WO2023155475A1 - 网络测量的方法和装置 - Google Patents

网络测量的方法和装置 Download PDF

Info

Publication number
WO2023155475A1
WO2023155475A1 PCT/CN2022/127983 CN2022127983W WO2023155475A1 WO 2023155475 A1 WO2023155475 A1 WO 2023155475A1 CN 2022127983 W CN2022127983 W CN 2022127983W WO 2023155475 A1 WO2023155475 A1 WO 2023155475A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
network
parameter information
node
nodes
Prior art date
Application number
PCT/CN2022/127983
Other languages
English (en)
French (fr)
Inventor
蒋成堃
周汉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023155475A1 publication Critical patent/WO2023155475A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a method and device for network measurement.
  • inband network telemetry (INT) technology can usually be used to measure the network.
  • INT measurement requires that each network node that the message passes through encapsulates the telemetry information into metadata and inserts it after the INT header. This measurement method has a large data overhead and requires high network bandwidth, which affects the forwarding efficiency of service data.
  • the network measurement solution provided by the embodiment of the present application can avoid carrying more network status information measured by network nodes in the service message as much as possible, and save data overhead.
  • a network measurement solution including: acquiring first parameter information of N network nodes to be measured, where the first parameter information is used to indicate the health status of the network nodes to be measured, and the N
  • the network nodes to be measured are network nodes on the first link in the detection domain, where N is a positive integer greater than or equal to 2; the target network node is determined according to the first parameter information, and the target network node is used to The second parameter information is added in the first service message, and the second parameter information is used to indicate the network status measured by the target network node.
  • the network measurement solution provided by the embodiment of the present application can select a target network node from the network nodes to be measured according to the health status of the network nodes to be measured, and insert the measured network state information of the target network node into the message, so that It is possible to avoid carrying more network status information measured by network nodes in service packets, and save bandwidth.
  • the first parameter information is obtained by periodically exchanging the N network nodes to be measured.
  • the first parameter information may be exchanged periodically. In this way, the occupation of network bandwidth can be reduced, and data overhead can be saved.
  • the target network node is determined by a network node other than the first hop network node among the N network nodes to be measured.
  • the network measurement solution provided by the embodiment of this application uses multiple network nodes to determine the target network node, which improves the real-time performance of determining the target measurement node.
  • the target network node is determined by a head node, and the head node is a first-hop network node of the N network nodes to be measured.
  • the target network node may be determined by the first-hop network node. In this way, the target network node can be determined only through the first hop network node, without redundant confirmation by other network nodes.
  • the method before determining the target network node according to the first parameter information, the method further includes: acquiring a first strategy, the first strategy is used to indicate according to The first parameter value is a strategy for selecting K network nodes from the N nodes to be measured as the target network node, where K is a positive integer less than or equal to N; the determining the target according to the first parameter information A network node, including: determining the first parameter value according to the first parameter information, where the first parameter information includes one or more items of packet loss rate information, queue utilization rate information, and forwarding delay information; according to The first parameter value identifies the target network node.
  • a network node with a relatively poor health status can be selected from the N network nodes to be measured as the target measurement node, that is, an unhealthy or sub-healthy network node can be selected as the target measurement node, Thereby reducing the occupation of network bandwidth and saving data overhead.
  • the identification information of the target network node is added in the first service packet by the head node, and the second parameter information is added by the target network node
  • the network node adds to the first service packet based on the identification information.
  • determining the target network node according to the first parameter value includes: if the network node is the first K-hop network node among the N nodes to be measured , then add the second parameter information in the first service message; if the network node is the K+n hop network node among the N nodes to be measured, then determine whether to add the first parameter information according to the first parameter value
  • the second parameter information of the K+n-1th hop network node in the service message is replaced with the second parameter information of the K+nth hop network node, where n is a positive integer.
  • the network node to be measured may determine the target measurement node based on the updated first parameter information.
  • the target measurement node can be determined based on the real-time network health status, which improves the accuracy and real-time performance of network measurement.
  • a device for network measurement which includes: an acquisition unit configured to acquire first parameter information of N network nodes to be measured, where the first parameter information is used to indicate that the network nodes to be measured
  • the health status of the network node, the N network nodes to be measured are network nodes on the first link in the detection domain, where N is a positive integer greater than or equal to 2
  • the processing unit is configured to The information determines a target network node, and the target network node is used to add second parameter information to the first service packet, where the second parameter information is used to indicate a network state measured by the target network node.
  • the first parameter information is obtained by periodically exchanging the N network nodes to be measured.
  • the target network node is determined by a network node other than the first hop network node among the N network nodes to be measured. .
  • the target network node is determined by a head node, and the head node is a first-hop network node of the N network nodes to be measured.
  • the apparatus before determining the target network node according to the first parameter information, the apparatus further includes: the acquiring unit, configured to acquire the first policy, the The first strategy is used to indicate the strategy of selecting K network nodes as the target network nodes from the N nodes to be measured according to the first parameter value, where K is a positive integer less than or equal to N;
  • a parameter information to determine the target network node including: the processing unit, configured to determine the first parameter value according to the first parameter information, the first parameter information includes packet loss rate information, queue utilization information And one or more items in the forwarding delay information; the processing unit is configured to determine the target network node according to the first parameter value.
  • the identification information of the target network node is added in the first service message by the head node, and the second parameter information is added by the target network node
  • the network node adds to the first service packet based on the identification information.
  • determining the target network node according to the first parameter value includes: the processing unit, configured to, if the network node is the N nodes to be measured The first K hop network node in the network node, then add the second parameter information in the first service message; the processing unit is configured to if the network node is the K+n th hop among the N nodes to be measured The network node determines whether to replace the second parameter information of the K+n-1th hop network node in the first service message with the second parameter information of the K+nth hop network node according to the first parameter value, wherein, n is a positive integer.
  • a computer-readable medium stores program codes, and when the computer program codes are run on a computer, the computer is made to perform the method described in any one of the above-mentioned first aspects. .
  • a chip system including: a processor and a data interface, and the processor reads an instruction stored in a memory through the data interface, so as to execute the method described in any one of the above-mentioned first aspects.
  • the aforementioned chip may specifically be a field-programmable gate array (field-programmable gate array, FPGA) or an application-specific integrated circuit (application-specific integrated circuit, ASIC).
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • a network measurement device including: at least one processor and a memory, the at least one processor is coupled to the memory, and is used to read and execute instructions in the memory to perform the above-mentioned first The method of any one of the aspects.
  • Figure 1 is an architecture diagram of a 5G mobile communication system.
  • Fig. 2 is a schematic diagram of a network measurement method provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a network measurement method provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a network measurement method provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the adding position of the first parameter information provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first entry provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a network measurement device provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a network measurement device provided by an embodiment of the present application.
  • Figure 1 shows a 5G mobile communication system architecture diagram, including user equipment (user equipment, UE), access network (access network, AN), core network (core network, CN) and data network (data network, DN).
  • the architecture mainly includes UE, AN, and CN.
  • the control plane is responsible for the management of the mobile network
  • the user plane is responsible for the transmission of service data.
  • the NG2 reference point is located between the access network control plane and the core network control plane
  • the NG3 reference point is located between the access network user plane and the core network user plane
  • the NG6 reference point is located between the core network user plane and the data network .
  • the network architecture shown in Figure 1 may specifically include the following components:
  • UE110 It is the entrance for mobile users to interact with the network. It can provide basic computing capabilities and storage capabilities, display service windows to users, and accept user operation inputs. The UE will use the new air interface technology to establish a signal connection and a data connection with the AN, thereby transmitting control signals and service data to the mobile network.
  • the user equipment in the embodiments of the present application may be called terminal equipment, terminal, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless communication device, user agent or user device.
  • the UE can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), having a wireless communication function Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or terminals in future evolved public land mobile network (PLMN) Devices, etc., can also be end devices, logical entities, smart devices, such as mobile phones, smart terminals and other terminal devices, or communication devices such as servers, gateways, base stations, and controllers, or Internet of Things devices, such as sensors, electricity meters, water meters, etc. Internet of things (IoT) devices
  • AN120 Similar to the base station in the traditional network, it is deployed close to the UE to provide network access functions for authorized users in a specific area, and can determine different quality transmission tunnels to transmit user data according to user levels and service requirements. AN can manage its own resources, use them reasonably, provide access services for UEs as needed, and be responsible for forwarding control signals and user data between UEs and the core network.
  • the access network may be an access network using different access technologies.
  • 3GPP 3rd Generation Partnership Project
  • non-3GPP non-3G partnership Partnership project
  • 3GPP access technology refers to the access technology that conforms to the 3GPP standard specifications.
  • the access network using the 3GPP access technology is called a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • gNB Next generation Node Base station
  • a non-3GPP access technology refers to an access technology that does not comply with 3GPP standard specifications, for example, an air interface technology represented by an access point (access point, AP) in wifi.
  • An access network that implements access network functions based on wired communication technologies may be called a wired access network.
  • An access network that implements a network access function based on a wireless communication technology may be referred to as a radio access network (radio access network, RAN).
  • the wireless access network can manage wireless resources, provide access services for terminals, and complete the forwarding of control signals and user data between terminals and the core network.
  • DN140 It is a data network that provides business services for users.
  • the client is located in the UE, and the server is located in the data network.
  • the data network can be a private network, such as a local area network, or an external network not controlled by the operator, such as the Internet, or a proprietary network jointly deployed by the operator, such as providing an IP multimedia subsystem (IP multimedia subsystem, IMS) service network.
  • IP multimedia subsystem IP multimedia subsystem
  • the core network of the 5G network architecture is further described below.
  • the control plane of the core network adopts a service-oriented architecture, and the interaction between network elements on the control plane adopts the method of service invocation to replace the point-to-point communication method in the traditional architecture.
  • the control plane network element will open services to other control plane network elements for other control plane network elements to call; in point-to-point communication, there will be a set of specific messages on the communication interface between control plane network
  • the control plane network elements at both ends of the interface are used for communication.
  • the functions (network elements) of the functional entities in the core network are as follows:
  • a user plane function (user plane function, UPF) entity 130 that is, a data plane gateway. It can be used for packet routing and forwarding, or quality of service (QoS) processing of user plane data, etc. User data can be accessed to the DN through this network element. In the embodiment of this application, it can be used to realize the function of the user plane gateway.
  • UPF user plane function
  • Session management function (session management function, SMF) entity 150 mainly used for session management, UE's internet protocol (internet protocol, IP) address allocation and management, selection of manageable user plane functions, policy control, or termination of the charging function interface point and downlink data notification, etc. In the embodiment of the present application, it can be used to realize the function of the session management network element. It is mainly used for user plane network element selection, user plane network element redirection, Internet protocol (internet protocol, IP) address allocation for terminal equipment, session establishment, modification and release, and QoS control.
  • IP internet protocol
  • Access and mobility management function (access and mobility management function, AMF) entity 160 mainly used for mobility management and access management, etc., can be used to implement mobility management entity (mobility management entity, MME) functions except session management Functions other than lawful interception, or access authorization (or authentication), etc. In the embodiment of the present application, it can be used to implement functions of access and mobility management network elements.
  • mobility management entity mobility management entity, MME
  • access and mobility management network elements mainly used for mobility management and access management, etc.
  • Authentication server function authentication server function, AUSF
  • AUSF authentication server function
  • policy control function policy control function
  • Network exposure function (network exposure function, NEF) entity 190 for securely exposing services and capabilities provided by 3GPP network functions to the outside.
  • a network function (NF) repository function (NRF) entity 1100 used to store the description information of the network function entity and the services it provides, and support service discovery, network element entity discovery, etc.
  • Policy control function (policy control function, PCF) entity 1110 a unified policy framework for guiding network behavior, providing policy rule information, etc. for control plane functional network elements (such as managed network AMF, SMF network elements, etc.).
  • a unified data management (unified data management, UDM) entity 1120 used for processing user identification, access authentication, registration, or mobility management, etc.
  • Application function (application function, AF) entity 1130 used for routing data affected by applications, accessing network elements with open function functions, or interacting with policy frameworks for policy control, etc.
  • Network data analysis function (network data analytics function, NWDAF) entity 1140 can collect data from 5GC network function (network function, NF) entity, AF, and operation and maintenance management (operation administration and maintenance, OAM), and obtain Output the analysis result, and send the result to specific NF, OAM or AF as required.
  • NWDAF network data analytics function
