WO2024027422A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2024027422A1
WO2024027422A1 PCT/CN2023/104947 CN2023104947W WO2024027422A1 WO 2024027422 A1 WO2024027422 A1 WO 2024027422A1 CN 2023104947 W CN2023104947 W CN 2023104947W WO 2024027422 A1 WO2024027422 A1 WO 2024027422A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
communication service
data
delay
function network
Prior art date
Application number
PCT/CN2023/104947
Other languages
English (en)
French (fr)
Inventor
高国娟
李汉成
朱强华
周汉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027422A1 publication Critical patent/WO2024027422A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the fields of communication and industrial automation, and more specifically, to a communication method and a communication device.
  • 5G fifth-generation mobile communications
  • TSN time-sensitive network
  • the field of industrial automation characterizes the performance of system communication services based on communication characteristics such as communication service availability (CSA), communication service reliability (CSR) and reliability.
  • CSA communication service availability
  • CSR communication service reliability
  • 5G system 5G system, 5GS
  • 5G system does not provide performance indicators and processes related to monitoring the above communication characteristics.
  • Embodiments of the present application provide a communication method and communication device, which can realize mapping between communication service characteristic performance indicators in the industrial field and 5GS communication characteristic performance indicators, thereby ensuring real-time judgment and improvement of system performance.
  • the first aspect provides a communication method, which can be executed by an application function network element (for example, AF), or can also be executed by a chip or circuit used in the application function network element, which is not limited in this application.
  • an application function network element for example, AF
  • a chip or circuit used in the application function network element which is not limited in this application.
  • the following description takes execution by the application function network element as an example.
  • the method includes: the application function network element sends a request message, the request message is used to request subscription analysis of communication service characteristics of the target user equipment UE, the communication service characteristics include communication service availability, and/or communication service reliability, and the communication service availability is used to indicate Delay distribution and communication service reliability are used to indicate the relationship between failure and time.
  • the request message includes the identification of the target UE; the application function network element receives the analysis results associated with the communication service characteristics.
  • delay distribution can be understood as: delay distribution characteristics, probability distribution of delay, or cumulative distribution of delay, etc. This application does not specifically limit the specific names.
  • the application function network element can realize the mapping of communication service characteristic performance indicators in the industrial field and 5GS internal communication characteristic performance indicators by sending request messages to 5GS internal network elements and obtaining quantitative analysis results. Furthermore, the application function network element can quantify the communication performance indicators within 5GS to manufacturers in need, and combined with the data collection of different devices and different layers, when the indicators of communication service characteristics are abnormal, the application function network element can also pass all The occurrence of the indicated abnormal event (for example, a failure of the 5GS and industrial automation integrated system) is determined whether it is caused by internal reasons of the 5GS or external factors of the system, thereby locating the location of the fault and improving system performance.
  • the indicated abnormal event for example, a failure of the 5GS and industrial automation integrated system
  • the application function network element sends a request message, including: the application function network element sends a request message to the network data analysis function network element through the network capability opening network element; or, applying The functional network element sends a request message to the time-sensitive communication time synchronization functional network element or the user plane functional network element through the network capability opening network element.
  • the application function network element receives analysis results associated with communication service characteristics, including: the application function network element receives data from the network data analysis function network element through the network capability opening network element. The analysis results associated with the communication service characteristics; or, the application function network element receives the analysis results associated with the communication service characteristics from the time-sensitive communication time synchronization function network element or the user plane function network element through the network capability opening network element.
  • the communication service availability includes at least one or more of the following: a delay that meets a specified percentage value requirement; or a percentage value that the delay meets a specified time requirement.
  • the delay that meets the 99.99% requirement or the percentage value that meets the 10ms requirement.
  • the communication service reliability includes at least one or more of the following: the average time of failure, or the number or duration of failures within a specified time; or, meeting The probability of no failure within a specified time, or the time required for a specified number of failures to occur.
  • the average time for a failure to occur or the number or duration of failures that meet a specified time, such as one day; or, the probability of no failure within a specified time, such as one day, or the specified number of failures, such as N times. time.
  • the second aspect provides a communication method, which can be executed by a network data analysis function network element (for example, NWDAF), or can also be executed by a chip or circuit used for a network data analysis function network element.
  • NWDAF network data analysis function network element
  • This application provides This is not a limitation. For the convenience of description, the following description takes the execution of the network data analysis function network element as an example.
  • the method includes: a network data analysis function network element receives a first request message, the first request message is used to request subscription analysis of communication service characteristics of the target user equipment UE, and the communication service characteristics include communication service availability and/or communication service reliability, The communication service availability is used to indicate the delay distribution, and the communication service reliability is used to indicate the relationship between failure and time.
  • the first request message includes the identification of the target UE; the network data analysis function network element sends a second request message. The message is used to request to obtain the first data associated with the communication service characteristics; the network data analysis function network element receives the first data; the network data analysis function network element analyzes the first data and obtains the analysis results associated with the communication service characteristics; network data The analysis function network element sends the analysis results.
  • the network data analysis function network element receives the first request message requesting subscription analysis of the communication service characteristics of the target user equipment UE, uses the second request message to collect and analyze the first data, and obtains the requested communication service.
  • the analysis results of feature correlation and reporting can realize the combination of communication service feature performance indicators in the industrial field and 5GS internal communication feature performance indicators, so that subsequent application functional network elements can quantify the communication performance indicators within 5GS to manufacturers in need, or locate Locate the location of the fault and improve system performance.
  • the communication service availability includes at least one or more of the following: a delay that meets a specified percentage value requirement; or a percentage value that the delay meets a specified time requirement.
  • communication service reliability includes at least one or more of the following: the average time for failure to occur, or the number or duration of failures within a specified time; or, meeting The probability of no failure within a specified time, or the time required for a specified number of failures to occur.
  • the first data includes one or more of the following: end-to-end delay, data packet delay budget, or data packet to data packet interval delay; and / Or the start time and duration of the failure, or the start time and end time.
  • the first data may also include data packet size, data packet rate, or data packet error rate.
  • the network data analysis function network element receives the first request message, including: the network data analysis function network element receives the third request message from the application function network element through the network capability opening network element. A request message.
  • the network data analysis function network element sends a second request message, including: the network data analysis function network element sends the second request message to the time-sensitive communication time synchronization function network element. ; Or, the network data analysis function network element sends the second request message to the user plane function network element; or, the network data analysis function network element sends the second request message to the data collection application function network element.
  • the fault location can be located for the 5GS and industrial automation integrated system. For example, problems within 5GS, the upper layer of UE, or external devices connected to UE.
  • the network data analysis function network element receives the first data, including: the network data analysis function network element receives the first data from the time-sensitive communication synchronization function network element; Alternatively, the network data analysis function network element receives the first data from the user plane function network element; or the network data analysis function network element receives the first data from the data collection application function network element; or the network data analysis function network element receives The first data from the time-sensitive communication time synchronization function network element.
  • the network data analysis function network element analyzes the first data to obtain analysis results associated with the communication service characteristics, including: the network data analysis function network element analyzes the first data according to the first data Statistics of end-to-end delay, packet delay budget, or cumulative distribution function and/or probability density function of packet-to-data packet delay within a specified period of time; network data analysis function network elements use the cumulative distribution function and/or The probability density function determines one or more of the following: the delay that meets a specified percentage value; or, the percentage value that the delay meets a specified time requirement.
  • the network data analysis function network element analyzes the first data to obtain the The analysis results associated with communication service characteristics include: the network data analysis function network element counts end-to-end delay based on the first data, the data packet delay budget, or the cumulative distribution function of the delay between data packets within a specified period of time. and/or probability density function; the network data analysis function network element determines one or more of the following based on the cumulative distribution function and/or probability density function: the average time to failure, or the number or duration of failures within a specified time; or , which satisfies the probability of no failure within a specified time, or the time that satisfies the specified number of failures.
  • the network data analysis function network element sends analysis results associated with the communication service characteristics, including: the network data analysis function network element sends the network data analysis function network element to the application function network through the network capability opening network element. The element sends analysis results associated with communication service characteristics.
  • a communication method is provided, which can be executed by a user plane function network element/time-sensitive communication time synchronization function network element/terminal equipment (for example, UPF/TSCTSF/UE), or can also be used by This application does not limit the chip or circuit execution of the synchronization functional network element/terminal equipment during user plane functional network element/time-sensitive communication.
  • a user plane function network element/time-sensitive communication time synchronization function network element/terminal equipment for example, UPF/TSCTSF/UE
  • This application does not limit the chip or circuit execution of the synchronization functional network element/terminal equipment during user plane functional network element/time-sensitive communication.
  • the following description takes the execution by the user plane functional network element/time-sensitive communication time synchronization functional network element/terminal equipment as an example.
  • the method includes: a first device receives first information, the first information includes instructions for monitoring communication service characteristics, the communication service characteristics include communication service availability, and/or communication service reliability, and the communication service availability is used to indicate delay. Distribution, communication service reliability is used to indicate the relationship between failure and time; the first device monitors the communication service characteristics according to the first information to obtain the first data associated with the communication service characteristics, and the first data is used to determine and analyze Result; the first device sends the first data.
  • the first device collects and reports the first data, so that subsequent application function network elements can quantify the communication performance indicators within 5GS to manufacturers in need, and combine data collection from different devices and different layers,
  • the application function network element can also determine whether it is caused by internal causes of 5GS or external causes of the system through the occurrence of the indicated abnormal events (for example, a failure of the 5GS and industrial automation integration system), and then locate the cause. Locate the fault location and improve system performance.
  • the communication service availability includes at least one or more of the following: a delay that meets a specified percentage value requirement; or a percentage value that the delay meets a specified time requirement.
  • communication service reliability includes at least one or more of the following: the average time for failure to occur, or the number or duration of failures within a specified time; or, meeting The probability of no failure within a specified time, or the time required for a specified number of failures to occur.
  • the first data includes one or more of the following: end-to-end delay, data packet delay budget, or data packet to data packet interval delay, fault The start time and duration of the occurrence, or the start time and end time.
  • the first data may also include data packet size, data packet rate, or data packet error rate.
  • the first device sending the first data includes: the first device sending the first data to the time-sensitive communication time synchronization function network element or the user plane function network element.
  • the first device is a UE, and the UE may send the first data to the TSCTSF or UPF, and then the TSCTSF or UPF reports it to the NWDAF.
  • the first device analyzes the first data and obtains the analysis results; the first device sends the analysis results.
  • the first device such as UPF or UE can collect and report the first data to the TSCTSF, and then the TSCTSF sends the first data to the NWDAF to facilitate the NWDAF to analyze the first data and obtain the corresponding analysis. Result;
  • the first device such as the UE can also send the first data to the UPF, and then the UPF sends it to the NWDAF through the TSCTSF; or the first device such as the UPF or the UE can also collect and analyze the first data to obtain the corresponding analysis As a result, the analysis results are then reported to AF and so on through the NEF open interface.
  • the first device analyzes the first data to obtain analysis results, including: the first device collects statistics on end-to-end delay and packet delay budget based on the first data. , or the cumulative distribution function and/or probability density function of the delay between data packets within a specified time; the first device determines one or more of the following based on the cumulative distribution function and/or probability density function: meeting the specified percentage value The required delay; or, the percentage value of the delay that meets the specified time requirement.
  • the first device analyzes the first data to obtain analysis results, including: the first device collects statistics on end-to-end delay and packet delay budget based on the first data. , or the delay between data packets is within the specified time The cumulative distribution function and/or probability density function within; the first device determines one or more of the following based on the cumulative distribution function and/or probability density function: the average time of failure, or the number or duration of failures within a specified time ; Or, meet the probability of no failure within a specified time, or meet the time for a specified number of failures to occur.
  • a communication device including: a transceiver unit, configured to send a request message, the request message being used to request a subscription to analyze the communication service characteristics of the target user equipment UE, where the communication service characteristics include communication service availability, and/or communication Service reliability, communication service availability is used to indicate the delay distribution, communication service reliability is used to indicate the relationship between failure and time, the request message includes the identification of the target UE; the transceiver unit is also used to receive information associated with the communication service characteristics. Analyze the results.
  • the transceiver unit can perform the processing of receiving and transmitting in the aforementioned first aspect.
  • the device further includes a processing unit that can perform other processing in addition to receiving and transmitting in the aforementioned first aspect.
  • a communication device including: a transceiver unit configured to receive a first request message, the first request message being used to request subscription analysis of communication service characteristics of the target user equipment UE, where the communication service characteristics include communication service availability, And/or communication service reliability, communication service availability is used to indicate the delay distribution, communication service reliability is used to indicate the relationship between failure and time, the first request message includes the identification of the target UE; the transceiver unit is also used to send The second request message is used to request to obtain the first data associated with the communication service characteristics; the transceiver unit is also used to receive the first data; the processing unit is used to analyze the first data and obtain the first data associated with the communication service characteristics. Associated analysis results; transceiver unit, also used to send analysis results.
  • the transceiver unit can perform the processing of receiving and transmitting in the aforementioned second aspect, and the processing unit can perform other processing in addition to receiving and transmitting in the aforementioned second aspect.
  • a communication device including: a transceiver unit configured to receive first information, where the first information includes instructions for monitoring communication service characteristics, and the communication service characteristics include communication service availability, and/or communication service Reliability, communication service availability is used to indicate delay distribution, communication service reliability is used to indicate the relationship between failure and time; the processing unit is used to monitor communication service characteristics based on the first information to obtain communication service characteristics The associated first data is used to determine the analysis result; the transceiver unit is also used to send the first data.
  • the transceiver unit may perform the processing of receiving and transmitting in the foregoing third aspect, and the processing unit may perform other processing in addition to receiving and transmitting in the foregoing third aspect.
  • a communication device including a transceiver, a processor and a memory.
  • the processor is used to control the transceiver to send and receive signals.
  • the memory is used to store a computer program.
  • the processor is used to call and run the computer from the memory.
  • the program enables the communication device to execute the method in the above-mentioned first to third aspects and any possible implementation manner thereof.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • a communication monitoring system including one or more of an application function network element, a network data analysis function network element, or a first device.
  • a computer-readable storage medium stores a computer program or code.
  • the computer program or code When the computer program or code is run on a computer, it causes the computer to execute the above-mentioned first aspect to The method in the third aspect and any possible implementation thereof.
  • a chip including at least one processor, the at least one processor is coupled to a memory, the memory is used to store a computer program, the processor is used to call and run the computer program from the memory, so that the installation A network device having the chip system performs the method in the above first to third aspects and any possible implementation manner thereof.
  • the chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • a computer program product includes: computer program code.
  • the device causes the device to perform the above-mentioned first to third aspects and method in any of its possible implementations.
  • Figure 1 is a schematic diagram of a network architecture 100 applicable to this application.
  • Figure 2 is a schematic diagram of a 5GS time-sensitive communication and time synchronization architecture 200 applicable to this application.
  • FIG. 3 is a schematic diagram of a 5GS time-sensitive communication and/or time synchronization architecture 300 applicable to the present application.
  • Figure 4 is a schematic diagram of a 5GS user plane protocol stack applicable to this application.
  • Figure 5 is a schematic diagram of a 5GS integrated automation application from a network perspective applicable to this application.
  • Figure 6 is a flow example diagram of the communication method 600 provided by the embodiment of the present application.
  • Figure 7 is a flow example diagram of the communication method 700 provided by the embodiment of the present application.
  • Figure 8 is a flow example diagram of the communication method 800 provided by the embodiment of the present application.
  • Figure 9 is a flow example diagram of the communication method 900 provided by the embodiment of the present application.
  • Figure 10 is a flow example diagram of the communication method 1000 provided by the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the technical solution provided by this application can be applied to various communication systems, such as: new radio (NR) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system , LTE time division duplex (TDD) system, etc.
  • NR new radio
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • the technical solution provided by this application can also be applied to device-to-device (D5) communication, vehicle-to-everything (V2X) communication, machine-to-machine (M2M) communication, machine type Communication (machine type communication, MTC), and Internet of Things (Internet of things, IoT) communication systems or other communication systems.
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • MTC machine type Communication
  • IoT Internet of Things
  • the part operated by the operator can be called the public land mobile network (PLMN), or the operator network, etc.
  • PLMN is a network established and operated by the government or its approved operators for the purpose of providing land mobile communication services to the public. It is mainly a public network where mobile network operators (MNOs) provide mobile broadband access services to users. .
  • MNOs mobile network operators
  • the PLMN described in the embodiments of this application may specifically be a network that meets the standard requirements of the 3rd generation partnership project (3GPP), referred to as a 3GPP network.
  • 3GPP networks generally include but are not limited to 5G networks, fourth-generation mobile communications (4th-generation, 4G) networks, and other future communication systems, such as (6th-generation, 6G) networks.
  • the embodiments of this application will take the PLMN or 5G network as an example for description.
  • FIG 1 is a schematic diagram of a network architecture 100 provided by an embodiment of the present application, taking the 5G network architecture based on the service-based architecture SBA in the non-roaming scenario defined in the 3GPP standardization process as an example.
  • the network architecture can include three parts, namely terminal equipment, data network (DN) and operator network PLMN part. The following is a brief description of the functions of each part of the network element.
  • the terminal device part may include a terminal device 110, which may also be called user equipment (UE).
  • the terminal device 110 in this application is a device with a wireless transceiver function, which can communicate with an or Multiple core network (core network, CN) devices communicate.
  • Terminal equipment 110 may also be referred to as an access terminal, terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, user agent or user device, etc.
  • the terminal device 110 can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal device 110 may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smartphone, a mobile phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) )wait.
  • the terminal device 110 may also be a handheld device with wireless communication function, a computing device or other device connected to a wireless modem, a vehicle-mounted device, a wearable device, a drone device or a terminal in the Internet of Things, the Internet of Vehicles, or a 5G network As well as any form of terminals in the future network, relay user equipment or terminals in the future evolved 6G network, etc.
  • the relay user equipment may be, for example, a 5G residential gateway (RG).
  • the terminal device 110 may be a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in driverless driving, a wireless terminal in telemedicine, or a smart grid.
  • the terminal equipment here refers to the 3GPP terminal.
  • the embodiments of the present application do not limit the type or type of terminal equipment. For ease of explanation, this application will take UE to refer to terminal equipment as an example for subsequent explanation.
  • the operator network PLMN part may include but is not limited to (radio) access network ((radio) access network, (R)AN) 120 and core network CN.
  • (R)AN 120 can be regarded as a sub-network of the operator's network, and is the implementation system between the service nodes and the terminal equipment 110 in the operator's network.
  • the terminal device 110 To access the operator's network, the terminal device 110 first passes through the (R)AN 120, and then can be connected to the service node of the operator's network through the (R)AN 120.
  • the access network device (RAN) in the embodiment of this application is a device that provides wireless communication functions for the terminal device 110. It can also be called a network device.
  • the RAN device includes but is not limited to: the next generation base station node in the 5G system ( next generation node base station (gNB), evolved node B (eNB), radio network controller (RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), base band unit (base band unit, BBU ), transmission point (transmitting and receiving point, TRP), transmitting point (TP), small base station equipment, mobile switching center, or network equipment in future networks, etc.
  • next generation node base station gNB
  • evolved node B evolved node B
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • base band unit base band unit
  • TRP transmitting and receiving point
  • TP small base station equipment
  • access network equipment For convenience of description, in all embodiments of this application, the above-mentioned devices that provide wireless communication functions for the terminal equipment 110 are collectively called access network equipment or simply RAN or AN. It should be understood that this article does not limit the specific type of access network equipment.
  • CN can include but is not limited to: user plane function (UPF)130, network exposure function (NEF)131, time sensitive communication and time synchronization function (TSCTSF) 132. Policy control function (PCF) 133. Unified data management function (UDM) 134. Application function (AF) 135. Network data analytics function (NWDAF) 136 , session management function (SMF) 137, access and mobility management function (AMF) 138.
  • UPF user plane function
  • NEF network exposure function
  • TSCTSF time sensitive communication and time synchronization function
  • PCF Policy control function
  • UDM Unified data management function
  • AF Application function
  • NWDAF Network data analytics function
  • SMF session management function
  • AMF access and mobility management function
  • DN 140 also known as packet data network (PDN)
  • PDN packet data network
  • the DN can also be deployed by the operator, that is, the DN is part of the PLMN.
  • the operator network PLMN can access multiple DNs 140, and a variety of services can be deployed on the DN 140 to provide data and/or voice services to the terminal device 110.
  • DN 140 can be a private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal equipment 110.
  • the control server of the sensor is deployed in DN 140, and the control server can provide services for the sensor.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • DN 140 can be a company's internal office network, and the company's employees' mobile phones or computers can be terminal devices 110. The employees' mobile phones or computers can access information, data resources, etc. on the company's internal office network.
  • the terminal device 110 can establish a connection with the operator network through an interface (such as N1, etc.) provided by the operator network, and use data and/or voice services provided by the operator network.
  • the terminal device 110 can also access the DN 140 through the operator network, and use the operator services deployed on the DN 140, and/or services provided by third parties.
  • NF network function
  • UPF 130 is a gateway provided by the operator, and is the gateway for communication between the operator's network and DN 140.
  • UPF 130 includes user plane functions such as data packet routing and transmission, data packet detection, business usage reporting, quality of service (QoS) processing, legal interception, uplink data packet detection, downlink data packet storage, etc.
  • QoS quality of service
  • NEF 131 is a control plane function provided by the operator. It mainly enables third parties to use the services provided by the network, supports the network to open its capabilities, events and data analysis, provides PLMN security configuration information from external applications, and exchanges information inside and outside the PLMN. conversion etc.
  • TSCTSF 132 is a control plane function provided by operators and is used for time-sensitive communication time synchronization functions.
  • PCF 133 is a control plane function provided by operators. It supports a unified policy framework to govern network behavior, and provides policy rules and contract information related to policy decisions to other control functions.
  • UDM 134 is a control plane function provided by the operator. It is responsible for storing the user permanent identifier (subscriber permanent identifier, SUPI) and the publicly used subscription identifier (generic public subscription identifier, GPSI) of the subscribed user in the operator's network. ), letters of trust and other information. The information stored in the UDM 134 can be used to process the identification of the terminal device 110, authentication, registration and mobility management for accessing the operator's network, etc.
  • the unified data management function network element can also be a unified data storage function (unified data repository, UDR) network element.
  • AF 135 is a control plane function provided by operators. It is used to access network open function network elements or interact with the policy framework for policy control.
  • NWDAF 136 is a control plane function provided by the operator. Its main function is to collect data from NF, external application function AF and operation and maintenance management (operations, administration and maintenance, OAM) systems, etc., and provide NWDAF services to NF and AF. Registration, data openness and data analysis, etc.
  • SMF 137 is a control plane function provided by the operator network and is responsible for managing the protocol data unit (PDU) session of the terminal device 110.
  • a PDU session is a channel used to transmit PDUs. Terminal devices need to transmit PDUs to each other through the PDU session and DN 140.
