WO2020147440A1 - 数据用量上报的方法、装置及系统 - Google Patents

数据用量上报的方法、装置及系统 Download PDF

Info

Publication number
WO2020147440A1
WO2020147440A1 PCT/CN2019/122481 CN2019122481W WO2020147440A1 WO 2020147440 A1 WO2020147440 A1 WO 2020147440A1 CN 2019122481 W CN2019122481 W CN 2019122481W WO 2020147440 A1 WO2020147440 A1 WO 2020147440A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
user plane
plane network
data usage
pdr
Prior art date
Application number
PCT/CN2019/122481
Other languages
English (en)
French (fr)
Inventor
吴义壮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19910041.3A priority Critical patent/EP3890398A4/en
Publication of WO2020147440A1 publication Critical patent/WO2020147440A1/zh
Priority to US17/375,671 priority patent/US20210345174A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/62Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP based on trigger specification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/41Billing record details, i.e. parameters, identifiers, structure of call data record [CDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/58Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP based on statistics of usage or network monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/82Criteria or parameters used for performing billing operations
    • H04M15/8214Data or packet based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/83Notification aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/83Notification aspects
    • H04M15/85Notification aspects characterised by the type of condition triggering a notification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0257Traffic management, e.g. flow control or congestion control per individual bearer or channel the individual bearer or channel having a maximum bit rate or a bit rate guarantee
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/24Accounting or billing