  • the network architecture involved in FIG. 1 may also include other network elements, such as network elements or devices such as a network repository function (NRF), which are not specifically limited in this application.
  • NEF network repository function
  • each functional entity may have the above names or other names, which are not limited in this application.
  • the N1 interface is the reference point between the terminal and the hosting network AMF entity;
  • the N2 interface is the reference point between the AN and the hosting network AMF entity, and is used for non-access stratum (non-access stratum, NAS) messages Sending, etc.
  • the N3 interface is the reference point between the AN and the UPF entity, used to transmit user plane data, etc.
  • the N4 interface is the reference point between the SMF entity and the UPF entity, used to transmit tunnel identification information such as the N3 connection, Data cache indication information, downlink data notification messages and other information
  • the N6 interface is the reference point between the UPF entity and the DN, and is used to transmit user plane data, etc.
  • inband network telemetry (INT) technology can be used to measure the network.
  • an INT detection domain includes three functional nodes, namely source node, intermediate node and pool node.
  • the source node adds an INT header to the service message, and the INT header can be used to indicate an object requiring telemetry.
  • the source node also encapsulates the performance parameter information matched with the INT header instruction into metadata, and adds it after the INT header.
  • the intermediate node can encapsulate the performance parameter information matching the instruction of the INT header in metadata and add it after the INT header according to the instruction of the INT header.
  • the pool node can encapsulate the performance parameter information matching the instruction of the INT header in metadata according to the instruction of the INT header, and add it after the INT header. Finally, the pool node will pop up the performance parameters measured by all nodes and forward them to the telemetry server for analysis.
  • INT measurement requires that each network node that the message passes through encapsulates the telemetry information into metadata and inserts it after the INT header. This measurement method has a large data overhead and requires high network bandwidth, which affects the forwarding efficiency of service data.
  • this application proposes a method and device for network measurement, which can select a target network node from the network nodes to be measured according to the health status of the network nodes to be measured, and insert the measured network status information of the target network node into the report.
  • this paper it is possible to avoid carrying more network state information measured by network nodes in service messages as much as possible, and save data overhead.
  • FIG. 2 is a schematic flowchart of a method for network measurement provided by an embodiment of the present application.
  • the network measurement method in FIG. 2 can be implemented based on the architecture in FIG. 1 .
  • the first parameter information is used to indicate the health state of the network node to be measured, the first parameter information is used to indicate the health state of the network node to be measured, and the N network nodes to be measured are network nodes on the first link in the detection domain, wherein , N is a positive integer greater than or equal to 2;
  • the detection domain can be understood as the network range that needs to be detected.
  • the detection domain can be determined based on a variety of methods. It can be determined based on the network scenario, for example, specifying a part of the core network in the network as the detection domain; or it can also be determined based on the type of service flow. This application does not limit this.
  • the detection domain may include three types of network nodes, specifically, a head node, an intermediate node, and a pool node. Wherein, the hop-by-hop path nodes may also be referred to as intermediate nodes.
  • the first-hop network node that transmits the service flow within the detection range specified by the detection domain can be used as the head node for transmitting the service flow.
  • the last hop network node that transmits the service flow within the detection range specified by the detection domain may serve as a pool node that transmits the service flow.
  • Each node that transmits the service flow between the head node and the pool point is an intermediate node.
  • the detection domain may include multiple service flows.
  • this embodiment of the present application uses a network node on a certain communication link where any service flow is located as an example for description.
  • the network nodes through which a certain service flow flows on a certain communication link in the detection domain are UPF1, UPF2, AN, and UE in sequence.
  • UPF1 is the head node
  • UE is the pool node
  • UPF2 and AN are the intermediate nodes.
  • the four nodes UPF1, UPF2, AN and UE are network nodes to be measured.
  • the first parameter information includes one or more items of packet loss rate information, queue utilization rate information, and forwarding delay information.
  • the first parameter information to be measured can be used as an input of a machine learning algorithm, and the output of the machine learning algorithm is used to indicate the health status of the node to be measured.
  • the machine learning algorithm may output a specific value to represent the health state of the network node to be measured, and the entire specific value may be referred to as a first parameter value.
  • the first parameter information may include a first parameter value.
  • the machine learning algorithm may also output the first parameter level, such as high, medium, and low, to represent the health status of the network node to be measured.
  • the first parameter information may include a first parameter level.
  • the head node may obtain the first parameter information of the network node to be measured.
  • each network node may obtain the first parameter information of the network node to be measured.
  • the node can include the first parameter information in the packet loss rate information, queue utilization rate information, and forwarding delay information.
  • One or more items are used as input to the machine learning algorithm to obtain the first parameter value and/or the first parameter level.
  • the target network node is used to add the second parameter information to the first service message, and the second parameter information is used to indicate the network status measured by the target network node.
  • the second parameter includes one or more items of forwarding delay, forwarding queue information, memory information, and CPU utilization.
  • the target network nodes may also be the top K nodes with the lowest value of the first parameter.
  • the target network node may be a node whose value of the first parameter is below a target measurement threshold.
  • FIG. 3 is a schematic flowchart of a method for network measurement provided by an embodiment of the present application.
  • the AF determines a measurement request message.
  • the measurement request message is used to request to measure the network status.
  • the UE subscribes to the network measurement service, and the AF network element can obtain the subscription information of the UE through the UDM network element, and determine the measurement request message according to the subscription information of the UE.
  • the AF can determine the type of the service flow according to the subscription information of the UE.
  • the AF may also determine the packet protocol type of the service flow according to the subscribed service of the UE.
  • the message protocol of the service flow can be Internet Protocol (internet protocol, IP); or, the message protocol of the service flow can also be the user data packet protocol (user datagram protocol, UDP); or, the message protocol of the service flow It can also be an Ethernet protocol.
  • IP Internet Protocol
  • UDP user datagram protocol
  • the message protocol of the service flow It can also be an Ethernet protocol.
  • the message protocol of the service flow may also be of other types, which is not limited in this application.
  • the measurement request message may include service flow type information.
  • the measurement request message may include type information of the packet protocol of the service flow.
  • the AF sends a measurement request message to the NEF.
  • the OAM or the NWDAF may also initiate the measurement request, and send the measurement request message to the NEF. For example, when the OAM detects that the network status is unstable or the network is faulty, it can initiate a measurement request and send the measurement request message to the NEF.
  • the NEF sends a measurement request message to the PCF.
  • the UE sends a measurement request message to the SMF.
  • the UE may initiate a PDU session establishment request of a service flow, and the PDU session establishment request may include a measurement request message. SMF can obtain this PDU session establishment request,
  • the SMF sends the measurement request message to the PCF.
  • the PCF determines measurement configuration information according to the measurement request message.
  • Configuration information includes distributed measurement strategies and in-band measurement strategies.
  • the PCF can also determine the packet protocol type of the service flow according to the subscription information of the UE.
  • the PCF may also determine the configuration information according to the QoS configuration and available network resources.
  • the distributed measurement policy is used to indicate the frequency of exchanging the first parameter information by the network node to be measured.
  • the frequency at which the network nodes to be measured exchange the first parameter information can be defined based on time, for example, an exchange is performed every 20 ms; or it can also be defined based on the number of data packets carrying the first parameter information, for example, an exchange is performed every 10 data packets . This application does not limit this.
  • step S201 For the relevant description of the first parameter information, reference may be made to step S201, and the present application does not repeat it here.
  • the in-band measurement policy may include the selection policy of the target network node, the insertion position information of the position information of the INT message in the service message, the frequency information of the INT message, and the instruction information of the INT header.
  • INT packets may include INT headers and metadata.
  • the selection strategy of the target network node is used to indicate the strategy for selecting the target network node from the N network nodes to be measured.
  • the target network node may encapsulate the second parameter information into metadata and insert it into the service message.
  • the second parameter information may include one or more of the following: packet loss rate information, forwarding delay information of nodes, queue utilization information of different ports, and the like.
  • the position information of the INT message is used for the insertion position of the INT message in the service message.
  • the insertion position of the INT header in the message may also be different.
  • the PCF may determine the packet protocol type of the service flow according to the type of the service flow, so as to further determine the insertion position of the INT packet in the service packet.
  • the frequency information of the INT message may be used to indicate the insertion frequency of the INT message in the service message.
  • INT packets can be inserted into service packets at a certain frequency. For example, an INT message may be inserted into the normal message every 30 ms; or, an INT message may be inserted into the normal message every 14 normal messages. This application is only used as an example without limitation.
  • the instruction information in the INT header is used to indicate the object of the second parameter information. That is, which measurement information needs to be encapsulated into metadata by the target network node and added to the service message. For example, if the instruction information in the INT header includes the packet loss rate, then the target network node needs to encapsulate the measured packet loss rate information into metadata and insert it into the service message.
  • the network nodes on a certain link of a certain service flow in the detection domain include UPF1, UPF2, AN and UE four network nodes to be measured, with UPF1 as the head node and UPF2 as the intermediate node 1 , taking the AN as the intermediate node 2 and the UE as the pool node, the network measurement method involved in the embodiment of the present application will be described.
  • the network nodes in the embodiments of the present application may also be referred to as nodes.
  • the PCF sends configuration information to the SMF.
  • the SMF sends configuration information to UPF1.
  • the SMF sends configuration information to UPF2.
  • the SMF sends configuration information to the AN.
  • SMF can send configuration information to AN through AMF.
  • the SMF sends configuration information to the UE.
  • SMF can send configuration information to UE through AMF.
  • UPF1, UPF2, AN and UE may periodically exchange first parameter information.
  • the first parameter information may be added to the GTP-U header of the service message.
  • the first parameter information is added to the Payload of the service message.
  • the head node after exchanging the first performance parameter information, the head node has the first parameter information of the N nodes to be measured. For example, after UPF1, UPF2, AN and UE exchange the first performance parameter information, the head node may have the first parameter information of these four nodes.
  • UPF1, UPF2, AN, and UE can exchange first performance parameter information in the following manner: UE sends UE first parameter information to AN, AN sends first parameter information of AN itself and UE to UPF2, UPF2 sends UPF2 to UPF1 , the first performance parameter information of the AN and the UE.
  • UPF1 has the first parameter information of this one node.
  • the first performance parameter information may also be exchanged in other manners, which is not limited in this application.
  • UPF1, UPF2, AN, and UE may exchange first performance parameters in the following manner: UP2 receives first parameter information from UPF1 and AN respectively, and AN receives first parameter information from UPF2 and UE respectively. There are first parameter information of UPF1, AN and UPF2 in UPF2, UPF2 can send the first parameter information of these three nodes to UE through AN, and UE can also send the first parameter information of UE itself to UPF2 through AN. There are first parameter information of UPF2, UE and AN itself in AN, AN can send the first parameter information of these three nodes to UPF1 through UPF2, and UPF1 can also send UPF1’s own first parameter information to AN through UPF2 .
  • the first parameter information to be measured can be used as an input of a machine learning algorithm, and the output of the machine learning algorithm is used to indicate the health status of the node to be measured.
  • the machine learning algorithm may output a specific value to represent the health state of the network node to be measured, and the entire specific value may be referred to as a first parameter value.
  • the first parameter information may include a first parameter value.
  • the machine learning algorithm may also output the first parameter level, such as high, medium, and low, to represent the health status of the network node to be measured.
  • the first parameter information may include a first parameter level.
  • each network node may obtain the first parameter information of the network node to be measured.
  • a certain node After a certain node obtains the first parameter information, it may maintain an entry, and the entry may include the first parameter information of the network node to be measured.
  • the head node or each of the N network nodes to be measured determines a target network node according to the first parameter information.
  • the head node may determine the target network node according to the first parameter information.
  • the target network nodes may be the K network nodes with the worst health states among the N network nodes to be measured.
  • the target network nodes may be the K network nodes with the lowest values of the first parameter among the N network nodes to be measured.
  • the target network node may be a network node whose first parameter value is lower than a certain preset threshold among the N network nodes to be measured.
  • the target network node adds the second performance parameter to the service message.
  • the head node may determine the K nodes with the lowest value of the first parameter.
  • the head node may insert the INT header into the ordinary message according to a certain frequency, and insert the identifiers of the K nodes with the lowest first parameter value after the INT header.
  • the K nodes can recognize the indication of the INT header and encapsulate the second parameter information of the current node in the metadata Inserted after the corresponding node ID.
  • the two nodes with the lowest values of the first parameter may be used as target network nodes. Assume that among UPF1, UPF2, AN and UE, the two nodes with the lowest first parameter value are UPF2 and AN.
  • UPF1 can insert the INT header into the service message according to a certain frequency, and add the node identifier of UPF2 and AN after the INT header.
  • each node may determine K nodes with the lowest value of the first parameter.
  • the head node can insert the INT header into the service message according to a certain frequency.
  • each node can determine whether it is a target network node according to the value of the first parameter. If a certain node determines that its own node is the target network node, the node encapsulates the collected second parameter information into metadata and inserts it after the INT packet header.
  • the two nodes with the lowest values of the first parameter may be used as target network nodes. Assume that among UPF1, UPF2, AN and UE, the two nodes with the lowest first parameter value are UPF2 and AN. UPF1 can insert INT headers into service packets according to a certain frequency.
  • UPF2 can encapsulate the second parameter information of the UPF2 node in the metadata according to the instruction of the INT header, and add it after the UPF2 node identifier; when the service message When transmitting to the AN, the AN may encapsulate the second parameter information of the AN node in the metadata and insert it after the AN node identifier according to the instruction in the INT header.