  • the PDU session is established, maintained and deleted by SMF 137.
  • SMF 137 includes session management, selection and control of UPF 130, service and session continuity (SSC) mode selection, roaming and other session-related functions.
  • SSC service and session continuity
  • AMF 138 is a control plane function provided by the operator network. It is responsible for the access control and mobility management of the terminal device 110 accessing the operator network, such as mobility status management, allocation of user temporary identity, authentication and authorization of users, etc. Function.
  • the interfaces between various control plane network elements are point-to-point interfaces.
  • the names and functions of the interfaces between some network elements are as follows:
  • N1 The interface between AMF and the terminal, which can be used to transmit QoS control rules to the terminal.
  • N2 The interface between AMF and RAN, which can be used to transmit wireless bearer control information from the core network side to the RAN.
  • N3 The interface between RAN and UPF, mainly used to transmit uplink and downlink user plane data between RAN and UPF.
  • N4 The interface between SMF and UPF, which can be used to transfer information between the control plane and the user plane, including controlling the distribution of forwarding rules, QoS control rules, traffic statistics rules, etc. for the user plane, and reporting user plane information.
  • N5 The interface between AF and PCF, which can be used to deliver application service requests and report network events.
  • N6 The interface between UPF and DN, used to transmit uplink and downlink user data flows between UPF and DN.
  • Nnef, Naf, Npcf, Nudm, Ntsctsf, Nnwdaf, Namf, Nsmf, N1, N2, N3, N4, N5 and N6 are interface serial numbers. This application does not limit the meaning of the above interface serial numbers. It should be noted that the interface names between various network functions in Figure 1 are just an example. In specific implementations, the interface names of the system architecture may also be other names, and this application does not limit this.
  • the above network architecture is only an example of a network architecture described from the perspective of a service-oriented architecture.
  • the network architecture applicable to the embodiments of the present application is not limited to this. Any network architecture that can realize the functions of each of the above network elements is applicable to this application.
  • the communication method provided by the embodiment of the present application may also involve network elements not shown in Figure 1.
  • the communication method provided by the embodiment of the present application may also include only some of the network elements shown in Figure 1.
  • the AMF, SMF, UPF, NEF, TSCTSF, AF, PCF, UDM, and NWDAF shown in Figure 1 can be understood as network elements used to implement different functions in the core network. For example, they can be combined into network slices as needed. . These core network elements can be independent devices, or they can be integrated into the same device to implement different functions, or they can be network elements in hardware devices, software functions running on dedicated hardware, or platforms (such as , a virtualization function instantiated on a cloud platform). This application does not limit the specific form of the above network elements.
  • FIG 2 is a schematic diagram of a 5GS time sensitive communications (TSC) and time synchronization (time synchronization) architecture 200 applicable to this application.
  • This architecture can support delay-sensitive network TSN.
  • 5GS is integrated into the TSN system as a TSN Bridge and can be called a 5GS Virtual TSN Bridge.
  • the TSN bridge includes a TSN converter, which is used for user plane interaction between the TSN system and 5G, and can ensure the end-to-end certainty of the TSN system.
  • the 5GS TSN converter function includes a functional module deployed on the terminal device: device side TSN translator (DS-TT) and a functional module deployed on the UPF: network side TSN translator (NW- TT).
  • DS-TT device side TSN translator
  • NW- TT network side TSN translator
  • TSN sends timing information to TSN nodes through the communication system (specifically, the communication system where the terminal device resides, such as 5GS) to achieve the purpose of clock synchronization for TSN nodes in the same time domain.
  • the communication system specifically, the communication system where the terminal device resides, such as 5GS
  • 5GS the communication system where the terminal device resides
  • FIG 3 is a schematic diagram of a 5GS time-sensitive communication and/or time synchronization architecture 300 applicable to the present application.
  • the architecture can support Ethernet or Internet Protocol (IP) based on the IEEE 802.1AS standard or the IEEE 1588 standard.
  • IP Internet Protocol
  • Type PDU will time synchronization service.
  • the entire end-to-end 5GS can be regarded as an IEEE 802.1AS time-aware system. As shown in Figure 2B, it includes two time synchronization domains, namely the 5G time domain and the TSN time domain.
  • 5G GM (5G internal master clock) achieves time synchronization with UE, gNB, UPF, NW-TT and DS-TT.
  • TSCTSF controls DS-TT(s) and NW-TT.
  • time-sensitive communication TSC and time synchronization technology of the network architecture shown in Figure 2 are deployed at the same time, and the time-sensitive communication TSC and time synchronization technology of the network architecture shown in Figure 3 can be used independently. Therefore, the communication service monitoring provided by this application is applicable to both aspects with and without clock synchronization.
  • TSN AF in Figure 2 is an internal network element of 5GS and can be regarded as an application function network element.
  • TSN AF open performance indicators can be used to realize the mapping between industrial networks and 5GS.
  • the performance index can also be opened through NEF, which is not specifically limited in this application.
  • AF is an external network element.
  • the performance indicators between 5GS and industrial networks are usually opened through NEF.
  • TSN AF can also be understood as an application function network element.
  • the centralized network configuration (CNC) unit in the TSN network initiates demand input to TSN AF, and then TSN AF initiates a subscription request.
  • CNC centralized network configuration
  • the specific subscription request process of TSN AF is similar to the processes in Figures 6 to 10.
  • Communication service availability is defined as: the percentage value of the time for delivering end-to-end (E2E) communication services according to the specified QoS, divided by the time for the system to deliver end-to-end communication services.
  • the endpoint in "end-to-end” can be a communication service interface. If the communication service does not meet the corresponding QoS requirements, the communication service is considered unavailable. The communication system is considered unavailable if the message is not received correctly within a specified time, which is at least the sum of the allowed end-to-end delay (the E2E latency), jitter, and survival time. That is, this parameter indicates whether the communication system works according to the contract ("available"/"unavailable” status). A communication system is in an "available” state as long as the availability criteria for transmitted data packets are met. If the data packets received at the target end are corrupted and/or untimely (e.g., the update time is greater than the specified maximum), the communication service is not available. If the survival time is greater than zero, consecutive damage and/or delays are ignored until the corresponding time expires.
  • the availability of communication services is calculated using accumulated downtime. For example, during the expected running time of the communication service T
  • the availability A of communication services can be defined as:
  • Communication service reliability is defined as: the ability of a communication service to perform as required under given conditions and within a given time interval. Where the given conditions include at least one of the following: operating mode, stress level, and environmental conditions.
  • Reliability can be quantified using appropriate measures, such as mean time between failures, or the probability of no failures within a specified period of time.
  • mean time between failures is one of the typical indicators of communication service reliability. This parameter represents the average time that the communication service is available before becoming unavailable. For example, a mean time between failures of one month means that the communication service runs error-free for an average of one month before an error/bug renders the communication service unavailable. Typically, an exponential distribution is assumed. This means that if the time between two subsequent errors is below the average (i.e. 1 month), there will be several failures.
  • communication service reliability is not necessarily related to communication service availability.
  • FIG 4 is a schematic diagram of a 5GS user plane protocol stack applicable to this application.
  • the user plane network elements include UE, 5G-AN and UPF.
  • N3 is the interface between RAN and UPF, mainly used to transmit uplink and downlink user plane data between 5G-AN and UPF;
  • N6 is the interface between UPF and DN, used to transmit uplink and downlink user data between UPF and DN.
  • UE has application layer, PDU layer and 5G-AN protocol layer.
  • 5G-AN has 5G-AN protocol layer, GTP-U layer, UDP/IP Layer, L2 and L1, UPF has PDU layer, GTP-U layer, UDP/IP layer, L2 and L1.
  • 5GS QoS monitoring defines the delay measurement method of air interface and N3 interface, which involves the delay measurement method within 5GS (such as , below the PDU layer shown in Figure 4) delay measurement. How to monitor the performance indicators related to the communication service characteristics of industrial automation in 5GS, such as communication service availability, communication service reliability, etc., and realize the mapping between the 5GS communication field and the industrial automation field are technical issues that need to be solved urgently.
  • this application provides a communication method and network equipment, which quantitatively provides communication characteristic indicators to AF, and provides them to industrial automation manufacturers through open interfaces, so that the key performance indicator (key performance indicator) measured by industrial control and automation systems , KPI) are mapped in 5GS.
  • the 5GS internal communication services related to opening to external systems can detect the performance of 5GS internal communication services related to opening to external systems from the perspective of 5GS (the understanding of the 5GS internal and external communication systems described in this article can be considered that 5GS and industrial automation systems are connected through the communication service interface, and the interface layer and the following logical communication links are 5GS internal communication system, the part that interfaces with industrial automation applications is the 5GS external communication system); on the other hand, it can detect the communication service performance of the entire end-to-end system from the industrial automation perspective, including the 5GS system, by analyzing different layers or interfaces The combination of indicator monitoring can be used to delimit and locate end-to-end system problems.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b and c can mean: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , b and c.
  • a, b and c can be single or multiple respectively.
  • for instructions may include for direct instructions and for indirect instructions.
  • indication information when describing that certain indication information is used to indicate A, it may include that the indication information directly indicates A or indirectly indicates A, but it does not mean that the indication information must carry A.
  • the instruction methods involved in the embodiments of this application should be understood to cover various methods that can enable the party to be instructed to obtain the information to be instructed.
  • the information to be instructed can be sent together as a whole, or can be divided into multiple sub-information and sent separately, and the sending cycle and/or sending timing of these sub-information can be the same or different. This application does not limit the specific sending method.
  • the "instruction information" in the embodiment of this application may be an explicit indication, that is, a direct indication through signaling, or may be obtained based on parameters indicated by signaling, combined with other rules or other parameters, or obtained through derivation. It can also be an implicit indication, that is, obtained based on rules or relationships, or based on other parameters, or derivation. This application does not specifically limit this.
  • protocol may refer to a standard protocol in the field of communication. For example, it may include 5G protocol, new radio (NR) protocol, and related protocols applied in future communication systems. This application refers to This is not limited.
  • Preconfigured may include predefined. For example, protocol definition. Among them, “pre-definition” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device. This application does not limit its specific implementation method.
  • storage may refer to saving in one or more memories.
  • the one or more memories may be a separate device, or may be integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partially provided separately and partially integrated in the decoder, processor, or communication device.
  • the type of memory can be any form of storage medium, and this application is not limited thereto.
  • FIG. 5 is a schematic diagram of a 5GS integrated automation application from a network perspective applicable to this application.
  • the automation application when the automation application is integrated with 5GS, the automation application itself can be connected to 5GS in order to achieve different communication performance (for example, if Class A performance needs to be achieved, CSIF can be placed at the PDU layer, or at the application layer (such as The application layer above the PDU shown in Figure 4); alternatively, automated applications can also be connected after 5GS transformation (for example, if Class B performance needs to be achieved, 5GS itself may need to add processing data similar to the Timing-layer in Class B function, at this time CSIF can be placed at the GTP layer, or UDP/IP layer or L2, etc.); or, the automation application can also be connected after 5GS transforms the L2 protocol (for example, if Class C performance needs to be achieved, dedicated real-time Ethernet function, at this time CSIF can be placed in L2, etc.).
  • 5GS transformation for example, if Class B performance needs to be achieved, 5GS itself may need to add processing data similar to the Timing-layer in Class B function, at this time CSIF can be placed at
  • the performance indicators can be mapped to communication characteristics such as communication service availability or communication service reliability in automation applications.
  • FIG. 6 is a schematic flowchart of the communication method 600 provided by the embodiment of the present application. As shown in Figure 6, the method includes the following steps.
  • the network data analysis function network element receives the first request message.
  • the first request message is used to request subscription analysis of communication service characteristics of the target user equipment UE(s).
  • the communication service characteristics include communication service availability and/or communication service reliability.
  • the communication service availability is used to indicate delay distribution,
  • the communication service reliability is used to indicate the relationship between failure and time, and the first request message includes the identification of the target UE.
  • communication service availability refers to the percentage value of the time for delivering end-to-end communication services based on the specified QoS, divided by the time for the system to deliver end-to-end services. If the communication service does not meet the relevant QoS requirements, it is considered unavailable. For example, a communication service is unavailable if a message is not received correctly within a specified time, which can be the sum of the allowed end-to-end delay, jitter, and survival time.
  • communication service availability can be quantified as a curve report. The abscissa represents the delay, and the ordinate represents the percentage values corresponding to different delays.
  • communication service availability includes one or more of the following: a delay that meets a specified percentage value; or, a percentage value that the delay meets a specified time requirement. For example, the delay that meets the 99.99% requirement; or the percentage value that meets the 10ms requirement.
  • communication service reliability is the ability of communication services to perform as required under given conditions and within a given time interval.
  • Mean time between failures is one of the typical indicators of communication service reliability. This parameter represents the average time that the communication service is available before becoming unavailable.
  • reliability includes at least one or more of the following: the mean time to failure, or the number or duration of failures within a specified time (i.e., the mean time between failures, or mean time between failures); or, the mean time between failures within a specified time.
  • the probability of no failure or the time required for a specified number of failures to occur. For example, the average time for a failure to occur, or the number or duration of failures within 1 day; or, the probability of no failure within 1 day, or the time for N failures to occur.
  • a mean time between failures of one month means that the communication service runs error-free for an average of one month before an error or bug renders the communication service unavailable.
  • communication service reliability can also be quantified as a curve report.
  • the abscissa represents time information, and the ordinate represents the number of failures or dissatisfaction events corresponding to each time.
  • the first request message also includes frequency indication information, which is used to indicate the frequency of reporting the analysis results in the following steps S660 and S680. For example, report once an hour, or report once a day.
  • frequency indication information is used to indicate the frequency of reporting the analysis results in the following steps S660 and S680. For example, report once an hour, or report once a day.
  • the application function network element can request to subscribe to and analyze the communication service characteristics of the target user equipment UE(s) from within the 5GS through a request message.
  • the network element within the 5GS (such as NEF or TSCTSF or PCF ) can map communication service characteristics to end-to-end delay or PDB delay, or packet-to-data packet interval delay; and/or, the start time and duration of the fault, or the start time and end time, through Collect and analyze end-to-end (E2E) delay or PDB delay, or packet-to-data packet interval delay, and/or, the start time and duration of the fault, or the start time and end time , to express It collects the index performance of communication service characteristics in the field of industrial automation, thereby realizing the combination and mapping relationship between the industrial field and the communication field.
  • the analysis results corresponding to the communication service characteristics can be used to control the communication services of the industrial network.
  • the endpoints in the end-to-end delay are communication service interfaces.
  • the end-to-end delay can be the E2E delay of the IP PDU Layer, or the E2E delay of the media access control (medium access control, MAC) protocol data unit (PDU) Layer, or the E2E delay within 5GS.
  • the E2E delay below the transport layer corresponds to the communication interface layer when 5GS is connected to industrial applications in actual deployment.
  • the application function network element sends a request message to the network data analysis function network element through the network capability opening network element.
  • the application function network element sends a request message to the time-sensitive communication time synchronization function network element or the user plane function network element through the network capability opening network element.
  • S620 The network data analysis function network element sends a second request message.
  • the first device receives the second request message, that is, the first information, sent from the network data analysis function network element.
  • the second request message is used to request to obtain the first data associated with the communication service feature.
  • the first data includes one or more of the following: end-to-end delay, data packet delay budget, or data packet to data packet interval delay, the start time and duration of the fault, or the start time and end time.
  • the first data may also include data packet size, data packet rate, or data packet error rate.
  • the NWDAF sends a second request message to the TSCTSF or UPF to request collection of the first data, that is, data below the application layer of the target UE.
  • the NWDAF sends a second request message to the TSCTSF or UPF through OAM to request collection of data below the application layer of the target UE.
  • NWDAF sends a second request message to a third party, such as data collection application function (DCAF), to request the collection of the first data, that is, the target UE application layer data. , or AF application layer data.
  • DCAF data collection application function
  • the application layer data may be HTTP layer data.
  • the NWDAF sends a second request message to the DCAF through OAM to request collection of target UE application layer data or AF application layer data.
  • the UPF may receive the first information from the SMF, such as the SMF sending an N4 session modification to the UPF, including availability and/or communication services for uplink and/or downlink communication services.
  • the SMF may send an N4 session modification to the UPF, including availability and/or communication services for uplink and/or downlink communication services.
  • monitoring includes the end-to-end delay or PDB delay between the UPF and the UE collected by the UE (in this implementation, the UE can report the collected data to the UPF), or the interval between data packets on one side of the UE.
  • Delay and the end-to-end delay or PDB delay collected by UPF between UPF and UE or between UE and UPF, or the interval delay between data packets received by UPF on one side (can be used for communication service availability analysis ), as well as the start time, end time, or duration of the fault (can be used for communication service reliability analysis).
  • the first device is a UE, and the UE receives the first information from the SMF through the AMF, for example, the AMF passes an N1 message to the UE, including communication service availability and/or communication services for the UPF to the UE.
  • Reliable QoS monitoring configuration for example, monitoring includes the end-to-end delay or PDB delay from UPF to UE, or the interval delay between data packets received by the UE on one side (can be used for communication service availability analysis), and The start time, end time, or duration of the fault, etc. (can be used for communication service reliability analysis).
  • the first device is a UE
  • the UE receives first information from the DCAF for QoS monitoring configuration of communication service availability and/or communication service reliability, mainly for data of the UE application layer. monitor.
  • monitoring includes the end-to-end delay or PDB delay from UPF to UE, or the interval delay between data packets received by the UE on one side (which can be used for communication service availability analysis), or the timestamp information of received data packets. , as well as the start time, end time, or duration of the fault, etc. (can be used for communication service reliability analysis).
  • the survival time ST on the UE side may also be included.
  • time to live refers to the time that an application using a communication service can continue to run without expected messages.
  • the policy for PCF to generate QoS monitoring at least includes requirements to monitor E2E delay (for example, E2E delay of IP PDU Layer or MAC PDU Layer, or intra-5GS transmission E2E delay below the layer) strategy.
  • E2E delay for example, E2E delay of IP PDU Layer or MAC PDU Layer, or intra-5GS transmission E2E delay below the layer
  • the PCF when requesting communication service reliability event analysis, the PCF generates a QoS monitoring policy of at least Contains policies that require monitoring of failure time (for example, marking the start time, end time, or duration of failure, etc.).
  • a policy is that when the E2E is less than the specified delay value, it can be marked as a non-failure time. ).
  • the specific implementation method of the first device monitoring the communication service characteristics according to the first information may refer to the existing technology. For the sake of brevity, no further details will be given here.
  • S630 The first device monitors the communication service characteristics to obtain the first data.
  • the first device receives first information, and the first information includes instructions for monitoring communication service characteristics.
  • the communication service characteristics include communication service availability, and/or communication service reliability, and communication service availability. It is used to indicate the delay distribution, and the communication service reliability is used to indicate the relationship between failure and time.
  • the communication service availability includes at least one or more of the following: a delay that meets a specified percentage value requirement; or a percentage value that the delay meets a specified time requirement. For example, the delay that meets the 99.99% requirement; or the percentage value that meets the 10ms requirement.
  • communication service reliability includes at least one or more of the following: the average time for a failure to occur, or the number or duration of failures to occur within a specified time; or, the probability of no failure within a specified period of time, or the probability of failure to occur. Specifies the time for the number of failures. For example, the average time for a failure to occur, or the number or duration of failures within 1 day; or, the probability of no failure within 1 day, or the time for N failures to occur.
  • the first device monitors the communication service characteristics according to the first information to obtain first data associated with the communication service characteristics.
  • the data associated with the communication service characteristics includes: end-to-end delay or PDB delay, or packet-to-data packet interval delay; and/or the start time, end time, or duration of the fault, etc. .
  • S640 The first device sends the first data to the network data analysis function network element.
  • the network data analysis function network element receives the first data.
  • the collection of the first data in step S630 and the reporting of the first data to NWDAF in step S640 may be continuous actions, that is, the first device needs to report to NWDAF immediately after collecting the first data to ensure the real-time nature of the data.
  • the frequency of collecting the first data by the first device may be consistent with the frequency of reporting analysis results required by the AF in step S610; or, the collection of the first data in the above-mentioned step S630 and the reporting of the first data to the NWDAF in step S640 may be non-real-time.
  • Action that is, the first device may not report the NWDAF immediately after collecting the first data, thereby reducing the power consumption and signaling overhead of the first device.
  • the first device collects data every half hour and reports data every hour. This application does not specifically limit this.
  • the NWDAF receives the first data from the TSCTSF or UPF, for example, data below the application layer of the target UE.
  • the NWDAF receives the first data from the TSCTSF or UPF through OAM, for example, data below the application layer of the target UE.
  • the UE may monitor the end-to-end delay or PDB delay from the UPF to the UE, or the packet-to-data packet interval delay, and/or the start time and duration of the fault, or the start time and The end time is reported to the UPF, and then the UPF unifies the data reported by the UE, as well as the end-to-end delay or PDB delay from the UPF to the UE or from the UE to the UPF monitored by the UPF, or the interval between data packets. Delay, and/or, the start time and duration of the fault, or the start time and end time, are reported to TSCTSF or NWDAF.
  • the UE can monitor the end-to-end delay or PDB delay from the UPF to the UE, or the delay between data packets, and/or the start time and duration of the fault, or the start time. and end time, reported to TSCTSF.
  • UPF will monitor the end-to-end delay or PDB delay from UPF to UE or from UE to UPF, or the delay between data packets, and/or the start of the fault.
  • the start time and duration, or the start time and end time, are reported to TSCTSF, and then TSCTSF uniformly reports the received data to NWDAF.
  • the NWDAF receives the first data from the DCAF, such as target UE application layer data or AF application layer data.
  • the NWDAF receives the first data from the DCAF through OAM, such as target UE application layer data or AF application layer data.
  • the first device analyzes the first data and obtains analysis results associated with communication service characteristics.
  • the first device such as UPF or UE can collect and report the first data to the TSCTSF, and then the TSCTSF sends the first data to the NWDAF to facilitate the NWDAF to analyze the first data and obtain the corresponding analysis. Result;
  • the first device such as the UE can also send the first data to the UPF, and then the UPF sends it to the NWDAF through the TSCTSF; or
  • the first device such as UPF or UE can also collect and analyze the first data, obtain corresponding analysis results, and then report the analysis results to AF and so on through the NEF open interface.
  • specific implementation methods for communication service availability include:
  • the delay value corresponding to 99.99% of the AF request can be obtained from the CDF curve.
  • 10ms is the required end-to-end or PDB delay.
  • the first device for example, UE or UPF or TSCTSF
  • the CDF curve can obtain the CDF curve from the CDF curve.
  • the percentage corresponding to the 10ms delay of the AF request is obtained. For example, 99.99% is the required communication availability percentage value.
  • the first device for example, UE or UPF or TSCTSF
  • the first device can report to the TSCTSF or AF
  • the CDF curve is used to obtain the specific correspondence between the delay information and the corresponding percentage value.