Definitions

  • This application relates to the field of communication technology, and in particular to methods, devices and systems for reporting data usage.
  • the session management function (session management function,
  • the SMF network element can control the data path of a packet data unit (PDU) session, so that a PDU session has multiple N6 interfaces at the same time.
  • the UPF network element terminating the N6 interface supports the anchor point function of the PDU session, referred to as the anchor UPF (anchor UPF, A-UPF) network element, and each A-UPF network element is connected to the same DN.
  • an uplink classifier (UL CL) function and an Internet protocol version 6 (Internet protocol version 6, IPv6) multi-homing or multi-link (IPv6 Multi-homing) function are introduced.
  • the UL CL function can be implemented by UL CL UPF network elements
  • the IPv6 Multi-homing function can be implemented by branching point (BP) UPF network elements.
  • SMF network elements send packet detection rules (PDR) to A-UPF network elements during the establishment or modification of the PDU session.
  • PDR packet detection rules
  • QoS enforcement rules QoS enforcement rules
  • QER usage reporting rules
  • the PDR contains data packet detection information, which is mainly a set of data packet filters used to identify Ethernet type or IP type data packet flows.
  • QER includes the maximum bit rate (such as session aggregate maximum bit rate (session-AMBR)), gating status, guaranteed bit rate, etc.
  • URR includes periodic policy thresholds, reporting triggers, and time-based measurement thresholds.
  • URR includes a measurement method that indicates the amount of statistical transmission data. Furthermore, for the downlink, after the A-UPF network element receives the DL data packet sent by the DN, it performs data packet matching according to the packet filter set in the PDR, and uses the corresponding QER to perform QoS control on the matched data packet. Further, the A-UPF network element counts the successfully transmitted data according to the corresponding URR and performs data usage reporting.
  • the A-UPF network element receives the UL data packet sent by the access network (AN) device or the intermediate UPF network element (when there are multiple UPF network elements), and then sets it according to the packet filter set in the PDR Perform data packet matching, and use the corresponding QER to perform QoS control on the matched data packets. Further, the A-UPF network element counts the successfully transmitted data according to the corresponding URR and performs data usage reporting.
  • AN access network
  • the intermediate UPF network element when there are multiple UPF network elements
  • the embodiments of the present application provide methods, devices, and systems for reporting data usage. For PDU sessions inserted with UL CL user plane network elements or BP user plane network elements, accurate data usage statistics can be achieved.
  • a method for data usage statistics and a corresponding communication device receives the discarded data usage of the aggregated user plane network element; the first session management network element receives one or more The transmission data usage of two anchor user plane network elements, where the one or more anchor user plane network elements are anchor user plane network elements connected to the aggregate user plane network element; the first session management network element is based on the The amount of discarded data and the amount of transmitted data are used to determine the actual data usage.
  • the aggregated user plane network element in the embodiment of this application may be a UL CL user plane network element or a BP user plane network element, based on this solution, for the PDU session inserted into the UL CL user plane network element or the BP user plane network element , Can achieve accurate data usage statistics, which can achieve accurate billing.
  • the actual data usage in the embodiments of the present application can be understood as the actual data usage of the terminal device.
  • the actual quantity and usage of the terminal device can be, for example, actual data usage statistics at service granularity, or actual data usage statistics at service quality QoS flow granularity, or actual user usage at PDU session granularity, or service granularity under the specific data network name DNN1
  • Actual data usage statistics, or the actual data usage statistics of the QoS flow granularity under the specific data network name DNN2 or the actual user usage of the PDU session granularity under the specific data network name DNN1; or the actual data usage statistics of the service granularity under the specific DNN1 slice , Or the actual data usage statistics of the QoS flow granularity in a specific DNN2 specific slice, or any combination of the above granularities, etc., are collectively described here, and the embodiment of the present application does not specifically limit this.
  • the multiple anchor user plane network elements include a first anchor user plane network element and a second anchor user plane network element; the first session management network element receives multiple anchor user plane network elements
  • the transmission data usage of the element includes: the first session management network element receives the transmission data usage of the first anchor user plane network element from the first anchor user plane network element; and, the first session management network element receives The transmission data usage of the second anchor user plane network element from the second anchor user plane network element.
  • the first session management network element can obtain the transmission data usage of multiple anchor user plane network elements.
  • the multiple anchor user plane network elements include a first anchor user plane network element and a second anchor user plane network element; the first session management network element receives multiple anchor user plane network elements
  • the transmission data usage of the element includes: the first session management network element receives the transmission data usage of the first anchor user plane network element from the first anchor user plane network element; and the first session management network element receives The transmission data usage of the second anchor user plane network element of the second session management network element. Based on this solution, the first session management network element can obtain the transmission data usage of multiple anchor user plane network elements.
  • the solution further includes: the first session management network element obtains a first packet inspection rule PDR and a usage reporting rule URR, the first PDR includes packet inspection information, and the URR includes a measurement method The measurement method is to count the amount of discarded data, where the first PDR is associated with the URR; the first session management network element sends the first PDR and the URR to the aggregate user plane network element.
  • the aggregate user plane network element can obtain packet detection information and the corresponding measurement method, and then the aggregate user plane network element performs service detection based on the packet detection information in the first PDR, and performs corresponding discarding according to the URR Data usage statistics.
  • the method further includes: the first session management network element obtains a second PDR and a quality of service QoS execution rule QER, and the second PDR includes one or more non-guaranteed bit rate non-GBR QoS flows
  • the flow identifier QFI of the QER includes the session aggregation maximum bit rate session-AMBR, where the second PDR is associated with the QER; the first session management network element sends the second PDR and the aggregate user plane network element QER.
  • the aggregate user plane network element can obtain the flow identifier QFI of one or more non-GBR QoS flows and the corresponding session-AMBR, and then the aggregate user plane network element can compare the QFI in the received data packet with the first The QFI in the two PDRs is matched, and the bit rate control is performed on the data packets that have passed the match according to the session-AMBR in the QER.
  • the method further includes: the first session management network element receives the QFI of the one or more non-GBR QoS flows from the second session management network element; correspondingly, the first session management network element
  • the element acquiring the second PDR includes: the first session management network element generates the second PDR according to the QFI of the one or more non-GBR QoS flows.
  • the method further includes: the first session management network element obtains a second PDR, QER, and URR, the second PDR includes one or more non-GBR QoS flow QFIs, and the QER includes session-AMBR, the URR includes a measurement method, the measurement method is to count the amount of discarded data, wherein the second PDR is associated with the URR and the QER; the first session management network element sends the aggregated user plane network element The second PDR, the URR and the QER.
  • the aggregated user plane network element can obtain the flow identification QFI of one or more non-GBR QoS flows and the corresponding session-AMBR and measurement method, and then the aggregated user plane network element can obtain the QFI in the received data packet.
  • Match with the QFI in the second PDR perform bit rate control on the data packets that pass the match according to the session-AMBR in the QER, and perform corresponding discarded data usage statistics according to the URR.
  • a method for data usage statistics and a corresponding communication device are provided.
  • the aggregate user plane network element determines the discarded data usage of the aggregate user plane network element; the aggregate user plane network element sends the session management network element to the session management network element. Send the discarded data usage, where the discarded data usage is used to determine the actual data usage.
  • the aggregated user plane network element in the embodiment of this application may be a UL CL user plane network element or a BP user plane network element, the discarded data usage of the aggregated user plane network element can be used to determine the actual data usage. Therefore, based on this solution, Inserting the PDU session of the UL CL user plane network element or the BP user plane network element can realize accurate data usage statistics, thereby realizing accurate billing.
  • the method further includes: the aggregate user plane network element receives the first data packet from the session management network element A detection rule PDR and a usage reporting rule URR, the first PDR includes packet detection information, the URR includes a measurement method, and the measurement method is to count the amount of discarded data, wherein the first PDR is associated with the URR; correspondingly; Yes, the aggregate user plane network element determining the discarded data usage of the aggregate user plane network element includes: the aggregate user plane network element determines the discarded data usage of the aggregate user plane network element according to the first PDR and the URR. Based on this solution, the aggregate user plane network element can determine the discarded data usage of the aggregate user plane network element.
  • the aggregate user plane network element determining the discarded data usage of the aggregate user plane network element includes: the aggregate user plane network element determines the discarded data usage of the aggregate user plane network element according to a local policy.
  • the method further includes: aggregating a user plane network element receiving a second PDR and a quality of service QoS enforcement rule QER from the session management network element, and the second PDR includes one or more non-guaranteed bits
  • the flow identifier QFI of the non-GBR QoS flow, the QER includes the session aggregation maximum bit rate session-AMBR, where the second PDR is associated with the QER; the QFI in the data packet that the aggregate user plane network element will receive Match with the QFI in the second PDR, and perform bit rate control on the data packets that pass the match according to the session-AMBR in the QER.
  • the aggregate user plane network element can perform bit rate control on data packets.
  • the method further includes: aggregating a user plane network element receiving a second PDR, QER, and URR from the session management network element, and the second PDR includes one or more non-GBR QoS flow QFI, the QER includes session-AMBR, the URR includes a measurement method, and the measurement method is to count the amount of discarded data.
  • the second PDR is associated with the URR and the QER; the aggregate user plane network element will receive The QFI in the data packet is matched with the QFI in the second PDR, and the bit rate control is performed on the matched data packet according to the session-AMBR in the QER; correspondingly, the aggregate user plane network element determines the aggregate user plane
  • the discarded data usage of the network element includes: the aggregate user plane network element determines the discarded data usage of the aggregate user plane network element according to the URR. Based on this solution, the aggregate user plane network element can perform bit rate control on data packets, and the aggregate user plane network element can determine the discarded data usage of the aggregate user plane network element.
  • the aggregate user plane network element determines the transmission data usage of the aggregate user plane network element, and the aggregate user plane network element is associated with multiple The user plane network element to which the anchor user plane network element is connected, the transmission data usage is the amount of data actually transmitted by the aggregate user plane network element among the data from the multiple anchor user plane network elements; the aggregate user plane network element Send the transmission data usage to the session management network element.
  • the aggregate user plane network element in the embodiment of the present application may be a UL CL user plane network element or a BP user plane network element, the transmission data usage of the aggregate user plane network element can be used to determine the actual data usage. Therefore, based on this solution, Inserting the PDU session of the UL CL user plane network element or the BP user plane network element can realize accurate data usage statistics, thereby realizing accurate billing.
  • the method further includes: the aggregate user plane network element receives the first data packet from the session management network element and detects The regular PDR and the usage reporting rule URR, the first PDR includes data packet detection information, the URR includes a measurement method, and the measurement method is to count the data usage of transmission, wherein the first PDR is associated with the URR; corresponding
  • the aggregation user plane network element determining the transmission data usage of the aggregate user plane network element includes: the aggregation user plane network element determines the transmission data usage of the aggregate user plane network element according to the first PDR and the URR. Based on this solution, the aggregate user plane network element can determine the transmission data usage of the aggregate user plane network element.
  • the aggregation user plane network element determining the transmission data usage of the aggregate user plane network element includes: the aggregation user plane network element determines the transmission data usage of the aggregate user plane network element according to a local policy. Based on this solution, the aggregate user plane network element can determine the transmission data usage of the aggregate user plane network element.
  • the method further includes: aggregating a user plane network element receiving a second PDR and a quality of service QoS enforcement rule QER from the session management network element, and the second PDR includes one or more non-guaranteed bits
  • the flow identifier QFI of the non-GBR QoS flow, the QER includes the session aggregation maximum bit rate session-AMBR, where the second PDR is associated with the QER; the QFI in the data packet that the aggregate user plane network element will receive Match with the QFI in the second PDR, and perform bit rate control on the data packets that pass the match according to the session-AMBR in the QER.
  • the aggregate user plane network element can perform bit rate control on data packets.
  • the method further includes: aggregating a user plane network element receiving a second PDR, QER, and URR from the session management network element, and the second PDR includes one or more non-GBR QoS flow QFI, the QER includes session-AMBR, the URR includes a measurement method, and the measurement method is to count the transmission data usage, wherein the second PDR is associated with the URR and the QER; the aggregate user plane network element will receive The QFI in the data packet is matched with the QFI in the second PDR, and the bit rate control is performed on the data packet that passes the matching according to the session-AMBR in the QER; accordingly, the aggregate user plane network element determines the aggregate user plane network
  • the transmission data usage of the element includes: the aggregate user plane network element determines the transmission data usage of the aggregate user plane network element according to the URR. Based on this solution, the aggregate user plane network element can perform bit rate control on data packets, and the aggregate user plane network element can determine the transmission data usage of the aggregate user plane network element.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be the first session management network element in the foregoing first aspect, or a device including the foregoing first session management network element; or, the communication device may be the aggregate user plane in the foregoing second or third aspect Network elements, or devices containing the above-mentioned aggregated user plane network elements.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in any of the above aspects.
  • the communication device may be the first session management network element in the foregoing first aspect, or a device including the foregoing first session management network element; or, the communication device may be the aggregate user plane in the foregoing second or third aspect Network elements, or devices containing the above-mentioned aggregated user plane network elements.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the communication device may be the first session management network element in the foregoing first aspect, or a device including the foregoing first session management network element; or, the communication device may be the aggregate user plane in the foregoing second or third aspect Network elements, or devices containing the above-mentioned aggregated user plane network elements.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the method described in any of the above aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the method described in any of the above aspects.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any of the foregoing aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of chips, or may include chips and other discrete devices.
  • the technical effects brought by any one of the design methods in the fourth to the ninth aspects can be referred to the technical effects brought about by the different design methods in the first aspect, the second aspect, or the third aspect. Repeat.
  • a communication system in a tenth aspect, includes a first session management network element and an aggregate user plane network element; the aggregate user plane network element is configured to send the aggregate user plane network element to the first session management network element The discarded data usage; the first session management network element is used to receive the discarded data usage of the aggregated user plane network element; the first session management network element is also used to receive transmissions from one or more anchor user plane network elements Data usage, where one or more anchor user plane network elements are anchor user plane network elements connected to the aggregated user plane network element; the first session management network element is also used for the discarded data usage and the transmission Data usage, determine the actual data usage.
  • the first session management network element is also used to execute the method described in any one of the possible designs of the first aspect.
  • the aggregate user plane network element is also used to perform the second aspect Any of the possible designs described in the method.
  • a communication system in an eleventh aspect, includes a first session management network element and an aggregated user plane network element; the aggregated user plane network element is used to determine the transmission data usage of the aggregated user plane network element,
  • the aggregate user plane network element is a user plane network element connected to a plurality of anchor user plane network elements, and the transmission data usage is data from the multiple anchor user plane network elements, the aggregate user plane network element actually transmits
  • the data usage of the aggregated user plane network element is also used to send the transmission data usage to the session management network element.
  • the session management network element is also used to receive the transmission data usage of the aggregate user plane network element, and determine the transmission data usage of the aggregate user plane network element as the actual data usage.
  • the aggregate user plane network element is also used to execute the method described in any one of the possible designs of the third aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a 5G network architecture provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of another 5G network architecture provided by an embodiment of the application.
  • 3A is a schematic diagram of another 5G network architecture provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a communication device according to an embodiment of this application.
  • FIG. 5 is a schematic flow chart 1 of a method for data usage statistics provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram 2 of a flow chart of a method for data usage statistics provided by an embodiment of this application;
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • At least one of the following or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • at least one item (a) in a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be a single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items whose functions and functions are basically the same. Those skilled in the art can understand that the words “first” and “second” do not limit the quantity and execution order, and the words “first” and “second” do not limit the difference.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly explain the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
  • the communication system 10 includes a first session management network element 101 and an aggregated user plane network element 102.
  • the first session management network element 101 and the aggregated user plane network element 102 may communicate directly, or communicate through forwarding by other devices, which is not specifically limited in the embodiment of the present application.
  • the aggregated user plane network element 102 is used to send the discarded data usage of the aggregated user plane network element 102 to the first session management network element 101.
  • the first session management network element 101 is configured to receive the discarded data usage of the aggregated user plane network element 102; and, is configured to receive the transmission data usage of one or more anchor user plane network elements, and according to the discarded data usage and transmission
  • the data usage determines the actual data usage, where the one or more anchor user plane network elements are anchor user plane network elements connected to the aggregate user plane network element 102.
  • the connection here can be that there is no other aggregate UPF network element between the anchor user plane network element and the aggregate user plane network element 102, or the anchor user plane network element passes through other aggregate user plane network elements and the aggregate user plane network element.
  • the element 102 is connected, which is not specifically limited here.
  • the actual data usage in the embodiments of the present application can be understood as the actual data usage of the terminal device.
  • the actual quantity and usage of the terminal device may be, for example, actual data usage statistics at service granularity, or actual data usage statistics at QoS flow granularity, or actual user usage at PDU session granularity, or specific data network name (DNN) 1.
  • the aggregated user plane network element in the embodiment of this application may be a UL CL user plane network element or a BP user plane network element, based on this communication system, for PDUs inserted with UL CL user plane network elements or BP user plane network elements Conversation, can realize accurate data usage statistics, thus can realize accurate billing.
  • the communication system 10 shown in FIG. 1 may be applied to a fifth generation (5rd generation, 5G) network currently under discussion or other future networks, etc., which is not specifically limited in the embodiment of the present application.
  • 5G fifth generation
  • the network element or entity corresponding to the above-mentioned aggregated user plane network element 102 may be an aggregated UPF network element in the 5G network; the network element or entity corresponding to the above-mentioned first session management network element 101 may be in the 5G network SMF network element.
  • the aggregated UPF network element in the embodiment of the present application may be, for example, UL CL UPF network element or BP
  • the UPF network element is uniformly explained here, and the embodiment of this application does not specifically limit this.
  • the 5G network may also include multiple A-UPF network elements, such as the A-UPF1 network elements and A-UPF2 network elements in Figure 2; and, the 5G network may also include AN equipment, Access and mobility management function (AMF) network elements, SMF network elements, etc.
  • AMF Access and mobility management function
  • the terminal device communicates with the AMF network element through the next generation network (next generation, N) 1 interface (referred to as N1)
  • the AN device communicates with the AMF network element through the N2 interface (referred to as N2)
  • the AN device communicates with the AMF network element through the N3 interface (referred to as N3)
  • N1 next generation network
  • N2 next generation network
  • N3 next generation interface
  • N3 next generation network
  • N3 interface referred to as N3
  • N3 interface (referred to as N3)
  • N9 interface (abbreviated as N9)
  • AMF network element communicates with SMF network element through N11 interface (abbreviated as N11)
  • SMF network The element communicates with the aggregated UPF network element, the A-UPF1 network element and the A-UPF2 network element through the N4 interface (abbreviated as N4)
  • the A-UPF1 network element and the A-UPF2 network element communicate with the DN through the N6 interface (abbreviated as N
  • the aggregated UPF network element and A-UPF1 network element in Figure 2 can be deployed together or separately; or, the aggregated UPF network element and A-UPF2 network element in Figure 2 can be deployed together. , Can also be deployed independently.
  • FIG. 2 is only an example of the independent deployment of the aggregated UPF network element and the A-UPF1 network element, and the independent deployment of the aggregated UPF network element and the A-UPF2 network element as an example, which is not specifically limited in the embodiment of the application.
  • the network element or entity corresponding to the above-mentioned aggregated user plane network element 102 may be an aggregated UPF network element in the 5G network; the above-mentioned first session