  • the K nodes with the lowest values of the first parameter may be used as target network nodes.
  • the head node inserts the INT header into the service message according to a certain frequency, and the head node can also encapsulate its own second parameter information in metadata and add it after the INT header. Subsequently, during the process of sequentially transmitting the service message containing the INT header to the Kth node, each node in the first K nodes can recognize the indication of the INT header, and send the second parameter information of the current node Encapsulated in metadata, inserted after the INT header.
  • the message containing the INT header is transmitted to the K+1th node, if the first performance health value of the K+1th node is lower than the first parameter value of one of the previous K nodes, then The metadata of the node with the highest first parameter value among the first K nodes can be replaced with the metadata of the K+1th node; if the first parameter value of the K+1th node is higher than the first parameter value of the first K nodes parameter value, no replacement is performed. and so on.
  • the service message containing the INT header is transmitted to the K+1th node
  • the first parameter value of the K+1th node is lower than the first parameter values of multiple nodes in the previous K nodes, Then, the metadata of the node with the highest first parameter among the first K nodes may be replaced with the metadata of K+1 nodes.
  • the second parameter information of the network node through which the first service message first flows may be replaced first.
  • the head node may determine target network nodes whose first parameter value is lower than a preset threshold.
  • the head node may insert the INT header into the ordinary message at a certain frequency, and insert the node identifier of the target network node whose first performance health value is lower than the target health threshold after the INT header.
  • the node can identify the indication of the INT header, and encapsulate the second performance parameter information of the node into the metadata and insert it into the after the corresponding node ID.
  • each node may determine a target network node whose first parameter value is lower than a preset threshold.
  • the head node can insert the INT header into the service message according to a certain frequency.
  • each node can determine whether it is a target network node according to the value of the first parameter. If a node determines that it is a target network node, the node encapsulates the second parameter information in the metadata and inserted after the INT header.
  • each node may determine whether the first parameter value of its own node is lower than a preset threshold.
  • the head node can insert the INT header into the service message according to a certain frequency.
  • each node can determine whether its own node is a target network node according to the first parameter value of its own node. If a certain node determines that its own node is the target network node, the node encapsulates the second parameter information in the metadata and inserts it after the INT header. In this case, the first parameter information may not be exchanged between the nodes.
  • the pool node reports the second parameter information to the SMF
  • the pool node (UE) reports the metadata to the NWDAF.
  • reporting methods There are various types of reporting methods. For example, real-time reporting may be performed; or, regular reporting may be performed at regular intervals; or triggered reporting may also be performed based on certain events such as network failures. This application does not limit this.
  • SMF or NWDAF can perform network status analysis based on metadata.
  • the SMF may send the metadata to the NEF.
  • the NEF may send the metadata to the AF/OAM for network status analysis.
  • NWDAF can report metadata to AF/OAM through NEF.
  • Fig. 4 is a schematic flowchart of a method for network measurement provided by an embodiment of the present application.
  • FIG. 4 uses UPF, AN, and UE as network nodes of a certain link of a certain service flow in the detection domain for description.
  • the UPF can be used as the head node
  • the AN can be used as the intermediate node
  • the UE can be used as the pool node.
  • UPF, AN, and UE are network nodes to be measured.
  • the OAM sends a measurement request message to the NWDAF.
  • the measurement request message may include the selection policy of the target network node, measurement mode information, measurement frequency information, and measurement parameter object information.
  • the selection policy of the target node may be used to indicate a policy for selecting the target network node from the N network nodes to be measured.
  • the target measurement nodes may be the K nodes with the lowest first health values among the N network nodes to be measured.
  • the measurement mode information is used to indicate the way of network measurement.
  • the measurement mode may be an in-band measurement mode.
  • the measurement frequency is used to indicate the frequency at which the measurement parameter information is inserted into the service message.
  • the measurement parameter object information is used to indicate the type of measurement parameter information inserted into the service message. That is, which measurement parameter information the target network node inserts into the service message.
  • the types of measurement parameter information may include packet loss rate, forwarding delay, port queue utilization, and so on.
  • the NWDAF determines configuration information according to the measurement request message.
  • Configuration information includes distributed measurement strategies and in-band measurement strategies.
  • NWDAF can also determine configuration information according to QoS configuration and available network resources.
  • the NWDAF may also determine the type of the service flow according to the subscription information of the UE, so as to determine the insertion position of the second measurement parameter information.
  • the NWDAF sends configuration information to the UPF.
  • NWDAF can send configuration information to PCF
  • PCF can send configuration information to SMF
  • SMF can send configuration information to UPF
  • the NWDAF can also send the configuration information to the UPF in other ways, which is not limited in this application.
  • the UPF sends configuration information to the AN.
  • the AN sends a configuration feedback message to the UPF.
  • AN configures distributed measurement and in-band measurement according to the configuration information. If the configuration is successful, AN sends a configuration success message to UPF; if the configuration fails, AN sends a configuration failure message to UPF.
  • the configuration failure message may include configuration failure reason information.
  • UE can obtain configuration information through AN
  • the AN may add the configuration information to the Payload of the service message and send it to the UE.
  • the UE sends a configuration feedback message to the AN.
  • the UE performs distributed measurement and in-band measurement configuration according to the configuration information. If the configuration is successful, the UE sends a configuration success message to the AN; if the configuration fails, the UE sends a configuration failure message to the AN.
  • the configuration failure message may include configuration failure reason information.
  • the configuration feedback messages of AN and UE are finally fed back to NWDAF to determine whether the measurement configuration is successfully configured.
  • the N nodes to be measured exchange first parameter information according to the distributed measurement policy.
  • the head node or each node in the network node to be measured determines the target network node according to the first parameter information.
  • the method for determining the target network node by the head node or each node of the network node to be measured according to the first parameter information is similar to the relevant description of S308, and the present application does not repeat it here.
  • the target network node adds the second parameter information to the service message.
  • the method for the target network node to add the second parameter information to the service message is similar to the related description of S310, and the present application will not repeat it here.
  • the UE reports the second parameter information to the NWDAF.
  • the NWDAF sends the metadata to a specific OAM for measurement and analysis.
  • NWDAF can send metadata to OAM for analysis and measurement.
  • Fig. 5 shows a schematic diagram of adding positions of the first parameter information provided by the embodiment of the present application.
  • the first parameter information may be added in the GTP-U header.
  • the first parameter information of the node may be added in the extension field of the GTP-U header.
  • one or more of packet loss rate information, forwarding delay information, port queue utilization information, etc. may be added to the extension field of the GTP-U header.
  • the first performance parameter information may be added in the GTP-U header.
  • Fig. 6 shows a schematic diagram of the first entry provided by the embodiment of the present application.
  • the head node or each node in the N network nodes to be measured may maintain a first entry.
  • the first entry may include first parameter information.
  • the first entry may include one or more of packet loss rate information, forwarding delay information, and port queue utilization information.
  • the first entry may further include a first parameter value.
  • the first entry may further include a first parameter level, for example, the first parameter level may include three levels: high, medium, and low.
  • One or more of packet loss rate information, forwarding delay information, and port queue utilization information may be used as an input of a machine learning algorithm to obtain a first parameter value and/or a first parameter level.
  • the network measurement method provided by the embodiment of the present application is described above with reference to FIG. 1 to FIG. 6 , and the device of the embodiment of the present application will be described below with reference to FIG. 7 and FIG. 8 . It should be understood that the device described below can execute the method of the aforementioned embodiment of the present application. In order to avoid unnecessary repetition, repeated descriptions are appropriately omitted when introducing the device of the embodiment of the present application below.
  • Fig. 7 is a schematic block diagram of a network measurement device according to an embodiment of the present application.
  • the apparatus 4000 shown in FIG. 7 includes an acquisition unit 4010 and a processing unit 4020 .
  • the acquisition unit 4010 and the processing unit 4020 may be used to execute the network measurement methods shown in FIG. 2 to FIG. 4 .
  • An acquisition unit 4010 configured to acquire first parameter information of N network nodes to be measured, where the first parameter information is used to indicate the health status of the network nodes to be measured, and the N network nodes to be measured are the first link in the detection domain A network node, where N is a positive integer greater than or equal to 2; the processing unit 4020 is configured to determine a target network node according to the first parameter information, and the target network node is configured to add the second parameter information to the first service message, The second parameter information is used to indicate the network status measured by the target network node.
  • the first parameter information is obtained by periodically exchanging the N network nodes to be measured.
  • the target network node is determined by a network node other than the first-hop network node among the N network nodes to be measured. .
  • the target network node is determined by a head node, and the head node is a first-hop network node of the N network nodes to be measured.
  • the device before determining the target network node according to the first parameter information, the device further includes: an obtaining unit 4010, configured to obtain a first strategy, and the first strategy is used to indicate that N nodes to be A strategy for selecting K network nodes from the measurement nodes as target network nodes, wherein K is a positive integer less than or equal to N; the processing unit 4020 is configured to determine the first parameter value according to the first parameter information; the processing unit 4020 uses to determine the target network node according to the first parameter value and the first strategy.
  • an obtaining unit 4010 configured to obtain a first strategy, and the first strategy is used to indicate that N nodes to be A strategy for selecting K network nodes from the measurement nodes as target network nodes, wherein K is a positive integer less than or equal to N
  • the processing unit 4020 is configured to determine the first parameter value according to the first parameter information
  • the processing unit 4020 uses to determine the target network node according to the first parameter value and the first strategy.
  • the identification information of the target network node is added in the first service message by the head node, and the second parameter information is added in the first service message by the target network node based on the identification information.
  • the processing unit 4020 is configured to add the second parameter information to the first service message if the network node is the first K-hop network node among the N nodes to be measured; the processing unit 4020 , if the network node is the K+nth hop network node among the N nodes to be measured, it is used to determine whether the second The parameter information is replaced with the second parameter information of the K+nth hop network node, where n is a positive integer.
  • unit here may be implemented in the form of software and/or hardware, which is not specifically limited.
  • a "unit” may be a software program, a hardware circuit or a combination of both to realize the above functions.
  • Hardware circuits may include ASICs, electronic circuits, processors (such as shared processors, dedicated processors or group processors, etc.) and memory for executing one or more software or firmware programs, incorporating logic circuits and/or other supporting Suitable components for the described functionality.
  • FIG. 8 is a schematic diagram of a hardware structure of a network measurement device provided by an embodiment of the present application.
  • the network measurement apparatus 5000 shown in FIG. 8 includes a memory 5001 , a processor 5002 , a communication interface 5003 and a bus 5004 .
  • the memory 5001 , the processor 5002 , and the communication interface 5003 are connected to each other through a bus 5004 .
  • the memory 5001 may be a read only memory (read only memory, ROM), a static storage device, a dynamic storage device or a random access memory (random access memory, RAM).
  • the memory 5001 may store a program, and when the program stored in the memory 5001 is executed by the processor 5002, the processor 5002 is configured to execute each step of the network measurement method in the embodiment of the present application.
  • the processor 5002 may adopt a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (application-specific integrated circuit, ASIC), a graphics processing unit (graphics processing unit, GPU) or one or more
  • the integrated circuit is used to execute related programs to implement the network measurement method of the method embodiment of the present application.
  • the processor 5002 may also be an integrated circuit chip with signal processing capabilities. During implementation, each step of the network measurement method of the present application may be completed by an integrated logic circuit of hardware in the processor 5002 or instructions in the form of software.
  • processor 5002 can also be general-purpose processor, digital signal processor (digital signal processor, DSP), ASIC, off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic device, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC off-the-shelf programmable gate array
  • FPGA field programmable gate array
  • Various methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 5001, and the processor 5002 reads the information in the memory 5001, and combines its hardware to complete the functions required by the units included in the device shown in Figure 8, or execute the network measurement method of the method embodiment of the present application .
  • the communication interface 5003 implements communication between the apparatus 5000 and other devices or communication networks by using a transceiver device such as but not limited to a transceiver.
  • a transceiver device such as but not limited to a transceiver.
  • the first parameter information of the N network nodes to be measured may be acquired through the communication interface 5003 .
  • the bus 5004 may include a pathway for transferring information between various components of the device 5000 (eg, memory 5001, processor 5002, communication interface 5003).
  • the embodiment of the present application further provides a computer-readable medium, where the computer-readable medium stores program code for execution by a device, and the program code includes the method for executing the network measurement in the embodiment of the present application.
  • the embodiment of the present application further provides a computer program product including instructions, and when the computer program product is run on a computer, the computer is made to execute the method for network measurement in the embodiment of the present application.
  • the embodiment of the present application also provides a chip, the chip includes a processor and a data interface, and the processor reads the instructions stored in the memory through the data interface, and executes the network measurement method in the embodiment of the present application.
  • the chip may further include a memory, the memory stores instructions, the processor is used to execute the instructions stored in the memory, and when the instructions are executed, the processor is used to execute the instructions of the present application.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the disclosed systems, devices and devices can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供了一种网络测量的方法和装置,包括:获取N个待测量网络节点的第一参数信息,所述第一参数信息用于指示所述待测量网络节点的健康状态,所述N个待测量网络节点为检测域中第一链路上的网络节点,其中,N为大于或等于2的正整数;根据所述第一参数信息确定目标网络节点,所述目标网络节点用于将第二参数信息添加在第一业务报文中,所述第二参数信息用于指示所述目标网络节点测量的网络状态。这样,在网络测量时能够尽可能避免业务报文中携带较多网络节点测量的网络状态信息,节约数据开销。