  • specific implementation methods for communication service reliability include:
  • the distribution of the time interval of each failure can be obtained, and then the average time of failure can be derived, or the average time of failure within a specified time can be derived
  • the number or probability of failures, etc. the relationship between N fault occurrences and time is separately counted.
  • the time information of the first fault occurrence is from 0:00 on January 1 to recovery at 0:10; the time information of the second fault is It started at 1:00 on January 3 and recovered at 1:15; the time information of the third failure was from 3:00 on January 5 to recovery at 2:10, and so on.
  • the intervals between occurrences of the N faults are 2 days and 1 hour, 2 days and 2 hours, etc., and the durations of the N faults are 10 minutes, 15 minutes, 10 minutes, and so on.
  • the average time for a failure to occur can be calculated; or the number or duration of failures within a specified time, such as 1 month; or, the probability of no failure within a specified time, such as 1 day; or, the probability of failure occurring within a specified time, such as 1 day; Specify the number of failures, such as the time for 2 failures, etc.
  • the first device sends the analysis result to the application function network element.
  • the application function network element receives the analysis result from the first device.
  • the first device needs to report the analysis results once every hour.
  • the analysis result can be an updated analysis result or an unupdated analysis result, depending on the update frequency of the first data collected in step S630; this implementation method can ensure that AF obtains effective analysis in a timely manner As a result, it is easy to detect in time whether any abnormal events occur and ensure system performance.
  • the first device analyzes the collected first data and obtains the analysis results in step S670, it does not need to immediately report the analysis results to the AF, but may report the results according to the frequency required in step S610.
  • the first device collects data every half hour, analyzes and obtains analysis results, and reports sequential analysis results every hour according to the frequency required in step S610.
  • This implementation can reduce the power consumption and signaling overhead of the first device. This application does not specifically limit this.
  • the network data analysis function network element analyzes the first data and obtains analysis results associated with communication service characteristics.
  • specific implementation methods for communication service availability include:
  • NWDAF can obtain the delay value corresponding to 99.99% of the AF request from the CDF curve, For example, 10ms is the required end-to-end or PDB delay.
  • NWDAF can obtain the percentage corresponding to the 10ms delay of the AF request from the CDF curve, for example 99.99% is the percentage value of the required communication availability.
  • the NWDAF can report the CDF curve to the AF to obtain the delay information and the corresponding delay. Specific correspondence between ratios.
  • the NWDAF may also receive analysis results associated with communication service characteristics from the OAM.
  • the network element with the network data analysis function can collect data and analyze the data to obtain analysis results, or it can directly obtain the analysis results from other network elements such as OAM, which can reduce signaling overhead.
  • specific implementation methods for communication service reliability include:
  • NWDAF can obtain The distribution of the time intervals between each failure can then be used to derive the average time to failure, or the number or probability of failures within a specified period.
  • the first data is used to indicate the relationship between N fault occurrences and time.
  • the first data includes, for example, the start time and end time of the first fault occurrence: 0:00 and 0:10 on January 1. minutes; the start time and end time of the second failure are: 1:00 and 1:15 on January 3; the start time and end time of the third failure are: 3:00 on January 5 00 minutes and 2:10 etc. Therefore, it can be calculated that the intervals between N fault occurrences are 2 days and 1 hour, 2 days and 2 hours, and so on. If AF requests the duration of the N faults, NWDAF can obtain 10 minutes, 15 minutes, 10 minutes, etc. from the statistical data.
  • NWDAF collects data representing the relationship between faults and time based on the data collected in step S650, such as by analyzing the distribution of the time interval between every two faults.
  • the first fault interval is 1 day
  • the second fault interval is 1 day.
  • the time interval distribution curve is obtained.
  • the requested time such as within 7 days, count the number of failures in 7 days, or the percentage value of no failures.
  • NWDAF can obtain the average time for a failure to occur from the statistical data; or the number or duration of failures within a specified time, such as 1 month; or, the probability of no failure within a specified time, such as 1 day. ; Or, meet the specified number of failures, such as the time required for 2 times, etc., and report the analysis results related to the reliability of the communication service in a targeted manner according to the specific request of the AF.
  • S660 The network data analysis function network element sends the analysis results to the application function network element.
  • the application function network element receives the first data from the network data analysis function network element.
  • the application function network element receives analysis results associated with communication service characteristics from the network data analysis function network element through the network capability opening network element; or, the application function network element receives through the network capability opening network element Analysis results derived from the association between time-sensitive communication time synchronization functional network elements or user plane functional network elements and communication service characteristics.
  • the AF subscribes to the NWDAF through the NEF to analyze the communication service characteristics of the target UE(s), including communication service availability and/or communication service reliability.
  • NWDAF subscribes to TSCTSF through the open interface to collect performance parameters related to the communication service characteristics of the target UE(s) (for example, end-to-end delay or PDB delay, or packet-to-data packet interval delay; and/or , the start time and duration of the fault, or the start time and end time, etc.), and analyze the performance parameters related to the communication service characteristics, and report the obtained analysis results to AF to meet the KPI and KPI measured by the industrial control and automation system. Mapping relationship between 5GS.
  • the performance parameters related to the communication service characteristics of the target UE(s) collected by the subscription can be parameters of the UE application layer, that is, communication indicators from the industrial automation equipment to the UE application layer, or they can also be 5GS system UE applications.
  • AF can locate the fault location for the 5GS and industrial automation integrated system by observing the communication characteristic indicator results at different layers. For example, problems within 5GS, the upper layer of UE, or external devices connected to UE.
  • specific implementation methods for communication service availability include:
  • NWDAF can obtain the delay value corresponding to 99.99% from the CDF curve. For example, 10ms is the required end-to-end or PDB delay.
  • the AF requests to analyze the percentage value that meets the 10ms requirement, and the NWDAF can obtain the percentage corresponding to the 10ms delay from the CDF curve. For example, 99.99% is the required communication availability.
  • the AF requests to analyze the communication service availability, and the NWDAF can report the CDF curve.
  • the horizontal and vertical coordinates are the delay information and the corresponding percentage value respectively.
  • specific implementation methods for communication service reliability include:
  • AF requests to analyze the number or duration of failures that meet a specified time, such as one day (for example, January 3).
  • NWDAF determines that the number of failures is based on the data collected in step S650 on the relationship between failures and time. 2 times, each time taking 10 minutes, the specific failure time is 3:00 ⁇ 3:10, and 14:40 ⁇ 14:50. Furthermore, it can also be calculated that the probability of no failure on January 3 is 98.61% .
  • NWDAF determines that the corresponding time is 3:00 on January 5 based on the data collected in step S650 for the relationship between failures and time. ⁇ 3:00 on January 10, and it can also be obtained that the average time for a failure to occur is 0.5 days.
  • the NWDAF needs to report the analysis results once every hour.
  • the analysis result may be an updated analysis result or an unupdated analysis result, depending on the update frequency of the first data received in step S640; this implementation method It can ensure that AF obtains effective analysis results in time, facilitates timely detection of abnormal events, and ensures system performance.
  • AF can locate the location of abnormal events based on the analysis results. For example, AF itself discovered a fault when detecting the E2E performance of the entire system. It is assumed that the data monitored internally by 5GS is for the E2E performance below the PDU layer, and the analysis results obtained are normal. At this time, AF can determine that there is no internal problem in 5GS based on this analysis result, and can locate the fault location between the PDU layer and the application layer, or locate the fault location to the application layer.
  • the application function network element can realize the combination of communication service characteristic performance indicators in the industrial field and 5GS internal communication characteristic performance indicators by sending request messages to 5GS internal network elements and obtaining quantitative analysis results. Furthermore, the application function network element can quantify the communication performance indicators within 5GS to manufacturers in need, and combined with the data collection of different devices and different layers, when the indicators of communication service characteristics are abnormal, the application function network element can also pass all The occurrence of the indicated abnormal event (for example, a failure of the 5GS and industrial automation integrated system) is determined whether it is caused by internal reasons of the 5GS or external factors of the system, thereby locating the location of the fault and improving system performance.
  • the indicated abnormal event for example, a failure of the 5GS and industrial automation integrated system
  • FIG. 7 is a flow example diagram of the communication method 700 provided by the embodiment of the present application.
  • the AF subscribes to the NWDAF through the NEF to analyze the communication service characteristics of the target UE(s), including communication service availability and/or communication service reliability.
  • NWDAF subscribes to TSCTSF through the open interface to collect performance parameters related to the communication service characteristics of the target UE(s) (for example, end-to-end delay or PDB delay, or packet-to-data packet interval delay, etc.; and/or faults occurrence start time and duration, or start time and end time), and analyze the performance parameters related to the communication service characteristics, and report the obtained analysis results to AF to meet the KPI measured by the industrial control and automation system and 5GS mapping relationship.
  • the method includes the following steps.
  • NEF receives subscription request message #1 from AF.
  • NEF sends subscription request message #2 to NWDAF.
  • NWDAF receives subscription request message #2 from NEF.
  • the subscription request message #1 and the subscription request message #2 are used to request a subscription to analyze the communication service characteristics of the target UE(s), such as communication service availability and/or communication service reliability.
  • communication service characteristics also include reliability.
  • reliability refers to the percentage value of all packets transmitted that are successfully delivered to a given system entity within the time limit required by the target service in the context of network layer packet transmission.
  • subscription request message #1 and subscription request message #2 include communication service analysis ID (Commun_service_Analytics ID) and analysis filter information (analytics filter information).
  • the analysis filter information includes: communication service availability and/or communication service reliability reports.
  • AF when AF requests a subscription to analyze communication service availability, the following possible implementations include:
  • the AF initiates a request subscription analysis for the delay requirements that the target UE needs to meet, and sends it to TSCTSF via NEF, and TSCTSF maps it
  • the delay that needs to be guaranteed for requesting communication service availability such as end-to-end delay or PDB delay, or packet-to-data packet interval delay (for example, one possibility is Request Guaranteed delay for CSA), for example, the request meets 10ms
  • the percentage value corresponding to the delay is 10ms.
  • the AF request analyzes the delay corresponding to meeting a specific percentage value.
  • the AF initiates a request subscription analysis for the percentage requirements that the target UE needs to meet. It is sent to TSCTSF via NEF, and TSCTSF maps it to the percentage value of the requested communication service availability requirement (for example, one possibility is Guaranteed percentage for CSA), for example, the request meets the corresponding delay of 99.99%.
  • the AF When the AF requests a subscription analysis communication service availability report without specifying a delay or percentage requirement, the AF initiates a request for a subscription analysis analysis of the CSA of the target UE, which is sent to TSCTSF via NEF, and TSCTSF is mapped to the delay that the request needs to guarantee ( Request Guaranteed delay for CSA) or Request Guaranteed percentage for CSA can be a default value. At this time, the corresponding curve report can be reported to AF.
  • AF requests subscription analysis of the average time of failure, or the number or duration of failures within a specified period.
  • AF initiates a subscription analysis of the mean time between failures for the target UE, and sends it to TSCTSF via NEF, and TSCTSF maps it to satisfy Failures corresponding to the delay required for communication service reliability, such as the number or duration of failures within a specified month;
  • AF requests subscription analysis to meet the probability of failure within the specified time, or the time to meet the specified number of failures.
  • AF initiates subscription analysis for the failure probability analysis of the target UE, and sends it to TSCTSF via NEF, and TSCTSF maps it to meet communication
  • the time interval or starting moment required for service reliability For example, the average time interval between failures is 0.5 days, and the probability of no failure within 1 day is 99.88%.
  • the subscription request message #1 and the subscription request message #2 may also include one or more of the following: reporting time information, UE(s) Address identification (UE address).
  • the reporting time information is used to indicate the reporting time of the analysis results associated with the communication service characteristics.
  • the above communication service analysis ID may be one or multiple, and this application does not specifically limit this.
  • the subscription request message #1 and the subscription request message #2 may not carry the analysis ID; when the number of target UEs is multiple, the subscription request message #1 and the subscription request message #2
  • the number of analysis IDs in message #2 is the same as the number of target UEs, and corresponds one to one.
  • subscription request message #1 may be Nnef_AnalyticsExposure_Subscribe request
  • subscription request message #2 may be Nnwdaf_AnalyticsSubscription_Subscribe.
  • steps S701a-S701b indicate that the AF requests the NWDAF to subscribe to the analysis communication characteristics through the NEF.
  • NWDAF sends subscription request message #3 to OAM.
  • OAM receives subscription request message #3 from NWDAF.
  • OAM sends subscription request message #4 to TSCTSF.
  • TSCTSF receives subscription request message #4 from OAM.
  • NWDAF sends subscription request message #5 to TSCTSF.
  • TSCTSF receives subscription request message #5 from NWDAF.
  • NWDAF collects data for analyzing communication services from TSCTSF through an open interface.
  • the subscription request message #3, the subscription request message #4 and the subscription request message #5 are used to request subscription-related parameters. See step S701b, which will not be described again here.
  • subscription request message #5 may be Ntsctsf_EventExposure_subscribe Request.
  • steps S702a-S702b and S702c are two possible implementation methods for NWDAF to request subscription data from TSCTSF.
  • TSCTSF sends policy creation request message #1 to PCF.
  • PCF receives policy creation request message #1 from NWDAF.
  • the policy creation request message #1 includes a target analysis report, see step S701b, which will not be described again here.
  • policy creation request message #1 may be Npcf_PolicyAuthorization_Create request.
  • S703b PCF generates a policy for QoS monitoring of communication service availability and/or communication service reliability.
  • the PCF generates a QoS monitoring policy for corresponding communication service availability and/or communication service reliability based on the communication service availability and/or communication service reliability carried in the subscription request message #1 sent by the AF.
  • the QoS monitoring policy generated by PCF at least includes the requirement to monitor E2E delay (which can be the E2E delay of IP or MAC PDU Layer, or the transport layer within 5GS). The following E2E latency.
  • the PCF when requesting communication service reliability event analysis, the PCF generates a policy for QoS monitoring that at least includes the requirement to monitor the failure time. For example, the delay corresponding to the E2E delay less than the specified delay is counted as the non-fault time.
  • PCF sends policy creation response message #1 to TSCTSF.
  • TSCTSF receives policy creation response message #1 from PCF.
  • policy creation response message #1 may be Npcf_PolicyAuthorization_Create rsp.
  • PCF sends policy update request message #1 to SMF.
  • SMF receives policy update request message #1 from PCF.
  • the policy update request message #1 is used to request the QoS monitoring policy of the communication service.
  • S704b SMF sends policy update response message #1 to PCF.
  • PCF receives policy update response message #1 from SMF.
  • policy update request message #1 or policy update response message #1 may be SM Policy control_updateNotify req/rsp.
  • SMF sends N4 session modification request message #1 to UPF.
  • UPF receives N4 session modification request message #1 from SMF.
  • the N4 session modification request message #1 includes configuration for QoS monitoring of uplink and/or downlink communication services.
  • the monitoring of communication service availability includes one or more of the following: end-to-end delay from UE to UPF or from UPF to UE, or packet delay budget (packet delay budget, PDB).
  • end-to-end delay from UE to UPF or from UPF to UE
  • packet delay budget packet delay budget, PDB.
  • UPF interacts with RAN to determine the end-to-end delay by recording the reception time and transmission time of data packets.
  • the monitoring of communication service availability also includes one or more of the following: packet error rate (packet error rate, PER), data packet size, or data packet rate, etc.
  • packet error rate packet error rate, PER
  • data packet size data packet size
  • data packet rate etc.
  • the monitoring of communication service availability includes: correlation between data packets.
  • UPF sends N4 session modification response message #1 to SMF.
  • SMF receives N4 session modification response message #1 from UPF.
  • the N4 session modification request message #1 or the N4 session modification response message #1 may be N4session modification req/rsp.
  • UPF can monitor the end-to-end delay or PDB delay from UPF to UE or from UE to UPF, or the delay between data packets, which means that UPF can detect the round-trip delay.
  • the specific implementation method of QoS monitoring can refer to the QoS monitoring method in the existing technology. This is a simple example and will not be described again here.
  • SMF sends N1N2 message #1 to AMF.
  • AMF receives N1N2 message #1 from SMF.
  • N1N2 message #1 may be Namf_Communication_N1N2MessageTransfer.
  • S707 AMF sends N1 message #1 to the UE.
  • the UE receives N1 message #1 from the AMF.
  • N1N2 message #1 and N1 message #1 both include configurations for QoS monitoring of end-to-end delay or PDB delay from UPF to UE, or packet-to-data packet interval delay.
  • the monitoring of communication service availability includes one or more of the following: end-to-end delay from UPF to UE, or PDB delay, or data packet to data packet interval delay.
  • the UE interacts with the RAN to determine the end-to-end delay by recording the reception time and transmission time of the data packet.
  • the monitoring of communication service availability also includes one or more of the following: PER, data packet size, or data packet rate.
  • the monitoring of communication service reliability includes: the starting time of failure.
  • the monitoring of communication service availability includes: correlation between data packets, etc.
  • UPF sends uplink and/or downlink monitoring data to TSCTSF.
  • TSCTSF receives uplink and/or downlink monitoring data from UPF.
  • the uplink and/or downlink monitoring data include one or more of the following: E2E or PDB delay, PER, and GFBR.
  • the UE may send the UPF-to-UE monitoring data collected by the UE to the UPF, that is, the UPF forwards the UE-side monitoring data to the TSCTSF.
  • the UPF sends the UE-to-UPF monitoring data collected by the UPF to the TSCTSF, that is, the downlink monitoring data.
  • the UE sends the UPF-to-UE monitoring data collected by the UE to the TSCTSF, that is, the uplink detection data.
  • the uplink monitoring data and the downlink monitoring data can be reported in a decoupled manner, which is not specifically limited in this application.
  • TSCTSF sends subscription response message #4 to OAM.
  • OAM receives subscription response message #4 from TSCTSF.
  • OAM sends subscription response message #3 to NWDAF.
  • NWDAF receives subscription response message #3 from OAM.
  • TSCTSF sends subscription response message #5 to NWDAF.
  • NWDAF receives subscription response message #5 from TSCTSF.
  • subscription response message #3, subscription response message #4 and subscription response message #5 all include uplink and/or downlink monitoring data.
  • UPF monitors the end-to-end delay or PDB delay from UPF to UE or from UE to UPF, or the delay between data packets; and/or, the starting time and duration of the fault, or Start time and end time; optionally, also include PER, etc.
  • PER etc.
  • subscription response message #5 may be Ntsctsf_EventExposure_subscribe Rsp.
  • steps S709a-S709b and S709c are two possible implementation methods for NWDAF to obtain uplink and/or downlink monitoring data from TSCTSF through an open interface.
  • NWDAF can also collect UE-side application layer data.
  • method 800 which will not be described in detail here.
  • NWDAF analyzes uplink and/or downlink monitoring data.
  • the communication characteristic requested by the AF for analysis is communication service availability:
  • the method of analyzing uplink and/or downlink monitoring data can be by analyzing the end-to-end delay or PDB delay, or the CDF and data packet interval delay at a specified time (starting at a specified time, or specifying a period of time). /or probability density function (PDF) distribution curve.
  • PDF probability density function
  • the AF request analyzes the percentage value of the delay that meets a certain time requirement, that is, the communication service availability corresponding to the delay meeting the specified time requirement.
  • NWDAF analyzes the percentage value corresponding to the end-to-end E2E delay that meets the time requirement during the monitoring period.
  • NWDAF analyzes the corresponding percentage value that meets the delay requirements.
  • NWDAF analyzes the CDF and/or PDF distribution curve of end-to-end delay, or PDB delay, or packet-to-data packet interval delay at a specified time (starting at a specified time, or a specified period of time). For example, if the AF request analyzes the communication availability that meets 10ms, then the NWDAF calculates the percentage value of the ordinate corresponding to the 10ms delay in the CDF curve, which is the required communication availability.
  • the AF request analyzes the delay that meets a specific percentage value requirement.
  • NWDAF analyzes and monitors the delay value corresponding to the specified communication service availability percentage value based on, for example, the Request Guaranteed percentage for CSA value.
  • NWDAF analyzes the CDF and/or PDF distribution curve of end-to-end delay, or PDB delay, or packet-to-data packet interval delay at a specified time (starting at a specified time, or a specified period of time).
  • NWDAF will calculate the end-to-end delay value or PDB delay value on the abscissa corresponding to 99.99% on the ordinate in the CDF curve, or the packet-to-data packet interval delay. , which is the required delay.
  • the communication characteristic requested to be analyzed by AF is communication service reliability:
  • the method of analyzing uplink and/or downlink monitoring data can be by analyzing the curve of the distribution of the number of failures and the time interval at a specified time (starting at a specified moment, or specifying a period of time).
  • the AF request analyzes the mean time between failures (the number of unsatisfied events at a specified starting time), or in other words, the average time for failures to occur, or the number or duration of failures within a specified time.
  • NWDAF can analyze the distribution of the time interval between every two failures and obtain the mean mean time between failures in a statistical sense.
  • the AF request analyzes the percentage value of no faults in a given period of time, or in other words, the probability of no faults within a specified period of time, or the time required to satisfy the specified number of faults.
  • NWDAF can analyze the distribution of the time interval between each two failures and, based on the requested time period (such as one day, one month, one year, etc.), obtain a statistically significant percentage value of no failures within that time period. .
  • NWDAF can analyze the performance of 5GS internal communication characteristics, and open the analysis results to industrial automation manufacturers through the NEF open framework, so that the indicators measured by the industrial control and automation system (for example, communication service availability, and/or communication service reliability sex) is mapped in 5GS.
  • the indicators measured by the industrial control and automation system for example, communication service availability, and/or communication service reliability sex
  • step S709b the OAM analyzes the uplink and/or downlink monitoring data and reports the analysis results to the NWDAF.
  • the above steps S709a and S709c may not be executed.
  • NWDAF sends subscription response message #2 to NEF.
  • OAM receives subscription response message #2 from TSCTSF.
  • NEF sends subscription response message #1 to AF.
  • AF receives subscription response message #1 from NEF.
  • the subscription response message #1 and the subscription response message #2 include the analysis results of the communication service.
  • the subscription response message #1 and the subscription response message #2 include the communication service analysis ID.
  • the subscription response message #1 may be Nnef_AnalyticsExposure_Subscribe notify, and the subscription response message #2 may be Nnwdaf_AnalyticsSubscription_notify.
  • steps S711a-S711b indicate that the NWDAF sends the analysis result of the communication service to the AF through the NEF.
  • AF can determine whether the abnormal event (for example, a failure of the 5GS and industrial automation integration system) is caused by internal reasons of 5GS or external factors of the system. Then locate the fault location and improve system performance.
  • the abnormal event for example, a failure of the 5GS and industrial automation integration system
  • the above method 700 is mainly aimed at data collection and analysis of communication indicators below the UE application layer.