  • the network element or entity corresponding to the management network element 101 may be an anchor SMF (anchor SMF, A-SMF) network element or an intermediate (intermediate SMF, I-SMF) network element in the 5G network.
  • the 5G network may also include multiple A-UPF network elements, such as the A-UPF1 network elements and A-UPF2 network elements in FIG. 3; and, the 5G network may also include AN equipment, AMF network elements, and SMF network elements, etc.
  • the terminal device communicates with the AMF network element through the N1 interface (abbreviated as N1)
  • the AN device communicates with the AMF network element through the N2 interface (abbreviated as N2)
  • the AN device communicates with the aggregate UPF network element through the N3 interface (abbreviated as N3) to aggregate UPF
  • the network element communicates with the A-UPF1 network element and the A-UPF2 network element through the N9 interface (referred to as N9)
  • the AMF network element communicates with the I-SMF network element through the N11 interface (referred to as N11)
  • the I-SMF network element through the N4 interface ( N4 for short) communicates with the aggregated UPF network element and A-UPF2 network element.
  • the I-SMF network element communicates with the A-SMF network element through the Nxx interface (Nxx for short), and the A-SMF network element communicates with the A through the N4 interface (N4 for short).
  • -UPF1 network element communication, A-UPF1 network element and A-UPF2 network element communicate with DN through N6 interface (abbreviated as N6).
  • the aggregated UPF network element and the A-UPF1 network element in Figure 3 can be deployed in one, or can be deployed independently.
  • Figure 3 is only an example of independent deployment as an example. This embodiment of the application There is no specific restriction on this.
  • the network element or entity corresponding to the above-mentioned aggregated user plane network element 102 may be the aggregated UPF1 network element in the 5G network; the above-mentioned first session management network element 101 corresponds to The network element or entity of may be an SMF network element in the 5G network.
  • the 5G network may also include aggregated UPF2 network elements and multiple A-UPF network elements, such as A-UPF1 network elements, A-UPF2 network elements, and A-UPF3 network elements in Figure 3A; And, the 5G network may also include AN equipment, AMF network elements, and SMF network elements. There are no other aggregate UPF network elements between the aggregate UPF1 network element and the AN device.
  • the terminal device communicates with the AMF network element through the N1 interface (abbreviated as N1)
  • the AN device communicates with the AMF network element through the N2 interface (abbreviated as N2)
  • the AN device communicates with the aggregate UPF1 network element through the N3 interface (abbreviated as N3)
  • aggregate UPF1 The network element communicates with the A-UPF3 network element and the aggregate UPF2 network element through the N9 interface (abbreviated as N9)
  • the AMF network element communicates with the SMF network element through the N11 interface (abbreviated as N11)
  • the SMF network element communicates with the aggregation through the N4 interface (abbreviated as N4)
  • UPF1 network element, aggregate UPF2 network element, A-UPF1 network element, A-UPF2 network element and A-UPF3 network element communicate
  • aggregate UPF2 network element communicates with A-UPF1 network element and A-UPF2 network through N9 interface (abbreviated as N9)
  • the aggregated UPF1 network element and A-UPF3 network element in Figure 3A can be deployed together or separately; alternatively, the aggregated UPF2 network element and A-UPF2 network element in Figure 3A can be deployed together. , Can also be deployed independently; alternatively, the aggregated UPF2 network element and the A-UPF1 network element in Figure 3A can be deployed in one or independently.
  • FIG. 3A is only an example of the independent deployment of aggregated UPF1 network element and A-UPF3 network element, and the independent deployment of aggregated UPF2 network element and A-UPF1 network element and A-UPF2 network element respectively as an example for illustration. There is no specific restriction on this.
  • control plane network elements such as AMF network elements or SMF network elements in the 5G network architecture shown in FIG. 2 or FIG. 3 or FIG. 3A may also interact with service-oriented interfaces.
  • the servicing interface provided externally by the AMF network element may be Namf; the servicing interface provided externally by the SMF network element may be Nsmf.
  • 5G system architecture 5G system architecture
  • the terminal device in the embodiment of the present application may be a device for implementing a wireless communication function, such as a terminal or a chip that can be used in the terminal.
  • the terminal may be a user equipment (user equipment, UE), access terminal, terminal unit, terminal station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication in a 5G network or a future evolved PLMN Equipment, terminal agent or terminal device, etc.
  • the access terminal can be a cell phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the terminal can be mobile or fixed.
  • the access device in the embodiment of the present application refers to a device that accesses the core network, for example, it may be a base station, a broadband network service gateway (broadband network gateway, BNG), an aggregation switch, and a non-third-generation partnership program (3rd generation partnership project, 3GPP) access equipment, etc.
  • the base station may include various forms of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, and access points.
  • the aggregated user plane network element or the first session management network element in the embodiment of this application may also be called a communication device, which may be a general-purpose device or a dedicated device, which is not specifically described in the embodiment of this application. limited.
  • the related functions of the aggregated user plane network element or the first session management network element in the embodiment of the present application may be implemented by one device, or by multiple devices, or by one or the other in one device. Multiple functional modules are implemented, which is not specifically limited in the embodiment of the present application. It can be understood that the above-mentioned functions may be network elements in hardware devices, or software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) Virtualization function.
  • a platform for example, a cloud platform
  • FIG. 4 shows a schematic structural diagram of a communication device 400 provided by an embodiment of the application.
  • the communication device 400 includes one or more processors 401, a communication line 402, and at least one communication interface (in FIG. 4, the communication interface 404 and one processor 401 are included as an example for illustration), optional
  • the memory 403 may also be included.
  • the processor 401 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 402 may include a path for connecting different components.
  • the communication interface 404 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), etc.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 404 may also be a transceiver circuit located in the processor 401 to implement signal input and signal output of the processor.
  • the memory 403 may be a device having a storage function.
  • it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), or other types of information and instructions that can be stored.
  • ROM read-only memory
  • RAM random access memory
  • Dynamic storage devices can also be electrically erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), compact disc-read-only memory (CD-ROM) or other optical disc storage, optical disc storage ( (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store the desired program code in the form of instructions or data structures and can be stored by the computer Any other media, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 402. The memory can also be integrated with the processor.
  • the memory 403 is used to store computer-executed instructions for executing the solution of the present application, and the processor 401 controls the execution.
  • the processor 401 is configured to execute computer-executable instructions stored in the memory 403, so as to implement the data usage statistics method provided in the embodiment of the present application.
  • the processor 401 may also perform processing-related functions in the method for data usage statistics provided in the following embodiments of the present application, and the communication interface 404 is responsible for communicating with other devices or communication networks.
  • the embodiment of the application does not specifically limit this.
  • the computer execution instructions in the embodiments of the present application may also be called application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 401 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 4.
  • the communication device 400 may include multiple processors, such as the processor 401 and the processor 408 in FIG. 4. Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication device 400 may further include an output device 405 and an input device 406.
  • the output device 405 communicates with the processor 401, and can display information in a variety of ways.
  • the output device 405 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 406 communicates with the processor 401 and can receive user input in a variety of ways.
  • the input device 406 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the aforementioned communication device 400 may sometimes be called a communication device, and it may be a general-purpose device or a special-purpose device.
  • the communication device 400 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, the foregoing terminal device, the foregoing network device, or a picture 4 similar structure equipment.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 400.
  • a method for data usage statistics provided by an embodiment of this application includes the following steps:
  • S501 The terminal device establishes a PDU session, and the anchor point of the PDU session is the A-UPF1 network element.
  • the A-UPF1 network element can obtain the PDR1 including the packet detection information 1 from the SMF network element, the QER1 including the session-AMBR1, and the measurement method 1 (the measurement method 1 is statistically transmitted data Consumption) URR1, and then the A-UPF1 network element can associate PDR1 with QER1, and the A-UPF1 network element can associate PDR1 with URR1.
  • the method for A-UPF1 network element to associate PDR1 with URR1 can be to include the URR1 identifier in PDR1 or to save the corresponding information.
  • the method for A-UPF1 network element to associate PDR1 with QER1 can be to include QER1 in PDR1 Or save the corresponding information in association, which is not specifically limited in the embodiment of this application.
  • the data packet detection information 1 here is mainly a data packet filter set, and the data packet filter set may include one or more packet filters.
  • This data packet filtering set is used to identify the Ethernet type or IP type data packet flow.
  • IP type packet filter it can include a combination of source IP address, destination IP address, IPv6 prefix, source port number, destination port number, protocol ID, flow label, or direction;
  • Ethernet type packet filter you can Contains a combination of source media access control (MAC) address, destination MAC address, Ethernet type, or direction.
  • MAC media access control
  • the session-AMBR1 here is used to perform session-AMBR control, and related functions can refer to existing implementations, which will not be repeated here.
  • the above-mentioned QER1 may also include information such as gating status and guaranteed bit rate.
  • the QER (such as QER2 or QER3, etc.) in the following steps may also include other information besides session-AMBR, such as gating status, guaranteed bit rate, etc., which are explained here in a unified manner and will not be repeated here. .
  • step S501 can refer to the existing implementation manner, which will not be repeated here.
  • step S501 the SMF network element determines that a new PDU session anchor point needs to be established. Then, the SMF network element selects the A-UPF2 network element as the new PDU session anchor point, and establishes an N4 session with the A-UPF2 network element.
  • the A-UPF2 network element can obtain the PDR2 including the packet detection information 2 from the SMF network element, the QER2 including the session-AMBR2, and the measurement method 2 (the measurement method 2 is the statistical transmission of data Usage) URR2, and then the A-UPF2 network element can associate PDR2 with QER2, and the A-UPF2 network element can associate PDR2 with URR2.
  • A-UPF2 network element can associate PDR2 with URR2 by including the URR2 identifier in PDR2 or by associating and saving the corresponding information.
  • A-UPF2 network element can associate PDR2 with QER2 by including QER2 in PDR2. Or save the corresponding information in association, which is not specifically limited in the embodiment of this application.
  • step S502 can refer to the existing implementation manner, which will not be repeated here.
  • the SMF network element obtains PDR3 and URR3 associated with PDR3.
  • the PDR3 includes one or more non-guaranteed bit rate (non-guaranteed bit rate, non-GBR) QoS flow) flow identifiers (QoS flow identifier, QFI).
  • the URR3 includes measurement method 3, which is to count the amount of discarded data.
  • PDR3 may also include service data flow (service d ata flow, SDF) information/application identifier, which is used to detect data packets corresponding to one or more SDF information/application identifiers under QFI
  • PDR3 may also include SDF information/application identification and indication information 1, which indicates the detection of data packets other than the data packets corresponding to the SDF information/application identification under one or more QFIs; or, The PDR3 may also include indication information 2, which indicates the detection of data packets other than the data packets corresponding to one or more QFIs.
  • PDR3 may include SDF information/application identification to detect the data packet corresponding to the SDF information/application identification; or, PDR3 may include SDF information/application identification and indication information 3, which indicates the detection of the Data packets other than the data packet corresponding to the SDF information/application identifier.
  • the SMF network element may obtain QER3 associated with PDR3, and the QER3 includes session-AMBR3 for session-AMBR control.
  • the SMF network element may obtain PDR4 and QER4 associated with PDR4.
  • the PDR4 includes packet inspection information 4, which is used for packet inspection.
  • the QER4 includes session-AMBR4 for session-AMBR control.
  • the SMF network element obtains PDR3 and URR3 associated with PDR3, which may specifically include: SMF network element according to pre-configured charging information or policy control function (PCF) network element
  • PCF policy control function
  • the SMF network element acquiring QER3 associated with PDR3 may specifically include: the SMF network element generates QER3 associated with PDR3 according to pre-configured QoS control information or QoS control information provided by the PCF network element.
  • the SMF network element can obtain PDR4 and the QER4 associated with PDR4 may specifically include: the SMF network element generates PDR4 according to pre-configured QoS control information or QoS control information provided by the PCF network element, and QER4 associated with PDR4.
  • the method for associating PDR3 with URR3 may be to include the URR3 identifier in PDR3 or to store the corresponding information in association.
  • the method for associating PDR3 with QER3 may be to include the QER3 identifier in PDR3 or to associate and save corresponding information.
  • the method for associating PDR4 with QER4 may be to include the QER4 identifier in PDR4 or to store the corresponding information in association.
  • the SMF network element sends message 1 to the aggregated UPF network element.
  • the aggregate UPF network element receives the message 1 from the SMF network element.
  • the message 1 includes PDR3 and URR3 associated with PDR3.
  • the message 1 may be an N4 session establishment request message, for example.
  • the message 1 may also include the QER3 associated with the PDR3.
  • the SMF network element can obtain PDR4 and QER4 associated with PDR4 in step S503, the message 1 may also include PDR4 and QER4 associated with PDR4.
  • the message 1 may also include first tunnel information, and the first tunnel information includes tunnel information required by the aggregated UPF network element to send data to the A-UPF1 network element and the A-UPF2 network element.
  • the tunnel information in the embodiments of the present application may include, for example, an IP address and a tunnel identifier, which are explained here in a unified manner. No longer.
  • the aggregated UPF network element sends message 2 to the SMF network element.
  • the SMF network element receives the message 2 from the aggregated UPF network element.
  • the message 2 may be an N4 session establishment response message, for example.
  • the message 2 may include second tunnel information, and the second tunnel information includes tunnel information required by the aggregated UPF network element to send data to the AN device.
  • the SMF network element uses the N4 session modification procedure to update the PDU session information of the A-UPF1 network element.
  • the SMF network element using the N4 session modification process to update the PDU session information of the A-UPF1 network element may specifically include: the SMF network element sends third tunnel information to the A-UPF1 network element, and the third tunnel information includes the A-UPF1 network element The tunnel information required for sending downlink data to the aggregated UPF network element.
  • the SMF network element sends third tunnel information to the A-UPF1 network element, and the third tunnel information includes the A-UPF1 network element The tunnel information required for sending downlink data to the aggregated UPF network element.
  • Related implementations can refer to existing implementations, which will not be repeated here.
  • step S506 may not be performed, which will be explained here in a unified manner, and will not be repeated here.
  • the SMF network element uses the N4 session modification procedure to update the PDU session information of the A-UPF2 network element.
  • the SMF network element using the N4 session modification process to update the PDU session information of the A-UPF2 network element may specifically include: the SMF network element sends fourth tunnel information to the A-UPF2 network element, and the fourth tunnel information includes the A-UPF2 network element The tunnel information required for sending downlink data to the aggregated UPF network element.
  • the SMF network element sends fourth tunnel information to the A-UPF2 network element
  • the fourth tunnel information includes the A-UPF2 network element
  • Related implementations can refer to existing implementations, which will not be repeated here.
  • step S507 may not be performed, which will be described in a unified manner here, and will not be repeated below.
  • the SMF network element updates the session information on the AN device.
  • the SMF network element updating the session information on the AN device may specifically include: the SMF network element sends fifth tunnel information to the AN device, and the fifth tunnel information includes tunnel information required by the AN device to send data to the aggregated UPF network element.
  • the SMF network element sends fifth tunnel information to the AN device
  • the fifth tunnel information includes tunnel information required by the AN device to send data to the aggregated UPF network element.
  • the aggregated UPF network element performs session control.
  • the converged UPF network element performing session control may include: the aggregate UPF network element matches the QFI in the data packet with the QFI in PDR3 , The matched packet will be controlled according to the session-AMBR3 value in QER3. When the data packet transmission bit rate exceeds the Session-AMBR3 value, the data packet is discarded.
  • the converged UPF network element performing session control may include: aggregating the UPF network element performing QFI in the data packet with QFI in PDR4 Match, the matched packet will be controlled according to the session-AMBR4 value in QER4. When the data packet transmission bit rate exceeds the session-AMBR4 value, the data packet is discarded.
  • control of the session performed by the aggregated UPF network element specifically includes: the aggregated UPF network element determines the discarded data usage of the aggregated UPF network element.
  • determining the discarded data usage of the aggregated UPF network element by the aggregated UPF network element includes: the aggregated UPF network element determines the discarded data usage of the aggregated UPF network element according to a local policy.
  • the local policy here can be, for example, performing statistics on discarded data usage at service granularity; or performing statistics on discarded data at QoS flow granularity; or performing statistics on discarded data at PDU session granularity; or performing service granularity at a specific DNN1 Discarded data usage statistics for specific DNN2, QoS flow-granularity discarded data usage statistics; or PDU session-granularity discarded data usage statistics for specific DNN1; or service-granularity discarded data usage statistics for specific DNN1 and specific slices, specific DNN2 Perform statistics on discarded data usage with QoS flow granularity under a specific slice, or any combination of the above granularity, etc.
  • the aggregated UPF network element determining the discarded data usage of the aggregated UPF network element includes: the aggregated UPF network element determines the discarded data usage of the aggregated UPF network element according to PDR3 and URR3 in message 1. Among them, as described above, PDR3 is used to perform corresponding service detection, and URR3 indicates to count the amount of discarded data.
  • the aggregated UPF network element may also always perform discarded packet statistics based on QoS flow granularity, or always perform discarded packet statistics based on service flow granularity, which is not specifically limited in the embodiment of this application. .
  • the aggregated UPF network element sends message 3 to the SMF network element.
  • the SMF network element receives the message 3 from the aggregated UPF network element.
  • the message 3 includes the discarded data usage of the aggregated UPF network element.
  • the message 3 may be an N4 message 1, for example.
  • the A-UPF1 network element After performing transmission data usage statistics according to PDR1 and URR1, the A-UPF1 network element sends a message 4 to the SMF network element, and the SMF network element receives the message 4 from the A-UPF1 network element. Among them, the message 4 includes the transmission data usage of the A-UPF1 network element.
  • the message 4 may be N4 message 2, for example.
  • the A-UPF2 network element After the A-UPF2 network element performs transmission data usage statistics according to PDR2 and URR2, it sends a message 5 to the SMF network element, and the SMF network element receives the message 5 from the A-UPF2 network element. Wherein, the message 5 includes the transmission data usage of the A-UPF2 network element.
  • the message 5 may be N4 message 3, for example.
  • steps S510, S511, and S512 there is no inevitable order of execution between steps S510, S511, and S512 in the embodiment of the present application. Any one of these steps may be executed first, and then other steps; or any two of them may be executed simultaneously. Step, execute the remaining step; it is also possible to execute steps S510, S511, and S512 at the same time, which is not specifically limited in the embodiment of the present application.
  • the SMF network element after the SMF network element receives the transmission data usage of the A-UPF1 network element and the transmission data usage of the A-UPF2 network element, it requests the aggregate UPF network element to aggregate UPF The discarded data usage of the network element, and then the aggregated UPF network element sends the discarded data usage of the aggregated UPF network element to the SMF network element (that is, step S510 is performed), which is not specifically limited in the embodiment of the present application.
  • the SMF network element determines the actual data usage based on the transmission data usage of the A-UPF1 network element, the transmission data usage of the A-UPF2 network element, and the discarded data usage of the aggregate UPF network element.
  • actual data usage (transmission data usage of A-UPF1 network element + transmission data usage of A-UPF2 network element)-discarded data usage of aggregated UPF network element.
  • the SMF network element after the SMF network element obtains the actual data usage of a certain terminal device, it can also report the actual data usage to the PCF network element, so that the PCF network element performs calculations based on the actual data usage. Fee statistics, etc., this embodiment of the application does not specifically limit this.
  • the network element may also send updated PDR information to the aggregated UPF network element.
  • the updated PDR information may be used, for example, to delete or add the corresponding QFI, which is not specifically limited in the embodiment of the present application.
  • the actions of the SMF network elements or aggregated UPF network elements in the above steps S501 to S513 can be executed by the processor 401 in the communication device 400 shown in FIG. 4 calling the application code stored in the memory 403, and this embodiment There are no restrictions.
  • an embodiment of the present application may also provide a method for data usage statistics.
  • the embodiment shown in 5 is similar. The difference is that, in the embodiment of the application, the aggregated UPF1 network element performs discarded data usage statistics, and the SMF network element sends the aggregated UPF1 network element according to the aggregated UPF1 network element’s discarded data usage, A- The transmission data usage of the UPF1 network element, the transmission data usage of the A-UPF2 network element, and the transmission data usage of the A-UPF3 network element.
  • the actual data usage is sent to the PCF network element to make the PCF
  • the network element performs charging statistics based on the actual data usage.
  • the essence of the solution can be understood as that in a scenario where there are multiple aggregated UPF network elements, only one aggregated UPF network element needs to perform discarded data usage statistics, and the remaining aggregated UPF network elements do not need to perform discarded data usage statistics. Among them, there is no other aggregated UPF network element between the aggregated UPF network element that performs discarded data usage statistics and the AN device. For other related descriptions, reference may be made to the embodiment shown in FIG. 5, which will not be repeated here.
  • another method for data usage statistics provided by this embodiment of the application includes The following steps:
  • the terminal device establishes a PDU session, and the anchor point of the PDU session is the A-UPF1 network element.
  • step S601 For the related description of step S601, reference may be made to step S501 in the embodiment shown in FIG. 5, which will not be repeated here.
  • the A-SMF network element sends a message 6 to the I-SMF network element.
  • the I-SMF network element receives the message 6 from the A-SMF network element.
  • the message 6 includes one or more non-GBR QoS flow QFIs.
  • the message 6 may be Nxx message 1, for example.
  • step S603 For the related description of step S603, reference may be made to step S502 in the embodiment shown in FIG. 5, which will not be repeated here.
  • the I-SMF network element obtains PDR3 and URR3 associated with PDR3.
