WO2020192263A1 - 计费规则绑定的方法、设备及系统 - Google Patents

计费规则绑定的方法、设备及系统 Download PDF

Info

Publication number
WO2020192263A1
WO2020192263A1 PCT/CN2020/073058 CN2020073058W WO2020192263A1 WO 2020192263 A1 WO2020192263 A1 WO 2020192263A1 CN 2020073058 W CN2020073058 W CN 2020073058W WO 2020192263 A1 WO2020192263 A1 WO 2020192263A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcc rule
network element
qos flow
binding
pcc
Prior art date
Application number
PCT/CN2020/073058
Other languages
English (en)
French (fr)
Inventor
孙海洋
李岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911086724.1A external-priority patent/CN111756555B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20776377.2A priority Critical patent/EP3869868A4/en
Publication of WO2020192263A1 publication Critical patent/WO2020192263A1/zh
Priority to US17/331,004 priority patent/US11792676B2/en
Priority to US18/470,815 priority patent/US20240015570A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources

Definitions

  • This application relates to the field of communication technology, and in particular to a method, device and system for binding charging rules.
  • the binding mechanism is to combine the service data flow (defined by the service data flow (SDF) template in the policy and charging control (PCC) rules) with the quality of service data flow of the transmission service.
  • service, QoS) Flow related process (English: The binding mechanism is the procedure that associates a service data flow (defined in a PCC rule by means of the SDF template), to the QoS Flow deemed to transport the service data flow) .
  • the existing binding mechanism includes the following three steps:
  • the first step is session binding, that is, the application function (AF) session (session) and the packet data unit (packet data unit, PDU) session have a one-to-one correspondence.
  • AF application function
  • PDU packet data unit
  • PCC rule authorization is executed by the policy control function (PCF) network element, which authorizes the PCC rules and assigns QoS parameters to the PCC rules.
  • PCF policy control function
  • the third step is QoS flow binding, which is to associate PCC rules with the QoS flow in the PDU session.
  • Perform binding using the following binding parameters (English: QoS flow binding is the association of a PCC rule to a QoS Flow within a PDU Session.
  • the binding is performed using the following binding parameters): Fifth generation (5th generation, 5G) QoS identification (5G QoS identifier, 5QI) and allocation and reservation priority (allocation and retention priority, ARP).
  • one or more of the following parameters can also be used as binding parameters: QoS notification control (QoS notification control, QNC), priority ( priority level), average window (averaging window), or maximum data burst volume (MDBV).
  • QoS notification control QoS notification control, QNC
  • priority priority level
  • average window averaging window
  • MDBV maximum data burst volume
  • the aforementioned priority, average window or maximum data burst volume can also be parameters in the QoS attributes corresponding to the aforementioned 5QI, which are not specifically limited here.
  • the embodiments of the present application provide methods, devices, and systems for binding charging rules, which are used to solve the problem that PCC rules with the same binding parameters in the prior art are bound to the same QoS flow, which causes RAN device scheduling errors.
  • a method for binding charging rules includes: a session management network element receives a first policy and charging control PCC rule from a policy control network element; the session management network element determines the first PCC The rule is a multi-level PCC rule; the session management network element creates a quality of service flow QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow, where the QoS flow is only bound to the first PCC rules.
  • the first PCC rule includes indication information, and the indication information is used to indicate that the first PCC rule is a multi-level PCC rule; the session management network element determines that the first PCC rule is a multi-level PCC rule , Including: the session management network element determines that the first PCC rule is a multi-level PCC rule according to the instruction information. Based on this solution, the session management network element can determine that the first PCC rule is a multi-level PCC rule.
  • the first PCC rule includes N candidate QoS parameter sets, and N is a positive integer greater than 1.
  • the session management network element determines that the first PCC rule is a multi-level PCC rule, including: session The management network element determines that the first PCC rule is a multi-level PCC rule according to the N candidate QoS parameter sets. Based on this solution, the session management network element can determine that the first PCC rule is a multi-level PCC rule.
  • a method for binding charging rules includes: a session management network element receives a first policy and charging control PCC rule from a policy control network element, and the first PCC rule includes binding Parameter, each level of binding parameters in this binding parameter corresponds to a sorting level value; the session management network element determines whether there is each sorting level value in the PCC rules bound to the existing QoS flow QoS flow
  • the binding parameter under the rank value is the same PCC rule as the binding parameters under the same rank value among all the rank values in the first PCC rule; if it exists, the session management network element binds the first PCC rule To the existing QoS flow; or, if it does not exist, the session management network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • each level of binding parameter in the binding parameter corresponds to a ranking level value, including: each level of binding parameter in the binding parameter includes a ranking level value.
  • each level of binding parameters in the binding parameters corresponds to a sorting level value, including: the first PCC rule further includes corresponding to each level of binding parameters in the binding parameters The sort level value of.
  • a method for binding charging rules includes: a session management network element receives a first policy and charging control PCC rule from a policy control network element; the session management network element determines the existing quality of service In the PCC rule bound to the flow QoS flow, whether there is a PCC rule whose binding parameters for each level are the same as the binding parameters for each level in the first PCC rule; if it exists, the session management network element applies the first PCC rule Bind to the existing QoS flow; or, if it does not exist, the session management network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the session management network element determines whether there is a PCC rule whose binding parameters for each level are the same as the binding parameters for each level in the first PCC rule in the PCC rules bound to the existing QoS flow , Including: the session management network element determines whether there is a PCC rule with the same maximum ranking level value as the maximum ranking level value corresponding to the first PCC rule in the PCC rules bound to the existing QoS flow; if there is a second PCC rule The corresponding maximum ranking level value is the same as the maximum ranking level value corresponding to the first PCC rule, and each level of binding parameters in the second PCC rule is sequentially the same as each level of binding parameters in the first PCC rule, The session management network element determines that in the PCC rules bound to the existing QoS flow, there is a PCC rule whose binding parameters for each level are the same as the binding parameters for each level in the first PCC rule; otherwise, the session management network element It is determined that among the PCC rules bound to the existing QoS flow,
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be a session management network element in the first aspect, the second aspect, the third aspect, the thirteenth aspect, the seventeenth aspect, or the twentieth aspect, or include the session management.
  • a device of a network element; or, the communication device may be a policy control network element in the following fourteenth aspect, or a device including the policy control network element.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware execution of corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in the first aspect.
  • the communication device may be a session management network element in the first aspect, the second aspect, the third aspect, the thirteenth aspect, the seventeenth aspect, or the twentieth aspect, or include the session management.
  • a device of a network element; or, the communication device may be a policy control network element in the following fourteenth aspect, or a device including the policy control network element.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the first aspect or the second aspect or the first aspect according to the instruction.
  • the communication device may be a session management network element in the first aspect, the second aspect, the third aspect, the thirteenth aspect, the seventeenth aspect, or the twentieth aspect, or include the session management.
  • a device of a network element; or, the communication device may be a policy control network element in the following fourteenth aspect, or a device including the policy control network element.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the above-mentioned first or second or third aspects or The method described in the following thirteenth or fourteenth aspect or the following seventeenth aspect or the following twentieth aspect.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the first aspect, the second aspect, or the third aspect, or the thirteenth or fourteenth aspect below. Aspect or the method described in the seventeenth aspect below or the twentieth aspect below.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the first aspect, the second aspect, the third aspect, or the following first aspect.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of chips, or may include chips and other discrete devices.
  • a communication system in a tenth aspect, includes a policy control network element and a session management network element.
  • the policy control network element is used to send the first PCC rule to the session management network element.
  • the session management network element is used to receive the first PCC rule from the policy control network element.
  • the session management network element is also used to create a QoS flow according to the first PCC rule after determining that the first PCC rule is a multi-level PCC rule, and bind the first PCC rule to the created QoS flow, where the QoS flow is only bound to the first PCC rule.
  • the technical effect of the tenth aspect can be referred to the above-mentioned first aspect, which will not be repeated here.
  • a communication system in an eleventh aspect, includes a policy control network element and a session management network element.
  • the policy control network element is used to send the first PCC rule to the session management network element.
  • the session management network element is used to receive the first PCC rule from the policy control network element.
  • the first PCC rule includes binding parameters, and each level of binding parameters in the binding parameters corresponds to a rank value.
  • the session management network element is also used to determine whether there is a binding parameter under each rank value in all rank values in the PCC rules bound to the existing QoS flow is the same as all rank values in the first PCC rule PCC rules with the same binding parameters under the rank value; if it exists, the session management network element is also used to bind the first PCC rule to the existing QoS flow; if it does not exist, the session management network element is also used according to The first PCC rule creates a QoS flow, and binds the first PCC rule to the created QoS flow.
  • the technical effect of the eleventh aspect can be referred to the above-mentioned second aspect, which will not be repeated here.
  • a communication system in a twelfth aspect, includes a policy control network element and a session management network element.
  • the policy control network element is used to send the first PCC rule to the session management network element.
  • the session management network element is used to receive the first PCC rule from the policy control network element.
  • the session management network element is also used to determine whether there is a PCC rule whose binding parameters at each level are the same as the binding parameters at each level in the first PCC rule in the PCC rules bound to the existing QoS flow; if it exists, the session The management network element is also used to bind the first PCC rule to an existing QoS flow; if it does not exist, the session management network element is also used to create a QoS flow according to the first PCC rule and bind the first PCC rule to The created QoS flow.
  • the technical effect of the twelfth aspect can be referred to the third aspect mentioned above, which will not be repeated here.
  • a method for binding charging rules includes: a session management network element receives a first policy and charging control PCC rule from a policy control network element; the session management network element determines the first The PCC rule needs to be bound to a separate QoS flow; the session management network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • a session management network element receives a first policy and charging control PCC rule from a policy control network element; the session management network element determines the first The PCC rule needs to be bound to a separate QoS flow; the session management network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the first PCC rule includes indication information; the session management network element determines that the first PCC rule needs to be bound to a separate QoS flow, including: the session management network element determines the The first PCC rule needs to be bound to a separate QoS flow. Based on this solution, the session management network element can determine that the first PCC rule needs to be bound to a separate QoS flow.
  • the indication information is any one of the following; the indication information is information indicating that the first PCC rule needs to be bound to a separate QoS flow; the indication information is that the first PCC rule is multi-level PCC rules; the indication information is that the service corresponding to the first PCC rule supports multiple access; the indication information is that the service corresponding to the first PCC rule is a high-reliability and low-latency URLLC service; the indication information is the first PCC rule The corresponding service requires redundant transmission; the indication information is that the data network access identifier DNAI of the first PCC rule is different from other DNAIs in the current session; the indication information is that the packet error rate PER of the first PCC rule is different from the current The other PERs within the session are different; the indication information is that the service corresponding to the first PCC rule requires the first radio access technology RAT; the indication information is that the service corresponding to the first PCC rule requires QoS monitoring; the indication information is the The maximum bit rate of the first PCC rule is greater than
  • the QoS flow is only bound to the first PCC rule.
  • the QoS flow is only bound to the first PCC rule, including: the session management network element determines that the second PCC rule cannot be bound to the QoS flow according to the flag bit inside the session management network element.
  • a method for binding charging rules includes: a policy control network element determines that the first PCC rule needs to be bound to a separate quality of service flow QoS flow; and the policy control network element reports to the session management network The element sends the first PCC rule, and the first PCC rule includes indication information, and the indication information is used to indicate that the first PCC rule needs to be bound to a separate QoS flow.
  • the policy control network element determines that the first PCC rule needs to be bound to a separate QoS flow, including: when one or more of the following conditions are met, the policy control network element determines the first PCC rules need to be bound to a separate QoS flow: when it is necessary to ensure that the QoS flow of the first PCC rule is not bound to other PCC rules; the first PCC rule is a multi-level PCC rule; the first PCC rule corresponds to multiple services Access; the service corresponding to the first PCC rule is a highly reliable and low-latency URLLC service; the service corresponding to the first PCC rule requires redundant transmission; the data network access identifier DNAI of the first PCC rule is within the current session The other DNAI is different; the packet error rate PER of the first PCC rule is different from other PERs in the current session; the service corresponding to the first PCC rule requires the first radio access technology RAT; the maximum bit of the first PCC rule The rate is greater than the guaranteed bit rate; the resource type of
  • a communication method including: a policy control network element sends a first policy and charging control PCC rule to a session management network element; the session management network element receives the first PCC from the policy control network element Rules; the session management network element determines that the first PCC rule needs to be bound to a separate QoS flow; the session management network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the technical effect of the fifteenth aspect can refer to the thirteenth aspect mentioned above, which will not be repeated here.
  • a communication system comprising: a session management network element and a policy control network element; the policy control network element is used to send a first policy and charging control PCC rule to the session management network element
  • the session management network element is used to receive the first PCC rule from the policy control network element; the session management network element is also used to determine that the first PCC rule needs to be bound to a separate quality of service flow QoS flow;
  • the session management network element is also used to create a QoS flow according to the first PCC rule, and bind the first PCC rule to the created QoS flow.
  • a method for binding charging rules includes: a session management network element receives a first policy and charging control PCC rule from a policy control network element, where the first PCC rule includes binding The session management network element determines whether there is a QoS flow with the same binding parameters as the binding parameters in the first PCC rule in the existing QoS flow; if it exists, the session management network element will A PCC rule is bound to the existing QoS flow; or, if it does not exist, the session management network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the session management network element determines whether there is a QoS flow with the same binding parameters as the binding parameters in the first PCC rule in the existing QoS flow, including: when the session management network element determines In the PCC rule bound to the existing QoS flow, the value of the binding parameter of the policy control part in the second PCC rule is the same as the value of the binding parameter of the policy control part in the first PCC rule, and the first PCC rule 2.
  • the session management network element determines the existing quality of service In the flow QoS flow, there is a QoS flow whose binding parameters are the same as the binding parameters in the first PCC rule.
  • the binding parameter in the embodiment of the present application includes an optional QoS parameter set.
  • a communication method includes: a policy control network element sends a first policy and charging control PCC rule to a session management network element, the first PCC rule includes binding parameters; session management The network element receives the first PCC rule from the policy control network element and determines whether there is a QoS flow with the same binding parameters as the binding parameters in the first PCC rule in the existing QoS flow; if it exists, The session management network element binds the first PCC rule to the existing QoS flow; or, if it does not exist, the session management network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule To the created QoS flow.
  • the technical effect of the eighteenth aspect can be referred to the above-mentioned seventeenth aspect, which will not be repeated here.
  • a communication system in a nineteenth aspect, includes a policy control network element and a session management network element; wherein the policy control network element is used to send a first policy and charging control PCC rule to the session management network element ,
  • the first PCC rule includes binding parameters;
  • the session management network element is used to receive the first PCC rule from the policy control network element, and determine whether there is a binding parameter with the first QoS flow in the existing quality of service flow.
  • a QoS flow with the same binding parameters in a PCC rule; the session management network element is also used to bind the first PCC rule to the existing QoS flow if it exists; or, if it does not exist, according to the first
  • the PCC rule creates a QoS flow, and binds the first PCC rule to the created QoS flow.
  • the technical effect of the nineteenth aspect can be referred to the above-mentioned seventeenth aspect, which will not be repeated here.
  • a method for binding charging rules includes: a session management network element receives a first policy and charging control PCC rule from a policy control network element, where the first PCC rule includes the first A binding parameter; when the session management network element determines that the first PCC rule includes optional QoS parameter sets (alternative QoS parameter sets), and there is a second PCC among the PCC rules bound to the first QoS flow
  • the session management network element Bind the first PCC rule to the existing first QoS flow
  • the session management network element determines that the first PCC rule does not include the optional QoS parameter set, and there is already a PCC bound to the second QoS flow Rule
  • the value of the first binding parameter included in the third PCC rule is the same as the value of the first binding parameter included in the first PCC rule
  • one or more PCC rules including alternative QoS parameter sets can be regarded as PCC rules with the same binding parameters.
  • One or more PCC rules including alternative QoS parameter sets can be regarded as PCC rules with the same binding parameters.
  • one or more PCC rules with the same binding parameters may be bound to the same QoS flow, and one or more PCC rules without the same binding parameters may not be bound to the same QoS flow. This avoids the problem of binding multi-level PCC rules and single-level PCC rules with the same binding parameters to the same QoS flow, and further avoids RAN equipment scheduling errors.
  • a communication method comprising: a policy control network element sending a first policy and charging control PCC rule to a session management network element, where the first PCC rule includes a first binding parameter;
  • the session management network element receives the first PCC rule from the policy control network element; when the session management network element determines that the first PCC rule includes optional QoS parameter sets (alternative QoS parameter sets), and there is a first QoS flow
  • the value of the first binding parameter included in the second PCC rule is the same as the value of the first binding parameter included in the first PCC rule, and the second PCC rule includes the
  • the session management network element binds the first PCC rule to the existing first QoS flow; or, when the session management network element determines that the first PCC rule does not include the optional QoS parameter set, And there is already a PCC rule bound to the second QoS flow, there is the value of the first binding parameter included in the
  • a communication system in a twenty-second aspect, includes a policy control network element and a session management network element; wherein the policy control network element is used to send a first policy and charging control PCC to the session management network element Rule, the first PCC rule includes the first binding parameter; the session management network element is used to receive the first PCC rule from the policy control network element; the session management network element is also used to determine the first PCC rule Including optional QoS parameter sets (alternative QoS parameter sets), and in the PCC rules bound to the first QoS flow, there is the value of the first binding parameter included in the second PCC rule and the first PCC When the values of the first binding parameters included in the rule are the same and the second PCC rule includes an optional QoS parameter set, bind the first PCC rule to the existing first QoS flow; or, the session management The network element is also used for when it is determined that the first PCC rule does not include an optional QoS parameter set, and there is a PCC rule bound to the second QoS
  • Figure 1 shows the existing 5G QoS model
  • Figure 2 is a schematic diagram of the existing signaling-based QoS flow establishment architecture
  • FIG. 3 is a schematic diagram of the architecture of a communication system provided by an embodiment of the application.
  • Fig. 4a is a 5G network architecture 1 in a non-roaming scenario provided by an embodiment of the application;
  • FIG. 4b is a second 5G network architecture in a non-roaming scenario provided by an embodiment of the application.
  • Fig. 5a is a 5G network architecture 1 in a local grooming roaming scenario provided by an embodiment of the application;
  • FIG. 5b is the second 5G network architecture in the local grooming roaming scenario provided by an embodiment of the application.
  • Figure 6a is a 5G network architecture 1 in a hometown routing roaming scenario provided by an embodiment of the application;
  • Fig. 6b is the second 5G network architecture in the hometown routing roaming scenario provided by the embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 8 is a schematic flow chart 1 of a method for binding charging rules provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of the second flow of the method for binding charging rules provided by an embodiment of the application.
  • FIG. 10 is a third schematic flowchart of a method for binding charging rules provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a session management network element provided by an embodiment of this application.
  • FIG. 12 is a fourth flowchart of a method for binding charging rules provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a policy control network element provided by an embodiment of this application.
  • FIG. 14 is a fifth schematic flowchart of a method for binding charging rules provided by an embodiment of this application.
  • FIG. 15 is a sixth flowchart of a method for binding charging rules provided by an embodiment of this application.
  • a PDU session is an association between a terminal device and a data network (data network, DN), and is used to provide a PDU connection service.
  • 5G QoS identifier (5G QoS identifier, 5QI)
  • 5QI is a scalar, used to index the corresponding 5G QoS features.
  • 5QI is divided into standardized 5QI, pre-configured 5QI and dynamically allocated 5QI.
  • standardized 5QI there is a one-to-one correspondence with a set of standardized 5G QoS feature values; for the pre-configured 5QI, the corresponding 5G QoS feature values are pre-configured on the access network device, and for the dynamically allocated 5QI, the corresponding 5G QoS features
  • the core network device sends to the access network device through a QoS profile (QoS profile).
  • Allocation and retention priority (allocation and retention priority, ARP)
  • ARP includes priority, preemption ability, and preemption ability.
  • GFBR represents the bit rate expected to be provided to a guaranteed bit rate (guaranteed bit rate, GBR) QoS flow (flow).
  • MFBR limits the bit rate provided to GBR QoS flow, that is, the maximum bit rate provided to GBR QoS flow. If the bit rate is exceeded, data packets can be discarded.
  • RQA is used to indicate the use of reverse QoS for services transmitted using the corresponding QoS flow.
  • QNC is used to indicate whether the access network device will notify the network when the GFBR cannot be met during the QoS flow usage period.
  • a 5G QoS model based on QoS flow (flow) is proposed, as shown in Figure 1.
  • the 5G QoS model supports QoS flow with guaranteed bit rate (i.e. GBR QoS flow) and QoS flow without guaranteed bit rate (i.e. non-GBR (non-GBR) QoS flow).
  • Data packets that use the same QoS flow control receive the same transmission processing (such as scheduling, admission threshold, etc.).
  • one or more PDU sessions can be established with the 5G network; one or more QoS flows can be established in each PDU session.
  • Each QoS flow is identified by a QoS flow identifier (QFI), and QFI uniquely identifies a QoS flow in the session.
  • QFI QoS flow identifier
  • each QoS flow corresponds to a data radio bearer (DRB), and one DRB can correspond to one or more QoS flows.
  • DRB data radio bearer
  • QoS profile whether a QoS flow is GBR QoS flow or Non-GBR QoS flow is determined by the corresponding QoS profile (QoS profile).
  • the corresponding QoS file must contain the following QoS parameters: 5QI, ARP, GFBR, and MFBR, optionally including QNC; according to whether the QoS file contains QNC, GBR QoS flow is divided into GRB QoS flow that requires notification control and non-notification. GBR QoS flow that needs notification control.
  • GBR QoS flow requiring notification control when the access network device detects that the corresponding QoS flow resource cannot be satisfied, the access network device notifies the session management function (SMF) network element of the event. Further SMF network elements can initiate a QoS flow deletion or modification process.
  • SMF session management function
  • the corresponding QoS file must include the following QoS parameters: 5QI and ARP; optionally, include RQA.
  • the SMF network element determines to establish QoS flow according to the local policy or the PCC rule sent by the PCF network element, then 2a), sends the SDF information to the user plane function (UPF) network element, and the SDF information includes QoS Control information; 2b), through the access and mobility management function (AMF) network element to send QoS flow QoS files to the access network equipment; 2c), through the AMF network element and the access network equipment to The terminal device sends a QoS rule (QoS rule), and the QoS rule contains QoS control information.
  • QoS rule QoS rule
  • the second step is to establish a QoS flow between the terminal device, the access network device, and the UPF network element.
  • the access network device establishes the DRB of the air interface according to the QoS file, and stores the binding relationship between the QoS flow and the DRB.
  • the QFI is carried in the data packet header of the downlink data packet; when the access network device receives the downlink data packet, it is based on the data packet header. QFI and the binding relationship between the corresponding QoS flow and DRB, the downlink data packet is placed on the corresponding DRB for transmission.
  • the terminal device determines the QoS flow according to the QoS rules, and carries the QFI in the data packet header of the uplink data packet to be sent, and at the same time, according to the binding relationship between the QoS flow and the DRB, the uplink data packet Put it on the corresponding DRB for transmission.
  • the access network device receives the uplink data packet, according to the QFI in the data packet header, the data packet header of the uplink data packet between the access network device and the UPF network element includes the QFI.
  • the UPF network element receives the uplink data packet sent by the access network device, it verifies whether the data packet is transmitted using the correct QoS flow.
  • one or more of the following parameters may also be used as binding parameters:
  • Priority indicates the priority of scheduling resources in the QoS flow. Priority is used to distinguish QoS flows from the same terminal device, and also to distinguish QoS flows from different terminal devices.
  • the average window is only used for GBR QoS flow, which represents the duration of calculating GFBR and MFBR.
  • MDBV indicates the maximum amount of data that the 5G access network needs to serve within a packet delay budget (PDB). Among them, PDB defines the upper limit of the time that a data packet can be transmitted between the terminal device and the UPF network element with the N6 interface.
  • PDB packet delay budget
  • the aforementioned priority, average window or maximum data burst volume can also be parameters in the QoS attributes corresponding to the aforementioned 5QI, which are not specifically limited here.
  • multi-level PCC rules are introduced.
  • the radio access network (RAN) equipment or SMF network element automatically upgrades or downgrades QoS according to network conditions (such as congestion, etc.).
  • an example of the multi-level PCC rule provided in the embodiment of the present application may be as follows:
  • the multi-level PCC rule includes, e.g.:
  • SMF network elements can generate "special" QoS flows with multiple QoS profiles according to multi-level PCC rules. Examples are as follows:
  • the new type of QoS flow includes, e.g.:
  • the multi-level PCC rule in the embodiment of the present application is a PCC rule with alternative QoS parameter sets (PCC rule with alternative QoS parameter sets), which will be explained here in a unified manner, and will not be repeated here.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same function and effect.
  • words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • the communication system 30 includes a session management network element 301 and a policy control network element 302.
  • the policy control network element 302 sends the first PCC rule to the session management network element 301.
  • the session management network element 301 receives the first PCC rule from the policy control network element 302.
  • the first PCC rule includes binding parameters, and each level of binding parameters in the binding parameters corresponds to a rank value.
