WO2018210075A1 - 网络控制方法、装置及网络设备 - Google Patents

网络控制方法、装置及网络设备 Download PDF

Info

Publication number
WO2018210075A1
WO2018210075A1 PCT/CN2018/082349 CN2018082349W WO2018210075A1 WO 2018210075 A1 WO2018210075 A1 WO 2018210075A1 CN 2018082349 W CN2018082349 W CN 2018082349W WO 2018210075 A1 WO2018210075 A1 WO 2018210075A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
information
service flow
transmission path
service
Prior art date
Application number
PCT/CN2018/082349
Other languages
English (en)
French (fr)
Inventor
纪孟迪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018210075A1 publication Critical patent/WO2018210075A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0895Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/40Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5019Ensuring fulfilment of SLA
    • H04L41/5025Ensuring fulfilment of SLA by proactively reacting to service quality change, e.g. by reconfiguration after service quality degradation or upgrade
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/52Queue scheduling by attributing bandwidth to queues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/52Queue scheduling by attributing bandwidth to queues
    • H04L47/525Queue scheduling by attributing bandwidth to queues by redistribution of residual bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate

Definitions

  • the present application relates to the field of communications, and in particular, to a network control method, apparatus, and network device.
  • NFV Network function virtualization
  • NFVI Network Function Virtualization Infrastructure
  • VNF Virtual Network Function
  • EM Element Management
  • VNFM VNF Manager
  • NFVI 120 is the overall name for the hardware and software that builds the VNF140 deployment environment.
  • VNF140 is a virtual machine that provides specific network functions running on NFVI 120. Each VNF 140 is used to implement one or several network functions.
  • VNFM 180 adds resources to the virtual container of the VNF 140.
  • the EM160 is used to manage the fault, configuration, accounting, performance, and security (Fault, Configuration, Accounting, Performance, Security, and FCAPS) of the VNF 140, and collects alarm information of the VNF 140.
  • fault, Configuration, Accounting, Performance, Security, and FCAPS fault, Configuration, Accounting, Performance, Security, and FCAPS
  • the number of VNFs 140 in the NFV system is at least one.
  • Each service in the mobile communication network runs on at least one VNF 140 to form a service flow. If there is a sudden increase in traffic of a service flow, at least one VNF 140 for carrying the service flow may cause congestion of the VNF 140 due to limited resources.
  • the service includes a call service, a multimedia service, an application (Application, APP) service, and the like.
  • the operation and maintenance personnel occupy the current bandwidth resource occupancy of the VNF 140 monitored by the VNFM 180, and/or the bandwidth resource occupation of the congested VNF 140 according to the alarm information reported by the EM 160.
  • the situation is analyzed to switch the traffic flow being transmitted by the VNF 140 to the other VNF 140, or to expand the maximum bandwidth resource provided by the VNF 140.
  • the operation and maintenance personnel manually analyze the VNF140's traffic distribution policy or the capacity expansion strategy, and the service recovery efficiency is low. This makes the mobile communication system less efficient in solving network congestion. , resulting in a problem of low transmission efficiency of the mobile communication network.
  • the present application provides a network control method, apparatus, and network device.
  • a network control method includes: acquiring bandwidth information of at least one service flow; and controlling the network according to bandwidth information of the at least one service flow and bandwidth resource information on the first NF; At least one of the traffic flows is a traffic flow that passes through or is scheduled to pass through the first NF at the time of transmission.
  • the at least one service flow includes a first service flow that passes through or is scheduled to pass through the first NF, and acquires bandwidth information of the at least one service flow, including: acquiring the first service flow Control plane information, the control plane information including bandwidth information of the first service flow.
  • the acquisition of the bandwidth information is implemented, thereby providing an implementation manner for controlling the network according to the bandwidth information and the bandwidth resource information on the first NF.
  • the bandwidth resource information on the first NF is used to indicate remaining bandwidth resources on the first NF, according to bandwidth information of the at least one service flow and the first NF
  • the bandwidth resource information, the network control includes: determining, according to the control plane information of the first service flow, a transmission path of the first service flow; modifying the transmission path according to the bandwidth information and the remaining bandwidth resources on the first NF in the transmission path
  • the first NF is expanded.
  • the first NF Before the first NF transmits the first service flow, modifying the transmission path of the first service flow or expanding the first NF; and realizing that the first NF may be involved in network congestion before the first service flow is transmitted, and the solution is solved. When network congestion actually occurs, the network congestion solution is analyzed, resulting in a poor network transmission effect. Before the first NF transmits the first service flow, network congestion is prevented.
  • modifying the transmission path according to the bandwidth information and the remaining bandwidth resources on the first NF in the transmission path including: according to the bandwidth information and the first NF
  • the remaining bandwidth resources are replaced by the first NF in the transmission path by the second NF in the other NF; wherein the other NFs are NFs other than the NFs on the transmission path among the n NFs controlled by the NF controller
  • the n NFs controlled by the NF controller include a first NF, the remaining bandwidth resources on the second NF are greater than or equal to the bandwidth information, and n is an integer greater than 1.
  • An NF is implemented to determine, according to bandwidth information of the first service flow, whether the first NF has a risk of network congestion before the first NF transmits the first service flow; and when there is a risk of network congestion, pass the second NF replaces the first NF. Since the second NF does not have network congestion when transmitting the first service flow, network congestion is prevented from occurring.
  • the replacing the first NF in the transmission path by the second NF in the other NF comprises: transmitting the third NF to the third NF in the transmission path a switching instruction, the first switching instruction is used to indicate that the third NF sets the next hop NF of the first service flow to the second NF, and the third NF is the last hop of the first NF in the transmission path;
  • the NF sends a second switching instruction, where the second switching instruction is used to indicate that the second NF sets the next hop NF of the first service flow to the fourth NF in the transmission path, where the fourth NF is located in the transmission path under the first NF.
  • the first NF is expanded according to the bandwidth information and the remaining bandwidth resources on the first NF in the transmission path, including: according to the bandwidth information and The remaining bandwidth resource on the first NF in the transmission path sends a first capacity expansion request to the infrastructure controller, where the first capacity expansion request is used to instruct the infrastructure controller to expand the bandwidth resource of the first NF according to the first target bandwidth;
  • the first target bandwidth is determined according to the bandwidth information and the remaining bandwidth resources on the first NF.
  • the first capacity expansion request carries the first target bandwidth; or the first capacity expansion request carries the bandwidth information and the remaining bandwidth on the first NF Resources.
  • the bandwidth information is used to indicate the bandwidth resource of the first service flow request; or the bandwidth information is used to indicate the bandwidth corresponding to the first service flow.
  • the bandwidth requirement is determined according to the Guaranteed Bit Rate (GBR) requirement of the first service flow.
  • the transmission path is modified according to the bandwidth information and the remaining bandwidth resources on the first NF in the transmission path.
  • expanding the first NF including: when the difference between the remaining bandwidth resources and the bandwidth information on the first NF is less than a preset difference, modifying the transmission path or expanding the first NF; or, when the first When the ratio between the remaining bandwidth resources on the NF and the bandwidth information is less than the preset ratio, the transmission path is modified or the first NF is expanded.
  • the acquiring the bandwidth information of the at least one service flow includes: acquiring control plane information of all the service flows that pass the first NF; and acquiring the first NF according to the control plane information.
  • the sum of the bandwidth requirements of all the service flows; and/or the sum of the bandwidth resources that have been received by all the traffic flows of the first NF, and the sum of the bandwidth resources occupied by all the traffic flows of the first NF is reported by the first NF.
  • the bandwidth information is realized by acquiring the sum of the bandwidth requirements of all the service flows that pass through the first NF according to the control plane information, and/or receiving the sum of the bandwidth resources occupied by all the service flows of the first NF reported by the first NF. Obtaining, in order to implement the control of the network according to the bandwidth information and the bandwidth resource information on the first NF, provides another implementation manner.
  • the bandwidth resource information on the first NF is used to indicate the bandwidth resource provided by the first NF, according to the bandwidth information of the at least one service flow.
  • the bandwidth resource information on the first NF is controlled by the network, and the first NF is expanded according to the bandwidth information and the bandwidth resource provided by the first NF.
  • the first NF is expanded by monitoring the resource occupancy of the first NF in the process of transmitting the first NF, and the first NF is expanded when the network congestion occurs in the first NF;
  • the network congestion solution is analyzed, resulting in a poor network transmission effect; the network congestion prevention is prevented in the process of service flow transmission.
  • the bandwidth information includes: a sum of bandwidth resources occupied by all service flows of the first NF, according to the bandwidth information and the first NF.
  • the bandwidth resource, the first NF is expanded, and the first NF is expanded when a bandwidth condition between the bandwidth resource provided by the first NF and the total bandwidth resource occupied by all the service flows of the first NF is met;
  • the proximity condition is that the difference between the bandwidth resource provided by the first NF and the sum of the bandwidth resources occupied by all service flows passing the first NF is less than a first preset threshold; and/or the proximity condition is provided by the first NF.
  • the ratio between the bandwidth resource and the sum of the bandwidth resources occupied by all the service flows passing through the first NF is less than a second preset threshold.
  • the bandwidth information includes: a sum of bandwidth requirements of all service flows passing the first NF, and bandwidth provided according to the bandwidth information and the first NF
  • the resource, the first NF is expanded, and the first NF is expanded when the bandwidth resource provided by the first NF is smaller than the sum of the bandwidth requirements of all the service flows that pass through the first NF.
  • the bandwidth information includes: a sum of bandwidth requirements of all service flows passing the first NF, and all traffic flows through the first NF The sum of the occupied bandwidth resources; the capacity expansion of the first NF according to the bandwidth information and the bandwidth resources provided by the first NF, including: when the bandwidth resource provided by the first NF is smaller than the sum of bandwidth requirements of all service flows passing the first NF, And expanding the first NF when the bandwidth resource provided by the first NF and the sum of the bandwidth resources occupied by all the service flows of the first NF meet the condition; wherein the proximity condition is the bandwidth resource provided by the first NF The difference between the sum of the bandwidth resources occupied by all the service flows of the first NF is less than the first preset threshold; and/or, the proximity condition is that the bandwidth resource provided by the first NF and all the service flows that pass the first NF have been The ratio between the sum of occupied bandwidth resources is less than a second preset threshold.
  • the bandwidth information includes: a sum of bandwidth requirements of all service flows passing the first NF And expanding the first NF, including: sending a second expansion request to the infrastructure controller according to the sum of bandwidth requirements of all service flows passing the first NF, and the bandwidth resource provided by the first NF, and the second expansion request is used by the first NF And instructing the infrastructure controller to expand the bandwidth resource of the first NF according to the second target bandwidth; the second target bandwidth is determined according to a bandwidth requirement sum of all service flows passing the first NF, and the bandwidth resource provided by the first NF is determined. of.
  • a network control apparatus comprising at least one unit for implementing the network control method provided by any one of the above first aspect or the first aspect.
  • a network device comprising: a processor and a memory, wherein the memory stores at least one instruction, the instruction being loaded by the processor and executing any one of the first aspect or the first aspect described above
  • a network control method provided by an implementation.
  • a computer readable storage medium having stored therein instructions that, when run on a network device, are loaded by the network device and perform the first aspect or first aspect described above
  • a network control method provided by any of the implementations.
  • FIG. 1 is a schematic structural diagram of an NFV system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an NFV system according to another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of at least one NF provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a network control method according to an embodiment of the present application.
  • FIG. 6 is a flowchart of a network control method according to an embodiment of the present application.
  • FIG. 7 is a flowchart of a network control method according to another embodiment of the present application.
  • FIG. 8 is a flowchart of a network control method according to another embodiment of the present application.
  • FIG. 9 is a flowchart of a network control method according to another embodiment of the present application.
  • FIG. 10 is a flowchart of a network control method according to another embodiment of the present application.
  • FIG. 11 is a flowchart of a network control method according to another embodiment of the present application.
  • FIG. 12 is a block diagram of a network control apparatus according to another embodiment of the present application.
  • NFV Virtualization technology is used to virtualize the network functions of previous private network devices on standard general-purpose computing devices. NFV can realize decoupling and functional abstraction of software and hardware, so that network functions no longer depend on dedicated hardware devices, providing greater flexibility for mobile communication networks.
  • FIG. 2 is a schematic structural diagram of an NFV system provided by an embodiment of the present application.
  • the NFV system can be implemented using various networks such as a data center network, a service provider network, and/or a local area network (LAN).
  • the NFV system includes at least the NFV management and orchestration system 220, NFVI 240, VNF 260, EM 280.
  • the NFV Management and Orchestration System 220 is used to monitor and manage the VNF 260 and NFVI 240.
  • the NFV management and orchestration system 220 includes at least one VNF Manager (VNFM) 224 and one or more Virtualised Infrastructure Managers (VIMs) 226.
  • VNFM VNF Manager
  • VIPs Virtualised Infrastructure Managers
  • the VNFM 224 can communicate with the VNF 260 and the EM 280 to implement lifecycle management of the VNF 260, which includes: create, start, upgrade, expand, shrink, terminate, restart, and the like.
  • VNF 260 refers to a virtualized NF that is executed by a physical network device.
  • each VNF 260 corresponds to a set of NFs in at least one physical device.
  • the VNF 260 may be a VNF of a user plane, such as a Serving Gate Way (SGW) and/or a Packet-Data Network Gateway (P-GW); the VNF 260 may also be a VNF of a control plane, such as: mobility. Management entity (Mobility Management Entity, MME).
  • MME Mobility Management Entity
  • the VNF 260 is a virtualized PE node for providing network functions in a non-virtualized Provider Edge (PE) device; or, the VNF 260 is a component of the non-virtualized PE device (eg, running, managing Operation and Maintenance (OAM) components.
  • PE Provider Edge
  • OAM Operation and Maintenance
  • each VNF 260 runs in a virtual container that can host a single VNF 260 or can host multiple VNFs 260.
  • Each EM 280 is used to manage a corresponding VNF 260.
  • EM1 is used to manage VNF1
  • EM2 is used to manage VNF2
  • EM3 is used to manage VNF3.
  • the EM 280 is configured to manage the fault, configuration, accounting, performance, security (Fault, Configuration, Accounting, Performance, Security, FCAPS) of a corresponding VNF 260, and collect corresponding alarm information of a VNF 260.
  • EM 280 and VNFM 224 may be abstracted as an NF controller.
  • the NF controller is used to control at least one VNF in the network.
  • the functionality of the VNFM 224 for lifecycle management of the VNF 260 can be abstracted as an infrastructure controller.
  • the infrastructure controller is configured to configure virtual resources corresponding to the VNF 260.
  • the virtual resources corresponding to the VNF 260 include but are not limited to: bandwidth resources.
  • the NFV system when the NF controller and the infrastructure controller are arranged in a cross-domain manner, or when the distance is relatively long, the NFV system further includes an orchestrator 222, and the orchestrator 222 is configured to perform NF control. Communicate with the infrastructure controller.
  • NFVI 240 includes hardware components, software components, or a combination of both, and establishes a virtualized environment to deploy, manage, and execute VNF 260 through hardware components, software components, or a combination of both. That is, both the hardware resources and the virtualization layer in NFVI 240 are used to provide virtualization resources for VNF260.
  • hardware resources in the NFVI 240 include: computing hardware 241, storage hardware 242, and network hardware 243.
  • computing hardware 241 is Commercial Off The Shelf (COTS) hardware and/or client hardware for providing processing and computing resources.
  • COTS Commercial Off The Shelf
  • computing hardware 241 is one or more processors, such as a cascaded array of processors.
  • Storage hardware 242 is used to provide storage capacity.
  • storage hardware 242 is one or more memories, such as a disk array.
  • computing hardware 241 and storage hardware 242 are brought together.
  • network hardware 243 is a switch (eg, a commercial switch), a router, and/or any other network device that performs switching functions, and different network hardware 243 are interconnected by wired and/or wireless links.
  • switch eg, a commercial switch
  • router e.g., a router
  • any other network device that performs switching functions
  • different network hardware 243 are interconnected by wired and/or wireless links.
  • network hardware 243 spans multiple domains and includes at least one interconnected transport network.
  • the virtualization layer within NFVI 240 is used to extract hardware resources and separate VNF260 from the underlying physical network layer to provide virtualization resources for VNF260.
  • the virtualized resources include virtual computing 244, virtual storage 245, and virtual network 246.
  • Virtual computing 244 and virtual storage 245 may be provided to VNF 260 in the form of virtual machine monitors, virtual manufacturing VMs, and/or other virtual containers. For example, deploy one or more VNFs 260 on a VM.
  • the virtualization layer abstracts network hardware 243 to form virtual network 246.
  • Virtual network 246 can include a virtual switch (Vswitch) that provides connectivity between VMs and/or other virtual containers hosting VNF 260.
  • Vswitch virtual switch
  • the extraction of hardware resources can be implemented using various technologies, including but not limited to: Virtual Local Area Network (VLAN), Virtual Private Lan Service (VPLS), Virtual Extensible LAN (Virtual Extensible) LAN, VxLAN) and Network Virtual Generic Routing Encapsulation (NVGRE).
  • the transport network within network hardware 243 can be virtualized using a centralized control plane and an independent forwarding plane (eg, Software Defined Network (SDN)).
  • SDN Software Defined Network
  • VIM 226 is also used to control and manage the interaction of VNF 260 with computing hardware 241, storage hardware 242, network hardware 243, virtual computing 244, virtual storage 245, and virtual network 246.
  • VIM 226 can perform resource management functions to add resources to virtual containers. Communication between VNFM224 and VIM226 enables hardware resource configuration.
  • the NFV system 200 further includes other components, such as an Operations Support Systems (OSS) and a Business Support Systems (BSS) (OSS/BSS), and the present embodiment is no longer one by one. Introduction.
  • OSS Operations Support Systems
  • BSS Business Support Systems
  • the NF controller and the infrastructure controller mentioned in the present application may be implemented by hardware, software, or a combination of the two, which is not limited in this embodiment.
  • this embodiment does not limit the names of the NF controller and the infrastructure controller.
  • the NF controller may also be referred to as an NF layer control plane signaling collection and analysis component;
  • the infrastructure controller may also be referred to as an I layer control.
  • This application does not limit the names of NF controllers and infrastructure controllers.
  • NF controller is implemented by software as an example.
  • FIG. 3 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device may be the NF controller as described in FIG. 2.
  • Network device 300 includes at least one processor 31, a communication bus 32, a memory 33, and at least one communication interface 34.
  • the processor 31 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 32 can include a path for communicating information between the components described above.
  • the communication interface 34 uses devices such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), and the like.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Networks
  • the memory 33 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program instructions in the form of instructions or data structures and capable of being Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 33 is used to store program instructions for executing the solution of the present invention, and is controlled by the processor 31 for execution.
  • the processor 31 is configured to execute program instructions stored in the memory 33.
  • the memory 33 stores program instructions, and the processor 31 executes program instructions to implement the functions of the NF controller.
  • the processor 31 executes program instructions to implement the NF controller to control the network.
  • the processor 31 includes one or more CPUs, such as CPU0 and CPU1 in FIG.
  • network device 300 includes a plurality of processors, such as processor 31 and processor 38 in FIG.