Description

网络测量的方法和装置
本申请要求于2022年2月16日提交中国专利局、申请号为202210141410.2、发明名称为“网络测量的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及了通信领域,更具体地,涉及一种网络测量的方法和装置。
背景技术
当前网络规模发展迅速、业务种类越来越多,流量带宽逐年增大,网络管理的方式也层出不穷,但总体趋势都是向远程化、精细化、实时化发展,因此对于网络监控测量技术的需求也越来越强烈。
目前,为了实现远程精细化的网络监控测量,可以高效、准确地定位和解决网络问题,通常可以使用带内网络遥测(inband network telemetry,INT)技术对网络进行测量。INT测量需要报文经过的各个网络节点将遥测信息封装成元数据插入INT头部之后。这种测量方式数据开销较大,同时需要占用较高的网络带宽,影响业务数据的转发效率。
发明内容
本申请实施例提供的网络测量的方案,能够尽可能避免业务报文中携带较多网络节点测量的网络状态信息,节约数据开销。
第一方面,提供了一种网络测量的方案,包括:获取N个待测量网络节点的第一参数信息,所述第一参数信息用于指示所述待测量网络节点的健康状态,所述N个待测量网络节点为检测域中第一链路上的网络节点,其中,N为大于或等于2的正整数;根据所述第一参数信息确定目标网络节点,所述目标网络节点用于将第二参数信息添加在第一业务报文中,所述第二参数信息用于指示所述目标网络节点测量的网络状态。
本申请实施例提供的网络测量的方案,能够根据待测量网络节点的健康状态,从待测量网络节点中选择目标网络节点,将目标网络节点的测量的网络状态信息插入报文中,从而可以尽可能避免业务报文中携带较多网络节点测量的网络状态信息,节约带宽。
结合第一方面,在第一方面的某些实现方式中,所述第一参数信息是由所述N个待测量网络节点周期性交换获得的。
本申请实施例提供的网络测量的方案,可以周期性交换第一参数信息。这样,能够降低对网络带宽的占用,节约数据开销。
结合第一方面,在第一方面的某些实现方式中,所述目标网络节点是所述N个待测量网络节点中除第一跳网络节点以外的网络节点确定的。
本申请实施例提供的网络测量的方案,通过多个网络节点来确定目标网络节点,提高 了确定目标测量节点的实时性。
结合第一方面,在第一方面的某些实现方式中,所述目标网络节点是头节点确定的,所述头节点为所述N个待测量网络节点的第一跳网络节点。
本申请提供的网络测量的方案,目标网络节点可以是第一跳网络节点确定的。这样,仅通过第一跳网络节点就可以确定目标网络节点,无需其他网络节点进行冗余确认。
结合第一方面,在第一方面的某些实现方式中,在根据所述第一参数信息确定目标网络节点之前,所述方法还包括:获取第一策略,所述第一策略用于指示根据第一参数值所述N个待测量节点中选择出K个网络节点作为所述目标网络节点的策略,其中,K为小于或等于N的正整数;所述根据第一参数信息确定所述目标网络节点,包括:根据所述第一参数信息确定所述第一参数值,所述第一参数信息包括丢包率信息、队列利用率信息以及转发时延信息中的一项或多项;根据所述第一参数值确定所述目标网络节点。
本申请实施例提供的网络测量的方案,可以从N个待测量网络节点中选择出健康状态比较差的网络节点作为目标测量节点,即可以选择出不健康或者亚健康的网络节点作为目标测量节点,从而降低了对网络带宽的占用,节约数据开销。
结合第一方面,在第一方面的某些实现方式中,所述目标网络节点的标识信息由所述头节点添加在所述第一业务报文中,所述第二参数信息由所述目标网络节点基于所述标识信息添加在所述第一业务报文中。
本申请实施例提供的网络测量的方案,头节点可以将目标网络节点的节点标识添加在第一业务报文中。这样,便于头节点以外的网络节点可以通过识别第一业务报文中的节点标识并确定自身节点为目标网络节点,不需要再次根据第一参数信息确认目标测量节点,节约数据开销。
结合第一方面,在第一方面的某些实现方式中,根据所述第一参数值确定所述目标网络节点,包括:若网络节点为所述N个待测量节点中的前K跳网络节点,则将第二参数信息添加在所述第一业务报文中;若网络节点为所述N个待测量节点中的第K+n跳网络节点,则根据第一参数值确定是否将第一业务报文中的第K+n-1跳网络节点的第二参数信息替换为第K+n跳网络节点的第二参数信息,其中,n为正整数。
本申请实施例提供的网络测量的方案,待测量网络节点可以基于更新的第一参数信息确定目标测量节点。能够基于实时的网络健康状态确定目标测量节点,提高了网络测量的准确性和实时性。
第二方面,提供了一种网络测量的装置,其特征在于,包括:获取单元,用于获取N个待测量网络节点的第一参数信息,所述第一参数信息用于指示所述待测量网络节点的健康状态,所述N个待测量网络节点为检测域中第一链路上的网络节点,其中,N为大于或等于2的正整数;处理单元,用于根据所述第一参数信息确定目标网络节点,所述目标网络节点用于将第二参数信息添加在第一业务报文中,所述第二参数信息用于指示所述目标网络节点测量的网络状态。
结合第二方面,在第二方面的某些实现方式中,所述第一参数信息是由所述N个待测量网络节点周期性交换获得的。
结合第二方面,在第二方面的某些实现方式中,所述目标网络节点是所述N个待测量网络节点中除第一跳网络节点以外的网络节点确定的。.
结合第二方面,在第二方面的某些实现方式中,所述目标网络节点是头节点确定的,所述头节点为所述N个待测量网络节点的第一跳网络节点。
结合第二方面,在第二方面的某些实现方式中,在根据所述第一参数信息确定目标网络节点之前,所述装置还包括:所述获取单元,用于获取第一策略,所述第一策略用于指示根据第一参数值所述N个待测量节点中选择出K个网络节点作为所述目标网络节点的策略,其中,K为小于或等于N的正整数;所述根据第一参数信息确定所述目标网络节点,包括:所述处理单元,用于根据所述第一参数信息确定所述第一参数值,所述第一参数信息包括丢包率信息、队列利用率信息以及转发时延信息中的一项或多项;所述处理单元,用于根据所述第一参数值确定所述目标网络节点。
结合第二方面,在第二方面的某些实现方式中,所述目标网络节点的标识信息由所述头节点添加在所述第一业务报文中,所述第二参数信息由所述目标网络节点基于所述标识信息添加在所述第一业务报文中。
结合第二方面,在第二方面的某些实现方式中,根据所述第一参数值确定所述目标网络节点,包括:所述处理单元,用于若网络节点为所述N个待测量节点中的前K跳网络节点,则将第二参数信息添加在所述第一业务报文中;所述处理单元,用于若网络节点为所述N个待测量节点中的第K+n跳网络节点,则根据第一参数值确定是否将第一业务报文中的第K+n-1跳网络节点的第二参数信息替换为第K+n跳网络节点的第二参数信息,其中,n为正整数。
第三方面,提供一种计算机可读介质,计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机执行上述第一方面中任一项所述的方法。
第四方面,提供一种芯片系统,包括:处理器与数据接口,处理器通过数据接口读取存储器上存储的指令,以执行上述第一方面中任一项所述的方法。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行第一方面或第一方面中的任意一种实现方式中的方法。
上述芯片具体可以是现场可编程门阵列(field-programmable gate array,FPGA)或者专用集成电路(application-specific integrated circuit,ASIC)。
第五方面,提供一种网络测量装置,包括:至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合,用于读取并执行所述存储器中的指令,以执行上述第一方面中任一项所述的方法。
第六方面,提供一种计算机程序产品,其特征在于,其特征在于,所述计算机产品包括:计算机程序,当所述计算机程序被运行时,使得计算机执行上述第一方面中任一项所述的方法。
其中,第二方面至第六方面的有益效果,请参见第一方面中的有关描述,不重复赘述。
附图说明
图1是5G移动通信系统架构图。
图2是本申请实施例提供的网络测量的方法的示意图。
图3是本申请实施例提供的网络测量的方法的示意图。
图4是本申请实施例提供的网络测量的方法的示意图。
图5是本申请实施例提供的第一参数信息的添加位置的示意图。
图6是本申请实施例提供的第一表项的示意图。
图7是本申请实施例提供的网络测量装置的示意图。
图8是本申请实施例提供的网络测量装置的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1示出了5G移动通信系统架构图,包括用户设备(user equipment,UE),接入网(access network,AN),核心网(core network,CN)和数据网络(data network,DN)。其中,架构的主要包括UE、AN、CN,逻辑上它们可以分为用户面和控制面两部分,控制面负责移动网络的管理,用户面负责业务数据的传输。图中,NG2参考点位于接入网控制面和核心网控制面之间,NG3参考点位于接入网用户面和核心网用户面之间,NG6参考点位于核心网用户面和数据网络之间。图1所示的网络架构具体可以包括下列组成部分:
UE110:是移动用户与网络交互的入口,能够提供基本的计算能力,存储能力,向用户显示业务窗口,接受用户操作输入。UE会采用新空口技术,与AN建立信号连接,数据连接,从而传输控制信号和业务数据到移动网络。
本申请实施例的用户设备可以称终端设备、终端、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。UE还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,还可以是端设备,逻辑实体,智能设备,如手机,智能终端等终端设备,或者服务器,网关,基站,控制器等通信设备,或者物联网设备,如传感器,电表,水表等物联网(Internet of things,IoT)设备。UE还可以是有线设备,如计算机、笔记本电脑等。本申请实施例对此并不限定。
AN120:类似于传统网络里面的基站,部署在靠近UE的位置,为特定区域的授权用户提供入网功能,并能够根据用户的级别,业务的需求等确定不同质量的传输隧道来传输用户数据。AN能够管理自身的资源,合理利用,按需为UE提供接入服务,并负责把控制信号和用户数据在UE和核心网之间转发。
接入网络可以为采用不同接入技术的接入网络。目前的无线接入技术有两种类型:第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)接入技术(例如3G、4G或5G系统中采用的无线接入技术)和非第三代合作伙伴计划(non-3GPP)接入技术。3GPP接入技术是指符合3GPP标准规范的接入技术,采用3GPP接入技术的接入网络称为无线接入网络(Radio Access Network,RAN),其中,5G系统中的接入网设备称为下一代基站节点(next generation Node Base station,gNB)。非3GPP接入技术是指不符合3GPP标准规范的接入技术,例如,以wifi中的接入点(access point,AP)为代表的空口技术。
基于有线通信技术实现接入网络功能的接入网可以称为有线接入网。
基于无线通信技术实现接入网络功能的接入网可以称为无线接入网(radio access network,RAN)。无线接入网能够管理无线资源,为终端提供接入服务,进而完成控制信号和用户数据在终端和核心网之间的转发。
无线接入网设备例如可以是基站(NodeB)、演进型基站(evolved NodeB,eNB或eNodeB)、5G移动通信系统中的基站(gNB)、未来移动通信系统中的基站或WiFi系统中的AP等,还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。可以理解,本申请中的无线接入网设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
DN140:是为用户提供业务服务的数据网络,一般客户端位于UE,服务端位于数据网络。数据网络可以是私有网络,如局域网,也可以是不受运营商管控的外部网络,如Internet,还可以是运营商共同部署的专有网络,如提供IP多媒体子系统(IP multimedia subsystem,IMS)服务的网络。
CN:负责维护移动网络的签约数据,管理移动网络的网元,为UE提供提供会话管理,移动性管理,策略管理,安全认证等功能。在UE附着的时候,为UE提供入网认证;在UE有业务请求时,为UE分配网络资源;在UE移动的时候,为UE更新网络资源;在UE空闲的时候,为UE提供快恢复机制;在UE去附着的时候,为UE释放网络资源;在UE有业务数据时,为UE提供数据路由功能,如转发上行数据到DN;或者从DN接收UE下行数据,转发到AN,从而发送给UE。