  • the data of the communication indicators of the UE application layer is collected and analyzed in conjunction with Figure 8.
  • FIG 8 is a flow example diagram of the communication method 800 provided by the embodiment of the present application.
  • This implementation method is that DCAF collects UE application layer data in a unified manner and forwards it to NWDAF.
  • the AF subscribes to the NWDAF through the NEF to analyze the communication service characteristics of the target UE(s), including communication service availability and/or communication service reliability.
  • NWDAF discovers and requests subscriptions from third parties, such as DCAF, to collect UE application layer data. Then NWDAF obtains analysis results based on the UE application layer data and reports them to AF to meet the mapping relationship between KPIs measured by industrial control and automation systems and 5GS. , the method includes the following multiple steps.
  • NEF receives the subscription request message #a from AF.
  • NEF sends subscription request message #b to NWDAF.
  • NWDAF receives the subscription request message #b from NEF.
  • the subscription request message #a and the subscription request message #b are used to request a subscription to analyze communication service characteristics of the target UE(s), such as communication service availability and/or communication service reliability.
  • steps S801a-S801b represent that the AF requests the NWDAF to subscribe to and analyze the communication service characteristics of the target UE(s) through the NEF.
  • steps S801a-S801b is similar to steps S701a-S701b in the above-mentioned method 700, and for the sake of simplicity, details will not be described here.
  • NWDAF sends subscription request message #c to DCAF.
  • DCAF receives the subscription request message #c from NWDAF.
  • NWDAF sends subscription request message #d to NEF.
  • NEF receives the subscription request message #d from NWDAF.
  • NEF sends subscription request message #e to DCAF.
  • DCAF receives the subscription request message #e from NWDAF.
  • the subscription request message #c, the subscription request message #d and the subscription request message #e are used to request to subscribe to the UE application layer data.
  • the UE application layer data includes the timestamp information of the data packet received by the UE application layer, or the time delay between data packets.
  • the UE application layer data also includes ST on the UE side.
  • steps S803a and S803b-S803c are two possible implementation methods for NWDAF to request DCAF to subscribe to UE application layer data.
  • DCAF sends a subscription request message #f to the UE.
  • the UE receives the subscription request message #f from DCAF.
  • the subscription request message #f is used to request the collection of UE application layer data.
  • the specific implementation method of DCAF collecting UE application layer data can refer to the existing technology. For the sake of simplicity, it will not be described again here.
  • NWDAF receives the subscription response message #c from DCAF.
  • NEF receives the subscription response message #e from DCAF.
  • NEF subscribes to NWDAF for response message #d.
  • NWDAF receives the subscription response message #d from NEF.
  • the subscription response message #c, the subscription response message #d and the subscription response message #e include the collected UE application layer data.
  • steps S805a and S805b-S805c are two possible implementation methods for DCAF to respond to NWDAF with the subscribed UE application layer data.
  • NWDAF collects statistics at the specified time (for example, based on the UE application layer data (for example, the timestamp information of the received data packet, or the end-to-end delay) and the specified time information (for example, the starting calculation time, the reporting period, etc.)). CDF and/or PDF of the time when the UE application layer receives the data packet starting from the specified time, or within a specified period of time.
  • step S710 for the specific analysis process of the communication characteristics analyzed for the AF request being communication service availability and/or communication service reliability, please refer to step S710 in the above method 700, which will not be described again here for the sake of brevity.
  • NWDAF sends subscription response message #b to NEF.
  • NEF receives the subscription response message #b from NWDAF.
  • NEF sends subscription response message #a to AF.
  • AF receives the subscription response message #a from NEF.
  • the subscription response message #b and the subscription response message #a include analysis results of communication characteristics, such as communication service availability and/or communication service reliability analysis results.
  • the communication service availability and/or communication service reliability analysis result may be a communication service availability and/or communication service reliability relationship curve report at a specified analysis time, or may be specific result information, such as the result in step S806 information.
  • steps S807a-S807b indicate that the NWDAF reports the analysis results of the communication characteristics to the AF through the NEF.
  • NWDAF NWDAF collection and analysis of data collected by the UE application layer is used as an example for explanation.
  • NWDAF can also collect data from the AF application layer and perform analysis.
  • NWDAF collects and analyzes the communication characteristic indicators of the UE application layer, and opens the communication characteristic indicators of the 5GS packet collection time from the UPF to the UE direction to the industrial system, thus reflecting the end-to-end integration of industrial automation and 5GS systems. Communication characteristics (from industrial automation equipment to UE application layer direction).
  • communication indicators below the UE application layer in 5GS can also be analyzed. The combination of the two can be used to locate system problems (for example, problems within the 5GS, the upper layer of the UE, or problems with external devices connected to the UE). Is it caused by the 5GS? Caused by external factors of the system, system performance can be improved in a targeted manner.
  • FIG. 9 is a flow example diagram of the communication method 900 provided by the embodiment of the present application.
  • the AF subscribes to the NWDAF through the NEF to analyze the communication service characteristics of the target UE(s), including communication service availability and/or communication service reliability.
  • NWDAF subscribes to UPF data through open interfaces (for example, end-to-end delay or PDB delay, or packet-to-packet interval delay; and/or, the start time and duration of the fault, or the start time and end time etc.), and report the analysis results to AF through NEF to meet the mapping relationship between KPIs measured by industrial control and automation systems and 5GS.
  • the difference from the above method 700 is that in this implementation, NWDAF collects data from UPF, and in method 700, NWDAF collects data from TSCTSF.
  • the method includes the following steps.
  • NEF receives subscription request message #1 from AF.
  • NEF sends subscription request message #2 to NWDAF.
  • NWDAF receives subscription request message #2 from NEF.
  • the subscription request message #1 and the subscription request message #2 are used to request a subscription to analyze the communication service characteristics of the target UE(s), such as communication service availability and/or communication service reliability.
  • steps S901a-S901b indicate that the AF requests the NWDAF to subscribe to the analysis communication characteristics through the NEF.
  • steps S901a-S901b is similar to steps S701a-S701b in the above-mentioned method 700, and for the sake of simplicity, details will not be described here.
  • NWDAF sends request message #1 to UDM.
  • UDM receives request message #1 from NWDAF.
  • the request message #1 includes a UE identifier (such as UE ID), which is used to obtain UDM stored parameters.
  • UE ID UE identifier
  • UDM sends response message #1 to NWDAF.
  • NWDAF receives response message #1 from UDM.
  • UDM is responsible for storing information such as SUPI, GPSI, and credentials of subscribed users in the operator's network. This information can be used to process UE identification. This step is applicable to data collection for each UE.
  • NWDAF sends subscription request message #3 to SMF.
  • SMF receives subscription request message #3 from NDWAF.
  • subscription request message #3 is used to open subscription to the SMF request event and find the session of the target UE.
  • the SMF is responsible for managing the PDU session of the UE.
  • the PDU session is a channel used to transmit PDUs.
  • the UE needs to transmit PDUs to and from the DN through the PDU session.
  • SMF is responsible for establishing, maintaining and deleting PDU sessions.
  • SMF sends N4 session modification request message #1 to UPF.
  • UPF receives N4 session modification request message #1 from SMF.
  • S904b SMF sends N4 session modification response message #1 to UPF.
  • UPF receives N4 session modification response message #1 from SMF.
  • the N4 session modification request message #1 includes configuration for QoS monitoring of uplink and/or downlink communication services.
  • the timestamp information when the data packet arrives at or is sent from the UPF i.e., the timestamp when the UPF receives or sends the data packet
  • the interval delay between data packets For example, UPF interacts with RAN to determine the end-to-end delay by recording the reception time and transmission time of data packets.
  • the monitoring of communication service availability includes one or more of the following: end-to-end delay from UE to UPF, or PDB, or packet-to-data packet interval delay.
  • the UPF monitors the end-to-end delay or PDB delay from the UE to the UPF or from the UPF to the UE, or the specific implementation method of the delay between data packets can refer to the QoS monitoring method in the existing technology. , for the sake of brevity, will not be repeated here.
  • SMF sends N1N2 message #1 to AMF.
  • AMF receives N1N2 message #1 from SMF.
  • S906 AMF sends N1 message #1 to the UE.
  • the UE receives N1 message #1 from the AMF.
  • N1N2 message #1 and N1 message #1 both include configurations for UE monitoring of end-to-end delay from UPF to UE or PDB delay, or QoS monitoring of packet-to-data packet interval delay.
  • the monitoring of communication service availability includes one or more of the following: end-to-end delay from UPF to UE, or PDB delay, or data packet and data packet interval delay on the UE side.
  • steps S904a-S906 are to monitor and configure the session of the target UE.
  • SMF sends subscription response message #3 to NWDAF.
  • NWDAF receives subscription response message #3 from SMF.
  • the subscription response message #3 includes the UPF corresponding to the target UE.
  • UPF receives subscription request message #4 from NDWAF
  • the subscription request message #4 is used to request the SMF to subscribe to UPF data, such as the timestamp information of the received packet of UPF, or the delay between the received data packet and the data packet of UPF, etc.
  • NWDAF can subscribe to UPF data via open events.
  • UPF sends subscription response message #4 to NWDAF.
  • NWDAF receives subscription response message #4 from UPF.
  • the subscription response message #4 includes UPF data, such as the timestamp information of the UPF received packet, or the delay between the received data packet and the data packet of the UPF, etc.
  • NWDAF analyzes UPF data to obtain analysis results.
  • step S710 For the specific analysis process of the communication characteristics analyzed for the AF request being communication service availability and/or communication service reliability, please refer to step S710 in the above-mentioned method 700. For the sake of brevity, details will not be described here.
  • NWDAF sends subscription response message #2 to NEF.
  • NEF receives subscription response message #2 from NWDAF.
  • NEF sends subscription response message #1 to AF.
  • AF receives subscription response message #1 from NEF.
  • subscription response message #2 and subscription response message #1 both include analysis results.
  • the method disclosed in this application collects communication indicators from UPF, and after NWDAF analysis, the communication characteristic indicators of the packet collection time of 5GS from UPF to UE, or from UE to UPF, are opened to the industrial system, thus reflecting the integration of industrial automation and 5GS. End-to-end communication characteristics of the system. If combined with the above method 700, the communication indicators below the UPF application layer of the 5GS system can also be analyzed. The combination of the two can be used to locate whether system problems (such as problems within 5GS and between 5GS and DN) are caused by 5GS or external factors of the system. This can improve system performance in a targeted manner.
  • FIG 10 is a flow example diagram of the communication method 1000 provided by the embodiment of the present application.
  • the method includes the following steps.
  • NEF receives subscription request message #1 from AF.
  • the subscription request message #1 is used to request a subscription to analyze the communication service characteristics of the target UE(s), such as communication service availability and/or communication service reliability.
  • the subscription request message #1 may be a Nnef_EventExposure_Subscribe request.
  • the subscription request message #1 includes the communication service event ID (Commun_service_event ID), and analysis filtering information, such as communication service availability and/or communication service reliability reports.
  • Communication service event ID Common_service_event ID
  • analysis filtering information such as communication service availability and/or communication service reliability reports.
  • the subscription request message #1 may include: (a percentage value of communication service availability that meets a certain time requirement), or delay information corresponding to a specific communication service availability percentage value. .
  • the subscription request message #1 may also include one or more of the following: reporting time information, UE(s) address identification (UE address) .
  • the reporting time information includes: start time and cycle interval, or end time, etc.
  • NEF sends creation request message #1 to TSCTSF.
  • NWDAF receives creation request message #1 from NEF.
  • TSCTSF sends creation request message #2 to PCF.
  • PCF receives creation request message #2 from TSCTSF.
  • NEF sends creation request message #3 to PCF.
  • PCF receives creation request message #3 from NEF.
  • creation request message #1, creation request message #2 and creation request message #3 are all used to request subscription analysis of communication characteristics, such as communication service availability, and/or communication service reliability, etc.
  • creation request message #1 can be Ntsctsf_QoSandTSCAssistance_Create request
  • creation request message #2 and creation request message #3 can be Npcf_PolicyAuthorization_Create request.
  • steps S1002a-S1002b and S1002c are two possible implementation methods for NEF to request subscription data from PCF.
  • PCF generates a policy for communication service QoS monitoring.
  • PCF sends creation response message #1 to TSCTSF.
  • TSCTSF receives the creation response message #1 from PCF.
  • TSCTSF sends creation response message #2 to NEF.
  • NEF receives the creation response message #2 from TSCTSF.
  • PCF sends creation response message #3 to NEF.
  • NEF receives creation response message #3 from PCF.
  • subscription response message #5 may be Ntsctsf_EventExposure_subscribe Rsp.
  • steps S1004a-S1004b and S1004c are two implementation methods for PCF to respond to the creation request message to NEF.
  • create response message #1 and create response message #3 can be Npcf_PolicyAuthorization_Create rsp
  • create Request message #2 may be Ntsctsf_QoSandTSCAssistance_Create request.
  • NEF sends subscription response message #1 to AF.
  • AF receives subscription response message #1 from NEF.
  • subscription response message #1 may be Nnef_EventExposure_Subscribe rsp.
  • PCF sends update request message #1 to SMF.
  • SMF receives update request message #1 from PCF.
  • the update request message #1 is used to request to update the communication service availability QoS monitoring policy.
  • SMF sends update response message #1 to PCF.
  • PCF receives update response message #1 from SMF.
  • update request message #1/update response message #1 may be SM Policy control_updateNotify req/rsp.
  • SMF sends N4 session modification request message #1 to UPF.
  • UPF receives N4 session modification request message #1 from SMF.
  • the N4 session modification request message #1 includes configuration for QoS monitoring of uplink and/or downlink communication services.
  • the monitoring of communication service availability includes one or more of the following: end-to-end delay from UE to UPF, PDB delay, or data packet to data packet interval delay.
  • S1008 SMF sends N1N2 message #1 to AMF.
  • AMF receives N1N2 message #1 from SMF.
  • AMF sends N1 message #1 to the UE.
  • the UE receives N1 message #1 from the AMF.
  • N1N2 message #1 and N1 message #1 both include configurations for QoS monitoring of end-to-end delay or PDB delay from UPF to UE, or packet-to-data packet interval delay communication service.
  • steps S1007-S1009 can refer to steps S705a-S707 in the above-mentioned method 700. For the sake of simplicity, details will not be described here.
  • S1010a The UE analyzes the CDF and/or PDF of the end-to-end delay or PDB delay from the UPF to the UE within the specified period, or the delay data between data packets to determine the availability of communication services.
  • UPF analyzes the CDF and/or PDF of the downlink data within the specified time to determine the availability of communication services.
  • the communication characteristics analyzed for the AF request are uplink and/or downlink communication service availability, and/or the specific analysis process of communication service reliability may refer to step S410 in the above method 400. For the sake of brevity, details will not be described here.
  • the UE sends the uplink monitoring result to the NEF.
  • the UE collects and analyzes the end-to-end delay or PDB delay from the UPF to the UE, or the delay between data packets, and/or the start time and duration of the fault, or the start time and end time, and obtain the corresponding analysis results, that is, the uplink monitoring results.
  • NEF receives the uplink monitoring results from the UE.
  • the UE can also report the analysis results to the UPF, and the UPF reports to the AF through the NEF open interface.
  • UPF sends the downlink monitoring results to NEF.
  • UPF collects and analyzes the end-to-end delay or PDB delay from UE to UPF, or the delay between data packets; and/or, the start time and duration of the fault, or the start time and end
  • the corresponding analysis results are obtained in time, that is, the downward monitoring results.
  • UPF can also collect and analyze the end-to-end delay or PDB delay from UPF to UE, or the delay between data packets; and/or the start time and duration of the fault, or the start time and the end time to obtain the corresponding analysis results.
  • NEF receives the downlink monitoring results from UPF.
  • NEF sends subscription response message #1 to AF.
  • AF receives subscription response message #1 from NEF.
  • the subscription response message #1 includes the uplink and/or downlink monitoring results of the communication service.
  • the method disclosed in this application collects and analyzes communication characteristics on UE and UPF, including communication service availability and/or communication service reliability, etc., and can be opened to the field of industrial automation through the NEF open framework.
  • the communication performance within 5GS can be quantified and displayed to manufacturers in need.
  • by combining data collection from different devices and different layers it is possible to locate abnormalities in communication characteristic indicators caused by reasons internal to 5GS or external to the 5GS system.
  • the communication method-side embodiment of the present application is described in detail above with reference to FIGS. 1 to 10 .
  • the device-side embodiment of the present application will be described in detail with reference to FIGS. 11 and 12 . It should be understood that the description of the device embodiments corresponds to the description of the method embodiments. Therefore, the parts not described in detail can be referred to the previous method embodiments.
  • FIG 11 is a schematic block diagram of a communication device 1100 provided by an embodiment of the present application.
  • the device 1100 may include a transceiver unit 110 and a processing unit 1120.
  • the transceiver unit 1110 can communicate with the outside, and the processing unit 1120 is used for data processing.
  • the transceiver unit 1110 may also be called a communication interface or a transceiver unit.
  • the device 1100 can implement steps or processes corresponding to those executed by the application function network element (for example, AF) in the above method embodiment, wherein the processing unit 1120 is used to execute the above method embodiment.
  • the transceiver unit 1110 is configured to perform operations related to the processing of the first network function network element in the above method embodiment.
  • the device 1100 can implement steps or processes corresponding to those performed by the network data analysis function network element (for example, NWDAF) in the above method embodiment, wherein the transceiver unit 1110 is used to perform the above.
  • the processing unit 1120 is configured to perform operations related to the processing of the second network function network element in the above method embodiment.
  • the device 1100 can implement execution corresponding to the user plane function network element/time-sensitive communication synchronization function network element/terminal equipment (for example, UPF/TSCTSF/UE) in the above method embodiment.
  • the device 1100 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor, or a group of processors
  • memory merged logic circuitry, and/or other suitable components to support the described functionality.
  • the device 1100 can be specifically the sending end in the above embodiment, and can be used to perform various processes and/or steps corresponding to the sending end in the above method embodiment, or, The device 1100 may be specifically a receiving end in the above embodiments, and may be used to perform various processes and/or steps corresponding to the receiving end in the above method embodiments. To avoid duplication, they will not be described again here.
  • the device 1100 of each of the above solutions has the function of realizing the corresponding steps performed by the sending end in the above method, or the device 1100 of each of the above solutions has the function of realizing the corresponding steps of the receiving end of the above method.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiving unit. (machine replacement), other units, such as processing units, etc., can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • the above-mentioned transceiver unit may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in Figure 11 may be the receiving end or transmitting end in the aforementioned embodiment, or it may be a chip or a chip system, such as a system on chip (SoC).
  • SoC system on chip
  • the transceiver unit may be an input-output circuit or a communication interface.
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip. No limitation is made here.
  • Figure 12 shows a communication device 2000 provided by an embodiment of the present application.
  • the device 2000 includes a processor 2010 and a transceiver 2020.
  • the processor 2010 and the transceiver 2020 communicate with each other through an internal connection path, and the processor 2010 is used to execute instructions to control the transceiver 2020 to send signals and/or receive signals.
  • the device 2000 may also include a memory 2030, which communicates with the processor 2010 and the transceiver 2020 through internal connection paths.
  • the memory 2030 is used to store instructions, and the processor 2010 can execute the instructions stored in the memory 2030.
  • the device 2000 is configured to implement various processes and steps corresponding to the application function network element (for example, AF) in the above method embodiment.
  • the application function network element for example, AF
  • the device 2000 is configured to implement various processes and steps corresponding to the network data analysis function network element (for example, NWDAF) in the above method embodiment.
  • NWDAF network data analysis function network element
  • the apparatus 2000 is used to implement each of the user plane functional network elements/time-sensitive communication time synchronization functional network elements/terminal equipment (for example, UPF/TSCTSF/UE) in the above method embodiment. Processes and steps.
  • the user plane functional network elements/time-sensitive communication time synchronization functional network elements/terminal equipment for example, UPF/TSCTSF/UE
  • the device 2000 may be specifically the transmitting end or the receiving end in the above embodiment, or may be a chip or a chip system.
  • the transceiver 2020 may be the transceiver circuit of the chip, which is not limited here.
  • the device 2000 can be used to perform various steps and/or processes corresponding to the sending end or the receiving end in the above method embodiments.
  • the memory 2030 may include read-only memory and random access memory and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the processor 2010 can be used to execute instructions stored in the memory, and when the processor 2010 executes the instructions stored in the memory, the processor 2010 is used to execute various steps of the above method embodiment corresponding to the sending end or the receiving end. and/or process.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component.
  • the processor in the embodiment of the present application can implement or execute the various methods, steps and logical block diagrams disclosed in the embodiment of the present application.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the above embodiments. Methods.
  • the present application also provides a computer-readable medium.
  • the computer-readable medium stores program code.
  • the program code When the program code is run on a computer, it causes the computer to execute the above-described embodiments. Methods.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate.