  • processors can be a single-CPU processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the network device 300 described above may be a general network device or a dedicated network device.
  • the network device 300 may be an evolved base station (eNode B, eNB) in a Long-Term Evolution (LTE), a gNB in a New Redo (NR) system, or similar in FIG. Structured equipment.
  • eNode B evolved base station
  • LTE Long-Term Evolution
  • NR New Redo
  • the embodiment of the present invention does not limit the type of the network device 300.
  • an embodiment of the present invention provides a computer readable storage medium, where the computer readable storage medium stores at least one program instruction, when the program instruction is executed by the processor, causing the network device to perform the following implementations.
  • the network control method provided by the example.
  • the NF controller is configured to obtain control plane information on each VNF, and/or obtain the sum of bandwidth resources occupied by all service flows on each VNF.
  • the control plane information refers to the information that the VNF sends or receives during the control plane signaling negotiation process.
  • VNF1 corresponds to an eNodeB (English: eNodeB, eNB for short)
  • VNF2 corresponds to SGW
  • VNF3 corresponds to P-GW
  • VNF4 corresponds to MME.
  • VNF1 ⁇ VNF2 ⁇ VNF3 VNF1, VNF2 and VNF3 perform control plane signaling negotiation process with VNF4.
  • VNF1, VNF2 and VNF3 are negotiated with VNF4 through control plane information.
  • the NF controller obtains control plane information on each VNF, including but not limited to the following methods:
  • the NF controller subscribes to the control plane information on the VNF; when the VNF sends and/or receives the control plane information, it simultaneously sends the same control plane information to the NF controller, and accordingly, NF The controller acquires the control plane information.
  • the NF controller sends an information acquisition request to the VNF; when the VNF sends and/or receives the control plane information, the same control plane information is sent to the NF controller according to the information acquisition request; correspondingly, the NF controller Get the control surface information.
  • the NF controller sends an information reporting instruction to the VNF; after receiving the information reporting instruction, the VNF sends the same control plane information to the NF controller simultaneously when transmitting and/or receiving the control plane information; The NF controller acquires the control plane information.
  • the NF controller can determine the bandwidth requirement information of each service flow according to the control plane information.
  • the NF controller determines the bandwidth requirement information of each service flow according to the control plane information, and includes: acquiring the control plane information on the VNF when the new service flow is triggered on the VNF, where the control plane information includes the bandwidth requirement information of the service flow.
  • the bandwidth requirement information is used to indicate a maximum bandwidth that the service flow may occupy; or the bandwidth requirement information is used to indicate a bandwidth requirement corresponding to the first service flow, where the bandwidth requirement is determined according to a GBR requirement of the service flow.
  • GBR refers to a service that guarantees a bit rate type, such as streaming media, which requires a real-time service at a certain rate.
  • the NF controller can determine the sum of bandwidth requirements of all service flows on any one VNF according to the bandwidth requirement information in the control plane information.
  • the sum of the bandwidth requirements is determined based on the bandwidth requirement information of each service flow that the VNF is currently transmitting. For example, if the bandwidth requirement information of service flow A is 10 Mbps and the bandwidth requirement information of service flow B is 20 Mbps, then the total bandwidth requirement of service flow A and service flow B is 30 Mbps.
  • the NF controller may also determine a transmission path of each service flow according to the control plane information.
  • the NF controller determines the transmission path of each service flow according to the control plane information, including: acquiring control plane information sent and/or received by the VNF in the control plane signaling negotiation process of the VNF; determining the service flow according to the control plane information Transmission path.
  • the transmission path includes at least one VNF.
  • the transmission path of the service flow determined by the NF controller according to the control plane information is a path that the service flow is scheduled to pass through each VNF.
  • the service flow may not be transmitted according to the transmission path.
  • control plane information further includes a service type corresponding to the service flow.
  • the NF controller obtains the sum of the bandwidth resources occupied by all the service flows on each VNF, including but not limited to: the VNF actively reports the sum of the bandwidth resources occupied by all the service flows to the NF controller; or, the VNF receives the After reporting the report sent by the NF controller, report the sum of the bandwidth resources occupied by all service flows to the NF controller.
  • the sum of the bandwidth resources occupied by all service flows is determined according to the bandwidth resources actually occupied by each service flow.
  • the actual occupied bandwidth resource of service flow A is 5 Mbps
  • the actual occupied bandwidth resource of service flow B is 10 Mbps.
  • the total bandwidth resource of service flow A and service flow B is 15 Mbps. It should be noted that the bandwidth value indicated by the bandwidth resource occupied by each service flow is less than or equal to the bandwidth value indicated by the bandwidth requirement information of the service flow.
  • the NF controller can determine whether the network is based on at least one of bandwidth resources occupied by all service flows reported by the VNF, and bandwidth requirement information of each service flow, and bandwidth resources provided by the VNF. Congestion may occur. Or, determine if there is a risk of congestion on the network.
  • the bandwidth resource provided by the VNF refers to the maximum bandwidth resource currently provided on the VNF.
  • the bandwidth resource provided by the VNF is determined by the NF controller when the VNF is created, or after being expanded or reduced.
  • the NF controller controls the network.
  • the NF controller controls the network when it determines that there is a risk of congestion in the network.
  • the NF controller controls the network, including but not limited to: expanding a certain VNF; or modifying a transmission path of the first service flow scheduled to pass through a certain VNF.
  • the NF controller generates a global view, where the global view includes all service flows passing by each VNF controlled by the NF controller and bandwidth occupation of each VNF.
  • the bandwidth occupation of the VNF includes a sum of bandwidth resources occupied by all service flows of the VNF, a bandwidth resource provided by the VNF, and a bandwidth requirement of all service flows passing through the VNF.
  • the "NF" mentioned in the following may be a virtual form of the VNF, or may be an entity NF implemented by a physical entity, which is not limited by the embodiment of the present invention.
  • FIG. 4 shows a schematic diagram of at least one NF controlled by the NF controller provided by an embodiment of the present application.
  • the NF controller is the NF controller as shown in FIG. 2 or FIG. Assume that the NF controller controls eight NFs: NF1, NF2, NF3, NF4, NF5, NF6, NF7, NF8.
  • the NF controller 306 obtains the control plane information of the first service flow during the negotiation of the NF5, and the NF controller 306 determines the first service flow according to the control plane information.
  • Transmission path According to FIG. 4, a second service flow is transmitted on NF3, and the transmission path of the second service flow (indicated by a solid arrow) is NF1->NF2->NF3->NF4, and the maximum bandwidth resource provided by NF3 is Q1.
  • the maximum bandwidth resource corresponding to the second service flow is Q2, and the NF controller 306 determines that the transmission path of the first service flow (indicated by the dashed arrow) is NF5->NF6->NF3->NF4, and the first service flow corresponds to The maximum bandwidth resource is Q3. Then, when Q1 ⁇ (Q2+Q3), there may be a risk of network congestion on NF3.
  • the present application provides the following technical solution, which implements automatic control of the network by the NF controller before network congestion occurs, thereby preventing network congestion from occurring.
  • FIG. 5 is a flowchart of a network control method provided by an embodiment of the present application.
  • This embodiment uses the network control method to be exemplified by the NF controller shown in FIG. 2 or FIG. 3, and the method includes the following steps:
  • Step 501 Obtain bandwidth information of at least one service flow.
  • the bandwidth information is used to indicate a bandwidth requirement of the service flow, and/or the bandwidth information is used to indicate a bandwidth resource that the service flow has occupied.
  • the traffic flow is a traffic flow that passes through or is scheduled to pass through the first NF during transmission.
  • the first NF refers to an NF controlled by the NF controller.
  • Step 502 Control the network according to the bandwidth information of the at least one service flow and the bandwidth resource information on the first NF.
  • the NF controller controls the network according to the bandwidth information of the at least one service flow and the bandwidth resource information on the first NF, including but not limited to: according to the bandwidth information of the at least one service flow and the bandwidth resource information on the first NF, in the network. Before the congestion occurs, the network is controlled in advance. In other words, the NF controller controls the first NF when predicting the risk of network congestion of the first NF according to the bandwidth information of the at least one service flow and the bandwidth resource information on the first NF.
  • the at least one service flow includes a first service flow that passes through or is scheduled to pass through the first NF.
  • the bandwidth information is used to indicate a bandwidth requirement of the service flow
  • the bandwidth resource information on the first NF is used to indicate The remaining bandwidth resources on the first NF.
  • the NF controller controls the network according to the bandwidth information of the at least one service flow and the bandwidth resource information on the first NF, including: determining, according to the control plane information of the first service flow, the first service flow.
  • the transmission path, the control plane information includes the bandwidth information of the first service flow, and the transmission path is modified or the first NF is expanded according to the bandwidth information of the first service flow and the remaining bandwidth resources on the first NF in the transmission path.
  • the first service flow may not have passed the first NF. Therefore, by pre-modifying the transmission path of the first service flow or pre-expanding the first NF, it is possible to prevent network congestion from occurring before the first service flow is transmitted.
  • the NF controller acquires control plane information from the NF that triggers the first service flow, where the control plane information includes bandwidth information of the first service flow.
  • the first service flow is triggered on NF5, and the NF controller obtains control plane information from NF5.
  • the NF controller determines the transmission path of the first service flow according to the control plane information of the first service flow.
  • the first service flow is triggered on the NF5.
  • the NF controller determines the next service flow according to the control plane information sent and/or received by the NF5. Jumping to NF6; in the control plane signaling negotiation process of NF6, the NF controller determines, according to the control plane information sent and/or received by NF6, that the next hop of the first service flow is NF3; the control plane signaling negotiation on NF3 During the process, the NF controller determines, according to the control plane information sent and/or received by the NF3, that the next hop of the first service flow is NF4, thereby determining that the transmission path of the first service flow is NF5->NF6->NF3-> NF4.
  • the at least one service flow includes a first service flow that passes through the first NF.
  • the bandwidth information includes a sum of bandwidth resources occupied by all service flows passing through the first NF, and/or, after the first The sum of bandwidth requirements of all service flows of the NF; the bandwidth resource information on the first NF is used to indicate the bandwidth resources provided by the first NF.
  • the NF controller controls the network according to the bandwidth information of the at least one service flow and the bandwidth resource information on the first NF, including: according to the bandwidth information and the bandwidth resource provided by the first NF, to the first NF. Expand the capacity.
  • the at least one service flow is already transmitted on the first NF. Therefore, by expanding the first NF according to the bandwidth information and the bandwidth resource provided by the first NF, the prevention network is implemented in the process of transmitting the at least one service flow. Congestion occurs.
  • the network control method obtained in this embodiment obtains bandwidth information of at least one service flow, and controls the network according to bandwidth information of at least one service flow and bandwidth resource information on the first network function NF;
  • the NF controller can automatically control the network without manual analysis of how to solve network congestion, improve the automation degree and efficiency of the mobile communication network to solve network congestion, and thus improve the transmission efficiency of the mobile communication network.
  • the NF controller modifies the transmission path of the first service flow, see the embodiment shown in FIG. 6; the NF controller performs the first NF.
  • the expansion refer to the embodiment shown in FIG. 8.
  • the NF controller expands the first NF, see the embodiment shown in FIG.
  • the first NF on the transmission path of the first service flow may be in the process of transmitting the first service flow, for example: In Figure 4, network congestion may occur on NF3.
  • the NF controller modifies the transmission path of the first service flow before the first service flow is transmitted, thereby preventing network congestion.
  • the first NF refers to an NF other than the first hop NF and the last hop NF in the transmission path.
  • FIG. 6 is a flowchart of a network control method provided by an embodiment of the present application.
  • This embodiment uses the network control method to be exemplified by the NF controller shown in FIG. 2 or FIG. 3, and the method includes the following steps:
  • Step 601 Determine, according to control plane information of the first service flow, a transmission path of the first service flow.
  • the control plane information includes bandwidth information of the first service flow, where the bandwidth information is used to indicate bandwidth requirement information of the first service flow.
  • the bandwidth requirement information of the first service flow is the bandwidth resource requested by the first service flow; or is the bandwidth requirement corresponding to the first service flow, and the bandwidth requirement is determined according to the GBR requirement of the first service flow.
  • the NF controller determines the description of the transmission path of the first service flow, and the description is not repeated here.
  • Step 602 Replace the first NF in the transmission path by the second NF in the other NF according to the bandwidth information and the remaining bandwidth resources on the first NF.
  • the NF controller determines, according to the bandwidth information and the remaining bandwidth resources on the first NF, whether the first NF has a risk of network congestion; if yes, determining, by the other NF, the second NF according to the bandwidth information of the first service flow, The first NF is replaced by the second NF, thereby modifying the transmission path of the first service flow.
  • the other NFs refer to the NFs controlled by the NF controller, except for the NFs other than the NFs on the transmission path.
  • the n NFs controlled by the NF controller include the first NF, and n is an integer greater than 1.
  • the NF controller controls 8 NFs, which are NF1, NF2, NF3, NF4, NF5, NF6, NF7, NF8, and the NF on the transmission path of the first service flow includes NF3.
  • NF4, NF5 and NF6, then, other NF are NF1, NF2, NF7 and NF8.
  • the remaining bandwidth resource of the second NF determined by the NF controller is greater than or equal to the bandwidth information of the first service flow. In this way, when the first service flow is switched to the second NF, the network congestion does not occur.
  • the NF controller determines, according to the bandwidth information and the remaining bandwidth resources on the first NF, whether the first NF has a risk of network congestion, including: the NF controller calculates the remaining bandwidth resources on the first NF. The difference between the bandwidth information; if the bandwidth value indicated by the remaining bandwidth resource minus the bandwidth value indicated by the bandwidth information is less than the preset difference, the first NF has a risk of network congestion; if the bandwidth value indicated by the remaining bandwidth resource is reduced If the bandwidth value indicated by the bandwidth information is greater than or equal to the preset difference, the first NF does not have the risk of network congestion.
  • the value of the preset difference is not limited, for example, the preset difference is 0.
  • the NF controller determines, according to the bandwidth information and the remaining bandwidth resources on the first NF, whether the first NF has a risk of network congestion, including: the NF controller calculates the remaining bandwidth resources on the first NF. The ratio between the bandwidth information; if the bandwidth value indicated by the remaining bandwidth resource divided by the bandwidth value indicated by the bandwidth information is less than the preset ratio, the first NF has a risk of network congestion; if the bandwidth value indicated by the remaining bandwidth resource is divided by the bandwidth If the bandwidth value indicated by the information is greater than or equal to the preset ratio, the first NF does not have the risk of network congestion.
  • the value of the preset ratio is not limited, for example, the preset ratio is 1.
  • the NF controller replaces the first NF in the transmission path by using the second NF in the other NF, including: sending a first switching instruction to the third NF in the transmission path, where the first switching instruction is used to indicate the third
  • the NF sets the next hop NF of the first service flow to the second NF, the third NF is the last hop NF of the first NF in the transmission path; the second switching instruction is sent to the second NF, and the second switching instruction is used for
  • the second NF is instructed to set the next hop NF of the first service flow to the fourth NF in the transmission path, and the fourth NF is the next hop NF of the first NF in the transmission path.
  • the transmission path of the first service flow is NF5->NF6->NF3->NF4, the first NF is NF3, the second NF for replacing NF3 is NF7, and the third NF is NF6,
  • the four NFs are NF4.
  • the NF controller replacing the NF3 by the NF7 includes: transmitting a first handover instruction to the NF6, instructing the NF6 to set the next hop NF of the transmission path to NF7; and transmitting a second handover instruction to the NF7, instructing the NF7 to set the next hop NF of the transmission path.
  • the modified transmission path is NF5->NF6->NF7->NF4.
  • the first NF that may include consecutive multiple hops has a risk of network congestion, for example, the ith hop NF to the jth NF of the transmission path have network congestion.
  • the NF controller replaces the first NF in the transmission path by the second NF in the other NF, including: if there is a risk of network congestion on the first transmission path, determining the ith hop from the other NFs IF to jth NF corresponding to the i'th NF to j' hop NF; sending a third switching instruction to the jth hop NF corresponding to the jth hop NF, the third switching instruction is used to indicate the jth hop
  • the NF sets the next hop NF of the first service flow to the j+1th hop NF; sends a fourth switching instruction to the kth hop NF corresponding to the kth hop NF in the first transmission path, where the fourth switching instruction is used Instructing the kth hop NF to switch
  • i is an integer greater than 1
  • j is an integer greater than i
  • the ith hop NF to the jth hop NF are NFs other than the first hop NF and the last hop NF in the transmission path.
  • the transmission path of the first service flow is NF5->NF6->NF3->NF4, and both NF6 and NF3 have the risk of network congestion.
  • the NF controller replaces the first NF in the transmission path by the second NF, including: sending a fifth switching instruction to the NF5, Instructing NF5 to set the next hop NF of the first service flow to NF8; sending a fourth handover instruction to NF8, instructing NF8 to set the next hop NF of the first service flow to NF7; and sending a third handover instruction to NF7 indicating NF7
  • the next hop NF of the first service flow is set to NF4, so that the modified transmission path is NF5->NF8->NF7->NF4.
  • the first switching instruction, the second switching instruction, the third switching instruction, the fourth switching instruction, and the fifth switching instruction are implemented by using a NETCONF command, where the NETCONF command is used to configure the network, for example, Configure the route.
  • the network control method determines the transmission path of the first service flow according to the control plane information of the first service flow; and according to the bandwidth information and the remaining bandwidth resources on the first NF in the transmission path, Replacing the first NF in the transmission path by the second NF in the other NF; so that the NF controller can determine whether the first NF exists according to the bandwidth information of the first service flow before the first NF transmits the first service flow.
  • the risk of network congestion when there is a risk of network congestion, the first NF is replaced by the second NF. Since the second NF does not have network congestion when transmitting the first service flow, network congestion is prevented. .
  • the first NF is used as an example of the VNF.
  • the first NF may also be an NF on the dedicated network device, which is not limited in this embodiment.
  • the following describes an manner in which the NF controller prevents network congestion by modifying the transmission path of the first service flow.
  • FIG. 7 is a flowchart of a network control method provided by an embodiment of the present application. This embodiment is described by taking a schematic diagram of the NF shown in FIG. 4 as an example. The method includes the following steps:
  • step 701 the first service flow is triggered on the NF5.
  • the first service flow triggered by the NF5 is a service flow sent by the user equipment; or the service flow sent by another network device.
  • step 702 the NF controller acquires control plane information on the NF5.
  • the NF controller subscribes to the control plane information on the NF5 in advance.
  • the NF5 transmits and/or receives the control plane information
  • the NF5 simultaneously sends the same control plane information to the NF controller, and accordingly, the NF controller acquires the control plane information.
  • Step 703 The NF controller determines whether the first NF has a risk of network congestion; if yes, step 704 is performed; if not, the process ends.
  • the NF controller determines, according to the bandwidth requirement information of the first service flow and the remaining bandwidth resources of the first NF in the transmission path, whether the first NF has a risk of network congestion.