为了便理解5G网络架构,下面对5G网络架构的核心网的进行进一步阐述。
核心网控制面采用服务化架构,控制面网元之间的交互采用服务调用的方式,来替换传统架构中的点对点通信方式。服务化架构中,控制面网元会向其他控制面网元开放服务,供其他控制面网元调用;点对点通信中,控制面网元之间通信接口会存在一套特定的消息,只能由接口两端的控制面网元在通信时使用。核心网中的功能实体的功能(网元)如下:
用户平面功能(user plane function,UPF)实体130:即,数据面网关。可用于分组路由和转发、或用户面数据的服务质量(quality of service,QoS)处理等。用户数据可通过该网元接入到DN。在本申请实施例中,可用于实现用户面网关的功能。
会话管理功能(session management function,SMF)实体150:主要用于会话管理、UE的网际协议(internet protocol,IP)地址分配和管理、选择可管理用户平面功能、策略控制、或收费功能接口的终结点以及下行数据通知等。在本申请实施例中,可用于实现会话管理网元的功能。主要用于用户面网元选择,用户面网元重定向,终端设备的因特网协议(internet protocol,IP)地址分配,以及会话的建立、修改和释放及QoS控制。
接入和移动管理功能(access and mobility management function,AMF)实体160:主要用于移动性管理和接入管理等,可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如,合法监听、或接入授权(或鉴权)等功能。在本申请实施例中,可用于实现接入和移动管理网元的功能。
认证服务功能(authentication server function,AUSF)实体170:主要用于用户鉴权 等。
网络切片选择功能(network slice selection function,NSSF)实体180:用于查找会话所关联的策略控制功能(policy control function,PCF)网元。
网络开放功能(network exposure function,NEF)实体190:用于安全地向外部开放由3GPP网络功能提供的业务和能力等。
网络存储功能(network function(NF)repository function,NRF)实体1100:用于保存网络功能实体以及其提供服务的描述信息,以及支持服务发现,网元实体发现等。
策略控制功能(policy control function,PCF)实体1110:用于指导网络行为的统一策略框架,为控制平面功能网元(例如托管网络AMF,SMF网元等)提供策略规则信息等。
统一数据管理(unified data management,UDM)实体1120:用于处理用户标识、接入鉴权、注册、或移动性管理等。
应用功能(application function,AF)实体1130:用于进行应用影响的数据路由,接入网络开放功能网元,或,与策略框架交互进行策略控制等。
网络数据分析功能(network data analytics function,NWDAF)实体1140:可以从5GC网络功能(network function,NF)实体、AF、以及操作维护管理(operation administration and maintenance,OAM)收集数据,经过分析网元得出分析结果,并把该结果按需发送给特定的NF、OAM或AF。
图1所涉及的网络架构中还可能包括其他网元,如网络存储功能(network repository function,NRF)等网元或设备等,本申请不作具体限定。当然,在未来通信系统中,各功能实体可以是上述名称,也可以有其他的名称,本申请不做限定。
在该网络架构中,N1接口为终端与托管网络AMF实体之间的参考点;N2接口为AN和托管网络AMF实体的参考点,用于非接入层(non-access stratum,NAS)消息的发送等;N3接口为AN和UPF实体之间的参考点,用于传输用户面的数据等;N4接口为SMF实体和UPF实体之间的参考点,用于传输例如N3连接的隧道标识信息,数据缓存指示信息,以及下行数据通知消息等信息;N6接口为UPF实体和DN之间的参考点,用于传输用户面的数据等。
当前网络规模发展迅速、业务种类越来越多,流量带宽逐年增大,网络管理的方式也层出不穷,但总体趋势都是向远程化、精细化、实时化发展,因此对于网络监控测量技术的需求也越来越强烈。
为了实现远程精细化的网络监控测量,并且可以及时准确的定位和解决网络问题,可以使用带内网络遥测(inband network telemetry,INT)技术对网络进行测量。
一般来讲,一个INT检测域中包括3个功能节点,分别为源节点、中间节点和池节点。首先源节点在业务报文中添加INT头部,INT头部可以用于指示需要遥测的对象。源节点还会将INT头部指令相匹配的性能参数信息封装在元数据中,并添加到INT头部之后。当业务报文到达中间节点时,中间节点可以根据INT头部的指示,将与INT头部的指令相匹配的性能参数信息封装在元数据中,添加到INT头部之后。当业务报文到达池节点时,池节点可以根据INT头部的指示,将与INT头部的指令相匹配的性能参数信息封装在元数据中,并添加到INT头部之后。最终池节点会将所有节点测量的性能参数弹出,转发到遥测服务器进行分析。
INT测量需要报文经过的各个网络节点将遥测信息封装成元数据插入INT头部之后。这种测量方式数据开销较大,同时需要占用较高的网络带宽,影响业务数据的转发效率。
针对此问题,本申请提出了一种网络测量的方法和装置,能够根据待测量网络节点的健康状态,从待测量网络节点中选择目标网络节点,将目标网络节点的测量的网络状态信息插入报文中,从而可以尽可能避免业务报文中携带较多网络节点测量的网络状态信息,节约数据开销。
图2为本申请实施例提供一种网络测量的方法的流程示意图。图2的网络测量的方法可以基于图1的架构实现。
S201,获取N个待测量网络节点的第一参数信息。
第一参数信息用于指示待测量网络节点的健康状态,第一参数信息用于指示待测量网络节点的健康状态,N个待测量网络节点为检测域中第一链路上的网络节点,其中,N为大于或等于2的正整数;
检测域可以理解为需要进行检测的网络范围。检测域可以基于多种方式确定。可以基于网络场景确定,例如,指定网络中的核心网部分作为检测域;或者,也可以基于业务流的类型确定。本申请对此不进行限定。检测域中可以包括三类网络节点,具体为头节点、中间节点和池节点。其中,逐跳的路径节点也可以称之为中间节点。对于一条业务流而言,在检测域指定的检测范围内传输业务流的第一跳网络节点,可以作为传输该业务流的头节点。在检测域指定的检测范围内传输该业务流的最后一跳网络节点,可以作为传输所述业务流的池节点。在所述头节点和所述池点之间传输所述业务流的各个节点即为中间节点。
检测域内可以包括多条业务流,为便于描述和理解,本申请实施例以任意一条业务流所在的某一个通信链路上的网络节点作为示例进行描述。
例如,检测域中某一个业务流在某一个通信链路流经的网络节点按照先后顺序分别为UPF1、UPF2、AN和UE。那么UPF1为头节点,UE为池节点,UPF2和AN为中间节点。UPF1、UPF2、AN和UE这四个节点均为待测量网路节点。
在某些实施方式中,第一参数信息包括丢包率信息、队列利用率信息以及转发时延信息中的一项或多项。
在某些实施方式中,可以将待测量第一参数信息作为机器学习算法的输入,将该机器学习算法的输出用于指示待测量节点的健康状态。
示例性地,机器学习算法可以输出具体的数值来表示待测量网络节点的健康状态,可以将整个具体的数值称为第一参数值。第一参数信息可以包括第一参数值。
示例性地,机器学习算法也可以输出第一参数等级,例如高、中、低,来表示待测量网络节点的健康状态。第一参数信息可以包括第一参数等级。
在某些实施方式中,头节点可以获得待测量网络节点的第一参数信息。
在某些实施方式中,各个网络节点可以获得待测量网络节点的第一参数信息。
当某一个节点在获得第一参数信息之后,可以维护一个表项,该表项中可以包括待测量网络节点的第一参数信息。
若某一个节点获得的第一参数信息中无第一参数值和/或第一参数等级时,该节点可以将第一参数信息包括丢包率信息、队列利用率信息以及转发时延信息中的一项或多项作为机器学习算法的输入,获得第一参数值和/或第一参数等级。
S202,根据第一参数信息确定目标网络节点。
目标网络节点用于将第二参数信息添加在第一业务报文中,第二参数信息用于指示目标网络节点测量的网络状态。第二参数包括转发时延、转发队列信息、内存信息,CPU利用率等中一项或者多项。
在某些实施方式中,目标网络节点也可以是第一参数值最低的前K个节点。
在某些实施方式中,目标网络节点可以是第一参数值低于目标测量阈值的节点。
图3为本申请实施例提供的网络测量的方法的流程示意图。
在S301a,AF确定测量请求消息。
测量请求消息用于请求对网络状态进行测量。
在某些实施方式中,UE订阅了网络测量的业务,AF网元可以通过UDM网元获取UE的签约信息,根据UE的签约信息确定测量请求消息。
在某些实施方式中,AF可以根据UE的签约信息确定业务流的类型。
例如,业务流的类型可以是视频流,或者业务流的类型也可以语音流,当然,业务流也可以是其他的类型,本申请对此不进行限定。
可选地,AF还可以根据UE的签约业务确定业务流的报文协议的类型。
例如,业务流的报文协议可以是网际协议(internet protocol,IP);或者,业务流的报文协议也可以是用户数据包协议(user datagram protocol,UDP);或者,业务流的报文协议也可以是以太网协议。当然,业务流的报文协议也可以是其他的类型,本申请对此不进行限定。
在某些实施方式中,测量请求消息可以包括业务流的类型信息。
可选地,测量请求消息可以包括业务流的报文协议的类型信息。
S302a,AF向NEF发送测量请求消息。
在某些实施方式中,也可以是OAM或者NWDAF发起测量请求,将测量请求消息发送给NEF。例如,当OAM监测到网络状态不稳定或者网络故障时,可以发起测量请求,并将测量请求消息发送给NEF。
S303a,NEF向PCF发送测量请求消息。
当然,PCF也可以通过其他的方式(S301b~S302b)获取测量请求消息。
S301b,UE向SMF发送测量请求消息。
在某些实施方式中,UE可以发起业务流的PDU会话建立请求,PDU会话建立请求中可以包括测量请求消息。SMF可以获取这个PDU会话建立请求,
302b,SMF将将测量请求消息发送给PCF。
S304,PCF根据测量请求消息确定测量配置信息。
配置信息包括分布式测量策略和带内测量策略。
在某些实施方式中,PCF可以查询UE的签约信息,确定UE是否签约了网络测量的业务。若UE签约了网络测量业务,则PCF可以确定测量配置信息。
PCF还可以根据UE的签约信息确定业务流的报文协议的类型。
在某些实施方式中,PCF还可以根据QoS配置以及可用的网络资源确定配置信息。
分布式测量策略用于指示待测量网络节点交换第一参数信息的频率。
待测量网络节点交换第一参数信息的频率可以基于时间定义,例如,每20ms进行一 次交换;或者也可以基于携带第一参数信息的数据包的数量定义,例如,每10个数据包进行一次交换。本申请对此不进行限定。
第一参数信息的相关描述可以参考步骤S201,本申请在此不进行赘述。
带内测量策略可以包括目标网络节点的选择策略、INT报文的位置信息在业务报文中的插入位置信息、INT报文的频率信息、INT头部的指令信息。
INT报文可以包括INT头部和元数据。
目标网络节点的选择策略用于指示从N个待测量网路节点中选择出目标网络节点的策略。目标网络节点可以将第二参数信息封装成元数据插入到业务报文中。
第二参数信息可以包括以下一项或多项:丢包率信息、节点的转发时延信息、不同端口队列利用率信息等。
INT报文的位置信息用于INT报文在业务报文中的插入位置。业务报文协议的类型不同,INT头部在报文中的插入位置也可以不同。例如,PCF可以根据业务流的类型确定业务流的报文协议的类型,从而进一步确定INT报文在业务报文中的插入位置。
INT报文的频率信息可以用于指示INT报文在业务报文中的插入频率。INT报文可以按照一定频率插入到业务报文中。例如,可以每隔30ms在普通报文中插入一个INT报文;或者,也可以每隔14个普通报文在普通报文中插入一个INT报文。本申请对此仅作为示例而不进行限定。
INT头部的指令信息用于指示第二参数信息的对象。即,目标网络节点需要将哪些测量信息封装成元数据添加在业务报文中。例如,INT头部的指令信息中包括丢包率,那么目标网络节点需要将测量的丢包率信息封装成元数据插入业务报文中。
