WO2018121178A1 - 一种资源调整方法、装置和系统 - Google Patents

一种资源调整方法、装置和系统 Download PDF

Info

Publication number
WO2018121178A1
WO2018121178A1 PCT/CN2017/114220 CN2017114220W WO2018121178A1 WO 2018121178 A1 WO2018121178 A1 WO 2018121178A1 CN 2017114220 W CN2017114220 W CN 2017114220W WO 2018121178 A1 WO2018121178 A1 WO 2018121178A1
Authority
WO
WIPO (PCT)
Prior art keywords
service flow
transmission path
link
information
network
Prior art date
Application number
PCT/CN2017/114220
Other languages
English (en)
French (fr)
Inventor
祝宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17887284.2A priority Critical patent/EP3534578B1/en
Publication of WO2018121178A1 publication Critical patent/WO2018121178A1/zh
Priority to US16/454,044 priority patent/US11038760B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/302Route determination based on requested QoS
    • H04L45/306Route determination based on the nature of the carried application
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/127Avoiding congestion; Recovering from congestion by using congestion prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2425Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/822Collecting or measuring resource availability data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a resource adjustment method, apparatus, and system.
  • the communication network includes a network transport layer and a Network Function (NF) layer.
  • the transport layer consists of a router or switch and a link network between them, where the link between the router, the switch, and the router or switch can be either physical or virtual.
  • the network functional layer is usually a functional module that complies with defined external standards (eg, the European Telecommunications Standards Institute (ETSI) Network Function Virtualization (NFV) standard) external interface and functional behavior.
  • ETSI European Telecommunications Standards Institute
  • NFV Network Function Virtualization
  • the network function layer includes the NF of the control plane and the NF of the user plane, and the control plane NF includes a Mobility Management Entity (MME) or a Proxy-Call Session Control Function (P-CSCF).
  • MME Mobility Management Entity
  • P-CSCF Proxy-Call Session Control Function
  • the user plane NF includes a firewall, or a wide area network acceleration.
  • NFs implement virtualization deployment.
  • the virtual NF can flexibly expand or shrink capacity, and increase service processing capability and transmission capability.
  • the expansion or contraction of the virtual NF is mainly based on the occupation of the NF resources, and only the NF is expanded, and the expansion effect is not good.
  • the embodiments of the present application provide a resource adjustment method, device, and system, and uniformly adjust the resource resources of the service to perform resource adjustment.
  • the embodiment of the present invention provides the following technical solutions:
  • a first aspect provides a resource adjustment method, the method comprising: receiving, by a communication network, service flow characteristic information; and then, the communication network determines transmission of the service flow according to a correspondence between the service flow characteristic information and a transmission path of the service flow; a path, where the transmission path includes: a start network function NF and a termination NF via the service flow, and a link between the start NF and the termination NF; after determining the transmission path, the communication network determines resources on the transmission path
  • the adjustment strategy to adjust the resources required for the business flow.
  • the communication network may include one or more of an orchestration device, a network function management device, and a network management device.
  • the communication network determines an adjustment strategy of the resources on the transmission path according to the resource occupation information and the transmission path of the service flow.
  • the communication network may include: a network function management device or an orchestration device.
  • the communication network first determines an infrastructure resource required by the NF on the transmission path according to the resource occupation information of the service flow; and then, the communication network needs according to the NF on the transmission path.
  • the NF idle infrastructure resources on the infrastructure resources and transport paths determine the NFs that need to be expanded. That is, the embodiment of the present invention can perform resource adjustment by expanding the NF on the transmission path.
  • the expansion information of the NF that needs to be expanded may be determined by the orchestration device in the communication network according to the infrastructure resources required by the NF on the transmission path and the infrastructure resources of the NF idle on the transmission path. That is, the embodiment of the present invention can determine the capacity expansion information of the NF to be expanded by the orchestration device.
  • the service flow feature information and the resource occupation information of the service flow may be sent by the orchestration device in the communication network to the NF management device that manages the NF that needs to be expanded, and then the NF management device determines the need. Expansion of the NF expansion information. That is, the NF management device of the NF that needs to be expanded can determine the expansion information of the NF to be expanded according to the correspondence and the information from the orchestration device.
  • the resource occupation information of the transmission path and the service flow may be sent by the orchestration device in the communication network to the NF management device that manages the NF that needs to be expanded, and then the NF management device determines that the capacity needs to be expanded.
  • NF expansion information That is, the NF management device of the NF that needs to be expanded can determine the capacity expansion information of the NF to be expanded according to the transmission path and the service flow resource occupation information.
  • the communication network determines the link and link expansion information to be expanded according to the resource occupation information of the service flow and the idle bandwidth of the link included in the transmission path. That is, the embodiment of the present invention can determine the link and link expansion information that needs to be expanded by the orchestration device in the communication network.
  • the network management device of the management link on the transmission path may be determined by the orchestration device in the communication network according to the transmission path of the service flow; and then, the scheduling device will use the service flow feature information and the resource occupation information of the service flow.
  • the network management device determines the expansion information of the link according to the resource occupation information of the service flow and the idle bandwidth of the link included in the transmission path. That is, the embodiment of the present invention can determine the link and link expansion information that needs to be expanded by the network management device in the communication network.
  • the network management device of the management link on the transmission path may be determined by the orchestration device in the communication network according to the transmission path of the service flow; then, the orchestration device sends the resource occupation information of the transmission path and the service flow to
  • the network management device is configured to enable the network management device to determine the expansion information of the link according to the resource occupation information of the service flow and the idle bandwidth of the link included in the transmission path.
  • the service flow characteristic information is from the first network element; correspondingly, the communication network determines the infrastructure resources required by the service flow according to the resource occupation information of the service flow and the transmission path; And the communication network selects, according to the infrastructure resource required by the service flow, the second network element that is one hop before the first network element in the transmission path, to send the second network element to the service network to be part of the first network element. Go to other network elements.
  • the correspondence further includes: a correspondence between the associated service flow feature information associated with the service flow and a transmission path of the associated service flow; and the method further includes: the communication network according to the associated service flow feature The information and the transmission path of the associated service flow determine a transmission path of the associated service flow; correspondingly, the communication network determines the resource according to the resource occupation information and the transmission path of the service flow, and the associated service flow transmission path Adjustment Strategy.
  • an embodiment of the present invention provides a resource adjustment apparatus, where the apparatus for implementing resource adjustment has a function of implementing a device or a network function management device in the foregoing method embodiment.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present invention provides a resource adjustment apparatus, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, when When the device is running, the processor executes the computer-executed instruction stored in the memory, so that the device that implements the service flow resource adjustment performs the service flow resource adjustment method according to any one of the foregoing first aspects.
  • an embodiment of the present invention provides a system for implementing resource adjustment, including the orchestration device and the network function management device in the foregoing method embodiment or the device embodiment.
  • an embodiment of the present invention provides a computer storage medium, configured to store computer software instructions used by the programming device or the network function management device, and configured to execute the foregoing aspect as a programming device or a network function management device. Designed program.
  • an embodiment of the present invention provides a computer program product.
  • the computer program product includes computer software instructions that are loadable by a processor to implement the flow in the resource adjustment method of any of the above first aspects.
  • FIG. 1 is a schematic diagram of a possible network architecture according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a service flow transmission path according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a computer device according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart diagram of a resource adjustment method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of another resource adjustment method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of another resource adjustment method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of another resource adjustment method according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of another resource adjustment method according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a method for implementing resource adjustment according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an apparatus for implementing resource adjustment according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a system for implementing resource adjustment according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another system for implementing resource adjustment according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another system for implementing resource adjustment according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a possible network architecture according to an embodiment of the present invention.
  • the architecture includes a resource layer, a management device layer, and an orchestration device.
  • the resource layer is divided into three categories, including: infrastructure layer, transport layer and network function layer.
  • the infrastructure layer can include hardware resources for computing and storage.
  • Virtual machines VMs
  • VNFs virtual network functions
  • the infrastructure layer is managed by infrastructure management equipment.
  • the transport layer may be an Internet Protocol (IP) transport network interconnected by a network and managed by a network management device (Network Management Unit).
  • the network management device may be a Software Defined Network (SDN) controller. As the network evolves, it may also be other entities.
  • the link device of the transport layer is managed or controlled by the network management device described below.
  • the network functional layer consists of multiple NFs and links connecting different NFs.
  • the MME, the Public Data Network GateWay (PGW), the Serving GateWay (SGW), and the Policy and Charging Rule Function (PCRF) constitute the evolved packet core.
  • the Evolved Packet Core (EPC) network is a representation of the network's functional layer.
  • the management device layer can be divided into three types of management devices according to the three components of the resource layer, which are an infrastructure management device, a network management device, and a network function management device.
  • the arrangement device and the network function management device are separately shown, in actual implementation, the orchestration device and the network function management device may also be integrated into one device.
  • three types of management devices are respectively drawn in the figure, in actual implementation, these three types of management devices may have one or more.
  • the "management device” may be any of the above three types of management devices.
  • the infrastructure management equipment and network management equipment have been introduced.
  • the NF management equipment is introduced here.
  • An NF management device can manage or control one or more NFs.
  • NFs of different management domains are managed by different NF management devices, and NFs of the same management domain may be managed by one or more NF management devices.
  • the management domain can be divided according to different managers. For example, the NFs of the same carrier belong to the same management domain, and the NFs of different operators belong to different management domains.
  • the NF management device manages or controls the NF, including but not limited to the following:
  • the NF management device is responsible for configuring the NF, performing lifecycle management, and performing performance management, fault or alarm collection management.
  • the NF management device may send a configuration command to the NF to change the service behavior of the NF. For example, if the NF management device detects that the next hop NF2 of the service flow sent by the NF1 is congested, the NF1 sends a configuration command to the NF1 according to the policy, so that the NF management device sends a configuration command to the NF1.
  • NF1 reduces the number of traffic flows sent to NF2.
  • the NF management device can also maintain traffic flow path information between NFs that are controlled by itself.
  • these traffic flow path information can also be maintained by the orchestration device above the NF management device.
  • the manner in which the NF management device or the orchestration device maintains the service flow path information may be maintained in a specific implementation. Correspondence between service flow feature information and service flow path information.
  • the service flow feature information may be represented by a message type of the service flow (for example, a registration message, etc.), or may be represented by a metadata (metadata) carried in the header of the service flow for identifying the characteristics of the service flow, or may be used for the service.
  • the packet length of the flow packet indicates that it can also be represented by a certain parameter carried in the service flow message type. This application is not limited, as long as the service flow can be distinguished according to a certain identification rule.
  • the traffic flow path information includes: a start NF and a terminating NF through which the traffic flows, and a link between the originating NF and the terminating NF. Among them, there may be no other NF between the starting NF and the terminating NF, and there may be one or more other NFs. There is a link between each adjacent two NFs. For two adjacent NFs on the traffic flow path, such as NF A and NF B, if the service flow passes through NF A and NF B in turn, the next hop of NF A can be said to be NF B, NF B The last jump can be said to be NF A.
  • the correspondence may be described in the form of a table or in the form of a graph, and the present application is not limited thereto.
  • the link between the NFs is an abstracted link that can be mapped to the link of the transport layer.
  • NF2 Network Function 2
  • NF3 Network Function 3
  • the link between NF2 and NF3 (which may be simply referred to as: link NF2->NF3) is mapped to the transport layer and consists of two serial links of Router 2 -> Router 3 and Router 3 -> Router 4.
  • the path of the registration message is: from NF1, through NF3, NF4 or NF7, NF5 to NF8; or from NF2, through NF3, NF4 or NF7, NF5 to NF8.
  • the path of the Notify message is: from NF1, through NF3, NF4 to NF5; or from NF2, through NF3, NF4 to NF5.
  • the above correspondence is described in the form of a diagram.
  • the transport path of the traffic flow is tree-like.
  • the service message is sent from NF1 and NF2 to NF9, and there are multiple paths on the way.
  • the correspondence shown in FIG. 2 can also be converted into a tabular form, as shown in Table 2.
  • a single management device can only control local resources.
  • Many business implementations involve Resources of multiple types and different geographies or different administrative domains will also involve multiple management devices.
  • the collaborative work of these management devices usually requires more upper-level orchestration functions to coordinate.
  • this function for coordinating the management equipment to work together is referred to as an orchestration device.
  • the management domain and the territory are two dimensions.
  • the orchestration device has a more global perspective than the management device.
  • the resources required by a service may be managed by multiple management devices (these management devices include one or more of infrastructure management devices, network management devices, and network function management devices, each of which manages domain and geographical reasons). Need one or more). If there are more than one management device, coordination between management devices is required.
  • the orchestration device decomposes the demand for resources from the service to each management device, and each management device is responsible for controlling the resources of the domain.
  • an interface between management devices bypasses the orchestration device for interaction, and the function of the orchestration device is integrated into a management device, so that the structure of the network is simplified.
  • the above mentioned infrastructure management equipment, network management equipment, and network function management equipment are logical functional entities, which may physically have separate physical entities, or may be extended functions in existing network functional entities, such as: infrastructure
  • the management device may exist in the Virtualized Infrastructure Manager (VIM) of the ETSI NFV architecture.
  • the function of the network management device may exist in the SDN controller, and the function of the network function management device may exist in the network element management system ( Element Management System (EMS), Virtualized Network Function Manager (VNFM) or one or more of NFV Management and Orchestration (MANO).
  • EMS Element Management System
  • VNFM Virtualized Network Function Manager
  • MANO NFV Management and Orchestration
  • the functions of the orchestration equipment can also exist in the NFV MANO, or the Global Service Orchestration (GSO) of the OPEN-O open source project, or it can exist in the Operation Support System (OSS), or other orchestration equipment. One or more places in the middle. These three management devices may also be defined entities.
  • GSO Global Service Orchestration
  • OSS Operation Support System
  • the management device and the orchestration device may be implemented hierarchically.
  • the network management device may be divided into a domain management device and a cross-domain management device, and the orchestration device may also be divided into a domain programming device and a cross-domain programming device. If the network function management device is located in the EMS, the EMS can manage one or more network functional entities.
  • the name of the infrastructure management device itself does not limit the device. In practice, it can be managed by other names, such as the Infrastructure Controller.
  • the name of the network management device itself does not limit the device. In practice, it can be other names, such as an infrastructure controller.
  • the name of the network function management device itself does not limit the device. In practice, it can be other names, such as the NF Controller.
  • the name of the orchestration device itself does not limit the device. In practice, it can be other names, such as: orchestrator, "cross-domain orchestration functional entity", or other names. A unified explanation is given here, and will not be described below.
  • the embodiment of the present invention provides a resource adjustment method, which adjusts the network resources of the completed service to adjust the resources when the resource is adjusted, and solves the problem that only the insufficient resources are dealt with in the prior art.
  • the inventors have discovered that there are many scenarios that cannot be solved in accordance with prior art solutions. For example, when multiple base stations fail and recover at the same time, a large number of network attachment messages are generated at the same time, causing the MME to be overloaded and unable to process some messages and causing congestion, which triggers the MME to automatically expand. After the MME is expanded, a large number of messages are sent to the Home Subscriber Server (HSS). As a result, the load on the HSS is too high and congestion occurs. This triggers the HSS to automatically expand. Because it is serial serial expansion, and each expansion takes a few minutes. Clock or more time, the total expansion time is longer. In addition, because there is no overall consideration, when the MME is expanded, too many resources are allocated.
  • HSS Home Subscriber Server
  • the HSS needs to be expanded, it is found that there is no idle resource to expand the HSS, which causes the network processing capability to be bottlenecked in the HSS.
  • the subsequent large number of service delivery messages may cause congestion.
  • multiple network functions need to be uniformly arranged and scheduled from the actual needs of the service, and a comprehensive resource adjustment plan with better overall effect is selected for the comprehensive business requirements and the actual conditions of the available resources.
  • the resource adjustment method provided by the embodiment of the present invention can be applied to the network architecture shown in FIG. 1 , and can be applied to a scenario where the NF is congested, and can also be applied to a scenario where the link is congested, and can also be applied to the current scenario. There is no congestion, but in the scenario where the congestion of the central processing unit (CPU) is expected to increase, it can be applied to other scenarios that cause resource adjustment.
  • CPU central processing unit
  • the communication network receives the service flow characteristic information, and then the communication network determines the transmission path of the service flow according to the correspondence between the service flow characteristic information and the service flow transmission path; then, the communication network determines the resource adjustment policy on the transmission path, This adjusts the resources required for the business flow.
  • the resource adjustment method provided by the present application starts from the actual demand of the service, and when considering resource adjustment, uniformly considers each network function or link for completing the service, determines the adjustment strategy according to the integrated service demand and the available resources in the network, and then according to the situation Adjust the strategy to adjust the resources required for the business flow, and optimize the use of network resources.
  • the transmission path includes: a starting NF and a terminating NF through which the traffic flows, and a link between the starting NF and the terminating NF. And determining, according to the resource occupation information and the transmission path of the service flow, an adjustment policy of the resource on the transmission path, where the resource occupation information may be a device that determines a resource adjustment policy. Received by other devices may also be preset on the device that determines the resource adjustment policy. For example, if the degree of NF or link congestion is not determined, or the degree of congestion is changing, not a stable value, etc., the resource occupation information of the service flow may not be received. In this case, the network function or transmission link on the transmission path can be expanded according to the default value or preset value (for example, adding a computing resource of a certain model 3.2 GHz CPU and 200 M storage resources).
  • the resource occupation information of the traffic flow may be bandwidth, or the number of messages per unit time.
  • the resource adjustment policy may be: determining a capacity expansion object on the service flow transmission path, or determining a capacity expansion object on the service flow transmission path and expansion information of each object, or offloading the service flow, so as to cause congestion of the network function or The congestion status of the link is improved. This application is not limited.