  • the components shown as units may be Or it may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法和通信装置。该方法包括:应用功能网元向网络数据分析功能网元发送第一请求消息,所述第一请求消息用于请求订阅分析目标用户设备UE的通信服务特征,所述通信服务特征包括通信服务可用性,和/或通信服务可靠性,所述通信服务可用性用于指示时延分布情况,所述通信服务可靠性用于指示发生故障与时间的关系,所述第一请求消息包括所述目标UE的标识;所述网络数据分析功能网元接收来自所述应用功能网元的所述第一请求消息;所述网络数据分析功能网元获取与所述通信服务特征关联的第一数据;所述网络数据分析功能网元向所述应用功能网元发送所述分析结果;所述应用功能网元接收来自所述网络数据分析功能网元的所述分析结果。本申请所公开的方法,能够实现工业领域的通信服务特征性能指标与5GS通信特征性能指标之间的映射,进而保证即时地判断和提升系统性能。

Description

通信方法和通信装置
本申请要求于2022年08月04日提交国家知识产权局、申请号为202210931714.9、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域和工业自动化领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
当前,第五代移动通信(5th-generation,5G)作为移动通信技术的最新升级,正成为赋能工业企业数字化转型升级的重要技术。时延敏感网络(time sensitive network,TSN)作为新型工业网络技术,是企业内网技术演进的方向。5G与TSN的深度融合,将是实现工业有线与无线融合部署的关键,已成全球工业互联网网络研究的热点。
一般地,工业自动化领域根据通信服务可用性(communication service availability,CSA)、通信服务可靠性(communication service reliability,CSR)以及可靠性等通信特征来表征系统的通信服务的性能。然而,5G系统(5G system,5GS)中并没有提供监测上述通信特征相关的性能指标和流程。发明内容
本申请实施例提供了一种通信方法和通信装置,能够实现工业领域的通信服务特征性能指标与5GS通信特征性能指标之间的映射,进而保证即时地判断和提升系统性能。
第一方面,提供了一种通信方法,该方法可以由应用功能网元(例如,AF)执行,或者,也可以由用于应用功能网元的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由应用功能网元执行为例进行说明。
该方法包括:应用功能网元发送请求消息,请求消息用于请求订阅分析目标用户设备UE的通信服务特征,通信服务特征包括通信服务可用性,和/或通信服务可靠性,通信服务可用性用于指示时延分布情况,通信服务可靠性用于指示发生故障与时间的关系,请求消息包括目标UE的标识;应用功能网元接收与通信服务特征关联的分析结果。
应理解,上述时延分布情况可以理解为:时延分布特征、时延的概率分布、或者时延的累积分布等,本申请对具体的名称不作具体限定。
根据本申请提供的方案,应用功能网元通过向5GS内部网元发送请求消息,并获得量化地分析结果,能够实现将工业领域的通信服务特征性能指标与5GS内部通信特征性能指标的映射。进一步地,应用功能网元可以将5GS内部的通信性能指标量化给有需要的厂商,而且结合不同设备和不同层的数据收集,当通信服务特征的指标异常时,应用功能网元还可以通过所指示的异常事件的发生(例如,5GS与工业自动化集成系统发生故障)确定是由5GS内部原因还是系统外部原因导致,进而定位出故障发生位置,提升系统性能。
结合第一方面,在第一方面的某些实现方式中,应用功能网元发送请求消息,包括:应用功能网元通过网络能力开放网元向网络数据分析功能网元发送请求消息;或者,应用功能网元通过网络能力开放网元向时敏通信时同步功能网元或用户面功能网元发送请求消息。
结合第一方面,在第一方面的某些实现方式中,应用功能网元接收与通信服务特征关联的分析结果,包括:应用功能网元通过网络能力开放网元接收来自网络数据分析功能网元的与通信服务特征关联的分析结果;或者,应用功能网元通过网络能力开放网元接收来自时敏通信时同步功能网元或用户面功能网元与通信服务特征关联的分析结果。
结合第一方面,在第一方面的某些实现方式中,通信服务可用性包括以下至少一项或多项:满足指定百分比值要求的时延;或者,时延满足指定时间要求的百分比值。
示例性的,满足99.99%要求的时延;或者,满足10ms要求的百分比值。
结合第一方面,在第一方面的某些实现方式中,通信服务可靠性包括以下至少一项或多项:发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。
示例性的,发生一次故障的平均时间,或者满足指定时间比如1天内发生故障的次数或时长;或者,满足指定时间比如1天时间内无故障的概率,或者满足发生指定故障次数比如N次对应的时间。
第二方面,提供了一种通信方法,该方法可以由网络数据分析功能网元(例如,NWDAF)执行,或者,也可以由用于网络数据分析功能网元的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由网络数据分析功能网元执行为例进行说明。
该方法包括:网络数据分析功能网元接收第一请求消息,第一请求消息用于请求订阅分析目标用户设备UE的通信服务特征,通信服务特征包括通信服务可用性,和/或通信服务可靠性,通信服务可用性用于指示时延分布情况,通信服务可靠性用于指示发生故障与时间的关系,第一请求消息包括目标UE的标识;网络数据分析功能网元发送第二请求消息,第二请求消息用于请求获取与通信服务特征关联的第一数据;网络数据分析功能网元接收第一数据;网络数据分析功能网元分析第一数据,并获取与通信服务特征关联的分析结果;网络数据分析功能网元发送分析结果。
根据本申请提供的方案,网络数据分析功能网元通过接收请求订阅分析目标用户设备UE的通信服务特征的第一请求消息,利用第二请求消息收集并分析第一数据,得到与请求的通信服务特征关联的分析结果并上报,能够实现将工业领域的通信服务特征性能指标与5GS内部通信特征性能指标,便于后续应用功能网元可以将5GS内部的通信性能指标量化给有需要的厂商,或者定位出故障发生位置,提升系统性能。
结合第二方面,在第二方面的某些实现方式中,通信服务可用性包括以下至少一项或多项:满足指定百分比值要求的时延;或者,时延满足指定时间要求的百分比值。
结合第二方面,在第二方面的某些实现方式中,通信服务可靠性包括以下至少一项或多项:发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。
结合第二方面,在第二方面的某些实现方式中,第一数据包括以下一项或者多项:端到端时延,数据包时延预算,或者数据包与数据包间隔时延;和/或故障发生的起始时间和持续时间,或开始时间和结束时间。
可选地,第一数据还可以包括数据包大小,数据包速率,或者数据包错误率。
结合第二方面,在第二方面的某些实现方式中,网络数据分析功能网元接收第一请求消息,包括:网络数据分析功能网元通过网络能力开放网元接收来自应用功能网元的第一请求消息。
结合第二方面,在第二方面的某些实现方式中,网络数据分析功能网元发送第二请求消息,包括:网络数据分析功能网元向时敏通信时同步功能网元发送第二请求消息;或者,网络数据分析功能网元向用户面功能网元发送第二请求消息;或者,网络数据分析功能网元向数据收集应用功能网元发送第二请求消息。
基于上述实现方式,通过获取不同层对应的通信特征指标结果,可以为5GS与工业自动化集成系统定位出故障发生位置。比如5GS内部、UE上层,或者与UE相连外部设备的问题。
结合第二方面,在第二方面的某些实现方式中,网络数据分析功能网元接收第一数据,包括:网络数据分析功能网元接收来自时敏通信时同步功能网元的第一数据;或者,网络数据分析功能网元接收来自用户面功能网元的第一数据;或者,网络数据分析功能网元接收来自数据收集应用功能网元的第一数据;或者,网络数据分析功能网元接收来自时敏通信时同步功能网元的第一数据。
结合第二方面,在第二方面的某些实现方式中,网络数据分析功能网元分析第一数据,以获取与通信服务特征关联的分析结果,包括:网络数据分析功能网元根据第一数据统计端到端时延,数据包时延预算,或者数据包与数据包间隔时延在指定时间内的累积分布函数和/或概率密度函数;网络数据分析功能网元根据累积分布函数和/或概率密度函数确定以下一项或者多项:满足指定百分比值要求的时延;或者,时延满足指定时间要求的百分比值。
结合第二方面,在第二方面的某些实现方式中,网络数据分析功能网元分析第一数据,以获取与 通信服务特征关联的分析结果,包括:网络数据分析功能网元根据第一数据统计端到端时延,数据包时延预算,或者数据包与数据包间隔时延在指定时间内的累积分布函数和/或概率密度函数;网络数据分析功能网元根据累积分布函数和/或概率密度函数确定以下一项或者多项:发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。
结合第二方面,在第二方面的某些实现方式中,网络数据分析功能网元发送与通信服务特征关联的分析结果,包括:网络数据分析功能网元通过网络能力开放网元向应用功能网元发送与通信服务特征关联的分析结果。
第三方面,提供了一种通信方法,该方法可以由用户面功能网元/时敏通信时同步功能网元/终端设备(例如,UPF/TSCTSF/UE)执行,或者,也可以由用于用户面功能网元/时敏通信时同步功能网元/终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由用户面功能网元/时敏通信时同步功能网元/终端设备执行为例进行说明。
该方法包括:第一设备接收第一信息,第一信息包括用于指示对通信服务特征进行监测,通信服务特征包括通信服务可用性,和/或通信服务可靠性,通信服务可用性用于指示时延分布情况,通信服务可靠性用于指示发生故障与时间的关系;第一设备根据第一信息对通信服务特征进行监测,以获取与通信服务特征关联的第一数据,第一数据用于确定分析结果;第一设备发送第一数据。
根据本申请提供的方案,第一设备通过收集并上报第一数据,便于后续应用功能网元可以将5GS内部的通信性能指标量化给有需要的厂商,而且结合不同设备和不同层的数据收集,当通信服务特征的指标异常时,应用功能网元还可以通过所指示的异常事件的发生(例如,5GS与工业自动化集成系统发生故障)确定是由5GS内部原因还是系统外部原因导致,进而定位出故障发生位置,提升系统性能。
结合第三方面,在第三方面的某些实现方式中,通信服务可用性包括以下至少一项或多项:满足指定百分比值要求的时延;或者,时延满足指定时间要求的百分比值。
结合第三方面,在第三方面的某些实现方式中,通信服务可靠性包括以下至少一项或多项:发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。
结合第三方面,在第三方面的某些实现方式中,第一数据包括以下一项或者多项:端到端时延,数据包时延预算,或者数据包与数据包间隔时延,故障发生的起始时间和持续时间,或开始时间和结束时间。
可选地,第一数据还可以包括数据包大小,数据包速率,或者数据包错误率。
结合第三方面,在第三方面的某些实现方式中,第一设备发送第一数据,包括:第一设备向时敏通信时同步功能网元或用户面功能网元发送第一数据。
示例性的,第一设备是UE,UE可以向TSCTSF或UPF发送第一数据,再由TSCTSF或UPF上报给NWDAF。
结合第三方面,在第三方面的某些实现方式中,第一设备分析第一数据,并获取分析结果;第一设备发送分析结果。
需要说明的是,在本申请实施例中,第一设备例如UPF或UE可以收集并上报第一数据上报至TSCTSF,再由TSCTSF发送第一数据至NWDAF,便于NWDAF分析第一数据获取对应的分析结果;或者,第一设备例如UE也可以将第一数据发送至UPF,再由UPF经过TSCTSF发送至NWDAF;或者,第一设备例如UPF或UE也可以收集并分析第一数据,得到对应的分析结果,再通过NEF开放接口将分析结果上报至AF等。
结合第三方面,在第三方面的某些实现方式中,第一设备分析第一数据,以获取分析结果,包括:第一设备根据第一数据统计端到端时延、数据包时延预算,或者数据包与数据包间隔时延在指定时间内的累积分布函数和/或概率密度函数;第一设备根据累积分布函数和/或概率密度函数确定以下一项或者多项:满足指定百分比值要求的时延;或者,时延满足指定时间要求的百分比值。
结合第三方面,在第三方面的某些实现方式中,第一设备分析第一数据,以获取分析结果,包括:第一设备根据第一数据统计端到端时延、数据包时延预算,或者数据包与数据包间隔时延在指定时间 内的累积分布函数和/或概率密度函数;第一设备根据累积分布函数和/或概率密度函数确定以下一项或者多项:发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。
第四方面,提供了一种通信装置,包括:收发单元,用于发送请求消息,请求消息用于请求订阅分析目标用户设备UE的通信服务特征,通信服务特征包括通信服务可用性,和/或通信服务可靠性,通信服务可用性用于指示时延分布情况,通信服务可靠性用于指示发生故障与时间的关系,请求消息包括目标UE的标识;收发单元,还用于接收与通信服务特征关联的分析结果。
该收发单元可以执行前述第一方面中的接收和发送的处理,可选地,该装置还包括处理单元,可以执行前述第一方面中除了接收和发送之外的其他处理。
第五方面,提供了一种通信装置,包括:收发单元,用于接收第一请求消息,第一请求消息用于请求订阅分析目标用户设备UE的通信服务特征,通信服务特征包括通信服务可用性,和/或通信服务可靠性,通信服务可用性用于指示时延分布情况,通信服务可靠性用于指示发生故障与时间的关系,第一请求消息包括目标UE的标识;收发单元,还用于发送第二请求消息,第二请求消息用于请求获取与通信服务特征关联的第一数据;收发单元,还用于接收第一数据;处理单元,用于分析第一数据,并获取与通信服务特征关联的分析结果;收发单元,还用于发送分析结果。
该收发单元可以执行前述第二方面中的接收和发送的处理,处理单元可以执行前述第二方面中除了接收和发送之外的其他处理。
第六方面,提供了一种通信装置,包括:收发单元,用于接收第一信息,第一信息包括用于指示对通信服务特征进行监测,通信服务特征包括通信服务可用性,和/或通信服务可靠性,通信服务可用性用于指示时延分布情况,通信服务可靠性用于指示发生故障与时间的关系;处理单元,用于根据第一信息对通信服务特征进行监测,以获取与通信服务特征关联的第一数据,第一数据用于确定分析结果;收发单元,还用于发送第一数据。
该收发单元可以执行前述第三方面中的接收和发送的处理,处理单元可以执行前述第三方面中除了接收和发送之外的其他处理。
第七方面,提供了一种通信装置,包括收发器、处理器和存储器,该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信装置执行上述第一方面至第三方面及其任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选地,该通信装置还包括,发射机(发射器)和接收机(接收器)。
第八方面,提供了一种通信监控系统,包括应用功能网元、网络数据分析功能网元,或者第一设备中的一个或多个。
第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序或代码,所述计算机程序或代码在计算机上运行时,使得所述计算机执行上述第一方面至第三方面及其任一种可能实现方式中的方法。
第十方面,提供了一种芯片,包括至少一个处理器,所述至少一个处理器与存储器耦合,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的网络设备执行上述第一方面至第三方面及其任一种可能实现方式中的方法。
其中,该芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被通信装置运行时,使得所述装置执行上述第一方面至第三方面及其任一种可能实现方式中的方法。
附图说明
图1是适用本申请的一种网络架构100的示意图。
图2是适用本申请的一种5GS时间敏感通信和时间同步架构200的示意图。
图3是适用本申请的一种5GS时间敏感通信和/或时间同步架构300的示意图。
图4是适用本申请的一种5GS用户面协议栈的示意图。
图5是适用本申请的一种网络角度的5GS集成自动化应用的示意图。
图6是本申请实施例提供的通信方法600的流程示例图。
图7是本申请实施例提供的通信方法700的流程示例图。
图8是本申请实施例提供的通信方法800的流程示例图。
图9是本申请实施例提供的通信方法900的流程示例图。
图10是本申请实施例提供的通信方法1000的流程示例图。
图11是本申请实施例提供的一种通信装置的结构示意图。
图12是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于设备到设备(device to device,D5)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
在通信系统中,由运营者运营的部分可称为公共陆地移动网络(public land mobile network,PLMN),也可以称为运营商网络等。PLMN是由政府或其所批准的经营者为公众提供陆地移动通信业务目的而建立和经营的网络,主要是移动网络运营商(mobile network operator,MNO)为用户提供移动宽带接入服务的公共网络。本申请实施例中所描述的PLMN,具体可为符合第三代合作伙伴项目(3rd generation partnership project,3GPP)标准要求的网络,简称3GPP网络。3GPP网络通常包括但不限于5G网络、第四代移动通信(4th-generation,4G)网络,以及未来的其他通信系统,例如(6th-generation,6G)网络等。
为了方便描述,本申请实施例中将以PLMN或5G网络为例进行说明。
图1是本申请实施例提供的网络架构100的示意图,以3GPP标准化过程中定义的非漫游场景下,基于服务化架构SBA的5G网络架构为例。如图1所示,该网络架构可以包括三部分,分别是终端设备、数据网络(data network,DN)和运营商网络PLMN部分。下面对各部分的网元的功能进行简单说明。
终端设备部分可以包括终端设备110,该终端设备110也可以称为用户设备(user equipment,UE)。本申请中的终端设备110是一种具有无线收发功能的设备,可以经无线接入网(radio access network,RAN)140中的接入网设备(或者也可以称为接入设备)与一个或多个核心网(core network,CN)设备进行通信。终端设备110也可称为接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置等。终端设备110可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(例如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备110可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话、手机、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)等。或者,终端设备110还可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、无人机设备或物联网、车联网中的终端、5G网络以及未来网络中的任意形态的终端、中继用户设备或者未来演进的6G网络中的终端等。其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。例如终端设备110可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等。这里的终端设备指的是3GPP终端。本申请实施例对终端设备的类型或种类等并不限定。为便于说明,本申请后续以UE代指终端设备为例进行说明。
运营商网络PLMN部分可以包括但不限于(无线)接入网((radio)access network,(R)AN)120和核心网CN。
其中,(R)AN 120可以看作是运营商网络的子网络,是运营商网络中业务节点与终端设备110之间的实施系统。终端设备110要接入运营商网络,首先是经过(R)AN 120,进而可通过(R)AN 120与运营商网络的业务节点连接。本申请实施例中的接入网设备(RAN)是一种为终端设备110提供无线通信功能的设备,也可以称为网络设备,RAN设备包括但不限于:5G系统中的下一代基站节点(next generation node base station,gNB)、长期演进(long term evolution,LTE)中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、小基站设备、移动交换中心,或者未来网络中的网络设备等。采用不同无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同。为方便描述,本申请所有实施例中,上述为终端设备110提供无线通信功能的装置统称为接入网设备或简称为RAN或AN。应理解,本文对接入网设备的具体类型不作限定。
其中,CN可以包括但不限于:用户面功能(user plane function,UPF)130、网络开放功能(network exposure function,NEF)131、时敏通信时同步功能(time sensitive communication and time synchronization function,TSCTSF)132、策略控制功能(policy control function,PCF)133、统一数据管理功能(unified data management,UDM)134、应用功能(application function,AF)135、网络数据分析功能(network data analytics function,NWDAF)136、会话管理功能(session management function,SMF)137、接入与移动性管理功能(access and mobility management function,AMF)138。
DN 140,也可以称为分组数据网络(packet data network,PDN),通常是位于运营商网络之外的网络,例如第三方网络。在一些实现方式中,DN也可以由运营商进行部署,即DN属于PLMN中的一部分。本申请对DN是否属于PLMN不作限制。运营商网络PLMN可以接入多个DN 140,DN 140上可部署多种业务,可为终端设备110提供数据和/或语音等服务。例如,DN 140可以是某智能工厂的私有网络,智能工厂安装在车间的传感器可以是终端设备110,DN 140中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN 140可以是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备110,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。终端设备110可通过运营商网络提供的接口(例如N1等)与运营商网络建立连接,使用运营商网络提供的数据和/或语音等服务。终端设备110还可通过运营商网络访问DN 140,使用DN 140上部署的运营商业务,和/或第三方提供的业务。
下面对CN包含的网络功能(network function,NF)功能进行进一步简要说明。
1、UPF 130是由运营商提供的网关,是运营商网络与DN 140通信的网关。UPF 130包括数据包路由和传输、数据包检测、业务用量上报、服务质量(quality of service,QoS)处理、合法监听、上行数据包检测、下行数据包存储等用户面功能。
2、NEF 131是由运营商提供的控制面功能,主要使能第三方使用网络提供的服务,支持网络开放其能力、事件及数据分析、从外部应用给PLMN安全配备信息、PLMN内外交互信息的转换等。
3、TSCTSF 132是由运营商提供的控制面功能,用于时敏通信时同步功能。
4、PCF 133是由运营商提供的控制面功能,它支持统一的策略框架来治理网络行为、向其他控制功能提供策略规则、策略决策相关的签约信息等。
5、UDM 134是由运营商提供的控制面功能,负责存储运营商网络中签约用户的用户永久标识符(subscriber permanent identifier,SUPI)、签约用户的公开使用的签约标识(generic public subscription identifier,GPSI)、信任状等信息。UDM 134所存储的这些信息可用于处理终端设备110标识,接入运营商网络的鉴权,注册以及移动性管理等。在5G通信系统中,统一数据管理功能网元也可以是统一数据存储功能(unified data repository,UDR)网元。