为便于理解和描述,假设检测域的某条业务流的某一个链路上的网络节点包括UPF1、UPF2、AN以及UE四个待测量网络节点,以UPF1作为头节点,以UPF2最为中间节点1,以AN作为中间节点2,以UE作为池节点,对本申请实施例涉及的网络测量方法置进行说明。本申请实施例中的网络节点也可以称为节点。
S305,PCF向SMF发送配置信息。
S306a,SMF向UPF1发送配置信息。
S306b,SMF向UPF2发送配置信息。
S306c,SMF向AN发送配置信息。
SMF可以通过AMF向AN发送配置信息。
S306d,SMF向UE发送配置信息。
SMF可以通过AMF向UE发送配置信息。
S307,UPF1、UPF2、AN以及UE根据分布式测量策略交换第一参数信息。
UPF1、UPF2、AN以及UE之间可以周期性交换第一参数信息。
在某些实施方式中,UPF1、UPF2以及AN之间互相交换第一参数信息时,可以在业务报文的GTP-U报头中添加第一参数信息。
在某些实施方式中,AN和UE之间互相交换第一参数信息时,在业务报文的Payload添加第一参数信息。
在某些实施方式中,UPF1、UPF2、AN以及UE之间可能不存在业务报文,那么可以构造空的报文用于第一参数信息的交换。
在某些实施方式中,交换第一性能参数信息后,头节点存在N个待测量节点的第一参数信息。例如,UPF1、UPF2、AN以及UE交换第一性能参数信息后,头节点可以存在这4个节点的第一参数信息。
例如,UPF1、UPF2、AN以及UE可以按照以下方式交换第一性能参数信息:UE向AN发送UE的第一参数信息,AN向UPF2发送AN自身以及UE的第一参数信息,UPF2向UPF1发送UPF2、AN以及UE的第一性能参数信息。如此,UPF1存在这1个节点的第一参数信息。当然,也可以按照其他方式交换第一性能参数信息,本申请对此不进行限定。
在某些实施方式中,交换第一性能参数信息后,每一个待测量网络节点存在N个待测量节点的第一参数信息。例如,UPF1、UPF2、AN以及UE交换第一参数信息后,每一个待测量网络节点都可以存在这4个节点的第一参数信息。
例如,UPF1、UPF2、AN以及UE可以按照以下方式交换第一性能参数:UP2接受分别来自UPF1和AN的第一参数信息,AN接收分别来自UPF2和UE的第一参数信息。UPF2中存在UPF1、AN以及UPF2三个节点的第一参数信息,UPF2可以经过AN向UE发送这三个节点的第一参数信息,UE也可以经过AN向UPF2发送UE自身的第一参数信息。AN中存在UPF2、UE以及AN自身三个节点的第一参数信息,AN可以经过UPF2向UPF1发送这三个节点的第一参数信息,UPF1也可以经过UPF2向AN发送UPF1自身的第一参数信息。
在某些实施方式中,第一参数信息可以包括第一参数信息包括拥塞信息、队列利用率信息以及转发时延信息中的一项或多项。
在某些实施方式中,可以将待测量第一参数信息作为机器学习算法的输入,将该机器学习算法的输出用于指示待测量节点的健康状态。
示例性地,机器学习算法可以输出具体的数值来表示待测量网络节点的健康状态,可以将整个具体的数值称为第一参数值。第一参数信息可以包括第一参数值。
示例性地,机器学习算法也可以输出第一参数等级,例如高、中、低,来表示待测量网络节点的健康状态。第一参数信息可以包括第一参数等级。
在某些实施方式中,头节点可以获得待测量网络节点的第一参数信息。
在某些实施方式中,各个网络节点可以获得待测量网络节点的第一参数信息。
当某一个节点在获得第一参数信息之后,可以维护一个表项,该表项中可以包括待测量网络节点的第一参数信息。
若某一个节点获得的第一参数信息中无第一参数值和/或第一参数等级时,该节点可以将第一参数信息包括丢包率信息、队列利用率信息以及转发时延信息中的一项或多项作为机器学习算法的输入,获得第一参数值和/或第一参数等级。
S308,头节点或N个待测量网络节点中的每一个网络节点根据第一参数信息确定目标网络节点。
在某些实施方式中,头节点可以根据第一参数信息确定目标网络节点。
在某些实施方式中,N个待测量网络节点中的每一个网络节点根据第一参数信息确定目标网络节点。
在某些实施方式中,目标网络节点可以为N个待测量网络节点中健康状态最差的K 个网络节点。
示例性地,目标网络节点可以为N个待测量网络节点中第一参数值最低的K个网络节点。
示例性地,目标网络节点可以为N个待测量网络节点中第一参数值低于某个预设阈值的网络节点。
S309,目标网络节点将第二性能参数添加在业务报文中。
在某些实施方式中,头节点可以确定第一参数值最低的K个节点。头节点可以按照一定频率在普通报文中插入INT头部,并且将第一参数值最低的K个节点的标识插入INT头部之后。当该包含INT头部的业务报文依次传输至第一参数值最低的K个节点时,这K个节点可以将识别INT头部的指示,并将当前节点的第二参数信息封装在元数据中插入到对应的节点标识之后。
例如,可以将第一参数值最低的2个节点作为目标网络节点。假设UPF1、UPF2、AN以及UE中,第一参数值最低的2个节点为UPF2、AN。UPF1可以在按照一定频率在业务报文中插入INT头部,并且在INT头部之后添加UPF2以及AN的节点标识。当这个包含INT头部的业务报文传输至UPF2时,UPF2可以根据INT头部的指令以及节点标识,将UPF2节点的第二参数信息封装在元数据中并插入到UPF2的节点标识之后;当这个包含INT头部的业务报文传输至AN时,AN可以根据INT头部的指令以及节点标识,将AN节点的第二参数信息封装在元数据中并插入到AN节点标识之后。
在某些实施方式中,每个节点可以确定第一参数值最低的K个节点。头节点可以按照一定频率在业务报文中插入INT头部。在该业务报文的传输过程中,每个节点可以根据第第一参数值确定自身是否为目标网络节点。若某一节点确定自身节点为目标网络节点,则该节点将采集的第二参数信息封装成元数据中并插入到INT包头之后。
例如,可以将第一参数值最低的2个节点作为目标网络节点。假设UPF1、UPF2、AN以及UE中,第一参数值最低的2个节点为UPF2、AN。UPF1可以在按照一定频率在业务报文中插入INT头部。当这个包含INT头部的业务报文传输至UPF2时,UPF2可以根据INT头部的指令,将UPF2节点的第二参数信息封装在元数据中,添加到UPF2节点标识之后;当这个业务报文传输至AN时,AN可以根据INT头部的指令,将AN节点的第二参数信息封装在元数据中插入到AN节点标识之后。
在某些实施方式中,可以将第一参数值最低的K个节点作为目标网络节点。头节点按照一定频率在业务报文中插入INT头部,头节点还可以将自身的第二参数信息封装在元数据中,添加在INT头部之后。随后,在该包含INT头部的业务报文依次传输至第K个节点的过程中,前K个节点中的每个节点都可以识别INT头部的指示,并将当前节点的第二参数信息封装在元数据中,插入到INT头部之后。当该包含INT头部的报文传输至第K+1个节点时,若第K+1个节点的第一性能健康值低于前K个节点中的某一个节点的第一参数值,则可以将前K个节点中第一参数值最高的节点的元数据替换成第K+1个节点的元数据;若第K+1个节点的第一参数值高于前K个节点的第一参数值,则不进行替换。以此类推。
当然,当该包含INT头部的业务报文传输至第K+1个节点时,第K+1个节点的第一参数值低于前K个节点中的多个节点的第一参数值,则可以将前K个节点中第一参数最 高的节点的元数据替换成K+1个节点的元数据。
若前K个节点中第一参数值最高且第一参数值相同的节点至少存在两个,可以先替换第一业务报文最先流经的网络节点的第二参数信息。
在某些实施方式中,头节点可以确定第一参数值低于预设阈值的目标网络节点。头节点可以按照一定频率在普通报文中插入INT头部,并且将第一性能健康值低于目标健康阈值的目标网络节点的节点标识插入INT头部之后。当该包含INT头部的报文依次传输至目标网络节点中的某一个节点时,该节点可以将识别INT头部的指示,并将该节点的第二性能参数信息封装在元数据中插入到对应的节点标识之后。
在某些实施方式中,各个节点可以确定第一参数值低于预设阈值的目标网络节点。头节点可以按照一定频率在业务报文中插入INT头部。在该业务报文的传输过程中,每个节点可以根据第一参数值确定自身是否为目标网络节点,若某一节点确定自身为目标网络节点,则该节点将第二参数信息封装在元数据中并插入到INT头部之后。
在某些实施方式中,各个节点可以确定自身节点的第一参数值是否低于预设阈值。头节点可以按照一定频率在业务报文中插入INT头部。在业务报文的传输过程中,每个节点可以根据自身节点的第一参数值确定自身节点是否为目标网络节点。若某一节点确定自身节点为目标网络节点,则该节点将第二参数信息封装在元数据中并插入到INT头部之后。在这种情况下,各节点之间也可以不交换第一参数信息。
S310,池节点将第二参数信息上报至SMF
或者,池节点(UE)将元数据上报至NWDAF。
上报的方式可以有多种类型。例如,可以实时上报;或者,可以每隔一定时间进行定时上报;或者,也可以基于某些事件例如网络故障进行触发式上报。本申请对此不进行限定。
在某些实施方式中,SMF或NWDAF可以基于元数据进行网络状态分析。
S311,SMF可以将元数据发送给NEF。
S312,NEF可以将元数据发送给AF/OAM进行网络状态分析。
或者,NWDAF可以将元数据通过NEF上报至AF/OAM。
图4为本申请实施例提供的一种网络测量的方法的流程示意图。
图4以UPF、AN、UE作为检测域中的某一业务流的某一个链路的网络节点进行描述。以UPF可以作为头节点、AN可以作为中间节点,UE可以作为池节点。UPF、AN、UE为待测量网络节点。
S401,OAM向NWDAF发送测量请求消息。
测量请求消息可以包括目标网络节点的选择策略、测量模式信息、测量频率信息、测量参数对象信息。
目标节点的选择策略可以用于指示从N个待测量网络节点中选择目标网络节点的策略。例如,目标测量节点可以是N个待测量网络节点中第一健康值最低的K个节点。
测量模式信息用于指示网络测量的方式。例如,测量模式可以为带内测量模式。
测量频率用于指示测量参数信息插入业务报文的频率。
测量参数对象信息用于指示插入业务报文中的测量参数信息的种类。即,目标网络节点在业务报文中插入哪些测量参数信息。例如,测量参数信息的种类可以包括丢包率、转 发时延、端口队列利用率等。
S402,NWDAF根据测量请求消息确定配置信息。
配置信息包括分布式测量策略和带内测量策略。
NWDAF还可以根据QoS配置、可用的网络资源确定配置信息。
NWDAF还可以根据UE的签约信息确定业务流的类型,从而确定第二测量参数信息的插入位置。
分布式测量策略和带内测量策略的可以参考图3中的相关描述,在此不进行赘述。
S403,NWDAF向UPF发送配置信息。
NWDAF可以向PCF发送配置信息,PCF可以向SMF发送配置信息,SMF可以向UPF发送配置信息。当然,NWDAF也可以通过其他方式向UPF发送配置信息,本申请不进行限定。
S404a,UPF向AN发送配置信息。
在某些实施方式中,UPF可以将配置信息添加在业务报文的GTP-U报头中,发送给AN。
S404b,AN向UPF发送配置反馈消息。
AN根据配置信息进行分布式测量以及带内测量的配置,若配置成功,AN向UPF发送配置成功消息;若配置失败,AN向UPF发送配置失败消息,配置失败消息中可以包括配置失败原因信息。
S405a,AN向UE发送配置信息。
UE可以通过AN获取配置信息
在某些实施方式中,AN可以将配置信息添加在业务报文的Payload中发送给UE。
S405b,UE向AN发送配置反馈消息。
UE根据配置信息进行分布式测量以及带内测量的配置,若配置成功,UE向AN发送配置成功消息;若配置失败,UE向AN发送配置失败消息,配置失败消息中可以包括配置失败原因信息。
S405c,AN向UPF发送配置反馈消息。
AN和UE的配置反馈消息最终反馈到NWDAF,用于确定测量配置是否配置成功。
S406,N个待测量节点根据分布式测量策略交换第一参数信息。
UPF、AN以及UE根据分布式测量策略交换第一参数信息的方法与S307的相关描述类似,本申请在此不进行赘述。
S407,头节点或待测量网络节点中的每个节点根据第一参数信息确定目标网络节点。
头节点或待测量网络节点中的每个节点根据第一参数信息确定目标网络节点的方法与S308的相关描述类似,本申请在此不进行赘述。
S408,目标网络节点将第二参数信息添加到业务报文中。
目标网络节点将第二参数信息添加到业务报文中的方法与S310的相关描述类似,本申请在此不进行赘述。
S409,UE将第二参数信息上报至NWDAF。
S410,NWDAF将元数据发送到特定的OAM进行测量分析。
NWDAF可以将元数据发送给OAM进行分析测量。
图5示出了本申请实施例提供的第一参数信息的添加位置的示意图。
在某些实施方式中,可以将第一参数信息添加在GTP-U报头中。可以在GTP-U报头的扩展字段中添加节点的第一参数信息。
例如,可以在GTP-U报头的扩展字段中添加丢包率信息、转发时延信息、端口队列利用率信息等中的一个或多个。
