WO2020034922A1 - 服务质量监测方法、设备及系统 - Google Patents

服务质量监测方法、设备及系统 Download PDF

Info

Publication number
WO2020034922A1
WO2020034922A1 PCT/CN2019/100242 CN2019100242W WO2020034922A1 WO 2020034922 A1 WO2020034922 A1 WO 2020034922A1 CN 2019100242 W CN2019100242 W CN 2019100242W WO 2020034922 A1 WO2020034922 A1 WO 2020034922A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
message
time
terminal
transmission delay
Prior art date
Application number
PCT/CN2019/100242
Other languages
English (en)
French (fr)
Inventor
吴问付
周汉
李汉成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910028864.7A external-priority patent/CN110831033B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021502602A priority Critical patent/JP2021532641A/ja
Priority to BR112020026699-0A priority patent/BR112020026699A2/pt
Priority to AU2019323009A priority patent/AU2019323009B2/en
Priority to KR1020217000085A priority patent/KR20210010629A/ko
Priority to KR1020227036555A priority patent/KR102581335B1/ko
Priority to EP19850245.2A priority patent/EP3806524B1/en
Publication of WO2020034922A1 publication Critical patent/WO2020034922A1/zh
Priority to US17/138,264 priority patent/US20210119896A1/en
Priority to JP2022161066A priority patent/JP2022191337A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method, device, and system for monitoring quality of service (QoS).
  • QoS quality of service
  • the 3GPP standards group formulated the next generation mobile communication system (next generation system) network architecture at the end of 2016. For the 5th generation (5G) network architecture.
  • the 5G network architecture defines ultra-reliable low-latency communication (URLLC) scenarios, which mainly include services that require low-latency and high-reliability connections, such as unmanned driving and industrial automation.
  • URLLC ultra-reliable low-latency communication
  • the advanced air interface technology and optimized core network architecture of the 5G network make the requirements of the above scenarios possible.
  • the 5G network itself has certain instability whether it is the underlying link or the upper-layer routing protocol.
  • delays, errors, and even network failures are always inevitable, and the above scenarios are mostly life Businesses related to safety or production safety must not make mistakes. Therefore, when we use 5G networks to serve the above life safety or production safety sensitive industries, we need 5G networks to provide real-time service quality monitoring. When service quality does not meet preset conditions, we can take corresponding adjustment measures or protection measures. , So that users can choose the link that meets the service requirements.
  • monitoring methods for transmission delay information of various segments are proposed in the prior art, such as monitoring transmission delay information between a terminal and an access device, and transmission delay between an access device and a user plane network element Information monitoring, or the monitoring of transmission delay information between the terminal and the user plane network element, however, how to simplify the method of monitoring the transmission delay information of segments, so that it can be obtained in the monitoring process of the delay information of segment transmission
  • the embodiments of the present application provide a method, a device, and a system for monitoring service quality, so that multiple pieces of transmission delay information can be obtained in a monitoring process of one piece of transmission delay information.
  • a service quality monitoring method including: a first device acquiring first transmission delay information corresponding to a terminal-related message transmitted between the first device and a second device; the first device The device sends the first transmission delay information to a third device; and the first device sends the first time-related information to the third device at a first time, where the first transmission delay information and The information related to the first time is used to determine information about a second transmission delay corresponding to the terminal-related message transmitted between the second device and the third device.
  • the third device can receive information from the third transmission delay when monitoring the corresponding messages transmitted by the terminal between the first device and the third device.
  • Information related to the first moment of the first device and information related to the first transmission delay when the terminal-related message is transmitted between the first device and the second device determines information of a second transmission delay corresponding to a terminal-related message transmitted between the second device and the third device. That is to say, in a monitoring process of segmented transmission delay information, the third device can learn the information of the first transmission delay, the information of the second transmission delay, and the information of the third transmission delay. Therefore, based on the service quality monitoring method provided in the embodiment of the present application, multiple pieces of fragmented transmission delay information can be obtained in a single piece of fragmented transmission delay information monitoring process, thereby simplifying the existing fragmented transmission delay information. Monitoring methods.
  • the method further includes: the first device receives a first message from the third device at a second time, the first message is used to request to monitor the second transmission delay; the first time is related
  • the information includes the first time and the second time, or the difference between the first time and the second time. That is, in the embodiment of the present application, the third device may initiate a monitoring process of the second transmission delay.
  • the first message further includes a first monitoring granularity corresponding to the second transmission delay.
  • the endpoint identifier TEID indicates that the first monitoring granularity is session granularity; the terminal's IP address / IP address corresponding to the GTP-U tunnel + TEID + quality of service QoS flow identifier QFI indicates that the first monitoring granularity is flow granularity.
  • the first message further includes at least one of first indication information or a first segment identifier, where the first indication information is used to instruct obtaining information of the first transmission delay, and the first A segment identifier is used to identify a segment corresponding to the first transmission delay. That is, in the embodiment of the present application, the third device may instruct the first device to obtain information about the first transmission delay.
  • the first message further includes a second monitoring granularity corresponding to the first transmission delay.
  • the second monitoring granularity refer to the foregoing first monitoring granularity, and details are not described herein again.
  • the method further includes: the first device receives a second message from the third device at a third moment, and the second message is used to request monitoring of a message related to the terminal between the first device and the first device.
  • the second message further includes a third monitoring granularity corresponding to the third transmission delay.
  • a third monitoring granularity corresponding to the third transmission delay.
  • the second message further includes at least one of second indication information or a second segment identifier, where the second indication information is used to instruct to obtain information about the first transmission delay, and the first The two-segment identifier is used to identify a segment corresponding to the first transmission delay. That is, in the embodiment of the present application, the third device may instruct the first device to obtain information about the first transmission delay.
  • the second message further includes a fourth monitoring granularity corresponding to the first transmission delay.
  • fourth monitoring granularity refer to the foregoing first monitoring granularity, and details are not described herein again.
  • the first device sends information about the first transmission delay to a third device; and the first device sends information about the first time to the third device at a first time
  • the method includes: the first device sends a third message to the third device at the first moment, the third message includes information about the first transmission delay, and information related to the first moment. That is, in the embodiment of the present application, the information of the first transmission delay and the information related to the first time may be simultaneously sent to the third device through the third message.
  • the first device sends information about the first transmission delay to a third device; and the first device sends information about the first time to the third device at a first time, Including: the first device sends a fourth message to the third device, the fourth message includes information about the first transmission delay; and the first device sends a fifth message to the third device at the first moment
  • the fifth message includes information related to the first moment. That is, in the embodiment of the present application, the information of the first transmission delay and the information related to the first time are sent to the third device through different messages.
  • the method further includes: the first device receives a quality of service parameter to be monitored from the session management network element, the quality of service parameter to be monitored includes the first transmission delay, and the first device acquires a terminal
  • the first transmission delay information corresponding to the transmission of the related packet between the first device and the second device includes: the first device obtains the first transmission delay according to the quality of service parameter to be monitored. information. That is, in the embodiment of the present application, the session management network element may activate the service quality monitoring process of the first device.
  • the method further includes: the first device receives third instruction information from the session management network element, and the third instruction information is used to indicate that the first device monitors the first transmission delay information After that, the first transmission delay information is sent to the third device. Based on this solution, after the first device monitors the information of the first transmission delay, it can send the information of the first transmission delay to the third device, and the third device can then according to the information of the first transmission delay, And the measured third transmission delay information to determine the first transmission delay information.
  • the method further includes: the first device receives an event for reporting a monitoring report from the session management network element, and the event includes: the first transmission delay information exceeds a preset threshold; or the terminal enters an idle state Or the session is released; or, it is reported periodically. That is, in the embodiment of the present application, the session management network element may activate the first device to report a monitoring report to the session management network element.
  • the method further includes: the first device receives a length of a monitoring packet from the session management network element for quality of service monitoring.
  • the length of the monitoring packet used for service quality monitoring may be equal to the typical packet length of a valid service data packet, which is not specifically limited in the embodiment of the present application.
  • a service quality monitoring method including: a third device receiving a first transmission delay corresponding to a message transmitted from a terminal of a first device and transmitted between the first device and the second device; Information; the third device receives information related to the first time from the first device; and the third device determines, based on the information about the first transmission delay and the information related to the first time, that the message related to the terminal is in Information of a second transmission delay corresponding to the transmission between the second device and the third device.
  • the third device when monitoring the third transmission delay information corresponding to the terminal-related packets transmitted between the first device and the third device, since the third device can receive information from the third device, Information related to a first moment of a device and information related to a first transmission delay when a terminal-related message is transmitted between a first device and a second device, and may be based on the first transmission delay information and the first Time-related information, which determines information about a second transmission delay when a terminal-related message is transmitted between a second device and a third device, that is, during a segmented transmission delay information monitoring process, The third device may know the information of the first transmission delay, the information of the second transmission delay, and the information of the third transmission delay. Therefore, based on the service quality monitoring method provided in the embodiment of the present application, multiple pieces of fragmented transmission delay information can be obtained in a single piece of fragmented transmission delay information monitoring process, thereby simplifying the existing fragmented transmission delay information. Monitoring methods.
  • the method further includes: the third device sends a first message to the first device, where the first message is used to request information about the second transmission delay; the information related to the first moment includes The first time and the second time, or a difference between the first time and the second time, wherein the second time is a time when the first device receives the first message. That is, in the embodiment of the present application, the third device may initiate a monitoring process of the second transmission delay.
  • the first message further includes a first monitoring granularity corresponding to the second transmission delay.
  • first monitoring granularity For the description of the first monitoring granularity, reference may be made to the description in the foregoing first aspect, and details are not described herein again.
  • the first message further includes at least one of first indication information or a first segment identifier, where the first indication information is used to instruct obtaining information of the first transmission delay, and the first A segment identifier is used to identify a segment corresponding to the first transmission delay information. That is, in the embodiment of the present application, the third device may instruct the first device to obtain information about the first transmission delay.
  • the first message further includes a second monitoring granularity corresponding to the first transmission delay.
  • the second monitoring granularity refer to the foregoing first monitoring granularity, and details are not described herein again.
  • the method further includes: the third device sends a second message to the first device, and the second message is used to request to obtain a message related to the terminal between the first device and the third device.
  • the second message further includes a third monitoring granularity corresponding to the third transmission delay.
  • a third monitoring granularity corresponding to the third transmission delay.
  • the second message further includes at least one of second indication information or a second segment identifier, where the second indication information is used to instruct to obtain information about the first transmission delay, and the first The two-segment identifier is used to identify a segment corresponding to the first transmission delay information. That is, in the embodiment of the present application, the third device may instruct the first device to obtain information about the first transmission delay.
  • the second message further includes a fourth monitoring granularity corresponding to the first transmission delay.
  • fourth monitoring granularity refer to the foregoing first monitoring granularity, and details are not described herein again.
  • the third device receives information about a first transmission delay when a packet related to the terminal from the first device is transmitted between the first device and the second device; and Receiving, by the three devices, information related to the first moment from the first device, including: the third device receiving a third message from the first device, the third message including information about the first transmission delay, and Information related to the first moment. That is, in the embodiment of the present application, the information of the first transmission delay and the information related to the first time may be simultaneously sent to the third device through the third message.
  • the third device receives information about a first transmission delay when a packet related to the terminal from the first device is transmitted between the first device and the second device; and Receiving, by the three devices, information related to the first moment from the first device, including: the third device receiving a fourth message from the first device, the fourth message including information about the first transmission delay; and, the The third device receives a fifth message from the first device, and the fifth message includes information related to the first time. That is, in the embodiment of the present application, the information of the first transmission delay and the information related to the first time are sent to the third device through different messages.
  • a method for activating service quality monitoring includes: a session management network element receiving a service quality monitoring policy from a policy control network element; the session management network element receiving the service quality monitoring A first quality of service monitoring policy corresponding to the first device is determined in the policy; the session management network element sends the first quality of service monitoring policy to the first device.
  • the required service quality monitoring strategy can be provided to the corresponding device during the service quality monitoring process, so that the device can be activated to initiate a service quality monitoring process or the device to a session.
  • the management network element reports a monitoring report.
  • the first quality of service monitoring strategy includes at least one of a first quality of service parameter corresponding to the first device to be monitored or an event in which the first device reports a monitoring report to the session management network element .
  • the first quality of service monitoring strategy further includes a monitoring period corresponding to the first device for quality of service monitoring.
  • the event includes that the quality of service parameter exceeds a preset threshold, or the terminal enters an idle state or the session is released; or, it is reported periodically.
  • the first quality of service parameter to be monitored includes a guaranteed flow rate GFBR, an uplink and downlink maximum flow rate MFBR, an amount of burst data within an access point packet delay budget, a frame error rate FER, At least one of a segment transmission delay or packet loss information.
  • the segment transmission delay may be a unidirectional transmission delay or a bidirectional transmission delay.
  • the segment transmission delay is a terminal-related message between the first device and the second device.
  • the first transmission delay corresponding to the time between transmissions.
  • the method further includes: the session management network element sending third instruction information to the first device, where the third instruction information is used to indicate that the first device monitors the first transmission delay information After that, the first transmission delay information is sent to the third device.
  • the session management network element sending third instruction information to the first device, where the third instruction information is used to indicate that the first device monitors the first transmission delay information
  • the first transmission delay information is sent to the third device.
  • the first service quality monitoring strategy further includes a length of a monitoring packet for service quality monitoring.
  • a length of a monitoring packet for service quality monitoring For a description of the length of the monitoring packet, reference may be made to the description of the first aspect, and details are not described herein again.
  • the service quality monitoring strategy includes information of the first device; the session management network element determines a first service quality monitoring strategy corresponding to the first device from the service quality monitoring strategy, including: the The session management network element determines the first service quality monitoring strategy from the service quality monitoring strategy according to the information of the first device. Based on this solution, the session management network element may determine a first service quality monitoring strategy corresponding to the first device from the service quality monitoring strategy.
  • the first quality of service monitoring strategy includes a first quality of service parameter to be monitored corresponding to the first device; and the session management network element determines a first quality of service corresponding to the first device from the quality of service monitoring policy.
  • a quality of service monitoring strategy includes: the session management network element determines a first quality of service parameter to be monitored corresponding to the first device according to a parameter type of the first quality of service parameter. Based on this solution, the session management network element may determine a first service quality monitoring strategy corresponding to the first device from the service quality monitoring strategy.
  • the first device is an access device, the second device is a terminal, and the third device is a user plane network element; or, The first device is an access device, the second device is a user plane network element, and the third device is a terminal; or, the first device is a terminal, the second device is an access device, and the third device is a user Area network element; or, the first device is a user area network element, the second device is an access device, and the third device is a terminal.
  • a first device has a function of implementing the method described in the first aspect.
  • This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a first device including: a processor and a memory; the memory is configured to store a computer execution instruction, and when the first device is running, the processor executes the computer execution instruction stored in the memory to The first device is caused to execute the service quality monitoring method according to any one of the first aspects.
  • a first device including: a processor; the processor is configured to be coupled to a memory, and after reading an instruction in the memory, execute the instruction according to any one of the foregoing first aspects according to the instruction.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to perform the quality of service according to any one of the first aspects. Monitoring methods.
  • a computer program product containing instructions which, when run on a computer, enables the computer to execute the method of monitoring service quality according to any one of the first aspects.
  • an apparatus for example, the apparatus may be a chip system
  • the apparatus includes a processor, and is configured to support a first device to implement the functions involved in the first aspect, such as acquiring a terminal-related message. Information corresponding to a first transmission delay when transmitting between the first device and the second device.
  • the device further includes a memory, and the memory is configured to store program instructions and data necessary for the first device.
  • the device is a chip system, it may be composed of a chip, or it may include a chip and other discrete devices.
  • a third device has a function of implementing the method described in the second aspect.
  • This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a third device including: a processor and a memory; the memory is configured to store a computer execution instruction, and when the third device is running, the processor executes the computer execution instruction stored in the memory, So that the third device executes the service quality monitoring method according to any one of the second aspects.
  • a third device including: a processor; the processor is configured to be coupled to a memory, and after reading an instruction in the memory, execute any one of the foregoing second aspects according to the instruction.
  • the method of monitoring service quality is provided, including: a processor; the processor is configured to be coupled to a memory, and after reading an instruction in the memory, execute any one of the foregoing second aspects according to the instruction. The method of monitoring service quality.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the service according to any one of the second aspects. Quality monitoring methods.
  • a computer program product containing instructions which when run on a computer, enables the computer to execute the method of monitoring service quality according to any one of the second aspects.
  • a device for example, the device may be a chip system
  • the device includes a processor, and is configured to support a third device to implement the functions involved in the second aspect, such as obtaining a terminal-related report.
  • the device further includes a memory, which is used to store program instructions and data necessary for the third device.
  • the device is a chip system, it may be composed of a chip, or it may include a chip and other discrete devices.
  • a session management network element is provided, and the session management network element has a function of implementing the method described in the third aspect.
  • This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a session management network element including: a processor and a memory; the memory is configured to store computer execution instructions, and when the session management network element is running, the processor executes the computer execution stored in the memory; An instruction to cause the session management network element to execute the method for activating service quality monitoring according to any one of the third aspects.
  • a session management network element including: a processor; the processor is configured to be coupled to a memory and read an instruction in the memory, and then execute any one of the foregoing third aspects according to the instruction.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to perform the activation according to any one of the third aspects. Method of service quality monitoring.
  • a computer program product containing instructions which when run on a computer, enables the computer to execute the method for activating service quality monitoring according to any one of the third aspects above.
  • an apparatus for example, the apparatus may be a chip system
  • the apparatus includes a processor, and is configured to support a session management network element to implement the functions involved in the third aspect, for example, from the service In the quality monitoring strategy, a first service quality monitoring strategy corresponding to the first device is determined.
  • the device further includes a memory, and the memory is configured to store program instructions and data necessary for the session management network element.
  • the device is a chip system, it may be composed of a chip, or it may include a chip and other discrete devices.
  • a service quality monitoring system includes the first device according to any one of the foregoing aspects and the third device according to any one of the foregoing aspects.
  • a service quality monitoring method including: the terminal receives information related to the first time from the access device, where the first time is the time when the access device receives the first message sent by the terminal Time, or the first time is the time when the access device sends a second message to the terminal; the terminal determines, according to the information related to the first time, that the terminal-related message is between the terminal and the access device Corresponding transmission delay information during the transmission. Based on this solution, the terminal can determine the corresponding transmission delay information when the terminal-related messages are transmitted between the terminal and the access device.
  • the terminal determines the terminal-related report according to the information related to the first time.
  • the corresponding transmission delay information when the text is transmitted between the terminal and the access device includes: the terminal determines that the first packet is transmitted between the terminal and the access device according to the information related to the first moment Time-dependent uplink delay information. Based on this solution, the terminal can determine the corresponding uplink delay information when the terminal-related messages are transmitted between the terminal and the access device.
  • the information related to the first time includes the first time; or the information related to the first time includes the difference between the first time and the second time; where the second time is The moment when the terminal sends the first message to the access device.
  • the method before the terminal receives the information related to the first time from the access device, the method further includes: the terminal sends the first message to the access device at the second time, and the first A message carries first instruction information, and the first instruction information is used to indicate that the first message is used for delay monitoring.
  • the terminal determines a message related to the terminal according to information related to the first time.
  • the transmission delay information corresponding to the transmission between the terminal and the access device includes: when the terminal determines, according to the information related to the first moment, when the second packet is transmitted between the terminal and the access device. Corresponding downlink delay information. Based on this solution, the terminal can determine the corresponding uplink delay information when the terminal-related messages are transmitted between the terminal and the access device.
  • the information related to the first time includes the first time; or the information related to the first time includes the difference between the first time and the third time; where the third time is The moment when the terminal receives the second message sent by the access device.
  • the information related to the first time includes a difference between the first time and the third time
  • the terminal before the terminal receives the information related to the first time from the access device, the terminal further includes: Receiving the second message from the access device; the terminal sends information indicating the third time to the access device, and the third time is the time when the terminal receives the second message sent by the access device.
  • the access device can know the time when the terminal receives the second message sent by the access device, and can further determine the downlink delay information corresponding to the terminal when the message is transmitted between the terminal and the access device.
  • the terminal receiving the information related to the first moment from the access device includes: the terminal receives the second message from the access device, and the second message carries the first moment . That is, in the embodiment of the present application, the access device may send information related to the first moment to the terminal through a downlink message.
  • the method further includes: the terminal sends the downlink to the access device. Delay information. Based on this solution, the access device can learn the downlink delay information corresponding to the terminal-related messages transmitted between the terminal and the access device.
  • the second message carries second instruction information, and the second instruction information is used to indicate that the second message is used for delay monitoring.
  • the terminal receiving information related to the first time from the access device includes: the terminal receiving a third message from the access device, the third message carrying the first time related information Information. That is, in the embodiment of the present application, the access device may send information related to the first moment to the terminal through a downlink message.
  • the terminal receives radio resource control RRC signaling from the access device, and the RRC signaling carries information related to the first moment. That is, in the embodiment of the present application, the access device may send the information related to the first moment to the terminal through RRC signaling.
  • a method of monitoring service quality includes: an access device acquiring information about a first transmission delay corresponding to a terminal-related message transmitted between the access device and the terminal; and, The access device obtains information about a second transmission delay corresponding to a terminal-related message transmitted between the access device and the user plane network element; the access device sends the first transmission time to the control plane network element The delay information and the second transmission delay information.
  • the process of monitoring the transmission delay of the access device as an intermediate device, it can directly obtain the transmission delay information on both sides, and then report the delay; avoiding the need for the devices on both sides to obtain the delay of the segment where the device is not located. Only then can the segment transmission delay or end-to-end transmission delay be reported, thereby simplifying the delay monitoring mechanism.
  • the access device acquiring first transmission delay information corresponding to a terminal-related message transmitted between the access device and the terminal includes: the access device acquiring a first time Related information, the first time is the time when the access device receives the first message sent by the terminal, or the first time is the time when the access device sends the second message to the terminal; the access The device determines the corresponding transmission delay information when the terminal-related packet is transmitted between the terminal and the access device according to the information related to the first moment. Based on this solution, the access device can obtain the transmission delay information corresponding to the terminal-related messages transmitted between the terminal and the access device.
  • a communication device for implementing the foregoing methods.
  • the communication device may be a terminal in the twenty-third aspect, or a device including the terminal; or the communication device may be an access device in the twenty-fourth aspect, or a device including the access device.
  • the communication device includes a corresponding module, unit, or means for implementing the above method, and the module, unit, or means can be implemented by hardware, software, or hardware by executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • a communication device including: a processor and a memory; the memory is configured to store computer instructions, and when the processor executes the instructions, to cause the communication device to execute any one of the foregoing aspects method.
  • the communication device may be the terminal in the twenty-third aspect, or a device including the terminal; or the communication device may be the access device in the twenty-fourth aspect, or a device including the access device.
  • a communication device including: a processor; the processor is configured to be coupled to a memory and read an instruction in the memory, and then execute the method according to any of the foregoing aspects according to the instruction .
  • the communication device may be a terminal in the twenty-third aspect, or a device including the terminal; or the communication device may be an access device in the twenty-fourth aspect, or a device including the access device.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the method according to any one of the above aspects.
  • a computer program product containing instructions which when run on a computer, enables the computer to perform the method described in any one of the above aspects.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any one of the foregoing aspects.
  • the communication device further includes a memory, and the memory is configured to store necessary program instructions and data.
  • the communication device is a chip system, it may be constituted by a chip, or it may include a chip and other discrete devices.
  • FIG. 1 is a schematic structural diagram of a service quality monitoring system according to an embodiment of the present application.
  • FIG. 2 is a schematic architecture diagram of a system for activating service quality monitoring according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an application of a service quality monitoring system in a 5G network according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a hardware structure of a communication device according to an embodiment of the present application.
  • FIG. 5 is a first schematic flowchart of a service quality monitoring method according to an embodiment of the present application.
  • FIG. 6 is a second schematic flowchart of a service quality monitoring method according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for activating service quality monitoring according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a first device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a third device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a session management network element according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another service quality monitoring system according to an embodiment of the present application.
  • FIG. 12 is a third flowchart of a service quality monitoring method according to an embodiment of the present application.
  • FIG. 13 is a fourth flowchart of a service quality monitoring method according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • At least one or more of the following or similar expressions means any combination of these items, including any combination of single or plural items.
  • at least one (a), a, b, or c can be expressed as: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish between the same or similar items having substantially the same functions and functions. Those skilled in the art can understand that the words “first”, “second” and the like do not limit the number and execution order, and the words “first” and “second” are not necessarily different.
  • the network architecture and service scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application. With the evolution of the network architecture and the emergence of new service scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the service quality monitoring system 10 includes a first device 101 and a third device 102.
  • the first device is configured to obtain information about a first transmission delay corresponding to a terminal-related message transmitted between the first device and a second device, and send the first transmission delay information to a third device; And, the first time-related information is sent to the third device at the first time.
  • the third device is configured to receive the first transmission delay information and the information related to the first time from the first device, and determine the terminal-related message according to the first transmission delay information and the first time related information. Information corresponding to a second transmission delay when transmitting between the second device and the third device.
  • the first device may be an access device
  • the second device may be a terminal
  • the third device may be a user plane network element.
  • the first device may be an access device
  • the second device may be a user plane network element
  • the third device may be a terminal
  • the first device may be a terminal
  • the second device may be an access device
  • the third device may be a user plane network element.
  • the first device may be a user plane network element
  • the second device may be an access device
  • the third device may be a terminal
  • the first device 101 and the second device 102 in the embodiment of the present application may directly communicate with each other, or may communicate through the forwarding of other equipment, which is not specifically limited in this embodiment of the present application.
  • the third device when monitoring the third transmission delay information corresponding to the terminal-related packets transmitted between the first device and the third device, since the third device can receive information from the third device, Information related to a first moment of a device and information related to a first transmission delay when a terminal-related message is transmitted between a first device and a second device, and may be based on the first transmission delay information and the first Time-related information, which determines information about a second transmission delay when a terminal-related message is transmitted between a second device and a third device, that is, during a segmented transmission delay information monitoring process, The third device may know the information of the first transmission delay, the information of the second transmission delay, and the information of the third transmission delay. Therefore, based on the service quality monitoring system provided by the embodiment of the present application, multiple pieces of fragmented transmission delay information can be obtained in a monitoring process of fragmented transmission delay information, thereby simplifying the existing fragmented transmission delay information. Monitoring methods.
  • this embodiment of the present application provides a system 20 for activating service quality monitoring.
  • the system 20 for activating service quality monitoring includes a session management network element 201 and a first device 202.
  • the session management network element 201 is configured to receive a service quality monitoring policy from a policy control network element, and determine a first service quality monitoring policy corresponding to the first device from the service quality monitoring policy, and then send it to the first device 202. Send the first service quality monitoring strategy.
  • the first device 202 is configured to receive a first quality of service monitoring policy from the session management network element 201.
  • the first device 202 receives the first quality of service monitoring policy from the session management network element 201 , Corresponding service quality monitoring may be initiated to obtain information of the first service quality parameter.
  • the first service quality monitoring strategy includes the first device 202 reporting an event of a monitoring report to the session management network element 201
  • the first device 202 receives the first quality of service from the session management network element 201
  • the monitoring report may be reported to the session management network element 201 when the event reported in the monitoring report meets a preset condition.
  • the first device may be an access device
  • the second device may be a terminal
  • the third device may be a user plane network element.
  • the first device may be an access device
  • the second device may be a user plane network element
  • the third device may be a terminal
  • the first device may be a terminal
  • the second device may be an access device
  • the third device may be a user plane network element.
  • the first device may be a user plane network element
  • the second device may be an access device
  • the third device may be a terminal
  • the session management network element 201 and the first device 202 in the embodiment of the present application may directly communicate with each other, or may communicate through the forwarding of other devices, which is not specifically limited in this embodiment of the present application.
  • the required service quality monitoring strategy can be provided to the corresponding device during the service quality monitoring process, so that the device can be activated to initiate a service quality monitoring process or the device to a session.
  • the management network element reports a monitoring report.
  • the service quality monitoring system 110 includes a terminal 1101 and an access device 1102.
  • the access device 1102 is configured to obtain information related to a first moment, where the first moment is the moment when the access device 1102 receives the first message sent by the terminal 1101, or the first moment is when the access device 1102 sends Time when the terminal 1101 sends the second message.
  • the terminal 1101 is configured to receive information related to the first time from the access device 1102, and determine, according to the information related to the first time, a corresponding packet transmitted by the terminal 1101 between the terminal 1101 and the access device 1102. Transmission delay information.
  • monitoring in the embodiment of the present application may also be replaced by detection, and the detection in the embodiment of the present application may also be replaced by monitoring, that is, detection and monitoring may be replaced with each other.
  • detection and monitoring may be replaced with each other.
  • the terminal can determine transmission delay information corresponding to the terminal-related messages transmitted between the terminal and the access device.
  • the service quality monitoring system 10 shown in FIG. 1 or the service quality monitoring system 20 shown in FIG. 2 or the service quality monitoring system 110 shown in FIG. 11 may be applied to the current 5G network and other future networks.
  • the application example does not specifically limit this.
  • the network element or entity corresponding to the foregoing terminal may be a terminal in a 5G network; the network element or entity corresponding to the foregoing access device may be an access device in a 5G network; the above-mentioned user plane network element corresponds to
  • the network element or entity may be a user plane function (UPF) network element in the 5G network, and the network element or entity corresponding to the foregoing session management network element may be a session management function (session management function in the 5G network).
  • UPF user plane function
  • SMF session management function
  • the 5G network may also include access and mobility management function (AMF) network elements, or policy control function (PCF) network elements, etc.
  • AMF access and mobility management function
  • PCF policy control function
  • the terminal communicates with the AMF network element through the Next Generation Network (N) interface 1 (referred to as N1)
  • the access device communicates with the AMF network element through the N interface 2 (referred to as N2)
  • the access device communicates through the N interface 3 ( N3) communicates with UPF network elements.
  • AMF network elements communicate with SMF network elements through N interface 11 (N11 for short)
  • AMF network elements communicate with PCF network elements through N interface 15 (N15 for short)
  • SMF network elements through N interface 7 (Referred to as N7) communicates with the PCF network element
  • the SMF network element communicates with the UPF network element through the N interface 4 (referred to as N4).
  • interface names between the various network elements in FIG. 3 are only examples, and the interface names may be other names in specific implementations, which are not specifically limited in this embodiment of the present application.
  • control plane network elements such as AMF network elements, SMF network elements, or PCF network elements in the 5G network shown in FIG. 3 may also use service-oriented interfaces for interaction.
  • the external service interface provided by the AMF network element may be Namf
  • the external service interface provided by the SMF network element may be Nsmf
  • the external service interface provided by the PCF network element may be Npcf.