  • step S604 is similar to the related description of step S503 in the embodiment shown in FIG. 5, the difference is, for example, that the SMF network element in step S503 is replaced with the I-SMF network element in step S604.
  • the I-SMF network element acquiring and PDR3 may specifically include: the I-SMF network element generates PDR3 according to one or more non-GBR QoS flow QFIs received from the A-SMF network element.
  • step S503 please refer to the above step S503, which will not be repeated here.
  • the I-SMF network element sends message 1 to the aggregated UPF network element.
  • the aggregate UPF network element receives the message 1 from the I-SMF network element.
  • the message 1 includes PDR3 and URR3 associated with PDR3.
  • step S605 is similar to the related description of step S504 in the embodiment shown in FIG. 5, and the difference is, for example, that the SMF network element in step S504 is replaced with the I-SMF network element in step S605.
  • step S504 is replaced with the I-SMF network element in step S605.
  • the aggregated UPF network element sends message 2 to the I-SMF network element.
  • the I-SMF network element receives the message 2 from the aggregated UPF network element.
  • step S606 is similar to the related description of step S505 in the embodiment shown in FIG. 5, and the difference is, for example, that the SMF network element in step S505 is replaced with the I-SMF network element in step S606.
  • step S505 For other related descriptions, please refer to the above step S505, which will not be repeated here.
  • the I-SMF network element uses the N4 session modification procedure to update the PDU session information of the A-UPF2 network element.
  • step S607 is similar to the related description of step S507 in the embodiment shown in FIG. 5, and the difference is, for example, that the SMF network element in step S507 is replaced with the I-SMF network element in step S607.
  • step S507 please refer to the above step S507, which will not be repeated here.
  • the I-SMF network element sends a message 7 to the A-SMF network element.
  • the A-SMF network element receives the message 7 from the I-SMF network element.
  • the message 7 includes third tunnel information, and the third tunnel information includes tunnel information required by the A-UPF1 network element to send downlink data to the aggregated UPF network element.
  • the message 7 may be Nxx message 2, for example.
  • the A-SMF network element uses the N4 session modification process to update the PDU session information of the A-UPF1 network element.
  • step S609 is similar to the related description of step S506 in the embodiment shown in FIG. 5, and the difference is, for example, that the SMF network element in step S506 is replaced with the A-SMF network element in step S609.
  • step S506 please refer to the above step S506, which will not be repeated here.
  • the I-SMF network element updates the session information on the AN device.
  • step S610 is similar to the related description of step S508 in the embodiment shown in FIG. 5, and the difference is, for example, that the SMF network element in step S508 is replaced with the I-SMF network element in step S609.
  • step S508 is replaced with the I-SMF network element in step S609.
  • the aggregated UPF network element performs session control.
  • step S611 For the related description of step S611, reference may be made to step S509 in the embodiment shown in FIG. 5, which will not be repeated here.
  • the method for data usage statistics provided in the embodiment of the present application further includes the following steps S612a-S616a:
  • the aggregated UPF network element sends message 3 to the I-SMF network element.
  • the I-SMF network element receives the message 3 from the aggregated UPF network element.
  • the message 3 includes the discarded data usage of the aggregated UPF network element.
  • the message 3 may be N4 message 1, for example.
  • the A-UPF2 network element performs transmission data usage statistics according to PDR2 and URR2, and then sends a message 5 to the I-SMF network element, and the I-SMF network element receives a message 5 from the A-UPF2 network element.
  • the message 5 includes the transmission data usage of the A-UPF2 network element.
  • the message 5 may be N4 message 3, for example.
  • the I-SMF network element sends a message 8 to the A-SMF network element.
  • the A-SMF network element receives the message 8 from the I-SMF network element.
  • the message 8 includes the transmission data usage of the A-UPF2 network element and the discarded data usage of the aggregate UPF network element.
  • the message 8 may be Nxx message 3, for example.
  • the transmission data usage of the A-UPF2 network element and the discarded data usage of the aggregate UPF network element may also be sent to the A-SMF network element through different Nxx messages, for example, the I-SMF network element
  • the transmission data usage of the A-UPF2 network element is sent to the A-SMF network element through an Nxx message.
  • the A-SMF network element After the A-SMF network element receives the transmission data usage of the A-UPF2 network element sent by the I-SMF network element, it sends the I- When the SMF network element requests to aggregate the discarded data usage of the UPF network element, the I-SMF network element sends the discarded data usage of the aggregated UPF network element to the A-SMF network element through another Nxx message, which is not specifically limited in the embodiment of this application .
  • the I-SMF network element may determine an intermediate data usage based on the transmission data usage of the A-UPF2 network element and the discarded data usage of the aggregated UPF network element, and then the intermediate data The amount is sent to the A-SMF network element, which is not specifically limited in the embodiment of this application.
  • intermediate data usage A-UPF2 network element transmission data usage-aggregate UPF network element discarded data usage.
  • the A-UPF1 network element After the A-UPF1 network element performs transmission data usage statistics according to PDR1 and URR1, it sends a message 4 to the A-SMF network element, and the A-SMF network element receives a message 4 from the A-UPF1 network element. Among them, the message 4 includes the transmission data usage of the A-UPF1 network element.
  • the message 4 may be N4 message 2, for example.
  • steps S612a, S613a, and S615a there is no inevitable order of execution between steps S612a, S613a, and S615a in this embodiment of the application. Any one of these steps can be executed first, and then other steps; or any two of them can be executed simultaneously. Step, execute the remaining step; it is also possible to execute steps S612a, S613a, and S615a at the same time, which is not specifically limited in the embodiment of the present application.
  • the A-SMF network element determines the actual data usage based on the transmission data usage of the A-UPF1 network element, the transmission data usage of the A-UPF2 network element, and the discarded data usage of the aggregated UPF network element.
  • actual data usage (transmission data usage of A-UPF1 network element + transmission data usage of A-UPF2 network element)-discarded data usage of aggregated UPF network element.
  • the A-SMF network element after the A-SMF network element obtains the actual data usage of a certain terminal device, it can also report the actual data usage to the PCF network element, so that the PCF network element can use the actual data usage Perform charging statistics, etc., which are not specifically limited in the embodiment of the present application.
  • the data usage statistics method provided in the embodiment of the present application further includes the following steps S612b-S616b:
  • S612b-S613b are the same as the aforementioned steps S612a-S613a.
  • steps S612a-S613a please refer to the aforementioned steps S612a-S613a, which will not be repeated here.
  • step S614b is the same as the above step S615a.
  • step S615a please refer to the above step S615a, which will not be repeated here.
  • steps S612b, S613b, and S614b there is no inevitable order of execution between steps S612b, S613b, and S614b in the embodiment of the present application. Any one of these steps may be executed first, and then other steps may be executed; or any two of them may be executed simultaneously. Step, perform the remaining step; it is also possible to perform steps S612b, S613b, and S614b at the same time, which is not specifically limited in the embodiment of the present application.
  • the A-SMF network element sends a message 9 to the I-SMF network element.
  • the I-SMF network element receives the message 9 from the A-SMF network element.
  • the message 9 includes the transmission data usage of the A-UPF1 network element.
  • the message 9 may be an Nxx message 4, for example.
  • the I-SMF network element determines the actual data usage according to the transmission data usage of the A-UPF1 network element, the transmission data usage of the A-UPF2 network element, and the discarded data usage of the aggregate UPF network element.
  • actual data usage (transmission data usage of A-UPF1 network element + transmission data usage of A-UPF2 network element)-discarded data usage of aggregated UPF network element.
  • the I-SMF network element determines the actual data usage
  • the actual data usage can be sent to the A-SMF network element, and the A-SMF network element reports the actual data usage to the PCF network. Therefore, the PCF network element performs charging statistics based on the actual data usage, which is not specifically limited in the embodiment of the present application.
  • the A-SMF network element is in the process of establishing a new QoS flow or deleting the established QoS flow, if the QoS flow is non- For the QoS flow of GBR, the updated PDR information is sent to the I-SMF network element so that the I-SMF network element can send the updated PDR information to the aggregated UPF.
  • the updated PDR information can be used to delete or add the corresponding QFI, for example.
  • the application embodiment does not specifically limit this.
  • the I-SMF network element sends updated PDR information to the aggregated UPF when determining to establish a new QoS flow or delete the established QoS flow process.
  • the updated PDR information can be used to delete or add the corresponding QFI, for example.
  • the embodiment does not specifically limit this.
  • the actions of the A-SMF network element or the aggregated UPF network element in the above steps S601 to S616a or S616b can be executed by the processor 401 in the communication device 400 shown in FIG. 4 calling the application code stored in the memory 403, This embodiment does not impose any limitation on this.
  • an embodiment of the present application may also provide a method for data usage statistics.
  • the embodiment shown in 5 is similar, the difference is that, in step S503 and step S504 of the embodiment shown in FIG. 5, the measurement method 3 in URR3 associated with PDR3 is to count the amount of discarded data, so the embodiment shown in FIG. 5
  • the aggregated UPF network element sends the discarded data usage of the aggregated UPF network element to the SMF network element, and in step S513 of the embodiment shown in FIG.
  • the SMF network element transmits data according to the amount of data transmitted by the A-UPF1 network element, A- The transmission data usage of the UPF2 network element and the discarded data usage of the UPF network element are aggregated to determine the actual data usage; and different from the above steps in the embodiment shown in FIG. 5, in the embodiment of this application, the URR3 in the URR3 associated with PDR3 Measurement method 3 is to count the transmission data usage. Therefore, the aggregate UPF network element sends the aggregate UPF network element transmission data usage to the SMF network element.
  • the aggregate UPF network element transmission data usage is from the A-UPF1 network element and A-UPF2 network element Among the data, the usage of data actually transmitted by the aggregated UPF network element, and then the SMF network element can determine the amount of data transmitted by the aggregated UPF network element as the actual data usage of a certain terminal device.
  • the SMF network element when the SMF network element sends PDR3 and URR3 to the aggregated UPF network element, it can send to the A-UPF1 network element an instruction to suspend statistics or delete the PDR1 and URR1 on the A-UPF1 network element. , And send the instruction to suspend statistics to the A-UPF2 network element or delete PDR2 and URR2 on the A-UPF2 network element.
  • an embodiment of the present application may also provide a method for data usage statistics.
  • the embodiment shown in FIG. 6 is similar, the difference is that, in step S604 and step S605 of the embodiment shown in FIG. 6, the measurement method 3 in URR3 associated with PDR3 is to count the amount of discarded data, so the embodiment shown in FIG. 6
  • the aggregated UPF network element sends the discarded data usage of the aggregated UPF network element to the I-SMF network element, and then the A-SMF network element in step S616a of the embodiment shown in FIG.
  • step S616b of the embodiment shown in FIG. 6 is based on the A-UPF1 network element
  • the transmission data usage, the transmission data usage of the A-UPF2 network element, and the discarded data usage of the aggregated UPF network element are used to determine the actual data usage; and different from the above steps in the embodiment shown in FIG.
  • the measurement method 3 in URR3 associated with PDR3 is to count the transmission data usage, so the aggregate UPF network element sends the aggregate UPF network element transmission data usage to the I-SMF network element, and the aggregate UPF network element transmits data usage from A-UPF1 Among the data of the network element and the A-UPF2 network element, aggregate the actual data consumption of the UPF network element, and then the I-SMF network element or the A-SMF network element can determine the transmission data consumption of the aggregate UPF network element as a certain The actual data usage of the terminal device.
  • the I-SMF network element when the I-SMF network element sends PDR3 and URR3 to the aggregated UPF network element, the I-SMF network element can send the A-UPF2 network element an instruction to suspend statistics or delete A-UPF2 PDR2 and URR2 on the network element, as well as instructing the A-SMF network element to send to the A-UPF1 network element the instruction to suspend statistics or delete the PDR1 and URR1 on the A-UPF1 network element.
  • FIG. 6 will not be repeated here.
  • the foregoing embodiments of the present application are all exemplified by applying the communication system shown in FIG. 1 to a current non-roaming 5G network.
  • the method for data usage statistics provided in the embodiments of this application can also be applied to 5G networks in roaming scenarios, such as 5G network architecture for local grooming roaming or home routing roaming 5G network architecture, etc.; or, the data usage provided by the embodiments of this application
  • the statistical method can also be applied to other networks in the future.
  • the corresponding data usage statistical method is similar to the method in the foregoing embodiment, and only the relevant network elements need to be adaptively replaced, which will not be repeated here.
  • the methods and/or steps implemented by aggregating user plane network elements can also be implemented by components (such as chips or circuits) that can be used to aggregate user plane network elements, and are managed by the first session.
  • the methods and/or steps implemented by the network element may also be implemented by components that can be used for the first session management network element.
  • the above mainly introduces the solutions provided by the embodiments of the present application from the perspective of interaction between various network elements.
  • the embodiments of the present application also provide a communication device, which is used to implement the above various methods.
  • the communication device may be the first session management network element in the foregoing method embodiment, or a device including the foregoing first session management network element, or a component that can be used for the first session management network element; or, the communication device may be The aggregate user plane network element in the foregoing method embodiment, or a device including the foregoing aggregate user plane network element, or a component that can be used to aggregate user plane network elements.
  • the communication device includes a hardware structure and/or a software module corresponding to each function.
  • a hardware structure and/or a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the functional modules of the communication apparatus according to the above method embodiments, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • FIG. 7 shows a schematic structural diagram of a communication device 70.
  • the communication device 70 includes a processing module 701 and a transceiver module 702.
  • the transceiver module 702 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the transceiver module 702 is used to receive the discarded data usage of the aggregated user plane network element; the transceiver module 702 is also used to receive the transmission data usage of one or more anchor user plane network elements, among which, one or more anchors
  • the user plane network element is an anchor user plane network element connected to the aggregate user plane network element; the processing module 701 is configured to determine the actual data usage according to the discarded data usage and the transmission data usage.
  • the multiple anchor user plane network elements include a first anchor user plane network element and a second anchor user plane network element; the transceiver module 702 is configured to receive the transmission data usage of the multiple anchor user plane network elements, Including: for receiving the transmission data usage of the first anchor user plane network element from the first anchor user plane network element; and, for receiving the second anchor user plane network from the second anchor user plane network element Meta's data transfer usage.
  • the multiple anchor user plane network elements include a first anchor user plane network element and a second anchor user plane network element; the transceiver module 702 is configured to receive the transmission data usage of the multiple anchor user plane network elements, Including: for receiving the transmission data usage of the first anchor user plane network element from the first anchor user plane network element; and, for receiving the second anchor user plane network element from the second session management network element Transmission data usage.
  • the processing module 701 is further configured to obtain a first PDR and a URR.
  • the first PDR includes packet detection information
  • the URR includes a measurement method
  • the measurement method is to count the amount of discarded data.
  • the first PDR is related to the URR.
  • the transceiver module 702 is also used to send the first PDR and URR to the aggregate user plane network element.
  • the processing module 701 is further configured to obtain a second PDR and QER.
  • the second PDR includes one or more non-GBR QoS flow identifiers QFI, and the QER includes session-AMBR, where the second PDR and QER QER is associated; the transceiver module 702 is also used to send the second PDR and QER to the aggregated user plane network element.
  • the transceiver module 702 is further configured to receive QFI of one or more non-GBR QoS flows from the second session management network element; correspondingly, the processing module 701 is configured to obtain the second PDR, including: The QFI of one or more non-GBR QoS flows generates the second PDR.
  • the processing module 701 is further configured to obtain a second PDR, QER, and URR.
  • the second PDR includes the QFI of one or more non-GBR QoS flows, the QER includes session-AMBR, and the URR includes a measurement method.
  • the measurement method is to count the amount of discarded data, where the second PDR is associated with URR and QER; the transceiver module 702 is also used to send the second PDR, URR and QER to the aggregated user plane network element.
  • the processing module 701 is configured to determine the discarded data usage of the aggregated user plane network element; the transceiver module 702 is configured to send the discarded data usage to the session management network element, where the discarded data usage is used to determine the actual data usage.
  • the transceiver module 702 is further configured to receive the first PDR and URR from the session management network element, the first PDR includes packet detection information, the URR includes a measurement method, and the measurement method is to count the amount of discarded data, where , The first PDR is associated with the URR; correspondingly, the processing module 701 is configured to determine the discarded data usage of the aggregated user plane network element, including: determining the discarded data usage of the aggregated user plane network element according to the first PDR and the URR.
  • the processing module 701 is configured to determine the discarded data usage of the aggregated user plane network element, including: determining the discarded data usage of the aggregated user plane network element according to a local policy.
  • the transceiver module 702 is further configured to receive the second PDR and QER from the session management network element, the second PDR includes one or more non-GBR QoS flow identifiers QFI, and the QER includes the maximum session aggregation bit Rate session-AMBR, where the second PDR is associated with the QER; the processing module 701 is also used to match the QFI in the received data packet with the QFI in the second PDR, and match the data packets that have passed according to the QER
  • the session-AMBR performs bit rate control.
  • the transceiver module 702 is further configured to receive a second PDR, QER, and URR from the session management network element, the second PDR includes one or more non-GBR QoS flow QFI, and the QER includes session-AMBR, URR includes a measurement method, the measurement method is to count the amount of discarded data, where the second PDR is associated with URR and QER; the processing module 701 is also used to perform the QFI in the received data packet with the QFI in the second PDR Matching, to control the bit rate of data packets that pass the match according to the session-AMBR in QER; correspondingly, the processing module 701 is used to determine the discarded data usage of the aggregated user plane network element, including: used to determine the aggregated user plane network according to URR Yuan's discarded data usage.
  • the processing module 701 is configured to determine the transmission data usage of the aggregated user plane network element, the aggregated user plane network element is a user plane network element connected to multiple anchor user plane network elements, and the transmission data usage is from the multiple Among the data of the anchor user plane network element, the amount of data actually transmitted by the aggregated user plane network element; the transceiver module 702 is configured to send the transmitted data amount to the session management network element.
  • the transceiver module 702 is further configured to receive a first PDR and URR from the session management network element, the first PDR includes packet detection information, the URR includes a measurement method, and the measurement method is a statistical transmission Data usage, where the first PDR is associated with the URR; correspondingly, the processing module 701 is configured to determine the transmission data usage of the aggregated user plane network element, including: for determining the aggregated data according to the first PDR and the URR Transmission data usage of user plane network elements.
  • the processing module 701 is configured to determine the transmission data usage of the aggregate user plane network element, including: being configured to determine the transmission data usage of the aggregate user plane network element according to a local policy.
  • the transceiver module 702 is further configured to receive a second PDR and QER from the session management network element.
  • the second PDR includes one or more non-GBR QoS flow identifiers QFI
  • the QER includes session -AMBR, where the second PDR is associated with the QER;
  • the processing module 701 is configured to match the QFI in the received data packet with the QFI in the second PDR, and to match the data packets that pass according to the QER
  • the session-AMBR in the session-AMBR performs bit rate control.
  • the transceiver module 702 is further configured to receive a second PDR, QER, and URR from the session management network element.
  • the second PDR includes the QFI of one or more non-GBR QoS flows, and the QER includes the session -AMBR, the URR includes a measurement method, the measurement method is to count the amount of transmitted data, wherein the second PDR is associated with the URR and the QER;
  • the processing module 701 is also used to combine the QFI in the received data packet Match with the QFI in the second PDR, and perform bit rate control on the matched data packets according to the session-AMBR in the QER; correspondingly, the processing module 701 is used to determine the transmission data usage of the aggregated user plane network element , Including: used to determine the transmission data usage of the aggregated user plane network element according to the URR.
  • the communication device 70 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” herein may refer to a specific ASIC, circuit, processor and memory that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the communication device 70 may take the form of the communication device 400 shown in FIG. 4.
  • the processor 401 in the communication device 400 shown in FIG. 4 may invoke the computer execution instructions stored in the memory 403 to enable the communication device 400 to execute the data usage statistics method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 701 and the transceiver module 702 in FIG. 7 may be implemented by the processor 401 in the communication device 400 shown in FIG. 4 calling a computer execution instruction stored in the memory 403.
  • the function/implementation process of the processing module 701 in FIG. 7 can be implemented by the processor 401 in the communication device 400 shown in FIG. 4 calling a computer execution instruction stored in the memory 403, and the function of the transceiver module 702 in FIG. 7 /The realization process can be realized through the communication interface 404 in the communication device 400 shown in FIG. 4.
  • the communication device 70 provided in this embodiment can perform the above-mentioned data usage statistics method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • one or more of the above modules or units may be implemented by software, hardware, or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor may be used to execute the program instructions and implement the above method flow.
  • the processor can be built into an SoC (system on chip) or ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • the processor's internal processing is used to execute software instructions for calculations or processing, and may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware may be a CPU, a microprocessor, a digital signal processing (DSP) chip, a micro control unit (MCU), an artificial intelligence processor, an ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device, which can run the necessary software or does not depend on the software to perform the above method flow.
  • DSP digital signal processing
  • MCU micro control unit
  • ASIC any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device, which can run the necessary software or does not depend on the software to perform the above method flow.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data.
  • the processor can call the program code stored in the memory to instruct the communication device to perform the method in any of the above method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供数据用量上报的方法、装置及系统,对于插入了UL CL用户面网元或者BP用户面网元的PDU会话,可以实现准确的数据用量统计。方法包括:聚合用户面网元确定聚合用户面网元的丢弃数据用量,并向会话管理网元发送该丢弃数据用量。第一会话管理网元接收聚合用户面网元的丢弃数据用量,并接收一个或多个锚点用户面网元的传输数据用量,其中,该一个或多个锚点用户面网元为与该聚合用户面网元连接的锚点用户面网元;第一会话管理网元根据该丢弃数据用量和该传输数据用量,确定终端设备的实际数据用量。