  • the NF controller determines, according to the ratio or difference between the bandwidth requirement information and the remaining bandwidth resources, whether the first NF has a risk of network congestion. For details related to this step, refer to step 602. The implementation is not described herein.
  • the NF controller determines that there is a risk of network congestion occurring in NF3.
  • Step 704 the NF controller selects a second NF for replacing NF3 from among other NFs.
  • the NF controller selects a second NF for replacing NF3 from among other NFs according to the remaining bandwidth resources of other NFs.
  • the remaining bandwidth resource of the second NF is greater than or equal to the bandwidth requirement information of the first service flow.
  • the second NF determined by the NF controller is NF7.
  • step 705 the NF controller instructs the NF6 to set the next hop of the first service flow to NF7.
  • the NF controller sends a NETCONF command to NF6, which is used to instruct NF6 to set the next hop of the first traffic flow to NF7.
  • step 706 the NF controller instructs NF7 to set the next hop of the first service flow to NF4.
  • the NF controller sends a NETCONF command to NF7, which is used to instruct NF7 to set the next hop of the first traffic flow to NF4.
  • the network control method determines the transmission path of the first service flow according to the control plane information of the first service flow; and the bandwidth requirement information of the first service flow and the remaining of the NF3 on the transmission path.
  • Bandwidth resources replacing NF3 in the transmission path by NF7; enabling the NF controller to determine whether the NF3 has a network congestion risk according to the bandwidth information of the first service flow before the NF3 transmits the first service flow;
  • the risk of congestion is replaced by the NF7, the NF7 does not have network congestion when transmitting the first service flow, thereby preventing network congestion.
  • the first NF in the transmission path of the first service flow has a risk of transmitting network congestion
  • the NF controller determines at least one NF in the control.
  • the NF controller pre-expands the first NF.
  • the first NF refers to an NF other than the first hop NF and the last hop NF in the transmission path.
  • FIG. 8 is a flowchart of a network control method provided by an embodiment of the present application.
  • This embodiment uses the network control method to be exemplified by the NF controller shown in FIG. 2 or FIG. 3, and the method includes the following steps:
  • Step 801 Determine a transmission path of the first service flow according to control plane information of the first service flow.
  • step 601. For the description of this step, refer to step 601. This embodiment is not described here.
  • Step 802 Send a first expansion request to the infrastructure controller according to the bandwidth information and the remaining bandwidth resources on the first NF in the transmission path.
  • the NF controller determines, according to the bandwidth information and the remaining bandwidth resources on the first NF, whether the first NF has a risk of network congestion; if yes, sends a first expansion request to the infrastructure controller, thereby increasing the first NF provisioning. Bandwidth resources.
  • the NF controller determines whether the first NF has a related risk of network congestion. For details, refer to step 602, which is not described herein.
  • the NF controller determines, when the risk of network congestion occurs in the first NF, whether the bandwidth condition provided by the first NF and the sum of the bandwidth resources occupied by all service flows passing the first NF meet the proximity condition.
  • the first NF is expanded when the close condition is satisfied.
  • the proximity condition is that the difference between the bandwidth resource provided by the first NF and the sum of the bandwidth resources occupied by all the service flows passing through the first NF is less than a first preset threshold; and/or, the proximity condition is The ratio between the bandwidth resource provided by the NF and the sum of the bandwidth resources occupied by all the service flows passing through the first NF is less than a second preset threshold.
  • the first expansion request is used to instruct the infrastructure controller to expand the bandwidth resource of the first NF according to the first target bandwidth.
  • the first target bandwidth is determined according to the bandwidth information and the remaining bandwidth resources on the first NF.
  • the first capacity expansion request sent by the NF controller carries the first target bandwidth.
  • the first target bandwidth is determined by the NF controller according to the bandwidth information and the remaining bandwidth resources on the first NF.
  • the first capacity expansion request sent by the NF controller carries bandwidth information and remaining bandwidth resources on the first NF.
  • the first target bandwidth is determined by the infrastructure controller according to the bandwidth information and the remaining bandwidth resources on the first NF.
  • the NF controller or the infrastructure controller determines the first target bandwidth according to the bandwidth information and the remaining bandwidth resources on the first NF, including: calculating the bandwidth value indicated by the bandwidth information and indicating the remaining bandwidth resources on the first NF. The difference between the bandwidth values; adding the bandwidth resource provided by the first NF to the difference to obtain the first target bandwidth.
  • the first target bandwidth may also be a preset fixed value, which is not limited in this embodiment.
  • the network control method determines the transmission path of the first service flow according to the control plane information of the first service flow; and according to the bandwidth information and the remaining bandwidth resources on the first NF in the transmission path, The first NF is expanded; the NF controller is configured to determine, according to the bandwidth information of the first service flow, whether the first NF has a network congestion risk before the first service flow is transmitted on the first NF; When the risk of network congestion increases, the bandwidth resources provided by the first NF are increased, so that the first NF does not generate network congestion when transmitting the first service flow, thereby preventing network congestion.
  • the first NF is a VNF, that is, the first NF is a virtualized network function.
  • the following describes an manner in which the NF controller prevents network congestion by expanding the first NF in combination with an example.
  • FIG. 9 is a flowchart of a network control method provided by an embodiment of the present application. This embodiment is described by taking a schematic diagram of the NF shown in FIG. 4 as an example. The method includes the following steps:
  • step 901 the first service flow is triggered on the NF5.
  • step 701. For the description of this step, refer to step 701. This embodiment is not described here.
  • step 902 the NF controller acquires control plane information on the NF5.
  • step 702. This embodiment is not described herein.
  • Step 903 The NF controller determines whether the first NF has a risk of network congestion; if yes, step 904 is performed; if not, the process ends.
  • the NF controller is configured according to the bandwidth requirement information of the first service flow and the remaining bandwidth resources of the first NF in the transmission path.
  • step 703 For the description of this step, refer to step 703, and the embodiment is not described herein.
  • the NF controller determines that there is a risk of network congestion occurring in NF3.
  • Step 904 the NF controller sends a first expansion request to the infrastructure controller.
  • the first expansion request is used to request the infrastructure controller to expand the NF3 according to the first target bandwidth.
  • step 905 the infrastructure controller expands the NF3.
  • the infrastructure controller sends a first expansion command to the VIM, where the first expansion command is used to instruct the VIM to expand the NF3 according to the first target bandwidth.
  • the network control method determines the transmission path of the first service flow according to the control plane information of the first service flow; and the bandwidth requirement information of the first service flow and the remaining of the NF3 on the transmission path.
  • the bandwidth resource is used to expand the NF3; the NF controller can determine whether the NF3 has a network congestion risk according to the bandwidth information of the first service flow before the first service flow is transmitted on the NF3; in the presence of network congestion At the time of risk, the bandwidth resources provided by NF3 are increased, so that NF3 does not generate network congestion when transmitting the first service flow, thereby preventing network congestion.
  • the bandwidth resources provided by the first NF are far greater than the bandwidth resources occupied by all the service flows of the first NF, that is, the bandwidth resources provided by the first NF and the first
  • the NF controller may not expand the first NF when the sum of the bandwidth resources occupied by all the service flows of the NF does not meet the close condition.
  • the NF controller needs to The bandwidth occupancy of an NF is monitored to prevent network congestion.
  • the bandwidth occupation of the first NF includes a sum of bandwidth resources occupied by all service flows of the first NF, a bandwidth resource provided by the first NF, and a bandwidth requirement of all service flows passing the first NF.
  • FIG. 10 is a flowchart of a network control method provided by another embodiment of the present application.
  • This embodiment uses the network control method to be exemplified by the NF controller shown in FIG. 2 or FIG. 3, and the method includes the following steps:
  • Step 1001 Acquire bandwidth information of at least one service flow.
  • the bandwidth information is used to indicate the sum of bandwidth resources occupied by all service flows passing through the first NF, and/or the sum of bandwidth requirements of all service flows passing through the first NF.
  • the NF controller acquires a sum of bandwidth requirements of all service flows that pass through the first NF, including: acquiring control plane information of all service flows that pass the first NF; and acquiring all service flows that pass the first NF according to the control plane information.
  • the sum of bandwidth requirements of all traffic flows through the first NF is determined based on the bandwidth requirement information of each traffic flow passing through the first NF.
  • the NF controller acquires the sum of the bandwidth resources occupied by all the service flows of the first NF, including: receiving the sum of the bandwidth resources occupied by all the service flows that pass through the first NF, and all the service flows that have passed the first NF have been The sum of the occupied bandwidth resources is reported by the first NF.
  • Step 1002 Expand the first NF according to the bandwidth information and the bandwidth resource provided by the first NF.
  • the NF controller expands the first NF according to the bandwidth information and the bandwidth resource provided by the first NF, including: when the bandwidth resource provided by the first NF is smaller than the bandwidth of all the service flows that pass the first NF.
  • the first NF is expanded when the demand condition is met, and the bandwidth resource provided by the first NF and the sum of the bandwidth resources occupied by all the service flows of the first NF satisfy the close condition.
  • the bandwidth information is used to indicate the sum of the bandwidth resources occupied by all the service flows passing through the first NF, and the sum of the bandwidth requirements of all the service flows passing through the first NF.
  • the sum of the bandwidth resources occupied by all the service flows of the first NF is Q1
  • the bandwidth resource provided by the first NF is Q2
  • the sum of the bandwidth requirements of all service flows passing the first NF is Q3, then, when Q3>Q2
  • the first NF is expanded; when Q3 ⁇ Q2, the first NF is not expanded; when Q3>Q2, and the close condition is not satisfied between Q1 and Q2,
  • the first NF is expanded.
  • the NF controller expands the first NF according to the bandwidth information and the bandwidth resource provided by the first NF, including: when the bandwidth resource provided by the first NF and all service flows passing the first NF are occupied.
  • the first NF is expanded.
  • the bandwidth information is used to indicate the sum of the bandwidth resources occupied by all the service flows passing through the first NF.
  • the bandwidth information is used to indicate the sum of the bandwidth resources occupied by all the service flows passing through the first NF.
  • the NF controller expands the first NF according to the bandwidth information and the bandwidth resource provided by the first NF, including: when the bandwidth resource provided by the first NF is smaller than all the service flows that pass the first NF.
  • the bandwidth information is used to indicate the sum of bandwidth requirements of all service flows passing through the first NF.
  • the bandwidth resource provided by the first NF is Q2, and the total bandwidth requirement of all service flows passing through the first NF is Q3. Then, when Q3>Q2, the first NF is expanded; when Q3 ⁇ Q2, the wrong An NF is expanded.
  • the NF controller expands the first NF, including: summing bandwidth requirements of all service flows passing the first NF, and bandwidth resources provided by the first NF, to the infrastructure
  • the controller sends a second expansion request, where the second expansion request is used to instruct the infrastructure controller to expand the bandwidth resource of the first NF according to the second target bandwidth.
  • the second target bandwidth is determined according to a sum of bandwidth requirements of all service flows passing the first NF, and a bandwidth resource provided by the first NF.
  • the second expansion request sent by the NF controller carries the second target bandwidth.
  • the second target bandwidth is determined by the NF controller according to the sum of bandwidth requirements of all service flows passing the first NF, and the bandwidth resources provided by the first NF.
  • the second capacity expansion request sent by the NF controller carries a sum of bandwidth requirements of all service flows passing the first NF, and a bandwidth resource provided by the first NF.
  • the second target bandwidth is determined by the infrastructure controller according to the sum of bandwidth requirements of all service flows passing the first NF, and the bandwidth resources provided by the first NF.
  • the NF controller or the infrastructure controller determines the second target bandwidth according to the sum of the bandwidth requirements of all the service flows passing the first NF, and the bandwidth resources provided by the first NF, including: calculating the bandwidth indicated by the sum of the bandwidth requirements The difference between the value and the bandwidth value indicated by the bandwidth resource provided by the first NF; adding the bandwidth resource provided by the first NF to the difference to obtain the second target bandwidth.
  • the NF controller determines the second target bandwidth according to the sum of the bandwidth requirements of all the service flows of the first NF, so that the infrastructure controller can expand the bandwidth resources provided by the first NF to the required bandwidth resources at one time, which is guaranteed.
  • the first NF does not cause network congestion when transmitting all service flows, and also avoids the infrastructure controller to perform multiple expansions on the first NF, resulting in wasted resources.
  • the network control method provided in this embodiment expands the first NF according to the bandwidth information and the bandwidth resources provided by the first NF, so that the NF controller can transmit the service flow in the first NF.
  • the bandwidth occupation of the first NF is monitored in real time to prevent network congestion.
  • the first NF in this embodiment may be any NF controlled by the NF controller, which is not limited in this embodiment.
  • the first NF is a VNF, that is, the first NF is a virtualized network function.
  • the following describes an manner in which the NF controller prevents network congestion by expanding the first NF in the process of transmitting the respective service flows in the first NF.
  • FIG. 11 is a flowchart of a network control method provided by an embodiment of the present application. This embodiment is described by taking a schematic diagram of the NF shown in FIG. 4 as an example. The method includes the following steps:
  • step 1101 the NF controller acquires control plane information on each of the first NFs.
  • step 702. This embodiment is not described herein.
  • step 1102 the NF controller determines whether the first NF needs to be expanded; if necessary, step 1103 is performed; if not, the process ends.
  • the NF controller determines whether the first NF needs to be expanded according to the bandwidth information and the bandwidth resource provided by each first NF.
  • the bandwidth information is used to indicate the sum of bandwidth resources occupied by all service flows passing through the first NF, and the sum of bandwidth requirements of all service flows passing through the first NF.
  • the NF controller determines that the first NF needs to be expanded; when Q3 ⁇ Q2, the NF controller determines that the first NF is not required to be expanded; when Q3>Q2, and Q1 and When the proximity condition is not satisfied between Q2, the NF controller determines that the first NF is not required to be expanded.
  • Step 1103 the NF controller sends a second expansion request to the infrastructure controller.
  • the NF controller calculates the second target bandwidth according to the sum of the bandwidth requirements of all the service flows that pass through the first NF, and the bandwidth resources provided by the first NF, and carries the second target bandwidth in the second capacity expansion request. .
  • step 1104 the infrastructure controller expands the first NF.
  • the infrastructure controller sends a second expansion command to the VIM, where the second expansion command is used to instruct the VIM to expand the VNF3 according to the second target bandwidth.
  • the network control method provided in this embodiment provides the sum of bandwidth resources occupied by all service flows passing through the first NF, the sum of bandwidth requirements of all service flows passing the first NF, and the first NF provided.
  • the bandwidth resource is used to expand the first NF, so that the NF controller can monitor the bandwidth occupation of the first NF in real time during the first NF transmission of the service flow to prevent network congestion.
  • FIG. 12 shows a block diagram of a network control apparatus provided by an embodiment of the present application.
  • the network control device can be implemented as all or part of the network device shown in FIG. 3 by software, hardware or a combination of both.
  • the network control device may include an acquisition unit 1210 and a control unit 1220.
  • the obtaining unit 1210 is configured to acquire bandwidth information of at least one service flow.
  • the control unit 1220 is configured to control, according to the bandwidth information of the at least one service flow and the bandwidth resource information on the first NF, where the at least one service flow is a service flow that passes through or is scheduled to pass through the first NF during transmission.
  • the at least one service flow includes a first service flow that passes through or is scheduled to pass through the first NF;
  • control plane information of the first service flow where the control plane information includes bandwidth information of the first service flow.
  • the bandwidth resource information on the first NF is used to indicate remaining bandwidth resources on the first NF
  • Control unit for:
  • the transmission path is modified or the first NF is expanded according to the bandwidth information and the remaining bandwidth resources on the first NF in the transmission path.
  • control unit is configured to:
  • the other NFs refer to NFs other than the NFs on the transmission path controlled by the NF controller, and the n NFs controlled by the NF controller include the first NF, and the remaining bandwidth resources on the second NF. Greater than or equal to the bandwidth information, n is an integer greater than one.
  • control unit is further configured to:
  • control unit is configured to:
  • the first target bandwidth is determined according to the bandwidth information and the remaining bandwidth resources on the first NF.
  • control unit is configured to:
  • the transmission path is modified or the first NF is expanded.
  • the obtaining unit is configured to:
  • control plane information of all service flows passing the first NF Obtaining control plane information of all service flows passing the first NF; and obtaining a sum of bandwidth requirements of all service flows passing the first NF according to the control plane information;
  • the sum of the bandwidth resources that are received by all the service flows of the first NF is received by the first NF.
  • the sum of the bandwidth resources occupied by all the service flows of the first NF is reported by the first NF.
  • the bandwidth resource information on the first NF is used to indicate the bandwidth resource provided by the first NF
  • Control unit for:
  • the first NF is expanded according to the bandwidth information and the bandwidth resources provided by the first NF.
  • the bandwidth information includes: a sum of bandwidth resources occupied by all service flows of the first NF, and a control unit, configured to:
  • the first NF is expanded when a bandwidth condition between the bandwidth resource provided by the first NF and the total bandwidth resource occupied by all the service flows of the first NF is met;
  • the proximity condition is that the difference between the bandwidth resource provided by the first NF and the sum of the bandwidth resources occupied by all service flows passing the first NF is less than a first preset threshold; and/or the proximity condition is provided by the first NF.
  • the ratio between the bandwidth resource and the sum of the bandwidth resources occupied by all the service flows passing through the first NF is less than a second preset threshold.
  • the bandwidth information includes: a sum of bandwidth requirements of all service flows passing the first NF, and a control unit, configured to:
  • the first NF is expanded when the bandwidth resource provided by the first NF is smaller than the sum of bandwidth requirements of all service flows passing through the first NF.
  • the bandwidth information includes: a sum of bandwidth requirements of all service flows passing the first NF, and a sum of bandwidth resources occupied by all service flows of the first NF; and a control unit, configured to:
  • the bandwidth resource provided by the first NF is smaller than the sum of the bandwidth requirements of all service flows passing the first NF, and the bandwidth resource provided by the first NF satisfies the proximity condition with the sum of the bandwidth resources occupied by all the traffic flows of the first NF.
  • the bandwidth resource provided by the first NF is expanded;
  • the proximity condition is that the difference between the bandwidth resource provided by the first NF and the sum of the bandwidth resources occupied by all service flows passing the first NF is less than a first preset threshold; and/or the proximity condition is provided by the first NF.
  • the ratio between the bandwidth resource and the sum of the bandwidth resources occupied by all the service flows passing through the first NF is less than a second preset threshold.
  • the bandwidth information includes: a sum of bandwidth requirements of all service flows that pass through the first NF;
  • Control unit for:
  • the second target bandwidth is determined based on the sum of bandwidth requirements of all traffic flows through the first NF, and the bandwidth resources provided by the first NF.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit may be only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种网络控制方法、装置及网络设备,属于通信领域。所述方法包括:获取至少一个业务流的带宽信息;根据所述至少一个业务流的带宽信息和第一网络功能NF上的带宽资源信息,对所述网络进行控制;其中,所述至少一个业务流是在传输时经过或预定经过所述第一NF的业务流。本申请解决了运维人员人工分析如何解决网络拥塞,解决网络拥塞的自动化程度和效率较低的问题,提高了移动通信网络解决网络拥塞的效率,从而提高了移动通信网络的传输效率。