  • the terminals involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem; Including subscriber unit, cellular phone, smart phone, wireless data card, personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld device (handheld), laptop (computer), cordless phone (wireless local phone) or wireless local loop (WLL) station, machine type communication (MTC) terminal, user equipment (user equipment) , UE), mobile station (MS), terminal device (terminal device) or relay user equipment.
  • the relay user equipment may be, for example, a 5G residential gateway (RG).
  • RG 5G residential gateway
  • the access device referred to in the embodiments of the present application refers to a device that accesses a core network.
  • the access device may be a base station, a broadband network service gateway (BNG), an aggregation switch, or non-third-generation cooperation.
  • BNG broadband network service gateway
  • 3GPP 3rd generation partnership project
  • the base station may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, and the like.
  • the first device or the third device in FIG. 1, or the session management network element in FIG. 2, or the terminal or access device in FIG. 11 may be implemented by one device or multiple devices. These devices can be implemented together, and can also be a functional module within a device, which is not specifically limited in this embodiment of the present application. It can be understood that the foregoing functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (for example, a cloud platform).
  • FIG. 4 is a schematic diagram of a hardware structure of a communication device according to an embodiment of the present application.
  • the communication device 400 includes a processor 401, a communication line 402, a memory 403, and at least one communication interface (FIG. 4 is only exemplified by including the communication interface 404 as an example).
  • the processor 401 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the program of the solution of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 402 may include a path for transmitting information between the aforementioned components.
  • the communication interface 404 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 403 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM-ready-only memory (EEPROM)), compact disc (read-only memory (CD-ROM)) or other optical disk storage, optical disk storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory may exist independently, and is connected to the processor through the communication line 402. The memory can also be integrated with the processor.
  • the memory 403 is configured to store a computer execution instruction for executing the solution of the present application, and the processor 401 controls execution.
  • the processor 401 is configured to execute computer execution instructions stored in the memory 403, so as to implement the service quality monitoring method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 401 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 4.
  • the communication device 400 may include multiple processors, such as the processor 401 and the processor 408 in FIG. 4. Each of these processors may be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, and / or processing cores for processing data (such as computer program instructions).
  • the communication device 400 may further include an output device 405 and an input device 406.
  • the output device 405 communicates with the processor 401 and can display information in a variety of ways.
  • the output device 405 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • the input device 406 is in communication with the processor 401 and can receive user input in a variety of ways.
  • the input device 406 may be a mouse, a keyboard, a touch screen device, or a sensing device.
  • the above-mentioned communication device 400 may be a general-purpose device or a special-purpose device.
  • the communication device 400 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a device having a similar structure in FIG. 4. device.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 400.
  • the service quality monitoring system shown in FIG. 1 is applied to the 5G network shown in FIG. 3, the first device is an access device, the second device is a terminal, and the third device is a UPF network element; or, the first device As an access device, the second device is a UPF network element, and the third device is a terminal as an example.
  • a service quality monitoring method provided in this embodiment of the present application.
  • the service quality monitoring method includes the following steps:
  • the first device obtains information about a first transmission delay corresponding to a terminal-related message transmitted between the first device and the second device.
  • the first device may initiate monitoring of a first transmission delay corresponding to a terminal-related message transmitted between the first device and the second device, so as to obtain information about the first transmission delay.
  • a first transmission delay corresponding to a terminal-related message transmitted between the first device and the second device.
  • the first transmission delay in the embodiment of the present application may be an uplink (uplink, UL) or downlink (downlink, DL) list corresponding to a terminal-related message transmitted between the first device and the second device.
  • RTT round-trip delay
  • a first transmission delay corresponding to a terminal-related packet transmitted between the first device and the second device It may also be referred to as air interface transmission delay or Uu interface delay, which is not specifically limited in this embodiment of the present application.
  • the third device may obtain the information about the first transmission delay and the information about the first time in any one of the following manners 1 to 4.
  • Method 1 The service quality monitoring method provided in the embodiment of the present application further includes the following steps S502a-S504a:
  • the third device sends message 1 to the first device, so that the first device receives message 1 from the third device at time T2.
  • the message 1 in the embodiment of the present application may be, for example, a loopback monitoring request 1.
  • the loopback monitoring request 1 may be composed of one or more monitoring request packets.
  • Each Monitoring request packet may include a related sequence number (SN), which is not specifically limited in this embodiment of the present application.
  • the message 1 is used to request a second transmission delay corresponding to a monitoring terminal-related message transmitted between the second device and the third device, or the message 1 is used to request
  • the third transmission delay corresponding to the monitoring terminal-related packets transmitted between the first device and the third device is not specifically limited in this embodiment of the present application.
  • the message 1 in the case where the message 1 is used to request a second transmission delay corresponding to a message transmitted by the monitoring terminal to be transmitted between the second device and the third device, the message 1 may also be Including the monitoring granularity 1 corresponding to the second transmission delay, such as the Internet Protocol (IP) address of the terminal / general packet radio system (GPRS) tunneling protocol (GTP) for the user -U)
  • IP Internet Protocol
  • GTP general packet radio system
  • the IP address corresponding to the tunnel characterizes the monitoring granularity 1 as the device granularity
  • the IP address of the terminal / IP address corresponding to the GTP-U tunnel + the tunnel endpoint identifier (TEID) characterizes the monitoring granularity 1 as the session granularity
  • the IP address / GTP-U tunnel corresponding IP address + TEID + quality of service QoS flow identity (QFI) identifies the monitoring granularity 1 as the flow granularity, which is not specifically limited in this
  • the message 1 in the case where the message 1 is used to request a third transmission delay corresponding to a monitoring terminal-related message transmitted between the first device and the third device, the message 1 may also be The monitoring granularity 3 corresponding to the third transmission delay is included.
  • the monitoring granularity 3 corresponding to the third transmission delay is included.
  • the message 1 may further include at least one of the indication information 1 or the segment identifier 1.
  • the indication information 1 is used to instruct to obtain information of the first transmission delay
  • the segment identifier 1 is used to identify the segment corresponding to the first transmission delay, which is not specifically limited in this embodiment of the present application.
  • the message 1 may further include a monitoring granularity 2 corresponding to the first transmission delay.
  • a monitoring granularity 2 corresponding to the first transmission delay.
  • message 1 may indicate the following four situations:
  • a It does not indicate the information of the segment to be monitored, such as the information of the segment corresponding to the above-mentioned second transmission delay or the information of the segment corresponding to the above-mentioned third transmission delay; Information, such as segmented information corresponding to the above-mentioned first transmission delay. That is, by default or according to a local policy, after receiving the message 1 from the third device, the first device responds with a response message corresponding to the message 1.
  • the third device may include the segment identifier 1 in the message 1 for requesting to obtain a correspondence with the segment identifier 1. Of the first transmission delay.
  • the third device may send the message 1 in the message 1.
  • the segment identifier 2 is included, which is used to request the monitoring of the second transmission delay information corresponding to the segment identifier 2.
  • the third device may include the segment identifier 3 in the message 1, which is used to request the monitoring and segment identifier. 3 corresponding second transmission delay information.
  • step S501 is performed first, and then step S502a is performed; step S502a is performed first, and then step S501 is performed, for example,
  • the first device receives the loopback monitoring request 1 from the third device, it initiates monitoring of the first transmission delay corresponding to the terminal-related packets transmitted between the first device and the second device; it may also perform the steps simultaneously S501 and S502a, which are not specifically limited in this embodiment of the present application.
  • the first device generates a message 2 corresponding to the message 1.
  • the message 2 in the embodiment of the present application may be, for example, a loopback monitoring response 1.
  • the loopback monitoring response 1 may be composed of one or more measurement response packets.
  • Each measurement response packet may include a related serial number, which is not specifically limited in this embodiment of the present application.
  • the monitoring request packet in step S502a and the measurement response packet in step S503a in the embodiments of the present application may be collectively referred to as the monitoring packet, which are collectively described herein and will not be described in detail below.
  • the first device may generate or construct a message 2 corresponding to the message 1.
  • the first device may include the above-mentioned information about the first transmission delay and information related to the first time in the message 2.
  • the information related to the first time may include, for example, the time T2 at which the first device receives the message 1, and the time T5 at which the first device sends the message 2, or the information related to the first time may include, for example, The difference between the time T5 and the time T2 when the first device receives the message 1 is not specifically limited in this embodiment of the present application.
  • the message 2 may further include a monitoring granularity 4 corresponding to the first transmission delay, and the monitoring granularity 4 may be the same as the monitoring granularity 4 corresponding to the first transmission delay in the foregoing message 1.
  • the monitoring granularity corresponding to the first transmission delay requested by the third device may be the same as or different from the monitoring granularity corresponding to the first transmission delay responded by the first device.
  • the third The monitoring granularity corresponding to the first transmission delay requested by the device may be device granularity, and the monitoring granularity corresponding to the first transmission delay responded by the first device may be flow granularity, which is not specifically limited in this embodiment of the present application.
  • the message 2 may further include a segment identifier 1 corresponding to the above-mentioned first transmission delay, which is used to indicate a segment corresponding to the first transmission delay. This is not specifically limited.
  • the first device sends a message 2 to the third device, so that the third device receives the message 2 from the first device.
  • the service quality monitoring method provided in the embodiment of the present application further includes the following steps S502b-S503b:
  • the message 3 in the embodiment of the present application may be, for example, a service quality monitoring request 1.
  • the service quality monitoring request 1 may be composed of one or more monitoring request packets. Each monitoring request packet may include a related serial number, which is not specifically limited in this embodiment of the present application.
  • the message 3 is used to request a third transmission delay corresponding to a monitoring terminal-related message to be transmitted between the first device and the third device, which will be collectively described herein, and will not be described in detail below.
  • the first device may generate message 3.
  • the first device may include the above-mentioned first transmission delay information and information related to the first time in the message 1.
  • the first time related information may include, for example, the time T5 at which the first device sends the message 3. The application example does not specifically limit this.
  • the message 3 may further include a monitoring granularity 4 corresponding to the first transmission delay, which is not specifically limited in the embodiment of the present application.
  • a monitoring granularity 4 corresponding to the first transmission delay, which is not specifically limited in the embodiment of the present application.
  • the monitoring granularity 4 please refer to the above description of the monitoring granularity 1, which is not repeated here.
  • the message 3 may further include a segment identifier 1 corresponding to the foregoing first transmission delay, which is used to indicate a segment corresponding to the first transmission delay. This is not specifically limited.
  • the first device sends a message 3 to the third device, so that the third device receives the message 3 from the first device.
  • the service quality monitoring method provided in the embodiment of the present application further includes the following steps S502c-S505c:
  • the first device sends a message 4 to the third device, so that the third device receives the message 4 from the first device.
  • the message 4 includes information about the first transmission delay.
  • the message 4 may further include a monitoring granularity 4 corresponding to the first transmission delay, which is not specifically limited in the embodiment of the present application.
  • a monitoring granularity 4 corresponding to the first transmission delay which is not specifically limited in the embodiment of the present application.
  • the monitoring granularity 4 please refer to the above description of the monitoring granularity 1, which is not repeated here.
  • the message 4 may further include a segment identifier 1 corresponding to the foregoing first transmission delay, which is used to indicate a segment corresponding to the first transmission delay. This is not specifically limited.
  • the message 4 in the embodiment of the present application may be a control message or a monitoring message, which is not specifically limited in the embodiment of the present application.
  • the third device sends a message 5 to the first device, so that the first device receives the message 5 from the third device.
  • the message 5 is used to request a third transmission delay corresponding to a monitoring terminal-related message transmitted between the first device and the third device.
  • the message 5 in the embodiment of the present application may be, for example, a loopback monitoring request 2.
  • the loopback monitoring request 2 may be composed of one or more monitoring request packets. Each Each monitoring request packet may include a related sequence number.
  • steps S502c and steps S503c-S505c there is no necessary execution sequence between steps S502c and steps S503c-S505c, and it may be that step S502c is performed first, and then one or more of the steps S503c-S505c are performed; or One or more steps in steps S503c-S505c are performed first, and then step S502c is performed. Alternatively, one or more steps in steps S503c-S505c and step S502c may be performed simultaneously. This embodiment of the present application does not specifically limit this.
  • the first device generates a message 6 corresponding to the message 5.
  • the message 6 in the embodiment of the present application may be, for example, a loopback monitoring response 2.
  • the loopback monitoring response 2 may be composed of one or more measurement response packets.
  • Each measurement response packet may include a related serial number, which is not specifically limited in this embodiment of the present application.
  • the first device may generate or construct a message 6 corresponding to the message 5.
  • the first device may include information related to the first time in the message 6, for example, it may include the time T2 when the first device receives the message 5 and the time T5 when the first device sends the message 6; or, the first time
  • the related information may include, for example, a difference between the time T5 at which the first device sends the message 6 and the time T2 at which the first device receives the message 5, which is not specifically limited in this embodiment of the present application.
  • the first device sends a message 6 to the third device, so that the third device receives the message 6 from the first device.
  • the fourth method after step S501, the service quality monitoring method provided in the embodiment of the present application further includes the following steps S502d-S504d:
  • step S502d Same as step S502c.
  • step S502c Same as step S502c.
  • the first device generates a message 7.
  • the message 7 is used to request a third transmission delay corresponding to a monitoring terminal-related message transmitted between the first device and the third device.
  • the message 7 in the embodiment of the present application may be, for example, a service quality monitoring request 2.
  • the service quality monitoring request 2 may be composed of one or more monitoring request packets.
  • Each monitoring request packet may include a related serial number, which is not specifically limited in this embodiment of the present application.
  • the message 7 may include information related to the first time, and the information related to the first time may include, for example, the time T5 at which the first device sends the message 7.
  • the information related to the first time may include, for example, the time T5 at which the first device sends the message 7.
  • the time T5 at which the first device sends the message 7. For related description, refer to the existing third The method of monitoring transmission delay is not repeated here.
  • step S502d is performed first and then step S503d; or step S503d is performed first and then step S502d is performed; also Steps S502d and S503d may be performed at the same time, which is not specifically limited in the embodiment of the present application.
  • the first device sends a message 7 to the third device, so that the third device receives the message 7 from the first device.
  • the method for monitoring service quality provided in the embodiment of the present application further includes the following steps S506-S507:
  • the third device stores information about the first transmission delay.
  • the third device determines information about the third transmission delay; and the third device determines information about the second transmission delay according to the information about the first transmission delay and information related to the first time.
  • the third transmission delay information corresponding to the terminal-related message transmitted between the first device and the third device is RTT1
  • the terminal-related message is transmitted between the first device and the second device
  • the information of the first transmission delay corresponding to the time is RRT2
  • the information of the second transmission delay corresponding to the terminal-related packets transmitted between the second device and the third device is RRT3, then:
  • RRT1 (T6-T1)-(T5-T2)
  • RRT3 RRT2 + RRT1.
  • RRT1 T6-T5
  • RRT3 RRT2 + RRT1.
  • the information of the third transmission delay corresponding to the terminal-related message transmitted between the first device and the third device is one-way delay 1
  • the terminal-related message is transmitted between the first device and the third device.
  • the information of the first transmission delay corresponding to the transmission between the second devices is one-way delay 2.
  • the information of the second transmission delay corresponding to the terminal-related packets transmitted between the second device and the third device is One-way delay 3, then:
  • One-way delay 1 [(T6-T1) – (T5-T2)] / 2;
  • Unidirectional delay 3 Unidirectional delay 2+ Unidirectional delay 1.
  • One-way delay 1 (T6-T5) / 2;
  • Unidirectional delay 3 Unidirectional delay 2+ Unidirectional delay 1.
  • the unidirectional delay may be a UL unidirectional delay or a DL unidirectional delay. This embodiment of the present application does not specifically limit this.
  • the third device when monitoring the third transmission delay information corresponding to the terminal-related packets transmitted between the first device and the third device, since the third device can receive information from the third device, Information related to a first moment of a device and information related to a first transmission delay when a terminal-related message is transmitted between a first device and a second device, and may be based on the first transmission delay information and the first Time-related information, which determines information about a second transmission delay when a terminal-related message is transmitted between a second device and a third device, that is, during a segmented transmission delay information monitoring process, The third device may know the information of the first transmission delay, the information of the second transmission delay, and the information of the third transmission delay. Therefore, based on the service quality monitoring method provided in the embodiment of the present application, multiple pieces of fragmented transmission delay information can be obtained in a single piece of fragmented transmission delay information monitoring process, thereby simplifying the existing fragmented transmission delay information. Monitoring methods.
  • the actions of the first device or the third device in the above steps S501 to S507 may be executed by the processor 401 in the communication device 400 shown in FIG. 4 calling the application program code stored in the memory 403. This embodiment deals with this. Without any restrictions.
  • the service quality monitoring system shown in FIG. 1 is applied to the 5G network shown in FIG. 3, the first device is a terminal, the second device is an access device, and the third device is a UPF network element; or One device is a UPF network element, the second device is an access device, and the third device is a terminal.
  • this embodiment provides a method for monitoring service quality.
  • the method for monitoring service quality includes the following: step:
  • step S601 is similar to step S501.
  • step S501 in the embodiment shown in FIG. 5, and details are not described herein again.
  • the third device may obtain the information about the first transmission delay and the information about the first time in any one of the following manners 1 to 4.
  • Method 1 The service quality monitoring method provided in the embodiment of the present application further includes the following steps S602a-S604a:
  • the third device sends message 1 to the first device through the second device, so that the first device receives message 1 from the third device at time T2.
  • the message 1 in the embodiment of the present application may be, for example, a loopback monitoring request 1.
  • the message 1 in the embodiment of the present application may be, for example, a loopback monitoring request 1.
  • step S502a in the embodiment shown in FIG. 5, and details are not described herein again.
  • a second transmission delay corresponding to a terminal-related packet transmitted between the second device and the third device It may also be referred to as air interface transmission delay or Uu interface delay, which is not specifically limited in this embodiment of the present application.
  • the message (including message 1 in step S602a and the following message 2, message 3, message 4, message 5, message 6, or message 7) in the embodiment of this application is between the terminal and the access device
  • the message When transmitting, the message is transmitted through the bearer corresponding to the session of the terminal; when transmitting between the access device and the UPF network element, the message is transmitted through the GTP-U tunnel corresponding to the session of the terminal, that is, the message transmission channel needs
  • the message transmission channel needs For conversion, reference may be made to an existing implementation manner, and details are not described herein again.
  • step S601 is performed first and then step S602a is performed; step S602a is performed first, and then step S601 is performed, for example,
  • the first device receives the loopback monitoring request 1 from the third device, it initiates monitoring of the first transmission delay corresponding to the terminal-related packets transmitted between the first device and the second device; it may also perform the steps simultaneously S601 and S602a, which are not specifically limited in this embodiment of the present application.
  • step S603a is similar to step S503a.
  • step S503a in the embodiment shown in FIG. 5, and details are not described herein again. Described.
  • the first device sends a message 2 to the third device through the second device, so that the third device receives the message 2 from the first device.
  • the service quality monitoring method provided in the embodiment of the present application further includes the following steps S602b-S603b:
  • step S602b is similar to step S502b. For details, reference may be made to step S502b in the embodiment shown in FIG. 5, and details are not described herein again. Described.
  • the first device sends a message 3 to the third device through the second device, so that the third device receives the message 3 from the first device.
  • the service quality monitoring method provided in the embodiment of the present application further includes the following steps S602c-S605c:
  • the first device sends a message 4 to the third device through the second device, so that the third device receives the message 4 from the first device.
  • the message 4 includes information about the first transmission delay.
  • step S502c in the embodiment shown in FIG. 5, which will not be repeated here.
  • the third device sends a message 5 to the first device through the second device, so that the first device receives the message 5 from the third device.
  • the message 5 is used to request a third transmission delay corresponding to a monitoring terminal-related message transmitted between the first device and the third device.
  • step S503c in the embodiment shown in FIG. 5, and details are not described herein again.
  • steps S602c and steps S603c-S605c there is no necessary order of execution between steps S602c and steps S603c-S605c. It may be that step S602c is performed first, and then one or more of steps S603c-S605c are performed; One or more steps in steps S603c-S605c are performed first, and then step S602c is performed. Alternatively, one or more steps in steps S603c-S605c and step S602c may be performed simultaneously. This embodiment of the present application does not specifically limit this.
  • step S604c is similar to step S504c.
  • step S504c in the embodiment shown in FIG. 5, and details are not described herein again. Described.
  • the first device sends a message 6 to the third device through the second device, so that the third device receives the message 6 from the first device.
  • the service quality monitoring method provided in the embodiment of the present application further includes the following steps S602d-S604d:
  • step S602d Same as step S602c.
  • step S602c Same as step S602c.
  • steps S602c same as step S602c.
  • step S603d is similar to step S503d. For details, refer to step S503d in the embodiment shown in FIG. 5, and details are not described herein again. Described.
  • step S602d is performed first, and then step S603d is performed; step S603d is performed first, and then step S602d is performed; also Steps S602d and S603d may be performed at the same time, which is not specifically limited in the embodiment of the present application.
  • the first device sends a message 7 to the third device through the second device, so that the third device receives the message 7 from the first device.
  • the method for monitoring service quality provided in the embodiment of the present application further includes the following steps S606-S607:
  • the third device stores information about the first transmission delay.
  • the third device determines the information of the third transmission delay; and the third device determines the information of the second transmission delay according to the information of the first transmission delay and the information related to the first time.
  • the third transmission delay information corresponding to the terminal-related message transmitted between the first device and the third device is RTT1
  • the terminal-related message is transmitted between the first device and the second device
  • the information of the first transmission delay corresponding to the time is RRT2
  • the information of the second transmission delay corresponding to the terminal-related packets transmitted between the second device and the third device is RRT3, then:
  • RRT1 (T6-T1)-(T5-T2)
  • RRT3 RRT1-RRT2.
  • RRT1 T6-T5
  • RRT3 RRT1-RRT2.
  • the information of the third transmission delay corresponding to the terminal-related message transmitted between the first device and the third device is one-way delay 1
  • the terminal-related message is transmitted between the first device and the third device.
  • the information of the first transmission delay corresponding to the transmission between the second devices is one-way delay 2.
  • the information of the second transmission delay corresponding to the terminal-related packets transmitted between the second device and the third device is One-way delay 3, then:
  • One-way delay 1 [(T6-T1) – (T5-T2)] / 2;
  • Unidirectional delay 3 Unidirectional delay 1-Unidirectional delay 2.
  • One-way delay 1 (T6-T5) / 2;
  • Unidirectional delay 3 Unidirectional delay 1-Unidirectional delay 2.
  • the unidirectional delay may be a UL unidirectional delay or a DL unidirectional delay. This embodiment of the present application does not specifically limit this.
  • the third device when monitoring the third transmission delay information corresponding to the terminal-related packets transmitted between the first device and the third device, since the third device can receive information from the third device, Information related to a first moment of a device and information related to a first transmission delay when a terminal-related message is transmitted between a first device and a second device, and may be based on the first transmission delay information and the first Time-related information, which determines information about a second transmission delay when a terminal-related message is transmitted between a second device and a third device, that is, during a segmented transmission delay information monitoring process, The third device may know the information of the first transmission delay, the information of the second transmission delay, and the information of the third transmission delay. Therefore, based on the service quality monitoring method provided in the embodiment of the present application, multiple pieces of fragmented transmission delay information can be obtained in a single piece of fragmented transmission delay information monitoring process, thereby simplifying the existing fragmented transmission delay information. Monitoring methods.
  • the actions of the first device or the third device in the above steps S601 to S607 may be executed by the processor 401 in the communication device 400 shown in FIG. 4 calling the application program code stored in the memory 403. This embodiment deals with this. Without any restrictions.
  • the service quality monitoring system shown in FIG. 2 is applied to the 5G network shown in FIG. 3, and the first device is an access device or a UPF network element.
  • the first device is an access device or a UPF network element.
  • FIG. 7 this is an embodiment of the present application.
  • a method for activating service quality monitoring is provided. The method for activating service quality monitoring includes the following steps:
  • an application function (AF) network element sends a message 1 to the PCF network element, so that the PCF network element receives the message 1 from the AF network element.
  • the message 1 includes a service quality monitoring strategy to be sent to the SMF network element.
  • the message 1 in the embodiment of the present application may be, for example, a policy authorization creation / update request (policy authorization creation / update request), which is not specifically limited in this embodiment of the present application.
  • policy authorization creation / update request policy authorization creation / update request
  • the AF network element may send the message 1 directly to the PCF network element, or may send the message 1 to the PCF network element through the network open function (NEF) network element.
  • NEF network open function
  • the service quality monitoring strategy to be sent to the SMF network element may include at least one of the quality of service parameters to be monitored or an event that requires a monitoring report to be reported to the SMF network element. Examples do not specifically limit this.
  • the quality of service parameters to be monitored may include, for example, guaranteed flow rate (GFBR), uplink / downlink maximum flow rate (uplink / downlink maximum flow rate, MFBR), and access point packet delay budget. (packet delay), at least one of a burst data amount, a frame error rate (FER), a segment transmission delay, or packet loss information.
  • the segment transmission delay may include, for example, a one-way delay. Or the loopback delay is not specifically limited in this embodiment of the present application.
  • the segment transmission delay may be a unidirectional transmission delay or a bidirectional transmission delay, which is not specifically limited in this embodiment of the present application.
  • the events that need to be reported to the SMF network element may include, for example, that the service quality parameter exceeds a preset threshold (for example, the packet loss rate is greater than 0.5%), or the terminal enters an idle state or the session is released; or, it is reported periodically
  • a preset threshold for example, the packet loss rate is greater than 0.5%)
  • the service quality monitoring policy to be sent to the SMF network element may further include, for example, a processing rule for timeout packets, such as discarding the packet or sending the packet to the terminal. This is not specifically limited.
  • the service quality monitoring strategy to be sent to the SMF network element may further include a length or a monitoring period of a monitoring packet for service quality monitoring, which is not specifically limited in this embodiment of the present application.
  • the length of the monitoring packet used for service quality monitoring may be equal to the typical packet length of a valid service data packet, which is not specifically limited in this embodiment of the present application.
  • the service quality monitoring strategy to be sent to the SMF network element may further include information of one or more devices that may subsequently use the quality of service monitoring strategy, which is not specifically described in the embodiment of the present application. limited.
  • the PCF network element sends a message 2 to the SMF network element, so that the SMF network element receives the message 2 from the PCF network element.
  • the message 2 includes the above-mentioned service quality monitoring strategy.
  • the message 2 in the embodiment of the present application may be, for example, a session management policy modification request (session management policy modification request) 1, which is not specifically limited in the embodiment of the present application.
  • a session management policy modification request session management policy modification request
  • the PCF network element may determine to send a message 2 to the SMF network element according to the contract information or the message 1 received from the AF network element, which is not specifically limited in this embodiment of the present application.
  • the SMF network element determines a service quality monitoring strategy 1 corresponding to the access device from the service quality monitoring strategy.
  • step S701 For the description of the quality of service monitoring strategy 1, refer to the description of the quality of service monitoring strategy in step S701, which is not repeated here.
  • the service quality monitoring policy includes information about the access device, and the SMF network element determines the service quality monitoring policy 1 corresponding to the access device from the service quality monitoring policy, including: SMF network element According to the information of the access device, the quality of service monitoring strategy 1 corresponding to the access device is determined from the quality of service monitoring strategy.
  • the information of the access device may be, for example, an identifier of the access device or an IP address of the access device, which is not specifically limited in the embodiment of the present application.
  • the quality of service monitoring policy 1 corresponding to the access device includes the quality of service parameter 1 to be monitored corresponding to the access device, and the SMF network element determines the access device from the quality of service monitoring policy.
  • the corresponding service quality monitoring strategy 1 includes: the SMF network element determines the service quality parameter 1 to be monitored corresponding to the access device according to the parameter type of the service quality parameter 1.
  • the parameter type in the embodiment of the present application may be the transmission rate, burst data type, FER, transmission delay, or packet loss information of the Uu interface and / or the N3 interface.
  • the SMF network element may change the parameter type
  • the quality of service parameter 1 for at least one of the transmission rate, burst data type, FER, transmission delay, or packet loss information of the Uu interface and / or N3 interface is sent to the access device.
  • the segmented transmission delay may be a time when a terminal-related message is transmitted between the access device and the second device.
  • the second device here may be a terminal, and the third device may be a UPF network element; or the second device may be a UPF network element, and the third device may be a terminal.
  • the SMF network element sends a message 3 to the AMF network element, so that the AMF network element receives the message 3 from the SMF network element.
  • the message 3 includes the quality of service monitoring strategy 1 corresponding to the access device.
  • the message 3 in the embodiment of the present application may be, for example, an N1N2 message transfer request (N1N2 message transfer request), which is not specifically limited in the embodiment of the present application.
  • N1N2 message transfer request N1N2 message transfer request
  • the AMF network element sends a message 4 to the access device, so that the access device receives the message 4 from the AMF network element.
  • the message 3 includes the quality of service monitoring strategy 1 corresponding to the access device.
  • the message 4 in the embodiment of the present application may be, for example, an N2 session request (N2 session request), which is not specifically limited in the embodiment of the present application.
  • N2 session request N2 session request
  • the SMF network element may further send third instruction information to the access device through the AMF network element, where the third instruction information is used to indicate that the access device monitors the first transmission delay information.
  • the first transmission delay information is sent to the third device, which is not specifically limited in this embodiment of the present application.
  • the third device in a case where the first transmission delay is a corresponding transmission delay when a terminal-related message is transmitted between the access device and the terminal, the third device here is a UPF network element; the first transmission delay is In the case of a corresponding transmission delay when a terminal-related message is transmitted between an access device and a UPF network element, the third device here is a terminal, which will be collectively described here, and will not be described in detail below.
  • the access device determines to interact with the terminal according to the quality of service monitoring strategy 1 corresponding to the access device.
  • the access device may determine or perform parameter negotiation or configuration with the terminal according to the service quality monitoring policy 1 corresponding to the access device, such as negotiating a delay detection period and initializing statistical information, which is not specifically limited in this embodiment of the present application.
  • a corresponding interaction process may be initiated, as shown by a dashed line in FIG. 7, which is not specifically limited in this embodiment of the present application.
  • the access device sends a message 5 to the AMF network element, so that the AMF network element receives the message 5 from the access device.
  • the message 5 includes information indicating whether the access device accepts the quality of service monitoring strategy 1.
  • the message 5 in the embodiment of the present application may be, for example, an N2 session response (N2 session response), which is not specifically limited in the embodiment of the present application.
  • N2 session response N2 session response
  • the AMF network element sends a message 6 to the SMF network element, so that the SMF network element receives the message 6 from the AMF network element.
  • the message 6 includes information indicating whether the access device accepts the quality of service monitoring strategy 1.
  • the message 6 in the embodiment of the present application may be, for example, an update session management (SM) context request (update SM context request), which is not specifically limited in this embodiment of the present application.
  • SM update session management
  • the SMF network element sends a message 7 to the AMF network element, so that the AMF network element receives the message 7 from the SMF network element.
  • the message 7 in the embodiment of the present application may be, for example, an update SM context response (update SM context response), which is not specifically limited in the embodiment of the present application.
  • update SM context response update SM context response
  • the SMF network element determines a service quality monitoring strategy 2 corresponding to the UPF network element from the service quality monitoring strategy.
  • step S701 For the description of the quality of service monitoring strategy 1, refer to the description of the quality of service monitoring strategy in step S701, which is not repeated here.
  • the service quality monitoring strategy includes information of the UPF network element
  • the SMF network element determines the service quality monitoring strategy 2 corresponding to the UPF network element from the service quality monitoring policy, including: SMF network element
  • the service quality monitoring strategy 2 corresponding to the UPF network element is determined from the service quality monitoring strategy.
  • the information of the UPF network element may be, for example, the identifier of the UPF network element or the IP address of the UPF network element, which is not specifically limited in the embodiment of the present application.
  • the service quality monitoring strategy 2 corresponding to the UPF network element includes the service quality parameter 2 to be monitored corresponding to the UPF network element, and the SMF network element determines the UPF network element from the service quality monitoring policy.
  • the corresponding service quality monitoring strategy 2 includes: the SMF network element determines the service quality parameter 2 to be monitored corresponding to the UPF network element according to the parameter type of the service quality parameter 2.
  • the parameter type in the embodiments of the present application may be, for example, the transmission rate, burst data type, FER, transmission delay, or packet loss information of the Uu interface and / or the N3 interface.
  • the SMF network element may set the parameter The quality of service parameter 2 of at least one of the transmission rate, the burst data type, the FER, the transmission delay, or the packet loss information of the type of the Uu interface and / or the N3 interface is sent to the UPF network element.
  • the segmented transmission delay may be a time when a terminal-related message is transmitted between a UPF network element and an access device.
  • the corresponding first transmission delay or the corresponding third transmission delay when a terminal-related message is transmitted between the UPF network element and the terminal will be collectively described herein, and will not be described in detail below.
  • the SMF network element sends a message 8 to the UPF network element, so that the UPF network element receives the message 8 from the SMF network element.
  • the message 8 includes the quality of service monitoring strategy 2 corresponding to the UPF network element.
  • the message 8 in the embodiment of the present application may be, for example, an N4 session modification request (N4 Session Modification Request), which is not specifically limited in the embodiment of the present application.
  • N4 Session Modification Request N4 Session Modification Request
  • the UPF network element sends a message 9 to the SMF network element, so that the SMF network element receives the message 9 from the UPF network element.
  • the message 8 includes information indicating whether the UPF network element accepts the service quality monitoring strategy 2.
  • the message 9 in the embodiment of the present application may be, for example, an N4 session modification response (N4 Session Modification Response), which is not specifically limited in the embodiment of the present application.
  • N4 Session Modification Response N4 Session Modification Response
  • the SMF network element sends the service quality monitoring strategy 1 corresponding to the access device to the access device, and the UPF network element sends the quality of service monitoring policy 2 corresponding to the UPF network element as examples. Be explained.
  • the SMF may also send the quality of service monitoring strategy 1 corresponding to the access device to the access device, or send the quality of service monitoring strategy 2 corresponding to the UPF network element to the UPF network element. This is not specifically limited.
  • the SMF network element may also refer to the embodiment of the present application, and after determining the terminal's quality of service monitoring strategy 3 from the quality of service monitoring strategy, send the terminal's corresponding quality of service monitoring strategy 3 to the terminal, which will not be repeated here.