  • the session management network element 301 determines whether there is a binding parameter under each rank value in all rank values in the PCC rule bound to the existing QoS flow under the same rank value in all rank values in the first PCC rule PCC rules with the same binding parameters; if it exists, the session management network element 301 binds the first PCC rule to the existing QoS flow; if it does not exist, the session management network element 301 creates a QoS flow based on the first PCC rule, and Bind the first PCC rule to the created QoS flow.
  • This solution will be described in detail in the subsequent method embodiments, and will not be repeated here.
  • the policy control network element 302 sends the first PCC rule to the session management network element 301.
  • the session management network element 301 receives the first PCC rule from the policy control network element 302. Furthermore, the session management network element 301 determines whether there is a PCC rule whose binding parameters for each level are the same as the binding parameters for each level in the first PCC rule in the PCC rules bound to the existing QoS flow; if it exists, session management The network element 301 binds the first PCC rule to the existing QoS flow; if it does not exist, the session management network element 301 creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the policy control network element 302 sends the first PCC rule to the session management network element 301.
  • the session management network element 301 receives the first PCC rule from the policy control network element 302. Furthermore, after the session management network element 301 determines that the first PCC rule is a multi-level PCC rule, it creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow, where the QoS flow Only bind the first PCC rule.
  • the specific implementation of this solution will be described in detail in the subsequent method embodiments, and will not be repeated here.
  • the policy control network element 302 sends the first PCC rule to the session management network element 301; the session management network element 301 receives the first PCC rule from the policy control network element 302; the session management network element 301 determines The first PCC rule needs to be bound to a separate QoS flow; the session management network element 301 creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the policy control network element 302 is configured to send the first PCC rule to the session management network element 301, and the first PCC rule includes the binding parameter.
  • the session management network element 301 is used to receive the first PCC rule from the policy control network element 302 and determine whether there is a QoS flow with the same binding parameters as the binding parameters in the first PCC rule in the existing QoS flow .
  • the session management network element 301 is also used to bind the first PCC rule to the existing QoS flow if it is determined to exist; or, if it is determined that it does not exist, create a QoS flow according to the first PCC rule, and set the first The PCC rule is bound to the created QoS flow.
  • the policy control network element 302 is configured to send the first PCC rule to the session management network element 301, and the first PCC rule includes the first binding parameter.
  • the session management network element 301 is configured to receive the first PCC rule from the policy control network element 302.
  • the session management network element 301 is also used when it is determined that the first PCC rule includes optional QoS parameter sets (alternative QoS parameter sets), and there is a second PCC among the PCC rules bound to the first QoS flow
  • the value of the first binding parameter included in the rule is the same as the value of the first binding parameter included in the first PCC rule, and the second PCC rule includes an optional QoS parameter set
  • the first PCC The rule is bound to the existing first QoS flow; or, the session management network element 301 is also used when it is determined that the first PCC rule does not include an optional QoS parameter set, and there is a PCC bound to the second QoS flow Rule
  • the value of the first binding parameter included in the third PCC rule is the same as the value of the first binding parameter included in the first PCC rule, and the third PCC rule does not include an optional QoS parameter set
  • one or more PCC rules including alternative QoS parameter sets can be regarded as PCC rules with the same binding parameters.
  • One or more PCC rules containing alternative QoS parameter sets can be regarded as PCC rules with the same binding parameters.
  • one or more PCC rules with the same binding parameters may be bound to the same QoS flow, and one or more PCC rules without the same binding parameters may not be bound to the same QoS flow. This avoids the problem of binding multi-level PCC rules and single-level PCC rules with the same binding parameters to the same QoS flow, and further avoids RAN equipment scheduling errors.
  • the communication system 30 shown in FIG. 3 can be applied to the fifth generation (5G) currently under discussion or other networks in the future, which is not specifically limited in the embodiment of the present application.
  • 5G fifth generation
  • the network element or entity corresponding to the above-mentioned session management network element 301 may be the non-roaming
  • the network element or entity corresponding to the aforementioned policy control network element 302 may be a PCF network element in the non-roaming 5G network architecture.
  • the non-roaming 5G network architecture may also include RAN equipment, UPF network elements, AMF network elements, unified data management (UDM) network elements, or authentication server function (authentication server function). , AUSF) network elements, etc., which are not specifically limited in the embodiment of this application.
  • the terminal device communicates with the AMF network element through the next generation network (next generation, N) 1 interface (referred to as N1)
  • the RAN device communicates with the AMF network element through the N2 interface (referred to as N2)
  • the RAN device communicates with the AMF network element through the N3 interface (referred to as N3)
  • UPF network element UPF network element communicates with DN through N6 interface (abbreviated as N6)
  • AMF network element communicates with SMF network element through N11 interface (abbreviated as N11)
  • AMF network element communicates with UDM network element through N8 interface (abbreviated as N8) Communication
  • AMF network element communicates with AUSF network element through N12 interface (abbreviated as N12)
  • AMF network element communicates with PCF network element through N15 interface (abbreviated as N15)
  • SMF network element communicates with PCF network element through N7 interface (abbreviated as N7)
  • the SMF network element communicates with the UPF network element through
  • control plane network elements such as AMF network elements, SMF network elements, UDM network elements, AUSF network elements, or PCF network elements in the non-roaming 5G network architecture shown in Figure 4a can also use service-oriented interfaces.
  • the service-oriented interface provided by the AMF network element can be Namf
  • the service-oriented interface provided by the SMF network element can be Nsmf
  • the service-oriented interface provided by the UDM network element can be Nudm
  • the servicing interface provided externally may be Npcf
  • the servicing interface provided externally by the AUSF network element may be Nausf.
  • 5G system architecture 5G system architecture
  • the entity may be an SMF network element in the 5G network architecture for local grooming and roaming
  • the network element or entity corresponding to the aforementioned policy control network element 302 may be a visited PCF (visited PCF, vPCF) in the 5G network architecture for local grooming and roaming. ) Network element.
  • the local groomed roaming 5G network architecture may also include RAN equipment, UPF network elements, AMF network elements, UDM network elements, home PCF (home PCF, hPCF) network elements, or AUSF network elements Etc., the embodiment of the present application does not specifically limit this.
  • UDM network elements, AUSF network elements, and hPCF network elements belong to the home public land mobile network (HPLMN); RAN equipment, AMF network elements, SMF network elements, UPF network elements, or vPCF network elements belong In the visited public land mobile network (VPLMN).
  • HPLMN home public land mobile network
  • RAN equipment, AMF network elements, SMF network elements, UPF network elements, or vPCF network elements belong In the visited public land mobile network (VPLMN).
  • terminal equipment communicates with AMF network elements through N1 interface (abbreviated as N1)
  • RAN equipment communicates with AMF network elements through N2 interface (abbreviated as N2)
  • RAN equipment communicates with UPF network elements through N3 interface (abbreviated as N3)
  • UPF network elements Communicate with DN through N6 interface (abbreviated as N6)
  • AMF network element communicates with SMF network element through N11 interface (abbreviated as N11)
  • AMF network element communicates with UDM network element through N8 interface (abbreviated as N8)
  • AMF network element through N12 interface ( N12 for short) communicates with AUSF network elements
  • AMF network elements communicate with vPCF network elements through N15 interface (N15 for short);
  • SMF network elements communicate with vPCF network elements through N7 interface (N7 for short), and vPCF network elements through N24 interface (N24 for short)
  • Communicate with hPCF network elements SMF network elements communicate with UPF network elements through
  • AMF network element, SMF network element, UDM network element, AUSF network element, vPCF network element, or hPCF network element in the local grooming roaming 5G network architecture shown in Figure 5a may also be Use service-oriented interfaces for interaction.
  • the servicing interface provided externally by AMF network elements can be Namf; the servicing interface provided externally by SMF network elements can be Nsmf; the servicing interface provided externally by UDM network elements can be Nudm; vPCF network elements
  • the service-oriented interface provided externally may be Npcf; the service-oriented interface provided externally by the hPCF network element may be Npcf; the service-oriented interface provided externally by the AUSF network element may be Nausf.
  • the visited security edge protection proxy (vSEPP) in Figure 5b is used for information filtering and policy control of the internal control plane interface of the VPLMN, as well as topology hiding, etc.;
  • the home security edge protection proxy in Figure 5b (home security edge protection proxy, hSEPP) is used for information filtering and policy control of the HPLMN internal control plane interface, as well as topology hiding, etc.;
  • vSEPP and hSEPP are connected through the N32 interface (N32 for short). All related descriptions can refer to the 5G system architecture in the 23501 standard, which is not repeated here.
  • the entity can be a home SMF (home SMF, hSMF) network element in the 5G network architecture for the home routing roaming
  • the network element or entity corresponding to the above-mentioned policy control network element 302 can be the home routing roaming in the 5G network architecture hPCF network element.
  • the home routing roaming 5G network architecture may also include RAN equipment, home UPF (home UPF, hUPF) network elements, visited UPF (visited UPF, vUPF) network elements, and visited SMF ( Visited SMF (vSMF) network element, AMF network element, UDM network element, vPCF network element, or AUSF network element, etc., which are not specifically limited in the embodiment of the present application.
  • home UPF home UPF, hUPF
  • visited UPF visitor UPF
  • vUPF Visited SMF
  • UDM network elements, AUSF network elements, hSMF network elements, hPCF network elements, or hUPF network elements belong to HPLMN; RAN equipment, AMF network elements, vSMF network elements, vUPF network elements, or vPCF network elements belong to VPLMN.
  • the terminal device communicates with the AMF network element through the N1 interface (abbreviated as N1)
  • the RAN device communicates with the AMF network element through the N2 interface (abbreviated as N2)
  • the RAN device communicates with the vUPF network element through the N3 interface (abbreviated as N3)
  • the vUPF network element Communicate with hUPF network element through N9 interface (abbreviated as N9)
  • hUPF network element communicates with DN through N6 interface (abbreviated as N6)
  • AMF network element communicates with vSMF network element through N11 interface (abbreviated as N11)
  • vSMF network element through N16 interface ( N16 for short) communicate with hSMF network element
  • AMF network element communicates with UDM network element through N8 interface (N8 for short)
  • AMF network element communicates with AUSF network element through N12 interface (N12 for short)
  • AMF network element Communicate with vPCF network
  • AMF network element vSMF network element, hSMF network element, UDM network element, AUSF network element, vPCF network element or hPCF network element in the hometown routing roaming 5G network architecture shown in Figure 6a
  • Network elements can also interact with service-oriented interfaces.
  • the servicing interface provided by the AMF network element to the outside may be Namf; the servicing interface provided by the vSMF network element to the outside may be Nvsmf; the servicing interface provided by the hSMF network element to the outside may be Nhsmf; UDM network element
  • the servicing interface provided externally can be Nudm; the servicing interface provided externally by vPCF network elements can be Nvpcf; the servicing interface provided externally by hPCF network elements can be Nhpcf; the servicing interface provided externally by AUSF network elements can be Nausf.
  • vSEPP in Figure 6b is used for information filtering and policy control of the internal control plane interface of the VPLMN, as well as topology hiding;
  • hSEPP in Figure 6b is used for information filtering and policy control of the internal control plane interface of HPLMN, and topology hiding;
  • vSEPP and hSEPP are connected through the N32 interface (N32 for short). All related descriptions can refer to the 5G system architecture in the 23501 standard, which is not repeated here.
  • the terminal device in the embodiment of the present application may be a device used to implement a wireless communication function, such as a terminal or a chip that can be used in a terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and wireless communication in a 5G network or a future evolved PLMN.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the terminal can be mobile or fixed.
  • the RAN equipment in the embodiments of the present application refers to equipment that accesses the core network, such as a base station, a broadband network gateway (BNG), an aggregation switch, and a non-third-generation partnership plan ( 3rd generation partnership project, 3GPP) access equipment, etc.
  • the base station may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, and so on.
  • the session management network element in the embodiment of the present application may also be referred to as a communication device, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application.
  • the related functions of the session management network element in the embodiment of the present application may be implemented by one device, or jointly implemented by multiple devices, or implemented by one or more functional modules in one device.
  • the embodiment does not specifically limit this. It is understandable that the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) Virtualization function.
  • FIG. 7 is a schematic structural diagram of a communication device 700 provided by an embodiment of this application.
  • the communication device 700 includes one or more processors 701, a communication line 702, and at least one communication interface (in FIG. 7 it is only an example that includes a communication interface 704 and a processor 701 as an example), optional
  • the memory 703 may also be included.
  • the processor 701 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs used to control the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 702 may include a path for connecting different components.
  • the communication interface 704 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, and wireless local area networks (WLAN).
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 704 may also be a transceiver circuit located in the processor 701 to implement signal input and signal output of the processor.
  • the memory 703 may be a device having a storage function.
  • it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 702. The memory can also be integrated with the processor.
  • the memory 703 is used to store computer-executed instructions for executing the solution of the present application, and the processor 701 controls the execution.
  • the processor 701 is configured to execute a computer-executable instruction stored in the memory 703, so as to implement the charging rule binding method provided in the embodiment of the present application.
  • the processor 701 may also perform processing related functions in the charging rule binding method provided in the following embodiments of the application, and the communication interface 704 is responsible for communicating with other devices or Network communication is not specifically limited in the embodiment of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program code, which is not specifically limited in the embodiments of the present application.
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 7.
  • the communication device 700 may include multiple processors, such as the processor 701 and the processor 708 in FIG. 7. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication device 700 may further include an output device 705 and an input device 706.
  • the output device 705 communicates with the processor 701 and can display information in a variety of ways.
  • the output device 705 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 706 communicates with the processor 701 and can receive user input in a variety of ways.
  • the input device 706 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the aforementioned communication device 700 may sometimes be referred to as a communication device, which may be a general-purpose device or a special-purpose device.
  • the communication device 700 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, the above-mentioned terminal device, the above-mentioned network device, or a picture 7 similar structure equipment.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 700.
  • the binding method includes the following steps:
  • the PCF network element sends the first PCC rule to the SMF network element.
  • the SMF network element receives the first PCC rule from the PCF network element.
  • the first PCC rule includes binding parameters, and each level of binding parameters in the binding parameters corresponds to a rank value.
  • the first PCC rule in the embodiment of the present application may be a single-level PCC rule or a multi-level PCC rule, which is not specifically limited in the embodiment of the present application.
  • the relevant description of the multi-level PCC rule can refer to the preamble part of the specific implementation manner, which is not repeated here.
  • each level of binding parameter in the binding parameter corresponds to a rank value, including: each level of binding parameter in the binding parameter includes a rank value.
  • each level of binding parameters includes rank value, 5QI and ARP respectively.
  • the PCC rule includes one or more of the following parameters, one or more of the following parameters may also be used as binding parameters: QNC, priority, average window, or MDBV.
  • the first PCC rule may include:
  • the value of the binding parameter can include:
  • each level of binding parameters in the binding parameters corresponds to a rank value, including: the first PCC rule also includes a rank value corresponding to each level of binding parameters in the binding parameters. .
  • the first PCC rule may include:
  • rank 1 i.e.highest QoS level
  • the rank value and the corresponding binding parameter value can include:
  • the single-level PCC rule may not include the rank value, which is not specifically limited in the embodiment of the present application.
  • the SMF network element determines whether there is a binding parameter under each rank value in all rank values in the PCC rules bound to the existing QoS flow with binding parameters under the same rank value in all rank values in the first PCC rule. PCC rules with the same parameters.
  • PCC rule 1 may include:
  • the value of the binding parameter can include:
  • PCC rule 2 The existing PCC rules bound to QoS flow1 include PCC rule 2, and PCC rule 2 can include:
  • the value of the binding parameter can include:
  • PCC rule 3 may include:
  • the value of the binding parameter can include:
  • PCC rule 4 may include:
  • the value of the binding parameter can include:
  • the binding parameter corresponding to rank 1 is the same as the binding parameter corresponding to rank 1 in PCC rule 1
  • the binding parameter corresponding to rank 2 is the same as the PCC rule
  • the binding parameters corresponding to rank 2 in 1 are the same, but PCC rule 2 also includes the binding parameters corresponding to rank 3, so the binding parameters under each rank value in all rank values in PCC rule 2 are the same as those in PCC rule 1.
  • the binding parameters under the same rank value in all rank values are different.
  • PCC rule 1 in the existing PCC rule 3 bound to QoS flow 2, although the binding parameter corresponding to rank 1 is the same as the binding parameter corresponding to rank 1 in PCC rule 1, PCC rule 1 also includes the binding parameter corresponding to rank 2. Therefore, the binding parameter under each rank value in all rank values in PCC rule 2 is different from the binding parameter under the same rank value in all rank values in PCC rule 1.
  • the binding parameter corresponding to rank 1 is the same as the binding parameter corresponding to rank 1 in PCC rule 1, and the binding parameter corresponding to rank 2 corresponds to rank 2 in PCC rule 1.
  • the binding parameters are the same, so the binding parameters under each rank value in all rank values in PCC rule 2 are the same as the binding parameters under the same rank value in all rank values in PCC rule 1.
  • the examples provided in this application are all illustrative examples with one QoS flow bound to one PCC rule.
  • one QoS flow can be bound to one or more PCC rules.
  • the binding parameters corresponding to each PCC rule in the multiple PCC rules are the same, therefore, in the description in the embodiment of this application, in the PCC rules bound to the existing QoS flow, the binding corresponding to a certain rank
  • the parameters are the same as or different from the binding parameters corresponding to the same rank in the first PCC rule. It can also be understood that among the existing QoS flow parameters, the binding parameters corresponding to a certain rank are bound to the binding parameters corresponding to the same rank in the first PCC rule.
  • the specified parameters are the same or different.
  • the binding parameter corresponding to rank 1 is the same as the binding parameter corresponding to rank 1 in PCC rule 1.
  • rank 1 The corresponding binding parameters are the same as the binding parameters corresponding to rank 1 in PCC rule 1. Among them, the description is also applicable to the embodiment shown in FIG.
  • step S803 is executed; For PCC rules with the same parameters, step S804 is executed.
  • S803 If it exists, the SMF network element binds the first PCC rule to the existing QoS flow.
  • the SMF network element may bind the first PCC rule to QoS flow3.
  • the specific implementation of binding the first PCC rule to QoS flow3 can refer to the existing binding mechanism, which will not be repeated here.
  • the SMF network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the SMF network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the specific implementation of binding the first PCC rule to the created QoS flow can refer to the existing binding mechanism, which will not be repeated here.
  • creating a QoS flow according to the first PCC rule may include:
  • the actions of the SMF network element in the above steps S801 to S803 or S804 can be executed by the processor 701 in the communication device 700 shown in FIG. 7 calling the application program code stored in the memory 703, and this embodiment does not do anything about this. limit.
  • the binding method includes the following steps:
  • the PCF network element sends the first PCC rule to the SMF network element.
  • the SMF network element receives the first PCC rule from the PCF network element.
  • the first PCC rule in the embodiment of the present application may be a single-level PCC rule or a multi-level PCC rule, which is not specifically limited in the embodiment of the present application.
  • the form of the first PCC rule may be the same as the form of the first PCC rule exemplified in step S801, or may be different from the form of the first PCC rule exemplified in step S801. There is no specific limitation here.
  • the SMF network element determines whether there is a PCC rule whose binding parameters for each level are the same as the binding parameters for each level in the first PCC rule in the PCC rules bound to the existing QoS flow.
  • the SMF network element determines whether there is a PCC rule whose binding parameters at each level are the same as the binding parameters at each level in the first PCC rule in the PCC rules bound to the existing QoS flow , Including: SMF network element determines whether there is a PCC rule whose corresponding maximum rank value is the same as the maximum rank value corresponding to the first PCC rule in the PCC rules bound to the existing QoS flow; if there is a maximum rank corresponding to the second PCC rule The value is the same as the maximum rank value corresponding to the first PCC rule, and the binding parameters of each level in the second PCC rule are the same as the binding parameters of each level in the first PCC rule.
  • the SMF network element determines that there is a QoS flow binding.
  • PCC rules there are PCC rules whose binding parameters for each level are the same as the binding parameters for each level in the first PCC rule; otherwise, the SMF network element determines that there is no PCC rule bound to the existing QoS flow
  • the binding parameters of each level are in turn the same PCC rules as the binding parameters of each level in the first PCC rule.
  • PCC rule 1 may include:
  • the value of the binding parameter can include:
  • PCC rule 2 The existing PCC rules bound to QoS flow1 include PCC rule 2, and PCC rule 2 can include:
  • the value of the binding parameter can include:
  • PCC rule 3 may include:
  • the value of the binding parameter can include:
  • PCC rule 4 may include:
  • the value of the binding parameter can include:
  • PCC rule bound to the existing QoS flow4 includes PCC rule 5
  • PCC rule 5 may include:
  • the value of the binding parameter can include:
  • each level of binding parameters in PCC rule 5 includes MDBV
  • each level of binding parameters in the first PCC rule does not include MDBV
  • each level of binding parameters in PCC rule 5 is consistent with that in the first PCC rule.
  • the binding parameters of each level are not the same.
  • the binding parameters of each level in PCC rule 4 are sequentially the same as the binding parameters of each level in the first PCC rule.
  • the SMF network elements may also be detected in order until the number of times reaches the maximum rank value, which is not specifically limited in the embodiment of the present application.
  • step S903 if the SMF network element determines that there is a PCC rule whose binding parameters at each level are the same as the binding parameters at each level in the first PCC rule, step S903 is performed; or, if the SMF network element It is determined that there is no PCC rule in which binding parameters of each level are sequentially the same as the binding parameters of each level in the first PCC rule, and step S904 is executed.
  • the SMF network element binds the first PCC rule to the existing QoS flow.
  • the SMF network element may bind the first PCC rule to QoS flow3.
  • the specific implementation of binding the first PCC rule to QoS flow3 can refer to the existing binding mechanism, which will not be repeated here.
  • the SMF network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the SMF network element is created according to the first PCC rule QoS flow, and bind the first PCC rule to the created QoS flow.
  • the specific implementation of binding the first PCC rule to the created QoS flow can refer to the existing binding mechanism, which will not be repeated here.
  • creating a QoS flow according to the first PCC rule may include:
  • the actions of the SMF network element in the above steps S901 to S903 or S904 can be executed by the processor 701 in the communication device 700 shown in FIG. 7 calling the application program code stored in the memory 703, and this embodiment does not do anything about this. limit.
  • the binding method includes the following steps:
  • the PCF network element sends the first PCC rule to the SMF network element.
  • the SMF network element receives the first PCC rule from the PCF network element.
  • the form of the first PCC rule may be the same as the form of the first PCC rule exemplified in step S801, or may be different from the form of the first PCC rule exemplified in step S801. There is no specific limitation here.
  • the SMF network element determines that the first PCC rule is a multi-level PCC rule.
  • the SMF network element may determine that the first PCC rule is a multi-level PCC rule through explicit or implicit indication.
  • the first PCC rule in the embodiment of the present application may include indication information, and the indication information is used to indicate that the first PCC rule is a multi-level PCC rule.
  • the SMF network element determining that the first PCC rule is a multi-level PCC rule may include: the SMF network element determines that the first PCC rule is a multi-level PCC rule according to the indication information.
  • the above indication information may be a multiple indication (multiple indication), which may be indicated by a special flag bit.
  • a 1-bit flag is set, a value of 0 means single-level indication, a value of 1 means multi-level indication; or a value of 1 means single-level indication, and a value of 0 means multi-level indication. This is not specifically limited.
  • the first PCC rule in the embodiment of the present application may include N alternative QoS parameter sets (Alternative QoS parameter sets (s)), where N is a positive integer greater than 1.
  • the SMF network element determining that the first PCC rule is a multi-level PCC rule may include: the SMF network element determines that the first PCC rule is a multi-level PCC rule according to the N candidate QoS parameter sets.
  • each candidate QoS parameter set in the embodiment of the present application may correspond to a rank value, and a rank value corresponds to a first-level binding parameter, which is explained here in a unified manner, and will not be repeated in the following.
  • the SMF network element determines that the first PCC rule is a multi-level PCC rule based on the N candidate QoS parameter sets, which may include: the SMF network element according to the N candidate QoS parameter sets corresponding to N A rank value determines that the first PCC rule is a multi-level PCC rule.
  • the SMF network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow, where the QoS flow is only bound to the first PCC rule.
  • any multi-level PCC rule sent by a PCF network element to an SMF network element is bound to a unique QoS flow, and no other PCC rules are bound to the QoS flow.
  • the SMF network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the SMF network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • each multi-level PCC rule is bound to a different QoS flow in the embodiment of this application, it avoids multi-level PCC rules with the same binding parameters.
  • the problem of binding single-level PCC rules to the same QoS flow, or binding multi-level PCC rules with the same binding parameters but different ranks to the same QoS flow, further avoids RAN equipment scheduling errors.
  • the actions of the SMF network element in the above steps S1001 to S1003 can be executed by the processor 701 in the communication device 700 shown in FIG. 7 calling the application code stored in the memory 703, and this embodiment does not impose any limitation on this.
  • the first PCC rule in the embodiments shown in FIGS. 8 to 10 may be a new PCC rule, or a PCC rule obtained by modifying an existing PCC rule, which is not specifically limited in the embodiment of this application. .
  • the binding method includes the following steps:
  • the PCF network element sends the first PCC rule to the SMF network element.
  • the SMF network element receives the first PCC rule from the PCF network element.
  • the form of the first PCC rule may be the same as the form of the first PCC rule exemplified in step S801, or may be different from the form of the first PCC rule exemplified in step S801. There is no specific limitation here.
  • the SMF network element determines that the first PCC rule needs to be bound to a separate QoS flow.
  • the SMF network element may determine that the first PCC rule needs to be bound to a separate QoS flow through explicit or implicit instructions.
  • the first PCC rule in the embodiment of this application may include indication information
  • the SMF network element determining that the first PCC rule needs to be bound to a separate QoS flow may include: SMF network element According to the instruction information, it is determined that the first PCC rule needs to be bound to a separate QoS flow.
  • the indication information may be a displayed indication information, that is, the indication information is information indicating that the first PCC rule needs to be bound to a separate QoS flow.
  • the name of the indication information may be bound to a separate QoS flow (bind to independent QoS flow or bind to separate QoS flow), and the function of the indication information may be to indicate that the PCC rule needs to be bound to a separate QoS flow (indicates the PCC rule shall be bound to an independent/separate QoS Flow).
  • the SMF network element binds the PCC rule to a separate QoS flow.
  • the indication information may be an implicit indication information.
  • the indication information may be the multiple indication in the previous embodiment, which may be indicated by a special flag bit.
  • a 1-bit flag is set, a value of 0 means single-level indication, a value of 1 means multi-level indication; or a value of 1 means single-level indication, and a value of 0 means multi-level indication.