Description

数据用量上报的方法、装置及系统
本申请要求于2019年01月15日提交国家知识产权局、申请号为201910035673.3、申请名称为“数据用量上报的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及数据用量上报的方法、装置及系统。
背景技术
在现有的第五代(5rd generation,5G)网络架构中,为了支持业务有选择的路由到数据网络(data network,DN)或者支持会话和业务的连续性,会话管理功能(session Management function,SMF)网元可以控制一个分组数据单元(packet data unit,PDU)会话的数据路径,使得一个PDU会话同时有多个N6接口。终结N6接口的UPF网元支持PDU会话的锚点功能,简称锚点UPF(anchor UPF,A-UPF)网元,每一个A-UPF网元接入到相同的DN。同时,为了支持上述会话,引入了上行分类器(uplink classifier,UL CL)功能和互联网协议版本6(internet protocol version 6,IPv6)多归属或者多链路(IPv6 Multi-homing)功能。其中,UL CL功能可以通过UL CL UPF网元实现,IPv6 Multi-homing功能可以通过分支点(branching point,BP)UPF网元实现。
目前,在没有插入UL CL UPF网元或者BP UPF网元的PDU会话中,SMF网元在PDU会话建立或者修改过程中,向A-UPF网元发送包括数据包检测规则(packet detection rule,PDR)、服务质量(quality of services,QoS)执行规则(QoS enforcement rule,QER)和用量上报规则(usage reporting rule,URR)的N4会话修改或者建立请求。其中,PDR中包含数据包检测信息,主要为用于识别以太类型或者IP类型的数据包流的数据包过滤器集合。QER中包含最大比特率(如会话聚合最大比特率(session aggregate maximum bit rate,session-AMBR))、门控状态、保证比特率等。URR包含周期性策略阈值、上报触发器、基于时间的测量阈值等。URR中包括指示统计传输数据用量的测量方法。进而,对于下行,A-UPF网元接收DN发送的DL数据包之后,根据PDR中的数据包过滤器集合执行数据包匹配,对匹配通过的数据包使用对应的QER执行QoS控制。进一步的,A-UPF网元根据对应的URR统计成功传输的数据并执行数据用量上报。对于上行,A-UPF网元接收接入网(access network,AN)设备或者中间UPF网元(当有多个UPF网元时)发送的UL数据包之后,根据PDR中的数据包过滤器集合执行数据包匹配,对匹配通过的数据包使用对应的QER执行QoS控制。进一步的,A-UPF网元根据对应的URR统计成功传输的数据并执行数据用量上报。
然而,对于插入了UL CL UPF网元或者BP UPF网元的PDU会话,由A-UPF网元统计的数据用量不准确,进一步的可能导致计费错误。因此,如何实现准确的数据用量统计,是目前亟待解决的问题。
发明内容
本申请实施例提供数据用量上报的方法、装置及系统,对于插入了UL CL用户面网元或者BP用户面网元的PDU会话,可以实现准确的数据用量统计。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种数据用量统计的方法及相应的通信装置,该方案中,第一会话管理网元接收聚合用户面网元的丢弃数据用量;第一会话管理网元接收一个或多个锚点用户面网元的传输数据用量,其中,该一个或多个锚点用户面网元为与该聚合用户面网元连接的锚点用户面网元;第一会话管理网元根据该丢弃数据用量和该传输数据用量,确定实际数据用量。由于本申请实施例中的聚合用户面网元可以为UL CL用户面网元或者BP用户面网元,因此基于该方案,对于插入了UL CL用户面网元或者BP用户面网元的PDU会话,可以实现准确的数据用量统计,从而可以实现准确的计费。
可以理解,本申请实施例中的实际数据用量可以理解为终端设备的实际数据用量。该终端设备的实际数量用量例如可以是业务粒度的实际数据用量统计,或者服务质量QoS流粒度的实际数据用量统计,或者是PDU会话粒度的实际用户用量,或者特定数据网络名称DNN1下业务粒度的实际数据用量统计,或者特定数据网络名称DNN2下QoS流粒度的实际数据用量统计,或者是特定数据网络名称DNN1下PDU会话粒度的实际用户用量;或者特定DNN1特定切片下业务粒度的实际数据用量统计,或者特定DNN2特定切片下QoS流粒度的实际数据用量统计,或者上述粒度的任意组合等,在此统一说明,本申请实施例对此不作具体限定。
在一种可能的设计中,该多个锚点用户面网元包括第一锚点用户面网元和第二锚点用户面网元;第一会话管理网元接收多个锚点用户面网元的传输数据用量,包括:第一会话管理网元接收来自该第一锚点用户面网元的该第一锚点用户面网元的传输数据用量;以及,该第一会话管理网元接收来自该第二锚点用户面网元的该第二锚点用户面网元的传输数据用量。基于该方案,第一会话管理网元可以获取多个锚点用户面网元的传输数据用量。
在一种可能的设计中,该多个锚点用户面网元包括第一锚点用户面网元和第二锚点用户面网元;第一会话管理网元接收多个锚点用户面网元的传输数据用量,包括:第一会话管理网元接收来自该第一锚点用户面网元的该第一锚点用户面网元的传输数据用量;以及,第一会话管理网元接收来自第二会话管理网元的该第二锚点用户面网元的传输数据用量。基于该方案,第一会话管理网元可以获取多个锚点用户面网元的传输数据用量。
在一种可能的设计中,该方案还包括:第一会话管理网元获取第一数据包检测规则PDR和用量上报规则URR,该第一PDR中包括数据包检测信息,该URR中包括测量方法,该测量方法为统计丢弃数据用量,其中,该第一PDR与该URR相关联;第一会话管理网元向该聚合用户面网元发送该第一PDR和该URR。基于该方案,聚合用户面网元可以获取数据包检测信息以及相应的测量方法,进而聚合用户面网元根据该第一PDR中的数据包检测信息进行业务检测,并根据该URR执行相应的丢弃数据用量统计。
在一种可能的设计中,该方法还包括:第一会话管理网元获取第二PDR和服务质 量QoS执行规则QER,该第二PDR中包括一个或多个非保证比特率non-GBR QoS流的流标识QFI,该QER中包括会话聚合最大比特率session-AMBR,其中,该第二PDR与该QER相关联;第一会话管理网元向该聚合用户面网元发送该第二PDR和该QER。基于该方案,聚合用户面网元可以获取一个或多个non-GBR QoS流的流标识QFI以及相应的session-AMBR,进而聚合用户面网元可以将接收到的数据包中的QFI与该第二PDR中的QFI进行匹配,对匹配通过的数据包根据该QER中的该session-AMBR进行比特率控制。
在一种可能的设计中,该方法还包括:第一会话管理网元接收来自第二会话管理网元的该一个或多个non-GBR QoS流的QFI;相应的,该第一会话管理网元获取第二PDR,包括:第一会话管理网元根据该一个或多个non-GBR QoS流的QFI生成第二PDR。
在一种可能的设计中,该方法还包括:第一会话管理网元获取第二PDR、QER和URR,该第二PDR中包括一个或多个non-GBR QoS流的QFI,该QER中包括session-AMBR,该URR中包括测量方法,该测量方法为统计丢弃数据用量,其中,该第二PDR与该URR和该QER相关联;第一会话管理网元向该聚合用户面网元发送该第二PDR、该URR和该QER。基于该方案,聚合用户面网元可以获取一个或多个non-GBR QoS流的流标识QFI以及相应的session-AMBR和测量方法,进而聚合用户面网元可以将接收到的数据包中的QFI与该第二PDR中的QFI进行匹配,对匹配通过的数据包根据该QER中的该session-AMBR进行比特率控制,并根据该URR执行相应的丢弃数据用量统计。
第二方面,提供了一种数据用量统计的方法及相应的通信装置,该方案中,聚合用户面网元确定该聚合用户面网元的丢弃数据用量;聚合用户面网元向会话管理网元发送该丢弃数据用量,其中,该丢弃数据用量用于确定实际数据用量。由于本申请实施例中的聚合用户面网元可以为UL CL用户面网元或者BP用户面网元,该聚合用户面网元的丢弃数据用量可用于确定实际数据用量,因此基于该方案,对于插入了UL CL用户面网元或者BP用户面网元的PDU会话,可以实现准确的数据用量统计,从而可以实现准确的计费。
在一种可能的设计中,在该聚合用户面网元确定该聚合用户面网元的丢弃数据用量之前,该方法还包括:聚合用户面网元接收来自该会话管理网元的第一数据包检测规则PDR和用量上报规则URR,该第一PDR中包括数据包检测信息,该URR中包括测量方法,该测量方法为统计丢弃的数据用量,其中,该第一PDR与该URR相关联;相应的,该聚合用户面网元确定该聚合用户面网元的丢弃数据用量,包括:聚合用户面网元根据该第一PDR和该URR确定该聚合用户面网元的丢弃数据用量。基于该方案,聚合用户面网元可以确定该聚合用户面网元的丢弃数据用量。
在一种可能的设计中,聚合用户面网元确定该聚合用户面网元的丢弃数据用量,包括:聚合用户面网元根据本地策略确定该聚合用户面网元的丢弃数据用量。
在一种可能的设计中,该方法还包括:聚合用户面网元接收来自该会话管理网元的第二PDR和服务质量QoS执行规则QER,该第二PDR中包括一个或多个非保证比特率non-GBR QoS流的流标识QFI,该QER中包括会话聚合最大比特率session-AMBR, 其中,该第二PDR与该QER相关联;聚合用户面网元将接收到的数据包中的QFI与该第二PDR中的QFI进行匹配,对匹配通过的数据包根据该QER中的该session-AMBR进行比特率控制。基于该方案,基于该方案,聚合用户面网元可以对数据包执行比特率控制。
在一种可能的设计中,该方法还包括:聚合用户面网元接收来自该会话管理网元的第二PDR、QER和URR,该第二PDR中包括一个或多个non-GBR QoS流的QFI,该QER中包括session-AMBR,该URR中包括测量方法,该测量方法为统计丢弃数据用量,其中,该第二PDR与该URR和该QER相关联;聚合用户面网元将接收到的数据包中的QFI与该第二PDR中的QFI进行匹配,对匹配通过的数据包根据该QER中的该session-AMBR进行比特率控制;相应的,该聚合用户面网元确定该聚合用户面网元的丢弃数据用量,包括:聚合用户面网元根据该URR确定该聚合用户面网元的丢弃数据用量。基于该方案,聚合用户面网元可以对数据包执行比特率控制,以及聚合用户面网元可以确定该聚合用户面网元的丢弃数据用量。
第三方面,提供了一种数据用量统计的方法及相应的通信装置,该方案中,聚合用户面网元确定该聚合用户面网元的传输数据用量,该聚合用户面网元为与多个锚点用户面网元连接的用户面网元,该传输数据用量为来自该多个锚点用户面网元的数据中,该聚合用户面网元实际传输的数据的用量;聚合用户面网元向会话管理网元发送该传输数据用量。由于本申请实施例中的聚合用户面网元可以为UL CL用户面网元或者BP用户面网元,该聚合用户面网元的传输数据用量可用于确定实际数据用量,因此基于该方案,对于插入了UL CL用户面网元或者BP用户面网元的PDU会话,可以实现准确的数据用量统计,从而可以实现准确的计费。
在一种可能的设计中,在聚合用户面网元确定该聚合用户面网元的传输数据用量之前,该方法还包括:聚合用户面网元接收来自该会话管理网元的第一数据包检测规则PDR和用量上报规则URR,该第一PDR中包括数据包检测信息,该URR中包括测量方法,该测量方法为统计传输的数据用量,其中,该第一PDR与该URR相关联;相应的,该聚合用户面网元确定该聚合用户面网元的传输数据用量,包括:聚合用户面网元根据该第一PDR和该URR确定该聚合用户面网元的传输数据用量。基于该方案,聚合用户面网元可以确定该聚合用户面网元的传输数据用量。
在一种可能的设计中,聚合用户面网元确定该聚合用户面网元的传输数据用量,包括:聚合用户面网元根据本地策略确定该聚合用户面网元的传输数据用量。基于该方案,聚合用户面网元可以确定该聚合用户面网元的传输数据用量。
在一种可能的设计中,该方法还包括:聚合用户面网元接收来自该会话管理网元的第二PDR和服务质量QoS执行规则QER,该第二PDR中包括一个或多个非保证比特率non-GBR QoS流的流标识QFI,该QER中包括会话聚合最大比特率session-AMBR,其中,该第二PDR与该QER相关联;聚合用户面网元将接收到的数据包中的QFI与该第二PDR中的QFI进行匹配,对匹配通过的数据包根据该QER中的该session-AMBR进行比特率控制。基于该方案,聚合用户面网元可以对数据包执行比特率控制。
在一种可能的设计中,该方法还包括:聚合用户面网元接收来自该会话管理网元的第二PDR、QER和URR,该第二PDR中包括一个或多个non-GBR QoS流的QFI, 该QER中包括session-AMBR,该URR中包括测量方法,该测量方法为统计传输数据用量,其中,该第二PDR与该URR和该QER相关联;聚合用户面网元将接收到的数据包中的QFI与该第二PDR中的QFI进行匹配,对匹配通过的数据包根据该QER中的该session-AMBR进行比特率控制;相应的,聚合用户面网元确定该聚合用户面网元的传输数据用量,包括:聚合用户面网元根据该URR确定该聚合用户面网元的传输数据用量。基于该方案,聚合用户面网元可以对数据包执行比特率控制,以及聚合用户面网元可以确定该聚合用户面网元的传输数据用量。
第四方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面中的第一会话管理网元,或者包含上述第一会话管理网元的装置;或者,该通信装置可以为上述第二方面或第三方面中的聚合用户面网元,或者包含上述聚合用户面网元的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第五方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的第一会话管理网元,或者包含上述第一会话管理网元的装置;或者,该通信装置可以为上述第二方面或第三方面中的聚合用户面网元,或者包含上述聚合用户面网元的装置。
第六方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中的第一会话管理网元,或者包含上述第一会话管理网元的装置;或者,该通信装置可以为上述第二方面或第三方面中的聚合用户面网元,或者包含上述聚合用户面网元的装置。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第九方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第四方面至第九方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面或第三方面中不同设计方式所带来的技术效果,此处不再赘述。
第十方面,提供一种通信系统,该通信系统包括第一会话管理网元和聚合用户面网元;该聚合用户面网元,用于向第一会话管理网元发送该聚合用户面网元的丢弃数据用量;该第一会话管理网元,用于接收该聚合用户面网元的丢弃数据用量;第一会话管理网元,还用于接收一个或多个锚点用户面网元的传输数据用量,其中,一个或多个锚点用户面网元为与该聚合用户面网元连接的锚点用户面网元;第一会话管理网元,还用于根据该丢弃数据用量和该传输数据用量,确定实际数据用量。
在一种可能的设计中,该第一会话管理网元还用于执行上述第一方面任一种可能的设计中所述的方法。
在一种可能的设计中,在上述第二方面中的会话管理网元为上述第一方面中的第一会话管理网元的情况下,该聚合用户面网元还用于执行上述第二方面任一种可能的设计中所述的方法。
其中,第十方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第十一方面,提供了一种通信系统,该通信系统包括第一会话管理网元和聚合用户面网元;该聚合用户面网元,用于确定该聚合用户面网元的传输数据用量,该聚合用户面网元为与多个锚点用户面网元连接的用户面网元,该传输数据用量为来自该多个锚点用户面网元的数据中,该聚合用户面网元实际传输的数据的用量;该聚合用户面网元,还用于向会话管理网元发送该传输数据用量。该会话管理网元,还用于接收该聚合用户面网元的传输数据用量,并将该该聚合用户面网元的传输数据用量确定为实际数据用量。
在一种可能的设计中,该聚合用户面网元还用于执行上述第三方面任一种可能的设计中所述的方法。
其中,第十一方面中任一种设计方式所带来的技术效果可参见上述第三方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种5G网络架构示意图;
图3为本申请实施例提供的另一种5G网络架构示意图;
图3A为本申请实施例提供的又一种5G网络架构示意图;
图4为本申请实施例提供的一种通信设备的结构示意图;
图5为本申请实施例提供的一种数据用量统计的方法流程示意图一;
图6为本申请实施例提供的一种数据用量统计的方法流程示意图二;
图7为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执 行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图1所示,为本申请实施例提供的一种通信系统10,该通信系统10包括第一会话管理网元101和聚合用户面网元102。该第一会话管理网元101和聚合用户面网元102可以直接通信,也可以通过其他设备的转发进行通信,本申请实施例对此不作具体限定。
其中,聚合用户面网元102,用于向第一会话管理网元101发送该聚合用户面网元102的丢弃数据用量。
第一会话管理网元101,用于接收该聚合用户面网元102的丢弃数据用量;以及,用于接收一个或多个锚点用户面网元的传输数据用量,并根据丢弃数据用量和传输数据用量,确定实际数据用量,其中,该一个或多个锚点用户面网元为与该聚合用户面网元102连接的锚点用户面网元。这里的连接可以是锚点用户面网元和该聚合用户面网元102之间没有其他聚合UPF网元,也可以是锚点用户面网元经过其他聚合用户面网元与该聚合用户面网元102连接,在此不作具体限定。
可以理解,本申请实施例中的实际数据用量可以理解为终端设备的实际数据用量。该终端设备的实际数量用量例如可以是业务粒度的实际数据用量统计,或者QoS流粒度的实际数据用量统计,或者是PDU会话粒度的实际用户用量,或者特定数据网络名称(data network name,DNN)1下业务粒度的实际数据用量统计,或者特定DNN2下QoS流粒度的实际数据用量统计,或者是特定数据网络名称DNN1下PDU会话粒度的实际用户用量;或者特定DNN1特定切片下业务粒度的实际数据用量统计,或者特定DNN2特定切片下QoS流粒度的实际数据用量统计,或者上述粒度的任意组合等,本申请实施例对此不作具体限定。
其中,上述方案的具体实现将在后续方法实施例中详细阐述,在此不予赘述。
由于本申请实施例中的聚合用户面网元可以为UL CL用户面网元或者BP用户面网元,因此基于该通信系统,对于插入了UL CL用户面网元或者BP用户面网元的PDU会话,可以实现准确的数据用量统计,从而可以实现准确的计费。
可选的,图1所示的通信系统10可以应用于目前正在讨论的第五代(5rd generation,5G)网络或者未来的其他网络等,本申请实施例对此不作具体限定。
示例性的,对于插入聚合用户面网元102的PDU会话仅有一个服务会话管理网元的场景,假设图1所示的通信系统10应用于目前正在讨论的5G网络,则如图2所示,上述的聚合用户面网元102所对应的网元或者实体可以为该5G网络中的聚合UPF网元;上述的第一会话管理网元101所对应的网元或者实体可以为该5G网络中的SMF网元。
其中,本申请实施例中聚合UPF网元(包括图2或图3中的聚合UPF网元,或图3A中的聚合UPF1网元或聚合UPF2网元)例如可以是UL CL UPF网元或者BP UPF网元,在此统一说明,本申请实施例对此不作具体限定。
此外,如图2所示,该5G网络还可以包括多个A-UPF网元,如图2中的A-UPF1网元和A-UPF2网元;以及,该5G网络还可以包括AN设备、接入和移动性管理功能(access and mobility management function,AMF)网元、以及SMF网元等。
其中,终端设备通过下一代网络(next generation,N)1接口(简称N1)与AMF网元通信,AN设备通过N2接口(简称N2)与AMF网元通信,AN设备通过N3接口(简称N3)与聚合UPF网元通信,聚合UPF网元通过N9接口(简称N9)与A-UPF1网元和A-UPF2网元通信,AMF网元通过N11接口(简称N11)与SMF网元通信,SMF网元通过N4接口(简称N4)与聚合UPF网元、A-UPF1网元和A-UPF2网元通信,A-UPF1网元和A-UPF2网元通过N6接口(简称N6)与DN通信。
需要说明的是,图2中的聚合UPF网元和A-UPF1网元可以合一部署,也可以分别独立部署;或者,图2中的聚合UPF网元和A-UPF2网元可以合一部署,也可以分别独立部署。图2中仅是示例性的以聚合UPF网元和A-UPF1网元独立部署、以及聚合UPF网元和A-UPF2网元独立部署为例进行示意,本申请实施例对此不作具体限定。
或者,示例性的,对于插入聚合用户面网元102的PDU会话有多个服务会话管理网元(以下以两个服务会话管理网元为例进行说明)的场景,假设图1所示的通信系统10应用于目前正在讨论的5G网络,则如图3所示,上述的聚合用户面网元102所对应的网元或者实体可以为该5G网络中的聚合UPF网元;上述的第一会话管理网元101所对应的网元或者实体可以为该5G网络中的锚点SMF(anchor SMF,A-SMF)网元或者中间(intermediate SMF,I-SMF)网元。
此外,如图3所示,该5G网络还可以包括多个A-UPF网元,如图3中的A-UPF1网元和A-UPF2网元;以及,该5G网络还可以包括AN设备、AMF网元、以及SMF网元等。
其中,终端设备通过N1接口(简称N1)与AMF网元通信,AN设备通过N2接口(简称N2)与AMF网元通信,AN设备通过N3接口(简称N3)与聚合UPF网元通信,聚合UPF网元通过N9接口(简称N9)与A-UPF1网元和A-UPF2网元通信,AMF网元通过N11接口(简称N11)与I-SMF网元通信,I-SMF网元通过N4接口(简称N4)与聚合UPF网元和A-UPF2网元通信,I-SMF网元通过Nxx接口(简称Nxx)与A-SMF网元通信,A-SMF网元通过N4接口(简称N4)与A-UPF1网元通信,A-UPF1网元和A-UPF2网元通过N6接口(简称N6)与DN通信。
需要说明的是,图3中的聚合UPF网元和A-UPF1网元可以合一部署,也可以分别独立部署,图3中仅是示例性的以独立部署为例进行示意,本申请实施例对此不作具体限定。
或者,示例性的,对于插入聚合用户面网元102的PDU会话仅有一个服务会话管理网元,但是有多个聚合UPF网元的场景,假设图1所示的通信系统10应用于目前正在讨论的5G网络,则如图3A所示,上述的聚合用户面网元102所对应的网元或者实体可以为该5G网络中的聚合UPF1网元;上述的第一会话管理网元101所对应的网元或者实体可以为该5G网络中的SMF网元。
此外,如图3A所示,该5G网络还可以包括聚合UPF2网元以及多个A-UPF网元,如图3A中的A-UPF1网元、A-UPF2网元和A-UPF3网元;以及,该5G网络还可以 包括AN设备、AMF网元、以及SMF网元等。聚合UPF1网元与AN设备之间不存在其他聚合UPF网元。
其中,终端设备通过N1接口(简称N1)与AMF网元通信,AN设备通过N2接口(简称N2)与AMF网元通信,AN设备通过N3接口(简称N3)与聚合UPF1网元通信,聚合UPF1网元通过N9接口(简称N9)与A-UPF3网元和聚合UPF2网元通信,AMF网元通过N11接口(简称N11)与SMF网元通信,SMF网元通过N4接口(简称N4)与聚合UPF1网元、聚合UPF2网元、A-UPF1网元、A-UPF2网元和A-UPF3网元通信,聚合UPF2网元通过N9接口(简称N9)与A-UPF1网元和A-UPF2网元通信,A-UPF1网元、A-UPF2网元和A-UPF3网元通过N6接口(简称N6)与DN通信。
需要说明的是,图3A中的聚合UPF1网元和A-UPF3网元可以合一部署,也可以分别独立部署;或者,图3A中的聚合UPF2网元和A-UPF2网元可以合一部署,也可以分别独立部署;或者,图3A中的聚合UPF2网元和A-UPF1网元可以合一部署,也可以分别独立部署。图3A中仅是示例性的以聚合UPF1网元和A-UPF3网元独立部署、聚合UPF2网元和A-UPF1网元与A-UPF2网元分别独立部署为例进行示意,本申请实施例对此不作具体限定。
此外,需要说明的是,图2或图3或图3A所示的5G网络架构中的AMF网元或SMF网元等控制面网元也可以采用服务化接口进行交互。比如,AMF网元对外提供的服务化接口可以为Namf;SMF网元对外提供的服务化接口可以为Nsmf。相关描述可以参考23501标准中的5G系统架构(5G system architecture)图,在此不予赘述。
可选的,本申请实施例中的终端设备,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的接入设备指的是接入核心网的设备,例如可以是基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机,非第三代合作伙伴计划(3rd generation partnership project,3GPP)接入设备等。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。
可选的,本申请实施例中的聚合用户面网元或第一会话管理网元也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限 定。
可选的,本申请实施例中的聚合用户面网元或第一会话管理网元的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的聚合用户面网元或第一会话管理网元的相关功能可以通过图4中的通信设备400来实现。图4所示为本申请实施例提供的通信设备400的结构示意图。该通信设备400包括一个或多个处理器401,通信线路402,以及至少一个通信接口(图4中仅是示例性的以包括通信接口404,以及一个处理器401为例进行说明),可选的还可以包括存储器403。
处理器401可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路402可包括一通路,用于连接不同组件之间。
通信接口404,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口404也可以是位于处理器401内的收发电路,用以实现处理器的信号输入和信号输出。
存储器403可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路402与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。处理器401用于执行存储器403中存储的计算机执行指令,从而实现本申请实施例中提供的数据用量统计的方法。
或者,可选的,本申请实施例中,也可以是处理器401执行本申请下述实施例提供的数据用量统计的方法中的处理相关的功能,通信接口404负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备400可以包括多个处理器,例如图4 中的处理器401和处理器408。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备400还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。例如,输出设备405可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备406和处理器401通信,可以以多种方式接收用户的输入。例如,输入设备406可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备400有时也可以称为通信装置,其可以是一个通用设备或者是一个专用设备。例如通信设备400可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备、上述终端设备,上述网络设备、或具有图4中类似结构的设备。本申请实施例不限定通信设备400的类型。
下面将结合图1至图4对本申请实施例提供的数据用量统计的方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
以图1所示的通信系统应用于如图2所示的5G网络为例,如图5所示,为本申请实施例提供的一种数据用量统计的方法,包括如下步骤:
S501、终端设备建立PDU会话,该PDU会话的锚点为A-UPF1网元。
其中,在PDU会话建立过程中,A-UPF1网元可以从SMF网元获取包括数据包检测信息1的PDR1、包括session-AMBR1的QER1和包括测量方法1(该测量方法1为统计传输的数据用量)的URR1,进而A-UPF1网元可以将PDR1与QER1进行关联,以及,A-UPF1网元可以将PDR1与URR1进行关联。A-UPF1网元将PDR1与URR1进行关联的方法可以是在PDR1中包含URR1的标识或者将对应的信息关联保存,A-UPF1网元将PDR1与QER1进行关联的方法可以是在PDR1中包含QER1的标识或者将对应的信息关联保存,本申请实施例对此不做具体限定。
其中,这里的数据包检测信息1主要为数据包过滤器集合,该数据包过滤器集合可以包含一个或者多个包过滤器。该数据包过滤集合用于识别以太类型或者IP类型数据包流。对于IP类型的包过滤器,可以包含源IP地址、目的IP地址、IPv6前缀、源端口号、目的端口号、协议ID、流标签、或方向等的组合;对于以太类型的包过滤器,可以包含源媒体接入控制(media access control,MAC)地址、目的MAC地址、以太类型、或方向等等的组合。
这里的session-AMBR1用于执行session-AMBR控制,相关功能可参考现有的实现方式,在此不予赘述。
此外,上述QER1中除了包括session-AMBR1,还可以包括门控状态、保证比特率等信息,相关描述可参考现有的实现方式,在此不予赘述。类似的,下述步骤中的QER(如QER2或QER3等)中也可能包括除session-AMBR之外的其他信息,如门控 状态、保证比特率等信息,在此统一说明,以下不再赘述。
其中,步骤S501的具体实现可参考现有的实现方式,在此不予赘述。
S502、在执行步骤S501之后,由于移动性或者新的业务流检测需求,SMF网元确定需要建立一个新的PDU会话锚点。则SMF网元选择A-UPF2网元作为新的PDU会话锚点之后,与A-UPF2网元之间建立N4会话。
其中,在N4会话建立过程中,A-UPF2网元可以从SMF网元获取包括数据包检测信息2的PDR2、包括session-AMBR2的QER2和包括测量方法2(该测量方法2为统计传输的数据用量)的URR2,进而A-UPF2网元可以将PDR2与QER2进行关联,以及,A-UPF2网元可以将PDR2与URR2进行关联。A-UPF2网元将PDR2与URR2进行关联的方法可以是在PDR2中包含URR2的标识或者将对应的信息关联保存,A-UPF2网元将PDR2与QER2进行关联的方法可以是在PDR2中包含QER2的标识或者将对应的信息关联保存,本申请实施例对此不做具体限定。
其中,这里的数据包检测信息2和session-AMBR2的相关描述可参考步骤S501中数据包检测信息1和session-AMBR1的相关描述,在此不再赘述。
其中,步骤S502的具体实现可参考现有的实现方式,在此不予赘述。
S503、SMF网元获取PDR3、以及与PDR3关联的URR3。
其中,该PDR3中包括一个或多个不保证比特率的QoS流(即非-保证比特率(non-guaranteed bit rate,non-GBR)QoS flow)的流标识(QoS flow identifier,QFI),用于进行对应的业务检测。该URR3中包括测量方法3,该测量方法3为统计丢弃数据用量。