  • the quality of service monitoring can be performed with reference to the embodiment shown in FIG. 5.
  • the quality of service monitoring strategy 1 includes the access device corresponding to the foregoing.
  • the quality of service parameter 1 to be monitored, the quality of service parameter 1 includes a segment transmission delay, and the segment transmission delay is a transmission delay corresponding to a terminal-related message transmitted between the access device and the terminal.
  • the access device can initiate the monitoring of the corresponding transmission delay when the terminal-related messages are transmitted between the access device and the terminal; or, the quality of service monitoring strategy 1 includes the quality of service parameters to be monitored corresponding to the above access device 1.
  • the quality of service parameter 1 includes segmented transmission delay.
  • the segmented transmission delay is the corresponding transmission delay when the terminal-related message is transmitted between the access device and the UPF network element.
  • the access device can The monitoring of the corresponding transmission delay when the message related to the initiating terminal is transmitted between the access device and the UPF network element may be specifically referred to the embodiment shown in FIG. 5, and details are not described herein again.
  • the quality of service monitoring can be performed with reference to the embodiment shown in FIG. 6.
  • the service quality monitoring strategy 2 includes the UPF network element corresponding to the foregoing.
  • the quality of service parameter 2 to be monitored includes a segment transmission delay, which is a transmission delay corresponding to a terminal-related message transmitted between a UPF network element and an access device.
  • the UPF network element may initiate the monitoring of the corresponding transmission delay when the terminal-related packets are transmitted between the access device and the UPF network element.
  • the service quality monitoring may be performed with reference to the embodiment shown in FIG. 6.
  • the service quality monitoring strategy 3 includes the service quality to be monitored corresponding to the terminal.
  • Parameter 3 the quality of service parameter 3 includes the segment transmission delay
  • the segment transmission delay is the transmission delay corresponding to the transmission of the terminal-related message between the terminal and the access device, and the terminal can initiate the terminal correlation.
  • the monitoring of the corresponding transmission delay when a packet is transmitted between the access device and the terminal reference may be made to the embodiment shown in FIG. 6, and details are not described herein again.
  • the SMF network element sends a message 10 to the PCF network element, so that the PCF network element receives the message 10 from the PCF network element.
  • the message 10 includes the configuration or deployment result of the quality of service monitoring strategy, for example, the SMF network element successfully configures the quality of service monitoring strategy 1 or the quality of service monitoring strategy 2; or the configuration of the quality of service parameter of a certain parameter type is abnormal.
  • the message 10 in the embodiment of the present application may be, for example, a session management policy modification request (session management policy modification request) 2, which is not specifically limited in the embodiment of the present application.
  • a session management policy modification request session management policy modification request 2 2 which is not specifically limited in the embodiment of the present application.
  • the PCF network element sends a message 11 to the AF network element, so that the AF network element receives the message 11 from the PCF network element.
  • the message 11 includes the execution result of the service quality monitoring strategy, for example, the access device accepts the service quality monitoring strategy 1, and / or the UPF network element accepts the service quality monitoring strategy 2.
  • the message 11 in the embodiment of the present application may be, for example, a policy authorization creation / update response (policy authorization creation / update response), which is not specifically limited in this embodiment of the present application.
  • policy authorization creation / update response policy authorization creation / update response
  • step S713 in the embodiment of the present application is executed when the above step S701 needs to be performed, and it will be collectively described here, and will not be described in detail below.
  • the access device creates a monitoring report 1 and sends the monitoring report 1 to the SMF network element through the service quality notification control process, so that the SMF network element Receive monitoring report 1 from the access device.
  • the monitoring report 1 in the embodiment of the present application may include the time stamp of the event, the identifier of the monitored service quality parameter, the monitored value of the monitored service quality parameter, the terminal identifier, the session identifier, or the QoS flow identifier. At least one of these is not specifically limited in the embodiment of the present application.
  • the UPF network element creates a monitoring report 2 and sends the monitoring report 2 to the SMF network element through the N4 session reporting process, so that the SMF network element receives Monitoring report from UPF network element 2.
  • the monitoring report 2 in the embodiment of the present application may include the time stamp of the event, the identifier of the monitored service quality parameter, the monitored value of the monitored service quality parameter, the terminal identifier, the session identifier, or the QoS flow identifier. At least one of these is not specifically limited in the embodiment of the present application.
  • the SMF network element sends a monitoring report to the PCF network element, so that the PCF network element receives the monitoring report from the SMF network element.
  • the SMF network element may send the monitoring report 1 to the PCF network element, and after receiving the monitoring report 2 reported by the UPF network element, The PCF network element sends a monitoring report 2; it may also be that the SMF network element sends the monitoring report 1 and the monitoring report 2 to the PCF network element after receiving the monitoring report 1 and the monitoring report 2 reported by the UPF network element.
  • the application example does not specifically limit this.
  • the PCF network element sends a monitoring report to the AF network element, so that the AF network element receives the monitoring report from the PCF network element.
  • the PCF network element may send the monitoring report 1 to the AF network element, and after receiving the monitoring report 2 reported by the SMF network element, The AF network element sends a monitoring report 2; it may also be that the PCF network element sends the monitoring report 1 and the monitoring report 2 to the AF network element after receiving the monitoring report 1 and the monitoring report 2 reported by the UPF network element.
  • the application example does not specifically limit this.
  • step S717 in the embodiment of the present application is optional when it is necessary to perform the above step S701, which will be collectively described here, and will not be described in detail below.
  • the required service quality monitoring strategy can be provided to the corresponding device during the service quality monitoring process, so that the device can be activated to initiate a service quality monitoring process or the device to a session.
  • the management network element reports a monitoring report.
  • the actions of the SMF network element in the above steps S701 to S718 may be executed by the processor 401 in the communication device 400 shown in FIG. 4 calling the application program code stored in the memory 403, which is not limited in this embodiment.
  • the service quality monitoring method includes a terminal The uplink delay monitoring and the downlink delay monitoring between the access device and the device.
  • the uplink delay monitoring part includes the following steps S1201-S1203:
  • the terminal sends a first message to the access device.
  • the access device receives a first message from the terminal.
  • the terminal may send a message to the access device at a certain time, or may send multiple messages to the access device at a certain time. Therefore, the first message may be an independent message sent at a certain time, or the first message may also be one of a plurality of messages sent at a certain time. This is not specifically limited.
  • the first message in the embodiment of the present application is used for delay monitoring.
  • the first packet carries first indication information, and the first indication information is used to indicate that the first packet is used for delay monitoring.
  • the access device can learn that the first message is used for delay monitoring according to the first instruction information.
  • the first message does not carry the foregoing first instruction information, but the terminal and the access device pre-negotiate or agree or receive or configure the characteristics of the message for delay monitoring, For example, the sequence number of the message. Further, after receiving the first message, the access device may determine that the first message is used for delay monitoring according to the characteristics of the first message, such as the sequence number of the first message, in combination with pre-negotiated or agreed rules.
  • the access device may also select a message for delay monitoring by itself, or the access device determines that the received uplink packet is used for delay monitoring by other means, which is not specifically limited in this embodiment of the present application.
  • the access device sends information of the first time to the terminal.
  • the terminal receives information from the access device at the first moment.
  • the first time is the time when the access device receives the first message sent by the terminal.
  • the information related to the first time includes information indicating the first time, such as the first time.
  • the information related to the first time includes the difference between the first time and the second time; where the second time is the time when the terminal sends the first message to the access device.
  • the access device when the access device schedules the terminal's uplink message, it indicates the terminal's uplink frame sending time (for example, including the second time corresponding to the first message), then the access device receives the first time frame for delay monitoring.
  • the difference between the first time and the second time can be obtained according to the second time and the time when the access device receives the first message sent by the terminal (that is, the first time), and the difference can be used as the first time Relevant information is sent to the terminal.
  • the first time is recorded as t1 and the second time is recorded as t2
  • the difference between the first time and the second time is recorded as (t1-t2).
  • the access device may send information related to the first moment to the terminal through radio resource control (RRC) signaling, or may add a first The manner (which can be regarded as a time stamp) of the information related to a moment is to send the information related to the first moment to the terminal, which is not specifically limited in this embodiment of the present application.
  • RRC radio resource control
  • the terminal determines, according to the information related to the first moment, corresponding uplink delay information when the first packet is transmitted between the terminal and the access device.
  • the terminal may determine the difference between the first time and the second time as the first message between the terminal and the access device.
  • the uplink delay corresponding to the time between transmissions. This second time is the time when the terminal sends the first message to the access device.
  • the information related to the first time includes the difference between the first time and the second time; where the second time is the time when the terminal sends the first message to the access device, the terminal may change the first time
  • the difference between the one time and the second time is determined as the corresponding uplink delay when the first packet is transmitted between the terminal and the access device.
  • the access device may also obtain information about a transmission delay corresponding to a terminal-related packet transmitted between the access device and the UPF network element, and The information is sent to the terminal, which is not specifically limited in the embodiment of the present application.
  • the access device obtains the corresponding transmission delay information when the terminal-related packet is transmitted between the access device and the UPF network element, reference may be made to the embodiment shown in FIG. 5 or FIG. 6, which is not repeated here. .
  • the downlink delay monitoring part includes the following steps S1204a-S1206a:
  • the access device sends a second message to the terminal.
  • the terminal receives a second message from the access device.
  • the second message carries information related to the first time, and the first time is the time when the access device sends the second message to the terminal.
  • the access device may send a message to the access device at a certain time, or may send multiple messages to the access device at a certain time. Therefore, the second message may be an independent message transmitted at a certain time, or the first message may also be one of a plurality of messages transmitted at a certain time. This is not specifically limited.
  • the second message in the embodiment of the present application is used for delay monitoring.
  • the second message carries second instruction information, and the second instruction information is used to indicate that the second message is used for delay monitoring.
  • the terminal can learn that the second message is used for delay monitoring according to the second instruction information.
  • the second message does not carry the foregoing second instruction information, but the terminal and the access device negotiate or pre-negotiate or receive or configure the characteristics of the message for delay monitoring, For example, the sequence number of the message.
  • the terminal may determine that the second message is used for delay monitoring according to the characteristics of the second message, such as the sequence number of the second message, combined with pre-negotiated or agreed rules.
  • the terminal may also determine that the received downlink packet is used for delay monitoring by other methods, which is not specifically limited in this embodiment of the present application.
  • the information related to the first time includes information indicating the first time, such as the first time.
  • the terminal determines, according to the information related to the first moment, corresponding downlink delay information when the first packet is transmitted between the terminal and the access device.
  • the terminal may determine the difference between the first time and the second time as the first message between the terminal and the access device.
  • the downlink delay corresponding to the time between transmissions. This second time is the time when the terminal receives the second message.
  • the terminal sends information related to the second moment to the access device.
  • the access device receives information related to the second moment from the terminal.
  • the information related to the second time includes information indicating the second time, such as the second time, which is the time when the terminal receives the second message.
  • the information related to the first time includes the difference between the first time and the second time; where the second time is the time when the terminal receives the second message.
  • the terminal may send information related to the second time to the access device through RRC signaling, or may add information related to the second time to an uplink packet (may It is regarded as a time stamp) to send the information related to the second time to the access device, which is not specifically limited in this embodiment of the present application.
  • the downlink delay monitoring part includes the following steps S1204b-S1207b:
  • S1204b The access device sends a second message to the terminal.
  • the terminal receives a second message from the access device.
  • step S1204b is similar to step S1204a. The difference is that the second message in step S1204b does not carry information related to the first moment. For the remaining related descriptions, refer to the above step S1204a, and details are not described herein.
  • S1205b The terminal sends information related to the second moment to the access device.
  • the access device receives information related to the second moment from the terminal.
  • the information related to the second time includes information indicating the second time, such as the second time, which is the time when the terminal receives the second message.
  • the terminal may send information related to the second time to the access device through RRC signaling, or may add information related to the second time to an uplink packet (may It is regarded as a time stamp) to send the information related to the second time to the access device, which is not specifically limited in this embodiment of the present application.
  • S1206b The access device sends information related to the first moment to the terminal.
  • the terminal receives information related to the first moment from the access device.
  • the information related to the first time includes the difference between the first time and the second time, the second time is the time when the terminal receives the second message, and the first time is the access device. Time to send the second message to the terminal.
  • the access device may send the information related to the first time to the terminal through RRC signaling, or may add the information related to the first time to a certain downlink packet. It is regarded as a time stamp) to send information related to the first moment to the terminal, which is not specifically limited in this embodiment of the present application.
  • S1207b The terminal determines, according to information related to the first moment, corresponding downlink delay information when the first packet is transmitted between the terminal and the access device.
  • the information related to the first time includes the difference between the first time and the second time
  • the second time is the time when the terminal receives the second message
  • the first time is the access device sends the second time to the terminal. The moment of the message.
  • the terminal may determine the difference between the first time and the second time as the downlink delay corresponding to the transmission of the second packet between the terminal and the access device.
  • the downlink delay monitoring part includes the following steps S1204c-S1206c:
  • S1204c is the same as step S1204b.
  • S1204b For related descriptions, refer to the above S1204b, and details are not described herein again.
  • S1205c The access device sends information related to the first moment to the terminal.
  • the terminal receives information related to the first moment from the access device.
  • the information related to the first time includes information indicating the first time, such as the first time.
  • the access device may send the information related to the first time to the terminal through RRC signaling, or may add the information related to the first time to a certain downlink packet. It is regarded as a time stamp) to send information related to the first moment to the terminal, which is not specifically limited in this embodiment of the present application.
  • S1206c The terminal determines, according to information related to the first moment, corresponding downlink delay information when the first packet is transmitted between the terminal and the access device.
  • the terminal may determine the difference between the first time and the second time as the first message between the terminal and the access device.
  • the downlink delay corresponding to the time between transmissions. This second time is the time when the terminal receives the second message.
  • the terminal may determine transmission delay information corresponding to a terminal-related message transmitted between the terminal and the access device.
  • the actions of the terminal or the access device in the above steps S1201 to S1206a, or the above steps S1201 to S1207b, or the above steps S1201 to S1206c can be called by the processor 401 in the communication device 400 shown in FIG. Application code to execute, this embodiment does not place any restrictions on this.
  • the uplink delay monitoring part and the downlink delay monitoring part may be combined.
  • FIG. 13 shows another type of service quality monitoring provided by the embodiment of the present application.
  • the service quality monitoring method includes the following steps S1301-S1303:
  • step S1301 is the same as step S1201 in the embodiment shown in FIG. 12. For related description, refer to step S1201 described above, and details are not described herein again.
  • the access device sends a second message to the terminal.
  • the terminal receives a second message sent from the access device.
  • the second message carries information indicating the time when the access device sends the second message to the terminal, and information indicating the time when the access device receives the first message.
  • the second message in the embodiment of the present application is used for delay monitoring.
  • the second message carries second instruction information, and the second instruction information is used to indicate that the second message is used for delay monitoring.
  • the terminal can learn that the second message is used for delay monitoring according to the second instruction information.
  • the second message does not carry the foregoing second instruction information, but the terminal and the access device negotiate or pre-negotiate or receive or configure the characteristics of the message for delay monitoring, For example, the sequence number of the message.
  • the terminal may determine that the second message is used for delay monitoring according to the characteristics of the second message, such as the sequence number of the second message, combined with pre-negotiated or agreed rules.
  • the terminal may also determine that the received downlink packet is used for delay monitoring by other methods, which is not specifically limited in this embodiment of the present application.
  • the information indicating the time when the access device sends the second message to the terminal, and the information indicating the time when the access device receives the first message may not be carried in the second message, but may be transmitted through an RRC. Signaling, which is not specifically limited in the embodiment of the present application.
  • the terminal determines that the first message is transmitted between the terminal and the access device according to the information indicating the time when the access device sends the second packet to the terminal and the information indicating the time when the access device receives the first packet. Time-delayed downlink delay information and uplink delay information.
  • the terminal may determine the uplink delay corresponding to the transmission of the first packet between the terminal and the access device according to the time when the first packet is sent and the information indicating the time when the access device receives the first packet. information.
  • the terminal may determine, according to the time when the second message is received, and the information indicating the time when the access device sends the second message to the terminal, to determine whether the second message corresponds to the transmission between the terminal and the access device. Downlink delay information.
  • the terminal may further send the first message to the terminal and The downlink delay information and uplink delay information corresponding to the transmission between the access devices are reported to the access device, so that the access device can further optionally report the control plane network element, which is not specifically limited in this embodiment of the present application.
  • the terminal may determine transmission delay information corresponding to a terminal-related message transmitted between the terminal and the access device.
  • the actions of the terminal or the access device in the above steps S1301 to S1303 may be executed by the processor 401 in the communication device 400 shown in FIG. 4 calling the application program code stored in the memory 403, and this embodiment does not make any limit.
  • the manner in which the access device obtains information about the transmission delay corresponding to the terminal-related packet transmitted between the access device and the terminal can also refer to FIG. 12 or FIG.
  • the manner in which the access device provided in the embodiment shown in FIG. 13 determines the uplink delay information or downlink delay information corresponding to a terminal-related message transmitted between the access device and the terminal is described here in a unified manner. More details.
  • the embodiment of the present application may further provide a service quality monitoring method, including: the access device acquires information about a first transmission delay corresponding to a terminal-related packet transmitted between the access device and the terminal. And the access device obtains information about a second transmission delay corresponding to the terminal-related message transmitted between the access device and the user plane network element; and then the access device sends the first transmission to the control plane network element Information about the delay and information about the second transmission delay.
  • a service quality monitoring method including: the access device acquires information about a first transmission delay corresponding to a terminal-related packet transmitted between the access device and the terminal. And the access device obtains information about a second transmission delay corresponding to the terminal-related message transmitted between the access device and the user plane network element; and then the access device sends the first transmission to the control plane network element Information about the delay and information about the second transmission delay.
  • the access device For information about obtaining the second transmission delay corresponding to the terminal-related packet transmitted between the access device and the user plane network element, reference may be made to the embodiments shown in FIG. 5 or FIG. 6, and details are not described herein again.
  • the access device in the process of monitoring the transmission delay of the access device, as an intermediate device, it can directly obtain the transmission delay information on both sides, and then report the delay; avoiding the need for the devices on both sides to obtain the delay of the segment where the device is not located. Only then can the segment transmission delay or end-to-end transmission delay be reported, thereby simplifying the delay monitoring mechanism.
  • the foregoing first device, third device, session management network element, or terminal includes a hardware structure and / or a software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the first device, the third device, the session management network element, or the terminal may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more of them may be divided.
  • the functions are integrated in a processing module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 8 shows a schematic structural diagram of a first device 80.
  • the first device 80 includes a processing module 801 and a transceiver module 802.
  • the processing module 801 is configured to obtain information about a first transmission delay when a terminal-related message is transmitted between the first device 80 and the second device.
  • the transceiver module 802 is configured to send the first transmission delay information to the third device; and the first device 80 sends the first time-related information to the third device at the first time, where the first transmission delay information is The information related to the first moment is used to determine information of a second transmission delay corresponding to a terminal-related message transmitted between the second device and the third device.
  • the transceiver module 802 is further configured to receive a first message from a third device at a second moment, and the first message is used to request to monitor a second transmission delay; wherein the information related to the first moment includes the first moment And the second time, or the difference between the first time and the second time.
  • the transceiver module 802 is further configured to receive a first message from a third device at a second moment, and the first message is used to request a message related to the monitoring terminal between the first device 80 and the third device
  • the third transmission delay corresponding to the transmission time; wherein the information related to the first time includes the first time and the third time, or the difference between the first time and the third time.
  • the transceiver module 802 is configured to send the first transmission delay information to the third device; and the transceiver module 802 is configured to send the first time-related information to the third device at the first time, including: A third message is sent to the third device at the first moment, and the third message includes information about the first transmission delay and information related to the first moment.
  • the transceiver module 802 is configured to send the first transmission delay information to the third device; and the transceiver module 802 is configured to send the first time-related information to the third device at the first time, including: For sending a fourth message to the third device, the fourth message includes information about the first transmission delay; and, for sending a fifth message to the third device at the first time, the fifth message includes information related to the first time.
  • the transceiver module 802 is further configured to receive service quality parameters to be monitored from the session management network element, and the service quality parameters to be monitored include a first transmission delay; the processing module 801 is configured to obtain a terminal-related message in The first transmission delay information corresponding to the transmission between the first device 80 and the second device includes: obtaining information about the first transmission delay according to a quality of service parameter to be monitored.
  • the transceiver module 802 is further configured to receive third instruction information from the session management network element, and the third instruction information is used to instruct the first device 80 to the third device after monitoring the first transmission delay information. Send information for the first transmission delay.
  • the transceiver module 802 is further configured to receive an event from the session management network element to report a monitoring report, and the event includes: the first transmission delay information exceeds a preset threshold; or the terminal enters an idle state or the session is released; or, the period Sexually reported.
  • the transceiver module 802 is further configured to receive a length of a monitoring packet from the session management network element for quality of service monitoring.
  • the first device 80 is presented in the form of dividing each functional module in an integrated manner.
  • the "module” herein may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions.
  • the first device 80 may take the form shown in FIG. 4.
  • the processor 401 in FIG. 4 may cause the first device 80 to execute the service quality monitoring method in the foregoing method embodiment by calling a computer execution instruction stored in the memory 403.
  • the function / implementation process of the transceiver module 802 and the processing module 801 in FIG. 8 may be implemented by the processor 401 in FIG. 4 calling a computer execution instruction stored in the memory 403.
  • the function / implementation process of the processing module 801 in FIG. 8 may be implemented by the processor 401 in FIG. 4 calling a computer execution instruction stored in the memory 403, and the function / implementation process of the transceiver module 802 in FIG. 8 may be performed through the graph.
  • the communication interface 404 in 4 is implemented.
  • the first device 80 provided in this embodiment can perform the foregoing service quality monitoring method, the technical effects that can be obtained can refer to the foregoing method embodiments, and details are not described herein again.
  • an embodiment of the present application further provides a device (for example, the device may be a chip system), and the device includes a processor, and is configured to support a first device to implement the foregoing service quality monitoring method, for example, to obtain a terminal-related report. Information corresponding to the first transmission delay when the text is transmitted between the first device and the second device.
  • the device further includes a memory. The memory is used to store program instructions and data necessary for the first device. Of course, the memory may not be in the device.
  • the device is a chip system, the device may be composed of a chip, and may also include a chip and other discrete devices, which are not specifically limited in the embodiments of the present application.
  • FIG. 9 shows a schematic structural diagram of a third device 90.
  • the third device 90 includes: a transceiver module 902 and a processing module 901; and a transceiver module 902, configured to receive a first transmission time corresponding to a terminal-related message from the first device when it is transmitted between the first device and the second device. Extended information.
  • the transceiver module 902 is further configured to receive information related to the first moment from the first device.
  • a processing module 901 configured to determine, according to the information of the first transmission delay and the information related to the first time, the information of the second transmission delay corresponding to the terminal-related packet transmitted between the second device and the third device 90 .
  • the transceiver module 902 is further configured to send a first message to the first device, where the first message is used to request information about the second transmission delay; wherein the information related to the first time includes the first time and the second time Time, or the difference between the first time and the second time, where the second time is the time when the first device receives the first message.
  • the transceiver module 902 is further configured to send a second message to the first device, and the second message is used to request a third transmission corresponding to a terminal-related message transmitted between the first device and the third device 90.
  • Time delay information wherein the information related to the first time includes the first time and the third time, or the difference between the first time and the third time, where the third time is the time when the first device receives the second message. time.
  • the transceiver module 902 is configured to receive information about a first transmission delay corresponding to a terminal-related message transmitted between the first device and the second device from the first device; and the transceiver module 902 is configured to receive Information related to the first time from the first device includes: a third message for receiving a first message from the first device, the third message includes information about the first transmission delay, and information related to the first time.
  • the transceiver module 902 is configured to receive information about a first transmission delay corresponding to a terminal-related message transmitted between the first device and the second device from the first device; and the transceiver module 902 is configured to receive Information related to the first moment from the first device includes: a fourth message for receiving a first message from the first device, the fourth message including information of a first transmission delay; and a fifth message for receiving a fifth from the first device. Message, the fifth message includes information related to the first moment.
  • the third device 90 is presented in the form of dividing each functional module in an integrated manner.
  • the "module” herein may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions.
  • the third device 90 may take the form shown in FIG. 4.
  • the processor 401 in FIG. 4 may cause the third device 90 to execute the service quality monitoring method in the foregoing method embodiment by calling a computer execution instruction stored in the memory 403.
  • the function / implementation process of the transceiver module 902 and the processing module 901 in FIG. 9 may be implemented by the processor 401 in FIG. 4 calling a computer execution instruction stored in the memory 403.
  • the function / implementation process of the processing module 901 in FIG. 9 may be implemented by the processor 401 in FIG. 4 calling a computer execution instruction stored in the memory 403, and the function / implementation process of the transceiver module 902 in FIG.
  • the communication interface 404 in 4 is implemented.
  • the third device 90 provided in this embodiment can perform the foregoing service quality monitoring method, the technical effects that can be obtained can refer to the foregoing method embodiments, and details are not described herein again.
  • an embodiment of the present application further provides a device (for example, the device may be a chip system), and the device includes a processor, which is configured to support a third device to implement the foregoing service quality monitoring method, for example, according to a first transmission time The delay information and the information related to the first moment determine the information about the second transmission delay when the terminal-related message is transmitted between the second device and the third device.
  • the device further includes a memory. This memory is used to store program instructions and data necessary for the third device. Of course, the memory may not be in the device.
  • the device may be composed of a chip, and may also include a chip and other discrete devices, which are not specifically limited in the embodiments of the present application.
  • FIG. 10 shows a schematic structural diagram of a session management network element 100.
  • the session management network element 100 includes a processing module 1001 and a transceiving module 1002; the transceiving module 1002 is configured to receive a quality of service monitoring policy from a policy control network element; and the processing module 1001 is configured to determine that the first device corresponds to the quality of service monitoring policy.
  • the first quality of service monitoring strategy; the transceiver module 1002 is further configured to send the first quality of service monitoring strategy to the first device.
  • the first quality of service monitoring strategy includes at least one of a first quality of service parameter corresponding to the first device to be monitored or an event in which the first device reports a monitoring report to the session management network element 100.
  • the event includes that the quality of service parameter exceeds a preset threshold, or the terminal enters an idle state or the session is released; or, it is reported periodically.
  • the first quality of service parameter to be monitored includes at least one of GFBR, MFBR, an amount of burst data in an access point packet delay budget, FER, segment transmission delay, or packet loss information.
  • the segmented transmission delay is a first corresponding to a terminal-related message transmitted between the first device and the second device. Transmission delay.
  • the transceiver module 1002 is further configured to send third instruction information to the first device, and the third instruction information is used to instruct the first device to send the first device to the third device after monitoring the information of the first transmission delay. Transmission delay information.
  • the first service quality monitoring strategy further includes a length of a monitoring packet used for service quality monitoring.
  • the service quality monitoring policy includes information of the first device; the processing module 1001 is configured to determine a first service quality monitoring policy corresponding to the first device from the service quality monitoring policy, and includes: The first service quality monitoring strategy is determined from the service quality monitoring strategy.
  • the first service quality monitoring strategy includes a first service quality parameter to be monitored corresponding to the first device; the processing module 1001 is configured to determine the first service quality monitoring strategy corresponding to the first device from the service quality monitoring strategy, including: : Determining a first quality of service parameter corresponding to the first device to be monitored according to a parameter type of the first quality of service parameter.
  • the session management network element 100 is presented in the form of dividing each functional module in an integrated manner.
  • the "module” herein may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions.
  • the session management network element 100 may adopt the form shown in FIG. 4.
  • the processor 401 in FIG. 4 may cause the session management network element 100 to execute the method for activating service quality monitoring in the foregoing method embodiment by calling a computer execution instruction stored in the memory 403.
  • the function / implementation process of the transceiver module 1002 and the processing module 1001 in FIG. 10 may be implemented by the processor 401 in FIG. 4 calling a computer execution instruction stored in the memory 403.
  • the function / implementation process of the processing module 1001 in FIG. 10 may be implemented by the processor 401 in FIG. 4 calling a computer execution instruction stored in the memory 403, and the function / implementation process of the transceiver module 1002 in FIG. 10 may be performed through the graph.
  • the communication interface 404 in 4 is implemented.
  • the session management network element 100 provided in this embodiment can perform the foregoing method for activating service quality monitoring, the technical effects that can be obtained can refer to the foregoing method embodiments, and details are not described herein again.
  • an embodiment of the present application further provides a device (for example, the device may be a chip system).
  • the device includes a processor, and is configured to support a session management network element to implement the foregoing method for activating service quality monitoring, for example, from a service.
  • a first service quality monitoring strategy corresponding to the first device is determined.
  • the device further includes a memory. This memory is used to store program instructions and data necessary for the session management network element. Of course, the memory may not be in the device.
  • the device is a chip system, the device may be composed of a chip, and may also include a chip and other discrete devices, which are not specifically limited in the embodiments of the present application.
  • FIG. 14 shows a schematic structural diagram of a terminal 140.
  • the terminal 140 may include a processing module 1401 and a transceiver module 1402.
  • the transceiver module 1402 is configured to receive information related to the first time from the access device, where the first time is the time when the access device receives the first message sent by the terminal, or the first time is the access device Time to send the second message to the terminal.
  • the processing module 1401 is configured to determine transmission delay information corresponding to a terminal-related packet transmitted between the terminal and the access device according to the related information at the first moment.
  • the processing module 1401 is specifically configured to determine, according to the information related to the first time, that the first message is transmitted between the terminal and the receiver. Corresponding uplink delay information during transmission between incoming devices.
  • the processing module 1401 is specifically configured to determine, according to the information related to the first time, that the second message is between the terminal and the terminal. Corresponding downlink delay information during transmission between access devices.
  • the information related to the first time includes the difference between the first time and the third time, where the third time is the time when the terminal receives the second message sent by the access device; the transceiver module 1402 is further configured to receive The second message from the access device; the transceiver module is further configured to send information indicating the third time to the access device, where the third time is the time when the terminal receives the second message sent by the access device.
  • the information related to the first time includes information used to indicate the first time;
  • the transceiver module 1402 is configured to receive information related to the first time from the access device, and includes: used to receive the second information from the access device Message, the second message carries information used to indicate the first moment.
  • the transceiver module 1402 is further configured to send downlink delay information to the access device.
  • the transceiver module 1402 is configured to receive information related to the first time from the access device, including: receiving a third message from the access device, and the third message carries information related to the first time; or , For receiving RRC signaling from the access device, the RRC signaling carries information related to the first moment.
  • the terminal 140 is presented in the form of dividing each functional module in an integrated manner.
  • the "module” herein may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions.
  • the terminal 140 may adopt the form shown in FIG. 4.
  • the processor 401 in FIG. 4 may cause the terminal 140 to execute the service quality monitoring method in the foregoing method embodiment by calling a computer execution instruction stored in the memory 403.
  • the function / implementation process of the transceiver module 1402 and the processing module 1401 in FIG. 14 may be implemented by the processor 401 in FIG. 4 calling a computer execution instruction stored in the memory 403.
  • the function / implementation process of the processing module 1401 in FIG. 14 may be implemented by the processor 401 in FIG. 4 calling a computer execution instruction stored in the memory 403, and the function / implementation process of the transceiver module 1402 in FIG.
  • the communication interface 404 in 4 is implemented.
  • the terminal 140 provided in this embodiment can perform the foregoing service quality monitoring method, the technical effects that can be obtained can refer to the foregoing method embodiments, and details are not described herein again.
  • an embodiment of the present application further provides a device (for example, the device may be a chip system).
  • the device includes a processor, and is configured to support a terminal to implement the foregoing service quality monitoring method, for example, according to the first time correlation. And determine transmission delay information corresponding to a terminal-related message transmitted between the terminal and the access device.
  • the device further includes a memory. This memory is used to store the necessary program instructions and data of the terminal. Of course, the memory may not be in the device.
  • the device is a chip system, the device may be composed of a chip, and may also include a chip and other discrete devices, which are not specifically limited in the embodiments of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers, data centers, and the like that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供服务质量监测方法、设备及系统,使得可以在一次分段传输时延信息的监测流程中获取多个分段传输时延的信息。服务质量监测方法包括:第一设备获取终端相关的报文在该第一设备和第二设备之间传输时对应的第一传输时延的信息;该第一设备向第三设备发送该第一传输时延的信息;以及,该第一设备在第一时刻向该第三设备发送该第一时刻相关的信息,其中,该第一传输时延的信息和该第一时刻相关的信息用于确定该终端相关的报文在该第二设备和该第三设备之间传输时对应的第二传输时延的信息。