Description

网络控制方法、装置及网络设备
本申请要求于2017年5月18日提交中国专利局、申请号为201710352698.7、发明名称为“网络控制方法、装置及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种网络控制方法、装置及网络设备。
背景技术
在传统的移动通信网络中,使用专用的网络设备实现不同的网络功能,比如使用路由器实现路由功能,使用交换机实现交换功能等。网络功能虚拟化(英文:network functions virtualization,NFV)是借助虚拟化技术,在标准的通用计算设备上虚拟出以往专用的网络设备上的网络功能。NFV能够实现软硬件的解耦及功能抽象,使得网络功能不再依赖于专用的硬件设备。
如图1所示,在一种典型的NFV的系统,至少包括:网络功能虚拟化基础设施(Network Function Virtualization Infrastructure,NFVI)120、虚拟网络功能(Virtual Network Function,VNF)140、网元管理(Element Management,EM)160和VNF管理器(VNF Manager,VNFM)180。
NFVI120是构建VNF140部署环境的硬件和软件的总体称谓,而VNF140是运行在NFVI120上的提供特定网络功能的虚拟机,每个VNF140用于实现一项或几项网络功能。
运行在NFVI120上的VNF140通常由VNFM 180来进行管理,比如:由VNFM 180为VNF140的虚拟容器增加资源。
EM160用于对VNF140的故障,配置,计费,性能,安全(Fault,Configuration,Accounting,Performance,Security,FCAPS)进行管理,并收集VNF140的告警信息。
NFV的系统中VNF140的个数为至少一个。移动通信网络中的每项业务运行在至少一个VNF140上,形成一个业务流。如果当前存在一个业务流的业务量突发增长,那么,用于承载该业务流的至少一个VNF140,可能会由于资源有限,产生VNF140发生拥塞的问题。其中,业务包括通话业务、多媒体业务、应用程序(Application,APP)业务等。
为了保证网络的传输性能,在VNF140发生拥塞时,运维人员根据VNFM 180监控到的VNF140当前的带宽资源占用情况,和/或,根据EM160上报的告警信息,对发生拥塞的VNF140的带宽资源占用情况进行分析,将该VNF140正在传输的业务流切换至其它VNF140上,或者,对VNF140提供的最大带宽资源进行扩展。
由于移动通信网络中VNF140承载的业务流可能瞬间增大,运维人员通过人工分析VNF140的分流策略或扩容策略的耗时长、业务恢复效率低,这就使得移动通信系统解决网络拥塞的效率较低,从而导致移动通信网络传输效率较低的问题。
发明内容
为了解决现有技术中在网络拥塞发生时,由运维人员人工解决网络拥塞的效率低的问题,本申请提供了一种网络控制方法、装置及网络设备。
第一方面,提供了一种网络控制方法,该方法包括:获取至少一个业务流的带宽信息;根据至少一个业务流的带宽信息和第一NF上的带宽资源信息,对网络进行控制;其中,至少一个业务流是在传输时经过或预定经过第一NF的业务流。
通过获取至少一个业务流的带宽信息;根据至少一个业务流的带宽信息和第一NF上的带宽资源信息,对网络进行控制;实现了在网络拥塞发生之前,确定出第一NF是否存在发生网络拥塞的风险,并在存在该风险时,自动地对网络进行控制;无需运维人员在网络拥塞发生时,人工分析如何解决网络拥塞;预防了网络拥塞的发生,提高了移动通信网络的传输效率。
结合第一方面,在第一方面的第一种实现中,至少一个业务流包括经过或预定经过第一NF的第一业务流;获取至少一个业务流的带宽信息,包括:获取第一业务流的控制面信息,该控制面信息包括第一业务流的带宽信息。
通过获取第一业务流的控制面信息,实现了对带宽信息的获取,从而根据带宽信息和第一NF上的带宽资源信息,对网络进行控制提供了一种实现方式。
结合第一方面,在第一方面的第二种实现中,第一NF上的带宽资源信息用于指示第一NF上的剩余带宽资源,根据至少一个业务流的带宽信息和第一NF上的带宽资源信息,对网络进行控制,包括:根据第一业务流的控制面信息,确定第一业务流的传输路径;根据带宽信息和传输路径中第一NF上的剩余带宽资源,修改传输路径或对第一NF进行扩容。
通过在第一NF传输第一业务流之前,修改第一业务流的传输路径或者对第一NF进行扩容;实现了在第一业务流传输之前,预测出第一NF可能发生网络拥塞,解决了在网络拥塞真正发生时,才分析网络拥塞的解决方案,导致网络传输效果较差的问题,在第一NF传输第一业务流之前,预防了网络拥塞的发生。
结合第一方面的第二种实现,在第一方面的第三种实现中,根据带宽信息和传输路径中第一NF上的剩余带宽资源,修改传输路径,包括:根据带宽信息和第一NF上的剩余带宽资源,通过其它NF中的第二NF替换传输路径中的第一NF;其中,其它NF是指NF控制器所控制的n个NF中除属于传输路径上的NF之外的NF,NF控制器所控制的n个NF包括第一NF,第二NF上的剩余带宽资源大于或等于带宽信息,n为大于1的整数。
通过根据第一业务流的控制面信息,确定第一业务流的传输路径;根据带宽信息和传输路径中第一NF上的剩余带宽资源,通过其它NF中的第二NF替换传输路径中的第一NF;实现了在第一NF传输第一业务流之前,根据第一业务流的带宽信息,确定出第一NF是否存在发生网络拥塞的风险;在存在发生网络拥塞的风险时,通过第二NF替换该第一NF。由于该第二NF在传输第一业务流时不会存在网络拥塞,因此,预防了网络拥塞的发生。
结合第一方面的第三种实现,在第一方面的第四种实现中,通过其它NF中的第二NF替换传输路径中的第一NF,包括:向传输路径中的第三NF发送第一切换指令,第一切换指令用于指示第三NF将第一业务流的下一跳NF设置为第二NF,第三NF是传输路径中位于第一NF的上一跳NF;向第二NF发送第二切换指令,第二切换指令用于指示第二NF将 第一业务流的下一跳NF设置为传输路径中的第四NF,第四NF是传输路径中位于第一NF的下一跳NF。
结合第一方面的第二种实现,在第一方面的第五种实现中,根据带宽信息和传输路径中第一NF上的剩余带宽资源,对第一NF进行扩容,包括:根据带宽信息和传输路径中第一NF上的剩余带宽资源,向基础设施控制器发送第一扩容请求,第一扩容请求用于指示基础设施控制器根据第一目标带宽对第一NF的带宽资源进行扩容;其中,第一目标带宽是根据带宽信息和第一NF上的剩余带宽资源确定出来的。
通过根据第一业务流的控制面信息,确定第一业务流的传输路径;根据带宽信息和传输路径中第一NF上的剩余带宽资源,对第一NF进行扩容;实现了在第一业务流在第一NF上传输之前,根据第一业务流的带宽信息,确定出第一NF是否存在发生网络拥塞的风险;在存在发生网络拥塞的风险时,增加第一NF提供的带宽资源。由于扩容后的第一NF在传输第一业务流时不会产生网络拥塞,因此,预防了网络拥塞的发生。
结合第一方面的第五种实现,在第一方面的第六种实现中,第一扩容请求携带有第一目标带宽;或,第一扩容请求携带有带宽信息和第一NF上的剩余带宽资源。
结合第一方面中的任意一种实现,在第一方面的第七种实现中,带宽信息用于指示第一业务流请求的带宽资源;或者,带宽信息用于指示第一业务流对应的带宽要求,带宽要求根据第一业务流的保证比特速率(Guaranteed Bit Rate,GBR)要求确定。
结合第一方面的第二种实现至第七种实现中的任意一种,在第一方面的第八种实现中,根据带宽信息和传输路径中第一NF上的剩余带宽资源,修改传输路径或对第一NF进行扩容,包括:当第一NF上的剩余带宽资源与带宽信息之间的差值小于预设差值时,修改传输路径或对第一NF进行扩容;或,当第一NF上的剩余带宽资源与带宽信息之间的比值小于预设比值时,修改传输路径或对第一NF进行扩容。
结合第一方面,在第一方面的第九种实现中,获取至少一个业务流的带宽信息,包括:获取经过第一NF的所有业务流的控制面信息;根据控制面信息获取经过第一NF的所有业务流的带宽需求总和;和/或,接收经过第一NF的所有业务流已占用的带宽资源总和,经过第一NF的所有业务流已占用的带宽资源总和是第一NF上报的。
通过根据控制面信息获取经过第一NF的所有业务流的带宽需求总和,和/或,接收第一NF上报的经过第一NF的所有业务流已占用的带宽资源总和,实现了对带宽信息的获取,为实现根据带宽信息和第一NF上的带宽资源信息,对网络进行控制提供了另一种实现方式。
结合第一方面的第十种实现,在第一方面的第十一种实现中,第一NF上的带宽资源信息用于指示第一NF提供的带宽资源,根据至少一个业务流的带宽信息和第一NF上的带宽资源信息,对网络进行控制,包括:根据带宽信息和第一NF提供的带宽资源,对第一NF进行扩容。
通过在第一NF传输各个业务流的过程中,监控第一NF的资源占用情况,对第一NF进行扩容;实现了在第一NF可能发生网络拥塞时,对该第一NF进行扩容;解决了在网络拥塞真正发生时,才分析网络拥塞的解决方案,导致网络传输效果较差的问题;实现了在业务流传输的过程中,预防网络拥塞的发生。
结合第一方面的第十一种实现,在第一方面的第十二种实现中,带宽信息包括:经过第一NF的所有业务流已占用的带宽资源总和,根据带宽信息和第一NF提供的带宽资源,对第一NF进行扩容,包括:当第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间满足接近条件时,对第一NF进行扩容;其中,接近条件为第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间的差值小于第一预设阈值;和/或,接近条件为第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间的比值小于第二预设阈值。
结合第一方面的第十一种实现,在第一方面的第十三种实现中,带宽信息包括:经过第一NF的所有业务流的带宽需求总和,根据带宽信息和第一NF提供的带宽资源,对第一NF进行扩容,包括:当第一NF提供的带宽资源小于经过第一NF的所有业务流的带宽需求总和时,对第一NF进行扩容。
结合第一方面的第十一种实现,在第一方面的第十四种实现中,带宽信息包括:经过第一NF的所有业务流的带宽需求总和,和,经过第一NF的所有业务流已占用的带宽资源总和;根据带宽信息和第一NF提供的带宽资源,对第一NF进行扩容,包括:当第一NF提供的带宽资源小于经过第一NF的所有业务流的带宽需求总和,且第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间满足接近条件时,对第一NF进行扩容;其中,接近条件为第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间的差值小于第一预设阈值;和/或,接近条件为第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间的比值小于第二预设阈值。
结合第一方面的第十一种实现至第十四种实现中的任意一种,在第一方面的第十五种实现中,带宽信息包括:经过第一NF的所有业务流的带宽需求总和;对第一NF进行扩容,包括:根据经过第一NF的所有业务流的带宽需求总和,和,第一NF提供的带宽资源,向基础设施控制器发送第二扩容请求,第二扩容请求用于指示基础设施控制器根据第二目标带宽对第一NF的带宽资源进行扩容;第二目标带宽是根据经过第一NF的所有业务流的带宽需求总和,和,第一NF提供的带宽资源确定的。
第二方面,提供了一种网络控制装置,该装置包括至少一个单元,该至少一个单元用于实现上述第一方面或第一方面中的任意一种实现方式所提供的网络控制方法。
第三方面,提供了一种网络设备,该网络设备包括:处理器和存储器,存储器中存储有至少一条指令,所述指令由处理器加载并执行上述第一方面或第一方面中的任意一种实现方式所提供的网络控制方法。
第四方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在网络设备上运行时,所述指令由网络设备加载并执行上述第一方面或第一方面中的任意一种实现方式所提供的网络控制方法。
附图说明
图1是本申请一个实施例提供的NFV系统的结构示意图。
图2是本申请另一个实施例提供的NFV系统的结构示意图。
图3是本申请一个实施例提供的网络设备的结构示意图。
图4是本申请一个实施例提供的至少一个的NF的示意图。
图5是本申请一个实施例提供的网络控制方法的流程图。
图6是本申请一个实施例提供的网络控制方法的流程图。
图7是本申请另一个实施例提供的网络控制方法的流程图。
图8是本申请另一个实施例提供的网络控制方法的流程图。
图9是本申请另一个实施例提供的网络控制方法的流程图。
图10是本申请另一个实施例提供的网络控制方法的流程图。
图11是本申请另一个实施例提供的网络控制方法的流程图。
图12是本申请另一个实施例提供的网络控制装置的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
NFV:是借助虚拟化技术,在标准的通用计算设备上虚拟出以往专用网络设备上的网络功能。NFV能够实现软硬件的解耦及功能抽象,使得网络功能不再依赖于专用的硬件设备,为移动通信网络提供更大的灵活性。
请参考图2,其示出了本申请一个实施例提供的NFV系统的结构示意图。NFV系统可使用诸如数据中心网络、业务提供商网络和/或局域网(Local Area Network,LAN)等各种网络来实施。NFV系统至少包括NFV管理和编排系统220、NFVI240、VNF260、EM280。
NFV管理和编排系统220用于监控和管理VNF260和NFVI240。NFV管理和编排系统220包括至少一个VNF管理器(VNF Manager,VNFM)224以及一个或多个虚拟化基础设施管理器(Virtualised Infrastructure Manager,VIM)226。
VNFM 224可与VNF260和EM280通信以实现对VNF260的生命周期管理,该生命周期管理包括:创建、启动、升级、扩容、缩容、终止、重启等。
VNF260是指虚拟化的、由物理网络设备执行的NF。可选地,每个VNF260对应至少一个物理设备中的一组NF。VNF260可以是用户面的VNF,比如:服务网关(Serving Gate Way,SGW)和/或分组数据网关(Packet-Data Network Gateway,P-GW);VNF260也可以是控制面的VNF,比如:移动性管理实体(Mobility Management Entity,MME)。
可选地,VNF260是用于提供非虚拟化运营商边界(Provider Edge,PE)设备内的网络功能的虚拟化PE节点;或者,VNF260是非虚拟化PE设备中的一个组件(例如:运行、管理和维护(Operation Administration and Maintenance,OAM)组件)。
可选地,每个VNF260在虚拟容器中运行,虚拟容器可托管单个VNF260或可托管多个VNF260。
每个EM280用于管理对应的一个VNF260,比如:在图2中,EM1用于管理VNF1,EM2用于管理VNF2,EM3用于管理VNF3。EM280用于对对应的一个VNF260的故障,配置,计费,性能,安全(Fault,Configuration,Accounting,Performance,Security,FCAPS)进行管理,并收集对应的一个VNF260的告警信息。
本发明实施例中,EM280和VNFM 224可抽象为NF控制器。NF控制器用于对网络中的至少一个VNF进行控制。
可选地,VNFM 224中对VNF260的生命周期管理的功能可抽象为基础设施控制器。基础设施控制器用于对VNF260对应的虚拟资源进行配置。其中,VNF260对应的虚拟资源包括但不限于:带宽资源。
可选地,在本实施例中,当NF控制器和基础设施控制器之间跨域编排,或者,距离较远时,NFV系统中还包括编排器222,该编排器222用于供NF控制器与基础设施控制器之间进行通信。
NFVI240包括硬件组件、软件组件或两者的组合,并通过硬件组件、软件组件或两者的组合建立虚拟化环境来部署、管理和执行VNF260。也即,NFVI240中的硬件资源和虚拟化层都用于为VNF260提供虚拟化资源。
可选地,NFVI240中的硬件资源包括:计算硬件241、存储硬件242和网络硬件243。
可选地,计算硬件241是用于提供处理和计算资源的商业现货(Commercial Off The Shelf,COTS)硬件和/或客户硬件。可选地,计算硬件241是一个或多个处理器,比如级联的处理器阵列。
存储硬件242用于提供存储容量。可选地,存储硬件242是一个或多个存储器,比如磁盘阵列。
可选地,计算硬件241和存储硬件242的资源汇集在一起。
可选地,网络硬件243是执行交换功能的交换机(例如,商用交换机)、路由器和/或任意其它网络设备,不同的网络硬件243之间通过有线和/或无线链路互联。
可选地,网络硬件243跨越多个域并且包括至少一个互联的传输网络。
NFVI240内的虚拟化层,用于抽取硬件资源并将VNF260从底层物理网络层中分离出来,为VNF260提供虚拟化资源。
可选地,虚拟化资源包括虚拟计算244、虚拟存储245和虚拟网络246。
虚拟计算244和虚拟存储245可以通过虚拟机监视器、虚拟机(Virtual Manufacturing VM)和/或其它虚拟容器的形式提供给VNF260。例如,在VM上部署一个或多个VNF260。虚拟化层抽取网络硬件243以形成虚拟网络246。虚拟网络246可包括虚拟交换机(Vswitch),Vswitch提供VM之间和/或托管VNF260的其它虚拟容器之间的连接。硬件资源的抽取可使用各种技术来实现,这些技术包括但不限于:虚拟局域网(Virtual Local Area Network,VLAN)、虚拟专用局域网业务(Virtual Private Lan Service,VPLS)、虚拟可扩展LAN(Virtual Extensible LAN,VxLAN)以及利用通用路由封装协议实现网络虚拟化(Network Virtual Generic Routing Encapsulation,NVGRE)。此外,网络硬件243内的传输网络可使用集中控制平面和独立转发平面(例如,软件定义网络(Software Defined Network,SDN)来虚拟化。
可选地,VIM226还用于控制和管理VNF260与计算硬件241、存储硬件242、网络硬件243、虚拟计算244、虚拟存储245和虚拟网络246的交互。例如,VIM226可执行资源管理功能,为虚拟容器增加资源。VNFM224和VIM226之间可以进行通信,从而实现硬件资源的配置。
可选地,NFV系统200还包括其他组件,比如:运营支撑系统(Operations Support Systems,OSS)和业务支撑系统(Business Support Systems,BSS)(OSS/BSS),本实施例在此不再一一介绍。
需要补充说明的是,本申请中提及的NF控制器和基础设施控制器可以由硬件、软件或者二者的组合来实现,本实施例对此不作限定。另外,本实施例不对NF控制器和基础设施控制器的名称作限定,比如:NF控制器也可以称为NF层控制面信令收集和分析部件;基础设施控制器也可以称为I层控制器,本申请不对NF控制器和基础设施控制器的名称作限定。