可选的,本申请实施例中,PDR3中还可以包括业务数据流(service d ata flow,SDF)信息/应用标识,用于检测一个或多个QFI下的SDF信息/应用标识对应的数据包;或者,PDR3中还可以包括SDF信息/应用标识、以及指示信息1,该指示信息1指示检测一个或多个QFI下的SDF信息/应用标识对应的数据包之外的其他数据包;或者,PDR3中还可以包括指示信息2,该指示信息2指示检测一个或多个QFI对应的数据包之外的其他数据包。
当然,该PDR3中也可以不包括上述一个或多个QFI。比如,PDR3中可以包括SDF信息/应用标识,用于检测该SDF信息/应用标识对应的数据包;或者,PDR3中可以包括SDF信息/应用标识、以及指示信息3,该指示信息3指示检测该SDF信息/应用标识对应的数据包之外的其他数据包。
可选的,当统计的数据包检测信息与执行session-AMBR控制的检测信息相同时,SMF网元可以获取与PDR3关联的QER3,该QER3中包括session-AMBR3,用于进行session-AMBR控制。
或者,可选的,当统计的数据包检测信息与执行session-AMBR控制的检测信息不相同时,SMF网元可以获取PDR4、以及与PDR4关联的QER4。该PDR4中包括数据包检测信息4,用于进行数据包检测。该QER4中包括session-AMBR4,用于进行session-AMBR控制。
其中,这里的数据包检测信息4和session-AMBR3、session-AMBR4的相关描述可参考步骤S501中数据包检测信息1和session-AMBR1的相关描述,在此不再赘述。
可选的,本申请实施例中,SMF网元获取PDR3、以及与PDR3关联的URR3,具体可以包括:SMF网元根据预配置的计费信息或者策略控制功能(policy control function,PCF)网元提供的计费信息生成PDR3、以及与PDR3关联的URR3。
可选的,本申请实施例中,SMF网元获取与PDR3关联的QER3,具体可以包括:SMF网元根据预配置的QoS控制信息或者PCF网元提供的QoS控制信息生成与PDR3关联的QER3。
可选的,本申请实施例中,SMF网元可以获取PDR4、以及与PDR4关联的QER4具体可以包括:SMF网元根据预配置的QoS控制信息或者PCF网元提供的QoS控制信息生成PDR4、以及与PDR4关联的QER4。
可选的,本申请实施例中,将PDR3与URR3进行关联的方法可以是在PDR3中包含URR3的标识或者将对应的信息关联保存。
可选的,本申请实施例中,将PDR3与QER3进行关联的方法可以是在PDR3中包含QER3的标识或者将对应的信息关联保存。
可选的,本申请实施例中,将PDR4与QER4进行关联的方法可以是在PDR4中包含QER4的标识或者将对应的信息关联保存。
S504、SMF网元向聚合UPF网元发送消息1。聚合UPF网元接收来自SMF网元的消息1。该消息1包括PDR3、以及与PDR3关联的URR3。
示例性的,如图5所示,该消息1例如可以是N4会话建立请求消息。
可选的,若步骤S503中SMF网元可以获取与PDR3关联的QER3,则该消息1中还可以包括与PDR3关联的QER3。
或者,可选的,若步骤S503中SMF网元可以获取PDR4、以及与PDR4关联的QER4,则该消息1中还可以包括PDR4、以及与PDR4关联的QER4。
可选的,该消息1中还可以第一隧道信息,该第一隧道信息包括聚合UPF网元向A-UPF1网元和A-UPF2网元发送数据所需的隧道信息。
可选的,本申请实施例中的隧道信息(包括这里的第一隧道信息和下述的第二隧道信息、第三隧道信息等)例如可以包括IP地址和隧道标识,在此统一说明,以下不再赘述。
S505、聚合UPF网元向SMF网元发送消息2。SMF网元接收来自聚合UPF网元的消息2。
示例性的,如图5所示,该消息2例如可以是N4会话建立响应消息。
可选的,该消息2可以包括第二隧道信息,该第二隧道信息包括聚合UPF网元向AN设备发送数据所需的隧道信息。
S506、SMF网元使用N4会话修改流程更新A-UPF1网元的PDU会话信息。
其中,SMF网元使用N4会话修改流程更新A-UPF1网元的PDU会话信息具体可以包括:SMF网元向A-UPF1网元发送第三隧道信息,该第三隧道信息包括A-UPF1网元向聚合UPF网元发送下行数据所需的隧道信息。相关实现可参考现有的实现方式,在此不予赘述。
需要说明的是,本申请实施例中,若聚合UPF网元和A-UPF1网元合一部署,则可以不用执行步骤S506,在此统一说明,以下不再赘述。
S507、SMF网元使用N4会话修改流程更新A-UPF2网元的PDU会话信息。
其中,SMF网元使用N4会话修改流程更新A-UPF2网元的PDU会话信息具体可以包括:SMF网元向A-UPF2网元发送第四隧道信息,该第四隧道信息包括A-UPF2网元向聚合UPF网元发送下行数据所需的隧道信息。相关实现可参考现有的实现方式,在此不予赘述。
需要说明的是,本申请实施例中,若聚合UPF网元和A-UPF2网元合一部署,则可以不用执行步骤S507,在此统一说明,以下不再赘述。
S508、SMF网元更新AN设备上的会话信息。
其中,SMF网元更新AN设备上的会话信息具体可以包括:SMF网元向AN设备发送第五隧道信息,该第五隧道信息包括AN设备向聚合UPF网元发送数据所需的隧道信息。相关实现可参考现有的实现方式,在此不予赘述。
S509、在数据传输的过程中,聚合UPF网元执行会话的控制。
可选的,本申请实施例中,若消息1中还包括与PDR3关联的QER3,则聚合UPF网元执行会话的控制可以包括:聚合UPF网元将数据包中的QFI与PDR3中QFI进行匹配,匹配通过的数据包则根据QER3中的session-AMBR3值进行比特率控制。当数据包传输比特率超过Session-AMBR3值时,丢弃数据包。
或者,可选的,本申请实施例中,若消息1还包括与PDR4关联的QER4,则聚合UPF网元执行会话的控制可以包括:聚合UPF网元将数据包中的QFI与PDR4中QFI进行匹配,匹配通过的数据包则根据QER4中的session-AMBR4值进行比特率控制。当数据包传输比特率超过session-AMBR4值时,丢弃数据包。
此外,本申请实施例中,聚合UPF网元执行会话的控制具体包括:聚合UPF网元确定聚合UPF网元的丢弃数据用量。
一种可能的实现方式中,聚合UPF网元确定聚合UPF网元的丢弃数据用量包括:聚合UPF网元根据本地策略确定聚合UPF网元的丢弃数据用量。
示例性的,这里的本地策略例如可以为:执行业务粒度的丢弃数据用量统计;或者执行QoS flow粒度的丢弃数据用量统计;或者执行PDU会话粒度的丢弃数据用量统计;或者特定DNN1下执行业务粒度的丢弃数据用量统计,特定DNN2下执行QoS flow粒度的丢弃数据用量统计;或者特定DNN1下执行PDU会话粒度的丢弃数据用量统计;或者特定DNN1特定切片下执行业务粒度的丢弃数据用量统计,特定DNN2特定切片下执行QoS flow粒度的丢弃数据用量统计,或者上述粒度的任意组合等。
或者,另一种可能的实现方式中,聚合UPF网元确定聚合UPF网元的丢弃数据用量包括:聚合UPF网元根据消息1中的PDR3和URR3确定聚合UPF网元的丢弃数据用量。其中,如上所述,PDR3用于进行对应的业务检测,URR3指示统计丢弃数据用量。
可选的,本申请实施例中,聚合UPF网元也可以总是基于QoS flow粒度执行丢弃数据包统计,或者总是基于业务流粒度执行丢弃数据包统计,本申请实施例对此不作具体限定。
S510、聚合UPF网元向SMF网元发送消息3。SMF网元接收来自聚合UPF网元的消息3。其中,该消息3包括聚合UPF网元的丢弃数据用量。
示例性的,如图5所示,该消息3例如可以是N4消息1。
S511、A-UPF1网元根据PDR1和URR1执行传输数据用量统计之后,向SMF网元发送消息4,SMF网元接收来自A-UPF1网元的消息4。其中,该消息4包括A-UPF1网元的传输数据用量。
示例性的,如图5所示,该消息4例如可以是N4消息2。
S512、A-UPF2网元根据PDR2和URR2执行传输数据用量统计之后,向SMF网元发送消息5,SMF网元接收来自A-UPF2网元的消息5。其中,该消息5包括A-UPF2网元的传输数据用量。
示例性的,如图5所示,该消息5例如可以是N4消息3。
可选的,本申请实施例中的步骤S510、S511和S512之间没有必然的执行先后顺序,可以是先执行其中任一步骤,再执行其他步骤;也可以是先同时执行其中的任意两个步骤,再执行剩余的一个步骤;还可以是同时执行步骤S510、S511和S512,本申请实施例对此不作具体限定。
或者,可选的,本申请实施例中,也可以是在SMF网元接收到A-UPF1网元的传输数据用量和A-UPF2网元的传输数据用量之后,向聚合UPF网元请求聚合UPF网元的丢弃数据用量,进而聚合UPF网元向SMF网元发送聚合UPF网元的丢弃数据用量(即执行步骤S510),本申请实施例对此不作具体限定。
S513、SMF网元根据A-UPF1网元的传输数据用量、A-UPF2网元的传输数据用量以及聚合UPF网元的丢弃数据用量,确定实际数据用量。
示例性的,实际数据用量=(A-UPF1网元的传输数据用量+A-UPF2网元的传输数据用量)-聚合UPF网元的丢弃数据用量。
可选的,本申请实施例中,SMF网元在获得某个终端设备的实际数据用量之后,还可以将该实际数据用量上报给PCF网元,以使得PCF网元根据该实际数据用量执行计费统计等,本申请实施例对此不作具体限定。
至此,本申请实施例提供的数据用量统计的方法执行完成。
可选的,本申请实施例中,在建立了包括聚合UPF网元的PDU会话之后,在建立新的QoS flow或者删除已经建立的QoS flow过程中,若QoS flow为non-GBR QoS flow,SMF网元还可以向聚合UPF网元发送更新的PDR信息,该更新的PDR信息例如可以用于删除或者增加对应的QFI,本申请实施例对此不作具体限定。
基于本申请实施例提供的数据用量统计的方法,对于插入了UL CL UPF网元或者BP UPF网元的PDU会话,可以实现准确的数据用量统计,从而可以实现准确的计费。
其中,上述步骤S501至S513中的SMF网元或者聚合UPF网元的动作可以由图4所示的通信设备400中的处理器401调用存储器403中存储的应用程序代码来执行,本实施例对此不作任何限制。
或者,可选的,以图1所示的通信系统应用于如图3A所示的5G网络为例,本申请实施例还可以提供一种数据用量统计的方法,该数据用量统计的方法与图5所示的实施例类似,区别比如在于,本申请实施例中,由聚合UPF1网元执行丢弃数据用量统计,SMF网元根据聚合UPF1网元发送的聚合UPF1网元的丢弃数据用量、A-UPF1网元的传输数据用量、A-UPF2网元的传输数据用量和A-UPF3网元的传输数据用量, 确定实际数据用量之后,将该实际数据用量发送给上报给PCF网元,以使得PCF网元根据该实际数据用量执行计费统计等。该方案的实质可以理解为,在存在多个聚合UPF网元的场景下,仅需一个聚合UPF网元执行丢弃数据用量统计即可,其余聚合UPF网元不需要执行丢弃数据用量统计。其中,该执行丢弃数据用量统计的聚合UPF网元与AN设备之间没有其他聚合UPF网元。其余相关描述可参考图5所示的实施例,在此不再赘述。
或者,可选的,以图1所示的通信系统应用于如图3所示的5G网络为例,如图6所示,为本申请实施例提供的另一种数据用量统计的方法,包括如下步骤:
S601、终端设备建立PDU会话,该PDU会话的锚点为A-UPF1网元。
其中,步骤S601的相关描述可参考图5所示的实施例中的步骤S501,在此不再赘述。
S602、在I-SMF网元插入A-UPF2网元的过程中,A-SMF网元向I-SMF网元发送消息6。
I-SMF网元接收来自A-SMF网元的消息6。其中,该消息6包括一个或多个non-GBR QoS flow的QFI。
示例性的,如图6所示,该消息6例如可以为Nxx消息1。
S603、I-SMF网元与A-UPF2网元之间建立N4会话。
其中,步骤S603的相关描述可参考图5所示的实施例中的步骤S502,在此不再赘述。
S604、I-SMF网元获取PDR3、以及与PDR3关联的URR3。
其中,步骤S604的相关描述与图5所示的实施例中的步骤S503中的相关描述类似,区别比如在于将步骤S503中的SMF网元替换为步骤S604中的I-SMF网元,此外,步骤S604中,I-SMF网元获取与PDR3,具体可以包括:I-SMF网元根据从A-SMF网元接收的一个或多个non-GBR QoS flow的QFI生成PDR3。其余相关描述可参考上述步骤S503,在此不再赘述。
S605、I-SMF网元向聚合UPF网元发送消息1。聚合UPF网元接收来自I-SMF网元的消息1。该消息1包括PDR3、以及与PDR3关联的URR3。
其中,步骤S605的相关描述与图5所示的实施例中的步骤S504中的相关描述类似,区别比如在于将步骤S504中的SMF网元替换为步骤S605中的I-SMF网元。其余相关描述可参考上述步骤S504,在此不再赘述。
S606、聚合UPF网元向I-SMF网元发送消息2。I-SMF网元接收来自聚合UPF网元的消息2。
其中,步骤S606的相关描述与图5所示的实施例中的步骤S505中的相关描述类似,区别比如在于将步骤S505中的SMF网元替换为步骤S606中的I-SMF网元。其余相关描述可参考上述步骤S505,在此不再赘述。
S607、I-SMF网元使用N4会话修改流程更新A-UPF2网元的PDU会话信息。
其中,步骤S607的相关描述与图5所示的实施例中的步骤S507中的相关描述类似,区别比如在于将步骤S507中的SMF网元替换为步骤S607中的I-SMF网元。其余相关描述可参考上述步骤S507,在此不再赘述。
S608、I-SMF网元向A-SMF网元发送消息7。A-SMF网元接收来自I-SMF网元的消息7。其中,该消息7包括第三隧道信息,该第三隧道信息包括A-UPF1网元向聚合UPF网元发送下行数据所需的隧道信息。
示例性的,如图6所示,该消息7例如可以为Nxx消息2。
S609、A-SMF网元使用N4会话修改流程更新A-UPF1网元的PDU会话信息。
其中,步骤S609的相关描述与图5所示的实施例中的步骤S506中的相关描述类似,区别比如在于将步骤S506中的SMF网元替换为步骤S609中的A-SMF网元。其余相关描述可参考上述步骤S506,在此不再赘述。
S610、I-SMF网元更新AN设备上的会话信息。
其中,步骤S610的相关描述与图5所示的实施例中的步骤S508中的相关描述类似,区别比如在于将步骤S508中的SMF网元替换为步骤S609中的I-SMF网元。其余相关描述可参考上述步骤S508,在此不再赘述。
S611、在数据传输的过程中,聚合UPF网元执行会话的控制。
其中,步骤S611的相关描述可参考图5所示的实施例中的步骤S509,在此不再赘述。
下面分两种可能的实现方式对本申请实施例提供的数据用量统计的方法进一步说明。
一种可能的实现方式中,如图6所示,本申请实施例提供的数据用量统计的方法还包括如下步骤S612a-S616a:
S612a、聚合UPF网元向I-SMF网元发送消息3。I-SMF网元接收来自聚合UPF网元的消息3。其中,该消息3包括聚合UPF网元的丢弃数据用量。
示例性的,如图6所示,该消息3例如可以是N4消息1。
S613a、A-UPF2网元根据PDR2和URR2执行传输数据用量统计之后,向I-SMF网元发送消息5,I-SMF网元接收来自A-UPF2网元的消息5。其中,该消息5包括A-UPF2网元的传输数据用量。
示例性的,如图6所示,该消息5例如可以是N4消息3。
S614a、I-SMF网元向A-SMF网元发送消息8。A-SMF网元接收来自I-SMF网元的消息8。其中,该消息8包括A-UPF2网元的传输数据用量和聚合UPF网元的丢弃数据用量。
示例性的,如图6所示,该消息8例如可以为Nxx消息3。
可选的,本申请实施例中,A-UPF2网元的传输数据用量和聚合UPF网元的丢弃数据用量也可以通过不同的Nxx消息发送给A-SMF网元,比如,I-SMF网元通过一个Nxx消息将A-UPF2网元的传输数据用量发送给A-SMF网元,A-SMF网元接收到I-SMF网元发送的A-UPF2网元的传输数据用量之后,向I-SMF网元请求聚合UPF网元的丢弃数据用量时,I-SMF网元通过另外一个Nxx消息将聚合UPF网元的丢弃数据用量发送给A-SMF网元,本申请实施例对此不作具体限定。
可选的,本申请实施例中,也可以是I-SMF网元根据A-UPF2网元的传输数据用量和聚合UPF网元的丢弃数据用量,确定出一个中间数据用量之后,将该中间数据用量发送给A-SMF网元,本申请实施例对此不作具体限定。示例性的,中间数据用量 =A-UPF2网元的传输数据用量-聚合UPF网元的丢弃数据用量。
S615a、A-UPF1网元根据PDR1和URR1执行传输数据用量统计之后,向A-SMF网元发送消息4,A-SMF网元接收来自A-UPF1网元的消息4。其中,该消息4包括A-UPF1网元的传输数据用量。
示例性的,如图6所示,该消息4例如可以是N4消息2。
可选的,本申请实施例中的步骤S612a、S613a和S615a之间没有必然的执行先后顺序,可以是先执行其中任一步骤,再执行其他步骤;也可以是先同时执行其中的任意两个步骤,再执行剩余的一个步骤;还可以是同时执行步骤S612a、S613a和S615a,本申请实施例对此不作具体限定。
S616a、A-SMF网元根据A-UPF1网元的传输数据用量、A-UPF2网元的传输数据用量以及聚合UPF网元的丢弃数据用量,确定实际数据用量。
示例性的,实际数据用量=(A-UPF1网元的传输数据用量+A-UPF2网元的传输数据用量)-聚合UPF网元的丢弃数据用量。
可选的,本申请实施例中,A-SMF网元在获得某个终端设备的实际数据用量之后,还可以将该实际数据用量上报给PCF网元,以使得PCF网元根据该实际数据用量执行计费统计等,本申请实施例对此不作具体限定。
或者,另一种可能的实现方式中,如图6所示,本申请实施例提供的数据用量统计的方法还包括如下步骤S612b-S616b:
S612b-S613b、同上述步骤S612a-S613a,相关描述可参考上述步骤S612a-S613a,在此不再赘述。
S614b、同上述步骤S615a,相关描述可参考上述步骤S615a,在此不再赘述。
可选的,本申请实施例中的步骤S612b、S613b和S614b之间没有必然的执行先后顺序,可以是先执行其中任一步骤,再执行其他步骤;也可以是先同时执行其中的任意两个步骤,再执行剩余的一个步骤;还可以是同时执行步骤S612b、S613b和S614b,本申请实施例对此不作具体限定。
S615b、A-SMF网元向I-SMF网元发送消息9。I-SMF网元接收来自A-SMF网元的消息9。其中,该消息9包括A-UPF1网元的传输数据用量。
示例性的,如图6所示,该消息9例如可以为Nxx消息4。
S616b、I-SMF网元根据A-UPF1网元的传输数据用量、A-UPF2网元的传输数据用量以及聚合UPF网元的丢弃数据用量,确定实际数据用量。
示例性的,实际数据用量=(A-UPF1网元的传输数据用量+A-UPF2网元的传输数据用量)-聚合UPF网元的丢弃数据用量。
可选的,本申请实施例中,I-SMF网元确定实际数据用量之后,可以将该实际数据用量发送给A-SMF网元,由A-SMF网元将该实际数据用量上报给PCF网元,以使得PCF网元根据该实际数据用量执行计费统计等,本申请实施例对此不作具体限定。
至此,本申请实施例提供的数据用量统计的方法执行完成。
可选的,本申请实施例中,在建立了包含聚合UPF网元的PDU会话后,A-SMF网元在建立新的QoS flow或者删除已经建立的QoS flow过程中,若QoS flow为non-GBR的QoS flow,则向I-SMF网元发送更新的PDR信息,以便I-SMF网元向聚 合UPF发送更新的PDR信息,该更新的PDR信息例如可以用于删除或者增加对应的QFI,本申请实施例对此不作具体限定。或者,I-SMF网元在确定建立新的QoS flow或者删除已经建立的QoS flow过程,向聚合UPF发送更新的PDR信息,该更新的PDR信息例如可以用于删除或者增加对应的QFI,本申请实施例对此不作具体限定。
基于本申请实施例提供的数据用量统计的方法,对于插入了UL CL UPF网元或者BP UPF网元的PDU会话,可以实现准确的数据用量统计,从而可以实现准确的计费。
其中,上述步骤S601至S616a或S616b中的A-SMF网元或者聚合UPF网元的动作可以由图4所示的通信设备400中的处理器401调用存储器403中存储的应用程序代码来执行,本实施例对此不作任何限制。
或者,可选的,以图1所示的通信系统应用于如图2所示的5G网络为例,本申请实施例还可以提供一种数据用量统计的方法,该数据用量统计的方法与图5所示的实施例类似,区别比如在于,图5所示的实施例步骤S503和步骤S504中,与PDR3关联的URR3中的测量方法3为统计丢弃数据用量,因此图5所示的实施例步骤S510中,聚合UPF网元向SMF网元发送聚合UPF网元的丢弃数据用量,进而图5所示的实施例步骤S513中,SMF网元根据A-UPF1网元的传输数据用量、A-UPF2网元的传输数据用量以及聚合UPF网元的丢弃数据用量,确定实际数据用量;而与图5所示的实施例中的上述步骤不同,本申请实施例中,与PDR3关联的URR3中的测量方法3为统计传输数据用量,因此聚合UPF网元向SMF网元发送聚合UPF网元的传输数据用量,该聚合UPF网元的传输数据用量为来自A-UPF1网元和A-UPF2网元的数据中,聚合UPF网元实际传输的数据的用量,进而SMF网元可以将该聚合UPF网元的传输数据用量确定为某个终端设备的实际数据用量。此外,可选的,该方案中,SMF网元在向聚合UPF网元发送PDR3和URR3时,可以向A-UPF1网元发送暂停统计的指示信息或者删除A-UPF1网元上的PDR1和URR1,以及向A-UPF2网元发送暂停统计的指示信息或者删除A-UPF2网元上的PDR2和URR2。其余相关描述可参考图5所示的实施例,在此不再赘述。
或者,可选的,以图1所示的通信系统应用于如图3所示的5G网络为例,本申请实施例还可以提供一种数据用量统计的方法,该数据用量统计的方法与图6所示的实施例类似,区别比如在于,图6所示的实施例步骤S604和步骤S605中,与PDR3关联的URR3中的测量方法3为统计丢弃数据用量,因此图6所示的实施例步骤S612a或S612b中,聚合UPF网元向I-SMF网元发送聚合UPF网元的丢弃数据用量,进而图6所示的实施例步骤S616a中A-SMF网元根据A-UPF1网元的传输数据用量、A-UPF2网元的传输数据用量以及聚合UPF网元的丢弃数据用量,确定实际数据用量,或者图6所示的实施例步骤S616b中I-SMF网元根据A-UPF1网元的传输数据用量、A-UPF2网元的传输数据用量以及聚合UPF网元的丢弃数据用量,确定实际数据用量;而与图6所示的实施例中的上述步骤不同,本申请实施例中,与PDR3关联的URR3中的测量方法3为统计传输数据用量,因此聚合UPF网元向I-SMF网元发送聚合UPF网元的传输数据用量,该聚合UPF网元的传输数据用量为来自A-UPF1网元和A-UPF2网元的数据中,聚合UPF网元实际传输的数据的用量,进而I-SMF网元或者A-SMF网元可以将该聚合UPF网元的传输数据用量确定为某个终端设备的实际数据用量。此 外,可选的,该方案中,I-SMF网元在向聚合UPF网元发送PDR3和URR3时,I-SMF网元可以向A-UPF2网元发送暂停统计的指示信息或者删除A-UPF2网元上的PDR2和URR2,以及指示A-SMF网元向A-UPF1网元发送暂停统计的指示信息或者删除A-UPF1网元上的PDR1和URR1。其余相关描述可参考图6所示的实施例,在此不再赘述。
此外,需要说明的是,本申请上述实施例均是以图1所示的通信系统应用于目前的非漫游5G网络为例进行说明。当然,本申请实施例提供的数据用量统计的方法也可以应用于漫游场景下的5G网络,如本地疏导漫游5G网络架构或者家乡路由漫游5G网络架构等;或者,本申请实施例提供的数据用量统计的方法也可以应用于未来的其他网络,此时对应的数据用量统计的方法与上述实施例中的方法类似,仅需将相关网元进行适应性替换即可,在此不予赘述。
可以理解的是,以上各个实施例中,由聚合用户面网元实现的方法和/或步骤,也可以由可用于聚合用户面网元的部件(例如芯片或者电路)实现,由第一会话管理网元实现的方法和/或步骤,也可以由可用于第一会话管理网元的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一会话管理网元,或者包含上述第一会话管理网元的装置,或者为可用于第一会话管理网元的部件;或者,该通信装置可以为上述方法实施例中的聚合用户面网元,或者包含上述聚合用户面网元的装置,或者为可用于聚合用户面网元的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,图7示出了一种通信装置70的结构示意图。该通信装置70包括处理模块701和收发模块702。所述收发模块702,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
以通信装置70为上述方法实施例中的第一会话管理网元为例:
其中,收发模块702,用于接收聚合用户面网元的丢弃数据用量;收发模块702,还用于接收一个或多个锚点用户面网元的传输数据用量,其中,一个或多个锚点用户面网元为与聚合用户面网元连接的锚点用户面网元;处理模块701,用于根据丢弃数据用量和传输数据用量,确定实际数据用量。
可选的,多个锚点用户面网元包括第一锚点用户面网元和第二锚点用户面网元; 收发模块702用于接收多个锚点用户面网元的传输数据用量,包括:用于接收来自第一锚点用户面网元的第一锚点用户面网元的传输数据用量;以及,用于接收来自第二锚点用户面网元的第二锚点用户面网元的传输数据用量。
可选的,多个锚点用户面网元包括第一锚点用户面网元和第二锚点用户面网元;收发模块702用于接收多个锚点用户面网元的传输数据用量,包括:用于接收来自第一锚点用户面网元的第一锚点用户面网元的传输数据用量;以及,用于接收来自第二会话管理网元的第二锚点用户面网元的传输数据用量。
可选的,处理模块701,还用于获取第一PDR和URR,第一PDR中包括数据包检测信息,URR中包括测量方法,测量方法为统计丢弃数据用量,其中,第一PDR与URR相关联;收发模块702,还用于向聚合用户面网元发送第一PDR和URR。
可选的,处理模块701,还用于获取第二PDR和QER,第二PDR中包括一个或多个non-GBR QoS流的流标识QFI,QER中包括session-AMBR,其中,第二PDR与QER相关联;收发模块702,还用于向聚合用户面网元发送第二PDR和QER。
可选的,收发模块702,还用于接收来自第二会话管理网元的一个或多个non-GBR QoS流的QFI;相应的,处理模块701用于获取第二PDR,包括:用于根据一个或多个non-GBR QoS流的QFI生成第二PDR。
可选的,处理模块701,还用于获取第二PDR、QER和URR,第二PDR中包括一个或多个non-GBR QoS流的QFI,QER中包括session-AMBR,URR中包括测量方法,测量方法为统计丢弃数据用量,其中,第二PDR与URR和QER相关联;收发模块702,还用于向聚合用户面网元发送第二PDR、URR和QER。
或者,以通信装置70为上述方法实施例中的聚合用户面网元为例:
处理模块701,用于确定聚合用户面网元的丢弃数据用量;收发模块702,用于向会话管理网元发送丢弃数据用量,其中,丢弃数据用量用于确定实际数据用量。
可选的,收发模块702,还用于接收来自会话管理网元的第一PDR和URR,第一PDR中包括数据包检测信息,URR中包括测量方法,测量方法为统计丢弃的数据用量,其中,第一PDR与URR相关联;相应的,处理模块701用于确定聚合用户面网元的丢弃数据用量,包括:用于根据第一PDR和URR确定聚合用户面网元的丢弃数据用量。
可选的,处理模块701用于确定聚合用户面网元的丢弃数据用量,包括:用于根据本地策略确定聚合用户面网元的丢弃数据用量。
可选的,收发模块702,还用于接收来自会话管理网元的第二PDR和QER,第二PDR中包括一个或多个non-GBR QoS流的流标识QFI,QER中包括会话聚合最大比特率session-AMBR,其中,第二PDR与QER相关联;处理模块701,还用于将接收到的数据包中的QFI与第二PDR中的QFI进行匹配,对匹配通过的数据包根据QER中的session-AMBR进行比特率控制。
可选的,收发模块702,还用于接收来自会话管理网元的第二PDR、QER和URR,第二PDR中包括一个或多个non-GBR QoS流的QFI,QER中包括session-AMBR,URR中包括测量方法,测量方法为统计丢弃数据用量,其中,第二PDR与URR和QER相关联;处理模块701,还用于将接收到的数据包中的QFI与第二PDR中的QFI进行匹 配,对匹配通过的数据包根据QER中的session-AMBR进行比特率控制;相应的,处理模块701用于确定聚合用户面网元的丢弃数据用量,包括:用于根据URR确定聚合用户面网元的丢弃数据用量。
或者,以通信装置70为上述方法实施例中的聚合用户面网元为例:
处理模块701,用于确定该聚合用户面网元的传输数据用量,该聚合用户面网元为与多个锚点用户面网元连接的用户面网元,该传输数据用量为来自该多个锚点用户面网元的数据中,该聚合用户面网元实际传输的数据的用量;收发模块702,用于向会话管理网元发送该传输数据用量。
可选的,收发模块702,还用于接收来自该会话管理网元的第一PDR和URR,该第一PDR中包括数据包检测信息,该URR中包括测量方法,该测量方法为统计传输的数据用量,其中,该第一PDR与该URR相关联;相应的,处理模块701用于确定该聚合用户面网元的传输数据用量,包括:用于根据该第一PDR和该URR确定该聚合用户面网元的传输数据用量。
可选的,处理模块701用于确定该聚合用户面网元的传输数据用量,包括:用于根据本地策略确定该聚合用户面网元的传输数据用量。
[根据细则91更正 31.12.2019] 
可选的,收发模块702,还用于接收来自该会话管理网元的第二PDR和QER,该第二PDR中包括一个或多个non-GBR QoS流的流标识QFI,该QER中包括session-AMBR,其中,该第二PDR与该QER相关联;处理模块701,用于将接收到的数据包中的QFI与该第二PDR中的QFI进行匹配,对匹配通过的数据包根据该QER中的该session-AMBR进行比特率控制。
[根据细则91更正 31.12.2019] 
可选的,收发模块702,还用于接收来自该会话管理网元的第二PDR、QER和URR,该第二PDR中包括一个或多个non-GBR QoS流的QFI,该QER中包括session-AMBR,该URR中包括测量方法,该测量方法为统计传输数据用量,其中,该第二PDR与该URR和该QER相关联;处理模块701,还用于将接收到的数据包中的QFI与该第二PDR中的QFI进行匹配,对匹配通过的数据包根据该QER中的该session-AMBR进行比特率控制;相应的,处理模块701用于确定该聚合用户面网元的传输数据用量,包括:用于根据该URR确定该聚合用户面网元的传输数据用量。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置70以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置70可以采用图4所示的通信设备400的形式。
比如,图4所示的通信设备400中的处理器401可以通过调用存储器403中存储的计算机执行指令,使得通信设备400执行上述方法实施例中的数据用量统计的方法。
具体的,图7中的处理模块701和收发模块702的功能/实现过程可以通过图4所示的通信设备400中的处理器401调用存储器403中存储的计算机执行指令来实现。或者,图7中的处理模块701的功能/实现过程可以通过图4所示的通信设备400中的处理器401调用存储器403中存储的计算机执行指令来实现,图7中的收发模块702 的功能/实现过程可以通过图4中所示的通信设备400中的通信接口404来实现。
由于本实施例提供的通信装置70可执行上述的数据用量统计的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施, 但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (32)