Description

服务质量监测方法、设备及系统
本申请要求了2018年8月13日提交的、申请号为201810918390.9、发明名称为“服务质量监测方法、设备及系统”的中国申请的优先权,以及2019年1月11日提交的、申请号为201910028864.7、发明名称为“服务质量监测方法、设备及系统”的中国申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及服务质量(quality of service,QoS)监测方法、设备及系统。
背景技术
为了应对无线宽带技术的挑战,保持第三代合作伙伴计划(3rd generation partnership project,3GPP)网络的领先优势,3GPP标准组在2016年底制定了下一代移动通信系统(next generation system)网络架构,称为第五代(5th generation,5G)网络架构。
5G网络架构中定义了极高可靠性低时延通信(ultra-reliable low latency communication,URLLC)场景,主要包括如无人驾驶、工业自动化等需要低时延、高可靠连接的业务。其中,5G网络的先进空口技术和优化的核心网络架构,使得上述场景的要求成为可能。但是,5G网络自身不管是底层链路还是上层路由协议等均存在一定的不稳定性;同时,从网络建设的角度,时延、差错甚至网络故障总是不可避免的,而上述场景多为生命安全或生产安全相关的业务,容不得差错。因此,当我们使用5G网络服务于上述生命安全或者生产安全敏感的行业时,需要5G网络能够提供实时的服务质量监测,当服务质量不满足预设条件时,可以采取相应的调整措施或者保护措施,从而能够为用户选择满足服务要求的链路。
目前,现有技术中虽然提出了各个分段传输时延信息的监测方式,如终端和接入设备之间的传输时延信息的监测,接入设备和用户面网元之间的传输时延信息的监测,或者终端和用户面网元之间的传输时延信息的监测,然而,如何简化分段传输时延信息的监测方法,使得可以在一次分段传输时延信息的监测流程中获取多个分段传输时延的信息,目前并没有相关的解决方案。
发明内容
本申请实施例提供服务质量监测方法、设备及系统,使得可以在一次分段传输时延信息的监测流程中获取多个分段传输时延的信息。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种服务质量监测方法,包括:第一设备获取终端相关的报文在该第一设备和第二设备之间传输时对应的第一传输时延的信息;该第一设备向第三设备发送该第一传输时延的信息;以及,该第一设备在第一时刻向该第三设备发送该第一时刻相关的信息,其中,该第一传输时延的信息和该第一时刻相关的信息用于确定该终端相关的报文在该第二设备和该第三设备之间传输时对应的第二传输时延的信息。基于本申请实施例提供的服务质量监测方法,可以使得在监测终端相关的报文在第一设备和第三设备之间传输时对应的第三 传输时延的信息时,第三设备可以接收来自第一设备的第一时刻相关的信息和终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息,并且可以根据第一传输时延的信息和第一时刻相关的信息,确定终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的信息。也就是说,在一次分段传输时延信息的监测流程中,第三设备可以获知第一传输时延的信息、第二传输时延的信息和第三传输时延的信息。因此,基于本申请实施例提供的服务质量监测方法,可以在一次分段传输时延信息的监测流程中获取多个分段传输时延的信息,从而可以简化现有的分段传输时延信息的监测方法。
在一种可能的设计中,还包括:该第一设备在第二时刻接收来自该第三设备的第一消息,该第一消息用于请求监测该第二传输时延;该第一时刻相关的信息包括该第一时刻和该第二时刻,或者,该第一时刻与该第二时刻的差值。也就是说,本申请实施例中,第三设备可以发起第二传输时延的监测流程。
在一种可能的设计中,该第一消息还包括与该第二传输时延对应的第一监测粒度。例如,终端的互联网协议IP地址/用户面通用分组无线系统GPRS隧道协议GTP-U隧道对应的IP地址表征第一监测粒度为设备粒度;终端的IP地址/GTP-U隧道对应的IP地址+隧道端点标识TEID表征第一监测粒度为会话粒度;终端的IP地址/GTP-U隧道对应的IP地址+TEID+服务质量QoS流标识QFI表征第一监测粒度为流粒度。
在一种可能的设计中,该第一消息还包括第一指示信息或者第一分段标识中的至少一项,该第一指示信息用于指示获取该第一传输时延的信息,该第一分段标识用于标识该第一传输时延对应的分段。也就是说,本申请实施例中,第三设备可以指示第一设备获取第一传输时延的信息。
在一种可能的设计中,该第一消息还包括与该第一传输时延对应的第二监测粒度。其中,第二监测粒度的相关描述可参考上述第一监测粒度,在此不再赘述。
在一种可能的设计中,还包括:该第一设备在第三时刻接收来自该第三设备的第二消息,该第二消息用于请求监测该终端相关的报文在该第一设备和该第三设备之间传输时对应的第三传输时延;该第一时刻相关的信息包括该第一时刻和该第三时刻,或者,该第一时刻与该第三时刻的差值。也就是说,本申请实施例中,第三设备可以发起第三传输时延的监测流程。
在一种可能的设计中,该第二消息还包括与该第三传输时延对应的第三监测粒度。其中,第三监测粒度的相关描述可参考上述第一监测粒度,在此不再赘述。
在一种可能的设计中,该第二消息还包括第二指示信息或者第二分段标识中的至少一项,该第二指示信息用于指示获取该第一传输时延的信息,该第二分段标识用于标识该第一传输时延对应的分段。也就是说,本申请实施例中,第三设备可以指示第一设备获取第一传输时延的信息。
在一种可能的设计中,该第二消息还包括与该第一传输时延对应的第四监测粒度。其中,第四监测粒度的相关描述可参考上述第一监测粒度,在此不再赘述。
在一种可能的设计中,该第一设备向第三设备发送该第一传输时延的信息;以及,该第一设备在第一时刻向该第三设备发送该第一时刻相关的信息,包括:该第一设备在该第一时刻向该第三设备发送第三消息,该第三消息包括该第一传输时延的信息,以及,该第一时刻相关的信息。也就是说,本申请实施例中,可以通过第三消息同时将第一传输时延的信息、以及第一时刻相关的信息发送给第三设备。
在一种可能的设计中,该第一设备向第三设备发送该第一传输时延的信息;以及,该第 一设备在第一时刻向该第三设备发送该第一时刻相关的信息,包括:该第一设备向该第三设备发送第四消息,该第四消息包括该第一传输时延的信息;以及,该第一设备在该第一时刻向该第三设备发送第五消息,该第五消息包括该第一时刻相关的信息。也就是说,本申请实施例中,第一传输时延的信息、以及第一时刻相关的信息是通过不同的消息发送给第三设备的。
在一种可能的设计中,还包括:该第一设备接收来自会话管理网元的待监测的服务质量参数,该待监测的服务质量参数包括该第一传输时延;该第一设备获取终端相关的报文在该第一设备和第二设备之间传输时对应的第一传输时延的信息,包括:该第一设备根据该待监测的服务质量参数,获取该第一传输时延的信息。也就是说,本申请实施例中,可以由会话管理网元激活第一设备的服务质量监测流程。
在一种可能的设计中,还包括:该第一设备接收来自会话管理网元的第三指示信息,该第三指示信息用于指示该第一设备在监测到该第一传输时延的信息之后,向该第三设备发送该第一传输时延的信息。基于该方案,第一设备在监测到该第一传输时延的信息之后,可以向该第三设备发送该第一传输时延的信息,进而第三设备可以根据第一传输时延的信息,以及测量得到的第三传输时延的信息,确定第一传输时延的信息。
在一种可能的设计中,还包括:该第一设备从会话管理网元接收上报监测报告的事件,该事件包括:该第一传输时延信息超过预设门限;或者,该终端进入空闲态或会话释放;或者,周期性上报。也就是说,本申请实施例中,可以由会话管理网元激活第一设备向会话管理网元上报监测报告。
在一种可能的设计中,还包括:该第一设备接收来自会话管理网元的用于服务质量监测的监测包的长度。示例性的,本申请实施例中,用于服务质量监测的监测包的长度可以等于有效业务数据包的典型包长度,本申请实施例对此不作具体限定。
第二方面,提供了一种服务质量监测方法,包括:第三设备接收来自第一设备的终端相关的报文在该第一设备和第二设备之间传输时对应的第一传输时延的信息;该第三设备接收来自该第一设备的第一时刻相关的信息;该第三设备根据该第一传输时延的信息和该第一时刻相关的信息,确定该终端相关的报文在该第二设备和该第三设备之间传输时对应的第二传输时延的信息。基于本申请实施例提供的服务质量监测方法,在监测终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延的信息时,由于第三设备可以接收来自第一设备的第一时刻相关的信息和终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息,并且可以根据第一传输时延的信息和第一时刻相关的信息,确定终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的信息,也就是说,在一次分段传输时延信息的监测流程中,第三设备可以获知第一传输时延的信息、第二传输时延的信息和第三传输时延的信息。因此,基于本申请实施例提供的服务质量监测方法,可以在一次分段传输时延信息的监测流程中获取多个分段传输时延的信息,从而可以简化现有的分段传输时延信息的监测方法。
在一种可能的设计中,还包括:该第三设备向该第一设备发送第一消息,该第一消息用于请求获取该第二传输时延的信息;该第一时刻相关的信息包括该第一时刻和第二时刻,或者,该第一时刻与该第二时刻的差值,其中,该第二时刻为该第一设备接收到该第一消息的时刻。也就是说,本申请实施例中,第三设备可以发起第二传输时延的监测流程。
在一种可能的设计中,该第一消息还包括与该第二传输时延对应的第一监测粒度。其中, 第一监测粒度的相关描述可参考上述第一方面中的描述,在此不再赘述。
在一种可能的设计中,该第一消息还包括第一指示信息或者第一分段标识中的至少一项,该第一指示信息用于指示获取该第一传输时延的信息,该第一分段标识用于标识该第一传输时延的信息对应的分段。也就是说,本申请实施例中,第三设备可以指示第一设备获取第一传输时延的信息。
在一种可能的设计中,该第一消息还包括与该第一传输时延对应的第二监测粒度。其中,第二监测粒度的相关描述可参考上述第一监测粒度,在此不再赘述。
在一种可能的设计中,还包括:该第三设备向该第一设备发送第二消息,该第二消息用于请求获取该终端相关的报文在该第一设备和该第三设备之间传输时对应的第三传输时延的信息;该第一时刻相关的信息包括该第一时刻和第三时刻,或者,该第一时刻与该第三时刻的差值,其中,该第三时刻为该第一设备接收到该第二消息的时刻。也就是说,本申请实施例中,第三设备可以发起第三传输时延的监测流程。
在一种可能的设计中,该第二消息还包括与该第三传输时延对应的第三监测粒度。其中,第三监测粒度的相关描述可参考上述第一监测粒度,在此不再赘述。
在一种可能的设计中,该第二消息还包括第二指示信息或者第二分段标识中的至少一项,该第二指示信息用于指示获取该第一传输时延的信息,该第二分段标识用于标识该第一传输时延的信息对应的分段。也就是说,本申请实施例中,第三设备可以指示第一设备获取第一传输时延的信息。
在一种可能的设计中,该第二消息还包括与该第一传输时延对应的第四监测粒度。其中,第四监测粒度的相关描述可参考上述第一监测粒度,在此不再赘述。
在一种可能的设计中,该第三设备接收来自第一设备的终端相关的报文在该第一设备和第二设备之间传输时对应的第一传输时延的信息;以及,该第三设备接收来自该第一设备的该第一时刻相关的信息,包括:该第三设备接收来自该第一设备的第三消息,该第三消息包括该第一传输时延的信息,以及,该第一时刻相关的信息。也就是说,本申请实施例中,可以通过第三消息同时将第一传输时延的信息、以及第一时刻相关的信息发送给第三设备。
在一种可能的设计中,该第三设备接收来自第一设备的终端相关的报文在该第一设备和第二设备之间传输时对应的第一传输时延的信息;以及,该第三设备接收来自该第一设备的该第一时刻相关的信息,包括:该第三设备接收来自第一设备的第四消息,该第四消息包括该第一传输时延的信息;以及,该第三设备接收来自该第一设备的第五消息,该第五消息包括该第一时刻相关的信息。也就是说,本申请实施例中,第一传输时延的信息、以及第一时刻相关的信息是通过不同的消息发送给第三设备的。
第三方面,提供了一种激活服务质量监测的方法,该激活服务质量监测的方法包括:会话管理网元接收来自策略控制网元的服务质量监测策略;该会话管理网元从该服务质量监测策略中确定第一设备对应的第一服务质量监测策略;该会话管理网元向该第一设备发送该第一服务质量监测策略。基于本申请实施例提供的激活服务质量监测的方法,可以在服务质量监测过程中向相应的设备提供所需的服务质量监测策略,从而可以激活该设备发起服务质量监测流程或者激活该设备向会话管理网元上报监测报告。
在一种可能的设计中,该第一服务质量监测策略包括该第一设备对应的待监测的第一服务质量参数或者该第一设备向该会话管理网元上报监测报告的事件中的至少一个。
在一种可能的设计中,该第一服务质量监测策略还包括该第一设备对应的用于服务质量 监测的监测周期。
在一种可能的设计中,该事件包括该服务质量参数超过预设门限值,或者终端进入空闲态或会话释放;或者,周期性上报。
在一种可能的设计中,该待监测的第一服务质量参数包括保证流速率GFBR、上下行最大流速率MFBR、接入点报文时延预算内的突发数据量、误帧率FER、分段传输时延、或者丢包信息中的至少一个。示例性的,该分段传输时延可以是单向传输时延或者双向传输时延。
在一种可能的设计中,在该待监测的第一服务质量参数包括分段传输时延的情况下,该分段传输时延为终端相关的报文在该第一设备和第二设备之间传输时对应的第一传输时延。
在一种可能的设计中,还包括:该会话管理网元向该第一设备发送第三指示信息,该第三指示信息用于指示该第一设备在监测到该第一传输时延的信息之后,向第三设备发送该第一传输时延的信息。基于该方案,第一设备在监测到该第一传输时延的信息之后,可以向该第三设备发送该第一传输时延的信息,进而第三设备可以根据第一传输时延的信息,以及测量得到的第三传输时延的信息,确定第一传输时延的信息。
在一种可能的设计中,该第一服务质量监测策略还包括用于服务质量监测的监测包的长度。其中,监测包的长度的相关描述可参考上述第一方面的描述,在此不再赘述。
在一种可能的设计中,该服务质量监测策略中包括该第一设备的信息;该会话管理网元从该服务质量监测策略中确定第一设备对应的第一服务质量监测策略,包括:该会话管理网元根据该第一设备的信息,从该服务质量监测策略中确定该第一服务质量监测策略。基于该方案,会话管理网元可以从该服务质量监测策略中确定第一设备对应的第一服务质量监测策略。
在一种可能的设计中,该第一服务质量监测策略包括该第一设备对应的待监测的第一服务质量参数;该会话管理网元从该服务质量监测策略中确定第一设备对应的第一服务质量监测策略,包括:该会话管理网元根据该第一服务质量参数的参数类型,确定该第一设备对应的待监测的第一服务质量参数。基于该方案,会话管理网元可以从该服务质量监测策略中确定第一设备对应的第一服务质量监测策略。
结合上述第一方面或第二方面或第三方面,在一种可能的设计中,该第一设备为接入设备,该第二设备为终端,该第三设备为用户面网元;或者,该第一设备为接入设备,该第二设备为用户面网元,该第三设备为终端;或者,该第一设备为终端,该第二设备为接入设备,该第三设备为用户面网元;或者,该第一设备为用户面网元,该第二设备为接入设备,该第三设备为终端。
第四方面,提供了一种第一设备,该第一设备具有实现上述第一方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,提供了一种第一设备,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该第一设备运行时,该处理器执行该存储器存储的该计算机执行指令,以使该第一设备执行如上述第一方面中任一项所述的服务质量监测方法。
第六方面,提供了一种第一设备,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第一方面中任一项所述的服务质量监测方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当 其在计算机上运行时,使得计算机可以执行上述第一方面中任一项所述的服务质量监测方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面中任一项所述的服务质量监测方法。
第九方面,提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持第一设备实现上述第一方面中所涉及的功能,例如获取终端相关的报文在所述第一设备和第二设备之间传输时对应的第一传输时延的信息。在一种可能的设计中,该装置还包括存储器,该存储器,用于保存第一设备必要的程序指令和数据。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第四方面至第九方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第十方面,提供了一种第三设备,该第三设备具有实现上述第二方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十一方面,提供了一种第三设备,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该第三设备运行时,该处理器执行该存储器存储的该计算机执行指令,以使该第三设备执行如上述第二方面中任一项所述的服务质量监测方法。
第十二方面,提供了一种第三设备,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第二方面中任一项所述的服务质量监测方法。
第十三方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第二方面中任一项所述的服务质量监测方法。
第十四方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二方面中任一项所述的服务质量监测方法。
第十五方面,提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持第三设备实现上述第二方面中所涉及的功能,例如获取终端相关的报文在所述第三设备和第二设备之间传输时对应的第一传输时延的信息。在一种可能的设计中,该装置还包括存储器,该存储器,用于保存第三设备必要的程序指令和数据。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第十方面至第十五方面中任一种设计方式所带来的技术效果可参见第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第十六方面,提供了一种会话管理网元,该会话管理网元具有实现上述第三方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十七方面,提供了一种会话管理网元,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该会话管理网元运行时,该处理器执行该存储器存储的该计算机执行指令,以使该会话管理网元执行如上述第三方面中任一项所述的激活服务质量监测的方法。
第十八方面,提供了一种会话管理网元,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第三方面中任一项所述的激活服务质量监测的方法。
第十九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第三方面中任一项所述的激活服务质量监测的方法。
第二十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第三方面中任一项所述的激活服务质量监测的方法。
第二十一方面,提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持会话管理网元实现上述第三方面中所涉及的功能,例如从该服务质量监测策略中确定第一设备对应的第一服务质量监测策略。在一种可能的设计中,该装置还包括存储器,该存储器,用于保存会话管理网元必要的程序指令和数据。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第十六方面至第二十一方面中任一种设计方式所带来的技术效果可参见第三方面中不同设计方式所带来的技术效果,此处不再赘述。
第二十二方面,提供了一种服务质量监测系统,该服务质量监测系统包括上述任一方面所述的第一设备和上述任一方面所述的第三设备。
第二十三方面,提供了一种服务质量监测方法,包括:终端接收来自接入设备的第一时刻相关的信息,该第一时刻为该接入设备接收该终端发送的第一报文的时刻,或者,该第一时刻为该接入设备向该终端发送第二报文的时刻;该终端根据该第一时刻相关的信息,确定该终端相关的报文在该终端和该接入设备之间传输时对应的传输时延信息。基于该方案,终端可以确定终端相关的报文在终端和接入设备之间传输时对应的传输时延信息。
在一种可能的设计中,在该第一时刻为该接入设备接收该终端发送的第一报文的时刻的情况下,该终端根据该第一时刻相关的信息,确定该终端相关的报文在该终端和该接入设备之间传输时对应的传输时延信息,包括:该终端根据该第一时刻相关的信息,确定该第一报文在该终端和该接入设备之间传输时对应的上行时延信息。基于该方案,终端可以确定终端相关的报文在终端和接入设备之间传输时对应的上行时延信息。
在一种可能的设计中,该第一时刻相关的信息包括该第一时刻;或者,该第一时刻相关的信息包括该第一时刻与第二时刻的差值;其中,该第二时刻为该终端向该接入设备发送该第一报文的时刻。
在一种可能的设计中,在该终端接收来自接入设备的第一时刻相关的信息之前,该方法还包括:该终端在第二时刻向该接入设备发送该第一报文,该第一报文携带第一指示信息,该第一指示信息用于指示该第一报文用于时延监测。
在一种可能的设计中,在该第一时刻为该接入设备向该终端发送第二报文的时刻的情况下,该终端根据该第一时刻相关的信息,确定该终端相关的报文在该终端和该接入设备之间传输时对应的传输时延信息,包括:该终端根据该第一时刻相关的信息,确定该第二报文在该终端和该接入设备之间传输时对应的下行时延信息。基于该方案,终端可以确定终端相关的报文在终端和接入设备之间传输时对应的上行时延信息。
在一种可能的设计中,该第一时刻相关的信息包括该第一时刻;或者,该第一时刻相关的信息包括该第一时刻与第三时刻的差值;其中,该第三时刻为该终端接收该接入设备发送的第二报文的时刻。
在一种可能的设计中,该第一时刻相关的信息包括该第一时刻与第三时刻的差值,在该终端接收来自接入设备的第一时刻相关的信息之前,还包括:该终端接收来自接入设备的该 第二报文;该终端向该接入设备发送指示第三时刻的信息,该第三时刻为该终端接收该接入设备发送的第二报文的时刻。基于该方案,接入设备可以获知终端接收该接入设备发送的第二报文的时刻,进而可以确定出终端相关的报文在终端和接入设备之间传输时对应的下行时延信息。
在一种可能的设计中,该终端接收来自接入设备的第一时刻相关的信息,包括:该终端接收来自该接入设备的该第二报文,该第二报文携带该第一时刻。也就是说,本申请实施例中,接入设备可以通过下行报文将第一时刻相关的信息发送给终端。
在一种可能的设计中,在该终端确定该第二报文在该终端和该接入设备之间传输时对应的下行时延信息之后,还包括:该终端向该接入设备发送该下行时延信息。基于该方案,接入设备可以获知终端相关的报文在终端和接入设备之间传输时对应的下行时延信息。
在一种可能的设计中,该第二报文携带第二指示信息,该第二指示信息用于指示该第二报文用于时延监测。
在一种可能的设计中,该终端接收来自接入设备的第一时刻相关的信息,包括:该终端接收来自该接入设备的第三报文,该第三报文携带该第一时刻相关的信息。也就是说,本申请实施例中,接入设备可以通过下行报文将第一时刻相关的信息发送给终端。
在一种可能的设计中,该终端接收来自该接入设备的无线资源控制RRC信令,该RRC信令携带该第一时刻相关的信息。也就是说,本申请实施例中,接入设备可以通过RRC信令将第一时刻相关的信息发送给终端。
第二十四方面,提供了一种服务质量监测方法,包括:接入设备获取终端相关的报文在该接入设备和该终端之间传输时对应的第一传输时延的信息;以及,该接入设备获取该终端相关的报文在该接入设备和用户面网元之间传输时对应的第二传输时延的信息;该接入设备向控制面网元发送该第一传输时延的信息和该第二传输时延的信息。基于该方案,接入设备在传输时延监测过程中,作为中间设备能够直接获得两侧的传输时延信息,进而上报时延;避免了两侧设备需要获得非本设备所在分段的时延后,才能够上报分段传输时延或者端到端传输时延,进而简化了时延监测机制。
在一种可能的设计中,该接入设备获取终端相关的报文在该接入设备和该终端之间传输时对应的第一传输时延的信息,包括:该接入设备获取第一时刻相关的信息,该第一时刻为该接入设备接收该终端发送的第一报文的时刻,或者,该第一时刻为该接入设备向该终端发送第二报文的时刻;该接入设备根据该第一时刻相关的信息,确定该终端相关的报文在该终端和该接入设备之间传输时对应的传输时延信息。基于该方案,接入设备可以获取终端相关的报文在该终端和该接入设备之间传输时对应的传输时延信息。
第二十五方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第二十三方面中的终端,或者包含上述终端的装置;或者,该通信装置可以为上述第二十四方面中的接入设备,或者包含上述接入设备的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第二十六方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第二十三方面中的终端,或者包含上述终端的装置;或者,该通信装置可以 为上述第二十四方面中的接入设备,或者包含上述接入设备的装置。
第二十七方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该通信装置可以为上述第二十三方面中的终端,或者包含上述终端的装置;或者,该通信装置可以为上述第二十四方面中的接入设备,或者包含上述接入设备的装置。
第二十八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第二十九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第三十方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第二十五方面至第三十方面中任一种设计方式所带来的技术效果可参见上述第二十三方面或第二十四方面中不同设计方式所带来的技术效果,此处不再赘述。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的服务质量监测系统的架构示意图;
图2为本申请实施例提供的激活服务质量监测的系统的架构示意图;
图3为本申请实施例提供的服务质量监测系统在5G网络中的应用示意图;
图4为本申请实施例提供的通信设备的硬件结构示意图;
图5为本申请实施例提供的服务质量监测方法的流程示意图一;
图6为本申请实施例提供的服务质量监测方法的流程示意图二;
图7为本申请实施例提供的激活服务质量监测的方法的流程示意图;
图8为本申请实施例提供的第一设备的结构示意图;
图9为本申请实施例提供的第三设备的结构示意图;
图10为本申请实施例提供的会话管理网元的结构示意图;
图11为本申请实施例提供的另一种服务质量监测系统的架构示意图;
图12为本申请实施例提供的服务质量监测方法的流程示意图三;
图13为本申请实施例提供的服务质量监测方法的流程示意图四;
图14为本申请实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包 括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图1所示,为本申请实施例提供的一种服务质量监测系统10,该服务质量监测系统10包括第一设备101和第三设备102。
其中,第一设备,用于获取终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息,并向第三设备发送第一传输时延的信息;以及,在第一时刻向第三设备发送第一时刻相关的信息。
第三设备,用于接收来自第一设备的第一传输时延的信息和第一时刻相关的信息,并根据第一传输时延的信息和第一时刻相关的信息,确定终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的信息。
可选的,本申请实施例中,第一设备可以为接入设备,第二设备可以为终端,第三设备可以为用户面网元。
或者,可选的,本申请实施例中,第一设备可以为接入设备,第二设备可以为用户面网元,第三设备可以为终端。
或者,可选的,本申请实施例中,第一设备可以为终端,第二设备可以为接入设备,第三设备可以为用户面网元。
或者,可选的,本申请实施例中,第一设备可以为用户面网元,第二设备可以为接入设备,第三设备可以为终端。
可选的,本申请实施例中的第一设备101和第二设备102之间可以直接通信,也可以通过其他设备的转发进行通信,本申请实施例对此不作具体限定。
基于本申请实施例提供的服务质量监测系统,在监测终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延的信息时,由于第三设备可以接收来自第一设备的第一时刻相关的信息和终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息,并且可以根据第一传输时延的信息和第一时刻相关的信息,确定终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的信息,也就是说,在一次分段传输时延信息的监测流程中,第三设备可以获知第一传输时延的信息、第二传输时延的信息和第三传输时延的信息。因此,基于本申请实施例提供的服务质量监测系统,可以在一次分段传输时延信息的监测流程中获取多个分段传输时延的信息,从而可以简化现有的分段传输时延信息的监测方法。
可选的,如图2所示,为本申请实施例提供的一种激活服务质量监测的系统20,该激活服务质量监测的系统20包括会话管理网元201和第一设备202。
其中,会话管理网元201,用于接收来自策略控制网元的服务质量监测策略,并从所述 服务质量监测策略中确定第一设备对应的第一服务质量监测策略之后,向第一设备202发送第一服务质量监测策略。
第一设备202,用于接收来自会话管理网元201的第一服务质量监测策略。
可选的,在第一服务质量监测策略包括第一设备202对应的待监测的第一服务质量参数的情况下,第一设备202在接收来自会话管理网元201的第一服务质量监测策略之后,可以发起相应的服务质量监测,以获得第一服务质量参数的信息。
或者,可选的,在第一服务质量监测策略包括第一设备202向会话管理网元201上报监测报告的事件的情况下,第一设备202在接收来自会话管理网元201的第一服务质量监测策略之后,可以在上报监测报告的事件满足预设条件时,向会话管理网元201上报监测报告。
可选的,本申请实施例中,第一设备可以为接入设备,第二设备可以为终端,第三设备可以为用户面网元。
或者,可选的,本申请实施例中,第一设备可以为接入设备,第二设备可以为用户面网元,第三设备可以为终端。
或者,可选的,本申请实施例中,第一设备可以为终端,第二设备可以为接入设备,第三设备可以为用户面网元。
或者,可选的,本申请实施例中,第一设备可以为用户面网元,第二设备可以为接入设备,第三设备可以为终端。
可选的,本申请实施例中的会话管理网元201和第一设备202之间可以直接通信,也可以通过其他设备的转发进行通信,本申请实施例对此不作具体限定。
基于本申请实施例提供的激活服务质量监测的系统,可以在服务质量监测过程中向相应的设备提供所需的服务质量监测策略,从而可以激活该设备发起服务质量监测流程或者激活该设备向会话管理网元上报监测报告。
或者,可选的,如图11所示,为本申请实施例提供的一种服务质量监测系统110,该服务质量监测系统110包括终端1101和接入设备1102。
其中,接入设备1102,用于获取第一时刻相关的信息,该第一时刻为接入设备1102接收终端1101发送的第一报文的时刻,或者,该第一时刻为接入设备1102向终端1101发送第二报文的时刻。
终端1101,用于接收来自接入设备1102的第一时刻相关的信息,并根据该第一时刻相关的信息,确定终端1101相关的报文在终端1101和接入设备1102之间传输时对应的传输时延信息。
需要说明的是,本申请实施例中的监测也可以替换为检测,本申请实施例中的检测也可以替换为监测,即检测与监测可以相互替换,在此统一说明,以下不再赘述。
基于本申请实施例提供的服务质量监测系统,终端可以确定终端相关的报文在终端和接入设备之间传输时对应的传输时延信息。
可选的,图1所示的服务质量监测系统10或者图2所示的服务质量监测系统20或者图11所示的服务质量监测系统110可以应用于目前的5G网络以及未来其它的网络,本申请实施例对此不作具体限定。
示例性的,假设图1所示的服务质量监测系统10或者图2所示的服务质量监测系统20或者图11所示的服务质量监测系统110应用于目前的5G网络,则如图3所示,上述的终端所对应的网元或者实体可以为5G网络中的终端;上述的接入设备所对应的网元或者实体可以 为5G网络中的接入设备;上述的用户面网元所对应的网元或者实体可以为5G网络中的用户面功能(user plane function,UPF)网元,上述的会话管理网元所对应的网元或者实体可以为5G网络中的会话管理功能(session management function,SMF)网元。
此外,如图3所示,该5G网络中还可以包括接入和移动性管理功能(access and mobility management function,AMF)网元、或者策略控制功能(policy control function,PCF)网元等,本申请实施例对此不作具体限定。
其中,终端通过下一代网络(Next generation,N)接口1(简称N1)与AMF网元通信,接入设备通过N接口2(简称N2)与AMF网元通信,接入设备通过N接口3(简称N3)与UPF网元通信,AMF网元通过N接口11(简称N11)与SMF网元通信,AMF网元通过N接口15(简称N15)与PCF网元通信,SMF网元通过N接口7(简称N7)与PCF网元通信,SMF网元通过N接口4(简称N4)与UPF网元通信。
需要说明的是,图3中的各个网元之间的接口名字只是一个示例,具体实现中接口名字可能为其他名字,本申请实施例对此不作具体限定。
此外,需要说明的是,图3所示的5G网络中的AMF网元、SMF网元或者PCF网元等控制面网元也可以采用服务化接口进行交互。比如,AMF网元对外提供的服务化接口可以为Namf;SMF网元对外提供的服务化接口可以为Nsmf;PCF网元对外提供的服务化接口可以为Npcf。相关描述可以参考23501标准中的5G系统架构(5G system architecture)图,在此不予赘述。