例如,当UPF和AN之间交换第一参数信息时,可以将第一性能参数信息添加在GTP-U报头中。
图6示出了本申请是实施例提供的第一表项的示意图。
在交换第一参数信息后,头节点或N个待测量网络节点中的每个节点可以维护一个第一表项。第一表项中可以包括第一参数信息。
在某些实施方式中,第一表项中可以包括丢包率信息、转发时延信息、端口队列利用率信息中的一个或多个。
在某些实施方式中,第一表项中还可以包括第一参数值。
在某些实施方式中,第一表项中还可以包括第一参数等级,例如,第一参数等级可以包括高、中、低三个等级。
可以将丢包率信息、转发时延信息、端口队列利用率信息中的一个或多个作为机器学习算法的输入,获得第一参数值和/或第一参数等级。
上文结合图1至图6描述了本申请实施例提供的网络测量的方法,下面结合图7和图8对本申请实施例的装置进行说明。应理解,下面描述的装置能够执行前述本申请实施例的方法,为了避免不必要的重复,下面在介绍本申请实施例的装置时适当省略重复的描述。
图7是本申请实施例的网络测量装置的示意性框图。图7所示的装置4000包括获取单元4010和处理单元4020。
获取单元4010和处理单元4020可以用于执行图2至图4的网络测量的方法。
获取单元4010,用于获取N个待测量网络节点的第一参数信息,第一参数信息用于指示待测量网络节点的健康状态,N个待测量网络节点为检测域中第一链路上的网络节点,其中,N为大于或等于2的正整数;处理单元4020,用于根据第一参数信息确定目标网络节点,目标网络节点用于将第二参数信息添加在第一业务报文中,第二参数信息用于指示目标网络节点测量的网络状态。
可选地,作为一个实施例,第一参数信息是由N个待测量网络节点周期性交换获得的。
可选地,作为一个实施例,目标网络节点是N个待测量网络节点中除第一跳网络节点以外的网络节点确定的。.
可选地,作为一个实施例,目标网络节点是头节点确定的,头节点为N个待测量网络节点的第一跳网络节点。
可选地,作为一个实施例,在根据第一参数信息确定目标网络节点之前,装置还包括:获取单元4010,用于获取第一策略,第一策略用于指示根据第一参数值N个待测量节点中选择出K个网络节点作为目标网络节点的策略,其中,K为小于或等于N的正整数;处理单元4020,用于根据第一参数信息确定第一参数值;处理单元4020,用于根据第一参数值和第一策略确定目标网络节点。
可选地,作为一个实施例,目标网络节点的标识信息由头节点添加在第一业务报文中, 第二参数信息由目标网络节点基于标识信息添加在第一业务报文中。
可选地,作为一个实施例,处理单元4020,用于若网络节点为N个待测量节点中的前K跳网络节点,则将第二参数信息添加在第一业务报文中;处理单元4020,用于若网络节点为N个待测量节点中的第K+n跳网络节点,则根据第一参数值确定是否将第一业务报文中的第K+n-1跳网络节点的第二参数信息替换为第K+n跳网络节点的第二参数信息,其中,n为正整数。
需要说明的是,上述装置4000以功能单元的形式体现。这里的术语“单元”可以通过软件和/或硬件形式实现,对此不作具体限定。
例如,“单元”可以是实现上述功能的软件程序、硬件电路或二者结合。硬件电路可能包括ASIC、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
因此,在本申请的实施例中描述的各示例的单元,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图8是本申请实施例提供的网络测量装置的硬件结构示意图。图8所示的网络测量装置5000(该装置5000具体可以是一种计算机设备)包括存储器5001、处理器5002、通信接口5003以及总线5004。其中,存储器5001、处理器5002、通信接口5003通过总线5004实现彼此之间的通信连接。
存储器5001可以是只读存储器(read only memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(random access memory,RAM)。存储器5001可以存储程序,当存储器5001中存储的程序被处理器5002执行时,处理器5002用于执行本申请实施例的网络测量方法的各个步骤。
处理器5002可以采用通用的中央处理单元(central processing unit,CPU),微处理器,专用集成电路(application-specific integrated circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现本申请方法实施例的网路测量方法。
处理器5002还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的网络测量方法的各个步骤可以通过处理器5002中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器5002还可以是通用处理器、数字信号处理器(digital signal processor,DSP)、ASIC、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器5001,处理器5002读取存储器5001中的 信息,结合其硬件完成图8所示的装置中包括的单元所需执行的功能,或者,执行本申请方法实施例的网络测量方法。
通信接口5003使用例如但不限于收发器一类的收发装置,来实现装置5000与其他设备或通信网络之间的通信。例如,可以通过通信接口5003获取N个待测量网络节点的第一参数信息。
总线5004可包括在装置5000各个部件(例如,存储器5001、处理器5002、通信接口5003)之间传送信息的通路。
本申请实施例还提供一种计算机可读介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行本申请实施例中的网络测量的方法。
本申请实施例还提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行本申请实施例中的网络测量的方法。
本申请实施例还提供一种芯片,该芯片包括处理器与数据接口,该处理器通过该数据接口读取存储器上存储的指令,执行本申请实施例中的网络测量的方法。
可选地,作为一种实现方式,该芯片还可以包括存储器,该存储器中存储有指令,该处理器用于执行该存储器上存储的指令,当该指令被执行时,该处理器用于执行本申请实施例中的网络测量的方法。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同装置来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述装置实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨 论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例装置的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种网络测量的方法,其特征在于,包括:
    获取N个待测量网络节点的第一参数信息,所述第一参数信息用于指示所述待测量网络节点的健康状态,所述N个待测量网络节点为检测域中第一链路上的网络节点,其中,N为大于或等于2的正整数;
    根据所述第一参数信息确定目标网络节点,所述目标网络节点用于将第二参数信息添加在第一业务报文中,所述第二参数信息用于指示所述目标网络节点测量的网络状态。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参数信息是由所述N个待测量网络节点周期性交换获得的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标网络节点是所述N个待测量网络节点中除第一跳网络节点以外的网络节点确定的。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述目标网络节点是头节点确定的,所述头节点为所述N个待测量网络节点的第一跳网络节点。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,在根据所述第一参数信息确定目标网络节点之前,所述方法还包括:
    获取第一策略,所述第一策略用于指示根据第一参数值从所述N个待测量节点中选择出K个网络节点作为所述目标网络节点的策略,其中,K为小于或等于N的正整数;
    所述根据第一参数信息确定所述目标网络节点,包括:
    根据所述第一参数信息确定所述第一参数值,所述第一参数信息包括丢包率信息、队列利用率信息以及转发时延信息中的一项或多项;
    根据所述第一参数值确定所述目标网络节点。
  6. 根据权利要求4所述的方法,其特征在于,所述目标网络节点的标识信息由所述头节点添加在所述第一业务报文中,所述第二参数信息由所述目标网络节点基于所述标识信息添加在所述第一业务报文中。
  7. 根据权利要求5所述的方法,其特征在于,根据所述第一参数值确定所述目标网络节点,包括:
    若网络节点为所述N个待测量节点中的前K跳网络节点,则将所述第二参数信息添加在所述第一业务报文中;
    若网络节点为所述N个待测量节点中的第K+n跳网络节点,则根据所述第一参数值确定是否将第一业务报文中的第K+n-1跳网络节点的所述第二参数信息替换为第K+n跳网络节点的所述第二参数信息,其中,n为正整数。
  8. 一种网络测量的装置,其特征在于,包括:
    获取单元,用于获取N个待测量网络节点的第一参数信息,所述第一参数信息用于指示所述待测量网络节点的健康状态,所述N个待测量网络节点为检测域中第一链路上的网络节点,其中,N为大于或等于2的正整数;
    处理单元,用于根据所述第一参数信息确定目标网络节点,所述目标网络节点用于将第二参数信息添加在第一业务报文中,所述第二参数信息用于指示所述目标网络节点测量 的网络状态。
  9. 根据权利要求8所述的装置,其特征在于,所述第一参数信息是由所述N个待测量网络节点周期性交换获得的。
  10. 根据权利要求8或9所述的装置,其特征在于,所述目标网络节点是所述N个待测量网络节点中除第一跳网络节点以外的网络节点确定的。
  11. 根据权利要求8至10任一项所述的装置,其特征在于,所述目标网络节点是头节点确定的,所述头节点为所述N个待测量网络节点的第一跳网络节点。
  12. 根据权利要求8至11任一项所述的装置,其特征在于,在根据所述第一参数信息确定目标网络节点之前,所述装置还包括:
    所述获取单元,用于获取第一策略,所述第一策略用于指示根据第一参数值所述N个待测量节点中选择出K个网络节点作为所述目标网络节点的策略,其中,K为小于或等于N的正整数;
    所述根据第一参数信息确定所述目标网络节点,包括:
    所述处理单元,用于根据所述第一参数信息确定所述第一参数值,所述第一参数信息包括丢包率信息、队列利用率信息以及转发时延信息中的一项或多项;
    所述处理单元,用于根据所述第一参数值确定所述目标网络节点。
  13. 根据权利要求11所述的装置,其特征在于,所述目标网络节点的标识信息由所述头节点添加在所述第一业务报文中,所述第二参数信息由所述目标网络节点基于所述标识信息添加在所述第一业务报文中。
  14. 根据权利要求12所述的装置,其特征在于,根据所述第一参数值确定所述目标网络节点,包括:
    所述处理单元,用于若网络节点为所述N个待测量节点中的前K跳网络节点,则将所述第二参数信息添加在所述第一业务报文中;
    所述处理单元,用于若网络节点为所述N个待测量节点中的第K+n跳网络节点,则根据第一参数值确定是否将第一业务报文中的第K+n-1跳网络节点的所述第二参数信息替换为第K+n跳网络节点的所述第二参数信息,其中,n为正整数。
  15. 一种网络测量装置,其特征在于,包括:处理器,所述处理器用于与存储器耦合,读取并执行所述存储器中的指令,以执行如权利要求1至7中任一项所述的方法。
  16. 一种芯片系统,其特征在于,包括:处理器与数据接口,处理器通过数据接口读取存储器上存储的指令,以执行如权利要求1至7中任一项所述的方法。
  17. 一种计算机可读介质,其特征在于,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法。
PCT/CN2022/127983 2022-02-16 2022-10-27 网络测量的方法和装置 WO2023155475A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210141410.2 2022-02-16
CN202210141410.2A CN116647856A (zh) 2022-02-16 2022-02-16 网络测量的方法和装置