  • the SMF network element can determine that the first PCC rule needs to be bound to a separate QoS flow according to the instruction information.
  • the SMF network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow, where the QoS flow is only bound to the first PCC rule.
  • any multi-level PCC rule sent by a PCF network element to an SMF network element is bound to a unique QoS flow, and no other PCC rules are bound to the QoS flow.
  • the SMF network element can also determine that a certain QoS flow is a separate QoS flow through the flag bit inside the SMF network element, that is, other PCC rules cannot be bound to the QoS flow, for example, the QoS flow If the flag bit is 1, other PCC rules cannot be bound to this QoS flow; for another example, the SMF network element records the QFI of a separate QoS flow, and other PCC rules cannot be bound to this QoS flow. It is explained here in a unified manner, and will not be Repeat.
  • the SMF network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the SMF network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • each multi-level PCC rule is bound to a different QoS flow in the embodiment of this application, it avoids multi-level PCC rules with the same binding parameters.
  • the problem of binding single-level PCC rules to the same QoS flow, or binding multi-level PCC rules with the same binding parameters but different ranks to the same QoS flow, further avoids RAN equipment scheduling errors.
  • the actions of the SMF network elements in the above steps S1201 to S1203 can be executed by the processor 701 in the communication device 700 shown in FIG. 7 calling the application code stored in the memory 703, and this embodiment does not impose any limitation on this.
  • Multi-access (MA) PDU session PDU session
  • GBR QoS flow there can be GBR QoS flow or non-GBR QoS flow.
  • the SMF network element issues QoS profiles (that is, 3GPP access and non-3GPP access) to the AN devices on both sides; for GBR QoS Flow, if only one access technology is allowed for GBR QoS flow, then The SMF network element only sends the QoS profile to allowed AN devices; if two access technologies are allowed, the SMF network element decides which AN device to send the QoS profile to. In other words, for GBR QoS flow, there will only be one access technology at a certain point in time.
  • the service flow required by GBR may be transmitted by QoS flow that supports MA, but it does not support MA transmission (for example, only supports 3GPP transmission); on the contrary, it may be transmitted by QoS flow that does not support MA (for example, only supports 3GPP transmission) , But it supports MA transmission. That is, SMF network elements may choose to use inappropriate access technology to transmit GBR QoS flow.
  • the binding parameter (including delay critical GBR and normal GBR) can be introduced when the resource type of 5QI in the PCC rule is GBR.
  • adding new binding parameters without introducing a new feature will complicate the binding mechanism. In this case, it can also be solved by the embodiment shown in FIG. 12.
  • the indication information in FIG. 12 may be multiple access indication (multiple access indication), which may be indicated by a special flag bit.
  • multiple access indication multiple access indication
  • a 2-bit flag bit is set, a value of 01 indicates a 3GPP single access indication, a value of 10 indicates a non-3GPP single access indication, a value of 11 indicates a multiple access indication; or a value of 1 indicates Single access indication, a value of 0 indicates multiple access indications, etc., which is not specifically limited here.
  • the network side can establish a highly reliable and low latency (ultra-reliable low latency communication, URLLC) QoS flow.
  • the SMF network element will decide whether to perform redundant transmission according to the authorized 5QI, NG-RAN capabilities and the operator's configuration.
  • the 5QI contains a QoS feature packet error rate (packet error rate, PER) that reflects the reliability required by the service.
  • 5G supports dynamic 5QI, that is, PDB, PER and other parameters allocated by the network are issued, that is, the same 5QI may have different QoS characteristics.
  • SMF network elements uniformly decide whether a QoS flow is redundantly transmitted, which may cause SMF network elements to choose inappropriate methods
  • Transmission service flow such as a service flow that does not require redundant transmission, decides to perform redundant transmission.
  • the service flow that needs redundant transmission decides to perform redundant transmission.
  • the binding parameter can be introduced when the resource type of 5QI in the PCC rule is delay critical GBR.
  • adding new binding parameters every time a new feature is introduced will cause the binding mechanism to be complicated. In this case, it can also be solved by the embodiment shown in FIG. 12.
  • the indication information in FIG. 12 may be a redundant indication, which may be indicated by a special flag bit.
  • a value of 0 means redundant indication
  • a value of 1 means non-redundant indication
  • a value of 0 means non-redundant. Instructions, etc., are not specifically limited here.
  • the network side or the RAN side can divide the end-to-end (E2E) PDB into two parts: the PDB of the UPF-RAN and the PDB of the RAN-UE.
  • the RAN can perform scheduling according to the PDB of the RAN-UE.
  • the URLLC service requires a short transmission delay, a gap of several ms transmitted in the core network has a greater impact on the RAN scheduling.
  • SMF network element selects UPF network element, it obtains the PDB of UPF-RAN according to the configuration, and sends it to the RAN equipment in the N2 session management (SM) message.
  • SM N2 session management
  • the device obtains the PDB of the RAN-UE according to the PDB of the E2E included in the QoS profile and the PDB of the UPF-RAN sent by the SMF network element.
  • the SMF network element may manage multiple PDU session anchor (PSA) UPF network elements, different service flows in the same QoS flow may be transmitted on different PSA UPF network elements.
  • PSA PDU session anchor
  • the deployment locations of different PSA UPF network elements are likely to be different, so the remaining scheduling time on the RAN device side for data packets from different PSA UPF network elements in the same QoS flow is different, but the RAN device cannot distinguish the same according to the existing technology. Data packets from different PSA UPF network elements in the QoS flow. At this time, it can also be solved by the embodiment shown in FIG. 12.
  • the network side may need to provide QoS monitoring services, that is, the network monitors whether the QoS of these services can currently be satisfied by the network.
  • the network side may monitor the granularity of QoS flow, that is, some service flows in a QoS flow may need to be reported, while others do not need to be reported. At this time, it can also be solved by the embodiment shown in FIG. 12.
  • TSC time-sensitive communication
  • TSCAI assistance information
  • the RAN device performs QoS control at the granularity of QoS flow.
  • QoS flows are distinguished from each other by parameters such as 5QI and ARP. That is, different services in a certain QoS flow may have different flow direction, periodicity, burst arrival time, burst size, etc., and RAN equipment cannot distinguish between them. RAN equipment may perform wrong scheduling.
  • each index represents the value of a determined parameter in the TSCAI, and the index is used as the binding parameter.
  • adding new binding parameters every time a new feature is introduced will cause the binding mechanism to be complicated. In this case, it can also be solved by the embodiment shown in FIG. 12.
  • delayed packet discarding For the QoS flow of the 5QI resource type of delay critical GBR, a parameter will be introduced for the delayed packet discarding flag (delayed packet discarding), which instructs the RAN device to discard the transmission delay in the QoS flow that exceeds the PDB. data pack.
  • the RAN device when it performs QoS control, it uses QoS flow as the granularity.
  • QoS flows are distinguished from each other by parameters such as 5QI and ARP. That is, different services in a certain QoS flow may have different packet loss requirements, and RAN devices cannot distinguish them, and RAN devices may perform incorrect scheduling. .
  • the PCF network element determines that the conditions for adding the instruction information in step S1202 to the first PCC rule may include one or more of the following:
  • the first PCC rule is a multi-level PCC rule
  • the service corresponding to the first PCC rule supports multiple access
  • the service corresponding to the first PCC rule is URLLC service (for example, the resource type of 5QI is delay critical GBR);
  • the service corresponding to the first PCC rule requires redundant transmission (for example, PER is less than a certain limit value);
  • the data network access identifier (DNAI) of the first PCC rule is different from the DNAI of other existing PCC rules (within the current PDU session);
  • the PER of the first PCC rule is different from the PER of other existing PCC rules (within the current PDU session);
  • the PDB of the first PCC rule is different from the PDB of other existing PCC rules (within the current PDU session); the first PCC rule will be bound to the existing QoS Flow according to the existing binding parameters;
  • the service corresponding to the first PCC rule requires special radio access technology (RAT), such as evolved universal terrestrial radio access network (E-UTRAN);
  • RAT radio access technology
  • E-UTRAN evolved universal terrestrial radio access network
  • the maximum bit rate of the first PCC rule is greater than the guaranteed bit rate
  • the service corresponding to the first PCC rule requires QoS detection
  • the resource type of 5QI in the first PCC rule is delay critical GBR
  • the transmission delay of the data packet of the service corresponding to the first PCC rule exceeds the PDB and needs to be discarded;
  • the service corresponding to the first PCC rule is a delay-sensitive service (which may be embodied as the PCC rule containing TSCAI related information).
  • the attributes of the PCC rules can also be said to be the attributes of the services corresponding to the PCC rules, and vice versa.
  • the service corresponding to the above-mentioned first PCC rule supporting multiple access can also be referred to as the first PCC rule supporting multiple access, which is described here in a unified manner, and will not be repeated in the following.
  • the indication information in step S1202 may also be any one of the following:
  • the indication information is that the first PCC rule is a multi-level PCC rule.
  • the indication information is that the service corresponding to the first PCC rule supports multi-access (it can be embodied in that the PCC rule includes MA PDU session control, and multi-access PDU session control related information, such as steering mode).
  • the indication information is that the service corresponding to the first PCC rule is a URLLC service.
  • the indication information indicates that the service corresponding to the first PCC rule requires redundant transmission.
  • the indication information is that the DNAI of the first PCC rule is different from other DNAIs in the current session.
  • the indication information is that the PER of the first PCC rule is different from other PERs in the current session.
  • the indication information is that the service corresponding to the first PCC rule requires the first RAT.
  • the indication information is that the service corresponding to the first PCC rule requires QoS monitoring.
  • the indication information is that the resource type of the 5QI in the first PCC rule is delay critical GBR.
  • the indication information is that the transmission delay of the data packet of the service corresponding to the first PCC rule exceeds the PDB and needs to be discarded.
  • the indication information is that the maximum bit rate of the first PCC rule is greater than the guaranteed bit rate.
  • the indication information is that the service corresponding to the first PCC rule is a delay-sensitive service (it may be embodied as the PCC rule contains TSCAI related information).
  • the PCF network element may also determine whether to add the instruction information in step S1202 to the first PCC rule based on other information, and the content of the instruction information may also be other, which is not specifically limited in the embodiment of the present application.
  • FIG. 8 to FIG. 10 are all described by taking the communication system shown in FIG. 3 applied to the 5G network architecture in the non-roaming scenario shown in FIG. 4a or FIG. 4b as an example. If the communication system shown in FIG. 3 is applied to the local grooming roaming 5G network architecture shown in FIG. 5a or FIG. 5b as an example, or the communication system shown in FIG. 3 is applied as shown in FIG. 6a or FIG. 6b
  • the hometown routing roaming 5G network architecture is taken as an example for description.
  • the corresponding charging rule binding method is similar to the method in the foregoing embodiment, and only the relevant network elements need to be adaptively replaced, which will not be repeated here.
  • the binding method includes the following steps:
  • the PCF network element sends the first PCC rule to the SMF network element.
  • the SMF network element receives the first PCC rule from the PCF network element.
  • the first PCC rule in the embodiment of the present application may be a single-level PCC rule or a multi-level PCC rule, which is not specifically limited in the embodiment of the present application.
  • the QoS parameters in the multi-level PCC rules are divided into a policy control (policy control) part and an optional QoS parameter set (alternative QoS parameter sets) part.
  • policy control policy control
  • optional QoS parameter set alternative QoS parameter sets
  • the multi-level PCC rule includes two parts, one part is the policy control part. The other part is the optional QoS parameter set (alternative QoS parameter sets) part.
  • the policy control part is the current QoS parameters that need to be used;
  • the alternative QoS parameter sets part is the QoS parameters that may be used in the future according to the resource conditions of the RAN equipment.
  • the form of the first PCC rule may be the same as the form of the first PCC rule exemplified in step S801, or may be different from the form of the first PCC rule exemplified in step S801. There is no specific limitation here.
  • the SMF network element determines whether there is a QoS flow whose binding parameters are the same as the binding parameters in the first PCC rule in the existing QoS flow.
  • the binding parameters in the first PCC rule may include some parameters in the alternative QoS parameter sets, such as 5QI; or, the binding parameters in the first PCC rule may include alternative QoS parameter sets. All parameters in the part, that is, all parameters in the alternative QoS parameter sets part, can be used as binding parameters of the first PCC rule, which is not specifically limited in the embodiment of the present application.
  • PCC rule 1 may include:
  • the value of the binding parameter can include:
  • the value of the binding parameter can include:
  • the SMF network element determines whether there is a QoS flow with the same binding parameters as the binding parameters in the first PCC rule in the existing QoS flow, including: the SMF network element determines the existing QoS flow In the PCC rule bound to the flow, if there is a binding parameter in the policy control part of the second PCC rule, the value of the binding parameter in the policy control part of the first PCC rule is the same, and in the second PCC rule The value of the binding parameter in the alternative QoS parameter sets part of the first PCC rule is the same as the value of the binding parameter in the alternative QoS parameter sets part of the first PCC rule.
  • the SMF network element determines that in the existing QoS flow, there is a binding parameter with the first PCC
  • the binding parameters in the rule are all the same QoS flow; otherwise, the SMF network element determines that in the existing QoS flow, there is no QoS flow whose binding parameters are the same as the binding parameters in the first PCC rule.
  • the QoS flow with the same binding parameters as the binding parameters in the first PCC rule needs to meet: the binding parameters in the policy control part are consistent and the binding parameters in the alternative QoS parameter set part The same, but the order of the binding parameters in the alternative QoS parameter sets part in the PCC rules can be inconsistent, and it is explained here in a unified manner and will not be repeated here.
  • PCC rule 2 may include:
  • the value of the binding parameter can include:
  • the value of the binding parameter can include:
  • PCC rule 3 may include:
  • the value of the binding parameter can include:
  • the value of the binding parameter can include:
  • the SMF network element can determine that the binding parameters of the existing QoS flow1 are the same as the binding parameters in the first PCC rule.
  • the SMF network element can determine that the binding parameters of the existing QoS flow2 are different from the binding parameters in the first PCC rule.
  • step S1403 if the SMF network element determines that there is a QoS flow whose binding parameters are the same as the binding parameters in the first PCC rule, step S1403 is executed; or, if the SMF network element determines that there is no binding For a QoS flow whose parameters are the same as the binding parameters in the first PCC rule, step S1404 is executed.
  • the SMF network element binds the first PCC rule to the existing QoS flow.
  • the SMF network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the specific implementation of binding the first PCC rule to the created QoS flow can refer to the existing binding mechanism, which will not be repeated here.
  • alternative QoS parameter sets may also be directly used as binding parameters. That is, in the "binding parameters" part of the specific implementation section, alternative QoS parameter sets can be used as an optional binding parameter. That is, PCC rules are divided into PCC rules with alternative QoS parameter sets and PCC rules without alternative QoS parameter sets. PCC rules with alternative QoS parameter sets should not be bound in the same QoS flow with PCC rules without alternative QoS parameter sets.
  • FIG. 15 a calculation method provided in this embodiment of the application is shown.
  • the method for binding charging rules includes the following steps:
  • step S1501 is the same as step S1401 in the embodiment shown in FIG. 14.
  • step S1401 in the embodiment shown in FIG. 14.
  • the SMF network element determines that the first PCC rule includes alternative QoS parameter sets, and there are already PCC rules bound to the first QoS flow, there is the value of the first binding parameter included in the second PCC rule and the first PCC
  • the SMF network element binds the first PCC rule to the first QoS flow.
  • the first binding parameter in the embodiment of this application refers to other binding parameters other than alternative QoS parameter sets, such as 5QI, ARP, QNC, priority, average window, MDBV, etc. There is no specific limitation.
  • the SMF network element determines that the first PCC rule does not include alternative QoS parameter sets, and there is a PCC rule bound to the second QoS flow, there is the value of the first binding parameter included in the third PCC rule and the first PCC
  • the SMF network element binds the first PCC rule to the second QoS flow.
  • the SMF network element determines that there is a PCC rule bound to QoS flow, there is no difference between the value of the first binding parameter included in the PCC rule and the first binding parameter included in the first PCC rule. If the value is the same, the SMF network element creates a QoS flow according to the first PCC rule, and binds the first PCC rule to the created QoS flow.
  • the specific implementation of binding the first PCC rule to the created QoS flow can refer to the existing binding mechanism, which will not be repeated here.
  • one or more PCC rules including alternative QoS parameter sets can be regarded as PCC rules with the same binding parameters.
  • One or more PCC rules containing alternative QoS parameter sets can be regarded as PCC rules with the same binding parameters.
  • one or more PCC rules with the same binding parameters may be bound to the same QoS flow, and one or more PCC rules without the same binding parameters may not be bound to the same QoS flow. This avoids the problem of binding multi-level PCC rules and single-level PCC rules with the same binding parameters to the same QoS flow, and further avoids RAN equipment scheduling errors.
  • the methods and/or steps implemented by the session management network element can also be implemented by components (such as chips or circuits) that can be used for the session management network element; those implemented by the policy control network element
  • the methods and/or steps can also be implemented by components (such as chips or circuits) that can be used for policy control network elements.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the session management network element in the foregoing method embodiment, or a device including the foregoing session management network element, or a component that can be used for the session management network element; or, the communication device may be the session management network element in the foregoing method embodiment
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 11 shows a schematic structural diagram of a session management network element 110.
  • the session management network element 110 includes a transceiver module 1101 and a processing module 1102.
  • the transceiver module 1101 may also be referred to as a transceiver unit to implement a transceiver function, and may be, for example, a transceiver circuit, transceiver, transceiver or communication interface.
  • the transceiver module 1101 is configured to receive the first PCC rule from the policy control network element, the first PCC rule includes binding parameters, and each level of binding parameters in the binding parameters corresponds to a rank Value; processing module 1102, used to determine whether there is a binding parameter under each rank value in all rank values in the PCC rules bound to the existing QoS flow and the same rank value in all rank values in the first PCC rule The binding parameters under the PCC rules are the same; the processing module 1102 is also used to bind the first PCC rule to the existing QoS flow if it exists; or the processing module 1102 is also used to bind the first PCC rule to the existing QoS flow if it does not exist.
  • the PCC rule creates a QoS flow, and binds the first PCC rule to the created QoS flow.
  • a rank value corresponding to each level of binding parameter in the binding parameter includes: each level of binding parameter in the binding parameter includes a rank value.
  • each level of binding parameter in the binding parameter corresponds to a rank value
  • the first PCC rule further includes a rank value corresponding to each level of binding parameter in the binding parameter.
  • the transceiver module 1101 is used to receive the first PCC rule from the policy control network element; the processing module 1102 is used to determine whether there is a binding for each level of the PCC rules bound to the existing QoS flow. PCC rules whose parameters are the same as the binding parameters of each level in the first PCC rule; the processing module 1102 is also used to bind the first PCC rule to the existing QoS flow if it exists; or, the processing module 1102, It is also used to create a QoS flow according to the first PCC rule if it does not exist, and bind the first PCC rule to the created QoS flow.
  • the processing module 1102 is used to determine whether there is a PCC rule whose binding parameters at each level are the same as the binding parameters at each level in the first PCC rule in the PCC rules bound to the existing QoS flow, including: processing Module 1102, used to determine whether there is a PCC rule whose corresponding maximum rank value is the same as the maximum rank value corresponding to the first PCC rule in the PCC rules bound to the existing QoS flow; if there is a maximum rank value corresponding to the second PCC rule The maximum rank value corresponding to the first PCC rule is the same, and the binding parameters of each level in the second PCC rule are the same as the binding parameters of each level in the first PCC rule.
  • the binding parameters of each level are the same as the binding parameters of each level in the first PCC rule; otherwise, it is determined that there is no binding parameter of each level in the PCC rule bound to the existing QoS flow.
  • the transceiver module 1101 is used to receive the first PCC rule from the policy control network element; the processing module 1102 is used to determine that the first PCC rule is a multi-level PCC rule; the processing module 1102 is also used Create a QoS flow according to the first PCC rule, and bind the first PCC rule to the created QoS flow, where the QoS flow is only bound to the first PCC rule.
  • the first PCC rule includes indication information, the indication information is used to indicate that the first PCC rule is a multi-level PCC rule; the processing module 1102 is configured to determine that the first PCC rule is a multi-level PCC rule, and includes: a processing module 1102, It is used to determine that the first PCC rule is a multi-level PCC rule according to the instruction information.
  • the first PCC rule includes N candidate QoS parameter sets, and N is a positive integer greater than 1.
  • the processing module 1102 is configured to determine that the first PCC rule is a multi-level PCC rule, and includes: a processing module 1102, It is used to determine that the first PCC rule is a multi-level PCC rule according to the N candidate QoS parameter sets.
  • the transceiver module 1101 is used to receive the first PCC rule from the policy control network element; the processing module 1102 is used to determine that the first PCC rule needs to be bound to a separate QoS flow; the processing module 1102 It is also used to create a QoS flow according to the first PCC rule, and bind the first PCC rule to the created QoS flow.
  • the first PCC rule includes instruction information; a processing module 1102, used to determine that the first PCC rule needs to be bound to a separate QoS flow, includes: a processing module 1102, used to determine the first PCC rule according to the instruction information Need to be bound to a separate QoS flow.
  • the transceiver module 1101 is configured to receive the first PCC rule from the policy control network element, and the first PCC rule includes binding parameters; the processing module 1102 is configured to determine the existing QoS flow, Whether there is a QoS flow whose binding parameters are the same as the binding parameters in the first PCC rule. The processing module 1102 is also used to bind the first PCC rule to an existing QoS flow if it exists; or, the processing module 1102 is also used to create a QoS flow according to the first PCC rule if it does not exist, and set the first PCC rule The rule is bound to the created QoS flow.
  • the processing module 1102 is configured to determine whether there is a QoS flow whose binding parameters are the same as those in the first PCC rule in the existing QoS flow, including: the processing module 1102 is used for determining In the PCC rules bound to the existing QoS flow, the value of the binding parameter of the policy control part in the second PCC rule is the same as the value of the binding parameter of the policy control part in the first PCC rule, and the second PCC
  • the binding parameter value of the optional QoS parameter set part of the rule is the same as the binding parameter value of the optional QoS parameter set part of the first PCC rule, it is determined that there is a binding in the existing quality of service flow QoS flow QoS flow with the same parameters as the binding parameters in the first PCC rule.
  • the transceiver module 1101 is configured to receive the first PCC rule from the policy control network element, and the first PCC rule includes the first binding parameter; the processing module 1102 is configured to determine the first PCC The rule includes an optional QoS parameter set, and among the PCC rules bound to the first QoS flow, there is a difference between the value of the first binding parameter included in the second PCC rule and the first binding parameter included in the first PCC rule When the values are the same and the second PCC rule includes the optional QoS parameter set, bind the first PCC rule to the existing first QoS flow; or, the processing module 1102 is used to determine that the first PCC rule does not include the optional QoS parameter set, and there is a PCC rule bound to the second QoS flow, the value of the first binding parameter included in the third PCC rule is the same as the value of the first binding parameter included in the first PCC rule, and When the optional QoS parameter set is not included in the three PCC rules, bind the first PCC rule to
  • the session management network element 110 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the session management network element 110 may take the form of the communication device 700 shown in FIG. 7.
  • the processor 701 in the communication device 700 shown in FIG. 7 may invoke the computer execution instruction stored in the memory 703 to cause the communication device 700 to execute the charging rule binding method in the foregoing method embodiment.
  • the functions/implementation process of the transceiver module 1101 and the processing module 1102 in FIG. 11 may be implemented by the processor 701 in the communication device 700 shown in FIG. 7 calling a computer execution instruction stored in the memory 703.
  • the function/implementation process of the processing module 1102 in FIG. 11 can be implemented by the processor 701 in the communication device 700 shown in FIG. 7 calling a computer execution instruction stored in the memory 703, and the function of the transceiver module 1101 in FIG. 11 /The realization process can be realized through the communication interface 704 in the communication device 700 shown in FIG. 7.
  • the session management network element 110 provided in this embodiment can perform the above-mentioned charging rule binding method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • FIG. 13 shows a schematic structural diagram of a policy control network element 130.
  • the policy control network element 130 includes a transceiver module 1301 and a processing module 1302.
  • the transceiver module 1301 may also be referred to as a transceiver unit to implement a transceiver function, for example, it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module 1302 is used to determine that the first PCC rule needs to be bound to a separate QoS flow; the transceiver module 1301 is used to send the first PCC rule to the session management network element, and the first PCC rule includes indication information.
  • the indication information is used to indicate that the first PCC rule needs to be bound to a separate QoS flow.
  • the processing module 1302 is configured to determine that the first PCC rule needs to be bound to a separate QoS flow, including:
  • the processing module 1302 is configured to determine that the first PCC rule needs to be bound to a separate QoS flow when one or more of the following conditions are met:
  • the first PCC rule is a multi-level PCC rule
  • the service corresponding to the first PCC rule supports multiple access
  • the business corresponding to the first PCC rule is the URLLC business
  • the business corresponding to the first PCC rule requires redundant transmission
  • the DNAI of the first PCC rule is different from other DNAIs in the current session
  • the PER of the first PCC rule is different from other PERs in the current session
  • the service corresponding to the first PCC rule requires the first radio access technology RAT.
  • the maximum bit rate of the first PCC rule is greater than the guaranteed bit rate
  • the service corresponding to the first PCC rule requires QoS detection
  • the transmission delay of the service data packet corresponding to the first PCC rule exceeds the PDB and needs to be discarded;
  • the resource type of 5QI in the first PCC rule is delay critical GBR;
  • the business corresponding to the first PCC rule is a delay-sensitive business.
  • the policy control network element 130 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the policy control network element 130 may take the form of the communication device 700 shown in FIG. 7.
  • the processor 701 in the communication device 700 shown in FIG. 7 may invoke the computer execution instruction stored in the memory 703 to cause the communication device 700 to execute the charging rule binding method in the foregoing method embodiment.
  • the functions/implementation process of the transceiver module 1301 and the processing module 1302 in FIG. 13 may be implemented by the processor 701 in the communication device 700 shown in FIG. 7 calling a computer execution instruction stored in the memory 703.
  • the function/implementation process of the processing module 1302 in FIG. 13 can be implemented by the processor 701 in the communication device 700 shown in FIG. 7 calling a computer execution instruction stored in the memory 703, and the function of the transceiver module 1301 in FIG. /The realization process can be realized through the communication interface 704 in the communication device 700 shown in FIG. 7.
  • the policy control network element 130 provided in this embodiment can perform the above-mentioned charging rule binding method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • one or more of the above modules or units can be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built in SoC (system on chip) or ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • the processor's internal processing is used to execute software instructions for calculations or processing, and may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be a CPU, a microprocessor, a digital signal processing (digital signal processing, DSP) chip, a microcontroller unit (MCU), an artificial intelligence processor, an ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • an artificial intelligence processor an ASIC
  • Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供计费规则绑定的方法、设备及系统,用于解决现有技术中具有相同绑定参数的PCC规则会绑定到同一QoS flow所导致的RAN设备调度错误的问题。方法包括:会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则,该第一PCC规则中包括绑定参数,该绑定参数中的每级绑定参数分别对应一个排序等级值;会话管理网元确定已有服务质量流QoS flow绑定的PCC规则中,是否存在所有rank值中的每个rank值下的绑定参数与该第一PCC规则中的所有rank值中相同rank值下的绑定参数均相同的PCC规则;若存在,会话管理网元将该第一PCC规则绑定至该已有QoS flow;或者,若不存在,会话管理网元根据该第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow。