下文中以NF控制器由软件来实现为例进行说明。
请参考图3,其示出了本申请一个实施例提供的网络设备的结构示意图。其中,网络设备可以为图2中所说的NF控制器。网络设备300包括至少一个处理器31,通信总线32,存储器33以及至少一个通信接口34。
处理器31可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
通信总线32可包括一通路,在上述组件之间传送信息。所述通信接口34,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器33可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序指令并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器33用于存储执行本发明方案的程序指令,并由处理器31来控制执行。所述处理器31用于执行所述存储器33中存储的程序指令。
在本发明实施例中,存储器33存储有程序指令,处理器31执行程序指令实现NF控制器的功能。
比如:处理器31执行程序指令实现NF控制器对网络进行控制。
可选地,处理器31包括一个或多个CPU,例如图3中的CPU0和CPU1。
可选地,网络设备300包括多个处理器,例如图3中的处理器31和处理器38。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
上述的网络设备300可以是一个通用网络设备或者是一个专用网络设备。在具体实现中,网络设备300可以是长期演进(Long-Term Evolution,LTE)中的演进型基站(eNode B,eNB)、新空口(New Redio,NR)系统中的gNB或有图3中类似结构的设备。本发明实施例不限定网络设备300的类型。
可选地,本发明实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条程序指令,当该程序指令被处理器运行时,使得网络设备执行下述各个实施例提供的网络控制方法。
下面对图2和图3中所说的NF控制器进行简单介绍。
NF控制器用于获取各个VNF上的控制面信息,和/或,获取各个VNF上所有业务流已占用的带宽资源总和。
控制面信息是指:VNF在控制面信令协商过程中发送或接收的信息。在一个示例性的例子中,VNF1对应eNodeB(英文:eNodeB,简称:eNB),VNF2对应SGW,VNF3对应P-GW,VNF4对应MME。当需要协商一条传输路径VNF1→VNF2→VNF3时,VNF1、VNF2和VNF3均与VNF4执行控制面信令协商过程,在该过程中,VNF1、VNF2和VNF3均与VNF4通过控制面信息进行协商。
可选地,NF控制器获取各个VNF上的控制面信息,包括但不限于以下几种方式:
第一种方式,NF控制器在创建VNF时,订阅VNF上的控制面信息;当VNF发送和/或接收控制面信息时,同时向该NF控制器发送同一条控制面信息,相应地,NF控制器获取该控制面信息。
第二种方式,NF控制器向VNF发送信息获取请求;VNF发送和/或接收控制面信息时,根据该信息获取请求同时向该NF控制器发送同一条控制面信息;相应地,NF控制器获取该控制面信息。
第三种方式,NF控制器向VNF发送信息上报指令;VNF接收到该信息上报指令后,在发送和/或接收控制面信息时,同时向该NF控制器发送同一条控制面信息;相应地,NF控制器获取该控制面信息。
NF控制器根据控制面信息可以确定出每个业务流的带宽需求信息。NF控制器根据控制面信息确定每个业务流的带宽需求信息,包括:在VNF上触发新的业务流时,获取VNF上的控制面信息,该控制面信息包括该业务流的带宽需求信息。
可选地,带宽需求信息用于指示该业务流可能占用的最大带宽;或者,带宽需求信息用于指示第一业务流对应的带宽要求,该带宽要求根据业务流的GBR要求确定。
其中,GBR是指保证比特率类型的业务,比如:流媒体这种要求要保证一定速率的实时业务。
可选地,NF控制器根据控制面信息中的带宽需求信息,能够确定出任意一个VNF上所有业务流的带宽需求总和。带宽需求总和是根据VNF当前正在传输的每个业务流的带宽需求信息确定的。比如:业务流A的带宽需求信息为10Mbps,业务流B的带宽需求信息为20Mbps,那么,业务流A和业务流B的带宽需求总和为30Mbps。
可选地,NF控制器根据控制面信息还可以确定出每个业务流的传输路径。NF控制器 根据控制面信息确定每个业务流的传输路径,包括:在VNF的控制面信令协商过程中,获取VNF发送和/或接收的控制面信息;根据控制面信息,确定业务流的传输路径。其中,传输路径包括至少一个VNF。
可选地,本申请中,NF控制器根据控制面信确定出的业务流的传输路径是该业务流预定经过各个VNF的路径,在实际传输时,该业务流可能不按照该传输路径传输。
可选地,控制面信息还包括业务流对应的业务类型。
可选地,NF控制器获取各个VNF上所有业务流已占用的带宽资源总和的方式,包括但不限于:VNF主动向NF控制器上报所有业务流已占用的带宽资源总和;或者,VNF接收到NF控制器发送的上报指示后,向NF控制器上报所有业务流已占用的带宽资源总和。
其中,所有业务流已占用的带宽资源总和是根据各个业务流实际占用的带宽资源确定的。比如:业务流A的实际占用的带宽资源为5Mbps,业务流B的实际占用的带宽资源为10Mbps,那么,业务流A和业务流B的带宽资源总和为15Mbps。需要补充说明的是,每个业务流已占用的带宽资源指示的带宽数值小于或等于该业务流的带宽需求信息指示的带宽数值。
可选地,NF控制器根据VNF上报的所有业务流已占用的带宽资源总和,和,每个业务流的带宽需求信息中的至少一种,以及,VNF提供的带宽资源,可以确定出网络是否可能发生拥塞。或者说,确定出网络是否存在拥塞的风险。
可选地,VNF提供的带宽资源是指VNF上当前提供的最大带宽资源。VNF提供的带宽资源是NF控制器在创建该VNF时确定出来的,或者,经过扩容或缩容操作后确定出来的。
可选地,NF控制器对网络进行控制。示意性地,NF控制器在确定出网络存在拥塞的风险时,对网络进行控制。
可选地,NF控制器对网络进行控制包括但不限于:对某一VNF进行扩容;或者,修改预定经过某一VNF的第一业务流的传输路径。
可选地,NF控制器生成全局视图,该全局视图包括该NF控制器控制的各个VNF上经过的所有业务流和各个VNF的带宽占用情况。
可选地,VNF的带宽占用情况包括经过VNF的所有业务流已占用的带宽资源总和、VNF提供的带宽资源和经过VNF的所有业务流的带宽需求总和。
可选地,下文中提及的“NF”可以是虚拟形式的VNF,也可以是由物理实体实现的实体NF,本发明实施例对此不作限定。
请参考图4,其示出了本申请一个实施例提供的NF控制器控制的至少一个NF的示意图。其中,NF控制器为图2或图3所说的NF控制器。假设NF控制器控制8个NF,分别为:NF1、NF2、NF3、NF4、NF5、NF6、NF7、NF8。
假设NF5上触发了第一业务流,NF控制器306在NF5进行协商的过程中,获取到第一业务流的控制面信息,则NF控制器306根据该控制面信息确定该第一业务流的传输路径。根据图4可知,NF3上已传输有第二业务流,该第二业务流的传输路径(实线箭头表示)为NF1->NF2->NF3->NF4,假设NF3提供的最大带宽资源为Q1,第二业务流对应的最大带宽资源为Q2,NF控制器306确定出第一业务流的传输路径(虚线箭头表示)为NF5->NF6-> NF3->NF4,且第一业务流对应的最大带宽资源为Q3,那么,在Q1<(Q2+Q3)时,NF3上可能存在网络拥塞的风险。
若运维人员在NF3上发生网络拥塞后,人工分析是否需要对NF3上传输的业务流进行分流,不仅自动化程度低,解决拥塞的耗时长,而且由于网络已经发生了拥塞,还会导致网络的传输效果较差的问题。对于上述技术问题,本申请提供如下技术方案,实现了在网络拥塞发生之前,由NF控制器自动对网络进行控制,预防了网络拥塞的发生。
请参考图5,其示出了本申请一个实施例提供的网络控制方法的流程图。本实施例以该网络控制方法由图2或图3所说的NF控制器执行举例说明,该方法包括以下几个步骤:
步骤501,获取至少一个业务流的带宽信息。
可选地,带宽信息用于指示业务流的带宽需求,和/或,带宽信息用于指示业务流已占用的带宽资源。
可选地,业务流是在传输时经过或预定经过第一NF的业务流。其中,第一NF是指NF控制器控制的一个NF。
步骤502,根据至少一个业务流的带宽信息和第一NF上的带宽资源信息,对网络进行控制。
NF控制器根据至少一个业务流的带宽信息和第一NF上的带宽资源信息,对网络进行控制包括但不限于:根据至少一个业务流的带宽信息和第一NF上的带宽资源信息,在网络拥塞发生之前,预先对网络进行控制。换句话说,NF控制器在根据至少一个业务流的带宽信息和第一NF上的带宽资源信息预测出第一NF存在网络拥塞的风险时,对第一NF进行控制。
在第一种情况下,至少一个业务流包括经过或预定经过第一NF的第一业务流,此时,带宽信息用于指示业务流的带宽需求,第一NF上的带宽资源信息用于指示第一NF上的剩余带宽资源。
在这种情况下,NF控制器根据至少一个业务流的带宽信息和第一NF上的带宽资源信息,对网络进行控制,包括:根据第一业务流的控制面信息,确定第一业务流的传输路径,控制面信息包括第一业务流的带宽信息;根据第一业务流的带宽信息和传输路径中第一NF上的剩余带宽资源,修改该传输路径或对第一NF进行扩容。
由于第一业务流可能还未经过第一NF,因此,通过预先修改第一业务流的传输路径或者预先对第一NF进行扩容,实现了在传输第一业务流之前,预防网络拥塞的发生。
可选地,NF控制器从触发第一业务流的NF上获取控制面信息,该控制面信息包括该第一业务流的带宽信息。
比如:在图4中,NF5上触发了第一业务流,则NF控制器从NF5上获取控制面信息。
可选地,NF控制器根据第一业务流的控制面信息,确定出第一业务流的传输路径。
比如:在图4中,NF5上触发了第一业务流,在NF5的控制面信令协商过程中,NF控制器根据NF5发送和/或接收的控制面信息确定出第一业务流的下一跳为NF6;在NF6的控制面信令协商过程中,NF控制器根据NF6发送和/或接收的控制面信息确定出第一业务流的下一跳为NF3;在NF3的控制面信令协商过程中,NF控制器根据NF3发送和/或接收的 控制面信息确定出第一业务流的下一跳为NF4,从而确定出第一业务流的传输路径为NF5->NF6->NF3->NF4。
在第二种情况下,至少一个业务流包括经过第一NF的第一业务流,此时,带宽信息包括经过第一NF的所有业务流已占用的带宽资源总和,和/或,经过第一NF的所有业务流的带宽需求总和;第一NF上的带宽资源信息用于指示第一NF提供的带宽资源。
在这种情况下,NF控制器根据至少一个业务流的带宽信息和第一NF上的带宽资源信息,对网络进行控制,包括:根据带宽信息和第一NF提供的带宽资源,对第一NF进行扩容。
由于至少一个业务流已经在第一NF上传输,因此,通过根据带宽信息和第一NF提供的带宽资源,对第一NF进行扩容,实现了在传输该至少一个业务流的过程中,预防网络拥塞的发生。
综上所述,本实施例提供的网络控制方法,通过获取至少一个业务流的带宽信息;根据至少一个业务流的带宽信息和第一网络功能NF上的带宽资源信息,对网络进行控制;使得NF控制器能够自动地对网络进行控制,无需运维人员人工分析如何解决网络拥塞,提高了移动通信网络解决网络拥塞的自动化程度和效率,从而提高了移动通信网络的传输效率。
下面对步骤502中涉及的两种情况分别进行详细介绍,对于第一种情况,NF控制器修改第一业务流的传输路径参见图6所示的实施例;NF控制器对第一NF进行扩容参见图8所示的实施例;对于第二种情况,NF控制器对第一NF进行扩容参见图10所示的实施例。
当某一NF上触发了第一业务流(新的业务流)时,第一业务流的传输路径上的第一NF,可能在传输该第一业务流的过程中发生网络拥塞,比如:在图4中,NF3上可能发生网络拥塞,此时,NF控制器在第一业务流传输之前,修改第一业务流的传输路径,从而预防网络拥塞的发生。
本实施例中,第一NF是指传输路径中除第一跳NF和最后一跳NF之外的NF。
请参考图6,其示出了本申请一个实施例提供的网络控制方法的流程图。本实施例以该网络控制方法由图2或图3所说的NF控制器执行举例说明,该方法包括以下几个步骤:
步骤601,根据第一业务流的控制面信息,确定第一业务流的传输路径。
其中,控制面信息包括第一业务流的带宽信息,该带宽信息用于指示第一业务流的带宽需求信息。第一业务流的带宽需求信息为第一业务流请求的带宽资源;或者,为第一业务流对应的带宽要求,该带宽要求根据第一业务流的GBR要求确定。
本步骤中,NF控制器确定第一业务流的传输路径的相关描述参见步骤502,本实施例在此不作赘述。
步骤602,根据带宽信息和第一NF上的剩余带宽资源,通过其它NF中的第二NF替换传输路径中的第一NF。
NF控制器根据带宽信息和第一NF上的剩余带宽资源,确定第一NF是否存在发生网络拥塞的风险;如果存在,则从其它NF中,根据第一业务流的带宽信息确定第二NF,通过 该第二NF替换第一NF,从而修改第一业务流的传输路径。
其中,其它NF是指NF控制器所控制的n个NF中,除属于传输路径上的NF之外的NF,NF控制器所控制的n个NF包括第一NF,n为大于1的整数。
比如:在图4中,NF控制器控制8个NF,这8个NF分别为NF1、NF2、NF3、NF4、NF5、NF6、NF7、NF8,第一业务流的传输路径上的NF包括NF3、NF4、NF5和NF6,那么,其它NF为NF1、NF2、NF7和NF8。
NF控制器确定出的第二NF的剩余带宽资源大于或等于第一业务流的带宽信息。这样,才能保证第一业务流切换到第二NF上传输时,不会发生网络拥塞。
在第一种方式中,NF控制器根据带宽信息和第一NF上的剩余带宽资源,确定第一NF是否存在发生网络拥塞的风险,包括:NF控制器计算第一NF上的剩余带宽资源与带宽信息之间的差值;若剩余带宽资源指示的带宽数值减去带宽信息指示的带宽数值小于预设差值,则第一NF存在发生网络拥塞的风险;若剩余带宽资源指示的带宽数值减去带宽信息指示的带宽数值大于或等于预设差值,则第一NF不存在发生网络拥塞的风险。
本实施例不对该预设差值的取值作限定,比如:预设差值为0。
在第二种方式中,NF控制器根据带宽信息和第一NF上的剩余带宽资源,确定第一NF是否存在发生网络拥塞的风险,包括:NF控制器计算第一NF上的剩余带宽资源与带宽信息之间的比值;若剩余带宽资源指示的带宽数值除以带宽信息指示的带宽数值小于预设比值,则第一NF存在发生网络拥塞的风险;若剩余带宽资源指示的带宽数值除以带宽信息指示的带宽数值大于或等于预设比值,则第一NF不存在发生网络拥塞的风险。
本实施例不对该预设比值的取值作限定,比如:预设比值为1。
本步骤中,NF控制器通过其它NF中的第二NF替换传输路径中的第一NF,包括:向传输路径中的第三NF发送第一切换指令,该第一切换指令用于指示第三NF将第一业务流的下一跳NF设置为第二NF,第三NF是传输路径中位于第一NF的上一跳NF;向第二NF发送第二切换指令,第二切换指令用于指示第二NF将第一业务流的下一跳NF设置为传输路径中的第四NF,第四NF是传输路径中位于第一NF的下一跳NF。
比如:在图4中,第一业务流的传输路径为NF5->NF6->NF3->NF4,第一NF为NF3,用于替换NF3的第二NF为NF7,第三NF为NF6,第四NF为NF4。NF控制器通过NF7替换NF3包括:向NF6发送第一切换指令,指示NF6将传输路径的下一跳NF设置为NF7;向NF7发送第二切换指令,指示NF7将传输路径的下一跳NF设置为NF4,这样,修改后的传输路径为NF5->NF6->NF7->NF4。
可选地,第一业务流的传输路径中,可能包括连续多跳的第一NF均存在发生网络拥塞的风险,比如:传输路径中第i跳NF至第j跳NF均存在发生网络拥塞的风险,此时,NF控制器通过其它NF中的第二NF替换传输路径中的第一NF,包括:若第一传输路径上存在发生网络拥塞的风险,则从其它NF中确定与第i跳NF至第j跳NF各自对应的第i’条NF至第j’跳NF;向第j跳NF对应的第j’跳NF发送第三切换指令,第三切换指令用于指示第j’跳NF将第一业务流的下一跳NF设置为第j+1跳NF;向第一传输路径中的第k跳NF对应的第k’跳NF发送第四切换指令,第四切换指令用于指示第k’跳NF将第一业务流的下一跳切换为第k+1跳NF对应的第(k+1)’跳NF,k为大于等于i,且 小于j的整数;向第i-1跳NF发送第五切换指令,第五切换指令用于指示第i-1跳NF,将第一业务流的下一跳切换为第i跳NF对应的第i’跳NF;其中,第j+1跳NF、第k跳NF、第k+1跳NF和第i-1跳NF均为传输路径上的NF,第j’跳NF用于替换第j跳NF;第(k+1)’跳NF用于替换第k+1跳NF;第i’跳NF用于替换第i跳NF。
本实施例中,i为大于1的整数,j为大于i的整数,第i跳NF至第j跳NF均为除传输路径中第一跳NF和最后一跳NF之外的NF。
比如:在图4中,第一业务流的传输路径为NF5->NF6->NF3->NF4,其中,NF6和NF3均存在发生网络拥塞的风险。若用于替换NF3的第二NF为NF7,用于替换NF6的第二NF为NF8,则NF控制器通过第二NF替换传输路径中的第一NF,包括:向NF5发送第五切换指令,指示NF5将第一业务流的下一跳NF设置为NF8;向NF8发送第四切换指令,指示NF8将第一业务流的下一跳NF设置为NF7;向NF7发送第三切换指令,指示NF7将第一业务流的下一跳NF设置为NF4,这样,修改后的传输路径为NF5->NF8->NF7->NF4。
可选地,本实施例中,第一切换指令、第二切换指令、第三切换指令、第四切换指令和第五切换指令通过NETCONF命令实现,该NETCONF命令用于对网络进行配置,比如,对路由进行配置。
综上所述,本实施例提供的网络控制方法,通过根据第一业务流的控制面信息,确定第一业务流的传输路径;根据带宽信息和传输路径中第一NF上的剩余带宽资源,通过其它NF中的第二NF替换传输路径中的第一NF;使得NF控制器在第一NF传输第一业务流之前,能够根据第一业务流的带宽信息,确定出第一NF是否存在发生网络拥塞的风险;在存在发生网络拥塞的风险时,通过第二NF替换该第一NF,由于该第二NF在传输第一业务流时不会存在网络拥塞,因此,预防了网络拥塞的发生。
可选地,本实施例中,以第一NF为VNF为例进行说明,在实际实现时,第一NF也可以是专用网络设备上的NF,本实施例对此不作限定。
为了更清楚地理解图6提供的网络控制方法,下面结合一实例,对NF控制器通过修改第一业务流的传输路径来预防网络拥塞的方式进行介绍。
请参考图7,其示出了本申请一个实施例提供的网络控制方法的流程图。本实施例以图4所示的NF的示意图为例进行说明。该方法包括以下几个步骤:
步骤701,NF5上触发第一业务流。
可选地,NF5上触发的第一业务流是用户设备发送的业务流;或者,是其它网络设备发送的业务流。
步骤702,NF控制器获取NF5上的控制面信息。
可选地,本实施例中,NF控制器预先订阅NF5上的控制面信息。在NF5发送和/或接收控制面信息时,NF5同时向NF控制器发送同一条控制面信息,相应地,NF控制器获取该控制面信息。