  1. 一种数据用量统计的方法,其特征在于,所述方法包括:
    第一会话管理网元接收聚合用户面网元的丢弃数据用量;
    所述第一会话管理网元接收一个或多个锚点用户面网元的传输数据用量,其中,所述一个或多个锚点用户面网元为与所述聚合用户面网元连接的锚点用户面网元;
    所述第一会话管理网元根据所述丢弃数据用量和所述传输数据用量,确定实际数据用量。
  2. 根据权利要求1所述的方法,其特征在于,所述多个锚点用户面网元包括第一锚点用户面网元和第二锚点用户面网元;
    所述第一会话管理网元接收多个锚点用户面网元的传输数据用量,包括:
    所述第一会话管理网元接收来自所述第一锚点用户面网元的所述第一锚点用户面网元的传输数据用量;
    以及,所述第一会话管理网元接收来自所述第二锚点用户面网元的所述第二锚点用户面网元的传输数据用量。
  3. 根据权利要求1所述的方法,其特征在于,所述多个锚点用户面网元包括第一锚点用户面网元和第二锚点用户面网元;
    所述第一会话管理网元接收多个锚点用户面网元的传输数据用量,包括:
    所述第一会话管理网元接收来自所述第一锚点用户面网元的所述第一锚点用户面网元的传输数据用量;
    以及,所述第一会话管理网元接收来自第二会话管理网元的所述第二锚点用户面网元的传输数据用量。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一会话管理网元获取第一数据包检测规则PDR和用量上报规则URR,所述第一PDR中包括数据包检测信息,所述URR中包括测量方法,所述测量方法为统计丢弃数据用量,其中,所述第一PDR与所述URR相关联;
    所述第一会话管理网元向所述聚合用户面网元发送所述第一PDR和所述URR。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一会话管理网元获取第二PDR和服务质量QoS执行规则QER,所述第二PDR中包括一个或多个非保证比特率non-GBR QoS流的流标识QFI,所述QER中包括会话聚合最大比特率session-AMBR,其中,所述第二PDR与所述QER相关联;
    所述第一会话管理网元向所述聚合用户面网元发送所述第二PDR和所述QER。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一会话管理网元接收来自第二会话管理网元的所述一个或多个non-GBR QoS流的QFI;
    相应的,所述第一会话管理网元获取第二PDR,包括:
    所述第一会话管理网元根据所述一个或多个non-GBR QoS流的QFI生成第二PDR。
  7. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一会话管理网元获取第二PDR、QER和URR,所述第二PDR中包括一个或多个non-GBR QoS流的QFI,所述QER中包括session-AMBR,所述URR中包括 测量方法,所述测量方法为统计丢弃数据用量,其中,所述第二PDR与所述URR和所述QER相关联;
    所述第一会话管理网元向所述聚合用户面网元发送所述第二PDR、所述URR和所述QER。
  8. 一种数据用量统计的方法,其特征在于,所述方法包括:
    聚合用户面网元确定所述聚合用户面网元的丢弃数据用量;
    所述聚合用户面网元向会话管理网元发送所述丢弃数据用量,其中,所述丢弃数据用量用于确定实际数据用量。
  9. 根据权利要求8所述的方法,其特征在于,在所述聚合用户面网元确定所述聚合用户面网元的丢弃数据用量之前,所述方法还包括:
    所述聚合用户面网元接收来自所述会话管理网元的第一数据包检测规则PDR和用量上报规则URR,所述第一PDR中包括数据包检测信息,所述URR中包括测量方法,所述测量方法为统计丢弃的数据用量,其中,所述第一PDR与所述URR相关联;
    相应的,所述聚合用户面网元确定所述聚合用户面网元的丢弃数据用量,包括:
    所述聚合用户面网元根据所述第一PDR和所述URR确定所述聚合用户面网元的丢弃数据用量。
  10. 根据权利要求8所述的方法,其特征在于,所述聚合用户面网元确定所述聚合用户面网元的丢弃数据用量,包括:
    聚合用户面网元根据本地策略确定所述聚合用户面网元的丢弃数据用量。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述方法还包括:
    所述聚合用户面网元接收来自所述会话管理网元的第二PDR和服务质量QoS执行规则QER,所述第二PDR中包括一个或多个非保证比特率non-GBR QoS流的流标识QFI,所述QER中包括会话聚合最大比特率session-AMBR,其中,所述第二PDR与所述QER相关联;
    所述聚合用户面网元将接收到的数据包中的QFI与所述第二PDR中的QFI进行匹配,对匹配通过的数据包根据所述QER中的所述session-AMBR进行比特率控制。
  12. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述聚合用户面网元接收来自所述会话管理网元的第二PDR、QER和URR,所述第二PDR中包括一个或多个non-GBR QoS流的QFI,所述QER中包括session-AMBR,所述URR中包括测量方法,所述测量方法为统计丢弃数据用量,其中,所述第二PDR与所述URR和所述QER相关联;
    所述聚合用户面网元将接收到的数据包中的QFI与所述第二PDR中的QFI进行匹配,对匹配通过的数据包根据所述QER中的所述session-AMBR进行比特率控制;
    相应的,所述聚合用户面网元确定所述聚合用户面网元的丢弃数据用量,包括:
    所述聚合用户面网元根据所述URR确定所述聚合用户面网元的丢弃数据用量。
  13. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述收发模块,用于接收聚合用户面网元的丢弃数据用量;
    所述收发模块,还用于接收一个或多个锚点用户面网元的传输数据用量,其中,所述一个或多个锚点用户面网元为与所述聚合用户面网元连接的锚点用户面网元;
    所述处理模块,用于根据所述丢弃数据用量和所述传输数据用量,确定实际数据用量。
  14. 根据权利要求13所述的通信装置,其特征在于,所述多个锚点用户面网元包括第一锚点用户面网元和第二锚点用户面网元;
    所述收发模块用于接收多个锚点用户面网元的传输数据用量,包括:
    用于接收来自所述第一锚点用户面网元的所述第一锚点用户面网元的传输数据用量;
    以及,用于接收来自所述第二锚点用户面网元的所述第二锚点用户面网元的传输数据用量。
  15. 根据权利要求13所述的通信装置,其特征在于,所述多个锚点用户面网元包括第一锚点用户面网元和第二锚点用户面网元;
    所述收发模块用于接收多个锚点用户面网元的传输数据用量,包括:
    用于接收来自所述第一锚点用户面网元的所述第一锚点用户面网元的传输数据用量;
    以及,用于接收来自第二会话管理网元的所述第二锚点用户面网元的传输数据用量。
  16. 根据权利要求13-15任一项所述的通信装置,其特征在于,
    所述处理模块,还用于获取第一数据包检测规则PDR和用量上报规则URR,所述第一PDR中包括数据包检测信息,所述URR中包括测量方法,所述测量方法为统计丢弃数据用量,其中,所述第一PDR与所述URR相关联;
    所述收发模块,还用于向所述聚合用户面网元发送所述第一PDR和所述URR。
  17. 根据权利要求13-16任一项所述的通信装置,其特征在于,
    所述处理模块,还用于获取第二PDR和服务质量QoS执行规则QER,所述第二PDR中包括一个或多个非保证比特率non-GBR QoS流的流标识QFI,所述QER中包括会话聚合最大比特率session-AMBR,其中,所述第二PDR与所述QER相关联;
    所述收发模块,还用于向所述聚合用户面网元发送所述第二PDR和所述QER。
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述收发模块,还用于接收来自第二会话管理网元的所述一个或多个non-GBR QoS流的QFI;
    相应的,所述处理模块用于获取第二PDR,包括:
    用于根据所述一个或多个non-GBR QoS流的QFI生成第二PDR。
  19. 根据权利要求13-15任一项所述的通信装置,其特征在于,
    所述处理模块,还用于获取第二PDR、QER和URR,所述第二PDR中包括一个或多个non-GBR QoS流的QFI,所述QER中包括session-AMBR,所述URR中包括测量方法,所述测量方法为统计丢弃数据用量,其中,所述第二PDR与所述URR和所述QER相关联;
    所述收发模块,还用于向所述聚合用户面网元发送所述第二PDR、所述URR和所述QER。
  20. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于确定聚合用户面网元的丢弃数据用量;
    所述收发模块,用于向会话管理网元发送所述丢弃数据用量,其中,所述丢弃数据用量用于确定实际数据用量。
  21. 根据权利要求20所述的通信装置,其特征在于,
    所述收发模块,还用于接收来自所述会话管理网元的第一数据包检测规则PDR和用量上报规则URR,所述第一PDR中包括数据包检测信息,所述URR中包括测量方法,所述测量方法为统计丢弃的数据用量,其中,所述第一PDR与所述URR相关联;
    相应的,所述处理模块用于确定所述聚合用户面网元的丢弃数据用量,包括:
    用于根据所述第一PDR和所述URR确定所述聚合用户面网元的丢弃数据用量。
  22. 根据权利要求20所述的通信装置,其特征在于,所述处理模块用于确定所述聚合用户面网元的丢弃数据用量,包括:
    用于根据本地策略确定所述聚合用户面网元的丢弃数据用量。
  23. 根据权利要求20-22任一项所述的通信装置,其特征在于,
    所述收发模块,还用于接收来自所述会话管理网元的第二PDR和服务质量QoS执行规则QER,所述第二PDR中包括一个或多个非保证比特率non-GBR QoS流的流标识QFI,所述QER中包括会话聚合最大比特率session-AMBR,其中,所述第二PDR与所述QER相关联;
    所述处理模块,还用于将接收到的数据包中的QFI与所述第二PDR中的QFI进行匹配,对匹配通过的数据包根据所述QER中的所述session-AMBR进行比特率控制。
  24. 根据权利要求20所述的通信装置,其特征在于,
    所述收发模块,还用于接收来自所述会话管理网元的第二PDR、QER和URR,所述第二PDR中包括一个或多个non-GBR QoS流的QFI,所述QER中包括session-AMBR,所述URR中包括测量方法,所述测量方法为统计丢弃数据用量,其中,所述第二PDR与所述URR和所述QER相关联;
    所述处理模块,还用于将接收到的数据包中的QFI与所述第二PDR中的QFI进行匹配,对匹配通过的数据包根据所述QER中的所述session-AMBR进行比特率控制;
    相应的,所述处理模块用于确定所述聚合用户面网元的丢弃数据用量,包括:
    用于根据所述URR确定所述聚合用户面网元的丢弃数据用量。
  25. 一种通信系统,其特征在于,所述通信系统包括第一会话管理网元和聚合用户面网元;
    所述聚合用户面网元,用于向所述第一会话管理网元发送所述聚合用户面网元的丢弃数据用量;
    所述第一会话管理网元,用于接收所述聚合用户面网元的丢弃数据用量;
    所述第一会话管理网元,还用于接收一个或多个锚点用户面网元的传输数据用量,其中,所述一个或多个锚点用户面网元为与所述聚合用户面网元连接的锚点用户面网元;
    所述第一会话管理网元,还用于根据所述丢弃数据用量和所述传输数据用量,确定实际数据用量。
  26. 一种通信装置,其特征在于,包括:处理器和存储器;所述存储器用于存储 计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述通信装置执行如权利要求1-7任一项,或8-12任一项所述的数据用量统计的方法。
  27. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以执行如权利要求1-7任一项,或8-12任一项所述的数据用量统计的方法。
  28. 一种处理器,其特征在于,用于执行如权利要求1-7任一项,或8-12任一项所述的数据用量统计的方法。
  29. 一种芯片系统,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,使得安装有所述芯片系统的设备执行如权利要求1-7任一项,或8-12任一项所述的数据用量统计的方法。
  30. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1-7任一项,或8-12任一项所述的数据用量统计的方法。
  31. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1-7任一项,或8-12任一项所述的数据用量统计的方法。
  32. 一种装置,其特征在于,所述装置用来执行如权利要求1-7任一项,或8-12任一项所述的数据用量统计的方法。
PCT/CN2019/122481 2019-01-15 2019-12-02 数据用量上报的方法、装置及系统 WO2020147440A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19910041.3A EP3890398A4 (en) 2019-01-15 2019-12-02 DATA USAGE REPORTING METHOD, APPARATUS AND SYSTEM
US17/375,671 US20210345174A1 (en) 2019-01-15 2021-07-14 Method, apparatus, and system for reporting data usage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910035673.3 2019-01-15
CN201910035673.3A CN111436030B (zh) 2019-01-15 2019-01-15 数据用量上报的方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/375,671 Continuation US20210345174A1 (en) 2019-01-15 2021-07-14 Method, apparatus, and system for reporting data usage