Description

计费规则绑定的方法、设备及系统
本申请要求于2019年03月28日提交国家知识产权局、申请号为201910242394.4、申请名称为“计费规则绑定的方法、设备及系统”,以及于2019年06月14日提交国家知识产权局、申请号为201910517306.7、申请名称为“计费规则绑定的方法、设备及系统”,以及于2019年11月08日提交国家知识产权局、申请号为201911086724.1、申请名称为“计费规则绑定的方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及计费规则绑定的方法、设备及系统。
背景技术
绑定机制是将服务数据流(在策略和计费控制(policy and charging control,PCC)规则中通过业务数据流(service data flow,SDF)模板定义)与传输服务数据流的服务质量(quality of service,QoS)流相关联的过程(英文:The binding mechanism is the procedure that associates a service data flow(defined in a PCC rule by means of the SDF template),to the QoS Flow deemed to transport the service data flow)。现有的绑定机制包括下述三个步骤:
第一步,会话绑定(session binding),即将应用功能(application function,AF)会话(session)和分组数据单元(packet data unit,PDU)会话做一一对应,具体可参考现有的实现方式,在此不再赘述。
第二步,PCC规则授权(PCC rule authorization),由策略控制功能(policy control function,PCF)网元来执行,对PCC规则做授权,为PCC规则分配QoS参数,具体可参考现有的实现方式,在此不再赘述。
第三步,QoS流绑定(QoS flow binding),即将PCC规则与PDU会话内的QoS flow进行关联。使用以下绑定参数执行绑定(英文:QoS flow binding is the association of a PCC rule to a QoS Flow within a PDU Session.The binding is performed using the following binding parameters):第五代(5rd generation,5G)QoS标识(5G QoS identifier,5QI)和分配和预留优先级(allocation and retention priority,ARP)。或者,可选的,若PCC规则中包括以下参数中的一个或多个,则以下参数中的一个或多个也可以作为绑定参数:QoS通知控制(QoS notification control,QNC)、优先级(priority level)、平均窗口(averaging window)或者最大数据突发量(maximum data burst volume,MDBV)。当然,上述的优先级、平均窗口或最大数据突发量也可以是上述5QI对应的QoS属性中的参数,在此不作具体限定。
依照现有技术,具有上述相同绑定参数的PCC规则会绑定到同一QoS flow中,这就导致具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,从而导致无线接入网(radio access network,RAN)设备调度错误。
发明内容
本申请实施例提供计费规则绑定的方法、设备及系统,用于解决现有技术中具有相同绑定参数的PCC规则会绑定到同一QoS flow所导致的RAN设备调度错误的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种计费规则绑定的方法,该方法包括:会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则;会话管理网元确定该第一PCC规则为多级PCC规则;会话管理网元根据该第一PCC规则创建服务质量流QoS flow,并将该第一PCC规则绑定至创建的QoS flow,其中,该QoS flow仅绑定该第一PCC规则。基于该方案,由于本申请实施例中,每个多级PCC规则分别绑定至不同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,或者具有相同绑定参数但是排序等级不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
在一种可能的设计中,该第一PCC规则中包括指示信息,该指示信息用于指示该第一PCC规则为多级PCC规则;会话管理网元确定该第一PCC规则为多级PCC规则,包括:会话管理网元根据该指示信息,确定该第一PCC规则为多级PCC规则。基于该方案,会话管理网元可以确定第一PCC规则为多级PCC规则。
在一种可能的设计中,该第一PCC规则中包括N个备选QoS参数集合,N为大于1的正整数;会话管理网元确定该第一PCC规则为多级PCC规则,包括:会话管理网元根据该N个备选QoS参数集合,确定该第一PCC规则为多级PCC规则。基于该方案,会话管理网元可以确定第一PCC规则为多级PCC规则。
第二方面,提供了一种计费规则绑定的方法,该方法包括:会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则,该第一PCC规则中包括绑定参数,该绑定参数中的每级绑定参数分别对应一个排序等级值;会话管理网元确定已有服务质量流QoS flow绑定的PCC规则中,是否存在所有排序等级值中的每个排序等级值下的绑定参数与该第一PCC规则中的所有排序等级值中相同排序等级值下的绑定参数均相同的PCC规则;若存在,会话管理网元将该第一PCC规则绑定至该已有QoS flow;或者,若不存在,会话管理网元根据该第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow。基于该方案,由于本申请实施例中,只有所有排序等级值中的每个排序等级值下的绑定参数均相同的PCC规则才可以绑定至相同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,或者具有相同绑定参数但是排序等级不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
在一种可能的设计中,该绑定参数中的每级绑定参数分别对应的一个排序等级值,包括:该绑定参数中的每级绑定参数中分别包括一个排序等级值。
在一种可能的设计中,该绑定参数中的每级绑定参数分别对应一个排序等级值,包括:该第一PCC规则中还包括与该绑定参数中的每级绑定参数分别对应的排序等级值。
第三方面,提供了一种计费规则绑定的方法,该方法包括:会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则;会话管理网元确定已有服务质量流QoS flow绑定的PCC规则中,是否存在每级绑定参数依次与该第一PCC规则中的每 级绑定参数均相同的PCC规则;若存在,会话管理网元将该第一PCC规则绑定至该已有QoS flow;或者,若不存在,会话管理网元根据该第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow。基于该方案,由于本申请实施例中,只有每级绑定参数均相同的PCC规则才可以绑定至相同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,或者具有相同绑定参数但是排序等级不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
在一种可能的设计中,会话管理网元确定已有QoS flow绑定的PCC规则中,是否存在每级绑定参数依次与该第一PCC规则中的每级绑定参数均相同的PCC规则,包括:会话管理网元确定已有QoS flow绑定的PCC规则中,是否存在对应的最大排序等级值与该第一PCC规则对应的最大排序等级值相同的PCC规则;若存在第二PCC规则对应的最大排序等级值与该第一PCC规则对应的最大排序等级值相同,且该第二PCC规则中的每级绑定参数依次与该第一PCC规则中的每级绑定参数均相同,该会话管理网元确定已有QoS flow绑定的PCC规则中,存在每级绑定参数依次与该第一PCC规则中的每级绑定参数均相同的PCC规则;否则,该会话管理网元确定已有QoS flow绑定的PCC规则中,不存在每级绑定参数依次与该第一PCC规则中的每级绑定参数均相同的PCC规则。基于该方案,会话管理网元可以确定出已有QoS flow绑定的PCC规则中,是否存在每级绑定参数依次与该第一PCC规则中的每级绑定参数均相同的PCC规则。
第四方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面或第二方面或第三方面或下述第十三方面或下述第十七方面或下述第二十方面中的会话管理网元,或者包含该会话管理网元的装置;或者,该通信装置可以为下述第十四方面中的策略控制网元,或者包含该策略控制网元的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第五方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述第一方面所述的方法。该通信装置可以为上述第一方面或第二方面或第三方面或下述第十三方面或下述第十七方面或下述第二十方面中的会话管理网元,或者包含该会话管理网元的装置;或者,该通信装置可以为下述第十四方面中的策略控制网元,或者包含该策略控制网元的装置。
第六方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第一方面或第二方面或第三方面所述的方法。该通信装置可以为上述第一方面或第二方面或第三方面或下述第十三方面或下述第十七方面或下述第二十方面中的会话管理网元,或者包含该会话管理网元的装置;或者,该通信装置可以为下述第十四方面中的策略控制网元,或者包含该策略控制网元的装置。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指 令,当其在计算机上运行时,使得计算机可以执行上述第一方面或第二方面或第三方面或下述第十三方面或第十四方面或下述第十七方面或下述第二十方面所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面或第二方面或第三方面或下述第十三方面或第十四方面或下述第十七方面或下述第二十方面所述的方法。
第九方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述第一方面或第二方面或第三方面或下述第十三方面或第十四方面或下述第十七方面或下述第二十方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第四方面至第九方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面或第三方面或下述第十三方面或第十四方面或下述第十七方面或下述第二十方面中不同设计方式所带来的技术效果,此处不再赘述。
第十方面,提供一种通信系统,该通信系统包括策略控制网元和会话管理网元。其中,策略控制网元,用于向会话管理网元发送第一PCC规则。会话管理网元,用于接收来自策略控制网元的第一PCC规则。会话管理网元,还用于在确定该第一PCC规则为多级PCC规则之后,根据该第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow,其中,该QoS flow仅绑定第一PCC规则。其中,第十方面的技术效果可参考上述第一方面,在此不再赘述。
第十一方面,提供一种通信系统,该通信系统包括策略控制网元和会话管理网元。其中,策略控制网元,用于向会话管理网元发送第一PCC规则。会话管理网元,用于接收来自策略控制网元的第一PCC规则。其中,该第一PCC规则包括绑定参数,该绑定参数中的每级绑定参数分别对应一个rank值。进而,会话管理网元,还用于确定已有QoS flow绑定的PCC规则中,是否存在所有rank值中的每个rank值下的绑定参数与第一PCC规则中的所有rank值中相同rank值下的绑定参数均相同的PCC规则;若存在,会话管理网元,还用于将第一PCC规则绑定至已有QoS flow;若不存在,会话管理网元,还用于根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。其中,第十一方面的技术效果可参考上述第二方面,在此不再赘述。
第十二方面,提供一种通信系统,该通信系统包括策略控制网元和会话管理网元。其中,策略控制网元,用于向会话管理网元发送第一PCC规则。会话管理网元,用于接收来自策略控制网元的第一PCC规则。会话管理网元,还用于确定已有QoS flow绑定的PCC规则中,是否存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则;若存在,会话管理网元,还用于将第一PCC规则绑定至已有QoS flow;若不存在,会话管理网元,还用于根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。其中,第十二方面的技术效果可参考上述第三方面,在此不再赘述。
第十三方面,提供了一种计费规则绑定的方法,该方法包括:会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则;会话管理网元确定该第一PCC规则需要绑定到单独的服务质量流QoS flow;会话管理网元根据该第一PCC规则创建 QoS flow,并将该第一PCC规则绑定至创建的QoS flow。基于该方案,由于本申请实施例中,每个多级PCC规则分别绑定至不同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,或者具有相同绑定参数但是排序等级不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
在一种可能的设计中,该第一PCC规则中包括指示信息;会话管理网元确定该第一PCC规则需要绑定到单独的QoS flow,包括:会话管理网元根据该指示信息,确定该第一PCC规则需要绑定到单独的QoS flow。基于该方案,会话管理网元可以确定该第一PCC规则需要绑定到单独的QoS flow。
在一种可能的设计中,该指示信息为以下任意之一;该指示信息为指示该第一PCC规则需要绑定到单独的QoS flow的信息;该指示信息为该第一PCC规则为多级PCC规则;该指示信息为该第一PCC规则对应的业务支持多接入;该指示信息为该第一PCC规则对应的业务是高可靠低时延URLLC业务;该指示信息为该第一PCC规则对应的业务需要冗余传输;该指示信息为该第一PCC规则的数据网络接入标识DNAI与当前会话之内的其他DNAI不同;该指示信息为该第一PCC规则的包错误率PER与当前会话之内的其他PER不同;该指示信息为该第一PCC规则对应的业务需要第一无线接入技术RAT;该指示信息为该第一PCC规则对应的业务需要QoS监测;该指示信息为该第一PCC规则的最大比特率大于保证比特率;该指示信息为该第一PCC规则对应的业务的数据包的传输时延超过包延时估算PDB,需要丢弃;或者,该指示信息为该第一PCC规则中的第五代服务质量标识5QI的资源类型为延迟重要保证比特率GBR;或者,该指示信息为该第一PCC规则对应的业务是时延敏感业务。
在一种可能的设计中,该QoS flow仅绑定该第一PCC规则。
在一种可能的设计中,该QoS flow仅绑定该第一PCC规则,包括:会话管理网元根据该会话管理网元内部的标志位确定第二PCC规则不能绑定到该QoS flow。
第十四方面,提供了一种计费规则绑定的方法,该方法包括:策略控制网元确定第一PCC规则需要绑定到单独的服务质量流QoS flow;策略控制网元向会话管理网元发送该第一PCC规则,该第一PCC规则中包括指示信息,该指示信息用于指示该第一PCC规则需要绑定到单独的QoS flow。基于该方案,由于本申请实施例中,每个多级PCC规则分别绑定至不同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,或者具有相同绑定参数但是排序等级不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
在一种可能的设计中,该策略控制网元确定第一PCC规则需要绑定到单独的QoS flow,包括:在以下条件中的一个或多个满足时,该策略控制网元确定该第一PCC规则需要绑定到单独的QoS flow:当需要保证第一PCC规则的QoS流没有绑定其他PCC规则时;该第一PCC规则是多级PCC规则;该第一PCC规则对应的业务支持多接入;该第一PCC规则对应的业务是高可靠低时延URLLC业务;该第一PCC规则对应的业务需要冗余传输;该第一PCC规则的数据网络接入标识DNAI与当前会话之内的其他DNAI不同;该第一PCC规则的包错误率PER与当前会话之内的其他PER不同;该 第一PCC规则对应的业务需要第一无线接入技术RAT;该第一PCC规则的最大比特率大于保证比特率;第一PCC规则中的5QI的资源类型为延迟重要保证比特率GBR;该第一PCC规则对应的业务需要QoS检测;该第一PCC规则对应的业务的数据包的传输时延超过包延时估算PDB,需要丢弃;以及,该第一PCC规则对应的业务是时延敏感业务。
第十五方面,提供了一种通信方法,包括:策略控制网元向会话管理网元发送第一策略与计费控制PCC规则;会话管理网元接收来自该策略控制网元的该第一PCC规则;会话管理网元确定该第一PCC规则需要绑定到单独的服务质量流QoS flow;会话管理网元根据该第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow。其中,第十五方面的技术效果可参考上述第十三方面,在此不再赘述。
第十六方面,提供了一种通信系统,该通信系统包括:会话管理网元和策略控制网元;该策略控制网元,用于向会话管理网元发送第一策略与计费控制PCC规则;该会话管理网元,用于接收来自该策略控制网元的该第一PCC规则;该会话管理网元,还用于确定该第一PCC规则需要绑定到单独的服务质量流QoS flow;该会话管理网元,还用于根据该第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow。其中,第十六方面的技术效果可参考上述第十三方面,在此不再赘述。
第十七方面,提供了一种计费规则绑定的方法,该方法包括:会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则,该第一PCC规则中包括绑定参数;会话管理网元确定已有服务质量流QoS flow中,是否存在绑定参数与该第一PCC规则中的绑定参数均相同的QoS flow;若存在,该会话管理网元将该第一PCC规则绑定至该已有QoS flow;或者,若不存在,该会话管理网元根据该第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow。基于本申请实施例提供的计费规则绑定的方法,由于本申请实施例中,只有绑定参数均相同的PCC规则才可以绑定至相同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
在一种可能的设计中,会话管理网元确定已有QoS flow中,是否存在绑定参数与该第一PCC规则中的绑定参数均相同的QoS flow,包括:当该会话管理网元确定已有QoS flow绑定的PCC规则中,存在第二PCC规则中的策略控制部分的绑定参数的值与该第一PCC规则中的策略控制部分的绑定参数的值均相同,且该第二PCC规则中的可选QoS参数集合部分的绑定参数的值与该第一PCC规则的可选QoS参数集合部分的绑定参数的值均相同时,该会话管理网元确定已有服务质量流QoS flow中,存在绑定参数与该第一PCC规则中的绑定参数均相同的QoS flow。
在一种可能的设计中,本申请实施例中的绑定参数包括可选QoS参数集合。
第十八方面,提供了一种通信方法,该通信方法包括:策略控制网元向会话管理网元发送第一策略与计费控制PCC规则,该第一PCC规则中包括绑定参数;会话管理网元接收来自策略控制网元的第一PCC规则,并确定已有服务质量流QoS flow中,是否存在绑定参数与该第一PCC规则中的绑定参数均相同的QoS flow;若存在,该会话管理网元将该第一PCC规则绑定至该已有QoS flow;或者,若不存在,该会话管理网元根据该第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow。 其中,第十八方面的技术效果可参考上述第十七方面,在此不再赘述。
第十九方面,提供了一种通信系统,该通信系统包括策略控制网元和会话管理网元;其中,策略控制网元,用于向会话管理网元发送第一策略与计费控制PCC规则,该第一PCC规则中包括绑定参数;会话管理网元,用于接收来自策略控制网元的第一PCC规则,并确定已有服务质量流QoS flow中,是否存在绑定参数与该第一PCC规则中的绑定参数均相同的QoS flow;会话管理网元,还用于若存在,将该第一PCC规则绑定至该已有QoS flow;或者,若不存在,根据该第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow。其中,第十九方面的技术效果可参考上述第十七方面,在此不再赘述。
第二十方面,提供了一种计费规则绑定的方法,该方法包括:会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则,该第一PCC规则中包括第一绑定参数;当该会话管理网元确定该第一PCC规则包括可选服务质量QoS参数集合(alternative QoS parameter sets),且已有第一QoS flow绑定的PCC规则中,存在第二PCC规则中包括的该第一绑定参数的值与该第一PCC规则包括的该第一绑定参数的值相同,且该第二PCC规则中包括可选QoS参数集合时,该会话管理网元将该第一PCC规则绑定至该已有第一QoS flow;或者,当该会话管理网元确定该第一PCC规则不包括可选QoS参数集合,且已有第二QoS flow绑定的PCC规则,存在第三PCC规则中包括的该第一绑定参数的值与该第一PCC规则包括的该第一绑定参数的值相同,且该第三PCC规则中不包括可选QoS参数集合时,该会话管理网元将该第一PCC规则绑定至该已有第二QoS flow。也就是说,本申请实施例中,在PCC规则中的其他绑定参数均相同的情况下,包含alternative QoS parameter sets的一个或多个PCC规则可以视为具有相同绑定参数的PCC规则,不包含alternative QoS parameter sets的一个或多个PCC规则可以视为具有相同绑定参数的PCC规则。进而,具有相同绑定参数的一个或多个PCC规则可以绑定至相同的QoS flow,不具有相同绑定参数的一个或多个PCC规则不可以绑定至相同的QoS flow。这样避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
第二十一方面,提供了一种通信方法,该方法包括:策略控制网元向会话管理网元发送第一策略与计费控制PCC规则,该第一PCC规则中包括第一绑定参数;会话管理网元接收来自策略控制网元的第一PCC规则;当该会话管理网元确定该第一PCC规则包括可选服务质量QoS参数集合(alternative QoS parameter sets),且已有第一QoS flow绑定的PCC规则中,存在第二PCC规则中包括的该第一绑定参数的值与该第一PCC规则包括的该第一绑定参数的值相同,且该第二PCC规则中包括可选QoS参数集合时,该会话管理网元将该第一PCC规则绑定至该已有第一QoS flow;或者,当该会话管理网元确定该第一PCC规则不包括可选QoS参数集合,且已有第二QoS flow绑定的PCC规则,存在第三PCC规则中包括的该第一绑定参数的值与该第一PCC规则包括的该第一绑定参数的值相同,且该第三PCC规则中不包括可选QoS参数集合时,该会话管理网元将该第一PCC规则绑定至该已有第二QoS flow。其中,第二十一方面的技术效果可参考上述第二十方面,在此不再赘述。
第二十二方面,提供了一种通信系统,该通信系统包括策略控制网元和会话管理网元;其中,策略控制网元,用于向会话管理网元发送第一策略与计费控制PCC规则,该第一PCC规则中包括第一绑定参数;会话管理网元,用于接收来自策略控制网元的第一PCC规则;该会话管理网元,还用于当确定该第一PCC规则包括可选服务质量QoS参数集合(alternative QoS parameter sets),且已有第一QoS flow绑定的PCC规则中,存在第二PCC规则中包括的该第一绑定参数的值与该第一PCC规则包括的该第一绑定参数的值相同,且该第二PCC规则中包括可选QoS参数集合时,将该第一PCC规则绑定至该已有第一QoS flow;或者,该会话管理网元,还用于当确定该第一PCC规则不包括可选QoS参数集合,且已有第二QoS flow绑定的PCC规则,存在第三PCC规则中包括的该第一绑定参数的值与该第一PCC规则包括的该第一绑定参数的值相同,且该第三PCC规则中不包括可选QoS参数集合时,将该第一PCC规则绑定至该已有第二QoS flow。其中,第二十二方面的技术效果可参考上述第二十方面,在此不再赘述。
附图说明
图1为现有的5G QoS模型;
图2为现有的基于信令的QoS flow建立架构示意图;
图3为本申请实施例提供的通信系统的架构示意图;
图4a为本申请实施例提供的非漫游场景下的5G网络架构一;
图4b为本申请实施例提供的非漫游场景下的5G网络架构二;
图5a为本申请实施例提供的本地疏导漫游场景下的5G网络架构一;
图5b为本申请实施例提供的本地疏导漫游场景下的5G网络架构二;
图6a为本申请实施例提供的家乡路由漫游场景下的5G网络架构一;
图6b为本申请实施例提供的家乡路由漫游场景下的5G网络架构二;
图7为本申请实施例提供的通信设备的结构示意图;
图8为本申请实施例提供的计费规则绑定的方法流程示意图一;
图9为本申请实施例提供的计费规则绑定的方法流程示意图二;
图10为本申请实施例提供的计费规则绑定的方法流程示意图三;
图11为本申请实施例提供的会话管理网元的结构示意图;
图12为本申请实施例提供的计费规则绑定的方法流程示意图四;
图13为本申请实施例提供的策略控制网元的结构示意图;
图14为本申请实施例提供的计费规则绑定的方法流程示意图五;
图15为本申请实施例提供的计费规则绑定的方法流程示意图六。
具体实施方式
为方便理解本申请实施例的方案,首先给出相关概念的简要介绍如下:
第一,PDU会话:
PDU会话为终端设备与数据网络(data network,DN)之间的一个关联,用于提供一个PDU连接服务。
第二,QoS参数:
本申请实施例中的QoS参数包括如下参数中的一个或多个:
1、5G QoS标识(5G QoS identifier,5QI)
5QI是一个标量,用于索引到对应的5G QoS特征。5QI分为标准化的5QI、预配置的5QI和动态分配的5QI。对于标准化的5QI,与一组标准化的5G QoS特征值一一对应;对于预配置的5QI,对应的5G QoS特征值预配置在接入网设备上,对于动态分配的5QI,对应的5G QoS特征由核心网设备通过QoS文件(QoS profile)发送给接入网设备。
2、分配和预留优先级(allocation and retention priority,ARP)
ARP包含优先等级、抢占能力和被抢占能力。
3、保证流比特率(guaranteed flow bit rate,GFBR)
GFBR代表期望提供给保证比特率(guaranteed bit rate,GBR)QoS flow(流)的比特率。
4、最大流比特率(maximum flow bit rate,MFBR)
MFBR限制提供给GBR QoS flow的比特率,即提供给GBR QoS flow的最大比特率。如超过该比特率时,数据包可以被丢弃。
5、反转QoS属性(reflective QoS attribute,RQA)
RQA用于指示使用对应QoS flow传输的业务使用反转QoS。
6、QNC
QNC用于指示接入网设备在QoS flow的使用期当GFBR不能满足时是否通知网络。
第三,QoS模型:
在5G系统中,为了保证业务端到端的服务质量,提出了基于QoS流(flow)的5G QoS模型,如图1所示。该5G QoS模型支持保证比特率的QoS flow(即GBR QoS flow)和不保证比特率的QoS flow(即非GBR(non-GBR)QoS flow)。使用同一个QoS flow控制的数据包接收相同的传输处理(如调度、准入门限等)。
如图1所示,对于一个终端设备,可以与5G网络建立一个或者多个PDU会话;每个PDU会话中可以建立一个或者多个QoS flow。每个QoS flow由一个QoS流标识(QoS flow identifier,QFI)识别,QFI在会话中唯一标识一个QoS flow。此外,每个QoS流对应一个数据无线承载(data radio bearer,DRB),一个DRB可以对应一个或多个QoS flow。
其中,一个QoS flow为GBR QoS flow还是Non-GBR QoS flow,由对应的QoS文件(QoS profile)确定。
对于GBR QoS flow,对应的QoS文件必须包含以下QoS参数:5QI、ARP、GFBR和MFBR,可选的包含QNC;根据QoS文件是否包含QNC将GBR QoS flow分为需要notification control的GRB QoS flow和不需要notification control的GBR QoS flow。对于需要notification control的GBR QoS flow,当接入网设备检测到对应的QoS flow资源不能被满足时,接入网设备通知会话管理功能(session management function,SMF)网元该事件。进一步的SMF网元可以发起QoS flow删除或者修改流程。
对于Non-GBR QoS flow,对应的QoS文件必须包含以下QoS参数:5QI和ARP;可选的包含RQA。
此外,对于GBR QoS flow,主要基于信令的方式控制,对应的QoS flow的建立流程如图2所示,包括如下步骤:
第一步,SMF网元根据本地策略或者PCF网元发送的PCC规则确定建立QoS flow,则2a)、向用户面功能(user plane function,UPF)网元发送SDF信息,该SDF信息中包括QoS控制信息;2b)、通过接入和移动性管理功能(access and mobility management function,AMF)网元向接入网设备发送QoS flow的QoS文件;2c)、通过AMF网元和接入网设备向终端设备发送QoS规则(QoS rule),QoS规则中包含QoS控制信息。
第二步,终端设备、接入网设备和UPF网元之间建立建立QoS flow,接入网设备根据QoS文件建立空口的DRB,并存储QoS flow与DRB的绑定关系。
对于下行,当UPF网元接收到下行数据包时,根据SMF网元发送的SDF信息,在该下行数据包的数据包头中携带QFI;接入网设备接收到下行数据包时根据数据包头中的QFI以及对应的QoS flow和DRB的绑定关系,将该下行数据包放在对应的DRB上传输。
对于上行,终端设备确定发送上行数据包时,根据QoS规则确定QoS flow,并在待发送的上行数据包的数据包头中携带QFI,同时根据QoS flow和DRB的绑定关系,将该上行数据包放在对应的DRB上传输。接入网设备接收到上行数据包时,根据数据包头中的QFI,在接入网设备和UPF网元之间的上行数据包的数据包头中包含QFI。UPF网元接收到接入网设备发送的上行数据包时验证数据包是否使用正确的QoS flow传输。
第四,绑定参数:
1、5QI,相关描述可参考上述QoS参数部分,在此不再赘述。
2、ARP,相关描述可参考上述QoS参数部分,在此不再赘述。
或者,可选的,若PCC规则中包括以下参数中的一个或多个,则以下参数中的一个或多个也可以作为绑定参数:
3、QNC,相关描述可参考上述QoS参数部分,在此不再赘述。
4、优先级,优先级指示在QoS流中调度资源的优先级。优先级应用于区分同一终端设备的QoS流,并且还应用于区分来自不同终端设备的QoS流。
5、平均窗口,平均窗口只用于GBR QoS flow,代表计算GFBR和MFBR的持续时间。
6、MDBV,MDBV表示要求5G接入网在一个包延时估算(packet delay budget,PDB)之内要服务的最大数据量。其中,PDB定义了一个数据包在终端设备和有N6接口的UPF网元之间传递所能被延迟的时间上限。
当然,上述的优先级、平均窗口或最大数据突发量也可以是上述5QI对应的QoS属性中的参数,在此不作具体限定。
第五,多级PCC规则:
为了减少QoS变化带来的信令交互,引入了多级PCC规则。PCF网元下发了多级PCC规则之后,无线接入网(radio access network,RAN)设备或SMF网元自行根据网络情况(如拥塞等)进行QoS的升级或降级。
其中,本申请实施例提供的多级PCC规则的示例可以如下:
The multi-level PCC rule includes,e.g.:
Parameter set 1={rank 1:5QI value=x1,ARP value=y1,MFBR=z1}(i.e.highest QoS level);
Parameter set 2={rank 2:5QI value=x2,ARP value=y2,MFBR=z2}(i.e.medium QoS level);
Parameter set 3={rank 3:5QI value=x3,ARP value=y3,MFBR=z3}(i.e.lowest QoS level).
SMF网元根据多级PCC规则可以生成带有多个QoS profile的“特殊”的QoS flow,示例如下:
The new type of QoS flow includes,e.g.:
QoS profile 1={rank 1:5QI value=x1,RN,GBR=y1,MFBR=z1}(i.e.highest QoS level);
QoS profile 2={rank 2:5QI value=x2,RN,GBR=y2,MFBR=z2}(i.e.medium QoS level);
QoS profile 3={rank 3:5QI value=x3,RN,GBR=y3,MFBR=z3}(i.e.lowest QoS level).
需要说明的是,本申请实施例中的多级PCC规则为有可选参数组的PCC规则(PCC rule with alternative QoS parameter sets),在此统一说明,以下不再赘述。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图3所示,为本申请实施例提供的一种通信系统30。该通信系统30包括会话管理网元301和策略控制网元302。
一种可能的实现方式中,策略控制网元302向会话管理网元301发送第一PCC规则。会话管理网元301接收来自策略控制网元302的第一PCC规则。其中,该第一PCC规则包括绑定参数,该绑定参数中的每级绑定参数分别对应一个rank值。进而,会话管理网元301确定已有QoS flow绑定的PCC规则中,是否存在所有rank值中的每个rank值下的绑定参数与第一PCC规则中的所有rank值中相同rank值下的绑定参数均相同的PCC规则;若存在,会话管理网元301将第一PCC规则绑定至已有QoS flow;若不存在,会话管理网元301根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。其中,该方案的具体实现将在后续方法实施例中详细描述,在此不再赘述。基于该方案,由于本申请实施例中,只有所有rank值中的每个rank值下的绑定参数均相同的PCC规则才可以绑定至相同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,或者具有相同绑定参数但是rank不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
另一种可能的实现方式中,策略控制网元302向会话管理网元301发送第一PCC规则。会话管理网元301接收来自策略控制网元302的第一PCC规则。进而,会话管理网元301确定已有QoS flow绑定的PCC规则中,是否存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则;若存在,会话管理网元301将第一PCC规则绑定至已有QoS flow;若不存在,会话管理网元301根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。其中,该方案的具体实现将在后续方法实施例中详细描述,在此不再赘述。基于该方案,由于本申请实施例中,只有每级绑定参数均相同的PCC规则才可以绑定至相同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,或者具有相同绑定参数但是rank不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
又一种可能的实现方式中,策略控制网元302向会话管理网元301发送第一PCC规则。会话管理网元301接收来自策略控制网元302的第一PCC规则。进而,会话管理网元301确定该第一PCC规则为多级PCC规则之后,根据该第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow,其中,该QoS flow仅绑定第一PCC规则。该方案的具体实现将在后续方法实施例中详细描述,在此不再赘述。基于该方案,由于本申请实施例中,每个多级PCC规则分别绑定至不同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,或者具有相同绑定参数但是rank不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