6、AF 135是由运营商提供的控制面功能,用于接入网络开放功能网元或与策略框架交互进行策略控制等。
7、NWDAF 136是由运营商提供的控制面功能,其主要功能是从NF、外部应用功能AF以及运维管理(operations,administration and maintenance,OAM)系统等收集数据,对NF和AF提供NWDAF业务注册、数据开放和分析数据等。
8、SMF 137是由运营商网络提供的控制面功能,负责管理终端设备110的协议数据单元(protocol data unit,PDU)会话。PDU会话是一个用于传输PDU的通道,终端设备需要通过PDU会话与DN 140互相传送PDU。PDU会话由SMF 137负责建立、维护和删除等。SMF 137包括会话管理、UPF 130的选择和控制、业务和会话连续性(service and session continuity,SSC)模式选择、漫游等会话相关的功能。
9、AMF 138是由运营商网络提供的控制面功能,负责终端设备110接入运营商网络的接入控制和移动性管理,例如包括移动状态管理,分配用户临时身份标识,认证和授权用户等功能。
从图1可以看出,各个控制面网元之间的接口是点对点的接口,部分网元之间的接口名称及功能如下:
N1:AMF与终端之间的接口,可以用于向终端传递QoS控制规则等。
N2:AMF与RAN之间的接口,可以用于传递核心网侧至RAN的无线承载控制信息等。
N3:RAN与UPF之间的接口,主要用于传递RAN与UPF间的上下行用户面数据。
N4:SMF与UPF之间的接口,可以用于控制面与用户面之间传递信息,包括控制面向用户面的转发规则、QoS控制规则、流量统计规则等的下发以及用户面的信息上报。
N5:AF与PCF之间的接口,可以用于应用业务请求下发以及网络事件上报。
N6:UPF与DN的接口,用于传递UPF与DN之间的上下行用户数据流。
图1中Nnef、Naf、Npcf、Nudm、Ntsctsf、Nnwdaf、Namf、Nsmf、N1、N2、N3、N4,N5以及N6为接口序列号。本申请对于上述接口序列号的含义不做限制。需要说明的是,图1中的各个网络功能之间的接口名称仅仅是一个示例,在具体实现中,该系统架构的接口名称还可能为其他名称,本申请对此不作限定。
应理解,上述网络架构仅是从服务化架构的角度示例描述的网络架构,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。本申请实施例提供的通信方法还可以涉及图1中未示出的网元,当然本申请实施例提供的通信方法也可以只包括图1示出的部分网元。
还应理解,图1中所示的AMF、SMF、UPF、NEF、TSCTSF、AF、PCF、UDM、NWDAF可以理解为核心网中用于实现不同功能的网元,例如可以按需组合成网络切片。这些核心网网元可以各自独立的设备,也可以集成于同一设备中实现不同的功能,或者可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能,本申请对于上述网元的具体形态不作限定。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。本申请并不排除在5G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。
图2是适用本申请的一种5GS时间敏感通信(time sensitive communications,TSC)和时间同步(time synchronization)架构200的示意图,该架构可以支持时延敏感网络TSN。如图2所示,5GS作为一个TSN网桥(TSN Bridge)集成在TSN系统,可以称为5GS虚拟TSN网桥(5GS Virtual TSN Bridge)。其中,TSN网桥包括TSN转换器,用于TSN系统和5G之间用户面的交互,能够保障TSN系统端到端的确定性。5GS TSN转换器功能包括部署在终端设备的功能模块:终端侧TSN转换器(device side TSN translator,DS-TT)以及部署在UPF的功能模块:网络侧TSN转换器(network side TSN translator,NW-TT)。
具体地说,TSN通过通信系统(具体地说是终端设备驻留的通信系统,例如5GS)给TSN节点发送授时信息,以实现在相同时间域的TSN节点达到时钟同步的目的,通俗来讲即每个TSN节点的时钟时间一致。
图3是适用本申请一种5GS时间敏感通信和/或时间同步架构300的示意图,该架构可以支持基于IEEE 802.1AS标准或IEEE 1588标准中的以太网或网际互连协议(internet protocol,IP)类型PDU会 话的时间同步服务。为了实现TSN同步机制,整个端到端5GS可看作是一个IEEE 802.1AS时间感知系统。如图2B所示,包括两个时间同步域,分别为5G时间域和TSN时间域。在5GS内部,5G GM(5G内部主时钟)实现与UE、gNB、UPF、NW-TT和DS-TT的时间同步。基于gPTP的时间同步服务,TSCTSF控制DS-TT(s)和NW-TT。
需要说明的是,图2所示的网络架构的时间敏感通信TSC与时间同步技术同时部署,图3所示的网络架构的时间敏感通信TSC与时间同步技术可以单独使用。因此,本申请提供的通信服务监控适用于有时钟同步和没有时钟同步两方面。
还需要说明的是,图2中TSN AF是5GS内部网元,可以看做是应用功能网元,本申请技术方案中可以通过TSN AF开放性能指标,实现工业网络与5GS之间的映射。可选地,也可以通过NEF开放性能指标,本申请对此不作具体限定。图3中AF是外部网元,5GS与工业网络之间通常是通过NEF开放性能指标的。应理解,以下图6至图10提供的通信方法主要是针对图3所示的网络架构进行说明的,为了简洁,后续不再重复说明。当然,本申请提供的图6至图10的流程针对图2所示的网络架构也是适用的,即也可以将TSN AF理解为应用功能网元,此时可以认为有一个其他外部的功能网元,比如TSN网络中的集中网络配置(centralized network configuration,CNC)单元,对TSN AF发起了需求输入,然后TSN AF发起订阅请求,具体TSN AF的订阅请求过程与图6至图10的流程类似。
为便于理解本申请实施例,首先对本申请中涉及到的根据3GPP标准定义的术语或技术做简单说明。
1、通信服务可用性
通信服务可用性定义为:根据指定QoS下发端到端(end-to-end,E2E)通信服务的时间百分比值,除以系统预期下发端到端通信服务的时间。
需要指出的是,“端到端”中的端点可以是通信服务接口。如果该通信服务不满足相应的QoS要求,则认为该通信服务不可用。如果在指定的时间内没有正确接收消息,则认为通信系统不可用,该指定时间至少是允许的端到端延迟(the E2E latency)、抖动(jitter)和生存时间(survival time)的总和。即该参数指示通信系统是否按合同工作(“可用”/“不可用”状态)。只要满足传输数据包的可用性标准,通信系统就处于“可用”状态。如果在目标端接收的数据包受损和/或不及时(例如,更新时间大于规定的最大值),则该通信服务不可用。如果生存时间大于零,则忽略连续损伤和/或延迟,直到相应时间到期。
应理解,通信服务的可用性是使用累积停机时间计算得到的。例如,在通信服务预期运行时间T
对应的,通信服务的可用性A可以定义为:
A=1–U。
2、通信服务可靠性
通信服务可靠性定义为:通信服务在给定条件下,以及在给定时间间隔内,按要求执行的能力。其中,给定条件包括以下至少一项:操作模式、应力水平和环境条件。
可靠性可以使用适当的衡量标准来量化,例如:平均故障间隔时间,或在规定的时间内没有故障的概率。需要说明的是,平均无故障时间是通信服务可靠性的典型指标之一。该参数表示通信服务在不可用之前可用的时间的平均值。例如,平均故障间隔时间为一个月,表示在错误/错误使通信服务不可用之前,通信服务平均运行一个月无错误。通常,假设指数分布。这意味着,如果两个后续错误之间的时间低于平均值(即1个月),则会出现几次故障。
应理解,通信服务可靠性与通信服务可用性没有必然关系。
当前,5G与TSN或TSC网络的深度融合,将是实现工业有线与无线融合部署的关键,已成全球工业互联网网络研究的热点。图4是适用本申请的一种5GS用户面协议栈的示意图,如图4所示,用户面网元包括UE、5G-AN和UPF。其中,N3为RAN与UPF之间的接口,主要用于传递5G-AN与UPF间的上下行用户面数据;N6为UPF与DN的接口,用于传递UPF与DN之间的上下行用户数据流。另外,UE具有应用层、PDU层和5G-AN协议层,5G-AN具有5G-AN协议层、GTP-U层、UDP/IP 层、L2和L1,UPF具有PDU层、GTP-U层、UDP/IP层、L2和L1。5GS QoS监测定义了空口、N3口的时延测量方法,该时延测量方法涉及5GS内(例如,图4所示的PDU层以下)的时延测量。如何在5GS中监测与工业自动化的通信服务特征,如通信服务可用性、通信服务可靠性等关联的性能指标,实现5GS通信领域和工业自动化领域之间的映射是亟待解决的技术问题。
有鉴于此,本申请提供了一种通信方法和网络设备,将通信特征指标量化地提供给AF,并通过开放接口给工业自动化厂商,从而工业控制与自动化系统衡量的关键绩效指标(key performance indicator,KPI)在5GS中有了映射。一方面可检测5GS视角5GS内部通信服务性能相关开放给外部系统(本文所述5GS内外部通信系统的理解可以认为,5GS与工业自动化系统通过通信服务接口对接,接口层及以下逻辑通信链路为5GS内通信系统,接口往上与工业自动化应用对接部分为5GS外通信系统);另一方面可检测工业自动化视角包括5GS系统的整个端到端系统的通信服务性能,通过对不同层或接口的指标监测结合,可用于端到端系统问题定界定位等。
为了便于理解本申请实施例,作出以下几点说明:
第一、在本申请中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
第二、在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
第三、在本申请中,“第一”、“第二”以及各种数字编号(例如,#1、#2等)指示为了描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的消息等,而不是用于描述特定的顺序或先后次序。应理解,这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。
第四、在本申请中,“当……时”、“在……的情况下”以及“如果”等描述均指在某种客观情况下设备会做出相应的处理,并非是限定时间,且也不要求设备在实现时一定要有判断的动作,也不意味着存在其它限定。
第五、在本申请中,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
第六、在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。待指示信息可以作为整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同,本申请对具体的发送方法不作限定。
本申请实施例中的“指示信息”可以是显式指示,即通过信令直接指示,或者根据信令指示的参数,结合其他规则或结合其他参数或通过推导获得。也可以是隐式指示,即根据规则或关系,或根据其他参数,或推导获得。本申请对此不作具体限定。
第七、在本申请中,“协议”可以是指通信领域的标准协议,例如可以包括5G协议、新空口(new radio,NR)协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。“预配置”可以包括预先定义。例如,协议定义。其中,“预先定义”可以通过在设备中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第八、在本申请中,“存储”可以是指保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器、处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第九、在本申请中,“通信”还可以描述为“数据传输”、“信息传输”、“数据处理”等。“传输”包括“发送”和“接收”,本申请对此不作限定。
下面将结合附图详细说明本申请提供的技术方案。
应理解,工业自动化领域中涉及的通信服务可用性、通信服务可靠性等指标的监测主要取决于5GS与自动化应用之间的通信服务接口(communication service interface,CSIF)的所在位置。图5是适用本申请的一种网络角度的5GS集成自动化应用的示意图。结合图4来看,在自动化应用与5GS集成时,自动化应用本身为了达到不同的通信性能,可以与5GS对接(例如,若需要达成Class A性能,CSIF可以置于PDU层,或者应用层(如图4所示的PDU以上的应用层);或者,自动化应用也可以在5GS改造后进行对接(例如,若需要达成Class B性能,则5GS本身可能需要增加类似Class B中Timing-layer的处理数据功能,此时CSIF可以置于GTP层,或UDP/IP层或L2等);又或者,自动化应用也可以在5GS改造L2协议后进行对接(例如,若需要达成Class C性能,实现专用实时以太功能,此时CSIF可以置于L2等)。因此,通过监测5GS中目标UE的应用层或者目标UE应用层以下(如图4所示的UE应用层以下的PDU层和5G-AN协议层)的的性能指标(例如,端到端时延或PDB时延),实现与自动化应用中的通信服务可用性或通信服务可靠性等通信特征相互映射。
图6是本申请实施例提供的通信方法600的流程示意图。如图6所示,该方法包括如下多个步骤。
S610,应用功能网元发送第一请求消息。
对应的,网络数据分析功能网元接收第一请求消息。
其中,第一请求消息用于请求订阅分析目标用户设备UE(s)的通信服务特征,通信服务特征包括通信服务可用性,和/或通信服务可靠性,通信服务可用性用于指示时延分布情况,通信服务可靠性用于指示发生故障与时间的关系,第一请求消息包括目标UE的标识。
其中,通信服务可用性是指根据指定QoS下发端到端通信服务的时间的百分比值,除以系统预期下发端到端服务的时间。如果通信服务不满足相关QoS要求,则视为不可用。例如,如果在指定的时间内没有正确接收消息,则通信服务不可用,该时间可以是允许的端到端延迟,抖动和生存时间的总和。在本申请实施例中,通信服务可用性可以量化为一个曲线报表,横坐标表示时延,纵坐标表示不同的时延对应的百分比值。
例如,通信服务可用性包括以下一项或多项:满足指定百分比值要求的时延;或者,时延满足指定时间要求的百分比值。例如,满足99.99%要求的时延;或者,满足10ms要求的百分比值。
其中,通信服务可靠性是通信服务在给定条件下,以及在给定时间间隔内,按要求执行的能力。平均无故障时间是通信服务可靠性的典型指标之一。该参数表示通信服务在不可用之前可用的时间的平均值。
例如,可靠性包括以下至少一项或多项:发生故障的平均时间,或者满足指定时间内发生故障的次数或时长(即平均故障间隔时间,或平均无故障时间);或者,满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。例如,发生一次故障的平均时间,或者1天内发生故障的次数或时长;或者,1天时间内无故障的概率,或者发生N次故障的时间。又例如,平均故障间隔时间为一个月,表示在错误或错误使通信服务不可用之前,通信服务平均运行一个月无错误。通常,如果两个后续错误之间的时间低于平均值(例如1个月),则会出现几次故障。在本申请实施例中,通信服务可靠性也可以量化为一个曲线报表,横坐标表示时间信息,纵坐标表示各时间对应的发生故障的次数,或者不满足事件的次数。
可选地,第一请求消息还包括频率指示信息,该频率指示信息用于指示下列步骤S660和步骤S680的分析结果上报频率。例如,每小时上报一次,或者每天上报一次。该实现方式可以避免AF多次发送用于请求订阅分析目标用户设备UE(s)的通信服务特征的第一请求消息,减少信令开销,使得AF及时获得关联通信服务特征的分析结果。
需要说明的是,在本申请实施例中,应用功能网元可以通过请求消息向5GS内部请求订阅分析目标用户设备UE(s)的通信服务特征,5GS内部的网元(例如NEF或TSCTSF或PCF)可以将通信服务特征映射为端到端时延或者PDB时延,或者数据包与数据包间隔时延;和/或,故障发生的起始时间和持续时间,或开始时间和结束时间,通过收集并分析端到端(end to end,E2E)时延或PDB时延,或者数据包与数据包间隔时延,和/或,故障发生的起始时间和持续时间,或开始时间和结束时间,以表 征工业自动化领域中的通信服务特征的指标性能,进而实现了工业领域与通信领域之间的结合和映射关系。换句话说,通信服务特征对应的分析结果可以用于工业网络的通信服务的控制。
应理解,端到端时延中的端点是通信服务接口。示例性的,端到端时延可以是IP PDU Layer的E2E时延,或者媒体接入控制(medium access control,MAC)协议数据单元(protocol data unit,PDU)Layer的E2E时延,或者5GS内传输层以下的E2E时延,这与实际部署中5GS与工业应用对接时通信接口层对应。
在一种可能的实现方式中,应用功能网元通过网络能力开放网元向网络数据分析功能网元发送请求消息。
在另一种可能的实现方式中,应用功能网元通过网络能力开放网元向时敏通信时同步功能网元或用户面功能网元发送请求消息。
S620,网络数据分析功能网元发送第二请求消息。
对应的,第一设备接收来自网络数据分析功能网元发送第二请求消息,即第一信息。
其中,第二请求消息用于请求获取与通信服务特征关联的第一数据。
例如,第一数据包括以下一项或者多项:端到端时延,数据包时延预算,或者数据包与数据包间隔时延,故障发生的起始时间和持续时间,或开始时间和结束时间。
可选地,第一数据还可以包括数据包大小,数据包速率,或者数据包错误率。
在一种可能的实现方式中,NWDAF向TSCTSF或者UPF发送第二请求消息,用于请求收集第一数据,即目标UE应用层以下的数据。
可选地,NWDAF通过OAM向TSCTSF或者UPF发送第二请求消息,用于请求收集目标UE应用层以下的数据。
在另一种可能的实现方式中,NWDAF向第三方,例如数据收集应用功能网元(data collecting application function,DCAF)发送第二请求消息,用于请求收集第一数据,即目标UE应用层数据,或者AF应用层数据。其中,应用层数据可以是HTTP层的数据。
可选地,NWDAF通过OAM向DCAF发送第二请求消息,用于请求收集目标UE应用层数据,或者AF应用层数据。
在一种可能的实现方式中,当第一设备为UPF,UPF可以从SMF接收第一信息,如SMF向UPF发送N4会话修改,包括用于上行和/或下行通信服务可用性和/或通信服务可靠性的QoS监测的配置。例如,监测包括UE收集到的UPF至UE之间的端到端时延或PDB时延(该实现方式中UE可以将收集到的数据上报给UPF),或者UE单侧数据包与数据包间隔时延;以及UPF收集到的UPF至UE之间或UE至UPF之间的端到端时延或PDB时延,或UPF单侧接收数据包与数据包的间隔时延(可用于通信服务可用性分析),以及故障发生的起始时间、结束时间,或持续时间等(可用于通信服务可靠性分析)。
在另一种可能的实现方式中,第一设备是UE,UE通过AMF接收来自SMF的第一信息,例如AMF向UE通过N1消息,包括用于UPF至UE的通信服务可用性和/或通信服务可靠性的QoS监测配置;例如,监测包括从UPF至UE的端到端时延或PDB时延,或UE单侧接收数据包与数据包的间隔时延(可用于通信服务可用性分析),以及故障发生的起始时间、结束时间,或持续时间等(可用于通信服务可靠性分析)。
在另一种可能的实现方式中,第一设备是UE,UE通过从DCAF接收第一信息,用于通信服务可用性和/或通信服务可靠性的QoS监测配置,主要用于UE应用层的数据监测。例如,监测包括从UPF至UE的端到端时延或PDB时延,或UE单侧接收数据包与数据包的间隔时延(可用于通信服务可用性分析),或者接收数据包的时间戳信息,以及故障发生的起始时间、结束时间,或持续时间等(可用于通信服务可靠性分析)。可选地,还可以包括UE侧的生存时间ST。
应理解,生存时间是指使用通信服务的应用程序可以在没有预期消息的情况下继续运行的时间。
在一种可能的实现方式中,当请求通信服务可用性事件分析时,PCF生成QoS监测的策略至少包含要求监测E2E时延(例如,IP PDU Layer或者MAC PDU Layer的E2E时延,或5GS内传输层以下的E2E时延)的策略。
在另一种可能的实现方式中,当请求通信服务可靠性事件分析时,PCF生成QoS监测的策略至少 包含要求监测故障时间的策略(例如,标记故障发生的起始时间、结束时间,或持续时间等。可选的,一种策略是当E2E小于指定的时延值时,可以标记为非故障时间)。
需要说明的是,第一设备根据第一信息对通信服务特征进行监测的具体实现方式可参考现有技术,为了简洁,此处不过多赘述。
S630,第一设备对通信服务特征进行监测,以获取第一数据。
在一种可能的实现方式中,第一设备接收第一信息,第一信息包括用于指示对通信服务特征进行监测,通信服务特征包括通信服务可用性,和/或通信服务可靠性,通信服务可用性用于指示时延分布情况,通信服务可靠性用于指示发生故障与时间的关系。
示例性的,通信服务可用性包括以下至少一项或多项:满足指定百分比值要求的时延;或者,时延满足指定时间要求的百分比值。例如,满足99.99%要求的时延;或者,满足10ms要求的百分比值。
示例性的,通信服务可靠性包括以下至少一项或多项:发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。例如,发生一次故障的平均时间,或者1天内发生故障的次数或时长;或者,1天时间内无故障的概率,或者发生N次故障的时间。
进一步地,第一设备根据第一信息对通信服务特征进行监测,以获取与通信服务特征关联的第一数据。
示例性的,与通信服务特征关联的数据包括:端到端时延或PDB时延,或者数据包与数据包间隔时延;和/或故障发生的起始时间、结束时间,或持续时间等。
S640,第一设备向网络数据分析功能网元发送第一数据。
对应的,网络数据分析功能网元接收第一数据。
需要说明的是,上述步骤S630收集第一数据与步骤S640中向NWDAF上报第一数据可以是连续动作,即第一设备需要在收集到第一数据后立即上报NWDAF,保证数据的实时性。示例性的,第一设备收集第一数据的频率可以与步骤S610中AF要求的上报分析结果的频率一致;或者,上述步骤S630收集第一数据与步骤S640中向NWDAF上报第一数据可以是非实时动作,即第一设备可以在收集到第一数据后不立即上报NWDAF,减少第一设备的功耗和信令开销。例如,第一设备每半小时收集一次数据,且每小时上报一次数据,本申请对此不作具体限定。
在一种可能的实现方式中,NWDAF从TSCTSF或者UPF接收第一数据,例如目标UE应用层以下的数据。
可选地,NWDAF通过OAM从TSCTSF或者UPF接收第一数据,例如目标UE应用层以下的数据。
例如,UE可以将监测的从UPF到UE的端到端时延或PDB时延,或者数据包与数据包间隔时延,和/或,故障发生的起始时间和持续时间,或开始时间和结束时间,并上报至UPF,再由UPF统一将UE上报的数据,以及UPF监测的从UPF到UE或从UE至UPF的端到端时延或PDB时延,或者数据包与数据包间隔时延,和/或,故障发生的起始时间和持续时间,或开始时间和结束时间,上报给TSCTSF或者NWDAF。又或者,UE可以将监测的从UPF到UE的端到端时延或PDB时延,或者数据包与数据包间隔时延,和/或,故障发生的起始时间和持续时间,或开始时间和结束时间,上报至TSCTSF,UPF将监测的从UPF到UE或从UE至UPF的端到端时延或PDB时延,或者数据包与数据包间隔时延,和/或,故障发生的起始时间和持续时间,或开始时间和结束时间,上报给TSCTSF,再由TSCTSF统一将接收到的数据上报给NWDAF。
在另一种可能的实现方式中,NWDAF从DCAF接收第一数据,例如目标UE应用层数据,或者AF应用层数据。
可选地,NWDAF通过OAM从DCAF接收第一数据,例如目标UE应用层数据,或者AF应用层数据。
可选地,S670,第一设备分析第一数据,并获取与通信服务特征关联的分析结果。
需要说明的是,在本申请实施例中,第一设备例如UPF或UE可以收集并上报第一数据上报至TSCTSF,再由TSCTSF发送第一数据至NWDAF,便于NWDAF分析第一数据获取对应的分析结果;或者,第一设备例如UE也可以将第一数据发送至UPF,再由UPF经过TSCTSF发送至NWDAF;或 者,第一设备例如UPF或UE也可以收集并分析第一数据,得到对应的分析结果,再通过NEF开放接口将分析结果上报至AF等。