Publications (1)

Publication Number Publication Date
WO2023155475A1 true WO2023155475A1 (zh) 2023-08-24

Family

ID=87577443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127983 WO2023155475A1 (zh) 2022-02-16 2022-10-27 网络测量的方法和装置

Country Status (2)

Country Link
CN (1) CN116647856A (zh)
WO (1) WO2023155475A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167372A1 (en) * 2014-04-29 2015-11-05 Telefonaktiebolaget L M Ericsson (Publ) Identification of suitable network service points
CN109639534A (zh) * 2019-01-11 2019-04-16 锐捷网络股份有限公司 一种测试网络传输性能的方法、装置及计算机存储介质
WO2021179994A1 (zh) * 2020-03-10 2021-09-16 华为技术有限公司 一种随流检测方法及装置
US20210345134A1 (en) * 2018-10-19 2021-11-04 Telefonaktiebolaget Lm Ericsson (Publ) Handling of machine learning to improve performance of a wireless communications network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167372A1 (en) * 2014-04-29 2015-11-05 Telefonaktiebolaget L M Ericsson (Publ) Identification of suitable network service points
US20210345134A1 (en) * 2018-10-19 2021-11-04 Telefonaktiebolaget Lm Ericsson (Publ) Handling of machine learning to improve performance of a wireless communications network
CN109639534A (zh) * 2019-01-11 2019-04-16 锐捷网络股份有限公司 一种测试网络传输性能的方法、装置及计算机存储介质
WO2021179994A1 (zh) * 2020-03-10 2021-09-16 华为技术有限公司 一种随流检测方法及装置

Also Published As

Publication number Publication date
CN116647856A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
EP3767890B1 (en) Method and apparatus for monitoring service quality
US11909652B2 (en) Method, device and storage medium for quality of service (QoS) flow management of time sensitive data for transmission of ethernet packet filter sets
EP3783995B1 (en) Data processing method, device and system
EP3869857A1 (en) Resource information sending method, device, and system
US11606726B2 (en) Detecting quality of service (QoS) of a service
US20220256393A1 (en) TSN AND 5GS QoS MAPPING - A USER PLANE BASED METHOD
CN113630796B (zh) 服务质量监测方法、设备及系统
WO2020108002A1 (zh) 一种传输策略确定方法、策略控制方法及装置
EP4013124A1 (en) Method for notifying quality of service information, device, and system
US9154911B2 (en) Selective delivery of presence messages for wireless communication devices
US20220006549A1 (en) Clock synchronization method, network node, and storage medium
US20210160710A1 (en) Method and apparatus to support rach optimization and delay measurements for 5g networks
JP2021524204A (ja) サービス品質監視方法、及びシステム、並びに装置
JP7192140B2 (ja) ポリシー管理方法及び装置
Mišić et al. Extending LTE to support machine-type communications
WO2023284551A1 (zh) 通信方法、装置和系统
WO2023155475A1 (zh) 网络测量的方法和装置
US20240121201A1 (en) Communication method and apparatus
Chen Design and Implementation of Wireless Sensor Cellular Network Based on Android Platform.
WO2023011006A1 (zh) 一种通信方法、装置及设备
WO2023061207A1 (zh) 一种通信方法、通信装置及通信系统
US20230239174A1 (en) Packet detection rules derived from ethernet forwarding information
WO2021031903A1 (en) Method and apparatus for improved packet detection rule provision
WO2024027422A1 (zh) 通信方法和通信装置
US20240056871A1 (en) Resource allocation status subscription for application related function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926779

Country of ref document: EP

Kind code of ref document: A1