  • the communication network includes one or more of the following: an NF management device, an orchestration device, or a network management device, and the corresponding relationship may be stored in any one of an NF management device, an orchestration device, or a network management device.
  • the specific implementation method looks at the following method embodiments.
  • a person skilled in the art has the ability to design a flexible communication network implementation according to the content of the embodiments of the present invention.
  • only some instantiated solutions are used to illustrate some possible implementations of the embodiments of the present invention in the communication network, regardless of the future.
  • the changes in the names, locations, and interactions of the network elements are all within the scope of the present invention as long as they have the functions of the communication network in the embodiments of the present invention.
  • the arranging device can receive the service flow characteristic information, and then the device is configured to determine the expanded object, for example, the capacity expansion NF or the expansion link, or the NF and the link are both expanded.
  • the NF expansion information (or how much to expand) can be determined by the NF management device or determined by the orchestration device;
  • the expansion information of the road may be determined by the network management device or determined by the orchestration device.
  • the NF management device may receive the service flow feature information, and then the NF management device determines the object to be expanded, for example, expanding the NF or expanding the link, or expanding the NF and the link.
  • the NF expansion information (or how much to expand) can be determined by the NF management device or determined by the orchestration device; the link expansion information can be determined by the network management device, or by the orchestration device. determine.
  • the NF management device may receive the service flow feature information, and then the NF management device determines to offload the service flow.
  • the programming device may receive the service flow feature information, and then orchestrate the device to determine to offload the service flow; or determine the object to be expanded.
  • the object to be expanded can be NF, or a link, or both the NF and the link are expanded.
  • the expansion information of the NF to be expanded may be determined by the orchestration device or the NF management device that manages the NF, and the expansion information of the link that needs to be expanded may be determined by the orchestration device or the network management device that manages the link.
  • the resource adjustment may be performed not only according to the information of the service flow, but also by the information of the associated service flow associated with the service flow.
  • the above described orchestration device or management device can be implemented by a computer device (or system) as shown in FIG.
  • FIG. 3 is a schematic diagram of a computer device according to an embodiment of the present invention.
  • the computer device 300 includes at least one processor 31, a communication bus 32, a memory 33, and at least one communication interface 34.
  • the processor 31 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 32 can include a path for communicating information between the components described above.
  • the communication interface 34 uses devices such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), and the like.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Networks
  • the memory 33 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 33 is used to store application code for executing the solution of the present invention, and is controlled by the processor 31 for execution.
  • the processor 31 is configured to execute application code stored in the memory 33.
  • processor 31 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • computer device 300 can include multiple processors, such as processor 31 and processor 38 in FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • computer device 300 may also include an output device 35 and an input device 36.
  • the output device 35 is in communication with the processor 31 and can display information in a variety of ways.
  • the output device 35 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • Input device 36 is in communication with processor 31 and can accept user input in a variety of ways.
  • input device 36 can be a mouse, keyboard, touch screen device, or sensing device, and the like.
  • the computer device 300 described above can be a general purpose computer device or a special purpose computer device.
  • the computer device 300 can be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, a communication device, an embedded device, or have FIG. A device of similar structure.
  • Embodiments of the invention do not limit the type of computer device 300.
  • the orchestration device in FIG. 1 may be the device shown in FIG. 3, and one or more software modules are stored in the memory of the orchestration device.
  • the programming device can implement the software module through the processor and the program code in the memory to implement the adjustment of the service flow resource.
  • the NF management device of FIG. 1 may be the device shown in FIG. 3, and one or more software modules are stored in the memory of the NF management device.
  • the NF management device can implement the software module through the processor and the program code in the memory to implement the adjustment of the service flow resource.
  • the network management device of FIG. 1 may be the device shown in FIG. 3, and one or more software modules are stored in the memory of the network management device.
  • the network management device can implement the software module through the processor and the program code in the memory to implement the adjustment of the service flow resource.
  • FIG. 4 is a schematic flowchart diagram of a resource adjustment method according to an embodiment of the present invention. The method can be applied to the network architecture shown in FIG.
  • step 401 NF4 receives a large number of burst registration messages from NF3 (not shown), and NF4 receives these registration messages.
  • the NF4's central processing unit CPU processing power is insufficient to cause message congestion.
  • step 403 the NF4 reports the event that the load is suddenly increased to the network function management device of the management NF4, and the NF management device receives the event.
  • the event carries the type of message causing congestion (ie, the registration message) and the resource occupation information of the burst service flow.
  • the resource occupation information may be the total number of registration messages per unit time, or the bandwidth of the burst service flow. In this embodiment, the resource occupation information is described by taking the total number of registration messages per unit time as an example.
  • the NF management device After the NF management device receives the event, the NF management device performs step 405 in any of the following cases:
  • the correspondence relationship between the service flow characteristic information and the transmission path of the service flow cannot be obtained in the NF management device.
  • the NF management device itself does not store the corresponding relationship, or the NF management device cannot obtain the corresponding relationship from other devices.
  • the NF management device determines, according to the correspondence table, that the registration message is followed by the NF or link of the other domain;
  • the NF management device is pre-configured to report the event to the upper-level orchestration device.
  • Step 405 The NF management device reports an event that the load burst is increased to the orchestration device, and the orchestration device receives the event.
  • the event carries the foregoing message type and resource occupation information of the burst service flow.
  • the NF management device may directly send the report event to the orchestration device, or may send the received message to the orchestration device after being formatted, and the specific implementation manner is not performed by the NF management device. limited.
  • the event may also carry the NF4 expansion information decided by the NF management device.
  • the orchestration device may choose to adopt the NF4 expansion information of the NF management equipment decision, or modify the NF4 expansion information of the NF management equipment decision, and may also decide the NF4 expansion information by itself.
  • Step 407 The orchestration device determines a transmission path of the registration message according to the correspondence between the service flow feature information and the transmission path of the service flow.
  • the orchestration device determines that the registration message is to be subsequently passed through NF5 and NF8 according to the correspondence table.
  • NF4, NF5 and NF8 may belong to the same NF management device management, or may not belong to the same NF management device management.
  • the corresponding relationship may be obtained by the orchestration device itself, or may be obtained by the orchestration device from another device (for example, a network function management device), which is not limited in this application.
  • Step 409 The orchestration device determines a resource adjustment policy of the registration message according to the resource occupation information and the transmission path of the registration message.
  • the orchestration device determines the infrastructure resource cost of the burst registration message according to the total number of registration messages per unit time and the average infrastructure resources required to process a single registration message.
  • the average infrastructure resources required to process a single registration message can be obtained through empirical data or pre-configured data.
  • the infrastructure resource cost of the burst registration message may be obtained by multiplying the total number of the registration messages by the average infrastructure resource cost of the single registration message, and the infrastructure resource cost may be determined by other methods, which is not limited in this application.
  • the infrastructure resource overhead for this registration message applies to all NFs on the transport path. In this embodiment, for example, processing 1000 new registration messages per second requires adding a CPU core with a frequency of 2.2 GHz and a storage space of 100 M. Therefore, if 2000 registration messages per second are added, it is necessary to expand a frequency. 2.2 GHZ CPU core two and 200M storage space.
  • the orchestration device combines the idle infrastructure resources of NF4, NF5, and NF8 to determine whether NF4, NF5, and NF8 need to be expanded.
  • the manner in which the orchestration device obtains the idle infrastructure resources may be that the network function management device periodically reports to the orchestration device, or may be obtained by querying the device to the network function management device, which is not limited in this application.
  • the specific expansion can be obtained by subtracting the idle infrastructure resources from the infrastructure resource overhead of the burst registration message, or by subtracting the idle infrastructure resources from the infrastructure resource overhead of the burst registration message plus a certain margin. Not limited.
  • NF4 and NF8 are smaller than the infrastructure resource overhead required for the burst registration message, and therefore NF4 and NF8 need to be expanded.
  • the idle infrastructure resources of NF4 and NF8 are both 0.2GHZ CPU cores and 20M storage space, it is necessary to expand 2GHZ CPU cores and 180M storage space for NF4 and NF8 respectively.
  • the orchestration device When determining the NF to be expanded, if the scheduling device receives the information about NF4 congestion, the orchestration device does not need to determine whether the NF4 needs to be expanded in combination with the idle infrastructure resources of the NF4 when determining the NF expansion.
  • the orchestration device determines whether the link needs to be expanded according to the bandwidth occupation of the link NF4->NF5 and the link NF5->NF8 and the bandwidth information of the burst service flow (ie, the registration message), if the link is free
  • the transmission capability ie, idle bandwidth information
  • the increased amount may be the bandwidth of the burst service flow minus the free transmission capacity of the link, or the bandwidth of the burst service stream minus the link space.
  • the remaining transmission capacity plus a certain margin this application is not limited.
  • the bandwidth information may be obtained according to the total number of registered messages, or may be determined according to default or preset values (for example, 100M bandwidth is expanded each time). For example, the bandwidth information is obtained by multiplying the number of messages by the average length of the message.
  • the specific method is not limited in this application.
  • the idle bandwidth resources of the link NF4->NF5 and the link NF5->NF8 are smaller than the bandwidth information required for the burst registration message, and therefore the link NF4->NF5 and the link NF5-> are required.
  • NF8 is expanding. Assume that the link expansion bandwidth method is as described above, and it is determined that the bandwidth of the link NF4->NF5 and the link NF5->NF8 need to be expanded respectively.
  • Step 411 The orchestration device sends a link expansion message to the network management device that manages the link that needs to be expanded.
  • the network management device receives the link expansion message.
  • the link extension message may carry link identification information and bandwidth requirement information of the link NF4->NF5 and link NF5->NF8 to be expanded.
  • the network management device expands the link corresponding to the link identifier according to the bandwidth requirement information.
  • the orchestration device respectively sends the expansion messages of the links managed by the respective network management devices.
  • the orchestration device sends an NF expansion message to the infrastructure management device where the infrastructure of each NF is located.
  • the infrastructure management device receives the NF expansion message.
  • the infrastructure management equipment may involve one or more, here one is taken as an example.
  • the capacity expansion message may carry the NF identification information that needs to be expanded and the new capacity information of each NF.
  • the infrastructure management equipment of each NF infrastructure may also be multiple.
  • the orchestration device sends the NF expansion message to the infrastructure management device where the infrastructure of each NF is located.
  • the NF expansion message of step 413 may also be the network function management device where the programming device first sends the NF to which the NF needs to be expanded. The network function management device then sends a request to expand the NF to the infrastructure management device where the infrastructure of each NF is located.
  • the orchestration device corresponds to the Network Function Virtualization Orchestrator (NFVO)
  • the network function management device corresponds to the VNFM
  • the infrastructure management device corresponds to the VIM.
  • VNFM sends NFVO authorization and then sends instructions to VIM for resource expansion and expansion
  • VIM sends instructions to NFVO
  • NFVO sends instructions.
  • VIM resources are expanded. This application is not limited.
  • the orchestration device sends the NF expansion message to the network function management device that manages each NF.
  • Step 415 The infrastructure management device sends a content expansion request to the VIM where the NF4 resource is located to perform infrastructure expansion, and the indication carries the identifier of the resource used by the NF4 and the expansion information of the NF4. Synchronous expansion of NF4 meets the processing of newly registered service flows.
  • Step 417 The infrastructure management device sends a capacity expansion request to the VIM where the NF8 resource is located to perform infrastructure expansion, and the indication carries the identifier of the resource used by the NF8 and the expansion information of the NF8. Synchronous expansion of NF8 meets the processing of newly registered service flows.
  • steps 411 and 413-417 There is no order of execution of steps 411 and 413-417. Steps 415 and 417 are not followed. The order of the points.
  • the NF5, NF8, and link in the transmission path through which the registration message is transmitted are comprehensively considered, and the NF4 is not only expanded.
  • the link between NF8, NF4 and NF5, and the link between NF5 and NF8 are expanded, so that the entire transmission path is integrated, and the congestion is expanded accordingly, thereby improving resource expansion efficiency.
  • the actions of the orchestration device may be performed by the orchestration device in accordance with the software modules in the memory mentioned above.
  • the actions of the network function management device can be performed by the network function management device in accordance with the software modules in the memory mentioned above.
  • the actions of the network management device can be performed by the network management device in accordance with the software modules in the memory mentioned above.
  • the embodiment of the present application does not impose any limitation on this.
  • FIG. 5 it is a schematic flowchart of another resource adjustment method according to an embodiment of the present invention.
  • the method can be applied to the network architecture shown in FIG.
  • the main difference between the embodiment and the embodiment shown in FIG. 4 is that the orchestration device determines the expansion object, and the expansion information of the expansion object is determined by other devices. The details will be described below.
  • Steps 501-507 are the same as steps 401-407, and are not described herein again.
  • Step 509 The orchestration device determines a resource adjustment policy of the registration message according to the resource occupation information and the transmission path of the registration message.
  • the orchestration device determines that the NF4 and NF8 need to be expanded, and the links NF4->NF5 and the link NF5->NF8 are expanded.
  • Step 511 The orchestration device sends a link expansion message to the network management device that manages the link that needs to be expanded.
  • the network management device receives the link expansion message.
  • the link expansion message carries the link identification information of the link NF4->NF5 and the link NF5->NF8 and the resource occupation information of the burst service flow to the network management device of the link to be expanded.
  • the network management device determines the expansion information of the link according to the resource occupation information of the burst service flow. For the method for determining the capacity expansion information by the network management device, refer to the method for the device to determine the expansion information in step 409.
  • the network management device expands the link corresponding to the link identifier according to the bandwidth information.
  • the orchestration device may first determine the bandwidth information of the burst service flow, and then carry the link identification information and the bandwidth information that need to be expanded in the link expansion information.
  • the orchestration device sends an NF expansion message to the NF management device of the NF that needs to be expanded.
  • the NF management device receives the NF expansion message.
  • the expansion information sent by the orchestration device to the NF management device carries the NF identification information and the resource occupation information that need to be expanded, and the NF management device determines the expansion information of the NF according to the resource occupation information and the idle infrastructure resources of the NF.
  • the method for determining the NF expansion information by the NF management device refer to the method for configuring the device to determine the NF expansion information in step 409.
  • Step 515 The network function management device sends an NF expansion message to the infrastructure management device.
  • the infrastructure management device receives the NF expansion message.
  • the capacity expansion message may carry the identification information of the NF4 and NF8 that need to be expanded, and the capacity information that needs to be expanded by NF4 and NF8.
  • Steps 517-519 are the same as steps 415-417.
  • FIG. 4 one of the infrastructure management device, the network management device, and the network function management device in FIG. 5 is shown, but in practice, there may be multiple.
  • the orchestration device determines the objects to be expanded, that is, expands NF4 and NF8, and links between NF4 and NF5, and links between NF5 and NF8.
  • the expansion information of NF4 and NF8 is determined by the network function management device.
  • the link expansion information between the link between NF4 and NF5, NF5 and NF8 is determined by the network management device, thereby integrating the entire transmission path for congestion. The corresponding capacity expansion process has been carried out to improve the efficiency of resource expansion.
  • the actions of the orchestration device may be performed by the orchestration device in accordance with the software modules in the memory mentioned above.
  • the actions of the network function management device can be performed by the network function management device in accordance with the software modules in the memory mentioned above.
  • the actions of the network management device can be performed by the network management device in accordance with the software modules in the memory mentioned above.
  • the embodiment of the present application does not impose any limitation on this.
  • the method for determining the capacity expansion information of FIG. 4 and FIG. 5 may also be used in combination, that is, the orchestration device determines the expansion information of a part of the expansion object, and the expansion information of the other part of the NF and the link is used by the NF management device. And network management equipment to determine.
  • FIG. 4 and FIG. 5 the expansion is described by taking the NF-expanded link as an example.
  • the NF can be expanded only without expanding the link, or only the link can be expanded without expanding the NF.
  • the method for expanding the NF or the link is similar to the method for expanding the NF or the link in FIG. 4 or 5, and details are not described herein again.
  • FIG. 6 is a schematic flowchart diagram of another resource adjustment method according to an embodiment of the present invention.
  • the method can be applied to the network architecture shown in FIG.
  • the main difference between the embodiment and the embodiment shown in FIG. 4 and FIG. 5 is that, in this embodiment, the resource adjustment policy is to offload the service flow. The details will be described below.
  • Steps 601-607 are the same as steps 401-407, and are not described here.
  • Step 609 The scheduling device determines a resource adjustment policy of the registration message according to the resource occupation information and the transmission path of the registration message.
  • the orchestration device uses the method in step 409 to determine that the infrastructure resource of the NF4 cannot satisfy the service flow caused by the burst registration message, and the link NF4->NF5 transmission bandwidth resource cannot satisfy the burst.
  • the service flow caused by the registration message is sent, and the infrastructure resources of NF7 can meet the requirements of handling the bursty service flow. Therefore, NF7 is selected to load-load the service processing of NF4.
  • the proportion of the shared message may be selected to direct the bursted registration message traffic to the NF7, or the bursty traffic may be directed to the NF7 according to a certain ratio, which is not limited in this application.
  • the service flow processed by the NF7 can also be sent to the NF5, which is equivalent to load sharing of the link NF4->NF5.
  • the link NF4->NF5 the method of expanding the NF4->NF5 link capacity can also be used.
  • Step 611 the orchestration device sends a link adjustment bandwidth message to the network management device of the management link NF3->NF7 and the link NF7->NF5, so that the network management device allocates resources on the two links.
  • the network management device receives the message.
  • the message carries the link identifiers of the links NF3->NF7 and the links NF7->NF5 and the bandwidth information to be allocated.
  • the bandwidth information here may be sent to the network management device after being determined by the orchestration device according to step 409, and the bandwidth management information may be determined by the network management device device.
  • the orchestration device sends a message for adjusting the traffic flow direction to the network function management device managing NF3 and NF7.
  • the network function management device receives the message.
  • the message requires NF3 to change the next hop to NF7 by specifying the ratio or the traffic that was originally sent to NF4 with certain characteristics, and requires NF7 to set the next hop of this part of traffic to NF5.
  • Step 615 the network management function device sends a configuration message to the NF3, so that the NF3 will specify a ratio or have a certain The next hop of the feature's traffic flow is set to NF7. NF3 receives the configuration message.
  • Step 617 The network management function device sends a message for setting the next hop to the NF7, so that the NF7 sets the next hop of the specified proportion or the service flow with certain characteristics to NF5.
  • NF5 receives the message to set the next hop.
  • both the network management device and the network function management device in FIG. 6 show one, but in reality, there may be multiple.
  • the method provided in this embodiment can load balance one or more NFs at a time by changing the direction of the service flow to bypass the bottleneck point on the service flow transmission path by load sharing.