在一种可能的实现方式中,针对通信服务可用性的具体实现方式包括:
示例性的,基于收集的端到端时延或PDB时延,或者数据包与数据包间隔时延时延所对应的累积分布函数(cumulative distribution function,CDF)曲线,第一设备(例如,UE或UPF或TSCTSF)可以从CDF曲线中得到AF请求的99.99%对应的时延值,例如10ms即为要求的端到端或PDB时延。
示例性的,基于收集的端到端时延或PDB时延,或者数据包与数据包间隔时延时延所对应的CDF曲线,第一设备(例如,UE或UPF或TSCTSF)可以从CDF曲线中得到AF请求的10ms时延对应的百分比,例如99.99%即为要求的通信可用性百分比值。
示例性的,基于收集的端到端时延或PDB时延,或者数据包与数据包间隔时延所对应的CDF曲线,第一设备(例如,UE或UPF或TSCTSF)可以向TSCTSF或AF上报该CDF曲线,以得到时延信息和对应的百比值具体的对应关系。
在一种可能的实现方式中,针对通信服务可靠性的具体实现方式包括:
示例性的,基于收集的故障发生的起始时间和持续时间,或开始时间和结束时间,可以得到每次发生故障的时间间隔的分布,进而可以推导出发生故障的平均时间,或指定时间内发生故障的次数或概率等。示例性的,分别统计N次故障发生与时间的关系,例如第一次故障发生的时间信息为1月1日0点00分开始至0点10分恢复;第二次故障发生的时间信息为1月3日1点00分开始至1点15分恢复;第三次故障发生的时间信息为1月5日3点00分开始至2点10分恢复,等等。因此,可以统计出所述N次故障发生间隔分别是2天1小时,2天2小时,等等,所述N次故障持续时间分别是10分钟,15分钟,10分钟,等等。基于上述统计数据,可以计算出发生一次故障的平均时间;或者满足指定时间内比如1个月发生故障的次数或时长;或者,满足指定时间内比如1天内的无故障的概率;或者,满足发生指定故障次数比如2次的时间等。
可选地,S680,第一设备向应用功能网元发送分析结果。
对应的,应用功能网元接收来自第一设备的分析结果。
可选地,若步骤S610中AF发送的第一请求消息携带频率指示信息,例如,指示每小时上报一次分析结果,则第一设备需要每小时上报一次分析结果。需要说明的是,该分析结果可以是更新后的分析结果,也可以是未更新的分析结果,这取决于步骤S630收集的第一数据的更新频率;该实现方式可以保证AF及时获得有效的分析结果,便于及时发现是否有异常事件的发生,保证系统性能。
需要说明的是,第一设备在步骤S670分析收集到的第一数据并获得分析结果后,可以不立即上报分析结果给AF,可以根据步骤S610中要求的频率进行上报。例如,第一设备每半小时收集一次数据,并分析获得分析结果,且根据步骤S610中要求的频率每小时上报依次分析结果等,该实现方式可以减少第一设备的功耗和信令开销。本申请对此不作具体限定。
S650,网络数据分析功能网元分析第一数据,并获取与通信服务特征关联的分析结果。
在一种可能的实现方式中,针对通信服务可用性的具体实现方式包括:
示例性的,基于收集的端到端时延或PDB时延,或者数据包与数据包间隔时延所对应的CDF曲线,NWDAF可以从CDF曲线中得到AF请求的99.99%对应的时延值,例如10ms即为要求的端到端或PDB时延。
示例性的,基于收集的端到端时延或PDB时延,或者数据包与数据包间隔时延所对应的CDF曲线,NWDAF可以从CDF曲线中得到AF请求的10ms时延对应的百分比,例如99.99%即为要求的通信可用性的百分比值。
示例性的,基于收集的端到端时延或PDB时延,或者数据包与数据包间隔时延所对应的CDF曲线,NWDAF可以向AF上报该CDF曲线,以得到时延信息和对应的百比值具体的对应关系。
可选地,NWDAF也可以从OAM接收与通信服务特征关联的分析结果。也就是说,网络数据分析功能网元可以收集数据并分析数据获得分析结果,也可以直接从其他网元例如OAM获取分析结果,可以减少信令开销。
在另一种可能的实现方式中,针对通信服务可靠性的具体实现方式包括:
示例性的,基于收集的故障发生的起始时间和持续时间,或开始时间和结束时间,NWDAF可以得到 每次发生故障的时间间隔的分布,进而可以推导出发生故障的平均时间,或指定时间内发生故障的次数或概率等。
示例性的,第一数据用于指示N次故障发生与时间的关系,第一数据包括例如第一次故障发生的起始时间和结束时间为:1月1日0点00分和0点10分;第二次故障发生的起始时间和结束时间为:1月3日1点00分和1点15分;第三次故障发生的起始时间和结束时间为:1月5日3点00分和2点10分等。因此,可以统计出所述N次故障发生间隔分别是2天1小时,2天2小时,等等。若AF请求所述N次故障的持续时间,则NWDAF可以从统计的数据中得到10分钟,15分钟,10分钟,等等。
示例性的,NWDAF根据步骤S650收集到的用于表示发生故障与时间的关系的数据,比如通过分析每两次故障之间的时间间隔的分布,第一次故障间隔1天,第二次故障间隔1.5天…,得到时间间隔分布曲线。根据请求的时间比如7天内,统计7天发生故障次数,或者没有发生故障的百分比值。
基于上述统计数据,NWDAF可以从统计的数据中得到发生一次故障的平均时间;或者满足指定时间内比如1个月发生故障的次数或时长;或者,满足指定时间内比如1天内的无故障的概率;或者,满足发生指定故障次数比如2次的时间等,并根据AF的具体请求,有针对性地上报与通信服务可靠性关联的分析结果。
S660,网络数据分析功能网元向应用功能网元发送分析结果。
对应的,应用功能网元接收来自网络数据分析功能网元的第一数据。
在一种可能的实现方式中,应用功能网元通过网络能力开放网元接收来自网络数据分析功能网元的与通信服务特征关联的分析结果;或者,应用功能网元通过网络能力开放网元接收来自时敏通信时同步功能网元或用户面功能网元与通信服务特征关联的分析结果。
示例性的,AF通过NEF向NWDAF订阅分析目标UE(s)的通信服务特征,包括通信服务可用性和/或通信服务可靠性。对应的,NWDAF通过开放接口向TSCTSF订阅收集目标UE(s)的通信服务特征相关的性能参数(例如,端到端时延或PDB时延,或者数据包与数据包间隔时延;和/或,故障发生的起始时间和持续时间,或开始时间和结束时间等),并分析通信服务特征相关的性能参数,将得到的分析结果上报给AF,以满足工业控制与自动化系统衡量的KPI与5GS之间的映射关系。
需要说明的是,订阅收集的目标UE(s)的通信服务特征相关的性能参数可以是UE应用层的参数,即从工业自动化设备到UE应用层方向的通信指标,还可以是5GS系统UE应用层以下的通信指标,AF通过观察不同层通信特征指标结果,可以为5GS与工业自动化集成系统定位出故障发生位置。比如5GS内部、UE上层,或者与UE相连外部设备的问题。
在一种可能的实现方式中,针对通信服务可用性的具体实现方式包括:
示例性的,AF请求分析满足99.99%要求的时延,NWDAF可以从CDF曲线中得到99.99%对应的时延值,例如10ms即为要求的端到端或PDB时延。
示例性的,AF请求分析满足10ms要求的百分比值,NWDAF可以从CDF曲线中得到10ms时延对应的百分比,例如99.99%即为要求的通信可用性。
示例性的,AF请求分析通信服务可用性,NWDAF可以上报CDF曲线,横纵坐标分别为时延信息和对应的百比值。
在另一种可能的实现方式中,针对通信服务可靠性的具体实现方式包括:
示例性的,AF请求分析满足指定时间如一天(例如1月3日)发生故障的次数或时长,NWDAF根据步骤S650收集到的用于发生故障与时间的关系的数据,确定发生故障的次数为2次,每次用时10分钟,具体故障时间为3点00分~3点10分,以及14点40分~14点50分,进而也可以计算出1月3日无故障的概率为98.61%。
示例性的,AF请求分析满足发生故障次数为10次所对应的时间,NWDAF根据步骤S650收集到的用于发生故障与时间的关系的数据,确定对应的时间是1月5日3点00分~1月10日3点00分,进而也可以得到平均发生1次故障的时间为0.5天。
可选地,若步骤S610中AF发送的第一请求消息携带频率指示信息,例如,指示每小时上报一次分析结果,则NWDAF需要每小时上报一次分析结果。需要说明的是,该分析结果可以是更新后的分析结果,也可以是未更新的分析结果,这取决于步骤S640接收到的第一数据的更新频率;该实现方式 可以保证AF及时获得有效的分析结果,便于及时发现是否有异常事件的发生,保证系统性能。
进一步地,AF可以基于分析结果定位异常事件的发生位置。示例性的,AF本身在检测整个系统E2E性能时发现了故障,假设5GS内部监测的数据是针对PDU层以下的E2E性能,且得到的分析结果是正常的。此时,AF基于这个分析结果可以确定5GS内部没有问题,可以将故障位置定位到PDU层至应用层之间,或者将故障位置定位到应用层。
根据本申请提供的方案,应用功能网元通过向5GS内部网元发送请求消息,并获得量化地分析结果,能够实现将工业领域的通信服务特征性能指标与5GS内部通信特征性能指标。进一步地,应用功能网元可以将5GS内部的通信性能指标量化给有需要的厂商,而且结合不同设备和不同层的数据收集,当通信服务特征的指标异常时,应用功能网元还可以通过所指示的异常事件的发生(例如,5GS与工业自动化集成系统发生故障)确定是由5GS内部原因还是系统外部原因导致,进而定位出故障发生位置,提升系统性能。
图7是本申请实施例提供的通信方法700的流程示例图。在该实现方式中,AF通过NEF向NWDAF订阅分析目标UE(s)的通信服务特征,包括通信服务可用性和/或通信服务可靠性。NWDAF通过开放接口向TSCTSF订阅收集目标UE(s)的通信服务特征相关的性能参数(例如,端到端时延或PDB时延,或者数据包与数据包间隔时延等;和/或,故障发生的起始时间和持续时间,或开始时间和结束时间),并分析通信服务特征相关的性能参数,将得到的分析结果上报给AF,以满足工业控制与自动化系统衡量的KPI与5GS之间的映射关系。如图7所示,该方法包括如下多个步骤。
S701a,AF向NEF发送订阅请求消息#1。
对应的,NEF接收来自AF的订阅请求消息#1。
S701b,NEF向NWDAF发送订阅请求消息#2。
对应的,NWDAF接收来自NEF的订阅请求消息#2。
其中,订阅请求消息#1和订阅请求消息#2用于请求订阅分析目标UE(s)的通信服务特征,例如通信服务可用性,和/或通信服务可靠性。
可选地,通信服务特征还包括可靠性。其中,可靠性是指在网络层数据包传输的上下文中,在目标服务所需的时间限制内成功交付给给定系统实体的数据包占传输的所有数据包的百分比值。
示例性的,订阅请求消息#1和订阅请求消息#2包括通信服务分析ID(Commun_service_Analytics ID)和分析过滤信息(analytics filter information)。
例如,分析过滤信息包括:通信服务可用性和/或通信服务可靠性报告。
在一种可能的实现方式中,当AF请求订阅分析通信服务可用性时,包括以下几种可能的实现方式:
(1)AF请求分析时延满足一定时间要求的,或者说指定时延所对应的百分比值,AF发起请求订阅分析针对目标UE需要满足的时延要求,经NEF发给TSCTSF,TSCTSF将其映射为请求通信服务可用性需要保障的时延,如端到端时延或PDB时延,或者数据包与数据包间隔时延(例如,一种可能是Request Guaranteed delay for CSA),例如,请求满足10ms时延对应的百分比值;
(2)AF请求分析满足特定百分比值所对应的时延,AF发起请求订阅分析针对目标UE需要满足的百分比要求,经NEF发给TSCTSF,TSCTSF将其映射为请求通信服务可用性要求的百分比值(例如,一种可能是Guaranteed percentage for CSA),例如,请求满足99.99%对应的时延。
(3)AF请求订阅分析通信服务可用性报告,不指定时延或者百分比要求时,AF发起请求订阅分析针对目标UE的CSA的分析,经NEF发给TSCTSF,TSCTSF映射为请求需要保障的时延(Request Guaranteed delay for CSA)或请求需要保障的百分比值(Request Guaranteed percentage for CSA)可以是默认值。此时,可以将对应的曲线报表上报给AF。
在另一种可能的实现方式中,当AF请求订阅分析通信服务可靠性时,包括以下几种可能的实现方式:
(1)AF请求订阅分析发生故障的平均时间,或者满足指定时间内发生故障的次数或时长,AF发起订阅分析针对目标UE的平均无故障时间,经NEF发给TSCTSF,TSCTSF将其映射为满足通信服务可靠性要求的时延对应的发生故障,例如满足指定一个月内发生故障的次数或时长;
(2)AF请求订阅分析满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间,AF发起订阅分析针对目标UE的无故障概率分析,经NEF发给TSCTSF,TSCTSF将其映射为满足通信 服务可靠性要求的时间间隔或起始时刻,例如,发生故障的平均时间间隔是0.5天,1天内不发生故障的概率是99.88%。
可选地,针对AF请求订阅分析通信服务可用性,和/或通信服务可靠性,订阅请求消息#1和订阅请求消息#2还可以包括以下一项或者多项:上报时间信息,UE(s)地址标识(UE address)。其中,上报时间信息用于指示与通信服务特征关联的分析结果的上报时间。
需要说明的是,上述通信服务分析ID可以是一个,也可以是多个,本申请对此不作具体限定。可选地,当目标UE的个数为一个时,订阅请求消息#1和订阅请求消息#2可以不携带分析ID;当目标UE的个数为多个时,订阅请求消息#1和订阅请求消息#2中的分析ID的数量与目标UE的数量相同,且一一对应。
示例性的,订阅请求消息#1可以是Nnef_AnalyticsExposure_Subscribe request,订阅请求消息#2可以是Nnwdaf_AnalyticsSubscription_Subscribe。
即步骤S701a-S701b表示AF通过NEF向NWDAF请求订阅分析通信特征。
S702a,NWDAF向OAM发送订阅请求消息#3。
对应的,OAM接收来自NWDAF的订阅请求消息#3。
S702b,OAM向TSCTSF发送订阅请求消息#4。
对应的,TSCTSF接收来自OAM的订阅请求消息#4。
S702c,NWDAF向TSCTSF发送订阅请求消息#5。
对应的,TSCTSF接收来自NWDAF的订阅请求消息#5。
示例性的,NWDAF通过开放接口向TSCTSF收集用于分析通信服务的数据。
其中,订阅请求请求消息#3、订阅请求消息#4和订阅请求消息#5用于请求订阅相关参数,参见步骤S701b,这里不再赘述。
示例性的,订阅请求消息#5可以是Ntsctsf_EventExposure_subscribe Request。
即步骤S702a-S702b与S702c是NWDAF向TSCTSF请求订阅数据的两种可能的实现方式。
S703a,TSCTSF向PCF发送策略创建请求消息#1。
对应的,PCF接收来自NWDAF的策略创建请求消息#1。
其中,策略创建请求消息#1包括目标分析报告,参见步骤S701b,这里不再赘述。
示例性的,策略创建请求消息#1可以是Npcf_PolicyAuthorization_Create request。
S703b,PCF生成用于通信服务可用性和/或通信服务可靠性的QoS监测的策略。
示例性的,PCF根据AF发送的订阅请求消息#1中携带的通信服务可用性和/或通信服务可靠性,生成对应的通信服务可用性和/或通信服务可靠性的QoS监测的策略。
在一种可能的实现方式中,当请求通信服务可用性事件分析时,PCF生成的QoS监测的策略至少包含要求监测E2E时延(可以是IP或者MAC PDU Layer的E2E时延,或5GS内传输层以下的E2E时延。
在另一种可能的实现方式中,当请求通信服务可靠性事件分析时,PCF生成QoS监测的策略至少包含要求监测故障时间。例如,将E2E小于指定时延对应的时延计为非故障时间。
S703c,PCF向TSCTSF发送策略创建响应消息#1。
对应的,TSCTSF接收来自PCF的策略创建响应消息#1。
示例性的,策略创建响应消息#1可以是Npcf_PolicyAuthorization_Create rsp。
S704a,PCF向SMF发送策略更新请求消息#1。
对应的,SMF接收来自PCF的策略更新请求消息#1。
其中,策略更新请求消息#1用于请求通信服务的QoS监测的策略。
S704b,SMF向PCF发送策略更新响应消息#1。
对应的,PCF接收来自SMF的策略更新响应消息#1。
示例性的,策略更新请求消息#1或策略更新响应消息#1可以是SM Policy control_updateNotify req/rsp。
S705a,SMF向UPF发送N4会话修改请求消息#1。
对应的,UPF接收来自SMF的N4会话修改请求消息#1。
其中,N4会话修改请求消息#1包括用于上行和/或下行通信服务的QoS监测的配置。
示例性的,通信服务可用性的监测包括以下一项或者多项:从UE到UPF或从UPF到UE的端到端时延,或者数据包时延预算(packet delay budget,PDB)。例如,UPF与RAN之间进行交互,通过记录数据包的接收时刻和发送时刻确定端到端时延。
可选地,通信服务可用性的监测还包括以下一项或者多项:包错误率(packet error rate,PER)、数据包大小、或者数据包速率等。
可选地,通信服务可用性的监测包括:数据包与数据包的相关性。
S705b,UPF向SMF发送N4会话修改响应消息#1。
对应的,SMF接收来自UPF的N4会话修改响应消息#1。
示例性的,N4会话修改请求消息#1或N4会话修改响应消息#1可以是N4session modification req/rsp。
需要说明的是,UPF可以监测从UPF到UE或者从UE至UPF的端到端时延或PDB时延,或者数据包与数据包间隔时延,也就是说UPF可以检测往返时延。具体QoS监测的实现方式可参考现有技术中的QoS监测方式,为例简洁,此处不再赘述。
S706,SMF向AMF发送N1N2消息#1。
对应的,AMF接收来自SMF的N1N2消息#1。
示例性的,N1N2消息#1可以是Namf_Communication_N1N2MessageTransfer。
S707,AMF向UE发送N1消息#1。
对应的,UE接收来自AMF的N1消息#1。
其中,N1N2消息#1和N1消息#1均包括用于从UPF至UE的端到端时延或PDB时延,或者数据包与数据包间隔时延的QoS监测的配置。
示例性的,通信服务可用性的监测包括以下一项或者多项:从UPF到UE的端到端时延,或者PDB时延,或者数据包与数据包间隔时延。例如,UE与RAN之间进行交互,通过记录数据包的接收时刻和发送时刻确定端到端时延。
可选地,通信服务可用性的监测还包括以下一项或者多项:PER、数据包大小、或者,数据包速率。
示例性的,通信服务可靠性的监测包括:故障发生的起始时间。
可选地,通信服务可用性的监测包括:数据包与数据包的相关性等。
需要说明的是,UE进行从UPF至UE的端到端时延或者PDB时延,或者数据包与数据包间隔时延的QoS监测的具体实现方式可参考现有技术中的QoS监测方式,为了简洁,此处不再赘述。
S708,UPF向TSCTSF发送上行和/或下行监测数据。
对应的,TSCTSF接收来自UPF的上行和/或下行监测数据。
其中,上行和/或下行监测数据包括以下一项或者多项:E2E或PDB时延、PER、GFBR。
应理解,在步骤S708之前,UE可以向UPF发送UE收集到的UPF到UE的监测数据,即由UPF向TSCTSF转发UE侧的监测数据。
可选地,UPF向TSCTSF发送UPF收集到的UE到UPF的监测数据,即下行监测数据。UE向TSCTSF发送UE收集到的UPF到UE的监测数据,即上行检测数据。也就是说,上行监测数据和下行监测数据可以采用解耦的上报方式,本申请对此不作具体限定。
S709b,TSCTSF向OAM发送订阅响应消息#4。
对应的,OAM接收来自TSCTSF的订阅响应消息#4。
S709a,OAM向NWDAF发送订阅响应消息#3。
对应的,NWDAF接收来自OAM的订阅响应消息#3。
S709c,TSCTSF向NWDAF发送订阅响应消息#5。
对应的,NWDAF接收来自TSCTSF的订阅响应消息#5。
其中,订阅响应消息#3、订阅响应消息#4和订阅响应消息#5均包括上行和/或下行监测数据。例如,UPF监测从UPF到UE或者从UE到UPF的的端到端时延或PDB时延,或者数据包与数据包间隔时延;和/或,故障发生的起始时间和持续时间,或开始时间和结束时间;可选地,还包括PER等。又例 如,UE监测的从UPF到UE的端到端时延或PDB时延,或者数据包与数据包间隔时延;和/或,故障发生的起始时间和持续时间,或开始时间和结束时间;可选地,还包括PER等。
示例性的,订阅响应消息#5可以是Ntsctsf_EventExposure_subscribe Rsp。
即步骤S709a-S709b与S709c是NWDAF通过开放接口从TSCTSF获取上行和/或下行监测数据的两种可能的实现方式。
可选地,NWDAF还可以收集UE侧应用层的数据,具体实现方式可参见下列方法800,这里不作赘述。
S710,NWDAF分析上行和/或下行监测数据。
在一种可能的实现方式中,若AF请求分析的通信特征为通信服务可用性:
例如,分析上行和/或下行监测数据的方法可以通过分析端到端时延或PDB时延,或者数据包与数据包间隔时延在指定时间(指定时刻开始,或者指定一段时间)的CDF和/或概率密度函数(probability density function,PDF)分布曲线。
示例性的,AF请求分析时延满足一定时间要求的百分比值,也就是时延满足指定时间要求对应的通信服务可用性。对应的,NWDAF分析监控时间内,端到端E2E时延满足时间要求相应的百分比值。根据例如Request Guaranteed PDB for CSA要求的值,分析满足时延要求相应的百分比值。例如,NWDAF分析端到端时延,或者PDB时延,或者数据包与数据包间隔时延在指定时间的(指定时刻开始,或者指定一段时间)的CDF和/或PDF分布曲线。例如,AF请求分析满足10ms的通信可用性是多少,则NWDAF从CDF曲线中横坐标为10ms时延所对应的纵坐标的百分比值,即为要求的通信可用性。
示例性的,AF请求分析满足特定百分比值要求的时延。对应的,NWDAF分析监控时间内,根据例如Request Guaranteed percentage for CSA值,分析满足指定通信服务可用性百分比值相应的时延值。例如,NWDAF分析端到端时延,或者PDB时延,或者数据包与数据包间隔时延在指定时间的(指定时刻开始,或者指定一段时间)的CDF和/或PDF分布曲线。例如,AF请求分析99.99%可用性时延是多少,则NWDAF从CDF曲线中纵坐标为99.99%所对应的横坐标端到端时延值或PDB时延值,或者数据包与数据包间隔时延,即为要求的时延。
在另一种可能的实现方式中,若AF请求分析的通信特征为通信服务可靠性:
例如,分析上行和/或下行监测数据的方法可以通过分析故障次数与时间间隔的分布在指定时间(指定时刻开始,或者指定一段时间)的曲线。
示例性的,AF请求分析平均无故障时间(指定起始时间的不满足事件次数),或者说,发生故障的平均时间,或者满足指定时间内发生故障的次数或时长。例如,NWDAF可分析每两次故障之间的时间间隔的分布,得出统计意义上平均无故障时间的均值。
示例性的,AF请求分析给定时间段没有故障的百分比值,或者说,满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。例如,NWDAF可分析每两次故障之间的时间间隔的分布,并根据请求的时间段(例如一天,一个月,一年等),得出统计意义上该时间段时长内没有故障的百分比值。
基于步骤S710,NWDAF可以分析5GS内部通信特征性能,并通过NEF开放框架将分析结果开放给工业自动化厂商使用,使得工业控制与自动化系统衡量的指标(例如,通信服务可用性,和/或通信服务可靠性)在5GS中有了映射。
需要说明的是,上述通信特征(例如,通信服务可用性,和/或通信服务可靠性)及其分析方法仅是示例,不应构成对本申请技术方案的任何限定。应理解,上述多个通信特征可以独立监测,也可以同时监测,主要取决于工业自动化系统的需求。
可选地,在步骤S709b执行后,OAM分析上行和/或下行监测数据,并将分析结果上报给NWDAF,此时上述步骤S709a和S709c可以不执行。
S711b,NWDAF向NEF发送订阅响应消息#2。
对应的,OAM接收来自TSCTSF的订阅响应消息#2。
S711a,NEF向AF发送订阅响应消息#1。
对应的,AF接收来自NEF的订阅响应消息#1。
其中,订阅响应消息#1和订阅响应消息#2包括通信服务的分析结果。
可选地,订阅响应消息#1和订阅响应消息#2包括通信服务分析ID。
示例性的,订阅响应消息#1可以是Nnef_AnalyticsExposure_Subscribe notify,订阅响应消息#2可以是Nnwdaf_AnalyticsSubscription_notify。
即步骤S711a-S711b表示NWDAF通过NEF向AF发送通信服务的分析结果。