可选的,本申请实施例中所涉及到的终端(terminal)可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备;还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端、用户设备(user equipment,UE),移动台(mobile station,MS),终端设备(terminal device)或者中继用户设备等。其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。为方便描述,本申请中,上面提到的设备统称为终端。
可选的,本申请实施例中所涉及的接入设备指的是接入核心网的设备,例如可以是基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机,非第三代合作伙伴计划(3rd generation partnership project,3GPP)接入设备等。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。
可选的,本申请实施例图1中的第一设备或第三设备,或者图2中的会话管理网元,或者图11中的终端或接入设备可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例图1中的第一设备或第三设备,或者图2中的会话管理网元,或者图11中的终端或接入设备可以通过图4中的通信设备来实现。图4所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备400包括处理器401,通信线路402,存储器403 以及至少一个通信接口(图4中仅是示例性的以包括通信接口404为例进行说明)。
处理器401可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路402可包括一通路,在上述组件之间传送信息。
通信接口404,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路402与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。处理器401用于执行存储器403中存储的计算机执行指令,从而实现本申请下述实施例提供的服务质量监测方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备400可以包括多个处理器,例如图4中的处理器401和处理器408。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备400还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。例如,输出设备405可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备406和处理器401通信,可以以多种方式接收用户的输入。例如,输入设备406可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备400可以是一个通用设备或者是一个专用设备。在具体实现中,通信设备400可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图4中类似结构的设备。本申请实施例不限定通信设备400的类型。
下面将结合图1至图4以及图11对本申请实施例提供的服务质量监测方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等 只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
首先,以图1所示的服务质量监测系统应用于如图3所示的5G网络,第一设备为接入设备,第二设备为终端,第三设备为UPF网元;或者,第一设备为接入设备,第二设备为UPF网元,第三设备为终端为例,如图5所示,为本申请实施例提供的一种服务质量监测方法,该服务质量监测方法包括如下步骤:
S501、第一设备获取终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息。
其中,本申请实施例中,第一设备可以发起终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的监测,从而得到第一传输时延的信息。具体的,第一传输时延的监测方式可参考现有的实现方式,在此不予赘述。
可选的,本申请实施例中的第一传输时延可以是终端相关的报文在第一设备和第二设备之间传输时对应的上行(uplink,UL)或下行(downlink,DL)单向时延(one way delay);也可以是终端相关的报文在第一设备和第二设备之间传输时对应的环回时延(round trip time,RTT),本申请实施例对此不作具体限定。
其中,本申请实施例中,在第一设备为接入设备,第二设备为终端的场景下,终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延也可以称作为空口传输时延或者Uu接口(Uu interface)时延,本申请实施例对此不作具体限定。
可选的,本申请实施例中,第三设备可以通过如下方式一至方式四中的任一方式获得第一传输时延的信息和第一时刻相关的信息。
方式一、本申请实施例提供的服务质量监测方法还包括如下步骤S502a-S504a:
S502a、第三设备向第一设备发送消息1,以使得第一设备在时刻T2接收来自第三设备的消息1。
示例性的,如图5所示,本申请实施例中的消息1例如可以为环回监测请求1,该环回监测请求1可以由一个或多个监测请求包(monitoring request packet)构成,每个监测请求包中可以包括一个相关的序列号(sequence number,SN),本申请实施例对此不作具体限定。
可选的,本申请实施例中,该消息1用于请求监测终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延,或者,该消息1用于请求监测终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延,本申请实施例对此不作具体限定。
可选的,本申请实施例中,在消息1用于请求监测终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的情况下,该消息1还可以包括与第二传输时延对应的监测粒度1,例如终端的互联网协议(internet protocol,IP)地址/用户面通用分组无线系统(general packet radio system,GPRS)隧道协议(tunneling protocol for user plane,GTP-U)隧道对应的IP地址表征监测粒度1为设备粒度;终端的IP地址/GTP-U隧道对应的IP地址+隧道端点标识(tunnel endpoint identifier,TEID)表征监测粒度1为会话粒度;终端的IP地址/GTP-U隧道对应的IP地址+TEID+服务质量QoS流标识(QoS flow identity,QFI)表征监测粒度1为流粒度,本申请实施例对此不作具体限定。
可选的,本申请实施例中,在消息1用于请求监测终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延的情况下,该消息1还可以包括与第三传输时延对应的监测粒度3,其中,监测粒度3的相关描述可参考上述监测粒度1的描述,在此不再赘述。
可选的,本申请实施例中,该消息1还可以包括指示信息1或者分段标识1中的至少一项,该指示信息1用于指示获取第一传输时延的信息,该分段标识1用于标识第一传输时延对应的分段,本申请实施例对此不作具体限定。
可选的,本申请实施例中,该消息1还可以包括与第一传输时延对应的监测粒度2,其中,监测粒度2的相关描述可参考上述监测粒度1的描述,在此不再赘述。
综上,本申请实施例中,消息1可以指示以下四种情况:
a、不指示待监测的分段的信息,如与上述第二传输时延对应的分段的信息或者与上述第三传输时延对应的分段的信息;也不指示请求获取的分段的信息,如与上述第一传输时延的对应的分段的信息。即,默认或根据本地策略,第一设备接收到来自第三设备的消息1之后,即回复与消息1对应的应答消息。
b、不指示待监测的分段的信息,如与上述第二传输时延对应的分段的信息或者与上述第三传输时延对应的分段的信息;指示请求获取的分段的信息,如第一设备和第三设备上有与上述第一传输时延的对应的分段标识1,则第三设备在消息1中可以包括分段标识1,用于请求获取与分段标识1对应的第一传输时延的信息。
c、指示待监测的分段的信息,不指示请求获取的分段的信息。如第一设备和第三设备上有与上述第二传输时延对应的分段标识2,和/或,与上述第三传输时延对应的分段标识3,则第三设备可以在消息1中包括分段标识2,用于请求监测与分段标识2对应的第二传输时延的信息;或者,第三设备可以在消息1中包括分段标识3,用于请求监测与分段标识3对应的第二传输时延的信息。
d、指示待监测的分段的信息,并且指示请求获取的分段的信息。其中,指示待监测的分段的信息的方式可参考上述方式c,指示请求获取的分段的信息的方式可参考上述方式b,在此不再赘述。
可选的,本申请实施例中,步骤S501和S502a之间没有必然的执行先后顺序,可以是先执行步骤S501,再执行步骤S502a;也可以是先执行步骤S502a,再执行步骤S501,比如,第一设备接收来自第三设备的环回监测请求1之后,发起终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的监测;还可以是同时执行步骤S501和S502a,本申请实施例对此不作具体限定。
S503a、第一设备生成与消息1对应的消息2。
示例性的,如图5所示,本申请实施例中的消息2例如可以为环回监测应答1,该环回监测应答1可以由一个或多个测量响应包(measurement response packet)构成,每个测量响应包中可以包括一个相关的序列号,本申请实施例对此不作具体限定。
其中,本申请实施例中步骤S502a中的监测请求包和步骤S503a中的测量响应包可以统称为监测包(the monitoring packet),在此统一说明,以下不再赘述。
其中,本申请实施例中,第一设备在接收到消息1之后,可以生成或构造与消息1对应的消息2。示例性的,第一设备可以在消息2中包括上述第一传输时延的信息以及第一时刻相关的信息。该第一时刻相关的信息例如可以包括第一设备接收消息1的时刻T2、以及第一设备发送消息2的时刻T5;或者,该第一时刻相关的信息例如可以包括第一设备发送消息2的时刻T5与第一设备接收消息1的时刻T2的差值,本申请实施例对此不作具体限定。
可选的,本申请实施例中,该消息2中还可以包括与第一传输时延对应的监测粒度4,该监测粒度4可以和上述消息1中的与第一传输时延对应的监测粒度2相同,也可以不相同。 也就是说,第三设备请求的第一传输时延对应的监测粒度可以和第一设备应答的第一传输时延对应的监测粒度可以是相同的,也可以是不相同的,比如,第三设备请求的第一传输时延对应的监测粒度可能是设备粒度的,而第一设备应答的第一传输时延对应的监测粒度可以是流粒度的,本申请实施例对此不作具体限定。
可选的,本申请实施例中,该消息2中还可以包括与上述第一传输时延的对应的分段标识1,用于指示第一传输时延对应的分段,本申请实施例对此不作具体限定。
S504a、第一设备向第三设备发送消息2,以使得第三设备接收来自第一设备的消息2。
或者,方式二、在步骤S501之后,本申请实施例提供的服务质量监测方法还包括如下步骤S502b-S503b:
S502b、第一设备生成消息3。
示例性的,如图5所示,本申请实施例中的消息3例如可以为服务质量监测请求1,该服务质量监测请求1可以由一个或多个监测请求包(monitoring request packet)构成,每个监测请求包中可以包括一个相关的序列号,本申请实施例对此不作具体限定。其中,该消息3用于请求监测终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延,在此统一说明,以下不再赘述。
其中,本申请实施例中,第一设备在获取第一传输时延的信息之后,可以生成消息3。示例性的,第一设备可以在消息1中包括上述第一传输时延的信息以及第一时刻相关的信息,该第一时刻相关的信息例如可以包括第一设备发送消息3的时刻T5,本申请实施例对此不作具体限定。
可选的,本申请实施例中,该消息3中还可以包括与第一传输时延对应的监测粒度4,本申请实施例对此不作具体限定。其中,监测粒度4的相关描述可参考上述监测粒度1的描述,在此不再赘述。
可选的,本申请实施例中,该消息3中还可以包括与上述第一传输时延的对应的分段标识1,用于指示第一传输时延对应的分段,本申请实施例对此不作具体限定。
S503b、第一设备向第三设备发送消息3,以使得第三设备接收来自第一设备的消息3。
或者,方式三、在步骤S501之后,本申请实施例提供的服务质量监测方法还包括如下步骤S502c-S505c:
S502c、第一设备向第三设备发送消息4,以使得第三设备接收来自第一设备的消息4。其中,该消息4包括上述第一传输时延的信息。
可选的,本申请实施例中,该消息4还可以包括与第一传输时延对应的监测粒度4,本申请实施例对此不作具体限定。其中,监测粒度4的相关描述可参考上述监测粒度1的描述,在此不再赘述。
可选的,本申请实施例中,该消息4中还可以包括与上述第一传输时延的对应的分段标识1,用于指示第一传输时延对应的分段,本申请实施例对此不作具体限定。
可选的,本申请实施例中的消息4可以为一个控制报文,也可以为一个监测报文,本申请实施例对此不作具体限定。
S503c、第三设备向第一设备发送消息5,以使得第一设备接收来自第三设备的消息5。其中,该消息5用于请求监测终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延。
示例性的,如图5所示,本申请实施例中的消息5例如可以为环回监测请求2,该环回 监测请求2可以由一个或多个监测请求包(monitoring request packet)构成,每个监测请求包中可以包括一个相关的序列号,相关描述可参考现有的第三传输时延的监测方式,在此不予赘述。
可选的,本申请实施例中,步骤S502c与步骤S503c-S505c之间没有必然的执行先后顺序,可以是先执行步骤S502c,再执行步骤S503c-S505c中的一个或多个步骤;也可以是先执行步骤S503c-S505c中的一个或多个步骤,再执行步骤S502c;还可以是同时执行步骤S503c-S505c中的一个或多个步骤,以及步骤S502c,本申请实施例对此不作具体限定。
S504c、第一设备生成与消息5对应的消息6。
示例性的,如图5所示,本申请实施例中的消息6例如可以为环回监测应答2,该环回监测应答2可以由一个或多个测量响应包(measurement response packets)构成,每个测量响应包中可以包括一个相关的序列号,本申请实施例对此不作具体限定。
其中,本申请实施例中,第一设备在接收到消息5之后,可以生成或构造与消息5对应的消息6。示例性的,第一设备可以在消息6中包括第一时刻相关的信息,例如可以包括第一设备接收消息5的时刻T2、以及第一设备发送消息6的时刻T5;或者,该第一时刻相关的信息例如可以包括第一设备发送消息6的时刻T5与第一设备接收消息5的时刻T2的差值,本申请实施例对此不作具体限定。
S505c、第一设备向第三设备发送消息6,以使得第三设备接收来自第一设备的消息6。
或者,方式四、在步骤S501之后,本申请实施例提供的服务质量监测方法还包括如下步骤S502d-S504d:
S502d、同步骤S502c,相关描述可参考上述步骤S502c,在此不再赘述。
S503d、第一设备生成消息7。其中,该消息7用于请求监测终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延。
示例性的,如图5所示,本申请实施例中的消息7例如可以为服务质量监测请求2,该服务质量监测请求2可以由一个或多个监测请求包(monitoring request packet)构成,每个监测请求包中可以包括一个相关的序列号,本申请实施例对此不作具体限定。
其中,本申请实施例中,该消息7中可以包括第一时刻相关的信息,该第一时刻相关的信息例如可以包括第一设备发送消息7的时刻T5,相关描述可参考现有的第三传输时延的监测方式,在此不予赘述。
可选的,本申请实施例中,步骤S502d与步骤S503d之间没有必然的执行先后顺序,可以是先执行步骤S502d,再执行步骤S503d;也可以是先执行步骤S503d,再执行步骤S502d;还可以是同时执行步骤S502d和S503d,本申请实施例对此不作具体限定。
S504d、第一设备向第三设备发送消息7,以使得第三设备接收来自第一设备的消息7。
其中,在第三设备获取第一传输时延的信息和第一时刻相关的信息之后,本申请实施例提供的服务质量监测方法还包括如下步骤S506-S507:
S506、第三设备存储第一传输时延的信息。
S507、第三设备确定第三传输时延的信息;以及,第三设备根据第一传输时延的信息和第一时刻相关的信息,确定第二传输时延的信息。
示例性的,假设终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延的信息为RTT1,终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息为RRT2,终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的信息为 RRT3,则:
对于上述方式一或方式三,假设第三设备记录的发送环回监测请求1或环回监测请求2的时刻为T1,第三设备接收环回监测应答1或环回监测应答2的时刻为T6,则:
RRT1=(T6-T1)-(T5-T2);
RRT3=RRT2+RRT1。
对于方式二或方式四,假设第三设备接收服务质量监测请求1或服务质量监测请求2的时刻为T6,则:
RRT1=T6-T5;
RRT3=RRT2+RRT1。
或者,示例性的,假设终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延的信息为单向时延1,终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息为单向时延2,终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的信息为单向时延3,则:
对于上述方式一或方式三,假设第三设备记录的发送环回监测请求1或环回监测请求2的时刻为T1,第三设备接收环回监测应答1或环回监测应答2的时刻为T6,则:
单向时延1=[(T6-T1)–(T5-T2)]/2;
单向时延3=单向时延2+单向时延1。
对于上述方式二或方式四,假设第三设备接收服务质量监测请求1或服务质量监测请求2的时刻为T6,则:
单向时延1=(T6-T5)/2;
单向时延3=单向时延2+单向时延1。
需要说明的是,上述示例以假设同一分段对应的上行时延或下行时延相同为例进行说明,也就是说,上述单向时延可以是UL单向时延或DL单向时延,本申请实施例对此不作具体限定。
基于本申请实施例提供的服务质量监测方法,在监测终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延的信息时,由于第三设备可以接收来自第一设备的第一时刻相关的信息和终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息,并且可以根据第一传输时延的信息和第一时刻相关的信息,确定终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的信息,也就是说,在一次分段传输时延信息的监测流程中,第三设备可以获知第一传输时延的信息、第二传输时延的信息和第三传输时延的信息。因此,基于本申请实施例提供的服务质量监测方法,可以在一次分段传输时延信息的监测流程中获取多个分段传输时延的信息,从而可以简化现有的分段传输时延信息的监测方法。
其中,上述步骤S501至S507中的第一设备或者第三设备的动作可以由图4所示的通信设备400中的处理器401调用存储器403中存储的应用程序代码来执行,本实施例对此不作任何限制。
可选的,以图1所示的服务质量监测系统应用于如图3所示的5G网络,第一设备为终端,第二设备为接入设备,第三设备为UPF网元;或者,第一设备为UPF网元,第二设备为接入设备,第三设备为终端为例,如图6所示,为本申请实施例提供的一种服务质量监测方法,该服务质量监测方法包括如下步骤:
S601、与步骤S501类似,具体可参考图5所示的实施例中的步骤S501,在此不再赘述。
可选的,本申请实施例中,第三设备可以通过如下方式一至方式四中的任一方式获得第一传输时延的信息和第一时刻相关的信息。
方式一、本申请实施例提供的服务质量监测方法还包括如下步骤S602a-S604a:
S602a、第三设备通过第二设备向第一设备发送消息1,以使得第一设备在时刻T2接收来自第三设备的消息1。
示例性的,如图6所示,本申请实施例中的消息1例如可以为环回监测请求1,相关描述可参考图6所示的实施例,在此不再赘述。
此外,消息1的其余相关描述可参考图5所示的实施例中的步骤S502a,在此不再赘述。
其中,本申请实施例中,在第二设备为接入设备,第三设备为终端的场景下,终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延也可以称作为空口传输时延或者Uu接口时延,本申请实施例对此不作具体限定。
需要说明的是,本申请实施例中的消息(包括步骤S602a中的消息1和下述的消息2、消息3、消息4、消息5、消息6或消息7)在终端和接入设备之间传输时,通过终端的会话对应的承载传输该消息;在接入设备和UPF网元之间传输时,通过终端的会话对应的GTP-U隧道传输该消息,也就是说,消息的传输通道需要进行转换,具体可参考现有的实现方式,在此不再赘述。
可选的,本申请实施例中,步骤S601和S602a之间没有必然的执行先后顺序,可以是先执行步骤S601,再执行步骤S602a;也可以是先执行步骤S602a,再执行步骤S601,比如,第一设备接收来自第三设备的环回监测请求1之后,发起终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的监测;还可以是同时执行步骤S601和S602a,本申请实施例对此不作具体限定。
S603a、与步骤S503a类似,具体可参考图5所示的实施例中的步骤S503a,在此不再赘。述。
S604a、第一设备通过第二设备向第三设备发送消息2,以使得第三设备接收来自第一设备的消息2。
或者,方式二、在步骤S601之后,本申请实施例提供的服务质量监测方法还包括如下步骤S602b-S603b:
S602b、与步骤S502b类似,具体可参考图5所示的实施例中的步骤S502b,在此不再赘。述。
S603b、第一设备通过第二设备向第三设备发送消息3,以使得第三设备接收来自第一设备的消息3。
或者,方式三、在步骤S601之后,本申请实施例提供的服务质量监测方法还包括如下步骤S602c-S605c:
S602c、第一设备通过第二设备向第三设备发送消息4,以使得第三设备接收来自第一设备的消息4。其中,该消息4包括上述第一传输时延的信息。
其中,消息4的相关描述可参考图5所示的实施例中的步骤S502c,在此不再赘述。
S603c、第三设备通过第二设备向第一设备发送消息5,以使得第一设备接收来自第三设备的消息5。其中,该消息5用于请求监测终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延。
其中,消息5的相关描述可参考图5所示的实施例中的步骤S503c,在此不再赘述。
可选的,本申请实施例中,步骤S602c与步骤S603c-S605c之间没有必然的执行先后顺序,可以是先执行步骤S602c,再执行步骤S603c-S605c中的一个或多个步骤;也可以是先执行步骤S603c-S605c中的一个或多个步骤,再执行步骤S602c;还可以是同时执行步骤S603c-S605c中的一个或多个步骤,以及步骤S602c,本申请实施例对此不作具体限定。
S604c、与步骤S504c类似,具体可参考图5所示的实施例中的步骤S504c,在此不再赘。述。
S605c、第一设备通过第二设备向第三设备发送消息6,以使得第三设备接收来自第一设备的消息6。
或者,方式四、在步骤S601之后,本申请实施例提供的服务质量监测方法还包括如下步骤S602d-S604d:
S602d、同步骤S602c,相关描述可参考上述步骤S602c,在此不再赘述。
S603d、与步骤S503d类似,具体可参考图5所示的实施例中的步骤S503d,在此不再赘。述。
可选的,本申请实施例中,步骤S602d与步骤S603d之间没有必然的执行先后顺序,可以是先执行步骤S602d,再执行步骤S603d;也可以是先执行步骤S603d,再执行步骤S602d;还可以是同时执行步骤S602d和S603d,本申请实施例对此不作具体限定。
S604d、第一设备通过第二设备向第三设备发送消息7,以使得第三设备接收来自第一设备的消息7。
其中,在第三设备获取第一传输时延的信息和第一时刻相关的信息之后,本申请实施例提供的服务质量监测方法还包括如下步骤S606-S607:
S606、第三设备存储第一传输时延的信息。
S607、第三设备确定第三传输时延的信息;以及,第三设备根据第一传输时延的信息和第一时刻相关的信息,确定第二传输时延的信息。
示例性的,假设终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延的信息为RTT1,终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息为RRT2,终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的信息为RRT3,则:
对于上述方式一或方式三,假设第三设备记录的发送环回监测请求1或环回监测请求2的时刻为T1,第三设备接收环回监测应答1或环回监测应答2的时刻为T6,则:
RRT1=(T6-T1)-(T5-T2);
RRT3=RRT1-RRT2。
对于方式二或方式四,假设第三设备接收服务质量监测请求1或服务质量监测请求2的时刻为T6,则:
RRT1=T6-T5;
RRT3=RRT1-RRT2。
或者,示例性的,假设终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延的信息为单向时延1,终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息为单向时延2,终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的信息为单向时延3,则:
对于上述方式一或方式三,假设第三设备记录的发送环回监测请求1或环回监测请求2的时刻为T1,第三设备接收环回监测应答1或环回监测应答2的时刻为T6,则:
单向时延1=[(T6-T1)–(T5-T2)]/2;
单向时延3=单向时延1-单向时延2。
对于上述方式二或方式四,假设第三设备接收服务质量监测请求1或服务质量监测请求2的时刻为T6,则:
单向时延1=(T6-T5)/2;
单向时延3=单向时延1-单向时延2。
需要说明的是,上述示例以假设同一分段对应的上行时延或下行时延相同为例进行说明,也就是说,上述单向时延可以是UL单向时延或DL单向时延,本申请实施例对此不作具体限定。
基于本申请实施例提供的服务质量监测方法,在监测终端相关的报文在第一设备和第三设备之间传输时对应的第三传输时延的信息时,由于第三设备可以接收来自第一设备的第一时刻相关的信息和终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息,并且可以根据第一传输时延的信息和第一时刻相关的信息,确定终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的信息,也就是说,在一次分段传输时延信息的监测流程中,第三设备可以获知第一传输时延的信息、第二传输时延的信息和第三传输时延的信息。因此,基于本申请实施例提供的服务质量监测方法,可以在一次分段传输时延信息的监测流程中获取多个分段传输时延的信息,从而可以简化现有的分段传输时延信息的监测方法。
其中,上述步骤S601至S607中的第一设备或者第三设备的动作可以由图4所示的通信设备400中的处理器401调用存储器403中存储的应用程序代码来执行,本实施例对此不作任何限制。
可选的,以图2所示的服务质量监测系统应用于如图3所示的5G网络,第一设备为接入设备或UPF网元为例,如图7所示,为本申请实施例提供的一种激活服务质量监测的方法,该激活服务质量监测的方法包括如下步骤:
S701、可选的,应用功能(application function,AF)网元向PCF网元发送消息1,以使得PCF网元接收来自AF网元的消息1。其中,该消息1包括待发送给SMF网元的服务质量监测策略。
示例性的,如图7所示,本申请实施例中的消息1例如可以是策略鉴权创建/更新请求(policy authorization create/update request),本申请实施例对此不作具体限定。
可选的,本申请实施例中,AF网元可以直接向PCF网元发送消息1,也可以是通过网络开放功能(network exposure function,NEF)网元向PCF网元发送消息1,本申请实施例对此不作具体限定。
可选的,本申请实施例中,例如,待发送给SMF网元的服务质量监测策略可以包括待监测的服务质量参数或者需要向SMF网元上报监测报告的事件中的至少一个,本申请实施例对此不作具体限定。
示例性的,待监测的服务质量参数例如可以包括保证流速率(guaranteed flow bit rate,GFBR)、上下行最大流速率(uplink/downlink maximum flow bit rate,MFBR)、接入点报文时延预算(packet delay budget)内的突发数据量、误包率(frame error ratio,FER)、 分段传输时延、或者丢包信息中的至少一个,分段传输时延例如可以包括单向时延或者环回时延,本申请实施例对此不作具体限定。示例性的,该分段传输时延可以是单向传输时延或者双向传输时延,本申请实施例对此不作具体限定。
示例性的,需要向SMF网元上报监测报告的事件例如可以包括服务质量参数超过预设门限值(例如丢包率大于0.5%),或者终端进入空闲态或会话释放;或者,周期性上报,本申请实施例对此不作具体限定。
可选的,本申请实施例中,待发送给SMF网元的服务质量监测策略例如还可以包括对超时报文的处理规则,例如丢弃报文或者将报文发送给终端,本申请实施例对此不作具体限定。
可选的,本申请实施例中,待发送给SMF网元的服务质量监测策略还可以包括用于服务质量监测的监测包的长度或者监测周期,本申请实施例对此不作具体限定。
可选的,本申请实施例中,用于服务质量监测的监测包的长度可以等于有效业务数据包的典型包长度,本申请实施例对此不作具体限定。
可选的,本申请实施例中,待发送给SMF网元的服务质量监测策略中还可以包括后续可能使用该服务质量监测策略的一个或多个设备的信息,本申请实施例对此不作具体限定。
S702、PCF网元向SMF网元发送消息2,以使得SMF网元接收来自PCF网元的消息2。其中,该消息2包括上述服务质量监测策略。
示例性的,如图7所示,本申请实施例中的消息2例如可以是会话管理策略修改请求(session management policy modification request)1,本申请实施例对此不作具体限定。
可选的,本申请实施例中,PCF网元可以根据签约信息或者从AF网元接收到的消息1,确定向SMF网元发送消息2,本申请实施例对此不作具体限定。
S703、SMF网元从服务质量监测策略中确定接入设备对应的服务质量监测策略1。
其中,服务质量监测策略1的相关描述可参考步骤S701中服务质量监测策略的相关描述,在此不再赘述。
可选的,一种可能的实现方式中,服务质量监测策略中包括接入设备的信息,SMF网元从服务质量监测策略中确定接入设备对应的服务质量监测策略1,包括:SMF网元根据接入设备的信息,从服务质量监测策略中确定接入设备对应的服务质量监测策略1。示例性的,本申请实施例中,接入设备的信息例如可以是接入设备的标识或者接入设备的IP地址,本申请实施例对此不作具体限定。
可选的,一种可能的实现方式中,接入设备对应的服务质量监测策略1中包括接入设备对应的待监测的服务质量参数1,SMF网元从服务质量监测策略中确定接入设备对应的服务质量监测策略1,包括:SMF网元根据服务质量参数1的参数类型,确定接入设备对应的待监测的服务质量参数1。示例性的,本申请实施例中的参数类型可以是Uu接口和/或N3接口的传输速率、突发数据量类型、FER、传输时延或者丢包信息,比如,SMF网元可以将参数类型为Uu接口和/或N3接口的传输速率、突发数据量类型、FER、传输时延或者丢包信息中的至少一个的服务质量参数1发送给接入设备。
可选的,本申请实施例中,在服务质量参数1包括分段传输时延的情况下,该分段传输时延可以为终端相关的报文在接入设备和第二设备之间传输时对应的第一传输时延,或者终端相关的报文在接入设备和第三设备之间传输时对应的第三传输时延。其中,这里的第二设备可以为终端,第三设备可以为UPF网元;或者第二设备可以为UPF网元,第三设备可以为终端,具体可参考图5所示的实施例,在此不再赘述。
S704、SMF网元向AMF网元发送消息3,以使得AMF网元接收来自SMF网元的消息3。其中,该消息3包括上述接入设备对应的服务质量监测策略1。
示例性的,如图7所示,本申请实施例中的消息3例如可以是N1N2消息传输请求(N1N2 message transfer request),本申请实施例对此不作具体限定。
S705、AMF网元向接入设备发送消息4,以使得接入设备接收来自AMF网元的消息4。其中,该消息3包括上述接入设备对应的服务质量监测策略1。
示例性的,如图7所示,本申请实施例中的消息4例如可以是N2会话请求(N2 session request),本申请实施例对此不作具体限定。
可选的,本申请实施例中,SMF网元还可以通过AMF网元向接入设备发送第三指示信息,该第三指示信息用于指示接入设备在监测到第一传输时延的信息之后,向第三设备发送第一传输时延的信息,本申请实施例对此不作具体限定。其中,在第一传输时延为终端相关的报文在接入设备和终端之间传输时对应的传输时延的情况下,这里的第三设备为UPF网元;在第一传输时延为终端相关的报文在接入设备和UPF网元之间传输时对应的传输时延的情况下,这里的第三设备为终端,在此统一说明,以下不再赘述。
S706、接入设备根据接入设备对应的服务质量监测策略1确定和终端交互。
示例性的,接入设备可以根据接入设备对应的服务质量监测策略1确定和终端进行参数协商或配置,例如协商时延检测周期、初始化统计信息,本申请实施例对此不作具体限定。
可选的,在接入设备确定和终端交互之后,可以发起相应的交互流程,如图7中的虚线所示,本申请实施例对此不作具体限定。
S707、接入设备向AMF网元发送消息5,以使得AMF网元接收来自接入设备的消息5。其中,消息5包括指示接入设备是否接受服务质量监测策略1的信息。
示例性的,如图7所示,本申请实施例中的消息5例如可以是N2会话响应(N2 session response),本申请实施例对此不作具体限定。
S708、AMF网元向SMF网元发送消息6,以使得SMF网元接收来自AMF网元的消息6。其中,消息6包括指示接入设备是否接受服务质量监测策略1的信息。
示例性的,如图7所示,本申请实施例中的消息6例如可以是更新会话管理(session management,SM)上下文请求(update SM context request),本申请实施例对此不作具体限定。
S709、SMF网元向AMF网元发送消息7,以使得AMF网元接收来自SMF网元的消息7。