再一种可能的实现方式中,策略控制网元302向会话管理网元301发送第一PCC规则;会话管理网元301接收来自策略控制网元302的第一PCC规则;会话管理网元301确定第一PCC规则需要绑定到单独的QoS flow;会话管理网元301根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。该方案的具体实现将 在后续方法实施例中详细描述,在此不再赘述。基于该方案,由于本申请实施例中,每个多级PCC规则分别绑定至不同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,或者具有相同绑定参数但是rank不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
又一种可能的实现方式中,策略控制网元302,用于向会话管理网元301发送第一PCC规则,该第一PCC规则中包括绑定参数。会话管理网元301,用于接收来自策略控制网元302的第一PCC规则,并确定已有QoS flow中,是否存在绑定参数与该第一PCC规则中的绑定参数均相同的QoS flow。会话管理网元301,还用于若确定存在,将该第一PCC规则绑定至该已有QoS flow;或者,若确定不存在,根据该第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow。由于本申请实施例中,只有绑定参数均相同的PCC规则才可以绑定至相同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
又一种可能的实现方式中,策略控制网元302,用于向会话管理网元301发送第一PCC规则,该第一PCC规则中包括第一绑定参数。会话管理网元301,用于接收来自策略控制网元302的第一PCC规则。该会话管理网元301,还用于当确定该第一PCC规则包括可选服务质量QoS参数集合(alternative QoS parameter sets),且已有第一QoS flow绑定的PCC规则中,存在第二PCC规则中包括的该第一绑定参数的值与该第一PCC规则包括的该第一绑定参数的值相同,且该第二PCC规则中包括可选QoS参数集合时,将该第一PCC规则绑定至该已有第一QoS flow;或者,该会话管理网元301,还用于当确定该第一PCC规则不包括可选QoS参数集合,且已有第二QoS flow绑定的PCC规则,存在第三PCC规则中包括的该第一绑定参数的值与该第一PCC规则包括的该第一绑定参数的值相同,且该第三PCC规则中不包括可选QoS参数集合时,将该第一PCC规则绑定至该已有第二QoS flow。也就是说,本申请实施例中,在PCC规则中的其他绑定参数均相同的情况下,包含alternative QoS parameter sets的一个或多个PCC规则可以视为具有相同绑定参数的PCC规则,不包含alternative QoS parameter sets的一个或多个PCC规则可以视为具有相同绑定参数的PCC规则。进而,具有相同绑定参数的一个或多个PCC规则可以绑定至相同的QoS flow,不具有相同绑定参数的一个或多个PCC规则不可以绑定至相同的QoS flow。这样避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
可选的,图3所示的通信系统30可以应用于目前正在讨论的第五代(5th generation,5G)或者未来的其他网络等,本申请实施例对此不作具体限定。
示例性的,假设图3所示的通信系统30应用于非漫游场景下的5G网络架构,则如图4a所示,上述的会话管理网元301所对应的网元或者实体可以为该非漫游5G网络架构中的SMF网元,上述的策略控制网元302所对应的网元或者实体可以为该非漫游5G网络架构中的PCF网元。
此外,如图4a所示,该非漫游5G网络架构中还可以包括RAN设备、UPF网元、 AMF网元、统一数据管理(unified data management,UDM)网元、或者认证服务器功能(authentication server function,AUSF)网元等,本申请实施例对此不作具体限定。
其中,终端设备通过下一代网络(next generation,N)1接口(简称N1)与AMF网元通信,RAN设备通过N2接口(简称N2)与AMF网元通信,RAN设备通过N3接口(简称N3)与UPF网元通信,UPF网元通过N6接口(简称N6)与DN通信,AMF网元通过N11接口(简称N11)与SMF网元通信,AMF网元通过N8接口(简称N8)与UDM网元通信,AMF网元通过N12接口(简称N12)与AUSF网元通信,AMF网元通过N15接口(简称N15)与PCF网元通信,SMF网元通过N7接口(简称N7)与PCF网元通信,SMF网元通过N4接口(简称N4)与UPF网元通信,SMF网元通过N10接口(简称N10)与UDM网元通信,UDM网元通过N13接口(简称N13)与AUSF网元通信。
此外,需要说明的是,图4a所示的非漫游5G网络架构中的AMF网元、SMF网元、UDM网元、AUSF网元、或者PCF网元等控制面网元也可以采用服务化接口进行交互。比如,如图4b所示,AMF网元对外提供的服务化接口可以为Namf;SMF网元对外提供的服务化接口可以为Nsmf;UDM网元对外提供的服务化接口可以为Nudm;PCF网元对外提供的服务化接口可以为Npcf,AUSF网元对外提供的服务化接口可以为Nausf。相关描述可以参考23501标准中的5G系统架构(5G system architecture),在此不予赘述。
或者,示例性的,假设图3所示的通信系统30应用于本地疏导(local breakout)漫游场景下的5G网络架构,则如图5a所示,上述的会话管理网元301所对应的网元或者实体可以为该本地疏导漫游5G网络架构中的SMF网元,上述的策略控制网元302所对应的网元或者实体可以为该本地疏导漫游5G网络架构中的拜访地PCF(visited PCF,vPCF)网元。
此外,如图5a所示,该本地疏导漫游5G网络架构中还可以包括RAN设备、UPF网元、AMF网元、UDM网元、归属地PCF(home PCF,hPCF)网元、或者AUSF网元等,本申请实施例对此不作具体限定。其中,UDM网元、AUSF网元和hPCF网元归属于归属公共陆地移动网(home public land mobile network,HPLMN);RAN设备、AMF网元、SMF网元、UPF网元、或者vPCF网元归属于拜访地公共陆地移动网(visited public land mobile network,VPLMN)中。
其中,终端设备通过N1接口(简称N1)与AMF网元通信,RAN设备通过N2接口(简称N2)与AMF网元通信,RAN设备通过N3接口(简称N3)与UPF网元通信,UPF网元通过N6接口(简称N6)与DN通信,AMF网元通过N11接口(简称N11)与SMF网元通信,AMF网元通过N8接口(简称N8)与UDM网元通信,AMF网元通过N12接口(简称N12)与AUSF网元通信,AMF网元通过N15接口(简称N15)与vPCF网元通信;SMF网元通过N7接口(简称N7)与vPCF网元通信,vPCF网元通过N24接口(简称N24)与hPCF网元通信,SMF网元通过N4接口(简称N4)与UPF网元通信,SMF网元通过N10接口(简称N10)与UDM网元通信,UDM网元通过N13接口(简称N13)与AUSF网元通信。
此外,需要说明的是,图5a所示的本地疏导漫游5G网络架构中的AMF网元、 SMF网元、UDM网元、AUSF网元、vPCF网元或者hPCF网元等控制面网元也可以采用服务化接口进行交互。比如,如图5b所示,AMF网元对外提供的服务化接口可以为Namf;SMF网元对外提供的服务化接口可以为Nsmf;UDM网元对外提供的服务化接口可以为Nudm;vPCF网元对外提供的服务化接口可以为Npcf;hPCF网元对外提供的服务化接口可以为Npcf;AUSF网元对外提供的服务化接口可以为Nausf。此外,图5b中的拜访地安全边缘保护代理(visited security edge protection proxy,vSEPP)用于VPLMN内部控制面接口的信息过滤和策略控制,以及拓扑隐藏等;图5b中的归属地安全边缘保护代理(home security edge protection proxy,hSEPP)用于HPLMN内部控制面接口的信息过滤和策略控制,以及拓扑隐藏等;vSEPP与hSEPP通过N32接口(简称N32)连接。所有相关描述可以参考23501标准中的5G系统架构(5G system architecture),在此不予赘述。
或者,示例性的,假设图3所示的通信系统30应用于家乡路由(home routed)漫游场景下的5G网络架构,则如图6a所示,上述的会话管理网元301所对应的网元或者实体可以为该家乡路由漫游5G网络架构中的归属地SMF(home SMF,hSMF)网元,上述的策略控制网元302所对应的网元或者实体可以为该家乡路由漫游5G网络架构中的hPCF网元。
此外,如图6a所示,该家乡路由漫游5G网络架构中还可以包括RAN设备、归属地UPF(home UPF,hUPF)网元、拜访地UPF(visited UPF,vUPF)网元、拜访地SMF(visited SMF,vSMF)网元、AMF网元、UDM网元、vPCF网元、或者AUSF网元等,本申请实施例对此不作具体限定。其中,UDM网元、AUSF网元、hSMF网元、hPCF网元或hUPF网元归属于HPLMN;RAN设备、AMF网元、vSMF网元、vUPF网元、或者vPCF网元归属于VPLMN中。
其中,终端设备通过N1接口(简称N1)与AMF网元通信,RAN设备通过N2接口(简称N2)与AMF网元通信,RAN设备通过N3接口(简称N3)与vUPF网元通信,vUPF网元通过N9接口(简称N9)与hUPF网元通信,hUPF网元通过N6接口(简称N6)与DN通信,AMF网元通过N11接口(简称N11)与vSMF网元通信,vSMF网元通过N16接口(简称N16)与hSMF网元通信,AMF网元通过N8接口(简称N8)与UDM网元通信,AMF网元通过N12接口(简称N12)与AUSF网元通信,AMF网元通过N15接口(简称N15)与vPCF网元通信;vPCF网元通过N24接口(简称N24)与hPCF网元通信,vSMF网元通过N4接口(简称N4)与vUPF网元通信,hSMF网元通过N4接口(简称N4)与hUPF网元通信,hSMF网元通过N10接口(简称N10)与UDM网元通信,hSMF网元通过N7接口(简称N7)与hPCF网元通信,UDM网元通过N13接口(简称N13)与AUSF网元通信。
此外,需要说明的是,图6a所示的家乡路由漫游5G网络架构中的AMF网元、vSMF网元、hSMF网元、UDM网元、AUSF网元、vPCF网元或者hPCF网元等控制面网元也可以采用服务化接口进行交互。比如,如图6b所示,AMF网元对外提供的服务化接口可以为Namf;vSMF网元对外提供的服务化接口可以为Nvsmf;hSMF网元对外提供的服务化接口可以为Nhsmf;UDM网元对外提供的服务化接口可以为Nudm;vPCF网元对外提供的服务化接口可以为Nvpcf;hPCF网元对外提供的服务化 接口可以为Nhpcf;AUSF网元对外提供的服务化接口可以为Nausf。此外,图6b中的vSEPP用于VPLMN内部控制面接口的信息过滤和策略控制,以及拓扑隐藏等;图6b中的hSEPP用于HPLMN内部控制面接口的信息过滤和策略控制,以及拓扑隐藏等;vSEPP与hSEPP通过N32接口(简称N32)连接。所有相关描述可以参考23501标准中的5G系统架构(5G system architecture),在此不予赘述。
可选的,本申请实施例中的终端设备,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的RAN设备指的是接入核心网的设备,例如可以是基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机,非第三代合作伙伴计划(3rd generation partnership project,3GPP)接入设备等。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。
可选的,本申请实施例中的会话管理网元也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,本申请实施例中的会话管理网元的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的会话管理网元的相关功能可以通过图7中的通信设备700来实现。图7所示为本申请实施例提供的通信设备700的结构示意图。该通信设备700包括一个或多个处理器701,通信线路702,以及至少一个通信接口(图7中仅是示例性的以包括通信接口704,以及一个处理器701为例进行说明),可选的还可以包括存储器703。
处理器701可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路702可包括一通路,用于连接不同组件之间。
通信接口704,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN, 无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口704也可以是位于处理器701内的收发电路,用以实现处理器的信号输入和信号输出。
存储器703可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路702与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器703用于存储执行本申请方案的计算机执行指令,并由处理器701来控制执行。处理器701用于执行存储器703中存储的计算机执行指令,从而实现本申请实施例中提供的计费规则绑定的方法。
或者,可选的,本申请实施例中,也可以是处理器701执行本申请下述实施例提供的计费规则绑定的方法中的处理相关的功能,通信接口704负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器701可以包括一个或多个CPU,例如图7中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备700可以包括多个处理器,例如图7中的处理器701和处理器708。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备700还可以包括输出设备705和输入设备706。输出设备705和处理器701通信,可以以多种方式来显示信息。例如,输出设备705可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备706和处理器701通信,可以以多种方式接收用户的输入。例如,输入设备706可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备700有时也可以称为通信装置,其可以是一个通用设备或者是一个专用设备。例如通信设备700可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备、上述终端设备,上述网络设备、或具有图7中类似结构的设备。本申请实施例不限定通信设备700的类型。
下面将结合图3至图7对本申请实施例提供的计费规则绑定的方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的 名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
首先,以图3所示的通信系统应用于如图4a或图4b所示的非漫游场景下的5G网络架构为例,如图8所示,为本申请实施例提供的一种计费规则绑定的方法,该计费规则绑定的方法包括如下步骤:
S801、PCF网元向SMF网元发送第一PCC规则。SMF网元接收来自PCF网元的第一PCC规则。
其中,该第一PCC规则包括绑定参数,该绑定参数中的每级绑定参数分别对应一个rank值。
可选的,本申请实施例中的第一PCC规则可以是单级PCC规则或者多级PCC规则,本申请实施例对此不作具体限定。其中,多级PCC规则的相关描述可参考具体实施方式前序部分,在此不再赘述。
一种可能的实现方式中,绑定参数中的每级绑定参数分别对应一个rank值,包括:绑定参数中的每级绑定参数分别包括一个rank值。
也就是说,本申请实施例中,每级绑定参数分别包括rank值、5QI和ARP。可选的,若PCC规则中包括以下参数中的一个或多个,则以下参数中的一个或多个也可以作为绑定参数:QNC、优先级、平均窗口或者MDBV。当然,上述的优先级、平均窗口或MDBV也可以是上述5QI对应的QoS属性中的参数,在此不作具体限定。
示例性的,第一PCC规则可以包括:
Parameter set 1={rank 1:5QI value=x1,ARP value=y1,GFBR=z1}(i.e.highest QoS level);
Parameter set 2={rank 2:5QI value=x2,ARP value=y2,GFBR=z2}(i.e.medium QoS level);
Parameter set 3={rank 3:5QI value=x3,ARP value=y3,GFBR=z3}(i.e.lowest QoS level).
相应的,绑定参数的值可以包括:
{rank 1:5QI value=x1,ARP value=y1}(i.e.highest QoS level);
{rank 2:5QI value=x2,ARP value=y2}(i.e.medium QoS level);
{rank 3:5QI value=x3,ARP value=y3}(i.e.lowest QoS level).
另一种可能的实现方式中,绑定参数中的每级绑定参数分别对应一个rank值,包括:第一PCC规则中还包括与绑定参数中的每级绑定参数分别对应的rank值。
示例性的,第一PCC规则可以包括:
rank 1(i.e.highest QoS level)、以及与rank 1对应的Parameter set 1={5QI value=x1,ARP value=y1,GFBR=z1};
rank 2(i.e.medium QoS level)、以及与rank2对应的Parameter set 2={rank 2:5QI value=x2,ARP value=y2,GFBR=z2};
rank 3(i.e.lowest QoS level)、以及与rank3对应的Parameter set 3={5QI value=x3,ARP value=y3,GFBR=z3}.
rank值以及对应的绑定参数的值可以包括:
rank 1(i.e.highest QoS level)、对应绑定参数{5QI value=x1,ARP value=y1};
rank 2(i.e.medium QoS level)、对应绑定参数{5QI value=x2,ARP value=y2};
rank 3(i.e.lowest QoS level)、对应绑定参数{5QI value=x3,ARP value=y3}.
可选的,本申请实施例中,单级PCC规则中也可能不包括rank值,本申请实施例对此不作具体限定。
S802、SMF网元确定已有QoS flow绑定的PCC规则中,是否存在所有rank值中的每个rank值下的绑定参数与第一PCC规则中的所有rank值中相同rank值下的绑定参数均相同的PCC规则。
示例性的,假设第一PCC规则(即为PCC规则1)可以包括:
Parameter set 1={rank 1:5QI value=x1,ARP value=y1,MFBR=z11};
Parameter set 2={rank 2:5QI value=x2,ARP value=y2,MFBR=z21}.
相应的,绑定参数的值可以包括:
{rank 1:5QI value=x1,ARP value=y1};
{rank 2:5QI value=x2,ARP value=y2}.
已有QoS flow1绑定的PCC规则包括PCC规则2,PCC规则2可以包括:
Parameter set 1={rank 1:5QI value=x1,ARP value=y1,GFBR=z12};
Parameter set 2={rank 2:5QI value=x2,ARP value=y2,GFBR=z22};
Parameter set 3={rank 3:5QI value=x3,ARP value=y3,GFBR=z32}.
相应的,绑定参数的值可以包括:
{rank 1:5QI value=x1,ARP value=y1};
{rank 2:5QI value=x2,ARP value=y2};
{rank 3:5QI value=x3,ARP value=y3}.
或者,已有QoS flow2绑定的PCC规则包括PCC规则3,PCC规则3可以包括:
Parameter set 1={rank 1:5QI value=x1,ARP value=y1,MFBR=z13}.
相应的,绑定参数的值可以包括:
{rank 1:5QI value=x1,ARP value=y1}.
或者,已有QoS flow3绑定的PCC规则包括PCC规则4,PCC规则4可以包括:
Parameter set 1={rank 1:5QI value=x1,ARP value=y1,GFBR=z14};
Parameter set 2={rank 2:5QI value=x2,ARP value=y2,GFBR=z24}.
相应的,绑定参数的值可以包括:
{rank 1:5QI value=x1,ARP value=y1};
{rank 2:5QI value=x2,ARP value=y2}.
则根据上述示例可知,已有QoS flow1绑定的PCC规则2中,虽然rank 1对应的绑定参数与PCC规则1中rank 1对应的绑定参数相同,且rank2对应的绑定参数与PCC规则1中rank 2对应的绑定参数相同,但是PCC规则2中还包括rank3对应的绑定参数,所以PCC规则2中的所有rank值中的每个rank值下的绑定参数与PCC规则1中的所有rank值中相同rank值下的绑定参数不相同。
或者,已有QoS flow2绑定的PCC规则3中,虽然rank 1对应的绑定参数与PCC规则1中rank 1对应的绑定参数相同,但是PCC规则1中还包括rank2对应的绑定参 数,所以PCC规则2中的所有rank值中的每个rank值下的绑定参数与PCC规则1中的所有rank值中相同rank值下的绑定参数不相同。
或者,已有QoS flow3绑定的PCC规则4中,由于rank 1对应的绑定参数与PCC规则1中rank 1对应的绑定参数相同,且rank2对应的绑定参数与PCC规则1中rank2对应的绑定参数相同,所以PCC规则2中的所有rank值中的每个rank值下的绑定参数与PCC规则1中的所有rank值中相同rank值下的绑定参数均相同。
需要说明的是,本申请提供的示例中均是示例性的以一个QoS flow绑定一个PCC规则为例进行说明。当然,本申请实施例中,一个QoS flow可以绑定一个或多个PCC规则。其中,由于多个PCC规则中的每个PCC规则对应的绑定参数均相同,因此,本申请实施例中的描述中,已有QoS flow绑定的PCC规则中,某个rank对应的绑定参数与第一PCC规则中相同rank对应的绑定参数相同或不同,也可以理解为,已有QoS flow的参数中,某个rank对应的绑定参数与第一PCC规则中相同rank对应的绑定参数相同或不同。比如,已有QoS flow1绑定的PCC规则2中,rank 1对应的绑定参数与PCC规则1中rank 1对应的绑定参数相同,也可以理解为,已有QoS flow1的参数中,rank 1对应的绑定参数与PCC规则1中rank 1对应的绑定参数相同。其中,该说明还适用于图9所示的实施例,在此统一说明,以下不再赘述。
进一步的,本申请实施例中,若SMF网元确定存在所有rank值中的每个rank值下的绑定参数与第一PCC规则中的所有rank值中相同rank值下的绑定参数均相同的PCC规则,则执行步骤S803;或者,若SMF网元确定不存在所有rank值中的每个rank值下的绑定参数与第一PCC规则中的所有rank值中相同rank值下的绑定参数均相同的PCC规则,则执行步骤S804。
S803、若存在,SMF网元将第一PCC规则绑定至已有QoS flow。
示例性的,结合上述步骤S802中的示例,SMF网元可以将第一PCC规则绑定至QoS flow3。其中,第一PCC规则绑定至QoS flow3的具体实现可参考现有的绑定机制,在此不予赘述。
S804、若不存在,SMF网元根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。
当然,若已有QoS flow绑定的PCC规则中,若不存在所有rank值中的每个rank值下的绑定参数与第一PCC规则中的所有rank值中相同rank值下的绑定参数均相同的PCC规则,则SMF网元根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。其中,第一PCC规则绑定至创建的QoS flow的具体实现可参考现有的绑定机制,在此不予赘述。
示例性的,假设第一PCC规则如步骤S802中的示例所示,则根据第一PCC规则创建QoS flow可以包括:
QoS profile 1={rank 1:5QI value=x1,ARP value=y1,MFBR=z11};
QoS profile 2={rank 2:5QI value=x2,ARP value=y2,MFBR=z21}.
基于本申请实施例提供的计费规则绑定的方法,由于本申请实施例中,只有所有rank值中的每个rank值下的绑定参数均相同的PCC规则才可以绑定至相同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow 中,或者具有相同绑定参数但是rank不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
其中,上述步骤S801至S803或S804中的SMF网元的动作可以由图7所示的通信设备700中的处理器701调用存储器703中存储的应用程序代码来执行,本实施例对此不作任何限制。
或者,以图3所示的通信系统应用于如图4a或图4b所示的非漫游场景下的5G网络架构为例,如图9所示,为本申请实施例提供的一种计费规则绑定的方法,该计费规则绑定的方法包括如下步骤:
S901、PCF网元向SMF网元发送第一PCC规则。SMF网元接收来自PCF网元的第一PCC规则。
可选的,本申请实施例中的第一PCC规则可以是单级PCC规则或者多级PCC规则,本申请实施例对此不作具体限定。
可选的,本申请实施例中,第一PCC规则的形式可以与步骤S801中示例出的第一PCC规则的形式相同,也可以与步骤S801中示例出的第一PCC规则的形式不相同,在此不作具体限定。
S902、SMF网元确定已有QoS flow绑定的PCC规则中,是否存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则。
可选的,本申请实施例中,SMF网元确定已有QoS flow绑定的PCC规则中,是否存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则,包括:SMF网元确定已有QoS flow绑定的PCC规则中,是否存在对应的最大rank值与第一PCC规则对应的最大rank值相同的PCC规则;若存在第二PCC规则对应的最大rank值与第一PCC规则对应的最大rank值相同,且第二PCC规则中的每级绑定参数依次与第一PCC规则中的每级绑定参数均相同,SMF网元确定已有QoS flow绑定的PCC规则中,存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则;否则,SMF网元确定已有QoS flow绑定的PCC规则中,不存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则。
示例性的,假设第一PCC规则(即为PCC规则1)可以包括:
Parameter set 1={rank 1:5QI value=x1,ARP value=y1,MFBR=z11};
Parameter set 2={rank 2:5QI value=x2,ARP value=y2,MFBR=z21}.
相应的,绑定参数的值可以包括:
rank1对应绑定参数的值:{5QI value=x1,ARP value=y1};
rank2对应绑定参数的值:{5QI value=x2,ARP value=y2}.
已有QoS flow1绑定的PCC规则包括PCC规则2,PCC规则2可以包括:
Parameter set 1={rank 1:5QI value=x1,ARP value=y1,GFBR=z12};
Parameter set 2={rank 2:5QI value=x2,ARP value=y2,GFBR=z22};
Parameter set 3={rank 3:5QI value=x3,ARP value=y3,GFBR=z32}.
相应的,绑定参数的值可以包括:
rank 1对应绑定参数的值:{5QI value=x1,ARP value=y1};
rank 2对应绑定参数的值:{5QI value=x2,ARP value=y2};
rank 3对应绑定参数的值:{5QI value=x3,ARP value=y3}.
或者,已有QoS flow2绑定的PCC规则包括PCC规则3,PCC规则3可以包括:
Parameter set 1={rank 1:5QI value=x1,ARP value=y1,MFBR=z13}.
相应的,绑定参数的值可以包括:
rank 1对应绑定参数的值:{5QI value=x1,ARP value=y1}.
或者,已有QoS flow3绑定的PCC规则包括PCC规则4,PCC规则4可以包括:
Parameter set 1={rank 1:5QI value=x1,ARP value=y1,GFBR=z14};
Parameter set 2={rank 2:5QI value=x2,ARP value=y2,GFBR=z24}.
相应的,绑定参数的值可以包括:
rank 1对应绑定参数的值:{5QI value=x1,ARP value=y1};
rank 2对应绑定参数的值:{5QI value=x2,ARP value=y2}.
或者,已有QoS flow4绑定的PCC规则包括PCC规则5,PCC规则5可以包括:
Parameter set 1={rank 1:5QI value=x1,ARP value=y1,MDBV=c1,GFBR=z14};
Parameter set 2={rank 2:5QI value=x2,ARP value=y2,MDBV=c2,GFBR=z24}.
相应的,绑定参数的值可以包括:
rank 1对应绑定参数的值:{5QI value=x1,ARP value=y1,MDBV=c1};
rank 2对应绑定参数的值:{5QI value=x2,ARP value=y2,MDBV=c2}.
则根据上述示例可知,已有QoS flow绑定的PCC规则中,存在已有QoS flow3绑定的PCC规则4、以及已有QoS flow4绑定的PCC规则5与第一PCC规则(即PCC规则1)对应的最大rank值相同,均为rank 2。但是,由于PCC规则5中的每级绑定参数中包括MDBV,第一PCC规则中的每级绑定参数中不包括MDBV,因此PCC规则5中的每级绑定参数与第一PCC规则中的每级绑定参数并不相同。而PCC规则4中的每级绑定参数依次与第一PCC规则中的每级绑定参数均相同。
可选的,本申请实施例中,SMF网元也可以按照顺序检测,直到次数达到最大的rank值为止,本申请实施例对此不作具体限定。
进一步的,本申请实施例中,若SMF网元确定存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则,则执行步骤S903;或者,若SMF网元确定不存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则,则执行步骤S904。
S903、若存在,SMF网元将第一PCC规则绑定至已有QoS flow。
示例性的,结合上述步骤S902中的示例,SMF网元可以将第一PCC规则绑定至QoS flow3。其中,第一PCC规则绑定至QoS flow3的具体实现可参考现有的绑定机制,在此不予赘述。
S904、若不存在,SMF网元根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。
当然,若已有QoS flow绑定的PCC规则中,不存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则,则SMF网元根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。其中,第一PCC规则绑定至创建 的QoS flow的具体实现可参考现有的绑定机制,在此不予赘述。
示例性的,假设第一PCC规则如步骤S902中的示例所示,则根据第一PCC规则创建QoS flow可以包括:
QoS profile 1={rank 1:5QI value=x1,ARP value=y1,MFBR=z11};
QoS profile 2={rank 2:5QI value=x2,ARP value=y2,MFBR=z21}.
基于本申请实施例提供的计费规则绑定的方法,由于本申请实施例中,只有每级绑定参数均相同的PCC规则才可以绑定至相同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,或者具有相同绑定参数但是rank不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
其中,上述步骤S901至S903或S904中的SMF网元的动作可以由图7所示的通信设备700中的处理器701调用存储器703中存储的应用程序代码来执行,本实施例对此不作任何限制。
或者,以图3所示的通信系统应用于如图4a或图4b所示的非漫游场景下的5G网络架构为例,如图10所示,为本申请实施例提供的一种计费规则绑定的方法,该计费规则绑定的方法包括如下步骤:
S1001、PCF网元向SMF网元发送第一PCC规则。SMF网元接收来自PCF网元的第一PCC规则。
可选的,本申请实施例中,第一PCC规则的形式可以与步骤S801中示例出的第一PCC规则的形式相同,也可以与步骤S801中示例出的第一PCC规则的形式不相同,在此不作具体限定。
S1002、SMF网元确定第一PCC规则为多级PCC规则。
本申请实施例中,SMF网元可以通过显示或者隐式的指示,确定第一PCC规则为多级PCC规则。
比如,一种可能的实现方式中,本申请实施例中的第一PCC规则中可以包括指示信息,该指示信息用于指示第一PCC规则为多级PCC规则。进而,SMF网元确定第一PCC规则为多级PCC规则可以包括:SMF网元根据该指示信息确定第一PCC规则为多级PCC规则。
可选的,上述指示信息可以为多级指示(multiple indication),可以通过一个特殊的标志位进行指示。比如,设定1比特的标志位,取值为0表示单级指示,取值为1表示多级指示;或者,取值为1表示单级指示,取值为0表示多级指示等,在此不作具体限定。
或者,另一种可能的实现方式中,本申请实施例中的第一PCC规则中可以包括N个备选QoS参数集合(Alternative QoS parameter set(s)),N为大于1的正整数。进而,SMF网元确定第一PCC规则为多级PCC规则可以包括:SMF网元根据N个备选QoS参数集合,确定第一PCC规则为多级PCC规则。
可以理解,本申请实施例中的每个备选QoS参数集合可以分别对应一个rank值,一个rank值对应一级绑定参数,在此统一说明,以下不再赘述。
可选的,本申请实施例中,SMF网元根据N个备选QoS参数集合,确定第一PCC 规则为多级PCC规则,可以包括:SMF网元根据N个备选QoS参数集合对应的N个rank值,确定第一PCC规则为多级PCC规则。
S1003、SMF网元根据第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow,其中,该QoS flow仅绑定第一PCC规则。
也就是说,本申请实施例中,对于PCF网元向SMF网元发送的任意一个多级PCC规则,都绑定至唯一的一个QoS flow,不会有其他PCC规则绑定到该QoS flow。
其中,SMF网元根据第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow的相关描述可参考上述步骤S804或步骤S904,在此不再赘述。
基于本申请实施例提供的计费规则绑定的方法,由于本申请实施例中,每个多级PCC规则分别绑定至不同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,或者具有相同绑定参数但是rank不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
其中,上述步骤S1001至S1003中的SMF网元的动作可以由图7所示的通信设备700中的处理器701调用存储器703中存储的应用程序代码来执行,本实施例对此不作任何限制。