步骤703,NF控制器确定第一NF是否存在发生网络拥塞的风险;如果存在,执行步骤704;如果不存在,流程结束。
NF控制器根据第一业务流的带宽需求信息和传输路径中第一NF的剩余带宽资源,确 定第一NF是否存在发生网络拥塞的风险。
本实施例中,NF控制器根据带宽需求信息与剩余带宽资源之间的比值或者差值,确定第一NF是否存在发生网络拥塞的风险。本步骤的相关描述详见步骤602,本实施在此不作赘述。
本实施例中,假设NF控制器确定出NF3存在发生网络拥塞的风险。
步骤704,NF控制器从其它NF中选择用于替换NF3的第二NF。
NF控制器根据其它NF的剩余带宽资源,从其它NF中选择用于替换NF3的第二NF。第二NF的剩余带宽资源大于或等于第一业务流的带宽需求信息。
本实施例中,假设NF控制器确定出的第二NF为NF7。
步骤705,NF控制器指示NF6将第一业务流的下一跳设置为NF7。
NF控制器向NF6发送NETCONF命令,该NETCONF命令用于指示NF6将第一业务流的下一跳设置为NF7。
步骤706,NF控制器指示NF7将第一业务流的下一跳设置为NF4。
NF控制器向NF7发送NETCONF命令,该NETCONF命令用于指示NF7将第一业务流的下一跳设置为NF4。
综上所述,本实施例提供的网络控制方法,通过根据第一业务流的控制面信息,确定第一业务流的传输路径;根据第一业务流的带宽需求信息和传输路径上NF3的剩余带宽资源,通过NF7替换传输路径中的NF3;使得NF控制器在NF3传输第一业务流之前,能够根据第一业务流的带宽信息,确定出NF3是否存在发生网络拥塞的风险;在存在发生网络拥塞的风险时,通过NF7替换该NF3,由于该NF7在传输第一业务流时不会存在网络拥塞,因此,预防了网络拥塞的发生。
当某一NF上触发了第一业务流(新的业务流),该第一业务流的传输路径中的第一NF存在发送网络拥塞的风险,且NF控制器确定出控制的至少一个NF中,不存在能够替换该第一NF的第二NF时,为了保证NF控制器仍然能够预防网络拥塞的发生,NF控制器预先对第一NF进行扩容。
本实施例中,第一NF是指传输路径中除第一跳NF和最后一跳NF之外的NF。
请参考图8,其示出了本申请一个实施例提供的网络控制方法的流程图。本实施例以该网络控制方法由图2或图3所说的NF控制器执行举例说明,该方法包括以下几个步骤:
步骤801,根据第一业务流的控制面信息,确定第一业务流的传输路径。
本步骤的相关描述参见步骤601,本实施例在此不作赘述。
步骤802,根据带宽信息和传输路径中第一NF上的剩余带宽资源,向基础设施控制器发送第一扩容请求。
NF控制器根据带宽信息和第一NF上的剩余带宽资源,确定第一NF是否存在发生网络拥塞的风险;如果存在,则向基础设施控制器发送第一扩容请求,从而增大第一NF提供的带宽资源。
NF控制器确定第一NF是否存在发生网络拥塞的风险的相关描述,参见步骤602,本实施例在此不作赘述。
可选地,NF控制器在确定出第一NF存在发生网络拥塞的风险时,确定第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间是否满足接近条件;在满足接近条件时,对第一NF进行扩容。
本申请中,接近条件是指第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间的差值小于第一预设阈值;和/或,接近条件为第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间的比值小于第二预设阈值。
第一扩容请求用于指示基础设施控制器根据第一目标带宽对第一NF的带宽资源进行扩容。其中,第一目标带宽是根据带宽信息和第一NF上的剩余带宽资源确定出来的。
在一种方式中,NF控制器发送的第一扩容请求携带有第一目标带宽。此时,第一目标带宽是NF控制器根据带宽信息和第一NF上的剩余带宽资源确定出来的。
在另一种方式中,NF控制器发送的第一扩容请求携带有带宽信息和第一NF上的剩余带宽资源。此时,第一目标带宽是基础设施控制器根据带宽信息和第一NF上的剩余带宽资源确定出来的。
可选地,NF控制器或者基础设施控制器根据带宽信息和第一NF上的剩余带宽资源确定第一目标带宽,包括:计算带宽信息指示的带宽数值与第一NF上的剩余带宽资源指示的带宽数值之间的差值;将第一NF提供的带宽资源与该差值相加,得到第一目标带宽。
可选地,第一目标带宽也可以是预设的固定数值,本实施例对此不作限定。
综上所述,本实施例提供的网络控制方法,通过根据第一业务流的控制面信息,确定第一业务流的传输路径;根据带宽信息和传输路径中第一NF上的剩余带宽资源,对第一NF进行扩容;使得NF控制器在第一业务流在第一NF上传输之前,能够根据第一业务流的带宽信息,确定出第一NF是否存在发生网络拥塞的风险;在存在发生网络拥塞的风险时,增加第一NF提供的带宽资源,从而使得第一NF在传输第一业务流时不会产生网络拥塞,预防了网络拥塞的发生。
可选地,本实施例中,第一NF为VNF,即,第一NF为虚拟化的网络功能。
为了更清楚地理解图8提供的网络控制方法,下面结合一实例,对NF控制器通过对第一NF进行扩容来预防网络拥塞的方式进行介绍。
请参考图9,其示出了本申请一个实施例提供的网络控制方法的流程图。本实施例以图4所示的NF的示意图为例进行说明。该方法包括以下几个步骤:
步骤901,NF5上触发第一业务流。
本步骤的相关描述参见步骤701,本实施例在此不作赘述。
步骤902,NF控制器获取NF5上的控制面信息。
本步骤的相关描述参见步骤702,本实施例在此不作赘述。
步骤903,NF控制器确定第一NF是否存在发生网络拥塞的风险;如果存在,执行步骤904;如果不存在,流程结束。
NF控制器根据第一业务流的带宽需求信息和传输路径中第一NF的剩余带宽资源。
本步骤的相关描述参见步骤703,本实施例在此不作赘述。
本实施例中,假设NF控制器确定出NF3存在发生网络拥塞的风险。
步骤904,NF控制器向基础设施控制器发送第一扩容请求。
第一扩容请求用于请求基础设施控制器根据第一目标带宽对NF3进行扩容。
步骤905,基础设施控制器对NF3进行扩容。
基础设施控制器向VIM发送第一扩容指令,该第一扩容指令用于指示VIM根据第一目标带宽对NF3进行扩容。
综上所述,本实施例提供的网络控制方法,通过根据第一业务流的控制面信息,确定第一业务流的传输路径;根据第一业务流的带宽需求信息和传输路径上NF3的剩余带宽资源,对NF3进行扩容;使得NF控制器在第一业务流在NF3上传输之前,能够根据第一业务流的带宽信息,确定出NF3是否存在发生网络拥塞的风险;在存在发生网络拥塞的风险时,增加NF3提供的带宽资源,从而使得NF3在传输第一业务流时不会产生网络拥塞,预防了网络拥塞的发生。
可选地,当第一NF存在网络拥塞的风险,但第一NF提供的带宽资源远大于经过第一NF的所有业务流已占用的带宽资源,即,第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间不满足接近条件时,NF控制器可能未对第一NF进行扩容,为了避免第一NF后续发生网络拥塞的问题,NF控制器需要对第一NF的带宽占用情况进行监控,从而预防网络拥塞的发生。其中,第一NF的带宽占用情况包括经过第一NF的所有业务流已占用的带宽资源总和、第一NF提供的带宽资源和经过第一NF的所有业务流的带宽需求总和。
请参考图10,其示出了本申请另一个实施例提供的网络控制方法的流程图。本实施例以该网络控制方法由图2或图3所说的NF控制器执行举例说明,该方法包括以下几个步骤:
步骤1001,获取至少一个业务流的带宽信息。
本实施例中,带宽信息用于指示经过第一NF的所有业务流已占用的带宽资源总和,和/或,经过第一NF的所有业务流的带宽需求总和。
可选地,NF控制器获取经过第一NF的所有业务流的带宽需求总和,包括:获取经过第一NF的所有业务流的控制面信息;根据控制面信息获取经过第一NF的所有业务流的带宽需求总和。经过第一NF的所有业务流的带宽需求总和是根据经过第一NF的每个业务流的带宽需求信息确定出来的。
可选地,NF控制器获取经过第一NF的所有业务流已占用的带宽资源总和,包括:接收经过第一NF的所有业务流已占用的带宽资源总和,经过第一NF的所有业务流已占用的带宽资源总和是第一NF上报的。
步骤1002,根据带宽信息和第一NF提供的带宽资源,对第一NF进行扩容。
在第一种方式中,NF控制器根据带宽信息和第一NF提供的带宽资源,对第一NF进行扩容,包括:当第一NF提供的带宽资源小于经过第一NF的所有业务流的带宽需求总和,且第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间满足接近条件时,对第一NF进行扩容。此时,带宽信息用于指示经过第一NF的所有业务流已占用的带宽资源总和,和,经过第一NF的所有业务流的带宽需求总和。
比如:经过第一NF的所有业务流已占用的带宽资源总和为Q1,第一NF提供的带宽资源为Q2,经过第一NF的所有业务流的带宽需求总和为Q3,那么,当Q3>Q2,且Q1和Q2之间满足接近条件时,对第一NF进行扩容;当Q3<Q2时,不对第一NF进行扩容;当Q3>Q2,且Q1和Q2之间不满足接近条件时,不对第一NF进行扩容。
在第二种方式中,NF控制器根据带宽信息和第一NF提供的带宽资源,对第一NF进行扩容,包括:当第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间满足接近条件时,对第一NF进行扩容。此时,带宽信息用于指示经过第一NF的所有业务流已占用的带宽资源总和。
比如:经过第一NF的所有业务流已占用的带宽资源总和为Q1,第一NF提供的带宽资源为Q2,那么,当Q1和Q2之间满足接近条件时,对第一NF进行扩容;当Q1和Q2之间不满足接近条件时,不对第一NF进行扩容。此时,带宽信息用于指示经过第一NF的所有业务流已占用的带宽资源总和。
在第三种实现方式中,NF控制器根据带宽信息和第一NF提供的带宽资源,对第一NF进行扩容,包括:当第一NF提供的带宽资源小于经过第一NF的所有业务流的带宽需求总和时,对第一NF进行扩容。此时,带宽信息用于指示经过第一NF的所有业务流的带宽需求总和。
比如:第一NF提供的带宽资源为Q2,经过第一NF的所有业务流的带宽需求总和为Q3,那么,当Q3>Q2时,对第一NF进行扩容;当Q3<Q2时,不对第一NF进行扩容。
可选地,在上述各个实现方式中,NF控制器对第一NF进行扩容,包括:根据经过第一NF的所有业务流的带宽需求总和,和,第一NF提供的带宽资源,向基础设施控制器发送第二扩容请求;该第二扩容请求用于指示基础设施控制器根据第二目标带宽对第一NF的带宽资源进行扩容。
其中,第二目标带宽是根据经过第一NF的所有业务流的带宽需求总和,和,第一NF提供的带宽资源确定的。
在一种方式中,NF控制器发送的第二扩容请求携带有第二目标带宽。此时,第二目标带宽是NF控制器根据经过第一NF的所有业务流的带宽需求总和,和,第一NF提供的带宽资源确定的。
在另一种方式中,NF控制器发送的第二扩容请求携带有经过第一NF的所有业务流的带宽需求总和,和,第一NF提供的带宽资源。此时,第二目标带宽是基础设施控制器根据经过第一NF的所有业务流的带宽需求总和,和,第一NF提供的带宽资源确定的。
可选地,NF控制器或者基础设施控制器根据经过第一NF的所有业务流的带宽需求总和,和,第一NF提供的带宽资源确定第二目标带宽,包括:计算带宽需求总和指示的带宽数值与第一NF提供的带宽资源指示的带宽数值之间的差值;将第一NF提供的带宽资源与该差值相加,得到第二目标带宽。
由于NF控制器根据经过第一NF的所有业务流的带宽需求总和确定第二目标带宽,使得基础设施控制器可以将第一NF提供的带宽资源一次性地扩容至需要达到的带宽资源,既保证第一NF在传输所有业务流时不会发生网络拥塞,还避免了基础设施控制器对第一NF进行多次扩容,导致浪费资源的问题。
综上所述,本实施例提供的网络控制方法,通过根据带宽信息和第一NF提供的带宽资源,对第一NF进行扩容,使得NF控制器可以在第一NF传输业务流的过程中,实时对第一NF的带宽占用情况进行监控,预防网络拥塞的发生。
可选地,本实施例中的第一NF可以是NF控制器所控制的任一NF,本实施例对此不作限定。
可选地,本实施例中,第一NF为VNF,即,第一NF为虚拟化的网络功能。
为了更清楚地理解图10提供的网络控制方法,下面结合一实例,对NF控制器通过在第一NF传输各个业务流的过程中,对第一NF进行扩容来预防网络拥塞的方式进行介绍。
请参考图11,其示出了本申请一个实施例提供的网络控制方法的流程图。本实施例以图4所示的NF的示意图为例进行说明。该方法包括以下几个步骤:
步骤1101,NF控制器获取各个第一NF上的控制面信息。
本步骤的相关描述参见步骤702,本实施例在此不作赘述。
步骤1102,NF控制器确定是否需要对第一NF进行扩容;如果需要,则执行步骤1103;如果不需要,则流程结束。
NF控制器根据带宽信息和每个第一NF提供的带宽资源,确定是否需要对该第一NF进行扩容。
本实施例中,带宽信息用于指示经过第一NF的所有业务流已占用的带宽资源总和,和,经过第一NF的所有业务流的带宽需求总和。
假设经过第一NF的所有业务流已占用的带宽资源总和为Q1,第一NF提供的带宽资源为Q2,经过第一NF的所有业务流的带宽需求总和为Q3,那么,当Q3>Q2,且Q1和Q2之间满足接近条件时,NF控制器确定需要对第一NF进行扩容;当Q3<Q2时,NF控制器确定不需要对第一NF进行扩容;当Q3>Q2,且Q1和Q2之间不满足接近条件时,NF控制器确定不需要对第一NF进行扩容。
步骤1103,NF控制器向基础设施控制器发送第二扩容请求。
本实施例中,NF控制器根据经过第一NF的所有业务流的带宽需求总和,和,第一NF提供的带宽资源,计算第二目标带宽;在第二扩容请求中携带该第二目标带宽。
步骤1104,基础设施控制器对第一NF进行扩容。
基础设施控制器向VIM发送第二扩容指令,该第二扩容指令用于指示VIM根据第二目标带宽对VNF3进行扩容。
综上所述,本实施例提供的网络控制方法,通过根据经过第一NF的所有业务流已占用的带宽资源总和、经过第一NF的所有业务流的带宽需求总和,和,第一NF提供的带宽资源,对第一NF进行扩容,使得NF控制器可以在第一NF传输业务流的过程中,实时对第一NF的带宽占用情况进行监控,预防网络拥塞的发生。
请参考图12,其示出了本申请一个实施例提供的网络控制装置的框图。该网络控制装置可以通过软件、硬件或者两者的结合实现成为图3所示的网络设备全部或者一部分。该网络控制装置可以包括:获取单元1210和控制单元1220。
获取单元1210,用于获取至少一个业务流的带宽信息;
控制单元1220,用于根据至少一个业务流的带宽信息和第一NF上的带宽资源信息,对网络进行控制;其中,至少一个业务流是在传输时经过或预定经过第一NF的业务流。
可选地,至少一个业务流包括经过或预定经过第一NF的第一业务流;
获取单元,用于:
获取第一业务流的控制面信息,该控制面信息包括第一业务流的带宽信息。
可选地,第一NF上的带宽资源信息用于指示第一NF上的剩余带宽资源,
控制单元,用于:
根据第一业务流的控制面信息,确定第一业务流的传输路径;
根据带宽信息和传输路径中第一NF上的剩余带宽资源,修改传输路径或对第一NF进行扩容。
可选地,控制单元,用于:
根据带宽信息和第一NF上的剩余带宽资源,通过其它NF中的第二NF替换传输路径中的第一NF;
其中,其它NF是指NF控制器所控制的n个NF中除属于传输路径上的NF之外的NF,NF控制器所控制的n个NF包括第一NF,第二NF上的剩余带宽资源大于或等于带宽信息,n为大于1的整数。
可选地,控制单元,还用于:
向传输路径中的第三NF发送第一切换指令,第一切换指令用于指示第三NF将第一业务流的下一跳NF设置为第二NF,第三NF是传输路径中位于第一NF的上一跳NF;
向第二NF发送第二切换指令,第二切换指令用于指示第二NF将第一业务流的下一跳NF设置为传输路径中的第四NF,第四NF是传输路径中位于第一NF的下一跳NF。
可选地,控制单元,用于:
根据带宽信息和传输路径中第一NF上的剩余带宽资源,向基础设施控制器发送第一扩容请求,第一扩容请求用于指示基础设施控制器根据第一目标带宽对第一NF的带宽资源进行扩容;
其中,第一目标带宽是根据带宽信息和第一NF上的剩余带宽资源确定出来的。
可选地,控制单元,用于:
当第一NF上的剩余带宽资源与带宽信息之间的差值小于预设差值时,修改传输路径或对第一NF进行扩容;
或,
当第一NF上的剩余带宽资源与带宽信息之间的比值小于预设比值时,修改传输路径或对第一NF进行扩容。
可选地,获取单元,用于:
获取经过第一NF的所有业务流的控制面信息;根据控制面信息获取经过第一NF的所有业务流的带宽需求总和;
和/或,
接收经过第一NF的所有业务流已占用的带宽资源总和,经过第一NF的所有业务流已 占用的带宽资源总和是第一NF上报的。
可选地,第一NF上的带宽资源信息用于指示第一NF提供的带宽资源,
控制单元,用于:
根据带宽信息和第一NF提供的带宽资源,对第一NF进行扩容。
可选地,带宽信息包括:经过第一NF的所有业务流已占用的带宽资源总和,控制单元,用于:
当第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间满足接近条件时,对第一NF进行扩容;
其中,接近条件为第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间的差值小于第一预设阈值;和/或,接近条件为第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间的比值小于第二预设阈值。
可选地,带宽信息包括:经过第一NF的所有业务流的带宽需求总和,控制单元,用于:
当第一NF提供的带宽资源小于经过第一NF的所有业务流的带宽需求总和时,对第一NF进行扩容。
可选地,带宽信息包括:经过第一NF的所有业务流的带宽需求总和,和,经过第一NF的所有业务流已占用的带宽资源总和;控制单元,用于:
当第一NF提供的带宽资源小于经过第一NF的所有业务流的带宽需求总和,且第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间满足接近条件时,对第一NF进行扩容;
其中,接近条件为第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间的差值小于第一预设阈值;和/或,接近条件为第一NF提供的带宽资源与经过第一NF的所有业务流已占用的带宽资源总和之间的比值小于第二预设阈值。
可选地,带宽信息包括:经过第一NF的所有业务流的带宽需求总和;
控制单元,用于:
根据经过第一NF的所有业务流的带宽需求总和,和,第一NF提供的带宽资源,向基础设施控制器发送第二扩容请求,第二扩容请求用于指示基础设施控制器根据第二目标带宽对第一NF的带宽资源进行扩容;
第二目标带宽是根据经过第一NF的所有业务流的带宽需求总和,和,第一NF提供的带宽资源确定的。
本领域普通技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉 本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (31)