示例性的,如图7所示,本申请实施例中的消息7例如可以是更新SM上下文响应(update SM context response),本申请实施例对此不作具体限定。
S710、SMF网元从服务质量监测策略中确定UPF网元对应的服务质量监测策略2。
其中,服务质量监测策略1的相关描述可参考步骤S701中服务质量监测策略的相关描述,在此不再赘述。
可选的,一种可能的实现方式中,服务质量监测策略中包括UPF网元的信息,SMF网元从服务质量监测策略中确定UPF网元对应的服务质量监测策略2,包括:SMF网元根据UPF网元的信息,从服务质量监测策略中确定UPF网元对应的服务质量监测策略2。示例性的,本申请实施例中,UPF网元的信息例如可以是UPF网元的标识或者UPF网元的IP地址,本申请实施例对此不作具体限定。
可选的,一种可能的实现方式中,UPF网元对应的服务质量监测策略2中包括UPF网元 对应的待监测的服务质量参数2,SMF网元从服务质量监测策略中确定UPF网元对应的服务质量监测策略2,包括:SMF网元根据服务质量参数2的参数类型,确定UPF网元对应的待监测的服务质量参数2。示例性的,本申请实施例中的参数类型例如可以是Uu接口和/或N3接口的传输速率、突发数据量类型、FER、传输时延或者丢包信息,比如,SMF网元可以将参数类型为Uu接口和/或N3接口的传输速率、突发数据量类型、FER、传输时延或者丢包信息中的至少一个的服务质量参数2发送给UPF网元。
可选的,本申请实施例中,在服务质量参数2包括分段传输时延的情况下,该分段传输时延可以为终端相关的报文在UPF网元和接入设备之间传输时对应的第一传输时延,或者终端相关的报文在UPF网元和终端之间传输时对应的第三传输时延,在此统一说明,以下不再赘述。
S711、SMF网元向UPF网元发送消息8,以使得UPF网元接收来自SMF网元的消息8。其中,该消息8包括上述UPF网元对应的服务质量监测策略2。
示例性的,如图7所示,本申请实施例中的消息8例如可以是N4会话修改请求(N4 Session modification request),本申请实施例对此不作具体限定。
S712、UPF网元向SMF网元发送消息9,以使得SMF网元接收来自UPF网元的消息9。其中,该消息8包括指示UPF网元是否接受服务质量监测策略2的信息。
示例性的,如图7所示,本申请实施例中的消息9例如可以是N4会话修改响应(N4 Session modification response),本申请实施例对此不作具体限定。
需要说明的是,上述步骤S703-S712以SMF网元分别向接入设备发送接入设备对应的服务质量监测策略1,以及,向UPF网元发送UPF网元对应的服务质量监测策略2为例进行说明。当然,本申请实施例中,SMF也可以向接入设备发送接入设备对应的服务质量监测策略1,或者,向UPF网元发送UPF网元对应的服务质量监测策略2,本申请实施例对此不作具体限定。此外,SMF网元也可以参照本申请实施例的方式,在从服务质量监测策略中确定终端的服务质量监测策略3之后,向终端发送终端对应的服务质量监测策略3,在此不再赘述。
特别的,在接入设备获取接入设备对应的服务质量监测策略1之后,可以参照图5所示的实施例的方式进行服务质量监测,比如,在服务质量监测策略1包括上述接入设备对应的待监测的服务质量参数1,该服务质量参数1包括分段传输时延,分段传输时延为终端相关的报文在接入设备和终端之间传输时对应的传输时延的情况下,接入设备可以发起终端相关的报文在接入设备和终端之间传输时对应的传输时延的监测;或者,在服务质量监测策略1包括上述接入设备对应的待监测的服务质量参数1,该服务质量参数1包括分段传输时延,分段传输时延为终端相关的报文在接入设备和UPF网元之间传输时对应的传输时延的情况下,接入设备可以发起终端相关的报文在接入设备和UPF网元之间传输时对应的传输时延的监测,具体可参考图5所示的实施例,在此不再赘述。
特别的,在UPF网元获取UPF网元对应的服务质量监测策略2之后,可以参照图6所示的实施例的方式进行服务质量监测,比如,在服务质量监测策略2包括上述UPF网元对应的待监测的服务质量参数2,该服务质量参数2包括分段传输时延,分段传输时延为终端相关的报文在UPF网元和接入设备之间传输时对应的传输时延的情况下,UPF网元可以发起终端相关的报文在接入设备和UPF网元之间传输时对应的传输时延的监测,具体可参考图5所示的实施例,在此不再赘述。
特别的,在终端获取终端对应的服务质量监测策略3之后,可以参照图6所示的实施例 的方式进行服务质量监测,比如,在服务质量监测策略3包括上述终端对应的待监测的服务质量参数3,该服务质量参数3包括分段传输时延,分段传输时延为终端相关的报文在终端和接入设备之间传输时对应的传输时延的情况下,终端可以发起终端相关的报文在接入设备和终端之间传输时对应的传输时延的监测,具体可参考图6所示的实施例,在此不再赘述。
S713、SMF网元向PCF网元发送消息10,以使得PCF网元接收来自PCF网元的消息10。其中,该消息10包括服务质量监测策略的配置或部署结果,比如,SMF网元成功配置服务质量监测策略1或者服务质量监测策略2;或者,某个参数类型的服务质量参数的配置异常。
示例性的,如图7所示,本申请实施例中的消息10例如可以是会话管理策略修改请求(session management policy modification request)2,本申请实施例对此不作具体限定。
S714、可选的,PCF网元向AF网元发送消息11,以使得AF网元接收来自PCF网元的消息11。其中,该消息11包括服务质量监测策略的执行结果,比如,接入设备接受服务质量监测策略1,和/或,UPF网元接受服务质量监测策略2。
示例性的,如图7所示,本申请实施例中的消息11例如可以是策略鉴权创建/更新响应(policy authorization create/update response),本申请实施例对此不作具体限定。
需要说明的是,本申请实施例中的步骤S713在需要执行上述步骤S701时执行,在此统一说明,以下不再赘述。
S715、可选的,在接入设备的上报监测报告的事件的条件满足时,接入设备创建监测报告1,并通过服务质量通告控制流程向SMF网元发送监测报告1,以使得SMF网元接收来自接入设备的监测报告1。
可选的,本申请实施例中的监测报告1中可以包括事件的时间戳、监测的服务质量参数的标识、监测的服务质量参数的监测值、终端的标识、会话标识、或者QoS流标识中的至少一个,本申请实施例对此不作具体限定。
S716、可选的,在UPF网元的上报监测报告的事件的条件满足时,UPF网元创建监测报告2,并通过N4会话报告流程向SMF网元发送监测报告2,以使得SMF网元接收来自UPF网元的监测报告2。
可选的,本申请实施例中的监测报告2中可以包括事件的时间戳、监测的服务质量参数的标识、监测的服务质量参数的监测值、终端的标识、会话标识、或者QoS流标识中的至少一个,本申请实施例对此不作具体限定。
S717、可选的,SMF网元向PCF网元发送监测报告,以使得PCF网元接收来自SMF网元的监测报告。
可选的,本申请实施例中,SMF网元可以在接收到接入设备上报的监测报告1之后,向PCF网元发送监测报告1,在接收到UPF网元上报的监测报告2之后,向PCF网元发送监测报告2;也可以是SMF网元在接收到接入设备上报的监测报告1以及UPF网元上报的监测报告2之后,向PCF网元发送监测报告1和监测报告2,本申请实施例对此不作具体限定。
S718、可选的,PCF网元向AF网元发送监测报告,以使得AF网元接收来自PCF网元的监测报告。
可选的,本申请实施例中,PCF网元可以在接收到SMF网元上报的监测报告1之后,向AF网元发送监测报告1,在接收到SMF网元上报的监测报告2之后,向AF网元发送监测报告2;也可以是PCF网元在接收到接入设备上报的监测报告1以及UPF网元上报的监测报告2之后,向AF网元发送监测报告1和监测报告2,本申请实施例对此不作具体限定。
需要说明的是,本申请实施例中的步骤S717在需要执行上述步骤S701时可选的执行,在此统一说明,以下不再赘述。
基于本申请实施例提供的激活服务质量监测的方法,可以在服务质量监测过程中向相应的设备提供所需的服务质量监测策略,从而可以激活该设备发起服务质量监测流程或者激活该设备向会话管理网元上报监测报告。
其中,上述步骤S701至S718中的SMF网元的动作可以由图4所示的通信设备400中的处理器401调用存储器403中存储的应用程序代码来执行,本实施例对此不作任何限制。
以图11所示的服务质量监测系统应用于如图3所示的5G网络为例,如图12所示,为本申请实施例提供的一种服务质量监测方法,该服务质量监测方法包括终端和接入设备之间的上行时延监测和下行时延监测两部分。
其中,上行时延监测部分包括如下步骤S1201-S1203:
S1201、终端向接入设备发送第一报文。接入设备接收来自终端的第一报文。
可选的,本申请实施例中,终端可能在某一时刻向接入设备发送一个报文,也可能在某个时刻向接入设备发送多个报文。因此,第一报文可能是在某个时刻发送的一个独立的报文,或者第一报文也可能是在某一时刻发送的多个报文中的其中一个报文,本申请实施例对此不做具体限定。
可选的,本申请实施例中的第一报文用于时延监测。
一种可能的实现方式中,第一报文携带第一指示信息,该第一指示信息用于指示第一报文用于时延监测。则接入设备在接收第一报文之后,根据该第一指示信息,可以获知该第一报文用于时延监测。
或者,另一种可能的实现方式中,第一报文中不携带上述第一指示信息,而是终端和接入设备预先协商或者约定或者接收或者配置用于时延监测的报文的特征,例如报文的序号规则。进而,接入设备在接收第一报文之后,根据第一报文的特征,例如第一报文的序号,结合预先协商或者约定的规则,可以确定该第一报文用于时延监测。
当然,也可以由接入设备自行选择报文用于时延监测,或者接入设备通过其他方式确定接收到的上行报文用于时延监测,本申请实施例对此不作具体限定。
S1202、接入设备向终端发送第一时刻的信息。终端接收来自接入设备的第一时刻的信息。
其中,该第一时刻为接入设备接收终端发送的第一报文的时刻。
可选的,本申请实施例中,第一时刻相关的信息包括指示第一时刻的信息,如第一时刻。
或者,可选的,本申请实施例中,第一时刻相关的信息包括第一时刻与第二时刻的差值;其中,第二时刻为终端向接入设备发送第一报文的时刻。
比如,接入设备在调度终端的上行报文时,指示终端的上行帧发送时刻(如包括第一报文对应的第二时刻),则接入设备在接收到用于时延监测的第一报文时,可以根据第二时刻以及接入设备接收终端发送的第一报文的时刻(即第一时刻),得到第一时刻与第二时刻的差值,该差值可以作为第一时刻相关的信息发送给终端。其中,假设第一时刻记为t1,第二时刻记为t2,则第一时刻与第二时刻的差值记为(t1-t2)。
可选的,本申请实施例中,接入设备可以通过无线资源控制(radio resource control,RRC)信令将第一时刻相关的信息发送给终端,也可以通过在某个下行报文中增加第一时刻相关的信息的方式(可以视为时间戳)将第一时刻相关的信息发送给终端,本申请实施例对此不作具体限定。
S1203、终端根据第一时刻相关的信息,确定第一报文在终端和接入设备之间传输时对应的上行时延信息。
示例性的,假设第一时刻相关的信息包括指示第一时刻的信息,如第一时刻,则终端可以将第一时刻与第二时刻的差值确定为第一报文在终端和接入设备之间传输时对应的上行时延,该第二时刻为终端向接入设备发送第一报文的时刻。
或者,示例性的,假设第一时刻相关的信息包括第一时刻与第二时刻的差值;其中,第二时刻为终端向接入设备发送第一报文的时刻,则终端可以将该第一时刻与第二时刻的差值确定为第一报文在终端和接入设备之间传输时对应的上行时延。
此外,可选的,本申请实施例中,接入设备还可以获取终端相关的报文在接入设备和UPF网元之间传输时对应的传输时延的信息,并将该传输时延的信息发送给终端,本申请实施例对此不作具体限定。其中,接入设备获取终端相关的报文在接入设备和UPF网元之间传输时对应的传输时延的信息的方式可参考图5或图6所示的实施例,在此不再赘述。
其中,一种可能的实现方式中,下行时延监测部分包括如下步骤S1204a-S1206a:
S1204a、接入设备向终端发送第二报文。终端接收来自接入设备的第二报文。其中,该第二报文携带第一时刻相关的信息,该第一时刻为接入设备向终端发送第二报文的时刻。
可选的,本申请实施例中,接入设备可能在某一时刻向接入设备发送一个报文,也可能在某个时刻向接入设备发送多个报文。因此,第二报文可能是在某个时刻发送的一个独立的报文,或者第一报文也可能是在某一时刻发送的多个报文中的其中一个报文,本申请实施例对此不做具体限定。
可选的,本申请实施例中的第二报文用于时延监测。
一种可能的实现方式中,第二报文携带第二指示信息,该第二指示信息用于指示第二报文用于时延监测。则终端在接收第二报文之后,根据该第二指示信息,可以获知该第二报文用于时延监测。
或者,另一种可能的实现方式中,第二报文中不携带上述第二指示信息,而是终端和接入设备预先协商或者约定或者接收或者配置用于时延监测的报文的特征,例如报文的序号规则。进而,终端在接收第二报文之后,根据第二报文的特征,例如第二报文的序号,结合预先协商或者约定的规则,可以确定该第二报文用于时延监测。
当然,终端也可以通过其他方式确定接收到的下行报文用于时延监测,本申请实施例对此不作具体限定。
可选的,本申请实施例中,第一时刻相关的信息包括指示第一时刻的信息,如第一时刻。
S1205a、终端根据第一时刻相关的信息,确定第一报文在终端和接入设备之间传输时对应的下行时延信息。
示例性的,假设第一时刻相关的信息包括指示第一时刻的信息,如第一时刻,则终端可以将第一时刻与第二时刻的差值确定为第一报文在终端和接入设备之间传输时对应的下行时延,该第二时刻为终端接收第二报文的时刻。
S1206a、可选的,终端向接入设备发送第二时刻相关的信息。接入设备接收来自终端的第二时刻相关的信息。
可选的,本申请实施例中,第二时刻相关的信息包括指示第二时刻的信息,如第二时刻,该第二时刻为终端接收第二报文的时刻。
或者,可选的,本申请实施例中,第一时刻相关的信息包括第一时刻与第二时刻的差值; 其中,第二时刻为终端接收第二报文的时刻。
可选的,本申请实施例中,终端可以通过RRC信令将第二时刻相关的信息发送给接入设备,也可以通过在某个上行报文中增加第二时刻相关的信息的方式(可以视为时间戳)将第二时刻相关的信息发送给接入设备,本申请实施例对此不作具体限定。
或者,另一种可能的实现方式中,下行时延监测部分包括如下步骤S1204b-S1207b:
S1204b、接入设备向终端发送第二报文。终端接收来自接入设备的第二报文。
其中,步骤S1204b的相关描述与步骤S1204a类似,区别比如在于步骤S1204b中的第二报文中不携带第一时刻相关的信息,其余相关描述可参考上述步骤S1204a,在此不再赘述。
S1205b、终端向接入设备发送第二时刻相关的信息。接入设备接收来自终端的第二时刻相关的信息。
可选的,本申请实施例中,第二时刻相关的信息包括指示第二时刻的信息,如第二时刻,该第二时刻为终端接收第二报文的时刻。
可选的,本申请实施例中,终端可以通过RRC信令将第二时刻相关的信息发送给接入设备,也可以通过在某个上行报文中增加第二时刻相关的信息的方式(可以视为时间戳)将第二时刻相关的信息发送给接入设备,本申请实施例对此不作具体限定。
S1206b、接入设备向终端发送第一时刻相关的信息。终端接收来自接入设备的第一时刻相关的信息。
可选的,本申请实施例中,第一时刻相关的信息包括第一时刻与第二时刻的差值,该第二时刻为终端接收第二报文的时刻,该第一时刻为接入设备向终端发送第二报文的时刻。
可选的,本申请实施例中,接入设备可以通过RRC信令将第一时刻相关的信息发送给终端,也可以通过在某个下行报文中增加第一时刻相关的信息的方式(可以视为时间戳)将第一时刻相关的信息发送给终端,本申请实施例对此不作具体限定。
S1207b、终端根据第一时刻相关的信息,确定第一报文在终端和接入设备之间传输时对应的下行时延信息。
示例性的,假设第一时刻相关的信息包括第一时刻与第二时刻的差值,该第二时刻为终端接收第二报文的时刻,该第一时刻为接入设备向终端发送第二报文的时刻。则终端可以将该第一时刻与第二时刻的差值确定为第二报文在终端和接入设备之间传输时对应的下行时延。
或者,另一种可能的实现方式中,下行时延监测部分包括如下步骤S1204c-S1206c:
S1204c、同上述步骤S1204b,相关描述可参考上述S1204b,在此不再赘述。
S1205c、接入设备向终端发送第一时刻相关的信息。终端接收来自接入设备的第一时刻相关的信息。
可选的,本申请实施例中,第一时刻相关的信息包括指示第一时刻的信息,如第一时刻。
可选的,本申请实施例中,接入设备可以通过RRC信令将第一时刻相关的信息发送给终端,也可以通过在某个下行报文中增加第一时刻相关的信息的方式(可以视为时间戳)将第一时刻相关的信息发送给终端,本申请实施例对此不作具体限定。
S1206c、终端根据第一时刻相关的信息,确定第一报文在终端和接入设备之间传输时对应的下行时延信息。
示例性的,假设第一时刻相关的信息包括指示第一时刻的信息,如第一时刻,则终端可以将第一时刻与第二时刻的差值确定为第一报文在终端和接入设备之间传输时对应的下行时 延,该第二时刻为终端接收第二报文的时刻。
基于本申请实施例提供的服务质量监测方法,终端可以确定终端相关的报文在终端和接入设备之间传输时对应的传输时延信息。
其中,上述步骤S1201至S1206a,或者上述步骤S1201至S1207b,或者上述步骤S1201至S1206c中的终端或接入设备的动作可以由图4所示的通信设备400中的处理器401调用存储器403中存储的应用程序代码来执行,本实施例对此不作任何限制。
此外,可选的,图12所示的服务质量监测方法中,上行时延监测部分和下行时延监测部分可以合并,比如,图13所示为本申请实施例提供的另一种服务质量监测方法,该服务质量监测方法包括如下步骤S1301-S1303:
S1301、同图12所示的实施例中的步骤S1201,相关描述可参考上述步骤S1201,在此不再赘述。
S1302、接入设备向终端发送第二报文。终端接收来自接入设备发送的第二报文。其中,该第二报文携带指示接入设备向终端发送第二报文的时刻的信息,以及指示接入设备接收第一报文的时刻的信息。
可选的,本申请实施例中的第二报文用于时延监测。
一种可能的实现方式中,第二报文携带第二指示信息,该第二指示信息用于指示第二报文用于时延监测。则终端在接收第二报文之后,根据该第二指示信息,可以获知该第二报文用于时延监测。
或者,另一种可能的实现方式中,第二报文中不携带上述第二指示信息,而是终端和接入设备预先协商或者约定或者接收或者配置用于时延监测的报文的特征,例如报文的序号规则。进而,终端在接收第二报文之后,根据第二报文的特征,例如第二报文的序号,结合预先协商或者约定的规则,可以确定该第二报文用于时延监测。
当然,终端也可以通过其他方式确定接收到的下行报文用于时延监测,本申请实施例对此不作具体限定。
可选的,上述指示接入设备向终端发送第二报文的时刻的信息,以及指示接入设备接收第一报文的时刻的信息也可以不通过第二报文携带,而是通过一个RRC信令携带,本申请实施例对此不作具体限定。
S1303、终端根据上述指示接入设备向终端发送第二报文的时刻的信息,以及指示接入设备接收第一报文的时刻的信息,确定第一报文在终端和接入设备之间传输时对应的下行时延信息和上行时延信息。
示例性的,终端可以根据发送第一报文的时刻,结合指示接入设备接收第一报文的时刻的信息,确定第一报文在终端和接入设备之间传输时对应的上行时延信息。
或者,示例性的,终端可以根据接收第二报文的时刻,结合指示接入设备向终端发送第二报文的时刻的信息,确定第二报文在终端和接入设备之间传输时对应的下行时延信息。
可选的,本申请实施例中,终端在确定第一报文在终端和接入设备之间传输时对应的下行时延信息和上行时延信息之后,还可以将第一报文在终端和接入设备之间传输时对应的下行时延信息和上行时延信息上报给接入设备,以使得接入设备可以进一步可选的上报控制面网元,本申请实施例对此不作具体限定。
基于本申请实施例提供的服务质量监测方法,终端可以确定终端相关的报文在终端和接入设备之间传输时对应的传输时延信息。
其中,上述步骤S1301至S1303中的终端或接入设备的动作可以由图4所示的通信设备400中的处理器401调用存储器403中存储的应用程序代码来执行,本实施例对此不作任何限制。
此外,上述图5或图6所示的实施例中,接入设备获取终端相关的报文在接入设备和终端之间传输时对应的传输时延的信息的方式也可参考图12或图13所示的实施例提供的接入设备确定终端相关的报文在接入设备和终端之间传输时对应的上行时延的信息或下行时延的信息的方式,在此统一说明,以下不再赘述。
可选的,本申请实施例还可以提供一种服务质量监测方法,包括:接入设备获取终端相关的报文在接入设备和所述终端之间传输时对应的第一传输时延的信息;以及,接入设备获取所述终端相关的报文在接入设备和用户面网元之间传输时对应的第二传输时延的信息;进而接入设备向控制面网元发送第一传输时延的信息和第二传输时延的信息。其中,接入设备获取终端相关的报文在接入设备和终端之间传输时对应的第一传输时延的信息的相关实现可参考上述图12或图13所示的实施例;接入设备获取所述终端相关的报文在接入设备和用户面网元之间传输时对应的第二传输时延的信息可参考上述图5或图6所示的实施例,在此不再赘述。基于该方案,接入设备在传输时延监测过程中,作为中间设备能够直接获得两侧的传输时延信息,进而上报时延;避免了两侧设备需要获得非本设备所在分段的时延后,才能够上报分段传输时延或者端到端传输时延,进而简化了时延监测机制。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述第一设备、第三设备、会话管理网元或终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一设备、第三设备、会话管理网元或终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,图8示出了一种第一设备80的结构示意图。该第一设备80包括:处理模块801和收发模块802。处理模块801,用于获取终端相关的报文在第一设备80和第二设备之间传输时对应的第一传输时延的信息。收发模块802,用于向第三设备发送第一传输时延的信息;以及,第一设备80在第一时刻向第三设备发送第一时刻相关的信息,其中,第一传输时延的信息和第一时刻相关的信息用于确定终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的信息。
可选的,收发模块802,还用于在第二时刻接收来自第三设备的第一消息,第一消息用于请求监测第二传输时延;其中,第一时刻相关的信息包括第一时刻和第二时刻,或者,第一时刻与第二时刻的差值。
或者,可选的,收发模块802,还用于在第二时刻接收来自第三设备的第一消息,第一消息用于请求监测终端相关的报文在第一设备80和第三设备之间传输时对应的第三传输时 延;其中第一时刻相关的信息包括第一时刻和第三时刻,或者,第一时刻与第三时刻的差值。
可选的,收发模块802用于向第三设备发送第一传输时延的信息;以及,收发模块802用于在第一时刻向第三设备发送第一时刻相关的信息,包括:用于在第一时刻向第三设备发送第三消息,第三消息包括第一传输时延的信息,以及,第一时刻相关的信息。
或者,可选的,收发模块802用于向第三设备发送第一传输时延的信息;以及,收发模块802用于在第一时刻向第三设备发送第一时刻相关的信息,包括:用于向第三设备发送第四消息,第四消息包括第一传输时延的信息;以及,用于在第一时刻向第三设备发送第五消息,第五消息包括第一时刻相关的信息。
可选的,收发模块802,还用于接收来自会话管理网元的待监测的服务质量参数,待监测的服务质量参数包括第一传输时延;处理模块801用于获取终端相关的报文在第一设备80和第二设备之间传输时对应的第一传输时延的信息,包括:用于根据待监测的服务质量参数,获取第一传输时延的信息。
可选的,收发模块802,还用于接收来自会话管理网元的第三指示信息,第三指示信息用于指示第一设备80在监测到第一传输时延的信息之后,向第三设备发送第一传输时延的信息。
可选的,收发模块802,还用于从会话管理网元接收上报监测报告的事件,事件包括:第一传输时延信息超过预设门限;或者,终端进入空闲态或会话释放;或者,周期性上报。
可选的,收发模块802,还用于接收来自会话管理网元的用于服务质量监测的监测包的长度。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第一设备80以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第一设备80可以采用图4所示的形式。
比如,图4中的处理器401可以通过调用存储器403中存储的计算机执行指令,使得第一设备80执行上述方法实施例中的服务质量监测方法。
具体的,图8中的收发模块802和处理模块801的功能/实现过程可以通过图4中的处理器401调用存储器403中存储的计算机执行指令来实现。或者,图8中的处理模块801的功能/实现过程可以通过图4中的处理器401调用存储器403中存储的计算机执行指令来实现,图8中的收发模块802的功能/实现过程可以通过图4中的通信接口404来实现。
由于本实施例提供的第一设备80可执行上述的服务质量监测方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持第一设备实现上述服务质量监测方法,例如获取终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息。在一种可能的设计中,该装置还包括存储器。该存储器,用于保存第一设备必要的程序指令和数据。当然,存储器也可以不在该装置中。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
或者,比如,以采用集成的方式划分各个功能模块的情况下,图9示出了一种第三设备 90的结构示意图。该第三设备90包括:收发模块902和处理模块901;收发模块902,用于接收来自第一设备的终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息。收发模块902,还用于接收来自第一设备的第一时刻相关的信息。处理模块901,用于根据第一传输时延的信息和第一时刻相关的信息,确定终端相关的报文在第二设备和第三设备90之间传输时对应的第二传输时延的信息。
可选的,收发模块902,还用于向第一设备发送第一消息,第一消息用于请求获取第二传输时延的信息;其中,第一时刻相关的信息包括第一时刻和第二时刻,或者,第一时刻与第二时刻的差值,其中,第二时刻为第一设备接收到第一消息的时刻。
可选的,收发模块902,还用于向第一设备发送第二消息,第二消息用于请求获取终端相关的报文在第一设备和第三设备90之间传输时对应的第三传输时延的信息;其中,第一时刻相关的信息包括第一时刻和第三时刻,或者,第一时刻与第三时刻的差值,其中,第三时刻为第一设备接收到第二消息的时刻。
可选的,收发模块902用于接收来自第一设备的终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息;以及,收发模块902用于接收来自第一设备的第一时刻相关的信息,包括:用于接收来自第一设备的第三消息,第三消息包括第一传输时延的信息,以及,第一时刻相关的信息。
可选的,收发模块902用于接收来自第一设备的终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延的信息;以及,收发模块902用于接收来自第一设备的第一时刻相关的信息,包括:用于接收来自第一设备的第四消息,第四消息包括第一传输时延的信息;以及,用于接收来自第一设备的第五消息,第五消息包括第一时刻相关的信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第三设备90以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第三设备90可以采用图4所示的形式。
比如,图4中的处理器401可以通过调用存储器403中存储的计算机执行指令,使得第三设备90执行上述方法实施例中的服务质量监测方法。
具体的,图9中的收发模块902和处理模块901的功能/实现过程可以通过图4中的处理器401调用存储器403中存储的计算机执行指令来实现。或者,图9中的处理模块901的功能/实现过程可以通过图4中的处理器401调用存储器403中存储的计算机执行指令来实现,图9中的收发模块902的功能/实现过程可以通过图4中的通信接口404来实现。
由于本实施例提供的第三设备90可执行上述的服务质量监测方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持第三设备实现上述服务质量监测方法,例如根据第一传输时延的信息和第一时刻相关的信息,确定终端相关的报文在第二设备和第三设备之间传输时对应的第二传输时延的信息。在一种可能的设计中,该装置还包括存储器。该存储器,用于保存第三设备必要的程序指令和数据。当然,存储器也可以不在该装置中。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
或者,比如,以采用集成的方式划分各个功能模块的情况下,图10示出了一种会话管理网元100的结构示意图。该会话管理网元100包括处理模块1001和收发模块1002;收发模块1002,用于接收来自策略控制网元的服务质量监测策略;处理模块1001,用于从服务质量监测策略中确定第一设备对应的第一服务质量监测策略;收发模块1002,还用于向第一设备发送第一服务质量监测策略。
可选的,第一服务质量监测策略包括第一设备对应的待监测的第一服务质量参数或者第一设备向会话管理网元100上报监测报告的事件中的至少一个。
可选的,事件包括服务质量参数超过预设门限值,或者终端进入空闲态或会话释放;或者,周期性上报。
可选的,待监测的第一服务质量参数包括GFBR、MFBR、接入点报文时延预算内的突发数据量、FER、分段传输时延、或者丢包信息中的至少一个。
可选的,在待监测的第一服务质量参数包括分段传输时延的情况下,分段传输时延为终端相关的报文在第一设备和第二设备之间传输时对应的第一传输时延。
可选的,收发模块1002,还用于向第一设备发送第三指示信息,第三指示信息用于指示第一设备在监测到第一传输时延的信息之后,向第三设备发送第一传输时延的信息。
可选的,第一服务质量监测策略还包括用于服务质量监测的监测包的长度。
可选的,服务质量监测策略中包括第一设备的信息;处理模块1001用于从服务质量监测策略中确定第一设备对应的第一服务质量监测策略,包括:用于根据第一设备的信息,从服务质量监测策略中确定第一服务质量监测策略。
可选的,第一服务质量监测策略包括第一设备对应的待监测的第一服务质量参数;处理模块1001用于从服务质量监测策略中确定第一设备对应的第一服务质量监测策略,包括:用于根据第一服务质量参数的参数类型,确定第一设备对应的待监测的第一服务质量参数。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该会话管理网元100以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该会话管理网元100可以采用图4所示的形式。
比如,图4中的处理器401可以通过调用存储器403中存储的计算机执行指令,使得会话管理网元100执行上述方法实施例中的激活服务质量监测的方法。
具体的,图10中的收发模块1002和处理模块1001的功能/实现过程可以通过图4中的处理器401调用存储器403中存储的计算机执行指令来实现。或者,图10中的处理模块1001的功能/实现过程可以通过图4中的处理器401调用存储器403中存储的计算机执行指令来实现,图10中的收发模块1002的功能/实现过程可以通过图4中的通信接口404来实现。
由于本实施例提供的会话管理网元100可执行上述激活服务质量监测的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持会话管理网元实现上述激活服务质量监测的方法,例如从服务质量监测策略中确定第一设备对应的第一服务质量监测策略。在一种可能的设计中,该装置还包括存储器。该存储器,用于保存会话管理网元必要的程序指令和数据。当然,存储器也可以不在 该装置中。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
比如,以采用集成的方式划分各个功能模块的情况下,图14示出了一种终端140的结构示意图。该终端140可以包括处理模块1401和收发模块1402。其中,收发模块1402,用于接收来自接入设备的第一时刻相关的信息,该第一时刻为接入设备接收终端发送的第一报文的时刻,或者,该第一时刻为接入设备向终端发送第二报文的时刻。处理模块1401,用于根据第一时刻相关的信息,确定终端相关的报文在终端和接入设备之间传输时对应的传输时延信息。
可选的,在第一时刻为接入设备接收终端发送的第一报文的时刻的情况下,处理模块1401具体用于:根据第一时刻相关的信息,确定第一报文在终端和接入设备之间传输时对应的上行时延信息。
或者,可选的,在第一时刻为接入设备向终端发送第二报文的时刻的情况下,处理模块1401具体用于:根据第一时刻相关的信息,确定第二报文在终端和接入设备之间传输时对应的下行时延信息。
可选的,第一时刻相关的信息包括第一时刻与第三时刻的差值,其中,第三时刻为终端接收接入设备发送的第二报文的时刻;收发模块1402,还用于接收来自接入设备的第二报文;收发模块,还用于向接入设备发送指示第三时刻的信息,该第三时刻为终端接收接入设备发送的第二报文的时刻。
可选的,第一时刻相关的信息包括用于指示第一时刻的信息;收发模块1402用于接收来自接入设备的第一时刻相关的信息,包括:用于接收来自接入设备的第二报文,第二报文携带用于指示第一时刻的信息。
可选的,收发模块1402,还用于向接入设备发送下行时延信息。
可选的,收发模块1402用于接收来自接入设备的第一时刻相关的信息,包括:用于接收来自接入设备的第三报文,第三报文携带第一时刻相关的信息;或者,用于接收来自接入设备的RRC信令,该RRC信令携带第一时刻相关的信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该终端140以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该终端140可以采用图4所示的形式。
比如,图4中的处理器401可以通过调用存储器403中存储的计算机执行指令,使得终端140执行上述方法实施例中的服务质量监测方法。
具体的,图14中的收发模块1402和处理模块1401的功能/实现过程可以通过图4中的处理器401调用存储器403中存储的计算机执行指令来实现。或者,图14中的处理模块1401的功能/实现过程可以通过图4中的处理器401调用存储器403中存储的计算机执行指令来实现,图14中的收发模块1402的功能/实现过程可以通过图4中的通信接口404来实现。
由于本实施例提供的终端140可执行上述服务质量监测方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种装置(例如,该装置可以是芯片系统),该装置包 括处理器,用于支持终端实现上述服务质量监测方法,例如根据所述第一时刻相关的信息,确定所述终端相关的报文在所述终端和所述接入设备之间传输时对应的传输时延信息。在一种可能的设计中,该装置还包括存储器。该存储器,用于保存终端必要的程序指令和数据。当然,存储器也可以不在该装置中。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (59)