  • the solution can also be combined with the scheme of FIG. 4 or FIG. 5, for example, part of the NF can be expanded, and part of the NF can be load-sharing; part of the NF and part of the link can be load-sharing, and part of the NF and part of the chain can be shared.
  • the path is expanded; the NF can be load balanced and the link can be expanded.
  • the actions of the orchestration device can be performed by the orchestration device in accordance with the software modules in the memory mentioned above.
  • the actions of the network function management device can be performed by the network function management device in accordance with the software modules in the memory mentioned above.
  • the actions of the network management device can be performed by the network management device in accordance with the software modules in the memory mentioned above.
  • the embodiment of the present application does not impose any limitation on this.
  • NF4 receives a large number of registration messages and then sends a congestion reporting event to the network management function device.
  • a large number of service flow messages (such as registration messages) are overloaded by a link, and the router sends a link congestion (or overload) event to the network management that manages the link. device.
  • Figs. 7-9 The following description will be made with reference to Figs. 7-9.
  • FIG. 7 is a schematic flowchart diagram of a resource adjustment method according to an embodiment of the present invention. The method can be applied to the network architecture shown in FIG.
  • step 703 the network management device receives the event.
  • step 705 The information carried in the event and the case where the network management device performs step 705 are the same as those described in step 403, and details are not described herein again.
  • Step 705 The network management device reports the congestion event to the orchestration device, and the orchestration device receives the event.
  • the event carries the foregoing message type and resource occupation information of the burst service flow.
  • the network device may directly send the report event to the orchestration device, or may send the received message to the orchestration device after being formatted, and the specific implementation manner is not performed by the network management device. limited.
  • the event may also carry the expansion information of the link NF3->NF4 determined by the network management device.
  • the orchestration device may select the expansion information of the link NF3->NF4 determined by the network management device, or modify the expansion information of the link NF3->NF4 determined by the network management device. You can also decide the expansion information of link NF3->NF4.
  • step 709 it is assumed that a bandwidth of 300 M needs to be expanded for the link NF3->NF4.
  • Step 711 Different from step 411, the link expansion message further carries link identification information and bandwidth requirement information of the link NF3->NF4.
  • Steps 713 to 717 are the same as steps 413-417.
  • the NF4, NF5, NF8, and link in the transmission path through which the registration message passes are comprehensively considered. Not only the link NF3->NF4 is expanded, but also the link between NF8, NF4 and NF5, and the link between NF5 and NF8 are expanded, so that the entire transmission path is integrated for congestion.
  • the corresponding capacity expansion process improves resource expansion efficiency.
  • the actions of the orchestration device may be performed by the orchestration device in accordance with the software modules in the memory mentioned above.
  • the actions of the network function management device can be performed by the network function management device in accordance with the software modules in the memory mentioned above.
  • the actions of the network management device can be performed by the network management device in accordance with the software modules in the memory mentioned above.
  • the embodiment of the present application does not impose any limitation on this.
  • FIG. 8 is a schematic flowchart diagram of a resource adjustment method according to an embodiment of the present invention. The method can be applied to the network architecture shown in FIG. The main difference between the embodiment and the embodiment shown in FIG. 7 is that the orchestration device determines the expansion object, and the expansion information of the expansion object is determined by other devices. The details will be described below.
  • Steps 803-809 are the same as steps 703-709, and are not described here.
  • Step 811 is different from step 511 in that the link expansion message further carries link identification information and bandwidth requirement information of the link NF3->NF4.
  • the method for determining the capacity expansion information by the network management device refer to the method for configuring the device to determine the expansion information in step 709.
  • the network management device expands the link corresponding to the link identifier according to the bandwidth information.
  • the orchestration device may first determine the bandwidth information of the burst service flow, and then carry the link identification information and the bandwidth information that need to be expanded in the link expansion information.
  • Steps 813 to 817 the same as 513-517.
  • the actions of the orchestration device can be performed by the orchestration device in accordance with the software modules in the memory mentioned above.
  • the actions of the network function management device can be performed by the network function management device in accordance with the software modules in the memory mentioned above.
  • the actions of the network management device can be performed by the network management device in accordance with the software modules in the memory mentioned above.
  • the embodiment of the present application does not impose any limitation on this.
  • FIG. 7 and FIG. 8 there are various ways to expand the capacity.
  • the expansion is described by taking an example of expanding the NF and expanding the link.
  • the link can be expanded only without expanding the NF, or only the NF can be expanded without expanding the link.
  • the method for expanding the NF or the link is similar to the method for expanding the NF or the link in FIG. 7 or 8, and details are not described herein again.
  • FIG. 9 is a schematic flowchart diagram of a resource adjustment method according to an embodiment of the present invention. The method can be applied to the network architecture shown in FIG. The main difference between the embodiment and the embodiment shown in FIG. 7 and FIG. 8 is that, in this embodiment, the resource adjustment policy is to offload the service flow. The details will be described below.
  • Steps 903-907 are the same as steps 703-707, and are not described here.
  • Step 909 The scheduling device determines a resource adjustment policy of the registration message according to the resource occupation information and the transmission path of the registration message.
  • the orchestration apparatus uses the method in step 709 to determine NF3 to NF4 and NF4 to NF5.
  • the link transmission bandwidth resource cannot satisfy the service flow caused by the burst registration message, and the infrastructure resource of NF4 cannot satisfy the service flow caused by the burst registration message, and the infrastructure resource of NF7 can satisfy the processing.
  • the demand for bursty traffic flows, so NF7 is selected to load-balance the service processing of NF4.
  • the proportion of the shared message may be selected to direct the bursted registration message traffic to the NF7, or the bursty traffic may be directed to the NF7 according to a certain ratio, which is not limited in this application.
  • Step 911 is different from the 611 in that the link bandwidth message carries the link identifiers of the link NF3->NF7 and the link NF7->NF5 and the bandwidth information to be allocated, and carries the link NF3->NF4. Link ID and bandwidth information that needs to be allocated.
  • Steps 913-917 are the same as steps 613-617.
  • the method provided in this embodiment can load balance one or more NFs at a time by changing the direction of the service flow to bypass the bottleneck point on the service flow transmission path by load sharing.
  • the solution can also be combined with the scheme of FIG. 7 or FIG. 8.
  • part of the NF can be expanded, and part of the NF can be load-sharing; part of the NF and part of the link can be load-sharing, and part of the NF and part of the chain can be shared.
  • the path is expanded; the NF can be load balanced and the link can be expanded.
  • the actions of the orchestration device can be performed by the orchestration device in accordance with the software modules in the memory mentioned above.
  • the actions of the network function management device can be performed by the network function management device in accordance with the software modules in the memory mentioned above.
  • the actions of the network management device can be performed by the network management device in accordance with the software modules in the memory mentioned above.
  • the embodiment of the present application does not impose any limitation on this.
  • the orchestration device, network function management device, infrastructure management device, and network management device are separate.
  • the orchestration device can also be combined with the network management device.
  • the functions of the orchestration device and the network management device are implemented by the combined device. After the combination, it will be understood by those skilled in the art that the interaction between the orchestration device and the network management device is not required.
  • the orchestration device can also be combined with the network function management device.
  • the functions of the orchestration device and the network function management device are implemented by the combined device. After the combination, it will be understood by those skilled in the art that the interaction between the orchestration device and the network function management device is not required.
  • the orchestration device can also be combined with the network function management device.
  • the functions of the orchestration device and the network function management device are implemented by the combined device. After the combination, it will be understood by those skilled in the art that the interaction between the orchestration device and the network function management device is not required.
  • the orchestration device can also be combined with the network function management device.
  • the functions of the orchestration device and the network function management device are implemented by the combined device. After the combination, it will be understood by those skilled in the art that the interaction between the orchestration device and the network function management device is not required.
  • the orchestration device can also be combined with the infrastructure management device.
  • the functions of the orchestration equipment and the infrastructure management equipment are implemented by the combined equipment. Once assembled, one skilled in the art will appreciate that the interaction between the orchestration device and the infrastructure management device is not required.
  • the corresponding relationship in the foregoing method embodiment includes, in addition to the correspondence between the service flow feature information and the transmission path of the service flow, the associated service flow feature information associated with the service flow, and the The correspondence between the transmission paths of the associated service flows.
  • NF4 will trigger an access message to be sent to NF5.
  • the registration message and the access message need to be associated. For example, when expanding the NF4, you need to determine whether the NF5 needs to be expanded, how much infrastructure resources need to be expanded, and whether the link NF4->NF5 needs to be expanded and how much bandwidth resources are expanded.
  • the transmission path determined in the above steps 407, 507, 607, 707, 807, and 907 determines the transmission path of the access message. Then, in addition to determining the expansion of the NF or the link in the transmission path of the registration message, it is also determined whether the NF or the link in the transmission path of the access message is to be expanded, and how much needs to be expanded.
  • the determining method is similar to the related processing of the registration message in the foregoing method embodiment, and details are not described herein again.
  • the actions of the orchestration device can be performed by the orchestration device in accordance with the software modules in the memory mentioned above.
  • the actions of the network function management device can be performed by the network function management device in accordance with the software modules in the memory mentioned above.
  • the actions of the network management device can be performed by the network management device in accordance with the software modules in the memory mentioned above.
  • the embodiment of the present application does not impose any limitation on this.
  • the device for implementing the programming device or the network function management device includes a corresponding hardware structure and/or software module for executing each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiment of the present invention may divide the function module into the orchestration device or the network function management device according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 10 shows the above embodiment.
  • the device 1000 includes a receiving module 1001, a first determining module 1003 and a second determining module 1005.
  • the receiving module 1001 is configured to receive service flow feature information.
  • the first determining module 1003 is configured to determine, according to the correspondence between the service flow feature information and the transmission path of the service flow, a transmission path of the service flow, where the transmission path includes: The network function NF and the terminating NF, and the link between the starting NF and the terminating NF;
  • the second determining module 1005 is configured to determine an adjustment policy of resources on the transmission path, so as to adjust resources required by the service flow.
  • the second determining module 1005 is specifically configured to: determine, according to the resource occupation information of the service flow, the adjustment policy of resources on the transmission path.
  • the second determining module 1005 is specifically configured to: determine, according to the resource occupation information of the service flow, an infrastructure resource required by the NF on the transmission path; according to the transmission path The infrastructure resources required by the NF and the NF idle infrastructure resources on the transmission path determine the NFs that need to be expanded.
  • the apparatus further includes a third determining module 1007, configured to determine, according to the infrastructure resources required by the NF on the transmission path and the infrastructure resources of the NF idle on the transmission path, determining the required capacity expansion. NF expansion information.
  • the second determining module 1005 is specifically configured to: determine, according to the resource occupation information of the service flow, a bandwidth required for the link on the transmission path; according to the transmission path The bandwidth required for the link and the bandwidth of the link idle on the transmission path determine the link that needs to be expanded.
  • the second determining module 1005 is further configured to: determine, according to a bandwidth required by the link on the transmission path, and a bandwidth of a link idle on the transmission path, determine a link that needs to be expanded. Expand the information.
  • the device includes, in addition to the receiving module 1001, the first determining module 1003 and the second determining module 1005, a first sending module 1009, configured to send the service flow feature information and the The resource occupation information of the service flow is used to manage the NF management device of the NF that needs to be expanded, and the NF management device determines the capacity expansion information of the NF to be expanded.
  • the device includes, in addition to the receiving module 1001, the first determining module 1003 and the second determining module 1005, a second sending module 1011, configured to send the transmission path and the service flow.
  • the resource occupation information is used to manage the NF management device of the NF that needs to be expanded, and the NF management device determines the capacity expansion information of the NF to be expanded.
  • the third sending module 1013 is further configured to send the service flow feature information and resource occupation information of the service flow to a network management device that manages the link that needs to be expanded. And causing the network management device to determine the expansion information of the link according to the resource occupation information of the service flow and the idle bandwidth of the link included in the transmission path.
  • the fourth sending module 1015 is further configured to send the transmission path and the resource occupation information of the service flow to a network management device that manages the link that needs to be expanded. And causing the network management device to determine the expansion information of the link according to the resource occupation information of the service flow and the idle bandwidth of the link included in the transmission path.
  • the service flow feature information is from the first network element.
  • the second determining module 1005 is specifically configured to: determine, according to the resource occupation information of the service flow, and the transmission path. An infrastructure resource required by the service flow; selecting the transmission path in the first according to an infrastructure resource required by the service flow A second network element of the first hop of the network element, the part of the service stream that is sent by the second network element to the first network element is split to another network element.
  • the correspondence further includes: a correspondence between the associated service flow feature information associated with the service flow and a transmission path of the associated service flow; and the first determining module 1003 further Determining, according to the associated service flow feature information and the transmission path of the associated service flow, a transmission path of the associated service flow; the first determining module 1005 is specifically configured to use the resource occupation information and the service flow according to the The transmission path and the associated service flow transmission path determine a resource adjustment policy.
  • the device may be a device in the communication network, or a network function management device in the communication network, or a device in which the two are integrated, and may be other devices in the communication network. All relevant content of each step can be referred to the function description of the corresponding function module, and details are not described herein again.
  • the device for realizing resource adjustment is presented in the form of dividing each functional module corresponding to each function, or the device for realizing resource adjustment is presented in a form of dividing each functional module in an integrated manner.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above.
  • ASIC application-specific integrated circuit
  • the apparatus 1000 for implementing resource adjustments may take the form shown in FIG.
  • the first determining module 1003, the second determining module 1005, the third determining module 1007, the first sending module 1009, the second sending module 1011, the third sending module 1013, or the fourth sending module 1015 can be implemented by the processor 31 (and/or the processor 38) and the memory 33 of FIG. 3, specifically, the receiving module 1001, the first determining module 1003, the second determining module 1005, and the third determining module 1007, first
  • the transmitting module 1009, the second transmitting module 1011, the third transmitting module 1013, or the fourth transmitting module 1015 may be executed by calling the application code stored in the memory 33 by the processor 31 (and/or the processor 38), the present invention
  • the embodiment does not impose any limitation on this.
  • FIG. 11 shows a system for implementing resource adjustment involved in the above embodiment.
  • the system includes an orchestration device 1101 and a network function management device 1103.
  • the scheduling device 1101 is configured to receive service flow feature information, and determine a transmission path of the service flow according to a correspondence between the service flow feature information and a transmission path of the service flow, where the transmission path includes: the service a starting network function NF and a terminating NF, and a link between the initiating NF and the terminating NF; determining an infrastructure resource required for the NF on the transmission path according to the resource occupation information of the traffic flow; The infrastructure resources required by the NF on the transmission path and the NF idle infrastructure resources on the transmission path determine the NF to be expanded;
  • the network function management device 1103 is configured to determine expansion information of the NF that needs to be expanded.
  • the orchestration device 1101 is further configured to send the service flow feature information and the resource occupation information of the service flow to the NF management device 1103 that manages the NF that needs to be expanded.
  • the orchestration device 1101 is further configured to send the resource occupation information of the transmission path and the service flow to the NF management device 1103 that manages the NF that needs to be expanded.
  • FIG. 12 shows a system for implementing resource adjustment involved in the above embodiment.
  • the system includes an orchestration device 1201 and a network management device 1203.
  • the scheduling device 1201 is configured to receive the service flow feature information, and determine a transmission path of the service flow according to the correspondence between the service flow feature information and the transmission path of the service flow, where the transmission path includes: the service The initial network function NF and the terminating NF flowing through, and the link between the originating NF and the terminating NF; according to the transmission of the traffic flow
  • the transmission path determines a network management device that manages the link on the transmission path;
  • the network management device 1203 is configured to determine the expansion information of the link according to the resource occupation information of the service flow and the idle bandwidth of the link included in the transmission path.
  • the orchestration device 1201 is configured to send the service flow feature information and the resource occupation information of the service flow to the network management device 1203.
  • the orchestration device 1201 sends the transmission path and the resource occupation information of the service flow to the network management device 1203.
  • FIG. 13 shows a system for implementing resource adjustment involved in the above embodiment.
  • the system includes an orchestration device 1301 and a network function management device 1303.
  • the scheduling device 1301 is configured to receive service flow feature information, and determine a transmission path of the service flow according to a correspondence between the service flow feature information and a transmission path of the service flow, where the transmission path includes: the service a starting network function NF and a terminating NF flowing through, and a link between the initiating NF and the terminating NF; determining the infrastructure resources required by the traffic flow according to the resource occupation information of the traffic flow and the transmission path And selecting, according to the infrastructure resource required by the service flow, a second network element that is one hop before the first network element in the transmission path; and sending, to the network function management device 1303, a message for adjusting a traffic flow direction;
  • the network function management device 1303 is configured to receive a message for adjusting a traffic flow direction, and send a configuration message to the second network element, so that the second network element sets the next hop of the specified proportion or the service flow with the certain feature to the third Network element.
  • the network function management device 1303 is further configured to send a message for setting a next hop to the third network element, so that the third network element sends the specified proportion or the next service flow with certain characteristics.
  • the hop is set to the next hop network element of the first network element.
  • the embodiment of the present invention further provides a computer storage medium for storing computer software instructions for implementing the resource adjustment device shown in FIG. 4-9, which includes program code for executing the foregoing method embodiment. .
  • program code for executing the foregoing method embodiment.
  • the embodiment of the invention also provides a computer program product.
  • the computer program product includes computer software instructions that are loadable by a processor to implement the methods of the above method embodiments.
  • embodiments of the present application can be provided as a method, apparatus (device), or computer program product.
  • the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects, which are collectively referred to herein as "module” or “system.”
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • Computer programs are stored/distributed in the appropriate Other distributions may be used in the medium, along with other hardware or as part of the hardware, such as over the Internet or other wired or wireless telecommunications systems.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种资源调整方法、装置和系统,该方法包括:通信网络接收业务流特征信息;根据所述业务流特征信息和所述业务流的传输路径的对应关系,确定所述业务流的传输路径,所述传输路径包括:所述业务流经由的起始网络功能NF和终结NF,以及起始NF和终结NF之间的链路;确定所述传输路径上资源的调整策略,以此来调整所述业务流所需的资源。通过上述方案,统一考虑了执行业务的网络资源情况来进行资源调整。