  1. 一种网络控制方法,其特征在于,所述方法包括:
    获取至少一个业务流的带宽信息;
    根据所述至少一个业务流的带宽信息和第一网络功能NF上的带宽资源信息,对所述网络进行控制;
    其中,所述至少一个业务流是在传输时经过或预定经过所述第一NF的业务流。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个业务流包括经过或预定经过所述第一NF的第一业务流;
    所述获取至少一个业务流的带宽信息,包括:
    获取所述第一业务流的控制面信息,所述控制面信息包括所述第一业务流的所述带宽信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述至少一个业务流包括经过或预定经过所述第一NF的第一业务流;所述第一NF上的带宽资源信息用于指示第一NF上的剩余带宽资源,
    所述根据所述至少一个业务流的带宽信息和所述第一NF上的带宽资源信息,对所述网络进行控制,包括:
    根据所述第一业务流的控制面信息,确定所述第一业务流的传输路径;
    根据所述带宽信息和所述传输路径中第一NF上的剩余带宽资源,修改所述传输路径或对所述第一NF进行扩容。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述带宽信息和所述传输路径中第一NF上的剩余带宽资源,修改所述传输路径,包括:
    根据所述带宽信息和所述第一NF上的剩余带宽资源,通过其它NF中的第二NF替换所述传输路径中的所述第一NF;
    其中,所述其它NF是指NF控制器所控制的n个NF中除属于所述传输路径上的NF之外的NF,所述NF控制器所控制的n个NF包括所述第一NF,第二NF上的剩余带宽资源大于或等于所述带宽信息,所述n为大于1的整数。
  5. 根据权利要求4所述的方法,其特征在于,所述通过其它NF中的第二NF替换所述传输路径中的所述第一NF,包括:
    向所述传输路径中的第三NF发送第一切换指令,所述第一切换指令用于指示所述第三NF将所述第一业务流的下一跳NF设置为所述第二NF,所述第三NF是所述传输路径中位于所述第一NF的上一跳NF;
    向所述第二NF发送第二切换指令,所述第二切换指令用于指示所述第二NF将所述第一业务流的下一跳NF设置为所述传输路径中的第四NF,所述第四NF是所述传输路径中位于所述第一NF的下一跳NF。
  6. 根据权利要求3所述的方法,其特征在于,所述根据所述带宽信息和所述传输路径中第一NF上的剩余带宽资源,对所述第一NF进行扩容,包括:
    根据所述带宽信息和所述传输路径中第一NF上的剩余带宽资源,向基础设施控制器发送第一扩容请求,所述第一扩容请求用于指示所述基础设施控制器根据第一目标带宽对所述第一NF的带宽资源进行扩容;
    其中,所述第一目标带宽是根据所述带宽信息和所述第一NF上的剩余带宽资源确定出来的。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一扩容请求携带有所述第一目标带宽;
    或,
    所述第一扩容请求携带有所述带宽信息和所述第一NF上的剩余带宽资源。
  8. 根据权利要求2至7任一所述的方法,其特征在于,
    所述带宽信息用于指示所述第一业务流请求的带宽资源;
    或者,
    所述带宽信息用于指示所述第一业务流对应的带宽要求,所述带宽要求根据所述第一业务流的保证比特速率GBR要求确定。
  9. 根据权利要求3至8任一所述的方法,其特征在于,所述根据所述带宽信息和所述传输路径中第一NF上的剩余带宽资源,修改所述传输路径或对所述第一NF进行扩容,包括:
    当所述第一NF上的剩余带宽资源与所述带宽信息之间的差值小于预设差值时,修改所述传输路径或对所述第一NF进行扩容;
    或,
    当所述第一NF上的剩余带宽资源与所述带宽信息之间的比值小于预设比值时,修改所述传输路径或对所述第一NF进行扩容。
  10. 根据权利要求1所述的方法,其特征在于,所述获取至少一个业务流的带宽信息,包括:
    获取经过所述第一NF的所有业务流的控制面信息;根据所述控制面信息获取经过所述第一NF的所有业务流的带宽需求总和;
    和/或,
    接收经过所述第一NF的所有业务流已占用的带宽资源总和,所述经过所述第一NF的所有业务流已占用的带宽资源总和是所述第一NF上报的。
  11. 根据权利要求1或10所述的方法,其特征在于,所述第一NF上的带宽资源信息用于指示所述第一NF提供的带宽资源,
    所述根据所述至少一个业务流的带宽信息和所述第一NF上的带宽资源信息,对所述网络进行控制,包括:
    根据所述带宽信息和所述第一NF提供的带宽资源,对所述第一NF进行扩容。
  12. 根据权利要求11所述的方法,其特征在于,所述带宽信息包括:经过所述第一NF的所有业务流已占用的带宽资源总和,所述根据所述带宽信息和所述第一NF提供的带宽资源,对所述第一NF进行扩容,包括:
    当所述第一NF提供的带宽资源与经过所述第一NF的所有业务流已占用的带宽资源总 和之间满足接近条件时,对所述第一NF进行扩容;
    其中,所述接近条件为所述第一NF提供的带宽资源与经过所述第一NF的所有业务流已占用的带宽资源总和之间的差值小于第一预设阈值;和/或,所述接近条件为所述第一NF提供的带宽资源与经过所述第一NF的所有业务流已占用的带宽资源总和之间的比值小于第二预设阈值。
  13. 根据权利要求11所述的方法,其特征在于,所述带宽信息包括:经过所述第一NF的所有业务流的带宽需求总和,所述根据所述带宽信息和所述第一NF提供的带宽资源,对所述第一NF进行扩容,包括:
    当所述第一NF提供的带宽资源小于经过所述第一NF的所有业务流的带宽需求总和时,对所述第一NF进行扩容。
  14. 根据权利要求11所述的方法,其特征在于,所述带宽信息包括:所述经过所述第一NF的所有业务流的带宽需求总和,和,所述经过所述第一NF的所有业务流已占用的带宽资源总和;
    所述根据所述带宽信息和所述第一NF提供的带宽资源,对所述第一NF进行扩容,包括:
    当所述第一NF提供的带宽资源小于经过所述第一NF的所有业务流的带宽需求总和,且所述第一NF提供的带宽资源与经过所述第一NF的所有业务流已占用的带宽资源总和之间满足接近条件时,对所述第一NF进行扩容;
    其中,所述接近条件为所述第一NF提供的带宽资源与经过所述第一NF的所有业务流已占用的带宽资源总和之间的差值小于第一预设阈值;和/或,所述接近条件为所述第一NF提供的带宽资源与经过所述第一NF的所有业务流已占用的带宽资源总和之间的比值小于第二预设阈值。
  15. 根据权利要求11至14任一所述的方法,其特征在于,所述带宽信息包括:经过所述第一NF的所有业务流的带宽需求总和;
    所述对所述第一NF进行扩容,包括:
    根据经过所述第一NF的所有业务流的带宽需求总和,和,所述第一NF提供的带宽资源,向基础设施控制器发送第二扩容请求,所述第二扩容请求用于指示所述基础设施控制器根据第二目标带宽对所述第一NF的带宽资源进行扩容;
    所述第二目标带宽是根据经过所述第一NF的所有业务流的带宽需求总和,和,所述第一NF提供的带宽资源确定的。
  16. 一种网络控制装置,其特征在于,所述装置包括:
    获取单元,用于获取至少一个业务流的带宽信息;
    控制单元,用于根据所述至少一个业务流的带宽信息和第一网络功能NF上的带宽资源信息,对所述网络进行控制;
    其中,所述至少一个业务流是在传输时经过或预定经过所述第一NF的业务流。
  17. 根据权利要求16所述的装置,其特征在于,所述至少一个业务流包括经过或预定经过所述第一NF的第一业务流;
    所述获取单元,用于:
    获取所述第一业务流的控制面信息,所述控制面信息包括所述第一业务流的所述带宽信息。
  18. 根据权利要求16或17所述的装置,其特征在于,所述至少一个业务流包括经过或预定经过所述第一NF的第一业务流;所述第一NF上的带宽资源信息用于指示第一NF上的剩余带宽资源,
    所述控制单元,用于:
    根据所述第一业务流的控制面信息,确定所述第一业务流的传输路径;
    根据所述带宽信息和所述传输路径中第一NF上的剩余带宽资源,修改所述传输路径或对所述第一NF进行扩容。
  19. 根据权利要求18所述的装置,其特征在于,所述控制单元,用于:
    根据所述带宽信息和所述第一NF上的剩余带宽资源,通过其它NF中的第二NF替换所述传输路径中的所述第一NF;
    其中,所述其它NF是指NF控制器所控制的n个NF中除属于所述传输路径上的NF之外的NF,所述NF控制器所控制的n个NF包括所述第一NF,第二NF上的剩余带宽资源大于或等于所述带宽信息,所述n为大于1的整数。
  20. 根据权利要求19所述的装置,其特征在于,所述控制单元,还用于:
    向所述传输路径中的第三NF发送第一切换指令,所述第一切换指令用于指示所述第三NF将所述第一业务流的下一跳NF设置为所述第二NF,所述第三NF是所述传输路径中位于所述第一NF的上一跳NF;
    向所述第二NF发送第二切换指令,所述第二切换指令用于指示所述第二NF将所述第一业务流的下一跳NF设置为所述传输路径中的第四NF,所述第四NF是所述传输路径中位于所述第一NF的下一跳NF。
  21. 根据权利要求18所述的装置,其特征在于,所述控制单元,用于:
    根据所述带宽信息和所述传输路径中第一NF上的剩余带宽资源,向基础设施控制器发送第一扩容请求,所述第一扩容请求用于指示所述基础设施控制器根据第一目标带宽对所述第一NF的带宽资源进行扩容;
    其中,所述第一目标带宽是根据所述带宽信息和所述第一NF上的剩余带宽资源确定出来的。
  22. 根据权利要求16至21任一所述的装置,其特征在于,
    所述带宽信息用于指示所述第一业务流请求的带宽资源;
    或者,
    所述带宽信息用于指示所述第一业务流对应的带宽要求,所述带宽要求根据所述第一业务流的保证比特速率GBR要求确定。
  23. 根据权利要求18至22任一所述的装置,其特征在于,所述控制单元,用于:
    当所述第一NF上的剩余带宽资源与所述带宽信息之间的差值小于预设差值时,修改所述传输路径或对所述第一NF进行扩容;
    或,
    当所述第一NF上的剩余带宽资源与所述带宽信息之间的比值小于预设比值时,修改 所述传输路径或对所述第一NF进行扩容。
  24. 根据权利要求16所述的装置,其特征在于,所述获取单元,用于:
    获取经过所述第一NF的所有业务流的控制面信息;根据所述控制面信息获取经过所述第一NF的所有业务流的带宽需求总和;
    和/或,
    接收经过所述第一NF的所有业务流已占用的带宽资源总和,所述经过所述第一NF的所有业务流已占用的带宽资源总和是所述第一NF上报的。
  25. 根据权利要求24所述的装置,其特征在于,所述第一NF上的带宽资源信息用于指示所述第一NF提供的带宽资源,
    所述控制单元,用于:
    根据所述带宽信息和所述第一NF提供的带宽资源,对所述第一NF进行扩容。
  26. 根据权利要求25所述的装置,其特征在于,所述带宽信息包括:所述经过所述第一NF的所有业务流已占用的带宽资源总和,所述控制单元,用于:
    当所述第一NF提供的带宽资源与经过所述第一NF的所有业务流已占用的带宽资源总和之间满足接近条件时,对所述第一NF进行扩容;
    其中,所述接近条件为所述第一NF提供的带宽资源与经过所述第一NF的所有业务流已占用的带宽资源总和之间的差值小于第一预设阈值;和/或,所述接近条件为所述第一NF提供的带宽资源与经过所述第一NF的所有业务流已占用的带宽资源总和之间的比值小于第二预设阈值。
  27. 根据权利要求25所述的装置,其特征在于,所述带宽信息包括:所述经过所述第一NF的所有业务流的带宽需求总和,所述控制单元,用于:
    当所述第一NF提供的带宽资源小于经过所述第一NF的所有业务流的带宽需求总和时,对所述第一NF进行扩容。
  28. 根据权利要求25所述的装置,其特征在于,所述带宽信息包括:所述经过所述第一NF的所有业务流的带宽需求总和,和,所述经过所述第一NF的所有业务流已占用的带宽资源总和;所述控制单元,用于:
    当所述第一NF提供的带宽资源小于经过所述第一NF的所有业务流的带宽需求总和,且所述第一NF提供的带宽资源与经过所述第一NF的所有业务流已占用的带宽资源总和之间满足接近条件时,对所述第一NF进行扩容;
    其中,所述接近条件为所述第一NF提供的带宽资源与经过所述第一NF的所有业务流已占用的带宽资源总和之间的差值小于第一预设阈值;和/或,所述接近条件为所述第一NF提供的带宽资源与经过所述第一NF的所有业务流已占用的带宽资源总和之间的比值小于第二预设阈值。
  29. 根据权利要求25至28任一所述的装置,其特征在于,所述带宽信息包括:所述经过所述第一NF的所有业务流的带宽需求总和;
    所述控制单元,用于:
    根据经过所述第一NF的所有业务流的带宽需求总和,和,所述第一NF提供的带宽资源,向基础设施控制器发送第二扩容请求,所述第二扩容请求用于指示所述基础设施控制 器根据第二目标带宽对所述第一NF的带宽资源进行扩容;
    所述第二目标带宽是根据经过所述第一NF的所有业务流的带宽需求总和,和,所述第一NF提供的带宽资源确定的。
  30. 一种网络设备,其特征在于,所述网络设备包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行权利要求1至15任一所述的网络控制方法。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令,所述指令用于执行权利要求1至15任一所述的网络控制方法。
PCT/CN2018/082349 2017-05-18 2018-04-09 网络控制方法、装置及网络设备 WO2018210075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710352698.7A CN108965147B (zh) 2017-05-18 2017-05-18 网络控制方法、装置及网络设备
CN201710352698.7 2017-05-18