  1. 一种服务质量监测方法,其特征在于,包括:
    第一设备获取终端相关的报文在所述第一设备和第二设备之间传输时对应的第一传输时延的信息;
    所述第一设备向第三设备发送所述第一传输时延的信息;以及,所述第一设备在第一时刻向所述第三设备发送所述第一时刻相关的信息,其中,所述第一传输时延的信息和所述第一时刻相关的信息用于确定所述终端相关的报文在所述第二设备和所述第三设备之间传输时对应的第二传输时延的信息。
  2. 根据权利要求1所述的服务质量监测方法,其特征在于,还包括:
    所述第一设备在第二时刻接收来自所述第三设备的第一消息,所述第一消息用于请求监测所述第二传输时延;
    所述第一时刻相关的信息包括所述第一时刻和所述第二时刻,或者,所述第一时刻与所述第二时刻的差值。
  3. 根据权利要求2所述的服务质量监测方法,其特征在于,所述第一消息还包括第一指示信息或者第一分段标识中的至少一项,所述第一指示信息用于指示获取所述第一传输时延的信息,所述第一分段标识用于标识所述第一传输时延对应的分段。
  4. 根据权利要求1所述的服务质量监测方法,其特征在于,还包括:
    所述第一设备在第三时刻接收来自所述第三设备的第二消息,所述第二消息用于请求监测所述终端相关的报文在所述第一设备和所述第三设备之间传输时对应的第三传输时延;
    所述第一时刻相关的信息包括所述第一时刻和所述第三时刻,或者,所述第一时刻与所述第三时刻的差值。
  5. 根据权利要求4所述的服务质量监测方法,其特征在于,所述第二消息还包括第二指示信息或者第二分段标识中的至少一项,所述第二指示信息用于指示获取所述第一传输时延的信息,所述第二分段标识用于标识所述第一传输时延对应的分段。
  6. 根据权利要求1-5任一项所述的服务质量监测方法,其特征在于,所述第一设备向第三设备发送所述第一传输时延的信息;以及,所述第一设备在第一时刻向所述第三设备发送所述第一时刻相关的信息,包括:
    所述第一设备在所述第一时刻向所述第三设备发送第三消息,所述第三消息包括所述第一传输时延的信息,以及,所述第一时刻相关的信息。
  7. 根据权利要求1-5任一项所述的服务质量监测方法,其特征在于,所述第一设备向第三设备发送所述第一传输时延的信息;以及,所述第一设备在第一时刻向所述第三设备发送所述第一时刻相关的信息,包括:
    所述第一设备向所述第三设备发送第四消息,所述第四消息包括所述第一传输时延的信息;
    以及,所述第一设备在所述第一时刻向所述第三设备发送第五消息,所述第五消息包括所述第一时刻相关的信息。
  8. 根据权利要求1-7任一项所述的服务质量监测方法,其特征在于,还包括:
    所述第一设备接收来自会话管理网元的待监测的服务质量参数,所述待监测的服务质量参数包括所述第一传输时延;
    所述第一设备获取终端相关的报文在所述第一设备和第二设备之间传输时对应的第一传输时延的信息,包括:
    所述第一设备根据所述待监测的服务质量参数,获取所述第一传输时延的信息。
  9. 根据权利要求1-8任一项所述的服务质量监测方法,其特征在于,还包括:
    所述第一设备接收来自会话管理网元的第三指示信息,所述第三指示信息用于指示所述第一设备在监测到所述第一传输时延的信息之后,向所述第三设备发送所述第一传输时延的信息。
  10. 根据权利要求1-9任一项所述的服务质量监测方法,其特征在于,还包括:
    所述第一设备从会话管理网元接收上报监测报告的事件,所述事件包括:所述第一传输时延信息超过预设门限;或者,所述终端进入空闲态或会话释放;或者,周期性上报。
  11. 根据权利要求1-10任一项所述的服务质量监测方法,其特征在于,还包括:
    所述第一设备接收来自会话管理网元的用于服务质量监测的监测包的长度。
  12. 一种服务质量监测方法,其特征在于,包括:
    第三设备接收来自第一设备的终端相关的报文在所述第一设备和第二设备之间传输时对应的第一传输时延的信息;
    所述第三设备接收来自所述第一设备的第一时刻相关的信息;
    所述第三设备根据所述第一传输时延的信息和所述第一时刻相关的信息,确定所述终端相关的报文在所述第二设备和所述第三设备之间传输时对应的第二传输时延的信息。
  13. 根据权利要求12所述的服务质量监测方法,其特征在于,还包括:
    所述第三设备向所述第一设备发送第一消息,所述第一消息用于请求获取所述第二传输时延的信息;
    所述第一时刻相关的信息包括所述第一时刻和第二时刻,或者,所述第一时刻与所述第二时刻的差值,其中,所述第二时刻为所述第一设备接收到所述第一消息的时刻。
  14. 根据权利要求12所述的服务质量监测方法,其特征在于,还包括:
    所述第三设备向所述第一设备发送第二消息,所述第二消息用于请求获取所述终端相关的报文在所述第一设备和所述第三设备之间传输时对应的第三传输时延的信息;
    所述第一时刻相关的信息包括所述第一时刻和第三时刻,或者,所述第一时刻与所述第三时刻的差值,其中,所述第三时刻为所述第一设备接收到所述第二消息的时刻。
  15. 根据权利要求12-14任一项所述的服务质量监测方法,其特征在于,所述第三设备接收来自第一设备的终端相关的报文在所述第一设备和第二设备之间传输时对应的第一传输时延的信息;以及,所述第三设备接收来自所述第一设备的所述第一时刻相关的信息,包括:
    所述第三设备接收来自所述第一设备的第三消息,所述第三消息包括所述第一传输 时延的信息,以及,所述第一时刻相关的信息。
  16. 根据权利要求12-14任一项所述的服务质量监测方法,其特征在于,所述第三设备接收来自第一设备的终端相关的报文在所述第一设备和第二设备之间传输时对应的第一传输时延的信息;以及,所述第三设备接收来自所述第一设备的所述第一时刻相关的信息,包括:
    所述第三设备接收来自第一设备的第四消息,所述第四消息包括所述第一传输时延的信息;
    以及,所述第三设备接收来自所述第一设备的第五消息,所述第五消息包括所述第一时刻相关的信息。
  17. 根据权利要求1-16任一项所述的服务质量监测方法,其特征在于,所述第一设备为接入设备,所述第二设备为终端,所述第三设备为用户面网元;或者,所述第一设备为接入设备,所述第二设备为用户面网元,所述第三设备为终端;或者,所述第一设备为终端,所述第二设备为接入设备,所述第三设备为用户面网元;或者,所述第一设备为用户面网元,所述第二设备为接入设备,所述第三设备为终端。
  18. 一种第一设备,其特征在于,所述第一设备包括:处理模块和收发模块;
    所述处理模块,用于获取终端相关的报文在所述第一设备和第二设备之间传输时对应的第一传输时延的信息;
    所述收发模块,用于向第三设备发送所述第一传输时延的信息;以及,所述第一设备在第一时刻向所述第三设备发送所述第一时刻相关的信息,其中,所述第一传输时延的信息和所述第一时刻相关的信息用于确定所述终端相关的报文在所述第二设备和所述第三设备之间传输时对应的第二传输时延的信息。
  19. 根据权利要求18所述的第一设备,其特征在于,
    所述收发模块,还用于在第二时刻接收来自所述第三设备的第一消息,所述第一消息用于请求监测所述第二传输时延;
    所述第一时刻相关的信息包括所述第一时刻和所述第二时刻,或者,所述第一时刻与所述第二时刻的差值。
  20. 根据权利要求18或19所述的第一设备,其特征在于,所述收发模块用于向第三设备发送所述第一传输时延的信息;以及,所述收发模块用于在第一时刻向所述第三设备发送所述第一时刻相关的信息,包括:
    用于在所述第一时刻向所述第三设备发送第三消息,所述第三消息包括所述第一传输时延的信息,以及,所述第一时刻相关的信息。
  21. 根据权利要求18或19所述的第一设备,其特征在于,所述收发模块用于向第三设备发送所述第一传输时延的信息;以及,所述收发模块用于在第一时刻向所述第三设备发送所述第一时刻相关的信息,包括:
    用于向所述第三设备发送第四消息,所述第四消息包括所述第一传输时延的信息;
    以及,用于在所述第一时刻向所述第三设备发送第五消息,所述第五消息包括所述第一时刻相关的信息。
  22. 根据权利要求18-21任一项所述的第一设备,其特征在于,
    所述收发模块,还用于接收来自会话管理网元的待监测的服务质量参数,所述待监测的服务质量参数包括所述第一传输时延;
    所述处理模块用于获取终端相关的报文在所述第一设备和第二设备之间传输时对应的第一传输时延的信息,包括:
    用于根据所述待监测的服务质量参数,获取所述第一传输时延的信息。
  23. 根据权利要求18-22任一项所述的第一设备,其特征在于,
    所述收发模块,还用于接收来自会话管理网元的第三指示信息,所述第三指示信息用于指示所述第一设备在监测到所述第一传输时延的信息之后,向所述第三设备发送所述第一传输时延的信息。
  24. 根据权利要求18-23任一项所述的第一设备,其特征在于,
    所述收发模块,还用于从会话管理网元接收上报监测报告的事件,所述事件包括:所述第一传输时延信息超过预设门限;或者,所述终端进入空闲态或会话释放;或者,周期性上报。
  25. 根据权利要求18-24任一项所述的第一设备,其特征在于,
    所述收发模块,还用于接收来自会话管理网元的用于服务质量监测的监测包的长度。
  26. 一种第三设备,其特征在于,所述第三设备:收发模块和处理模块;
    所述收发模块,用于接收来自第一设备的终端相关的报文在所述第一设备和第二设备之间传输时对应的第一传输时延的信息;
    所述收发模块,还用于接收来自所述第一设备的第一时刻相关的信息;
    所述处理模块,用于根据所述第一传输时延的信息和所述第一时刻相关的信息,确定所述终端相关的报文在所述第二设备和所述第三设备之间传输时对应的第二传输时延的信息。
  27. 根据权利要求26所述的第三设备,其特征在于,
    所述收发模块,还用于向所述第一设备发送第一消息,所述第一消息用于请求获取所述第二传输时延的信息;
    所述第一时刻相关的信息包括所述第一时刻和第二时刻,或者,所述第一时刻与所述第二时刻的差值,其中,所述第二时刻为所述第一设备接收到所述第一消息的时刻。
  28. 根据权利要求26或27所述的第三设备,其特征在于,所述收发模块用于接收来自第一设备的终端相关的报文在所述第一设备和第二设备之间传输时对应的第一传输时延的信息;以及,所述收发模块用于接收来自所述第一设备的所述第一时刻相关的信息,包括:
    用于接收来自所述第一设备的第三消息,所述第三消息包括所述第一传输时延的信息,以及,所述第一时刻相关的信息。
  29. 根据权利要求26或27所述的第三设备,其特征在于,所述收发模块用于接收来自第一设备的终端相关的报文在所述第一设备和第二设备之间传输时对应的第一传输时延的信息;以及,所述收发模块用于接收来自所述第一设备的所述第一时刻相关的信息,包括:
    用于接收来自第一设备的第四消息,所述第四消息包括所述第一传输时延的信息;
    以及,用于接收来自所述第一设备的第五消息,所述第五消息包括所述第一时刻相关的信息。
  30. 一种服务质量监测系统,其特征在于,所述服务质量监测系统包括如权利要求18-25任一项所述的第一设备、以及如权利要求26-29任一项所述的第三设备。
  31. 一种服务质量监测方法,其特征在于,包括:
    终端接收来自接入设备的第一时刻相关的信息,所述第一时刻为所述接入设备接收所述终端发送的第一报文的时刻,或者,所述第一时刻为所述接入设备向所述终端发送第二报文的时刻;
    所述终端根据所述第一时刻相关的信息,确定所述终端相关的报文在所述终端和所述接入设备之间传输时对应的传输时延信息。
  32. 根据权利要求31所述的方法,其特征在于,在所述第一时刻为所述接入设备接收所述终端发送的第一报文的时刻的情况下,所述终端根据所述第一时刻相关的信息,确定所述终端相关的报文在所述终端和所述接入设备之间传输时对应的传输时延信息,包括:
    所述终端根据所述第一时刻相关的信息,确定所述第一报文在所述终端和所述接入设备之间传输时对应的上行时延信息。
  33. 根据权利要求32所述的方法,其特征在于,所述第一时刻相关的信息包括所述第一时刻;或者,所述第一时刻相关的信息包括所述第一时刻与第二时刻的差值;其中,所述第二时刻为所述终端向所述接入设备发送所述第一报文的时刻。
  34. 根据权利要求32或33所述的方法,其特征在于,所述第一报文携带第一指示信息,所述第一指示信息用于指示所述第一报文用于时延监测。
  35. 根据权利要求31所述的方法,其特征在于,在所述第一时刻为所述接入设备向所述终端发送第二报文的时刻的情况下,所述终端根据所述第一时刻相关的信息,确定所述终端相关的报文在所述终端和所述接入设备之间传输时对应的传输时延信息,包括:
    所述终端根据所述第一时刻相关的信息,确定所述第二报文在所述终端和所述接入设备之间传输时对应的下行时延信息。
  36. 根据权利要求35所述的方法,其特征在于,所述第一时刻相关的信息包括所述第一时刻;或者,所述第一时刻相关的信息包括所述第一时刻与第三时刻的差值;其中,所述第三时刻为所述终端接收所述接入设备发送的第二报文的时刻。
  37. 根据权利要求36所述的方法,其特征在于,所述第一时刻相关的信息包括所述第一时刻与第三时刻的差值,在所述终端接收来自接入设备的第一时刻相关的信息之前,还包括:
    所述终端接收来自接入设备的所述第二报文;
    所述终端向所述接入设备发送指示第三时刻的信息,所述第三时刻为所述终端接收所述接入设备发送的第二报文的时刻。
  38. 根据权利要求36所述的方法,其特征在于,所述终端接收来自接入设备的第 一时刻相关的信息,包括:
    所述终端接收来自所述接入设备的所述第二报文,所述第二报文携带所述第一时刻。
  39. 根据权利要求38所述的方法,其特征在于,在所述终端确定所述第二报文在所述终端和所述接入设备之间传输时对应的下行时延信息之后,还包括:
    所述终端向所述接入设备发送所述下行时延信息。
  40. 根据权利要求35-39任一项所述的方法,其特征在于,所述第二报文携带第二指示信息,所述第二指示信息用于指示所述第二报文用于时延监测。
  41. 根据权利要求31-37任一项所述的方法,其特征在于,所述终端接收来自接入设备的第一时刻相关的信息,包括:
    所述终端接收来自所述接入设备的第三报文,所述第三报文携带所述第一时刻相关的信息;或者,
    所述终端接收来自所述接入设备的无线资源控制RRC信令,所述RRC信令携带所述第一时刻相关的信息。
  42. 一种终端,其特征在于,所述终端包括处理模块和收发模块;
    所述收发模块,用于接收来自接入设备的第一时刻相关的信息,所述第一时刻为所述接入设备接收所述终端发送的第一报文的时刻,或者,所述第一时刻为所述接入设备向所述终端发送第二报文的时刻;
    所述处理模块,用于根据所述第一时刻相关的信息,确定所述终端相关的报文在所述终端和所述接入设备之间传输时对应的传输时延信息。
  43. 根据权利要求42所述的终端,其特征在于,所述终端还用于实现权利要求32至41任一项所述的方法。
  44. 一种激活服务质量监测的方法,所述激活服务质量监测的方法包括:
    会话管理网元接收来自策略控制网元的服务质量监测策略;
    所述会话管理网元从所述服务质量监测策略中确定第一设备对应的第一服务质量监测策略;
    所述会话管理网元向所述第一设备发送所述第一服务质量监测策略。
  45. 一种服务质量监测方法,包括:
    接入设备获取终端相关的报文在所述接入设备和所述终端之间传输时对应的第一传输时延的信息;
    所述接入设备获取所述终端相关的报文在所述接入设备和用户面网元之间传输时对应的第二传输时延的信息;
    所述接入设备向控制面网元发送所述第一传输时延的信息和所述第二传输时延的信息。
  46. 一种第一设备,其特征在于,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如权利要求1-11任一项所述的方法。
  47. 一种第三设备,其特征在于,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如权利要求12-17任一项所述的方法。
  48. 一种会话管理网元,处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如权利要求44所述的的方法。
  49. 一种接入设备,其特征在于,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如权利要求45任一项所述的方法。
  50. 一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如权利要求31-41任一项所述的方法。
  51. 如权要要求所述50的装置,其特征在于,所述装置为终端。
  52. 一种芯片系统,其特征在于,包括:所述芯片系统包括至少一个处理器,和接口电路,所述接口电路和所述至少一个处理器通过线路互联,所述处理器通过运行指令,以执行权利要求31-41任一项所述的方法。
  53. 一种传输信息的装置,用于执行如权利要求1-11任一项所述方法。
  54. 一种传输信息的装置,用于执行如权利要求12-17任一项所述方法。
  55. 一种传输信息的装置,用于执行44所述方法。
  56. 一种传输信息的装置,用于执行45所述方法。
  57. 一种传输信息的装置,用于执行如权利要求31-41任一项所述方法。
  58. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-11,12-17,44,45或31-41任一项所述的方法。
  59. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-11,12-17,44,45或31-41任一项所述的方法。
PCT/CN2019/100242 2018-08-13 2019-08-12 服务质量监测方法、设备及系统 WO2020034922A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2021502602A JP2021532641A (ja) 2018-08-13 2019-08-12 サービス品質監視方法およびシステムならびにデバイス
BR112020026699-0A BR112020026699A2 (pt) 2018-08-13 2019-08-12 Método e sistema de monitoramento de qualidade de serviço, primeiro dispositivo, terceiro dispositivo, e mídia legível por computador
AU2019323009A AU2019323009B2 (en) 2018-08-13 2019-08-12 Quality of service monitoring method and system, and device
KR1020217000085A KR20210010629A (ko) 2018-08-13 2019-08-12 서비스 품질 모니터링 방법 및 시스템, 및 디바이스
KR1020227036555A KR102581335B1 (ko) 2018-08-13 2019-08-12 서비스 품질 모니터링 방법 및 시스템, 및 디바이스
EP19850245.2A EP3806524B1 (en) 2018-08-13 2019-08-12 Quality of service monitoring methods, devices, system and computer-readable storage medium
US17/138,264 US20210119896A1 (en) 2018-08-13 2020-12-30 Quality of Service Monitoring Method and System, and Device
JP2022161066A JP2022191337A (ja) 2018-08-13 2022-10-05 サービス品質監視方法およびシステムならびにデバイス