Description

一种资源调整方法、装置和系统
本申请要求于2016年12月26日提交中国专利局、申请号为201611220995.8、发明名称为“一种资源调整方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种资源调整方法、装置及系统。
背景技术
通信网络包括了网络传输层和网络功能(Network Function,NF)层。传输层由路由器或交换机以及他们之间链路组网构成,其中,路由器、交换机以及路由器或交换机之间的链路可以是物理的,也可以是虚拟的。网络功能层通常是遵守已定义的标准(例如:欧洲电信标准化协会(European Telecommunications Standards Institute,ETSI)的网络功能虚拟化(Network Function Virtualization,NFV)标准等)外部接口以及功能行为的功能模块。网络功能层包括了控制面的NF和用户面的NF,控制面NF包括移动管理实体(Mobility Management Entity,MME)、或代理呼叫会话控制功能(Proxy-Call Session Control Function,P-CSCF)等,用户面NF包括防火墙、或广域网加速等。这些网络功能可以是物理网络功能,也可以是虚拟网络功能,运行在物理机或者虚拟机上,需要基础设施资源,例如计算和存储能力支撑。NF之间需要进行数据交互,所以会被部署在传输网络的某个位置(例如直接连接到某个路由器或交换机上)。
在虚拟化和云化的大背景下,很多NF实现虚拟化部署。虚拟化部署的情况下,当业务负载发生变化时,虚拟NF可以灵活地扩容或缩容,增加业务处理能力和传输能力。
现有技术下,虚拟NF的扩容或缩容主要根据NF资源的占用情况,仅仅对NF进行扩容,扩容效果不好。
发明内容
本申请实施例提供一种资源调整方法、装置及系统,统一考虑执行业务的网络资源情况来进行资源调整。
为达到上述目的,本发明实施例提供如下技术方案:
第一方面,提供一种资源调整方法,该方法包括:通信网络接收业务流特征信息;然后,通信网络根据该业务流特征信息和该业务流的传输路径的对应关系,确定该业务流的传输路径,其中,传输路径包括:所述业务流经由的起始网络功能NF和终结NF,以及起始NF和终结NF之间的链路;在确定传输路径后,通信网络确定该传输路径上资源的调整策略,以此来调整所述业务流所需的资源。在该方案中,通过确定业务流的整个传输路径,可以根据业务的需求对业务涉及的资源进行统一考虑来确定资源调整策略,从而解决了现有技术中哪里出现资源不足就在哪里扩容所带来的不足,提高了资源扩容效率。
其中,通信网络可以包括:编排设备、网络功能管理设备和网络管理设备中的一个或多个。
在一种可能的设计中,通信网络根据业务流的资源占用信息和传输路径确定传输路径上资源的调整策略。该通信网络可以包括:网络功能管理设备或编排设备。
在一种可能的设计中,通信网络首先根据所述业务流的资源占用信息确定所述传输路径上的NF所需的基础设施资源;然后,通信网络根据所述传输路径上的NF所需的基础设施资源和传输路径上的NF空闲的基础设施资源确定需要扩容的NF。即:本发明实施例可以通过扩容传输路径上的NF来进行资源调整。
在一种可能的设计中,需要扩容的NF的扩容信息可以由通信网络中的编排设备根据传输路径上的NF所需的基础设施资源和传输路径上的NF空闲的基础设施资源确定。即:本发明实施例可以由编排设备来确定需要扩容的NF的扩容信息。
在一种可能的设计中,可以由通信网络中的编排设备将业务流特征信息和业务流的资源占用信息发送给管理该需要扩容的NF的NF管理设备,然后由该NF管理设备来确定需要扩容的NF的扩容信息。即:本发明实施例可以由需要扩容的NF的NF管理设备根据对应关系和来自编排设备的信息来确定需要扩容的NF的扩容信息。
在一种可能的设计中,可以由通信网络中的编排设备将传输路径和业务流的资源占用信息发送给管理该需要扩容的NF的NF管理设备,然后由该NF管理设备来确定需要扩容的NF的扩容信息。即:本发明实施例可以由需要扩容的NF的NF管理设备根据传输路径和业务流资源占用信息来确定需要扩容的NF的扩容信息。
在一种可能的设计中,通信网络根据业务流的资源占用信息和传输路径中包括的链路的空闲带宽确定需要扩容的链路和链路扩容信息。即:本发明实施例可以由通信网络中的编排设备来确定需要扩容的链路和链路扩容信息。
在一种可能的设计中,可以由通信网络中的编排设备根据业务流的传输路径确定传输路径上管理链路的网络管理设备;然后,编排设备将业务流特征信息和业务流的资源占用信息发送给该网络管理设备,以使该网络管理设备根据业务流的资源占用信息和传输路径中包括的链路的空闲带宽确定链路的扩容信息。即:本发明实施例可以由通信网络中的网络管理设备来确定需要扩容的链路和链路扩容信息。
在一种可能的设计中,可以由通信网络中的编排设备根据业务流的传输路径确定传输路径上管理链路的网络管理设备;然后,编排设备将传输路径和业务流的资源占用信息发送给该网络管理设备,以使该网络管理设备根据业务流的资源占用信息和传输路径中包括的链路的空闲带宽确定链路的扩容信息。
在一种可能的设计中,业务流特征信息来自第一网元;相应的,通信网络根据所述业务流的资源占用信息和所述传输路径确定所述业务流所需的基础设施资源;然后,通信网络根据业务流所需的基础设施资源,选择传输路径上在第一网元前一跳的第二网元,以将第二网元发送给第一网元的所述业务流分流一部分到其他网元上。
在一种可能的设计中,对应关系还包括:与业务流有关联的关联业务流特征信息与关联业务流的传输路径的对应关系;则该方法还包括:通信网络根据所述关联业务流特征信息与所述关联业务流的传输路径确定所述关联业务流的传输路径;相应的,通信网络根据所述资源占用信息和所述业务流的传输路径、以及所述关联业务流传输路径确定资源调整 策略。
第二方面,本发明的实施例提供一种资源调整装置,该实现资源调整的装置具有实现上述方法实施例中编排设备或网络功能管理设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第三方面,本发明的实施例提供一种资源调整装置,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该设备运行时,该处理器执行该存储器存储的该计算机执行指令,以使该实现业务流资源调整的装置执行如上述第一方面任意一项的业务流资源调整方法。
第四方面,本发明的实施例提供一种实现资源调整的系统,包括上述方法实施例中或装置实施例中的编排设备和网络功能管理设备。
第五方面,本发明实施例提供了一种计算机存储介质,用于储存为上述编排设备或网络功能管理设备所用的计算机软件指令,其包含用于执行上述方面为编排设备或网络功能管理设备所设计的程序。
第六方面,本发明实施例提供了一种计算机程序产品。该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述第一方面中任意一项的资源调整方法中的流程。
另外,第二方面至第六方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1所示为本发明实施例提供的一种可能的网络架构示意图;
图2所示为本发明实施例提供的一种业务流传输路径的示意图;
图3所示为本发明实施例提供的计算机设备示意图;
图4所示为本发明实施例提供的一种资源调整方法流程示意图;
图5所示为本发明实施例提供的另一种资源调整方法流程示意图;
图6所示为本发明实施例提供的另一种资源调整方法流程示意图;
图7所示为本发明实施例提供的另一种资源调整方法流程示意图;
图8所示为本发明实施例提供的另一种资源调整方法流程示意图;
图9所示为本发明实施例提供的一种实现资源调整方法流程示意图;
图10所示为本发明实施例提供的一种实现资源调整的装置结构示意图;
图11所示为本发明实施例提供的一种实现资源调整的系统示意图;
图12所示为本发明实施例提供的另一种实现资源调整的系统示意图
图13所示为本发明实施例提供的另一种实现资源调整的系统示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述 中,除非另有说明,“多个”的含义是两个或两个以上。
本发明实施例描述的架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
如图1所示,为本发明实施例的一种可能的网络架构示意图。该架构包括资源层,管理设备层和编排设备。
资源层分为三类,包括:基础设施层,传输层和网络功能层。
基础设施层可以包括计算和存储的硬件资源。在硬件资源上可以虚拟化出虚拟机(Virtual Machine,VM),虚拟的网络功能(Virtual Network Function,VNF)运行在虚拟机上。基础设施层由基础设施管理设备来管理。
传输层可以是网络之间互连的协议(Internet Protocol,IP)传输网络,由网络管理设备(Network管理单元)来管理。网络管理设备可以是软件定义网络(Software Defined Network,SDN)控制器,随着网络演进,也可以是其他实体,这里不做限制。传输层的链路设备由下面所说的网络管理设备进行管理或控制。
网络功能层由多个NF及连接不同NF的链路组成。例如MME、公用数据网网关(Public Data Network GateWay,PGW)、服务网关(Serving GateWay,SGW)、策略和计费规则功能(Policy and Charging Rule Function,PCRF)这几类网络功能组成演进的分组核心网(Evolved Packet Core,EPC)网络是网络功能层的一种呈现方式。
管理设备层可以对照资源层的三种组成,分成三类管理设备,依次是基础设施管理设备、网络管理设备和网络功能管理设备。其中,图中虽然是将编排设备和网络功能管理设备分开示出,但在实际实现中,编排设备和网络功能管理设备也可以集成在一个设备中。另外,图中虽然三类管理设备分别都画了一个,但在实际实现中,这三类管理设备都可以有一个或多个。
下面的描述中,如果没有指定管理设备的类别,那么“管理设备”可以为上面三类管理设备中的任意一种。
前面已经介绍了基础设施管理设备和网络管理设备,这里介绍NF管理设备。
一个NF管理设备可以管理或控制一个或多个NF。一般是,不同管理域的NF由不同的NF管理设备管理,同一管理域的NF可以由一个或多个NF管理设备管理。其中,管理域可以按不同的管理者来划分。比如,相同运营商的NF属于同一个管理域,不同运营商的NF属于不同的管理域。
NF管理设备对NF的管理或控制包括但不限于如下:NF管理设备负责对NF进行配置,进行生命周期管理,还可以进行性能管理,故障或告警采集管理等。NF管理设备可以向NF发送配置命令来改变NF的业务行为,例如:NF管理设备检测到NF1发出的业务流经由的下一跳NF2出现了拥塞,则根据策略向NF1下发配置命令,以使NF1减少向NF2发送的业务流数量。
NF管理设备还可以维护自身控制的NF之间的业务流路径信息。当然,这些业务流路径信息也可以由NF管理设备上层的编排设备来维护。
其中,NF管理设备或编排设备维护业务流路径信息的方式,具体实施起来可以是维护 业务流特征信息和业务流传输路径信息的对应关系。业务流特征信息可以用业务流的消息类型(比如:注册消息等)来表示,也可以用业务流的包头中携带的用于标识业务流特征的元数据(metadata)来表示,也可以用业务流报文的包长来表示,也可以用业务流消息类型中携带的某个参数来表示,本申请不做限定,只要是根据某个识别规则能够将各个业务流区分出来即可。业务流传输路径信息包括:业务流经由的起始NF和终结NF,以及起始NF和终结NF之间的链路。其中,起始NF和终结NF之间可以没有其他NF,也可以有一个或多个其他NF。每相邻的两个NF之间是链路。对于业务流传输路径上相邻的两个NF,比如NF A和NF B,如果业务流传输过程中,依次经过NF A和NF B,那么NF A的下一跳可以说是NF B,NF B的上一跳可以说是NF A。其中,对应关系可以用表格形式,或者用图的形式来描述,本申请也不做限定。
其中,NF之间的链路是抽象之后的链路,能够映射到传输层的链路。例如:从网络功能层的角度看,网络功能2(NF2)和网络功能3(NF3)之间有一条直接连接的网络功能层链路,但是映射到传输层的链路是经过3个路由器和2个链路。具体来说,图1中NF2直接连接到路由器2上,NF3直接连接到路由器4上。NF2和NF3之间的链路(可以简称为:链路NF2->NF3)映射到传输层,是由路由器2->路由器3,和路由器3->路由器4的两条串联的链路构成。
下面,以表1为例,来说明以表格形式描述上述对应关系:
Figure PCTCN2017114220-appb-000001
表1
如表1所示,注册消息经过的路径为:从NF1发出,经过NF3、NF4或NF7、NF5到达NF8;或者从NF2发出,经过NF3、NF4或NF7、NF5到达NF8。Notify消息经过的路径为:从NF1发出,经过NF3、NF4到达NF5;或者从NF2发出,经过NF3、NF4到达NF5。
根据这个表格,遇到拥塞的情况下,根据造成拥塞的业务流的特征信息,查找到该业务流的传输路径,就能知道该业务流从哪里来,发往哪里去。
如图2所示,为以图示形式描述上述对应关系。在图2中,业务流的传输路径是树状的。如箭头所示,业务消息从NF1和NF2发送到NF9,途中存在多个路径。图2所示的对应关系也可以转化为表格形式来描述,如表2所示。
Figure PCTCN2017114220-appb-000002
表2
下面来介绍编排设备。网络中一般会有多个基础设施管理设备,多个网络管理设备和多个网络功能管理设备。通常单个的管理设备只能控制局部资源。很多业务的实现涉及到 多种类型以及不同地域或者不同管理域的资源,相应也会涉及到多个管理设备,这些管理设备的协同工作通常需要更上层的编排功能进行协调。在本申请中,这个用来协调管理设备协同工作的功能我们称之为编排设备。其中,管理域和地域是两个维度。同一个地域可能有多个管理域,各自有管理设备。同一个管理域如果地域跨度太大,考虑控制时延等因素也会分成多个管理设备来逐片控制。
编排设备相对管理设备来说具备更加全局的视角。一个业务需要的资源可能被多个管理设备管理(这些管理设备包括了基础设施管理设备,网络管理设备和网络功能管理设备中的一种或者多种,每种管理设备因为管理域和地域的原因需要一个或者多个)。如果管理设备的数量多于一个,管理设备之间就需要进行协调。编排设备将业务对资源的需求逐域分解下发到各个管理设备,而各个管理设备负责控制所在域的那部分资源。但是在实际实现中,也不排除管理设备之间有接口绕过编排设备进行交互,相当于编排设备的功能被集成到某个管理设备中,使网络的结构有所简化。
上述提及的基础设施管理设备、网络管理设备、网络功能管理设备是逻辑功能实体,物理上其可能有单独的物理实体,也可能是在已有网络功能实体中的扩展功能,例如:基础设施管理设备可以存在于ETSI NFV架构的虚拟化基础设施管理(Virtualized Infrastructure Manager,VIM)中,网络管理设备的功能可以存在于SDN控制器中,网络功能管理设备的功能可以存在于网元管理系统(Element Management System,EMS),虚拟网络功能管理器(Virtualized Network Function Manager,VNFM)或者NFV管理和编排实体(Management and Orchestration,MANO)中的一处或者多处。编排设备的功能也可以存在于NFV MANO中,或者OPEN-O开源项目的全局业务编排(Global Service Orchestration,GSO),也可以存在于运营支撑系统(Operation Support System,OSS),或者其它的编排设备中的一处或者多处。这三种管理设备也可能是另外定义的实体。
另外,管理设备和编排设备都可能是分层实现的,例如网络管理设备可以分为分域管理设备和跨域管理设备,编排设备也可以分为分域编排设备和跨域编排设备。如果网络功能管理设备是位于EMS中,则EMS可以管理一个或者多个网络功能实体。
基础设施管理设备这个名字本身对设备不构成限定,实际中,可以为其他名字,比如:基础设施控制器(Infrastructure Controller)来管理。网络管理设备这个名字本身对设备不构成限定,实际中,可以为其他名字,比如:网络控制器(Infrastructure Controller)。网络功能管理设备这个名字本身对设备不构成限定,实际中,可以为其他名字,比如:NF控制器(NF Controller)。编排设备这个名字本身对设备不构成限定,实际中,可以为其他名字,比如:编排器,“跨域编排功能实体”,或其他名字。在此进行统一说明,以下不再赘述。
本发明实施例提供一种资源调整方法,该方法在资源调整时,统一考虑完成业务的网络资源情况来进行资源调整,解决了现有技术中只处理出现资源不足的环节的问题。
比如,发明人发现有许多场景按照现有技术的方案是解决不了的。比如:当多个基站出现故障后同时恢复,大量的网络附着消息同时产生,导致MME负载过高,来不及处理一些消息而出现拥塞,这就触发了MME自动扩容。但MME扩容完成后,又产生了大量的访问归属签约用户服务器(Home Subscriber Server,HSS)的消息,导致HSS的负载又过高而出现拥塞,这就触发了HSS进行自动扩容。因为是依次串行扩容,而且每次扩容都需要耗时几分 钟或者更多时间,总的扩容时间比较长。另外,由于没有统筹考虑,在MME扩容时被分配了过多资源,因此当HSS也需要扩容时发现没有空闲资源给HSS扩容,从而导致网络的处理能力在HSS出现瓶颈。又比如,大量的订阅消息引起网络拥塞后,通过扩容解决订阅消息引起的拥塞后,随后产生的大量业务发放消息又会造成拥塞。这些场景都需要从业务的实际需求出发对多个网络功能进行统一的编排和调度,综合业务需求和可用资源的实际情况选取一种整体效果较好的资源调整方案。
本发明实施例提供的资源调整方法可应用于如图1所示的网络架构,可以应用于一个NF发生拥塞的场景中,也可以应用于链路发生拥塞的场景中,也可以应用于当前还没有拥塞,但是根据中央处理器(Central Processing Unit,CPU)占用率增加的趋势预测即将出现拥塞的场景中,还可以应用于其他会引起资源调整的场景中。
首先,通信网络接收业务流特征信息,然后通信网络根据业务流特征信息和业务流传输路径的对应关系,确定该业务流的传输路径;接着,通信网络确定该传输路径上资源的调整策略,以此来调整业务流所需的资源。本申请提供的资源调整方法,从业务的实际需求出发,在需要资源调整的时候,统一考虑完成业务的各个网络功能或链路,综合业务需求和网络中可用资源的情况确定调整策略,然后根据调整策略来调整业务流所需的资源,更优化的利用了网络资源。
其中,传输路径包括:业务流经由的起始NF和终结NF,以及起始NF和终结NF之间的链路。确定所述传输路径上资源的调整策略,具体可以根据所述业务流的资源占用信息和传输路径确定所述传输路径上资源的调整策略,所述资源占用信息可以是确定资源调整策略的设备从其他设备接收的,也可以是确定资源调整策略的设备上预置的。例如,在NF或链路拥塞的程度并不确定,或者拥塞的程度在变化中,不是个稳定值等情况下,业务流的资源占用信息可能没有被接收到。这种情况下,就可以根据默认值或预置值(例如增加一个某型号3.2GHZ CPU的计算资源和200M的存储资源)对传输路径上的网络功能或传输链路进行扩容。