Publications (1)

Publication Number Publication Date
WO2018210075A1 true WO2018210075A1 (zh) 2018-11-22

Family

ID=64273257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082349 WO2018210075A1 (zh) 2017-05-18 2018-04-09 网络控制方法、装置及网络设备

Country Status (2)

Country Link
CN (1) CN108965147B (zh)
WO (1) WO2018210075A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818588A (zh) * 2020-07-30 2020-10-23 中国联合网络通信集团有限公司 一种用户接入方法和接入网设备
CN113132175A (zh) * 2019-12-31 2021-07-16 北京华为数字技术有限公司 一种网络资源调度方法以及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757386B (zh) * 2019-03-28 2023-05-02 成都鼎桥通信技术有限公司 下载控制方法及设备
CN111031413A (zh) * 2019-11-27 2020-04-17 中国联合网络通信集团有限公司 一种业务处理方法及sdn控制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493317B1 (en) * 1998-12-18 2002-12-10 Cisco Technology, Inc. Traffic engineering technique for routing inter-class traffic in a computer network
CN101123576A (zh) * 2007-09-20 2008-02-13 武汉理工大学 一种基于带宽约束和最小负载的移动自组网路径选择方法
JP4182974B2 (ja) * 2005-11-04 2008-11-19 日本電気株式会社 経路計算システム、ネットワークシステム,キャッシュサーバ,経路計算方法、キャッシュサーバ制御方法及び記録媒体
CN104301256A (zh) * 2014-10-31 2015-01-21 杭州华三通信技术有限公司 一种sdn网络动态预留带宽的方法及控制器
CN106411766A (zh) * 2016-09-30 2017-02-15 赛特斯信息科技股份有限公司 基于sdn的流量调度系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493317B1 (en) * 1998-12-18 2002-12-10 Cisco Technology, Inc. Traffic engineering technique for routing inter-class traffic in a computer network
JP4182974B2 (ja) * 2005-11-04 2008-11-19 日本電気株式会社 経路計算システム、ネットワークシステム,キャッシュサーバ,経路計算方法、キャッシュサーバ制御方法及び記録媒体
CN101123576A (zh) * 2007-09-20 2008-02-13 武汉理工大学 一种基于带宽约束和最小负载的移动自组网路径选择方法
CN104301256A (zh) * 2014-10-31 2015-01-21 杭州华三通信技术有限公司 一种sdn网络动态预留带宽的方法及控制器
CN106411766A (zh) * 2016-09-30 2017-02-15 赛特斯信息科技股份有限公司 基于sdn的流量调度系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113132175A (zh) * 2019-12-31 2021-07-16 北京华为数字技术有限公司 一种网络资源调度方法以及装置
CN113132175B (zh) * 2019-12-31 2024-03-26 北京华为数字技术有限公司 一种网络资源调度方法以及装置
CN111818588A (zh) * 2020-07-30 2020-10-23 中国联合网络通信集团有限公司 一种用户接入方法和接入网设备
CN111818588B (zh) * 2020-07-30 2022-05-17 中国联合网络通信集团有限公司 一种用户接入方法和接入网设备

Also Published As

Publication number Publication date
CN108965147B (zh) 2020-04-28
CN108965147A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
US11611922B2 (en) System and methods for network slice reselection
US10313887B2 (en) System and method for provision and distribution of spectrum resources
US11051183B2 (en) Service provision steps using slices and associated definitions
US11805075B2 (en) Lifecycle management for NSI and CSI
WO2016015559A1 (zh) 云化数据中心网络的承载资源分配方法、装置及系统
US20170300353A1 (en) Method for Allocating Communication Path in Cloudified Network, Apparatus, and System
WO2017214932A1 (zh) 一种网络切片的资源管理方法和装置
US10735279B2 (en) Networking service level agreements for computer datacenters
WO2018210075A1 (zh) 网络控制方法、装置及网络设备
US10587462B2 (en) Method and apparatus for deploying virtual operation, administration and maintenance, and virtualized network system
US20190045374A1 (en) Mobile service chain placement
EP3534578B1 (en) Resource adjustment method, device and system
WO2018082533A1 (en) Systems and methods for hierarchical network management
US20230031777A1 (en) Managing resource utilization by multiple network slices
Chang et al. Slice isolation for 5G transport networks
US10743173B2 (en) Virtual anchoring in anchorless mobile networks
Choudhury et al. Intelligent Agent Support for Achieving Low Latency in Cloud-Native NextG Mobile Core Networks
KR102312500B1 (ko) 이동성 관리 시스템 및 방법
Al-Dulaimi et al. 1 Ultra-dense Networks and Sliced Network Services

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801908

Country of ref document: EP

Kind code of ref document: A1