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810918390 2018-08-13
CN201810918390.9 2018-08-13
CN201910028864.7 2019-01-11
CN201910028864.7A CN110831033B (zh) 2018-08-13 2019-01-11 服务质量监测方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/138,264 Continuation US20210119896A1 (en) 2018-08-13 2020-12-30 Quality of Service Monitoring Method and System, and Device

Publications (1)

Publication Number Publication Date
WO2020034922A1 true WO2020034922A1 (zh) 2020-02-20

Family

ID=69524702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100242 WO2020034922A1 (zh) 2018-08-13 2019-08-12 服务质量监测方法、设备及系统

Country Status (1)

Country Link
WO (1) WO2020034922A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925126A (zh) * 2009-06-10 2010-12-22 大唐移动通信设备有限公司 一种数据包发送的方法、系统和装置
CN103298028A (zh) * 2012-03-02 2013-09-11 华为技术有限公司 数据包处理方法及设备
CN105072629A (zh) * 2015-06-30 2015-11-18 华为技术有限公司 测量终端上运行的业务的质量的方法、设备及系统
CN108141386A (zh) * 2015-10-15 2018-06-08 瑞典爱立信有限公司 用于定位无线电通信网络中的瓶颈的方法
US20180199398A1 (en) * 2017-01-09 2018-07-12 Huawei Technologies Co., Ltd. System and methods for session management

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925126A (zh) * 2009-06-10 2010-12-22 大唐移动通信设备有限公司 一种数据包发送的方法、系统和装置
CN103298028A (zh) * 2012-03-02 2013-09-11 华为技术有限公司 数据包处理方法及设备
CN105072629A (zh) * 2015-06-30 2015-11-18 华为技术有限公司 测量终端上运行的业务的质量的方法、设备及系统
CN108141386A (zh) * 2015-10-15 2018-06-08 瑞典爱立信有限公司 用于定位无线电通信网络中的瓶颈的方法
US20180199398A1 (en) * 2017-01-09 2018-07-12 Huawei Technologies Co., Ltd. System and methods for session management

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806524A4 *

Similar Documents

Publication Publication Date Title
EP3806524B1 (en) Quality of service monitoring methods, devices, system and computer-readable storage medium
EP3767890B1 (en) Method and apparatus for monitoring service quality
US11665577B2 (en) Communication method and apparatus
US11909652B2 (en) Method, device and storage medium for quality of service (QoS) flow management of time sensitive data for transmission of ethernet packet filter sets
US11606726B2 (en) Detecting quality of service (QoS) of a service
EP3993495A1 (en) Data transmission method and related apparatus
WO2020143298A1 (zh) 实现业务连续性的方法、装置及系统
WO2021031672A1 (zh) 通知服务质量信息的方法、设备及系统
WO2020024961A1 (zh) 数据处理方法、设备及系统
WO2020147440A1 (zh) 数据用量上报的方法、装置及系统
JP7118173B2 (ja) サービス品質監視方法、及びシステム、並びに装置
US11824783B2 (en) Maximum data burst volume (MDBV) determining method, apparatus, and system
US20200404522A1 (en) Method and system for detecting quality of service of service, and device
WO2022047803A1 (zh) 通信方法及装置
WO2021146926A1 (zh) 一种数据传输方法、设备及系统
WO2020034922A1 (zh) 服务质量监测方法、设备及系统
RU2785330C2 (ru) Устройство, система и способ мониторинга качества обслуживания
WO2022193127A1 (zh) 业务调度方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217000085

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020026699

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019323009

Country of ref document: AU

Date of ref document: 20190812

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021502602

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019850245

Country of ref document: EP

Effective date: 20210107

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020026699

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201224