业务流的资源占用信息可以是带宽,或者单位时间内的消息数量。
资源调整策略,具体可以是,确定业务流传输路径上的扩容对象,或者确定业务流传输路径上的扩容对象以及每个对象的扩容信息,或者将业务流进行分流,使发生拥塞的网络功能或链路的拥塞状况出现好转,本申请不做限定。
通信网络中有很多功能网元,各种功能可以灵活的通过不同的网元来实现,各种信息也可以灵活的存储在不同的网元。上述方法中,通信网络包括如下设备中的一个或多个:NF管理设备、编排设备、或网络管理设备,对应关系可以存储在NF管理设备、编排设备、或网络管理设备中的任意一个中,具体实现方法看下面的方法实施例。本领域技术人员有能力根据本发明实施例的内容,设计灵活多样的通信网络实现方案,以下仅以几个实例化的方案说明本发明实施例在通信网络中的可能的一些实现方式,无论未来这些网元的名称、位置、交互关系如何变化,只要具备了本发明实施例中通信网络的功能,则均在本发明保护范围之内。
在一种实现方式中,可以是编排设备接收业务流特征信息,然后编排设备来确定扩容的对象,比如是扩容NF,或者扩容链路,或者是NF和链路都扩容。确定扩容对象后,NF的扩容信息(或者说:要扩容多少)可以由NF管理设备来确定,或者由编排设备来确定;链 路的扩容信息可以由网络管理设备来确定,或者由编排设备来确定。
在一种实现方式中,可以是NF管理设备接收业务流特征信息,然后NF管理设备来确定扩容的对象,比如是扩容NF,或者扩容链路,或者是NF和链路都扩容。确定扩容对象后,NF的扩容信息(或者说:要扩容多少)可以由NF管理设备来确定,或者由编排设备来确定;链路的扩容信息可以由网络管理设备来确定,或者由编排设备来确定。
在一种实现方式中,可以是NF管理设备接收业务流特征信息,然后NF管理设备来确定对业务流进行分流。
在一种实现方式中,可以是编排设备接收业务流特征信息,然后编排设备来确定对业务流进行分流;或者确定需要扩容的对象。其中,需要扩容的对象可以是NF,或者是链路,或者是NF和链路都扩容。需要扩容的NF的扩容信息可以由编排设备或管理该NF的NF管理设备来确定,需要扩容的链路的扩容信息可以由编排设备或管理该链路的网络管理设备来确定。
在一种实现方式中,还可以不仅根据业务流的信息来进行资源调整,还可以结合与该业务流相关联的关联业务流的信息来进行资源调整。上述的编排设备或管理设备可以通过如图3所示的计算机设备(或系统)来实现。
图3所示为本发明实施例提供的计算机设备示意图。计算机设备300包括至少一个处理器31,通信总线32,存储器33以及至少一个通信接口34。
处理器31可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
通信总线32可包括一通路,在上述组件之间传送信息。所述通信接口34,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器33可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器33用于存储执行本发明方案的应用程序代码,并由处理器31来控制执行。所述处理器31用于执行所述存储器33中存储的应用程序代码。
在具体实现中,作为一种实施例,处理器31可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,计算机设备300可以包括多个处理器,例如图3中的处理器31和处理器38。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,计算机设备300还可以包括输出设备35和输入设备36。输出设备35和处理器31通信,可以以多种方式来显示信息。例如,输出设备35可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备36和处理器31通信,可以以多种方式接受用户的输入。例如,输入设备36可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的计算机设备300可以是一个通用计算机设备或者是一个专用计算机设备。在具体实现中,计算机设备300可以是台式机、便携式电脑、网络服务器、掌上电脑(Personal Digital Assistant,PDA)、移动手机、平板电脑、无线终端设备、通信设备、嵌入式设备或有图3中类似结构的设备。本发明实施例不限定计算机设备300的类型。
示例性的,图1中的编排设备可以为图3所示的设备,编排设备的存储器中存储了一个或多个软件模块。编排设备可以通过处理器以及存储器中的程序代码来实现软件模块,实现业务流资源的调整。
又或者,图1中的NF管理设备可以为图3所示的设备,NF管理设备的存储器中存储了一个或多个软件模块。NF管理设备可以通过处理器以及存储器中的程序代码来实现软件模块,实现业务流资源的调整。
又或者,图1中的网络管理设备可以为图3所示的设备,网络管理设备的存储器中存储了一个或多个软件模块。网络管理设备可以通过处理器以及存储器中的程序代码来实现软件模块,实现业务流资源的调整。
如图4所示,为本发明实施例提供的资源调整方法流程示意图。该方法可以应用于图1所示的网络架构中。
步骤401,NF4从NF3(图中未示出)接收到大量的突发注册消息,NF4接收这些注册消息。
NF4的中央处理器CPU处理能力不足造成消息拥塞。
步骤403,NF4将自身负载突发增加的事件上报给管理NF4的网络功能管理设备,NF管理设备接收该事件。
其中,该事件中携带造成拥塞的消息类型(即注册消息),以及突发业务流的资源占用信息。资源占用信息可以是单位时间的注册消息总量,也可以是突发业务流的带宽。本实施例中资源占用信息以单位时间的注册消息总量为例来说明。
NF管理设备接收该事件后,在下面几种情况中的任一种情况下,NF管理设备会执行步骤405:
(1)NF管理设备中获取不到上面所说的业务流特征信息和业务流的传输路径的对应关系。这里的获取不到可以是:NF管理设备自身没有存储该对应关系,或者NF管理设备从其他设备也无法获得该对应关系;
(2)NF管理设备根据对应关系表,确定注册消息后续还要途径其他域的NF或链路;或
(3)NF管理设备被预先配置为上报该事件给上一级的编排设备。
步骤405,NF管理设备将负载突发增加的事件上报给编排设备,编排设备接收该事件。
其中,该事件中携带上述消息类型,以及突发业务流的资源占用信息。
其中,NF管理设备收到403的上报事件后,可以是直接将该上报事件发送给编排设备;也可以是将收到的消息经过格式转换后再发给编排设备,具体实现方式本申请不做限定。
在具体实现中,作为一种可选方案,该事件中还可以携带NF管理设备决策的NF4扩容信息。编排设备在确定NF4扩容信息时,可以选择采纳NF管理设备决策的NF4扩容信息,也可以修改NF管理设备决策的NF4扩容信息,还可以自己决策NF4扩容信息。
步骤407,编排设备根据业务流特征信息和业务流的传输路径的对应关系,确定注册消息的传输路径。
这里,假设注册消息的传输路径如表1所示。因此,编排设备根据对应关系表确定注册消息后续要经由NF5和NF8。NF4,NF5和NF8可能属于同一个NF管理设备管理,也可能不属于同一个NF管理设备管理。
其中,对应关系可以是编排设备自身存储的,也可以是编排设备从其他设备(比如:网络功能管理设备)获取的,本申请不做限制。
步骤409,编排设备根据资源占用信息和注册消息的传输路径确定注册消息的资源调整策略。
具体实现中,首先,编排设备根据单位时间的注册消息总量,以及处理单条注册消息所需的平均基础设施资源,确定突发注册消息的基础设施资源开销。其中,处理单条注册消息所需的平均基础设施资源可以通过经验数据获得或者预先配置的数据获得。
具体的,可以通过注册消息总量乘以单条注册消息的平均基础设施资源开销得到突发注册消息的基础设施资源开销,也可以通过其他方法来确定基础设施资源开销,本申请不做限定。该注册消息的基础设施资源开销适用于传输路径上所有的NF。在本实施例中,例如:每秒处理新增的1000条注册消息需要增加一个频率是2.2GHZ的CPU内核以及100M的存储空间,所以增加了每秒2000条注册消息,就需要扩容一个频率是2.2GHZ的CPU内核两个以及200M的存储空间。
接着,编排设备结合NF4,NF5,NF8的空闲基础设施资源判断NF4,NF5,NF8是否需要扩容。其中,编排设备获取空闲基础设施资源的方式,可以是网络功能管理设备周期性上报给编排设备,也可以是编排设备去网络功能管理设备处查询获得,本申请不做限定。具体扩容多少可以通过突发注册消息的基础设施资源开销减去空闲基础设施资源获得,也可以通过突发注册消息的基础设施资源开销减去空闲基础设施资源再加上一定的余量,本申请不做限定。
本实施例中,假设NF4和NF8的空闲基础设施资源均小于突发注册消息所需要的基础设施资源开销,因此需要对NF4和NF8进行扩容。假设NF4和NF8的空闲基础设施资源均为0.2GHZ的CPU内核两个以及20M的存储空间,则需要对NF4和NF8分别扩容2GHZ的CPU内核两个以及180M的存储空间。
其中,在确定需要扩容的NF时,编排设备如果收到的有NF4拥塞的相关信息,则编排设备在确定NF扩容时,就不需要结合NF4的空闲基础设施资源判断NF4是否需要扩容了。
另外,编排设备根据链路NF4->NF5和链路NF5->NF8自身的带宽占用情况以及突发业务流(即:注册消息)的带宽信息判断是否需要对链路扩容,如果链路的空余传输能力(即:空闲的带宽信息)小于突发业务流的带宽信息,则增加链路的传输带宽。增加的数量可以是突发业务流的带宽减去链路的空余传输能力,也可以是突发业务流的带宽减去链路的空 余传输能力再加上一定的余量,本申请不做限定。
其中,带宽信息可以根据注册消息总量得到,也可以是按照默认或预置值确定的(例如每次扩容100M带宽)。比如:通过消息数量乘以消息的平均长度得到带宽信息。具体方式,本申请不做限定。
本实施例中,假设链路NF4->NF5和链路NF5->NF8的空闲带宽资源均小于突发注册消息所需要的带宽信息,因此需要对链路NF4->NF5和链路NF5->NF8进行扩容。假设按照上述介绍的链路扩容带宽方法,确定需要对链路NF4->NF5和链路NF5->NF8分别扩容300M带宽。
步骤411,编排设备向管理所述需要扩容的链路的网络管理设备发送链路扩容消息。网络管理设备接收该链路扩容消息。
该链路扩容消息中可以携带需要扩容的链路NF4->NF5和链路NF5->NF8的链路标识信息和带宽需求信息。网络管理设备根据带宽需求信息对链路标识对应的链路进行扩容。
其中,图4中只示出了一个网络管理设备,但具体实现中,管理所述需要扩容的链路的网络管理设备也可能是多个。如果是多个网络管理设备,那么编排设备就分别向多个网络管理设备发送各自所管理的链路的扩容消息。
步骤413,编排设备向各个NF的基础设施所在的基础设施管理设备发送NF扩容消息。基础设施管理设备接收该NF扩容消息。其中,基础设施管理设备可能涉及到一个或者多个,这里以一个为例。
其中,该扩容消息中可以携带需要扩容的NF标识信息和每个NF新的容量信息。
其中,图4中只示出了一个基础设施管理设备,但具体实现中,各个NF的基础设施所在的基础设施管理设备也可能是多个。如果是多个基础设施管理设备,那么编排设备就将NF扩容消息分别发送给各个NF的基础设施所在的基础设施管理设备。
另外,步骤413的NF扩容消息也可以是编排设备先发送给需要扩容的NF各自所在的网络功能管理设备。再由网络功能管理设备向各个NF的基础设施所在的基础设施管理设备发送扩容NF的请求。比如:在ETSI NFV架构下,编排设备对应到网络功能虚拟化编排(Network Function Virtualization Orchestrator,NFVO),网络功能管理设备对应到VNFM,基础设施管理设备对应到VIM。虚拟资源的扩缩容(扩容或缩容)有两种方式:第一种是VNFM获取NFVO授权后发指令给VIM进行资源扩缩容;第二种是VNFM发指令给NFVO,NFVO进而发指令给VIM进行资源扩缩容。本申请不做限定。
其中,图4中只示出了一个网络功能管理设备,但具体实现中,管理需要扩容的NF的网络功能管理设备也可能是多个。如果是多个网络功能管理设备,那么编排设备就将NF扩容消息分别发送给管理各个NF的网络功能管理设备。
步骤415,基础设施管理设备发送扩容请求给NF4资源所在的VIM进行基础设施扩容,指示中携带NF4所用资源的标识以及NF4的扩容信息。使NF4同步扩容满足新增注册业务流的处理。
步骤417,基础设施管理设备发送扩容请求给NF8资源所在的VIM进行基础设施扩容,指示中携带NF8所用资源的标识以及NF8的扩容信息。使NF8同步扩容满足新增注册业务流的处理。
其中,步骤411和413-417的执行没有先后顺序之分。步骤415和417也没有先后顺 序之分。
通过本实施例提供的方法,可以在NF4由于接收到大量的注册消息发生拥塞的场景中,综合考虑了注册消息经由的传输路径中NF5、NF8和链路的情况,不仅对NF4进行了扩容,而且对NF8、NF4与NF5之间的链路、NF5和NF8之间的链路都进行了扩容,从而综合了整个传输路径的情况针对拥塞进行了相应的扩容处理,提高了资源扩容效率。
在图4所示的实施例中,编排设备的动作可以由编排设备根据上述提及的存储器中的软件模块来执行。网络功能管理设备的动作可以由网络功能管理设备根据上述提及的存储器中的软件模块来执行。网络管理设备的动作可以由网络管理设备根据上述提及的存储器中的软件模块来执行。本申请实施例对此不作任何限制。
如图5所示,为本发明实施例提供的另一种资源调整方法流程示意图。该方法可以应用于图1所示的网络架构中。本实施例和图4所示的实施例主要的不同在于,编排设备确定扩容对象,扩容对象的扩容信息由其他设备来确定。下面进行具体说明。
步骤501-507,同步骤401-407,这里不再赘述。
步骤509,编排设备根据资源占用信息和注册消息的传输路径确定注册消息的资源调整策略。
同步骤409中,假设编排设备确定需要对NF4和NF8进行扩容,以及对链路NF4->NF5和链路NF5->NF8进行扩容。
步骤511,编排设备向管理所述需要扩容的链路的网络管理设备发送链路扩容消息。网络管理设备接收该链路扩容消息。
其中,链路扩容消息中携带需要扩容的链路NF4->NF5和链路NF5->NF8的链路标识信息和突发业务流的资源占用信息给所述需要扩容的链路的网络管理设备,网络管理设备根据突发业务流的资源占用信息确定链路的扩容信息。网络管理设备确定扩容信息的方法可以参考步骤409中编排设备确定扩容信息的方法。
然后,网络管理设备根据带宽信息对链路标识对应的链路进行扩容。
在具体实现中,编排设备也可以先确定突发业务流的带宽信息,然后在链路扩容信息中携带需要扩容的链路标识信息和带宽信息。
步骤513,编排设备向需要扩容的NF的NF管理设备发送NF扩容消息。NF管理设备接收该NF扩容消息。
编排设备向NF管理设备发送的扩容信息中携带需要扩容的NF标识信息和所述资源占用信息,由NF管理设备根据资源占用信息和NF的空闲基础设施资源确定NF的扩容信息。NF管理设备确定NF扩容信息的方法可以参考步骤409中编排设备确定NF扩容信息的方法。
步骤515,网络功能管理设备向基础设施管理设备发送NF扩容消息。基础设施管理设备接收该NF扩容消息。
其中,该扩容消息中可以携带需要扩容的NF4和NF8的标识信息、以及NF4和NF8需要扩容的容量信息。
步骤517-519,同步骤415-417。
其中,511和513-519的执行没有先后顺序之分。517和519也没有先后顺序之分。
其中,同图4一样,图5中的基础设施管理设备、网络管理设备和网络功能管理设备都示出了一个,但实际中,可能有多个。
通过本实施例提供的方法,编排设备确定扩容的对象,即扩容NF4和NF8,以及NF4与NF5之间的链路、NF5和NF8之间的链路。NF4和NF8的扩容信息由网络功能管理设备来确定,NF4与NF5之间的链路、NF5和NF8之间的链路扩容信息由网络管理设备来确定,从而综合了整个传输路径的情况针对拥塞进行了相应的扩容处理,提高了资源扩容效率。
在图5所示的实施例中,编排设备的动作可以由编排设备根据上述提及的存储器中的软件模块来执行。网络功能管理设备的动作可以由网络功能管理设备根据上述提及的存储器中的软件模块来执行。网络管理设备的动作可以由网络管理设备根据上述提及的存储器中的软件模块来执行。本申请实施例对此不作任何限制。
在具体实现中,图4和图5的确定扩容信息的方法也可以结合来用,也就是说,编排设备确定一部分扩容对象的扩容信息,而另一部分NF和链路的扩容信息由NF管理设备和网络管理设备来确定。
在实际实现中,具体扩容方式有多种。在上述图4和图5中,扩容是以即扩NF又扩链路为例来说明。但在具体实现中,可以想到的是,还可以只对NF进行扩容而不对链路进行扩容,也可以是只对链路进行扩容而不对NF进行扩容。对NF或链路进行扩容的方法与图4或5中对NF或链路进行扩容的方法类似,这里不再赘述。
如图6所示,为本发明实施例提供的另一种资源调整方法流程示意图。该方法可以应用于图1所示的网络架构中。本实施例和图4,5所示的实施例主要的不同在于,在本实施例中,资源调整策略是将业务流进行分流。下面进行具体说明。
步骤601-607,同步骤401-407,这里不再赘述。
步骤609,编排设备根据资源占用信息和注册消息的传输路径确定注册消息的资源调整策略。
在本实施例中,假设编排设备采用步骤409中的方法,判断NF4的基础设施资源不能满足该突发的注册消息引起的业务流,以及链路NF4->NF5传输带宽资源也不能满足该突发的注册消息引起的业务流,而且通过NF7的基础设施资源可以满足处理突发业务流的需求,因此选择NF7对NF4的业务处理进行负荷分担。分担的比例可以选择将突发的注册消息流量引导到NF7,也可以将突发的流量按照一定比例引导到NF7上,本申请不做限制。
可选的,还可以将NF7处理后的业务流发到NF5,相当于对链路NF4->NF5也进行负荷分担。当然,对于链路NF4->NF5,也可以采用扩容NF4->NF5链路容量的方法来解决。
步骤611,编排设备发送调整链路带宽消息给管理链路NF3->NF7和链路NF7->NF5的网络管理设备,以使网络管理设备在这两条链路上分配资源。网络管理设备接收该消息。
其中,该消息中携带链路NF3->NF7和链路NF7->NF5的链路标识以及需要分配的带宽信息。
这里的带宽信息可以参考步骤409由编排设备确定之后发给网络管理设备,也可以参考步骤511由网络管理设备设备来确定带宽信息。
步骤613,编排设备向管理NF3和NF7的网络功能管理设备发送调整业务流走向的消息。网络功能管理设备接收该消息。
该消息要求NF3将指定比例或者具备一定特征的原先发送到NF4的业务流改变下一跳到NF7,要求NF7将这部分流量的下一跳设置成NF5。
步骤615,网络管理功能设备向NF3发送配置消息,以使NF3将指定比例或者具备一定 特征的业务流的下一跳设置成NF7。NF3接收该配置消息。
步骤617,网络管理功能设备向NF7发送设置下一跳的消息,以使NF7将上述指定比例或者具备一定特征的业务流的下一跳设置为NF5。NF5接收该设置下一跳的消息。
其中,同图4一样,图6中的网络管理设备和网络功能管理设备都示出了一个,但实际中,可能有多个。