需要说明的是,上述图8至图10所示的实施例中的第一PCC规则可以是新的PCC规则,或修改已有的PCC规则得到的PCC规则,本申请实施例对此不作具体限定。
或者,以3所示的通信系统应用于如图4a或图4b所示的非漫游场景下的5G网络架构为例,如图12所示,为本申请实施例提供的另一种计费规则绑定的方法,该计费规则绑定的方法包括如下步骤:
S1201、PCF网元向SMF网元发送第一PCC规则。SMF网元接收来自PCF网元的第一PCC规则。
可选的,本申请实施例中,第一PCC规则的形式可以与步骤S801中示例出的第一PCC规则的形式相同,也可以与步骤S801中示例出的第一PCC规则的形式不相同,在此不作具体限定。
S1202、SMF网元确定第一PCC规则需要绑定到单独的QoS flow。
本申请实施例中,SMF网元可以通过显示或者隐式的指示,确定第一PCC规则需要绑定到单独的QoS flow。
比如,一种可能的实现方式中,本申请实施例中的第一PCC规则中可以包括指示信息,进而,SMF网元确定第一PCC规则需要绑定到单独的QoS flow可以包括:SMF网元根据该指示信息确定第一PCC规则需要绑定到单独的QoS flow。
示例性的,该指示信息可以为一个显示的指示信息,即该指示信息为指示第一PCC规则需要绑定到单独的QoS flow的信息。比如,该指示信息的名字可以为绑定到单独的QoS flow(bind to independent QoS flow或者bind to separate QoS flow),该指示信息的功能可以为指示PCC规则需要绑定到单独的QoS flow(indicates the PCC rule shall be bound to an independent/separate QoS Flow)。这样,只要存在该指示信息,SMF网元就将该PCC规则绑定到单独的QoS flow。
或者,示例性的,该指示信息可以为一个隐式的指示信息。比如,该指示信息可以为上一实施例中的多级指示(multiple indication),可以通过一个特殊的标志位进 行指示。比如,设定1比特的标志位,取值为0表示单级指示,取值为1表示多级指示;或者,取值为1表示单级指示,取值为0表示多级指示等,在此不作具体限定。这样,SMF网元根据该指示信息,可以确定第一PCC规则需要绑定到单独的QoS flow。
S1203、SMF网元根据第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow,其中,该QoS flow仅绑定第一PCC规则。
也就是说,本申请实施例中,对于PCF网元向SMF网元发送的任意一个多级PCC规则,都绑定至唯一的一个QoS flow,不会有其他PCC规则绑定到该QoS flow。
可选的,本申请实施例中,SMF网元也可以通过SMF网元内部的标志位确定某QoS flow是单独的QoS flow,即其他PCC规则不能绑定到该QoS flow,比如,该QoS flow的标志位为1,其他PCC规则不能绑定到该QoS flow;再比如,SMF网元记录单独的QoS flow的QFI,其他PCC规则不能绑定到该QoS flow,在此统一说明,以下不再赘述。
其中,SMF网元根据第一PCC规则创建QoS flow,并将该第一PCC规则绑定至创建的QoS flow的相关描述可参考上述步骤S804或步骤S904,在此不再赘述。
基于本申请实施例提供的计费规则绑定的方法,由于本申请实施例中,每个多级PCC规则分别绑定至不同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中,或者具有相同绑定参数但是rank不同的多级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
其中,上述步骤S1201至S1203中的SMF网元的动作可以由图7所示的通信设备700中的处理器701调用存储器703中存储的应用程序代码来执行,本实施例对此不作任何限制。
值的注意的是,不只是多级PCC规则会引起RAN设备调度错误的问题,比如说:
(1)、多接入(multi-access,MA)PDU会话(PDU session)。一个MA PDU session中,可以有GBR的QoS flow也可以有non-GBR的QoS flow。对于non-GBR的QoS Flow,SMF网元向两边的AN设备下发QoS profile(即3GPP接入和非3GPP接入);对于GBR QoS Flow,若GBR QoS flow只允许一种接入技术,则SMF网元只向允许的AN设备发送QoS profile;若允许两种接入技术,则SMF网元决定向哪一种AN设备发送QoS profile。也就是说,对于GBR QoS flow,在某个时间点只会有一种接入技术。GBR需求的业务流,可能由支持MA的QoS flow传输,但其本身不支持MA传输(如,只支持3GPP传输);反之,可能由不支持MA的QoS flow传输(如,只支持3GPP传输),但其本身支持MA传输。即SMF网元可能选择用不合适的接入技术传输GBR QoS flow。
为解决该问题,一种可能的解决方式为:将允许的接入方式(比如说steering mode)作为绑定参数。特别的,可以在PCC规则中的5QI的资源类型为GBR时引入该绑定参数(包括延迟重要(delay critical)GBR和普通GBR)。不过没引入一种新特性就加入新的绑定参数,会引起绑定机制的复杂化,此时也可以用图12所示的实施例的方式解决。
可选的,上述图12中的指示信息可以为多接入指示(multiple access indication),可以通过一个特殊的标志位进行指示。比如,设定2比特的标志位,取值为01表示 3GPP单接入指示,取值为10表示非3GPP单接入指示,取值为11表示多接入指示;或者,取值为1表示单接入指示,取值为0表示多接入指示等,在此不作具体限定。
(2)、根据现有标准,网络侧(SMF网元)可以建立高可靠低时延(ultra-reliable Low latency communications,URLLC)的QoS flow。SMF网元会根据授权的5QI,NG-RAN的能力和运营商的配置决定是否执行冗余传输。5QI中包含一个QoS特征包错误率(packet error rate,PER)反映了业务所需的可靠性。5G支持动态的5QI,即下发网络分配的PDB,PER等参数,即相同的5QI,可能具有不同的QoS特征。虽然具有同样5QI的业务流可能对可靠性有不同的需求(反映为具有不同的PDR),但SMF网元却统一决策一个QoS flow是否冗余传输,这样可能造成SMF网元选用不合适的方式传输业务流,如本不需要冗余传输的业务流决定进行冗余传输。反之,需要冗余传输的业务流决定进行冗余传输。
为解决该问题,一种可能的解决方式为:将PER作为绑定参数。特别的,可以在PCC规则中的5QI的资源类型为delay critical GBR时引入该绑定参数。不过每引入一种新特性就加入新的绑定参数,会引起绑定机制的复杂化,此时也可以用图12所示的实施例的方式解决。
可选的,上述图12中的指示信息可以为冗余指示(redundant indication),可以通过一个特殊的标志位进行指示。比如,比如,设定1比特的标志位,取值为0表示冗余指示,取值为1表示非冗余指示;或者,取值为1表示冗余指示,取值为0表示非冗余指示等,在此不作具体限定。
(3)、针对URLLC业务,网络侧或RAN侧可以将端到端(end to end,E2E)的PDB分为两部分:即UPF-RAN的PDB和RAN-UE的PDB。这样RAN可以根据RAN-UE的PDB进行调度。然而,由于URLLC业务要求传输时延较短,所以在核心网传输的几ms的差距对RAN的调度有较大影响。为解决该问题,一种可能的解决方式为:SMF网元选择UPF网元之后,根据配置得到UPF-RAN的PDB,并在N2会话管理(session management,SM)消息中发送给RAN设备,RAN设备根据QoS profile中包含的E2E的PDB和SMF网元发送的UPF-RAN的PDB得到RAN-UE的PDB。然而,由于SMF网元可能管理多个PDU会话锚点(PDU session anchor,PSA)UPF网元,同一个QoS flow中的不同的业务流可能会在不同的PSA UPF网元上传输。而不同PSA UPF网元的部署位置大概率不同,这样同一QoS flow中来自不同PSA UPF网元的数据包在RAN设备侧所剩余的调度时间是不同的,但RAN设备依照现有技术无法区分同一QoS flow中来自不同PSA UPF网元的数据包。此时也可以用图12所示的实施例的方式解决。
(4)、提出了一种新的场景,演进的通用陆地无线接入(evolved universal terrestrial radio access,E-UTRA)和新空口(new radio,NR)同时连接到5G核心网(5G core,5GC)上,因为E-UTRA的覆盖比NR好,NR比E-UTRA的带宽高,所以运营商希望可以根据不同的应用的属性,用不同的基站进行分流,并且由RAN设备来做最终决策。但是RAN设备无法进行应用检测,所以本质上RAN设备无法根据不同的应用属性来做分流。此时也可以用图12所示的实施例的方式解决。
(5)、针对一些业务(如URLLC业务),可能需要网络侧提供QoS监测服务, 即网络监测这些业务的QoS当前是否可以被网络满足。网络侧可能是以QoS flow为粒度监测的,即一个QoS flow中的业务流可能有些需要上报,另一些不需要上报。此时也可以用图12所示的实施例的方式解决。
(6)、针对一些导致MFBR大于GFBR的业务(业务本身的最大比特率大于保证比特率),如果它们被绑定在同一个QoS flow上,一个业务的超额比特速率(超过保证比特率的部分)可以消耗另一个业务的部分GBR。此时也可以用图12所示的实施例的方式解决。
(7)、对于时延敏感通信(time sensitive communication,TSC)业务,为了传输此类业务,RAN设备需要感知业务的一些特性,并根据这些特性进行调度,这些特性被称为TSC辅助信息(TSC assistance information,TSCAI),如表一所示:
表一
Figure PCTCN2020073058-appb-000001
其中,RAN设备在进行QoS控制时,是以QoS flow粒度进行的。然而,目前,QoS flow是以5QI,ARP等参数互相区分的,即某一QoS flow中的不同业务可能具有不同的flow direction,periodicity,burst arrival time,burst size等,而RAN设备无法区分,进而RAN设备可能会进行错误的调度。
为解决该问题,一种可能的解决方式为:将TSCAI中的参数均作为绑定参数,或者设立一个索引,每个索引代表确定的TSCAI中的参数的值,将该索引作为绑定参数。 不过每引入一种新特性就加入新的绑定参数,会引起绑定机制的复杂化,此时也可以用图12所示的实施例的方式解决。
(8)、对于5QI的资源类型为delay critical GBR的QoS flow,会引入一个参数为延迟数据丢弃标识(delayed packet discarding),该延迟数据丢弃标识指示RAN设备丢弃QoS flow中传输时延超过PDB的数据包。
其中,RAN设备在进行QoS控制时,是以QoS flow为粒度进行的。然而,目前,QoS flow是以5QI,ARP等参数互相区分的,即某一QoS flow中的不同业务可能具有不同的丢包的需求,而RAN设备无法区分,进而RAN设备可能会进行错误的调度。
为解决该问题,一种可能的解决方式为:将数据丢弃标识作为绑定参数。不过每引入一种新特性就加入新的绑定参数,会引起绑定机制的复杂化,此时也可以用图12所示的实施例的方式解决。
(9)、对于其他需要引入新的绑定参数解决的问题,都可以用图12所示的实施例的方式解决,本申请实施例对此不作具体限定。
综上,本申请实施例中,PCF网元确定在第一PCC规则中加入步骤S1202中的指示信息的条件可以有以下一个或多个:
当需要保证该第一PCC规则的QoS流没有绑定其他PCC规则时(whenever it has to be ensured that no other PCC rule is bound to the QoS flow of a PCC rule);
该第一PCC规则是多级PCC规则;
该第一PCC规则对应的业务支持多接入;
该第一PCC规则对应的业务是URLLC业务(如5QI的资源类型为delay critical GBR);
该第一PCC规则对应的业务需要冗余传输(如PER小于某一限定值);
该第一PCC规则的数据网络接入标识(data network access identifier,DNAI)与其他现存的PCC规则(当前PDU会话之内)的DNAI不同;
该第一PCC规则的PER与其他现存的PCC规则(当前PDU会话之内)的PER不同;
该第一PCC规则的PDB与其他现存的PCC规则(当前PDU会话之内)的PDB不同;该第一PCC规则依照现有绑定参数会绑定到现有的QoS Flow;
该第一PCC规则对应的业务需要特殊的无线接入技术(radio access technology,RAT),如演进的通用陆地无线接入网络(evolved universal terrestrial radio access network,E-UTRAN);
该第一PCC规则的最大比特率大于保证比特率;
该第一PCC规则对应的业务需要QoS检测;
该第一PCC规则中的5QI的资源类型为delay critical GBR;
该第一PCC规则对应的业务的数据包的传输时延超过PDB,需要丢弃;
该第一PCC规则对应的业务是时延敏感业务(可以体现为PCC规则中包含TSCAI相关信息)。
需要说明的是,本申请实施例中,由于PCC规则和业务有对应关系,所以PCC规则的属性也可以说是PCC规则对应业务的属性,反之亦然。比如,上述第一PCC 规则对应的业务支持多接入也可以称之为第一PCC规则支持多接入,在此统一说明,以下不再赘述。
相应的,步骤S1202中的指示信息还可以为以下任意之一:
该指示信息为该第一PCC规则为多级PCC规则。
该指示信息为该第一PCC规则对应的业务支持多接入(可以体现为PCC规则中包含MA PDU session control,多接入PDU会话控制相关信息,如steering mode)。
该指示信息为该第一PCC规则对应的业务是URLLC业务。
该指示信息为该第一PCC规则对应的业务需要冗余传输。
该指示信息为该第一PCC规则的DNAI与当前会话之内的其他DNAI不同。
该指示信息为该第一PCC规则的PER与当前会话之内的其他PER不同。
该指示信息为该第一PCC规则对应的业务需要第一RAT。
该指示信息为该第一PCC规则对应的业务需要QoS监测。
该指示信息为该第一PCC规则中的5QI的资源类型为delay critical GBR。
该指示信息为该第一PCC规则对应的业务的数据包的传输时延超过PDB,需要丢弃。
该指示信息为该第一PCC规则的最大比特率大于保证比特率。
或者,该指示信息为该第一PCC规则对应的业务是时延敏感业务(可以体现为PCC规则中包含TSCAI相关信息)。
当然,PCF网元也可以跟据其他信息判断是否在第一PCC规则中加入步骤S1202中的指示信息,指示信息的内容也可以为其他,本申请实施例对此不作具体限定。
需要说明的是,上述图8至图10所示的实施例均是以图3所示的通信系统应用于如图4a或图4b所示的非漫游场景下的5G网络架构为例进行说明,若以图3所示的通信系统应用于如图5a或图5b所示的本地疏导漫游5G网络架构为例进行说明,或者以图3所示的通信系统应用于如图6a或图6b所示的家乡路由漫游5G网络架构为例进行说明,则对应的计费规则绑定的方法与上述实施例中的方法类似,仅需将相关网元进行适应性替换即可,在此不予赘述。
或者,以图3所示的通信系统应用于如图4a或图4b所示的非漫游场景下的5G网络架构为例,如图14所示,为本申请实施例提供的一种计费规则绑定的方法,该计费规则绑定的方法包括如下步骤:
S1401、PCF网元向SMF网元发送第一PCC规则。SMF网元接收来自PCF网元的第一PCC规则。
可选的,本申请实施例中的第一PCC规则可以是单级PCC规则或者多级PCC规则,本申请实施例对此不作具体限定。
其中,本申请实施例中,多级PCC规则中的QoS参数分为策略控制(policy control)部分和可选的QoS参数集合(alternative QoS parameter sets)部分。换言之,多级PCC规则包括两部分,一部分为策略控制(policy control)部分。另一部分为可选的QoS参数集合(alternative QoS parameter sets)部分。其中,policy control部分是当前需要使用的QoS参数;alternative QoS parameter sets部分是将来根据RAN设备的资源情况有可能使用的QoS参数。
可选的,本申请实施例中,第一PCC规则的形式可以与步骤S801中示例出的第一PCC规则的形式相同,也可以与步骤S801中示例出的第一PCC规则的形式不相同,在此不作具体限定。
S1402、SMF网元确定已有QoS flow中,是否存在绑定参数与第一PCC规则中的绑定参数均相同的QoS flow。
可选的,本申请实施例中,第一PCC规则中的绑定参数可以包括alternative QoS parameter sets部分的部分参数,如5QI;或者,第一PCC规则中的绑定参数可以包括alternative QoS parameter sets部分的所有参数,即alternative QoS parameter sets部分的所有参数都可以作为第一PCC规则的绑定参数,本申请实施例对此不作具体限定。
示例性的,假设第一PCC规则(即为PCC规则1)可以包括:
policy control part:{5QI value=x0,ARP value=y0,MFBR=z00};
alternative QoS parameter set 1={5QI value=x1,MFBR=z11};
alternative QoS parameter set 2={5QI value=x2,MFBR=z21}.
则相应的,绑定参数的值可以包括:
policy control部分的绑定参数的值:{5QI value=x0,ARP value=y0};
alternative QoS parameter sets部分的绑定参数的值:{5QI value=x1,x2}.
或者,相应的,绑定参数的值可以包括:
policy control部分的绑定参数的值:{5QI value=x0,ARP value=y0};
alternative QoS parameter sets部分的绑定参数的值:{5QI value=x1,MFBR=z11;5QI value=x2,MFBR=z21}。
可选的,本申请实施例中,SMF网元确定已有QoS flow中,是否存在绑定参数与第一PCC规则中的绑定参数均相同的QoS flow,包括:SMF网元确定已有QoS flow绑定的PCC规则中,若存在第二PCC规则中的policy control部分的绑定参数的值与第一PCC规则中的policy control部分的绑定参数的值均相同,且第二PCC规则中的alternative QoS parameter sets部分的绑定参数的值与第一PCC规则的alternative QoS parameter sets部分的绑定参数的值均相同,SMF网元确定已有QoS flow中,存在绑定参数与第一PCC规则中的绑定参数均相同的QoS flow;否则,SMF网元确定已有QoS flow中,不存在绑定参数与第一PCC规则中的绑定参数均相同的QoS flow。
需要说明的是,本申请实施例中,绑定参数与第一PCC规则中的绑定参数均相同的QoS flow需要满足:policy control部分的绑定参数一致且alternative QoS Parameter set部分的绑定参数一致,但alternative QoS parameter sets部分的绑定参数在PCC规则中的顺序可以不一致,在此统一说明,以下不再赘述。
示例性的,假设已有QoS flow1绑定的PCC规则包括PCC规则2,PCC规则2可以包括:
policy control part:{5QI value=x0,ARP value=y0,MFBR=z00};
alternative QoS parameter set 1={5QI value=x1,MFBR=z11};
alternative QoS parameter set 2={5QI value=x2,MFBR=z21};
alternative QoS parameter set 3={5QI value=x2,MFBR=z31}.
则相应的,绑定参数的值可以包括:
policy control部分的绑定参数的值:{5QI value=x0,ARP value=y0};
alternative QoS parameter sets部分的绑定参数的值:{5QI value=x1,x2}.
或者,相应的,绑定参数的值可以包括:
policy control部分的绑定参数的值:{5QI value=x0,ARP value=y0};
alternative QoS parameter sets部分的绑定参数的值:{5QI value=x1,MFBR=z11;5QI value=x2,MFBR=z21;5QI value=x2,MFBR=z31}。
示例性的,假设已有QoS flow2绑定的PCC规则包括PCC规则3,PCC规则3可以包括:
policy control part:{5QI value=x1,ARP value=y1,MFBR=z00};
alternative QoS parameter set 1={5QI value=x1,MFBR=z11};
alternative QoS parameter set 2={5QI value=x2,MFBR=z21}.
则相应的,绑定参数的值可以包括:
policy control部分的绑定参数的值:{5QI value=x1,ARP value=y1};
alternative QoS parameter sets部分的绑定参数的值:{5QI value=x1,x2}.
或者,相应的,绑定参数的值可以包括:
policy control part部分的绑定参数的值:{5QI value=x1,ARP value=y1};
alternative QoS parameter sets部分的绑定参数的值:{5QI value=x1,MFBR=z11;5QI value=x2,MFBR=z21}。
其中,当第一PCC规则中的绑定参数包括alternative QoS parameter sets部分的绑定参数时,SMF网元可以确定已有QoS flow1的绑定参数与第一PCC规则中的绑定参数均相同,SMF网元可以确定已有QoS flow2的绑定参数与第一PCC规则中的绑定参数不相同。
进一步的,本申请实施例中,若SMF网元确定存在绑定参数与第一PCC规则中的绑定参数均相同的QoS flow,则执行步骤S1403;或者,若SMF网元确定不存在绑定参数与第一PCC规则中的绑定参数均相同的QoS flow,则执行步骤S1404。
S1403、若存在,SMF网元将第一PCC规则绑定至已有QoS flow。
S1404、若不存在,SMF网元根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。
其中,第一PCC规则绑定至创建的QoS flow的具体实现可参考现有的绑定机制,在此不予赘述。
基于本申请实施例提供的计费规则绑定的方法,由于本申请实施例中,只有绑定参数均相同的PCC规则才可以绑定至相同的QoS flow,因此避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
可选的,本申请实施例中,也可以将alternative QoS parameter sets直接作为绑定参数。即在具体实施方式部分“绑定参数”部分,alternative QoS parameter sets可以作为一个可选的绑定参数。即将PCC规则分为有alternative QoS parameter sets的PCC规则和没有alternative QoS parameter sets的PCC规则。有alternative QoS parameter sets的PCC规则不应与没有alternative QoS parameter sets的PCC规则绑定在同一QoS flow 中。该场景下,以图3所示的通信系统应用于如图4a或图4b所示的非漫游场景下的5G网络架构为例,如图15所示,为本申请实施例提供的一种计费规则绑定的方法,该计费规则绑定的方法包括如下步骤:
S1501、同图14所示的实施例中的步骤S1401,相关描述可参考图14所示的实施例,在此不再赘述。
S1502、当SMF网元确定第一PCC规则包括alternative QoS parameter sets,且已有第一QoS flow绑定的PCC规则中,存在第二PCC规则中包括的第一绑定参数的值与第一PCC规则包括的第一绑定参数的值相同,且第二PCC规则中包括alternative QoS parameter sets时,SMF网元将第一PCC规则绑定至第一QoS flow。
其中,本申请实施例中的第一绑定参数是指除了alternative QoS parameter sets之外的其他绑定参数,如5QI、ARP、QNC、优先级、平均窗口、MDBV等,本申请实施例对此不作具体限定。
S1503、当SMF网元确定第一PCC规则不包括alternative QoS parameter sets,且已有第二QoS flow绑定的PCC规则,存在第三PCC规则中包括的第一绑定参数的值与第一PCC规则包括的第一绑定参数的值相同,且第三PCC规则中不包括alternative QoS parameter sets时,SMF网元将第一PCC规则绑定至第二QoS flow。
当然,本申请实施例中,若SMF网元确定已有QoS flow绑定的PCC规则,不存在PCC规则中包括的第一绑定参数的值与第一PCC规则包括的第一绑定参数的值相同,此时SMF网元根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。其中,第一PCC规则绑定至创建的QoS flow的具体实现可参考现有的绑定机制,在此不予赘述。
也就是说,本申请实施例中,在PCC规则中的其他绑定参数均相同的情况下,包含alternative QoS parameter sets的一个或多个PCC规则可以视为具有相同绑定参数的PCC规则,不包含alternative QoS parameter sets的一个或多个PCC规则可以视为具有相同绑定参数的PCC规则。进而,具有相同绑定参数的一个或多个PCC规则可以绑定至相同的QoS flow,不具有相同绑定参数的一个或多个PCC规则不可以绑定至相同的QoS flow。这样避免了具有相同绑定参数的多级PCC规则与单级PCC规则绑定到同一QoS flow中的问题,进一步的从而避免了RAN设备调度错误。
可以理解的是,以上各个实施例中,由会话管理网元实现的方法和/或步骤,也可以由可用于会话管理网元的部件(例如芯片或者电路)实现;由策略控制网元实现的方法和/或步骤,也可以由可用于策略控制网元的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的会话管理网元,或者包含上述会话管理网元的装置,或者为可用于会话管理网元的部件;或者,该通信装置可以为上述方法实施例中的策略控制网元,或者包含上述策略控制网元的装置,或者为可用于策略控制网元的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来 实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的会话管理网元为例,图11示出了一种会话管理网元110的结构示意图。该会话管理网元110包括收发模块1101和处理模块1102。所述收发模块1101,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
一种可能的实现方式中,收发模块1101,用于接收来自策略控制网元的第一PCC规则,第一PCC规则中包括绑定参数,绑定参数中的每级绑定参数分别对应一个rank值;处理模块1102,用于确定已有QoS flow绑定的PCC规则中,是否存在所有rank值中的每个rank值下的绑定参数与第一PCC规则中的所有rank值中相同rank值下的绑定参数均相同的PCC规则;处理模块1102,还用于若存在,将第一PCC规则绑定至已有QoS flow;或者,处理模块1102,还用于若不存在,根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。
可选的,绑定参数中的每级绑定参数分别对应的一个rank值,包括:绑定参数中的每级绑定参数中分别包括一个rank值。
或者,可选的,绑定参数中的每级绑定参数分别对应一个rank值,包括:第一PCC规则中还包括与绑定参数中的每级绑定参数分别对应的rank值。
另一种可能的实现方式中,收发模块1101,用于接收来自策略控制网元的第一PCC规则;处理模块1102,用于确定已有QoS flow绑定的PCC规则中,是否存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则;处理模块1102,还用于若存在,将第一PCC规则绑定至已有QoS flow;或者,处理模块1102,还用于若不存在,根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。
可选的,处理模块1102用于确定已有QoS flow绑定的PCC规则中,是否存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则,包括:处理模块1102,用于确定已有QoS flow绑定的PCC规则中,是否存在对应的最大rank值与第一PCC规则对应的最大rank值相同的PCC规则;若存在第二PCC规则对应的最大rank值与第一PCC规则对应的最大rank值相同,且第二PCC规则中的每级绑定参数依次与第一PCC规则中的每级绑定参数均相同,确定已有QoS flow绑定的PCC规则中,存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则中;否则,确定已有QoS flow绑定的PCC规则中,不存在每级绑定参数依次与第一PCC规则中的每级绑定参数均相同的PCC规则。
再一种可能的实现方式中,收发模块1101,用于接收来自策略控制网元的第一PCC 规则;处理模块1102,用于确定第一PCC规则为多级PCC规则;处理模块1102,还用于根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow,其中,QoS flow仅绑定第一PCC规则。
可选的,第一PCC规则中包括指示信息,指示信息用于指示第一PCC规则为多级PCC规则;处理模块1102用于确定第一PCC规则为多级PCC规则,包括:处理模块1102,用于根据指示信息,确定第一PCC规则为多级PCC规则。
或者,可选的,第一PCC规则中包括N个备选QoS参数集合,N为大于1的正整数;处理模块1102用于确定第一PCC规则为多级PCC规则,包括:处理模块1102,用于根据N个备选QoS参数集合,确定第一PCC规则为多级PCC规则。
再一种可能的实现方式中,收发模块1101,用于接收来自策略控制网元的第一PCC规则;处理模块1102,用于确定第一PCC规则需要绑定到单独的QoS flow;处理模块1102,还用于根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。
可选的,第一PCC规则中包括指示信息;处理模块1102,用于确定第一PCC规则需要绑定到单独的QoS flow,包括:处理模块1102,用于根据指示信息,确定第一PCC规则需要绑定到单独的QoS flow。
又一种可能的实现方式中,收发模块1101,用于接收来自策略控制网元的第一PCC规则,第一PCC规则中包括绑定参数;处理模块1102,用于确定已有QoS flow中,是否存在绑定参数与第一PCC规则中的绑定参数均相同的QoS flow。处理模块1102,还用于若存在,将第一PCC规则绑定至已有QoS flow;或者,处理模块1102,还用于若不存在,根据第一PCC规则创建QoS flow,并将第一PCC规则绑定至创建的QoS flow。
可选的,处理模块1102,用于确定已有QoS flow中,是否存在绑定参数与第一PCC规则中的绑定参数均相同的QoS flow,包括:所述处理模块1102,用于当确定已有QoS flow绑定的PCC规则中,存在第二PCC规则中的策略控制部分的绑定参数的值与第一PCC规则中的策略控制部分的绑定参数的值均相同,且第二PCC规则中的可选QoS参数集合部分的绑定参数的值与第一PCC规则的可选QoS参数集合部分的绑定参数的值均相同时,确定已有服务质量流QoS flow中,存在绑定参数与第一PCC规则中的绑定参数均相同的QoS flow。
又一种可能的实现方式中,收发模块1101,用于接收来自策略控制网元的第一PCC规则,第一PCC规则中包括第一绑定参数;处理模块1102,用于当确定第一PCC规则包括可选QoS参数集合,且已有第一QoS flow绑定的PCC规则中,存在第二PCC规则中包括的第一绑定参数的值与第一PCC规则包括的第一绑定参数的值相同,且第二PCC规则中包括可选QoS参数集合时,将第一PCC规则绑定至已有第一QoS flow;或者,处理模块1102,用于当确定第一PCC规则不包括可选QoS参数集合,且已有第二QoS flow绑定的PCC规则,存在第三PCC规则中包括的第一绑定参数的值与第一PCC规则包括的第一绑定参数的值相同,且第三PCC规则中不包括可选QoS参数集合时,将第一PCC规则绑定至已有第二QoS flow。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块 的功能描述,在此不再赘述。
在本实施例中,该会话管理网元110以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该会话管理网元110可以采用图7所示的通信设备700的形式。
比如,图7所示的通信设备700中的处理器701可以通过调用存储器703中存储的计算机执行指令,使得通信设备700执行上述方法实施例中的计费规则绑定的方法。
具体的,图11中的收发模块1101和处理模块1102的功能/实现过程可以通过图7所示的通信设备700中的处理器701调用存储器703中存储的计算机执行指令来实现。或者,图11中的处理模块1102的功能/实现过程可以通过图7所示的通信设备700中的处理器701调用存储器703中存储的计算机执行指令来实现,图11中的收发模块1101的功能/实现过程可以通过图7中所示的通信设备700中的通信接口704来实现。
由于本实施例提供的会话管理网元110可执行上述的计费规则绑定的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的策略控制网元为例,图13示出了一种策略控制网元130的结构示意图。该策略控制网元130包括收发模块1301和处理模块1302。所述收发模块1301,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,处理模块1302,用于确定第一PCC规则需要绑定到单独的QoS flow;收发模块1301,用于向会话管理网元发送第一PCC规则,该第一PCC规则中包括指示信息,该指示信息用于指示该第一PCC规则需要绑定到单独的QoS flow。
可选的,处理模块1302,用于确定第一PCC规则需要绑定到单独的QoS flow,包括:
处理模块1302,用于在以下条件中的一个或多个满足时,确定第一PCC规则需要绑定到单独的QoS flow:
当需要保证该第一PCC规则的QoS流没有绑定其他PCC规则时;
第一PCC规则是多级PCC规则;
第一PCC规则对应的业务支持多接入;
第一PCC规则对应的业务是URLLC业务;
第一PCC规则对应的业务需要冗余传输;
第一PCC规则的DNAI与当前会话之内的其他DNAI不同;
第一PCC规则的PER与当前会话之内的其他PER不同;
第一PCC规则对应的业务需要第一无线接入技术RAT。
第一PCC规则的最大比特率大于保证比特率;
第一PCC规则对应的业务需要QoS检测;
第一PCC规则对应的业务的数据包的传输时延超过PDB,需要丢弃;
第一PCC规则中的5QI的资源类型为delay critical GBR;以及,
第一PCC规则对应的业务是时延敏感业务。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该策略控制网元130以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该策略控制网元130可以采用图7所示的通信设备700的形式。
比如,图7所示的通信设备700中的处理器701可以通过调用存储器703中存储的计算机执行指令,使得通信设备700执行上述方法实施例中的计费规则绑定的方法。
具体的,图13中的收发模块1301和处理模块1302的功能/实现过程可以通过图7所示的通信设备700中的处理器701调用存储器703中存储的计算机执行指令来实现。或者,图13中的处理模块1302的功能/实现过程可以通过图7所示的通信设备700中的处理器701调用存储器703中存储的计算机执行指令来实现,图13中的收发模块1301的功能/实现过程可以通过图7中所示的通信设备700中的通信接口704来实现。
由于本实施例提供的策略控制网元130可执行上述的计费规则绑定的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储 在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (40)