Publications (1)

Publication Number Publication Date
WO2020147440A1 true WO2020147440A1 (zh) 2020-07-23

Family

ID=71580768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122481 WO2020147440A1 (zh) 2019-01-15 2019-12-02 数据用量上报的方法、装置及系统

Country Status (4)

Country Link
US (1) US20210345174A1 (zh)
EP (1) EP3890398A4 (zh)
CN (1) CN111436030B (zh)
WO (1) WO2020147440A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747493A (zh) * 2021-09-17 2021-12-03 阿里巴巴达摩院(杭州)科技有限公司 数据传输方法、设备、系统及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113613234A (zh) * 2019-02-19 2021-11-05 华为技术有限公司 一种策略管理的方法及装置
CN116615922A (zh) * 2020-11-30 2023-08-18 华为技术有限公司 数据用量更新方法、装置及系统
CN116669227A (zh) * 2022-02-21 2023-08-29 大唐移动通信设备有限公司 隧道建立方法、设备、装置及存储介质
WO2024031403A1 (zh) * 2022-08-09 2024-02-15 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质
CN115915045B (zh) * 2022-11-08 2023-09-22 之江实验室 一种用于降低用户面和控制面信令交互负载的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180027521A1 (en) * 2016-07-22 2018-01-25 Lg Electronics Inc. Method of delivering downlink signaling and device supporting the same
CN109104746A (zh) * 2017-06-20 2018-12-28 华为技术有限公司 一种通信方法及装置
CN109121170A (zh) * 2017-06-26 2019-01-01 华为技术有限公司 会话管理的方法、装置、设备及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0204896D0 (en) * 2002-03-01 2002-04-17 Nokia Corp Data transmissions in a communication system
US8214487B2 (en) * 2009-06-10 2012-07-03 At&T Intellectual Property I, L.P. System and method to determine network usage
CN102625272B (zh) * 2011-01-31 2017-03-29 中兴通讯股份有限公司 一种支持流检测功能的用量监控方法及系统
US9107062B2 (en) * 2012-03-02 2015-08-11 Alcatel Lucent QoS control in PCRF based on usage and time of day
EP2932656B1 (en) * 2012-12-17 2018-08-29 T-Mobile International Austria GmbH Improving charging information accuracy in a telecommunications network
CN113037513B (zh) * 2017-01-05 2022-05-13 华为技术有限公司 计费管理方法、用户面功能实体以及控制面功能实体
US9979835B1 (en) * 2017-01-27 2018-05-22 Verizon Patent And Licensing Inc. Customization of traffic control services
CN114500126A (zh) * 2017-06-30 2022-05-13 华为技术有限公司 一种计费方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180027521A1 (en) * 2016-07-22 2018-01-25 Lg Electronics Inc. Method of delivering downlink signaling and device supporting the same
CN109104746A (zh) * 2017-06-20 2018-12-28 华为技术有限公司 一种通信方法及装置
CN109121170A (zh) * 2017-06-26 2019-01-01 华为技术有限公司 会话管理的方法、装置、设备及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Clarification for Multiple UL CLs", SA WG2 MEETING #122B S2-175641, 25 August 2017 (2017-08-25), XP051335115, DOI: 20200219174450A *
See also references of EP3890398A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747493A (zh) * 2021-09-17 2021-12-03 阿里巴巴达摩院(杭州)科技有限公司 数据传输方法、设备、系统及存储介质
CN113747493B (zh) * 2021-09-17 2024-04-05 杭州阿里云飞天信息技术有限公司 数据传输方法、设备、系统及存储介质

Also Published As

Publication number Publication date
EP3890398A4 (en) 2022-03-09
EP3890398A1 (en) 2021-10-06
US20210345174A1 (en) 2021-11-04
CN111436030B (zh) 2022-04-05
CN111436030A (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
WO2020147440A1 (zh) 数据用量上报的方法、装置及系统
WO2021012697A1 (zh) 应用mos模型的训练方法、设备及系统
WO2020143298A1 (zh) 实现业务连续性的方法、装置及系统
KR102581335B1 (ko) 서비스 품질 모니터링 방법 및 시스템, 및 디바이스
WO2020164290A1 (zh) 策略控制方法、装置及系统
WO2021031672A1 (zh) 通知服务质量信息的方法、设备及系统
WO2020024961A1 (zh) 数据处理方法、设备及系统
WO2020238292A1 (zh) 确定业务传输需求的方法、设备及系统
EP4138439A1 (en) Communication method, apparatus, and system
US11533643B2 (en) Quality of service monitoring method and system, and device
CN113938872B (zh) 通信方法、装置、系统及计算机存储介质
WO2021175210A1 (zh) 一种确定策略控制网元的方法、装置和系统
WO2021146926A1 (zh) 一种数据传输方法、设备及系统
WO2019206063A1 (zh) 一种业务流传输的方法和设备
WO2021056482A1 (zh) Ambr的控制方法、设备及系统
WO2020192263A1 (zh) 计费规则绑定的方法、设备及系统
WO2021103009A1 (zh) 上行pdr的生成方法、装置及系统
WO2022193127A1 (zh) 业务调度方法、装置及系统
TWI821882B (zh) 丟包率的檢測方法、通信裝置及通信系統
WO2021046746A1 (zh) 上报会话管理信息的方法、设备及系统
WO2020034922A1 (zh) 服务质量监测方法、设备及系统
WO2023185286A1 (zh) 一种通信方法及装置
WO2022267683A1 (zh) 一种通信方法及装置
WO2023155475A1 (zh) 网络测量的方法和装置
WO2020011173A1 (zh) 搬迁管理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019910041

Country of ref document: EP

Effective date: 20210702

NENP Non-entry into the national phase

Ref country code: DE