019-01-18 2020-01-20 리튬이차전지용 음극 활물질 및 이를 포함한 리튬이차전지 WO2020149724A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/420,592 US11942640B2 (en) 2019-01-18 2020-01-20 Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
CN202080009651.0A CN113728465A (zh) 2019-01-18 2020-01-20 锂二次电池用负极活性材料和包含其的锂二次电池
JP2021539674A JP7239712B2 (ja) 2019-01-18 2020-01-20 リチウム二次電池用の負極活物質及びそれを含むリチウム二次電池
EP20740917.8A EP3902035A4 (en) 2019-01-18 2020-01-20 ANODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY WITH IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0007121 2019-01-18
KR1020190007121A KR102682363B1 (ko) 2019-01-18 리튬이차전지용 음극 활물질 및 이를 포함한 리튬이차전지

Publications (1)

Publication Number Publication Date
WO2020149724A1 true WO2020149724A1 (ko) 2020-07-23

Family

ID=71613832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000961 WO2020149724A1 (ko) 2019-01-18 2020-01-20 리튬이차전지용 음극 활물질 및 이를 포함한 리튬이차전지

Country Status (5)

Country Link
US (1) US11942640B2 (ko)
EP (1) EP3902035A4 (ko)
JP (1) JP7239712B2 (ko)
CN (1) CN113728465A (ko)
WO (1) WO2020149724A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102590434B1 (ko) 2020-09-11 2023-10-18 주식회사 엘지에너지솔루션 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2024024273A1 (ja) * 2022-07-29 2024-02-01 パナソニックエナジー株式会社 二次電池
CN116802836A (zh) * 2023-03-06 2023-09-22 宁德时代新能源科技股份有限公司 硅基负极活性材料及其制备方法、二次电池及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170943A (ja) * 2009-01-26 2010-08-05 Asahi Glass Co Ltd 二次電池用負極材料およびその製造方法
KR20140081679A (ko) * 2012-12-21 2014-07-01 주식회사 엘지화학 리튬 이차 전지용 음극재, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20150050504A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법
KR20150096781A (ko) * 2012-12-20 2015-08-25 우미코르 재충전식 배터리용 음극 재료 및 이의 제조 방법
KR101586816B1 (ko) * 2015-06-15 2016-01-20 대주전자재료 주식회사 비수전해질 이차전지용 음극재, 이의 제조방법, 및 이를 포함하는 비수전해질 이차전지
KR20190007121A (ko) 2017-07-11 2019-01-22 주식회사 지파워 피부 관리 시스템 및 이의 제어 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431652B2 (en) 2012-12-21 2016-08-30 Lg Chem, Ltd. Anode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the anode active material
JP6430489B2 (ja) * 2014-03-24 2018-11-28 株式会社東芝 非水電解質電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池及び電池パック
WO2017091543A1 (en) 2015-11-25 2017-06-01 Corning Incorporated Porous silicon compositions and devices and methods thereof
TWI716580B (zh) 2016-05-30 2021-01-21 日商信越化學工業股份有限公司 鋰離子二次電池用負極活性物質、鋰離子二次電池用混合負極活性物質材料、及鋰離子二次電池用負極活性物質的製造方法(二)
JP6573646B2 (ja) * 2016-06-09 2019-09-11 株式会社大阪チタニウムテクノロジーズ 酸化珪素系負極材
KR101960855B1 (ko) * 2017-03-20 2019-03-21 대주전자재료 주식회사 리튬 이차전지 음극재용 실리콘 복합산화물 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170943A (ja) * 2009-01-26 2010-08-05 Asahi Glass Co Ltd 二次電池用負極材料およびその製造方法
KR20150096781A (ko) * 2012-12-20 2015-08-25 우미코르 재충전식 배터리용 음극 재료 및 이의 제조 방법
KR20140081679A (ko) * 2012-12-21 2014-07-01 주식회사 엘지화학 리튬 이차 전지용 음극재, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20150050504A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법
KR101586816B1 (ko) * 2015-06-15 2016-01-20 대주전자재료 주식회사 비수전해질 이차전지용 음극재, 이의 제조방법, 및 이를 포함하는 비수전해질 이차전지
KR20190007121A (ko) 2017-07-11 2019-01-22 주식회사 지파워 피부 관리 시스템 및 이의 제어 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902035A4

Also Published As

Publication number Publication date
KR20200090058A (ko) 2020-07-28
US20220077467A1 (en) 2022-03-10
JP7239712B2 (ja) 2023-03-14
JP2022516664A (ja) 2022-03-01
EP3902035A4 (en) 2022-03-16
EP3902035A1 (en) 2021-10-27
US11942640B2 (en) 2024-03-26
CN113728465A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2016204366A1 (ko) 비수전해질 이차전지용 음극재, 이의 제조방법, 및 이를 포함하는 비수전해질 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2019151814A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2019151774A1 (ko) 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2013115473A1 (ko) 이차 전지용 음극 활물질 및 이를 포함하는 이차 전지
WO2020149724A1 (ko) 리튬이차전지용 음극 활물질 및 이를 포함한 리튬이차전지
WO2019112325A1 (ko) 비수전해질 이차전지용 음극활물질 및 이의 제조 방법
WO2019103499A1 (ko) 리튬 이차전지용 음극 활물질, 및 이의 제조방법
WO2019093820A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019083330A2 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2020040613A1 (ko) 음극 활물질, 이를 포함하는 음극, 및 리튬 이차전지
WO2019151778A1 (ko) 리튬 이차전지용 음극 활물질, 이를 포함하는 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지
WO2019093830A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020153728A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019108050A1 (ko) 규소산화물복합체를 포함하는 비수전해질 이차전지용 음극활물질 및 이의 제조방법
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021060911A1 (ko) 이차전지용 양극 활물질 전구체, 그 제조방법 및 양극 활물질의 제조방법
WO2019050216A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020242257A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019235886A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2023106856A1 (ko) 리튬이차전지
WO2023054959A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 이에 의하여 제조된 양극 활물질
WO2023090944A1 (ko) 리튬이차전지
WO2023090950A1 (ko) 양극 활물질층용 조성물 및 리튬이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539674

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020740917

Country of ref document: EP

Effective date: 20210722