  1. 一种计费规则绑定的方法,其特征在于,所述方法包括:
    会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则;
    所述会话管理网元确定所述第一PCC规则为多级PCC规则;
    所述会话管理网元根据所述第一PCC规则创建服务质量流QoS flow,并将所述第一PCC规则绑定至创建的QoS flow,其中,所述QoS flow仅绑定所述第一PCC规则。
  2. 根据权利要求1所述的方法,其特征在于,所述第一PCC规则中包括指示信息,所述指示信息用于指示所述第一PCC规则为多级PCC规则;
    所述会话管理网元确定所述第一PCC规则为多级PCC规则,包括:
    所述会话管理网元根据所述指示信息,确定所述第一PCC规则为多级PCC规则。
  3. 根据权利要求1所述的方法,其特征在于,所述第一PCC规则中包括N个备选QoS参数集合,N为大于1的正整数;
    所述会话管理网元确定所述第一PCC规则为多级PCC规则,包括:
    所述会话管理网元根据所述N个备选QoS参数集合,确定所述第一PCC规则为多级PCC规则。
  4. 一种计费规则绑定的方法,其特征在于,所述方法包括:
    会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则,所述第一PCC规则中包括绑定参数,所述绑定参数中的每级绑定参数分别对应一个排序等级值;
    所述会话管理网元确定已有服务质量流QoS flow绑定的PCC规则中,是否存在所有排序等级值中的每个排序等级值下的绑定参数与所述第一PCC规则中的所有排序等级值中相同排序等级值下的绑定参数均相同的PCC规则;
    若存在,所述会话管理网元将所述第一PCC规则绑定至所述已有QoS flow;
    或者,若不存在,所述会话管理网元根据所述第一PCC规则创建QoS flow,并将所述第一PCC规则绑定至创建的QoS flow。
  5. 根据权利要求4所述的方法,其特征在于,所述绑定参数中的每级绑定参数分别对应的一个排序等级值,包括:
    所述绑定参数中的每级绑定参数中分别包括一个排序等级值。
  6. 根据权利要求4所述的方法,其特征在于,所述绑定参数中的每级绑定参数分别对应一个排序等级值,包括:
    所述第一PCC规则中还包括与所述绑定参数中的每级绑定参数分别对应的排序等级值。
  7. 一种计费规则绑定的方法,其特征在于,所述方法包括:
    会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则;
    所述会话管理网元确定已有服务质量流QoS flow绑定的PCC规则中,是否存在每级绑定参数依次与所述第一PCC规则中的每级绑定参数均相同的PCC规则;
    若存在,所述会话管理网元将所述第一PCC规则绑定至所述已有QoS flow;
    或者,若不存在,所述会话管理网元根据所述第一PCC规则创建QoS flow,并将所述第一PCC规则绑定至创建的QoS flow。
  8. 根据权利要求7所述的方法,其特征在于,所述会话管理网元确定已有QoS flow 绑定的PCC规则中,是否存在每级绑定参数依次与所述第一PCC规则中的每级绑定参数均相同的PCC规则,包括:
    所述会话管理网元确定已有QoS flow绑定的PCC规则中,是否存在对应的最大排序等级值与所述第一PCC规则对应的最大排序等级值相同的PCC规则;
    若存在第二PCC规则对应的最大排序等级值与所述第一PCC规则对应的最大排序等级值相同,且所述第二PCC规则中的每级绑定参数依次与所述第一PCC规则中的每级绑定参数均相同,所述会话管理网元确定已有QoS flow绑定的PCC规则中,存在每级绑定参数依次与所述第一PCC规则中的每级绑定参数均相同的PCC规则;
    否则,所述会话管理网元确定已有QoS flow绑定的PCC规则中,不存在每级绑定参数依次与所述第一PCC规则中的每级绑定参数均相同的PCC规则。
  9. 一种会话管理网元,其特征在于,所述会话管理网元包括:收发模块和处理模块;
    所述收发模块,用于接收来自策略控制网元的第一策略与计费控制PCC规则;
    所述处理模块,用于确定所述第一PCC规则为多级PCC规则;
    所述处理模块,还用于根据所述第一PCC规则创建服务质量流QoS flow,并将所述第一PCC规则绑定至创建的QoS flow,其中,所述QoS flow仅绑定所述第一PCC规则。
  10. 根据权利要求9所述的会话管理网元,其特征在于,所述第一PCC规则中包括指示信息,所述指示信息用于指示所述第一PCC规则为多级PCC规则;
    所述处理模块用于确定所述第一PCC规则为多级PCC规则,包括:
    所述处理模块,用于根据所述指示信息,确定所述第一PCC规则为多级PCC规则。
  11. 根据权利要求9所述的会话管理网元,其特征在于,所述第一PCC规则中包括N个备选QoS参数集合,N为大于1的正整数;
    所述处理模块用于确定所述第一PCC规则为多级PCC规则,包括:
    所述处理模块,用于根据所述N个备选QoS参数集合,确定所述第一PCC规则为多级PCC规则。
  12. 一种会话管理网元,其特征在于,所述会话管理网元包括:收发模块和处理模块;
    所述收发模块,用于接收来自策略控制网元的第一策略与计费控制PCC规则,所述第一PCC规则中包括绑定参数,所述绑定参数中的每级绑定参数分别对应一个排序等级值;
    所述处理模块,用于确定已有服务质量流QoS flow绑定的PCC规则中,是否存在所有排序等级值中的每个排序等级值下的绑定参数与所述第一PCC规则中的所有排序等级值中相同排序等级值下的绑定参数均相同的PCC规则;
    所述处理模块,还用于若存在,将所述第一PCC规则绑定至所述已有QoS flow;
    或者,所述处理模块,还用于若不存在,根据所述第一PCC规则创建QoS flow,并将所述第一PCC规则绑定至创建的QoS flow。
  13. 根据权利要求12所述的会话管理网元,其特征在于,所述绑定参数中的每级 绑定参数分别对应的一个排序等级值,包括:
    所述绑定参数中的每级绑定参数中分别包括一个排序等级值。
  14. 根据权利要求12所述的会话管理网元,其特征在于,所述绑定参数中的每级绑定参数分别对应一个排序等级值,包括:
    所述第一PCC规则中还包括与所述绑定参数中的每级绑定参数分别对应的排序等级值。
  15. 一种会话管理网元,其特征在于,所述会话管理网元包括:收发模块和处理模块;
    所述收发模块,用于接收来自策略控制网元的第一策略与计费控制PCC规则;
    所述处理模块,用于确定已有服务质量流QoS flow绑定的PCC规则中,是否存在每级绑定参数依次与所述第一PCC规则中的每级绑定参数均相同的PCC规则;
    所述处理模块,还用于若存在,将所述第一PCC规则绑定至所述已有QoS flow;
    或者,所述处理模块,还用于若不存在,根据所述第一PCC规则创建QoS flow,并将所述第一PCC规则绑定至创建的QoS flow。
  16. 根据权利要求15所述的会话管理网元,其特征在于,所述处理模块用于确定已有QoS flow绑定的PCC规则中,是否存在每级绑定参数依次与所述第一PCC规则中的每级绑定参数均相同的PCC规则,包括:
    所述处理模块,用于确定已有QoS flow绑定的PCC规则中,是否存在对应的最大排序等级值与所述第一PCC规则对应的最大排序等级值相同的PCC规则;若存在第二PCC规则对应的最大排序等级值与所述第一PCC规则对应的最大排序等级值相同,且所述第二PCC规则中的每级绑定参数依次与所述第一PCC规则中的每级绑定参数均相同,确定已有QoS flow绑定的PCC规则中,存在每级绑定参数依次与所述第一PCC规则中的每级绑定参数均相同的PCC规则;否则,确定已有QoS flow绑定的PCC规则中,不存在每级绑定参数依次与所述第一PCC规则中的每级绑定参数均相同的PCC规则。
  17. 一种计费规则绑定的方法,其特征在于,所述方法包括:
    会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则;
    所述会话管理网元确定所述第一PCC规则需要绑定到单独的服务质量流QoS flow;
    所述会话管理网元根据所述第一PCC规则创建QoS flow,并将所述第一PCC规则绑定至创建的QoS flow。
  18. 根据权利要求17所述的方法,其特征在于,所述第一PCC规则中包括指示信息;
    所述会话管理网元确定所述第一PCC规则需要绑定到单独的QoS flow,包括:
    所述会话管理网元根据所述指示信息,确定所述第一PCC规则需要绑定到单独的QoS flow。
  19. 根据权利要求18所述的方法,其特征在于,所述指示信息为以下任意之一;
    所述指示信息为指示所述第一PCC规则需要绑定到单独的QoS flow的信息;
    所述指示信息为所述第一PCC规则为多级PCC规则;
    所述指示信息为所述第一PCC规则对应的业务支持多接入;
    所述指示信息为所述第一PCC规则对应的业务是高可靠低时延URLLC业务;
    所述指示信息为所述第一PCC规则对应的业务需要冗余传输;
    所述指示信息为所述第一PCC规则的数据网络接入标识DNAI与当前会话之内的其他DNAI不同;
    所述指示信息为所述第一PCC规则的包错误率PER与当前会话之内的其他PER不同;
    所述指示信息为所述第一PCC规则对应的业务需要第一无线接入技术RAT;
    所述指示信息为所述第一PCC规则对应的业务需要QoS监测;
    所述指示信息为所述第一PCC规则对应的业务的数据包的传输时延超过包延时估算PDB,需要丢弃;
    所述指示信息为所述第一PCC规则中的第五代服务质量标识5QI的资源类型为延迟重要保证比特率GBR;
    所述指示信息为所述第一PCC规则的最大比特率大于保证比特率;或者,
    所述指示信息为所述第一PCC规则对应的业务是时延敏感业务。
  20. 根据权利要求17-19任一项所述的方法,其特征在于,所述QoS flow仅绑定所述第一PCC规则。
  21. 根据权利要求20所述的方法,其特征在于,所述QoS flow仅绑定所述第一PCC规则,包括:
    所述会话管理网元根据所述会话管理网元内部的标志位确定第二PCC规则不能绑定到所述QoS flow。
  22. 一种计费规则绑定的方法,其特征在于,所述方法包括:
    策略控制网元确定第一PCC规则需要绑定到单独的服务质量流QoS flow;
    所述策略控制网元向会话管理网元发送所述第一PCC规则,所述第一PCC规则中包括指示信息,所述指示信息用于指示所述第一PCC规则需要绑定到单独的QoS flow。
  23. 根据权利要求22所述的方法,其特征在于,所述策略控制网元确定第一PCC规则需要绑定到单独的QoS flow,包括:
    在以下条件中的一个或多个满足时,所述策略控制网元确定所述第一PCC规则需要绑定到单独的QoS flow:
    当需要保证所述第一PCC规则的QoS流没有绑定其他PCC规则时;
    所述第一PCC规则是多级PCC规则;
    所述第一PCC规则对应的业务支持多接入;
    所述第一PCC规则对应的业务是高可靠低时延URLLC业务;
    所述第一PCC规则对应的业务需要冗余传输;
    所述第一PCC规则的数据网络接入标识DNAI与当前会话之内的其他DNAI不同;
    所述第一PCC规则的包错误率PER与当前会话之内的其他PER不同;
    所述第一PCC规则对应的业务需要第一无线接入技术RAT;
    所述第一PCC规则的最大比特率大于保证比特率;
    所述第一PCC规则对应的业务的数据包的传输时延超过包延时估算PDB,需要丢 弃;
    所述第一PCC规则中的5QI的资源类型为延迟重要保证比特率GBR;
    所述第一PCC规则对应的业务需要QoS检测;以及,
    所述第一PCC规则对应的业务是时延敏感业务。
  24. 一种会话管理网元,其特征在于,所述会话管理网元包括:处理模块和收发模块;
    所述收发模块,用于接收来自策略控制网元的第一策略与计费控制PCC规则;
    所述处理模块,用于确定所述第一PCC规则需要绑定到单独的服务质量流QoS flow;
    所述处理模块,还用于根据所述第一PCC规则创建QoS flow,并将所述第一PCC规则绑定至创建的QoS flow。
  25. 根据权利要求24所述的会话管理网元,其特征在于,所述第一PCC规则中包括指示信息;
    所述处理模块,用于确定所述第一PCC规则需要绑定到单独的QoS flow,包括:
    所述处理模块,用于根据所述指示信息,确定所述第一PCC规则需要绑定到单独的QoS flow。
  26. 一种策略控制网元,其特征在于,所述策略控制网元包括:处理模块和收发模块;
    所述处理模块,用于确定第一PCC规则需要绑定到单独的服务质量流QoS flow;
    所述收发模块,用于向会话管理网元发送所述第一PCC规则,所述第一PCC规则中包括指示信息,所述指示信息用于指示所述第一PCC规则需要绑定到单独的QoS flow。
  27. 一种通信系统,其特征在于,所述通信系统包括:会话管理网元和策略控制网元;
    所述策略控制网元,用于向会话管理网元发送第一策略与计费控制PCC规则;
    所述会话管理网元,用于接收来自所述策略控制网元的所述第一PCC规则;
    所述会话管理网元,还用于确定所述第一PCC规则需要绑定到单独的服务质量流QoS flow;
    所述会话管理网元,还用于根据所述第一PCC规则创建QoS flow,并将所述第一PCC规则绑定至创建的QoS flow。
  28. 一种计费规则绑定的方法,其特征在于,所述方法包括:
    会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则,所述第一PCC规则中包括绑定参数;
    所述会话管理网元确定已有服务质量流QoS flow中,是否存在绑定参数与所述第一PCC规则中的绑定参数均相同的QoS flow;
    若存在,所述会话管理网元将所述第一PCC规则绑定至所述已有QoS flow;
    或者,若不存在,所述会话管理网元根据所述第一PCC规则创建QoS flow,并将所述第一PCC规则绑定至创建的QoS flow。
  29. 根据权利要求28所述的方法,其特征在于,所述会话管理网元确定已有QoS  flow中,是否存在绑定参数与所述第一PCC规则中的绑定参数均相同的QoS flow,包括:
    当所述会话管理网元确定已有QoS flow绑定的PCC规则中,存在第二PCC规则中的策略控制部分的绑定参数的值与所述第一PCC规则中的策略控制部分的绑定参数的值均相同,且所述第二PCC规则中的可选QoS参数集合部分的绑定参数的值与所述第一PCC规则的可选QoS参数集合部分的绑定参数的值均相同时,所述会话管理网元确定已有服务质量流QoS flow中,存在绑定参数与所述第一PCC规则中的绑定参数均相同的QoS flow。
  30. 根据权利要求28或29所述的方法,其特征在于,所述绑定参数包括可选QoS参数集合。
  31. 一种会话管理网元,其特征在于,所述会话管理网元包括:处理模块和收发模块;
    所述收发模块,用于接收来自策略控制网元的第一策略与计费控制PCC规则,所述第一PCC规则中包括绑定参数;
    所述处理模块,用于确定已有服务质量流QoS flow中,是否存在绑定参数与所述第一PCC规则中的绑定参数均相同的QoS flow;
    所述处理模块,还用于若存在,将所述第一PCC规则绑定至所述已有QoS flow;
    或者,所述处理模块,还用于若不存在,根据所述第一PCC规则创建QoS flow,并将所述第一PCC规则绑定至创建的QoS flow。
  32. 一种计费规则绑定的方法,其特征在于,所述方法包括:
    会话管理网元接收来自策略控制网元的第一策略与计费控制PCC规则,所述第一PCC规则中包括第一绑定参数;
    当所述会话管理网元确定所述第一PCC规则包括可选服务质量QoS参数集合,且已有第一QoS flow绑定的PCC规则中,存在第二PCC规则中包括的所述第一绑定参数的值与所述第一PCC规则包括的所述第一绑定参数的值相同,且所述第二PCC规则中包括可选QoS参数集合时,所述会话管理网元将所述第一PCC规则绑定至所述已有第一QoS flow;
    或者,当所述会话管理网元确定所述第一PCC规则不包括可选QoS参数集合,且已有第二QoS flow绑定的PCC规则,存在第三PCC规则中包括的所述第一绑定参数的值与所述第一PCC规则包括的所述第一绑定参数的值相同,且所述第三PCC规则中不包括可选QoS参数集合时,所述会话管理网元将所述第一PCC规则绑定至所述已有第二QoS flow。
  33. 一种会话管理网元,其特征在于,所述会话管理网元包括收发模块和处理模块;
    所述收发模块,用于接收来自策略控制网元的第一策略与计费控制PCC规则,所述第一PCC规则中包括第一绑定参数;
    所述处理模块,用于当确定所述第一PCC规则包括可选服务质量QoS参数集合,且已有第一QoS flow绑定的PCC规则中,存在第二PCC规则中包括的所述第一绑定参数的值与所述第一PCC规则包括的所述第一绑定参数的值相同,且所述第二PCC 规则中包括可选QoS参数集合时,将所述第一PCC规则绑定至所述已有第一QoS flow;
    或者,所述处理模块,用于当确定所述第一PCC规则不包括可选QoS参数集合,且已有第二QoS flow绑定的PCC规则,存在第三PCC规则中包括的所述第一绑定参数的值与所述第一PCC规则包括的所述第一绑定参数的值相同,且所述第三PCC规则中不包括可选QoS参数集合时,将所述第一PCC规则绑定至所述已有第二QoS flow。
  34. 一种通信装置,其特征在于,包括:处理器和存储器;所述存储器用于存储计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述通信装置执行如权利要求1-3任一项,或者如权利要求4-6任一项,或者如权利要求7-8任一项,或者如权利要求17-21任一项,或者如权利要求22-23任一项,或者如权利要求28-30任一项,或者如权利要求32所述的计费规则绑定的方法。
  35. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以执行如权利要求1-3任一项,或者如权利要求4-6任一项,或者如权利要求7-8任一项,或者如权利要求17-21任一项,或者如权利要求22-23任一项,或者如权利要求28-30任一项,或者如权利要求32所述的计费规则绑定的方法。
  36. 一种处理器,其特征在于,用于执行如权利要求1-3任一项,或者如权利要求4-6任一项,或者如权利要求7-8任一项,或者如权利要求17-21任一项,或者如权利要求22-23任一项,或者如权利要求28-30任一项,或者如权利要求32所述的计费规则绑定的方法。
  37. 一种芯片系统,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,使得安装有所述芯片系统的设备执行如权利要求1-3任一项,或者如权利要求4-6任一项,或者如权利要求7-8任一项,或者如权利要求17-21任一项,或者如权利要求22-23任一项,或者如权利要求28-30任一项,或者如权利要求32所述的计费规则绑定的方法。
  38. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1-3任一项,或者如权利要求4-6任一项,或者如权利要求7-8任一项,或者如权利要求17-21任一项,或者如权利要求22-23任一项,或者如权利要求28-30任一项,或者如权利要求32所述的计费规则绑定的方法。
  39. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1-3任一项,或者如权利要求4-6任一项,或者如权利要求7-8任一项,或者如权利要求17-21任一项,或者如权利要求22-23任一项,或者如权利要求28-30任一项,或者如权利要求32所述的计费规则绑定的方法。
  40. 一种装置,其特征在于,所述装置用来执行如权利要求1-3任一项,或者如权利要求4-6任一项,或者如权利要求7-8任一项,或者如权利要求17-21任一项,或者如权利要求22-23任一项,或者如权利要求28-30任一项,或者如权利要求32所述 的计费规则绑定的方法。
PCT/CN2020/073058 2019-03-28 2020-01-19 计费规则绑定的方法、设备及系统 WO2020192263A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20776377.2A EP3869868A4 (en) 2019-03-28 2020-01-19 METHOD, DEVICE AND SYSTEM FOR LOAD RULE BINDING
US17/331,004 US11792676B2 (en) 2019-03-28 2021-05-26 Charging rule binding method, device, and system
US18/470,815 US20240015570A1 (en) 2019-03-28 2023-09-20 Charging rule binding method, device, and system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910242394 2019-03-28
CN201910242394.4 2019-03-28
CN201910517306.7 2019-06-14
CN201910517306 2019-06-14
CN201911086724.1 2019-11-08
CN201911086724.1A CN111756555B (zh) 2019-03-28 2019-11-08 计费规则绑定的方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/331,004 Continuation US11792676B2 (en) 2019-03-28 2021-05-26 Charging rule binding method, device, and system