本实施例提供的方法,通过改变业务流的走向,从而通过负荷分担绕过业务流传输路径上的瓶颈点,该方案可以一次对一个或多个NF进行负荷分担。该解决方案也可以与图4或图5的方案结合,比如:可以对部分NF进行扩容,对部分NF进行负荷分担;也可以对部分NF和部分链路进行负荷分担,对部分NF和部分链路进行扩容;也可以对NF进行负荷分担,对链路进行扩容等。
在图6所示的实施例中,编排设备的动作可以由编排设备根据上述提及的存储器中的软件模块来执行。网络功能管理设备的动作可以由网络功能管理设备根据上述提及的存储器中的软件模块来执行。网络管理设备的动作可以由网络管理设备根据上述提及的存储器中的软件模块来执行。本申请实施例对此不作任何限制。
上面实施例是以NF4收到大量注册消息,然后发送拥塞上报事件给网络管理功能设备为例来描述的。在实际实现中,也可能是大量业务流消息(比如:注册消息)经由某个链路,导致该链路过载,路由器会将链路拥塞(或过载)事件发送给管理该链路的网络管理设备。下面结合图7-9进行说明。
如图7所示,为本发明实施例提供的资源调整方法流程示意图。该方法可以应用于图1所示的网络架构中。
假设由于注册消息突增,NF3到NF4之间的链路发生拥塞,然后路由器4将该拥塞事件上报给管理该链路的网络管理设备(这一步图中未示出)。
步骤703,网络管理设备接收该事件。
其中,该事件中携带的信息,以及网络管理设备执行步骤705的几种情况同步骤403中描述,这里不再赘述。
步骤705,网络管理设备将该拥塞事件上报给编排设备,编排设备接收该事件。
其中,该事件中携带上述消息类型,以及突发业务流的资源占用信息。
其中,网络管理设备收到703的上报事件后,可以是直接将该上报事件发送给编排设备;也可以是将收到的消息经过格式转换后再发给编排设备,具体实现方式本申请不做限定。
在具体实现中,作为一种可选方案,该事件中还可以携带网络管理设备决策的链路NF3->NF4的扩容信息。编排设备在确定链路NF3->NF4的扩容信息时,可以选择采纳网络管理设备决策的链路NF3->NF4的扩容信息,也可以修改网络管理设备决策的链路NF3->NF4的扩容信息,还可以自己决策链路NF3->NF4的扩容信息。
步骤707-709,同407-409。
其中,步骤709中,假设还需要对链路NF3->NF4扩容300M带宽。
步骤711,与步骤411不同的是,链路扩容消息中还携带链路NF3->NF4的链路标识信息和带宽需求信息。
步骤713到717,同步骤413-417。
通过本实施例提供的方法,可以在链路NF3->NF4由于接收到大量的注册消息发生拥塞的场景中,综合考虑了注册消息经由的传输路径中NF4、NF5、NF8和链路的情况,不仅对链路NF3->NF4进行了扩容,而且对NF8、NF4与NF5之间的链路、NF5和NF8之间的链路都进行了扩容,从而综合了整个传输路径的情况针对拥塞进行了相应的扩容处理,提高了资源扩容效率。
在图7所示的实施例中,编排设备的动作可以由编排设备根据上述提及的存储器中的软件模块来执行。网络功能管理设备的动作可以由网络功能管理设备根据上述提及的存储器中的软件模块来执行。网络管理设备的动作可以由网络管理设备根据上述提及的存储器中的软件模块来执行。本申请实施例对此不作任何限制。
如图8所示,为本发明实施例提供的资源调整方法流程示意图。该方法可以应用于图1所示的网络架构中。本实施例和图7所示的实施例主要的不同在于,编排设备确定扩容对象,扩容对象的扩容信息由其他设备来确定。下面进行具体说明。
假设由于注册消息突增,NF3到NF4之间的链路发生拥塞,然后路由器4将该拥塞事件上报给管理该链路的网络管理设备(这一步图中未示出)。
步骤803-809,同步骤703-709,这里不再赘述。
步骤811,与步骤511不同的是,链路扩容消息中还携带链路NF3->NF4的链路标识信息和带宽需求信息。网络管理设备确定扩容信息的方法可以参考步骤709中编排设备确定扩容信息的方法。
然后,网络管理设备根据带宽信息对链路标识对应的链路进行扩容。
在具体实现中,编排设备也可以先确定突发业务流的带宽信息,然后在链路扩容信息中携带需要扩容的链路标识信息和带宽信息。
步骤813到817,同513-517。
在图8所示的实施例中,编排设备的动作可以由编排设备根据上述提及的存储器中的软件模块来执行。网络功能管理设备的动作可以由网络功能管理设备根据上述提及的存储器中的软件模块来执行。网络管理设备的动作可以由网络管理设备根据上述提及的存储器中的软件模块来执行。本申请实施例对此不作任何限制。
在实际实现中,具体扩容方式有多种。在上述图7和图8中,扩容是以即扩NF又扩链路为例来说明。但在具体实现中,可以想到的是,还可以只对链路进行扩容而不对NF进行扩容,也可以是只对NF进行扩容而不对链路进行扩容。对NF或链路进行扩容的方法与图7或8中对NF或链路进行扩容的方法类似,这里不再赘述。
如图9所示,为本发明实施例提供的资源调整方法流程示意图。该方法可以应用于图1所示的网络架构中。本实施例和图7,8所示的实施例主要的不同在于,在本实施例中,资源调整策略是将业务流进行分流。下面进行具体说明。
假设由于注册消息突增,NF3到NF4之间的链路发生拥塞,然后路由器1将该拥塞事件上报给管理该链路的网络管理设备(这一步图中未示出)。
步骤903-907,同步骤703-707,这里不再赘述。
步骤909,编排设备根据资源占用信息和注册消息的传输路径确定注册消息的资源调整策略。
在本实施例中,假设编排设备采用步骤709中的方法,判断NF3到NF4以及NF4到NF5 之间的链路传输带宽资源不能满足该突发的注册消息引起的业务流,以及NF4的基础设施资源不能满足该突发的注册消息引起的业务流,而且通过NF7的基础设施资源可以满足处理突发业务流的需求,因此选择NF7对NF4的业务处理进行负荷分担。分担的比例可以选择将突发的注册消息流量引导到NF7,也可以将突发的流量按照一定比例引导到NF7上,本申请不做限制。
步骤911,与611不同的是,调整链路带宽消息中除携带链路NF3->NF7和链路NF7->NF5的链路标识以及需要分配的带宽信息外,还携带链路NF3->NF4的链路标识以及需要分配的带宽信息。
步骤913-917,同步骤613-617。
本实施例提供的方法,通过改变业务流的走向,从而通过负荷分担绕过业务流传输路径上的瓶颈点,该方案可以一次对一个或多个NF进行负荷分担。该解决方案也可以与图7或图8的方案结合,比如:可以对部分NF进行扩容,对部分NF进行负荷分担;也可以对部分NF和部分链路进行负荷分担,对部分NF和部分链路进行扩容;也可以对NF进行负荷分担,对链路进行扩容等。
在图9所示的实施例中,编排设备的动作可以由编排设备根据上述提及的存储器中的软件模块来执行。网络功能管理设备的动作可以由网络功能管理设备根据上述提及的存储器中的软件模块来执行。网络管理设备的动作可以由网络管理设备根据上述提及的存储器中的软件模块来执行。本申请实施例对此不作任何限制。
在上面图4-9中,编排设备、网络功能管理设备、基础设施管理设备和网络管理设备是分设的。在具体实现中,编排设备也可以和网络管理设备合设。在编排设备和网络管理设备合设的情况下,编排设备和网络管理设备的功能就由合设的设备来实现。合设后,本领域人员可以理解,编排设备和网络管理设备之间的交互就不需要了。
在具体实现中,编排设备也可以和网络功能管理设备合设。在编排设备和网络功能管理设备合设的情况下,编排设备和网络功能管理设备的功能就由合设的设备来实现。合设后,本领域人员可以理解,编排设备和网络功能管理设备之间的交互就不需要了。
在具体实现中,编排设备也可以和网络功能管理设备合设。在编排设备和网络功能管理设备合设的情况下,编排设备和网络功能管理设备的功能就由合设的设备来实现。合设后,本领域人员可以理解,编排设备和网络功能管理设备之间的交互就不需要了。
在具体实现中,编排设备也可以和网络功能管理设备合设。在编排设备和网络功能管理设备合设的情况下,编排设备和网络功能管理设备的功能就由合设的设备来实现。合设后,本领域人员可以理解,编排设备和网络功能管理设备之间的交互就不需要了。
在具体实现中,编排设备也可以和基础设施管理设备合设。在编排设备和基础设施管理设备合设的情况下,编排设备和基础设施管理设备的功能就由合设的设备来实现。合设后,本领域人员可以理解,编排设备和基础设施管理设备之间的交互就不需要了。
在具体实现中,上述方法实施例中所说的对应关系除了包括业务流特征信息和业务流的传输路径的对应关系外,还可以包括与该业务流有关联的关联业务流特征信息与所述关联业务流的传输路径的对应关系。
例如,前面说过的,当大量的网络附着消息同时产生后,导致MME负载过高,但MME扩容后,又产生了大量的访问HSS的消息(例如数据库查询消息),导致HSS的负载又过高 而出现拥塞,那么网络附着消息和数据库查询消息这两种消息需要关联起来。下面以表三为例来进行说明。
Figure PCTCN2017114220-appb-000003
表三
如表三所示,NF4接收到注册消息后会触发访问消息发送到NF5。这种情况下,如果NF4因为突发的注册消息造成拥塞,虽然NF4是该注册消息的终点,但是因为注册消息会触发访问消息到NF5,所以注册消息和访问消息需要进行关联。比如:对NF4进行扩容时,也要判断NF5是否需要扩容,以及需要扩容多少基础设施资源,而且还要判断链路NF4->NF5是否需要扩容,以及扩容多少带宽资源。
在有关联业务流的情况下,由于对应关系除了注册消息和注册消的传输路径的对应关系外,还有与注册消有关联的访问消息和访问消息的传输路径的对应关系。因此,在具体实现中,在上述步骤407,507,607,707,807和907中确定的传输路径除了注册消息的传输路径外,还要确定访问消息的传输路径。之后,除了确定注册消息的传输路径中的NF或链路的扩容外,还要确定访问消息的传输路径中的NF或链路是否要扩容,以及需要扩多少。确定方法与上述方法实施例中注册消息的相关处理类似,这里不再赘述。
在该实施例中,编排设备的动作可以由编排设备根据上述提及的存储器中的软件模块来执行。网络功能管理设备的动作可以由网络功能管理设备根据上述提及的存储器中的软件模块来执行。网络管理设备的动作可以由网络管理设备根据上述提及的存储器中的软件模块来执行。本申请实施例对此不作任何限制。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,上述实现编排设备或网络功能管理设备的设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对编排设备或网络功能管理设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,在采用对应各个功能划分各个功能模块的情况下,图10示出了上述实施例中所 涉及的一种实现资源调整的装置可能的结构示意图,该装置1000包括:接收模块1001,第一确定模块1003和第二确定模块1005。
该接收模块1001,用于接收业务流特征信息。
该第一确定模块1003,用于根据所述业务流特征信息和所述业务流的传输路径的对应关系,确定所述业务流的传输路径,所述传输路径包括:所述业务流经由的起始网络功能NF和终结NF,以及起始NF和终结NF之间的链路;
该第二确定模块1005,用于确定所述传输路径上资源的调整策略,以此来调整所述业务流所需的资源。
在一种可能的实现方式中,该第二确定模块1005,具体用于:根据所述业务流的资源占用信息和所述传输路径确定所述传输路径上资源的调整策略。
在另一种可能的实现方式中,该第二确定模块1005,具体用于:根据所述业务流的资源占用信息确定所述传输路径上的NF所需的基础设施资源;根据所述传输路径上的NF所需的基础设施资源和传输路径上的NF空闲的基础设施资源确定需要扩容的NF。
在另一种可能的实现方式中,该装置还包括第三确定模块1007,用于根据传输路径上的NF所需的基础设施资源和传输路径上的NF空闲的基础设施资源确定所述需要扩容的NF的扩容信息。
在另一种可能的实现方式中,该第二确定模块1005,具体用于:根据所述业务流的资源占用信息确定所述传输路径上的链路所需的带宽;根据所述传输路径上的链路所需的带宽和传输路径上的链路空闲的带宽确定需要扩容的链路。
在另一种可能的实现方式中,该第二确定模块1005还用于:根据所述传输路径上的链路所需的带宽和传输路径上的链路空闲的带宽确定需要扩容的链路的扩容信息。
在另一种可能的实现方式中,该装置除了包括接收模块1001,第一确定模块1003和第二确定模块1005外,还包括第一发送模块1009,用于发送所述业务流特征信息和所述业务流的资源占用信息给管理所述需要扩容的NF的NF管理设备,由所述NF管理设备来确定需要扩容的NF的扩容信息。作为一种可选的方式,该装置除了包括接收模块1001,第一确定模块1003和第二确定模块1005外,还包括第二发送模块1011,用于发送所述传输路径和所述业务流的资源占用信息给管理所述需要扩容的NF的NF管理设备,由所述NF管理设备来确定需要扩容的NF的扩容信息。
在另一种可能的实现方式中,还包括第三发送模块1013,用于将所述业务流特征信息和所述业务流的资源占用信息发送给管理所述需要扩容的链路的网络管理设备,以使所述网络管理设备根据所述业务流的资源占用信息和传输路径中包括的链路的空闲带宽确定链路的扩容信息。
在另一种可能的实现方式中,还包括第四发送模块1015,用于将所述传输路径和所述业务流的资源占用信息发送给管理所述需要扩容的链路的网络管理设备,以使所述网络管理设备根据所述业务流的资源占用信息和传输路径中包括的链路的空闲带宽确定链路的扩容信息。
在另一种可能的实现方式中,该业务流特征信息来自第一网元;相应的,该第二确定模块1005,具体用于:根据所述业务流的资源占用信息和所述传输路径确定所述业务流所需的基础设施资源;根据所述业务流所需的基础设施资源,选择所述传输路径上在所述第 一网元前一跳的第二网元,以将所述第二网元发送给所述第一网元的所述业务流分流一部分到其他网元上。
在另一种可能的实现方式中,该对应关系还包括:与所述业务流有关联的关联业务流特征信息与所述关联业务流的传输路径的对应关系;则第一确定模块1003,还用于根据所述关联业务流特征信息与所述关联业务流的传输路径确定所述关联业务流的传输路径;第一确定模块1005,具体用于根据所述资源占用信息和所述业务流的传输路径、以及所述关联业务流传输路径确定资源调整策略。
其中,该装置可以为通信网络中的编排设备,也可以为通信网络中的网络功能管理设备,也可以为两者合一的设备,还可以为通信网络中其他设备,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该实现资源调整的装置以对应各个功能划分各个功能模块的形式来呈现,或者,该实现资源调整的装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到实现资源调整的装置1000可以采用图3所示的形式。比如,图10中的接收模块1001,第一确定模块1003,第二确定模块1005,第三确定模块1007,第一发送模块1009、第二发送模块1011、第三发送模块1013或第四发送模块1015可以通过图3的处理器31(和/或处理器38)和存储器33来实现,具体的,接收模块1001,第一确定模块1003,第二确定模块1005,第三确定模块1007,第一发送模块1009、第二发送模块1011、第三发送模块1013或第四发送模块1015可以通过由处理器31(和/或处理器38)来调用存储器33中存储的应用程序代码来执行,本发明实施例对此不作任何限制。
图11示出了上述实施例中所涉及的一种实现资源调整的系统。该系统包括:编排设备1101和网络功能管理设备1103。
该编排设备1101,用于接收业务流特征信息;根据所述业务流特征信息和所述业务流的传输路径的对应关系,确定所述业务流的传输路径,所述传输路径包括:所述业务流经由的起始网络功能NF和终结NF,以及起始NF和终结NF之间的链路;根据所述业务流的资源占用信息确定所述传输路径上的NF所需的基础设施资源;根据所述传输路径上的NF所需的基础设施资源和传输路径上的NF空闲的基础设施资源确定需要扩容的NF;
该网络功能管理设备1103,用于确定需要扩容的NF的扩容信息。
在一种具体实现中,该编排设备1101还用于发送所述业务流特征信息和所述业务流的资源占用信息给管理所述需要扩容的NF的NF管理设备1103。
在一种具体实现中,该编排设备1101还用于发送所述传输路径和所述业务流的资源占用信息给管理所述需要扩容的NF的NF管理设备1103。
图12示出了上述实施例中所涉及的一种实现资源调整的系统。该系统包括:编排设备1201和网络管理设备1203。
该编排设备1201,用于接收业务流特征信息;根据所述业务流特征信息和所述业务流的传输路径的对应关系,确定所述业务流的传输路径,所述传输路径包括:所述业务流经由的起始网络功能NF和终结NF,以及起始NF和终结NF之间的链路;根据所述业务流的传 输路径确定所述传输路径上管理链路的网络管理设备;
该网络管理设备1203,用于根据所述业务流的资源占用信息和传输路径中包括的链路的空闲带宽确定链路的扩容信息。
在一种具体实现中,该编排设备1201用于将所述业务流特征信息和所述业务流的资源占用信息发送给所述网络管理设备1203。
在一种具体实现中,该编排设备1201将所述传输路径和所述业务流的资源占用信息发送给所述网络管理设备1203。
图13示出了上述实施例中所涉及的一种实现资源调整的系统。该系统包括:编排设备1301和网络功能管理设备1303。
该编排设备1301,用于接收业务流特征信息;根据所述业务流特征信息和所述业务流的传输路径的对应关系,确定所述业务流的传输路径,所述传输路径包括:所述业务流经由的起始网络功能NF和终结NF,以及起始NF和终结NF之间的链路;根据所述业务流的资源占用信息和所述传输路径确定所述业务流所需的基础设施资源;根据所述业务流所需的基础设施资源,选择所述传输路径上在所述第一网元前一跳的第二网元;向网络功能管理设备1303发送调整业务流走向的消息;
该网络功能管理设备1303,用于接收调整业务流走向的消息,向第二网元发送配置消息,以使第二网元将指定比例或者具备一定特征的业务流的下一跳设置成第三网元。
在一种具体实现中,该网络功能管理设备1303,还用于向第三网元发送设置下一跳的消息,以使第三网元将上述指定比例或者具备一定特征的业务流的下一跳设置成所述第一网元的下一跳网元。
上述方法实施例涉及的各步骤的所有相关内容均可以援引到该系统中各设备,在此不再赘述。
本发明实施例还提供了一种计算机存储介质,用于储存为上述图4-9所示的实现资源调整的装置所用的计算机软件指令,其包含用于执行上述方法实施例所设计的程序代码。通过执行存储的程序代码,可以统一考虑执行业务的网络资源情况来进行资源调整,提高资源扩容效率。
本发明实施例还提供了计算机程序产品。该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述方法实施例中的方法。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,这里将它们都统称为“模块”或“系统”。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机程序存储/分布在合适的 介质中,与其它硬件一起提供或作为硬件的一部分,也可以采用其他分布形式,如通过Internet或其它有线或无线电信系统。
本申请是参照本发明实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (25)