Publications (1)

Publication Number Publication Date
WO2020192263A1 true WO2020192263A1 (zh) 2020-10-01

Family

ID=72610450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073058 WO2020192263A1 (zh) 2019-03-28 2020-01-19 计费规则绑定的方法、设备及系统

Country Status (1)

Country Link
WO (1) WO2020192263A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080132269A1 (en) * 2006-12-01 2008-06-05 Cingular Wireless Ii, Llc Non-intrusive in-session QoS parameter modification method
CN103636279A (zh) * 2011-07-01 2014-03-12 瑞典爱立信有限公司 用于控制承载相关资源的方法和节点以及对应的系统和计算机程序
CN106937351A (zh) * 2015-12-29 2017-07-07 中国移动通信集团公司 一种会话实现方法及核心网元
CN108353310A (zh) * 2015-11-05 2018-07-31 Lg 电子株式会社 在无线通信系统中发送和接收数据的方法和支持该方法的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080132269A1 (en) * 2006-12-01 2008-06-05 Cingular Wireless Ii, Llc Non-intrusive in-session QoS parameter modification method
CN103636279A (zh) * 2011-07-01 2014-03-12 瑞典爱立信有限公司 用于控制承载相关资源的方法和节点以及对应的系统和计算机程序
CN108353310A (zh) * 2015-11-05 2018-07-31 Lg 电子株式会社 在无线通信系统中发送和接收数据的方法和支持该方法的装置
CN106937351A (zh) * 2015-12-29 2017-07-07 中国移动通信集团公司 一种会话实现方法及核心网元

Similar Documents

Publication Publication Date Title
CN111865623B (zh) 计费规则绑定的方法、设备及系统
CN111432440B (zh) 实现业务连续性的方法、装置及系统
CN111565422B (zh) 策略控制方法、装置及系统
WO2021012697A1 (zh) 应用mos模型的训练方法、设备及系统
KR102581335B1 (ko) 서비스 품질 모니터링 방법 및 시스템, 및 디바이스
CN111436030B (zh) 数据用量上报的方法、装置及系统
WO2021031672A1 (zh) 通知服务质量信息的方法、设备及系统
WO2020024961A1 (zh) 数据处理方法、设备及系统
CN110149603B (zh) 一种策略控制方法、设备及系统
CN112019363B (zh) 确定业务传输需求的方法、设备及系统
WO2018121178A1 (zh) 一种资源调整方法、装置和系统
JP2022553601A (ja) 送信競合の解決方法、装置、端末及び媒体
WO2021146926A1 (zh) 一种数据传输方法、设备及系统
CN112243284A (zh) 选择amf的方法、装置及存储介质
WO2020192263A1 (zh) 计费规则绑定的方法、设备及系统
CN110149602B (zh) 一种策略控制方法、设备及系统
WO2023029625A1 (zh) 一种服务质量的处理方法、装置和通信系统
WO2021233063A1 (zh) 用于策略控制的方法和装置
WO2021103009A1 (zh) 上行pdr的生成方法、装置及系统
CN114287149A (zh) Ambr的控制方法、设备及系统
WO2021046746A1 (zh) 上报会话管理信息的方法、设备及系统
WO2022193127A1 (zh) 业务调度方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020776377

Country of ref document: EP

Effective date: 20210518

NENP Non-entry into the national phase

Ref country code: DE