  1. 一种资源调整方法,其特征在于,包括:
    通信网络接收业务流特征信息;
    所述通信网络根据所述业务流特征信息和所述业务流的传输路径的对应关系,确定所述业务流的传输路径,所述传输路径包括:所述业务流经由的起始网络功能NF和终结NF,以及所述起始NF和所述终结NF之间的链路;
    所述通信网络确定所述传输路径上资源的调整策略,以此来调整所述业务流所需的资源。
  2. 如权利要求1所述的方法,其特征在于,所述通信网络确定所述传输路径上资源的调整策略,具体包括:
    所述通信网络根据所述业务流的资源占用信息和所述传输路径确定所述传输路径上资源的调整策略。
  3. 如权利要求2所述的方法,其特征在于,所述通信网络根据所述业务流的资源占用信息和所述传输路径确定所述传输路径上资源的调整策略,具体包括:
    所述通信网络根据所述业务流的资源占用信息确定所述传输路径上的NF所需的基础设施资源;
    所述通信网络根据所述传输路径上的NF所需的基础设施资源和传输路径上的NF空闲的基础设施资源确定需要扩容的NF。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    所述通信网络根据传输路径上的NF所需的基础设施资源和传输路径上的NF空闲的基础设施资源确定所述需要扩容的NF的扩容信息。
  5. 如权利要求3所述的方法,其特征在于,所述通信网络包括编排设备,则该方法还包括:
    所述编排设备发送所述业务流特征信息和所述业务流的资源占用信息给管理所述需要扩容的NF的NF管理设备,由所述NF管理设备来确定需要扩容的NF的扩容信息。
  6. 如权利要求3所述的方法,其特征在于,所述通信网络包括编排设备,则该方法还包括:
    所述编排设备发送所述传输路径和所述业务流的资源占用信息给管理所述需要扩容的NF的NF管理设备,由所述NF管理设备来确定需要扩容的NF的扩容信息。
  7. 如权利要求2所述的方法,其特征在于,所述通信网络根据资源占用信息和传输路径确定资源调整策略,具体包括:
    所述通信网络根据所述业务流的资源占用信息确定所述传输路径上的链路所需的带宽;
    所述通信网络根据所述传输路径上的链路所需的带宽和传输路径上的链路空闲的带宽确定需要扩容的链路。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述通信网络根据所述传输路径上的链路所需的带宽和传输路径上的链路空闲的带宽确定需要扩容的链路的扩容信息。
  9. 如权利要求7所述的方法,其特征在于,所述通信网络包括编排设备,则该方法还包括:
    所述编排设备将所述业务流特征信息和所述业务流的资源占用信息发送给管理所述需要 扩容的链路的网络管理设备,以使所述网络管理设备根据所述业务流的资源占用信息和传输路径中包括的链路的空闲带宽确定链路的扩容信息。
  10. 如权利要求7所述的方法,其特征在于,所述通信网络包括编排设备,则该方法还包括:
    所述编排设备将所述传输路径和所述业务流的资源占用信息发送给管理所述需要扩容的链路的网络管理设备,以使所述网络管理设备根据所述业务流的资源占用信息和传输路径中包括的链路的空闲带宽确定链路的扩容信息。
  11. 如权利要求1-2任一所述的方法,其特征在于,所述业务流特征信息来自第一网元;
    相应的,所述通信网络确定所述传输路径上资源的调整策略,具体包括:
    所述通信网络根据所述业务流的资源占用信息和所述传输路径确定所述业务流所需的基础设施资源;
    所述通信网络根据所述业务流所需的基础设施资源,选择所述传输路径上在所述第一网元前一跳的第二网元,以将所述第二网元发送给所述第一网元的所述业务流分流一部分到其他网元上。
  12. 如权利要求1-2任一所述的方法,其特征在于,所述对应关系还包括:与所述业务流有关联的关联业务流特征信息与所述关联业务流的传输路径的对应关系;
    则所述方法还包括:所述通信网络根据所述关联业务流特征信息与所述关联业务流的传输路径确定所述关联业务流的传输路径;
    相应的,所述通信网络确定所述传输路径上资源的调整策略具体包括:
    所述通信网络根据所述资源占用信息和所述业务流的传输路径、以及所述关联业务流传输路径确定资源调整策略。
  13. 一种资源调整装置,其特征在于,包括:
    接收模块701,用于接收业务流特征信息;
    第一确定模块703,用于根据所述业务流特征信息和所述业务流的传输路径的对应关系,确定所述业务流的传输路径,所述传输路径包括:所述业务流经由的起始网络功能NF和终结NF,以及所述起始NF和所述终结NF之间的链路;
    第二确定模块705,用于确定所述传输路径上资源的调整策略,以此来调整所述业务流所需的资源。
  14. 如权利要求13所述的装置,其特征在于,所述第二确定模块具体用于:根据所述业务流的资源占用信息和所述传输路径确定所述传输路径上资源的调整策略。
  15. 如权利要求14所述的装置,其特征在于,所述第二确定模块具体用于:根据所述业务流的资源占用信息确定所述传输路径上的NF所需的基础设施资源;根据所述传输路径上的NF所需的基础设施资源和传输路径上的NF空闲的基础设施资源确定需要扩容的NF。
  16. 如权利要求15所述的装置,其特征在于,还包括第三确定模块,所述第二确定模块用于根据传输路径上的NF所需的基础设施资源和传输路径上的NF空闲的基础设施资源确定所述需要扩容的NF的扩容信息。
  17. 如权利要求15所述的装置,其特征在于,还包括第一发送模块,所述第一发送模块用于发送所述业务流特征信息和所述业务流的资源占用信息给管理所述需要扩容的NF的NF管理设备,由所述NF管理设备来确定需要扩容的NF的扩容信息。
  18. 如权利要求15所述的装置,其特征在于,还包括第二发送模块,所述第二发送模块 用于发送所述传输路径和所述业务流的资源占用信息给管理所述需要扩容的NF的NF管理设备,由所述NF管理设备来确定需要扩容的NF的扩容信息。
  19. 如权利要求14所述的装置,其特征在于,所述第二确定模块具体用于:根据所述业务流的资源占用信息确定所述传输路径上的链路所需的带宽;根据所述传输路径上的链路所需的带宽和传输路径上的链路空闲的带宽确定需要扩容的链路。
  20. 如权利要求19所述的装置,其特征在于,所述第二确定模块还用于:根据所述传输路径上的链路所需的带宽和传输路径上的链路空闲的带宽确定需要扩容的链路的扩容信息。
  21. 如权利要求19所述的装置,其特征在于,还包括第三发送模块,所述第三发送模块用于将所述业务流特征信息和所述业务流的资源占用信息发送给管理所述需要扩容的链路的网络管理设备,以使所述网络管理设备根据所述业务流的资源占用信息和传输路径中包括的链路的空闲带宽确定链路的扩容信息。
  22. 如权利要求19所述的装置,其特征在于,还包括第四发送模块,所述第四发送模块用于:将所述传输路径和所述业务流的资源占用信息发送给管理所述需要扩容的链路的网络管理设备,以使所述网络管理设备根据所述业务流的资源占用信息和业务流的传输路径中包括的链路的空闲带宽确定链路的扩容信息。
  23. 如权利要求13-14任一所述的装置,其特征在于,所述业务流特征信息来自第一网元;相应的,所述第二确定模块具体用于:根据所述业务流的资源占用信息和所述传输路径确定所述业务流所需的基础设施资源;根据所述业务流所需的基础设施资源,选择所述传输路径上在所述第一网元前一跳的第二网元,以将所述第二网元发送给所述第一网元的所述业务流分流一部分到其他网元上。
  24. 如权利要求13-14任一所述的装置,其特征在于,所述对应关系还包括:与所述业务流有关联的关联业务流特征信息与所述关联业务流的传输路径的对应关系;
    相应的,所述第一确定模块还用于根据所述关联业务流特征信息与所述关联业务流的传输路径确定所述关联业务流的传输路径;所述第二确定模块具体用于根据所述资源占用信息和所述业务流的传输路径、以及所述关联业务流传输路径确定资源调整策略。
  25. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令用于执行权利要求1-12任一所述的方法。
PCT/CN2017/114220 2016-12-26 2017-12-01 一种资源调整方法、装置和系统 WO2018121178A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17887284.2A EP3534578B1 (en) 2016-12-26 2017-12-01 Resource adjustment method, device and system
US16/454,044 US11038760B2 (en) 2016-12-26 2019-06-26 Resource adjustment method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611220995.8 2016-12-26
CN201611220995.8A CN108243110B (zh) 2016-12-26 2016-12-26 一种资源调整方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/454,044 Continuation US11038760B2 (en) 2016-12-26 2019-06-26 Resource adjustment method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018121178A1 true WO2018121178A1 (zh) 2018-07-05

Family

ID=62702233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114220 WO2018121178A1 (zh) 2016-12-26 2017-12-01 一种资源调整方法、装置和系统

Country Status (4)

Country Link
US (1) US11038760B2 (zh)
EP (1) EP3534578B1 (zh)
CN (1) CN108243110B (zh)
WO (1) WO2018121178A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109189552B (zh) * 2018-08-17 2020-08-25 烽火通信科技股份有限公司 虚拟网络功能扩容与缩容方法及系统
WO2021131002A1 (ja) * 2019-12-26 2021-07-01 日本電信電話株式会社 ネットワーク管理装置、方法およびプログラム
WO2021223103A1 (en) * 2020-05-06 2021-11-11 Nokia Shanghai Bell Co., Ltd. Method and apparatus for preventing network attacks in a network slice
CN111865813B (zh) * 2020-07-27 2022-04-12 中南大学 一种基于反ecn标记的数据中心网络传输控制方法、系统及可读存储介质
CN114189446A (zh) * 2020-09-14 2022-03-15 中兴通讯股份有限公司 资源配置方法、装置、服务器及存储介质
CN113676351B (zh) * 2021-08-16 2022-08-05 深圳金信诺高新技术股份有限公司 一种会话处理方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105162716A (zh) * 2015-07-28 2015-12-16 上海华为技术有限公司 一种nfv架构下的流控方法及装置
CN105681216A (zh) * 2016-04-27 2016-06-15 赛特斯信息科技股份有限公司 Nfv架构下网络业务接入控制和负载均衡的系统及方法
WO2016118636A1 (en) * 2015-01-20 2016-07-28 Huawei Technologies Co., Ltd. Method and apparatus for nfv management and orchestration
WO2016184045A1 (zh) * 2015-05-21 2016-11-24 华为技术有限公司 一种网络业务扩容的方法和装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706353B2 (en) * 2004-01-21 2010-04-27 Alcatel-Lucent Usa Inc. Congestion control in connection-oriented packet-switching networks
GB0916239D0 (en) * 2009-09-16 2009-10-28 Vodafone Plc Internet breakout in HNB/Femto, UMTS and LTE networks
CN101742554A (zh) * 2010-01-15 2010-06-16 南京邮电大学 无线多媒体传感器网络多路径传输机制的拥塞控制方法
CN102571544B (zh) * 2010-12-27 2016-01-13 中兴通讯股份有限公司 一种带宽调整的方法和系统
US20150155930A1 (en) * 2012-06-29 2015-06-04 Telefonaktiebolaget L M Ericsson (Publ) Method and Relay Node for Implementing Multiple Wireless Backhauls
US9049127B2 (en) * 2013-03-11 2015-06-02 Cisco Technology, Inc. Methods and devices for providing service clustering in a trill network
US9794379B2 (en) * 2013-04-26 2017-10-17 Cisco Technology, Inc. High-efficiency service chaining with agentless service nodes
US9467382B2 (en) * 2014-02-03 2016-10-11 Cisco Technology, Inc. Elastic service chains
US10445339B1 (en) * 2014-05-28 2019-10-15 EMC IP Holding Company LLC Distributed contextual analytics
CN105282195A (zh) * 2014-06-27 2016-01-27 中兴通讯股份有限公司 网络服务提供、策略规则评估、服务组件选择方法及装置
CN105934919B (zh) * 2014-12-17 2019-03-19 华为技术有限公司 网络服务能力自动调整方法和系统
US10356169B1 (en) * 2014-12-23 2019-07-16 EMC IP Holding Company LLC Virtual content delivery network
CN105791175B (zh) * 2014-12-26 2019-04-12 电信科学技术研究院 软件定义网络中控制传输资源的方法及设备
CN105873114B (zh) * 2015-01-21 2020-12-11 中兴通讯股份有限公司 一种虚拟网络功能性能监控的方法及相应的系统
KR20170056350A (ko) * 2015-11-13 2017-05-23 한국전자통신연구원 Nfv 자원 할당 검증 장치
US20170214634A1 (en) * 2016-01-26 2017-07-27 Futurewei Technologies, Inc. Joint autoscaling of cloud applications
US10716150B2 (en) * 2016-12-19 2020-07-14 At&T Intellectual Property I, L.P. Method for mobile service chaining via hybrid network resources switching

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016118636A1 (en) * 2015-01-20 2016-07-28 Huawei Technologies Co., Ltd. Method and apparatus for nfv management and orchestration
WO2016184045A1 (zh) * 2015-05-21 2016-11-24 华为技术有限公司 一种网络业务扩容的方法和装置
CN105162716A (zh) * 2015-07-28 2015-12-16 上海华为技术有限公司 一种nfv架构下的流控方法及装置
CN105681216A (zh) * 2016-04-27 2016-06-15 赛特斯信息科技股份有限公司 Nfv架构下网络业务接入控制和负载均衡的系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534578A4

Also Published As

Publication number Publication date
US11038760B2 (en) 2021-06-15
EP3534578A4 (en) 2019-12-11
EP3534578B1 (en) 2022-05-04
CN108243110B (zh) 2021-09-14
US20190319845A1 (en) 2019-10-17
CN108243110A (zh) 2018-07-03
EP3534578A1 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
WO2018121178A1 (zh) 一种资源调整方法、装置和系统
US11051183B2 (en) Service provision steps using slices and associated definitions
US10708143B2 (en) Method and apparatus for the specification of a network slice instance and underlying information model
EP3609161B1 (en) Network slice creating method and apparatus, and communication system
CN108965132B (zh) 一种选择路径的方法及装置
CN109586938B (zh) 实例业务拓扑的生成方法及装置
US11528239B2 (en) Time-sensitive networking communication method and apparatus for configuring virtual switching node
CN110463140B (zh) 计算机数据中心的网络服务水平协议
CN108471629B (zh) 传输网络中业务服务质量的控制方法、设备及系统
JP2023549681A (ja) ネットワーク機能選択のためのランク処理のための方法、システム、およびコンピュータ読取可能媒体
US20220086044A1 (en) Analyzing and configuring workload distribution in slice-based networks to optimize network performance
CN104660507B (zh) 数据流转发路由的控制方法及装置
US11463346B2 (en) Data processing method, device, and system
WO2015172362A1 (zh) 一种网络功能虚拟化网络系统、数据处理方法及装置
US10356185B2 (en) Optimal dynamic cloud network control
US11929880B2 (en) Edge computing topology information exposure
WO2018000202A1 (zh) 一种负载迁移方法、装置及系统
WO2016197301A1 (zh) Nfv系统中的策略协调方法和装置
WO2018210075A1 (zh) 网络控制方法、装置及网络设备
EP3381228B1 (en) Enterprise-based network selection
Jiang et al. Qos control method based on sdn for mobile cloud service
WO2024208098A1 (zh) 一种计费方法及装置
WO2020192263A1 (zh) 计费规则绑定的方法、设备及系统
WO2021046746A1 (zh) 上报会话管理信息的方法、设备及系统
WO2024184686A1 (en) Managing resource usage in a radio access network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017887284

Country of ref document: EP

Effective date: 20190531

NENP Non-entry into the national phase

Ref country code: DE