基于上述方案,结合NWDAF上报的5GS内部通信特征性能,以及UE上层的性能,AF可以确定异常事件的发生(例如,5GS与工业自动化集成系统发生故障)是由5GS内部原因还是系统外部原因导致,进而定位出故障发生位置,提升系统性能。
上述方法700中主要针对UE应用层以下的通信指标的数据收集和分析。接下来结合图8对UE应用层的通信指标的数据进行收集和分析。
图8是本申请实施例提供的通信方法800的流程示例图。与上述方法700不同之处在于,该实现方式是由DCAF统一收集UE应用层数据并转发给NWDAF。如图8所示,AF通过NEF向NWDAF订阅分析目标UE(s)的通信服务特征,包括通信服务可用性和/或通信服务可靠性。NWDAF发现并向第三方,例如DCAF请求订阅收集UE应用层数据,随后NWDAF根据UE应用层数据得到分析结果,并上报给AF,以满足工业控制与自动化系统衡量的KPI与5GS之间的映射关系,该方法包括如下多个步骤。
S801a,AF向NEF发送订阅请求消息#a。
对应的,NEF接收来自AF的订阅请求消息#a。
S801b,NEF向NWDAF发送订阅请求消息#b。
对应的,NWDAF接收来自NEF的订阅请求消息#b。
其中,订阅请求消息#a和订阅请求消息#b用于请求订阅分析目标UE(s)的通信服务特征,例如通信服务可用性,和/或通信服务可靠性。
即步骤S801a-S801b表示AF通过NEF向NWDAF请求订阅分析目标UE(s)的通信服务特征。
需要说明的是,步骤S801a-S801b的具体实现方式与上述方法700中步骤S701a-S701b类似,为了简洁,此处不再赘述。
S802,NWDAF发现用于数据收集的DCAF。
其中,具体发现DCAF的实现方式可参考现有技术,为了简洁,此处不再赘述。
S803a,NWDAF向DCAF发送订阅请求消息#c。
对应的,DCAF接收来自NWDAF的订阅请求消息#c。
S803b,NWDAF向NEF发送订阅请求消息#d。
对应的,NEF接收来自NWDAF的订阅请求消息#d。
S803c,NEF向DCAF发送订阅请求消息#e。
对应的,DCAF接收来自NWDAF的订阅请求消息#e。
其中,订阅请求消息#c、订阅请求消息#d和订阅请求消息#e用于请求订阅UE应用层数据。
示例性的,UE应用层数据包括UE应用层接收数据包的时间戳信息,或者数据包与数据包间隔时延。
可选地,UE应用层数据还包括UE侧的ST。
即步骤S803a和S803b-S803c是NWDAF向DCAF请求订阅UE应用层数据的两种可能的实现方式。
S804,DCAF收集UE应用层数据。
示例性的,DCAF向UE发送订阅请求消息#f。对应的,UE接收来自DCAF的订阅请求消息#f。其中,订阅请求消息#f用于请求收集UE应用层数据。
其中,DCAF收集UE应用层数据(例如协议HTTP层的E2E时延)的具体实现方式可参考现有技术,为了简洁,此处不再赘述。
S805a,DCAF向NWDAF订阅响应消息#c。
对应的,NWDAF接收来自DCAF的订阅响应消息#c。
S805b,DCAF向NEF订阅响应消息#e。
对应的,NEF接收来自DCAF的订阅响应消息#e。
S805c,NEF向NWDAF订阅响应消息#d。
对应的,NWDAF接收来自NEF的订阅响应消息#d。
其中,订阅响应消息#c、订阅响应消息#d和订阅响应消息#e包括收集到的UE应用层数据。
即步骤S805a和S805b-S805c是DCAF向NWDAF响应订阅的UE应用层数据的两种可能的实现方式。
S806,NWDAF根据UE应用层数据(例如,接收数据包的时间戳信息,或者端到端时延)以及指定时间信息(例如,起始计算时间、上报周期等),统计在指定时间(例如,从指定时刻开始,或者指定一段时间)内UE应用层接收数据包的时间的CDF和/或PDF。
其中,针对AF请求分析的通信特征为通信服务可用性和/或通信服务可靠性的具体分析过程可参考上述方法700中步骤S710,为了简洁,此处不再赘述。
S807a,NWDAF向NEF发送订阅响应消息#b。
对应的,NEF接收来自NWDAF的订阅响应消息#b。
S807b,NEF向AF发送订阅响应消息#a。
对应的,AF接收来自NEF的订阅响应消息#a。
其中,订阅响应消息#b和订阅响应消息#a包括通信特征的分析结果,例如通信服务可用性,和/或通信服务可靠性的分析结果。
示例性的,通信服务可用性和/或通信服务可靠性分析结果可以是指定分析时间的通信服务可用性和/或通信服务可靠性关系曲线报告,也可以是具体的结果信息,例如步骤S806中的结果信息。
即步骤S807a-S807b表示NWDAF通过NEF向AF上报通信特征的分析结果。
需要说明的是,以上NWDAF收集和分析UE应用层收集数据为例进行说明。类似的,NWDAF也可以从AF应用层收集数据并进行分析,具体实现方式可参考方法800中UE应用层数据的收集和分析,为了简洁,此处不再赘述。
基于上述方案,NWDAF收集并分析UE应用层的通信特征指标,并将5GS从UPF到UE方向的收包时间的通信特征指标开放给工业系统,从而可以反映工业自动化与5GS集成系统的端到端通信特征(从工业自动化设备到UE应用层方向)。另外,结合上述方法700,还可以分析5GS中UE应用层以下的通信指标,两者结合可以用于定位系统问题(例如,5GS内部、UE上层或与UE相连外部设备的问题)是5GS原因还是系统外部原因导致,进而有针对性地提升系统性能。
图9是本申请实施例提供的通信方法900的流程示例图。在该实现方式中,AF通过NEF向NWDAF订阅分析目标UE(s)的通信服务特征,包括通信服务可用性和/或通信服务可靠性。NWDAF通过开放接口订阅UPF数据(例如,端到端时延或PDB时延,或者数据包与数据包间隔时延;和/或,故障发生的起始时间和持续时间,或开始时间和结束时间等),并将分析结果通过NEF上报给AF,以满足工业控制与自动化系统衡量的KPI与5GS之间的映射关系。与上述方法700不同之处在于,该实现方式中NWDAF从UPF收集数据,方法700中NWDAF从TSCTSF收集数据。如图9所示,该方法包括如下多个步骤。
S901a,AF向NEF发送订阅请求消息#1。
对应的,NEF接收来自AF的订阅请求消息#1。
S901b,NEF向NWDAF发送订阅请求消息#2。
对应的,NWDAF接收来自NEF的订阅请求消息#2。
其中,订阅请求消息#1和订阅请求消息#2用于请求订阅分析目标UE(s)的通信服务特征,例如通信服务可用性,和/或通信服务可靠性。
即步骤S901a-S901b表示AF通过NEF向NWDAF请求订阅分析通信特征。
需要说明的是,步骤S901a-S901b的具体实现方式与上述方法700中步骤S701a-S701b类似,为了简洁,此处不再赘述。
S902a,NWDAF向UDM发送请求消息#1。
对应的,UDM接收来自NWDAF的请求消息#1。
其中,该请求消息#1包括UE标识(如UE ID),用于获取UDM存储的参数。
S902b,UDM向NWDAF发送响应消息#1。
对应的,NWDAF接收来自UDM的响应消息#1。
应理解,UDM负责存储运营商网络中签约用户的SUPI、签约用户的GPSI、信任状等信息,这些信息可用于处理UE标识,该步骤适用于每个UE的数据收集。
S903,NWDAF向SMF发送订阅请求消息#3。
对应的,SMF接收来自NDWAF的订阅请求消息#3。
其中,订阅请求消息#3用于向SMF请求事件开放订阅,找到目标UE的会话。
应理解,SMF负责管理UE的PDU会话。PDU会话是一个用于传输PDU的通道,UE需要通过PDU会话与DN互相传送PDU。PDU会话由SMF负责建立、维护和删除等。
S904a,SMF向UPF发送发送N4会话修改请求消息#1。
对应的,UPF接收来自SMF的N4会话修改请求消息#1。
S904b,SMF向UPF发送N4会话修改响应消息#1。
对应的,UPF接收来自SMF的N4会话修改响应消息#1。
其中,N4会话修改请求消息#1包括用于上行和/或下行通信服务的QoS监测的配置。例如,数据包到达UPF或从UPF发送的时间戳信息(即,UPF接收或发送数据包的时间戳),或者数据包之间的间隔时延。例如,UPF与RAN之间进行交互,通过记录数据包的接收时刻和发送时刻确定端到端时延。
示例性的,通信服务可用性的监测包括以下一项或者多项:从UE到UPF的端到端时延,或者PDB,或者数据包与数据包间隔时延。
需要说明的是,UPF监测从UE至UPF或从UPF至UE的端到端时延或PDB时延,或者数据包与数据包间隔时延的具体实现方式可参考现有技术中的QoS监测方式,为了简洁,此处不再赘述。
S905,SMF向AMF发送N1N2消息#1。
对应的,AMF接收来自SMF的N1N2消息#1。
S906,AMF向UE发送N1消息#1。
对应的,UE接收来自AMF的N1消息#1。
其中,N1N2消息#1和N1消息#1均包括用于UE监测从UPF至UE端到端时延或PDB时延,或者数据包与数据包间隔时延QoS监测的配置。
示例性的,通信服务可用性的监测包括以下一项或者多项:从UPF到UE的端到端时延,或者PDB时延,或者UE侧的数据包与数据包间隔时延。
需要说明的是,UE进行通信服务的QoS监测的具体实现方式可参考现有技术中的QoS监测方式,为了简洁,此处不再赘述。
即,上述步骤S904a-S906是对目标UE的会话进行监测配置。
S907,SMF向NWDAF发送订阅响应消息#3。
对应的,NWDAF接收来自SMF的订阅响应消息#3。
其中,订阅响应消息#3包括目标UE对应的UPF。
S908,NWDAF向UPF发送订阅请求消息#4
对应的,UPF接收来自NDWAF的订阅请求消息#4
其中,订阅请求消息#4用于向SMF请求订阅UPF数据,例如UPF的接收包的时间戳信息,或者UPF的接收数据包与数据包间隔时延等。
可选地,NWDAF可以通过开放事件订阅UPF数据。
S909,UPF向NWDAF发送订阅响应消息#4。
对应的,NWDAF接收来自UPF的订阅响应消息#4。
其中,订阅响应消息#4包括UPF数据,例如UPF的接收包的时间戳信息,或者UPF的接收数据包与数据包间隔时延等。
S910,NWDAF分析UPF数据,以得到分析结果。
其中,针对AF请求分析的通信特征为通信服务可用性和/或通信服务可靠性的具体分析过程可参考上述方法700中步骤S710,为了简洁,此处不再赘述。
S911b,NWDAF向NEF发送订阅响应消息#2。
对应的,NEF接收来自NWDAF的订阅响应消息#2。
S911a,NEF向AF发送订阅响应消息#1。
对应的,AF接收来自NEF的订阅响应消息#1。
其中,订阅响应消息#2和订阅响应消息#1均包括分析结果。
本申请所揭示的方法,从UPF收集通信指标,NWDAF分析后将5GS从UPF到UE,或从UE到UPF方向的收包时间的通信特征指标开放给工业系统,从而可以反映工业自动化与5GS集成系统的端到端通信特征。如果结合上述方法700,还可以分析5GS系统UPF应用层以下的通信指标,两者结合可以用于定位系统问题(例如5GS内部、5GS到DN之间的问题)是5GS原因还是系统外部原因导致,进而有针对性地提升系统性能。
图10是本申请实施例提供的通信方法1000的流程示例图。在该实现方式中,没有NWDAF网元参与,没有通信服务特征相关数据的订阅收集过程,可以在UE或UPF上收集相关参数并计算,进而根据订阅事件将分析结果上报给AF。如图10所示,该方法包括如下多个步骤。
S1001a,AF向NEF发送订阅请求消息#1。
对应的,NEF接收来自AF的订阅请求消息#1。
其中,订阅请求消息#1用于请求订阅分析目标UE(s)的通信服务特征,例如通信服务可用性,和/或通信服务可靠性。
示例性的,订阅请求消息#1可以是Nnef_EventExposure_Subscribe request,订阅请求消息#1包括通信服务事件ID(Commun_service_event ID)、和分析过滤信息,如通信服务可用性和/或通信服务可靠性报告。
示例性的,当AF请求订阅分析通信服务可用性时,订阅请求消息#1可以包括:(满足一定时间要求的)通信服务可用性的百分比值,或者,特定通信服务可用性百分比值所对应的时延信息。
可选地,针对AF请求订阅分析通信服务可用性,和/或通信服务可靠性,订阅请求消息#1还可以包括以下一项或者多项:上报时间信息,UE(s)地址标识(UE address)。其中,上报时间信息包括:开始时间和周期间隔,或者结束时间等。
S1002a,NEF向TSCTSF发送创建请求消息#1。
对应的,NWDAF接收来自NEF的创建请求消息#1。
S1002b,TSCTSF向PCF发送创建请求消息#2。
对应的,PCF接收来自TSCTSF的创建请求消息#2。
S1002c,NEF向PCF发送创建请求消息#3。
对应的,PCF接收来自NEF的创建请求消息#3。
其中,创建请求消息#1、创建请求消息#2和创建请求消息#3均用于请求订阅分析通信特征,例如通信服务可用性,和/或通信服务可靠性等。
示例性的,创建请求消息#1可以是Ntsctsf_QoSandTSCAssistance_Create request,创建请求消息#2和创建请求消息#3可以是Npcf_PolicyAuthorization_Create request。
即步骤S1002a-S1002b与S1002c是NEF向PCF请求订阅数据的两种可能的实现方式。
S1003,PCF生成用于通信服务QoS监测的策略。
其中,具体生成用于通信服务QoS监测(QoS mornitoring for commun service)的策略的具体实现方式可参见现有技术,为了简洁,此处不再赘述。
S1004a,PCF向TSCTSF发送创建响应消息#1。
对应的,TSCTSF接收来自PCF的创建响应消息#1。
S1004b,TSCTSF向NEF发送创建响应消息#2。
对应的,NEF接收来自TSCTSF的创建响应消息#2。
S1004c,PCF向NEF发送创建响应消息#3。
对应的,NEF接收来自PCF的创建响应消息#3。
示例性的,订阅响应消息#5可以是Ntsctsf_EventExposure_subscribe Rsp。
即步骤S1004a-S1004b与S1004c是PCF向NEF响应创建请求消息的两种实现方式。
示例性的,创建响应消息#1和创建响应消息#3可以是Npcf_PolicyAuthorization_Create rsp,创建 请求消息#2可以是Ntsctsf_QoSandTSCAssistance_Create request。
S1005,NEF向AF发送订阅响应消息#1。
对应的,AF接收来自NEF的订阅响应消息#1。
示例性,订阅响应消息#1可以是Nnef_EventExposure_Subscribe rsp。
S1006a,PCF向SMF发送更新请求消息#1。
对应的,SMF接收来自PCF的更新请求消息#1。
其中,更新请求消息#1用于请求更新用于通信服务可用性QoS监测策略。
S1006b,SMF向PCF发送更新响应消息#1。
对应的,PCF接收来自SMF的更新响应消息#1。
示例性的,更新请求消息#1/更新响应消息#1可以是SM Policy control_updateNotify req/rsp。
S1007,SMF向UPF发送N4会话修改请求消息#1。
对应的,UPF接收来自SMF的N4会话修改请求消息#1。
其中,N4会话修改请求消息#1包括用于上行和/或下行通信服务的QoS监测的配置。
示例性的,通信服务可用性的监测包括以下一项或者多项:从UE到UPF的端到端时延、PDB时延,或者数据包与数据包间隔时延。
S1008,SMF向AMF发送N1N2消息#1。
对应的,AMF接收来自SMF的N1N2消息#1。
S1009,AMF向UE发送N1消息#1。
对应的,UE接收来自AMF的N1消息#1。
其中,N1N2消息#1和N1消息#1均包括用于从UPF至UE的端到端时延或PDB时延,或者数据包与数据包间隔时延通信服务的QoS监测的配置。
需要说明的是,步骤S1007-S1009的具体实现方式可以参考上述方法700中步骤S705a-S707,为了简洁,此处不再赘述。
S1010a,UE分析指定时间内从UPF至UE端到端时延或PDB时延,或者数据包与数据包间隔时延数据的CDF和/或PDF,确定通信服务可用性。
S1010b,UPF分析指定时间内下行数据的CDF和/或PDF,确定通信服务可用性。
其中,针对AF请求分析的通信特征为上行和/或下行通信服务可用性,和/或通信服务可靠性的具体分析过程可参考上述方法400中步骤S410,为了简洁,此处不再赘述。
S1011a,UE向NEF发送上行监测结果。
即,UE收集并分析从UPF至UE的端到端时延或PDB时延,或者数据包与数据包间隔时延,和/或,故障发生的起始时间和持续时间,或开始时间和结束时间,得到对应的分析结果,即上行监测结果。
对应的,NEF接收来自UE的上行监测结果。
可选地,UE也可以将分析结果上报给UPF,由UPF通过NEF开放接口上报至AF。
S1011b,UPF向NEF发送下行监测结果。
即,UPF收集并分析从UE至UPF的端到端时延或PDB时延,或者数据包与数据包间隔时延;和/或,故障发生的起始时间和持续时间,或开始时间和结束时间得到对应的分析结果,即下行监测结果。当然,UPF同样可以收集并分析从UPF至UE的端到端时延或PDB时延,或者数据包与数据包间隔时延;和/或,故障发生的起始时间和持续时间,或开始时间和结束时间得到对应的分析结果。
对应的,NEF接收来自UPF下行监测结果。
S1011c,NEF向AF发送订阅响应消息#1。
对应的,AF接收来自NEF订阅响应消息#1。
其中,订阅响应消息#1包括通信服务的上行和/或下行监测结果。
本申请所揭示的方法,在UE和UPF上收集和分析通信特征,包括如通信服务可用性和/或通信服务可靠性等,通过NEF开放框架可以开放给工业自动化领域使用。一方面5GS内部的通信性能可以量化展示给有需要的厂商,另一方面,结合不同设备和不同层的数据收集,可以定位是5GS内部或者5GS系统外部原因造成的通信特征指标异常。
上文结合图1至图10,详细描述了本申请的通信方法侧实施例,下面将结合图11和图12,详细描述本申请的装置侧实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图11是本申请实施例提供的通信装置1100的示意性框图。如图11所示,该装置1100可以包括收发单元110和处理单元1120。收发单元1110可以与外部进行通信,处理单元1120用于进行数据处理。收发单元1110还可以称为通信接口或收发单元。
在一种可能的设计中,该装置1100可实现对应于上文方法实施例中的应用功能网元(例如,AF)执行的步骤或者流程,其中,处理单元1120用于执行上文方法实施例中第一网络功能网元的处理相关的操作,收发单元1110用于执行上文方法实施例中第一网络功能网元的收发相关的操作。
在另一种可能的设计中,该装置1100可实现对应于上文方法实施例中的网络数据分析功能网元(例如,NWDAF)执行的步骤或者流程,其中,收发单元1110用于执行上文方法实施例中第二网络功能网元的收发相关的操作,处理单元1120用于执行上文方法实施例中第二网络功能网元的处理相关的操作。
在又一种可能的设计中,该装置1100可实现对应于上文方法实施例中的用户面功能网元/时敏通信时同步功能网元/终端设备(例如,UPF/TSCTSF/UE)执行的步骤或者流程,其中,收发单元1110用于执行上文方法实施例中第二网络功能网元的收发相关的操作,处理单元1120用于执行上文方法实施例中第二网络功能网元的处理相关的操作。
应理解,这里的装置1100以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1100可以具体为上述实施例中的发送端,可以用于执行上述方法实施例中与发送端对应的各个流程和/或步骤,或者,装置1100可以具体为上述实施例中的接收端,可以用于执行上述方法实施例中与接收端对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置1100具有实现上述方法中发送端所执行的相应步骤的功能,或者,上述各个方案的装置1100具有实现上述方法中接收端所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。在本申请的实施例,图11中的装置可以是前述实施例中的接收端或发送端,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口。处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图12示出了本申请实施例提供的通信装置2000。如图12所示,该装置2000包括处理器2010和收发器2020。其中,处理器2010和收发器2020通过内部连接通路互相通信,该处理器2010用于执行指令,以控制该收发器2020发送信号和/或接收信号。
可选地,该装置2000还可以包括存储器2030,该存储器2030与处理器2010、收发器2020通过内部连接通路互相通信。该存储器2030用于存储指令,该处理器2010可以执行该存储器2030中存储的指令。
在一种可能的实现方式中,装置2000用于实现上述方法实施例中的应用功能网元(例如,AF)对应的各个流程和步骤。
在另一种可能的实现方式中,装置2000用于实现上述方法实施例中的网络数据分析功能网元(例如,NWDAF)对应的各个流程和步骤。
在又一种可能的实现方式中,装置2000用于实现上述方法实施例中的用户面功能网元/时敏通信时同步功能网元/终端设备(例如,UPF/TSCTSF/UE)对应的各个流程和步骤。
应理解,装置2000可以具体为上述实施例中的发送端或接收端,也可以是芯片或者芯片系统。对 应的,该收发器2020可以是该芯片的收发电路,在此不做限定。具体地,该装置2000可以用于执行上述方法实施例中与发送端或接收端对应的各个步骤和/或流程。
可选地,该存储器2030可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器2010可以用于执行存储器中存储的指令,并且当该处理器2010执行存储器中存储的指令时,该处理器2010用于执行上述与发送端或接收端对应的方法实施例的各个步骤和/或流程。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。本申请实施例中的处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述所示实施例中的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是 或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种通信方法,其特征在于,包括:
    应用功能网元发送请求消息,所述请求消息用于请求订阅分析目标用户设备UE的通信服务特征,所述通信服务特征包括通信服务可用性,和/或通信服务可靠性,所述通信服务可用性用于指示时延分布情况,所述通信服务可靠性用于指示发生故障与时间的关系,所述请求消息包括所述目标UE的标识;
    所述应用功能网元接收与所述通信服务特征关联的分析结果。
  2. 根据权利要求1所述的方法,其特征在于,所述通信服务可用性包括以下至少一项或多项:
    满足指定百分比值要求的时延;或者,
    时延满足指定时间要求的百分比值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述通信服务可靠性包括以下至少一项或多项:
    发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,
    满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述应用功能网元发送请求消息,包括:
    所述应用功能网元通过网络能力开放网元向网络数据分析功能网元发送所述请求消息;或者,
    所述应用功能网元通过网络能力开放网元向时敏通信时同步功能网元或用户面功能网元发送所述请求消息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述应用功能网元接收与所述通信服务特征关联的分析结果,包括:
    所述应用功能网元通过网络能力开放网元接收来自网络数据分析功能网元的与所述通信服务特征关联的分析结果;或者,
    所述应用功能网元通过网络能力开放网元接收来自时敏通信时同步功能网元或用户面功能网元的与所述通信服务特征关联的分析结果。
  6. 一种通信方法,其特征在于,包括:
    网络数据分析功能网元接收第一请求消息,所述第一请求消息用于请求订阅分析目标用户设备UE的通信服务特征,所述通信服务特征包括通信服务可用性,和/或通信服务可靠性,所述通信服务可用性用于指示时延分布情况,所述通信服务可靠性用于指示发生故障与时间的关系,所述第一请求消息包括所述目标UE的标识;
    所述网络数据分析功能网元发送第二请求消息,所述第二请求消息用于请求获取与所述通信服务特征关联的第一数据;
    所述网络数据分析功能网元接收所述第一数据;
    所述网络数据分析功能网元分析所述第一数据,并获取与所述通信服务特征关联的分析结果;
    所述网络数据分析功能网元发送所述分析结果。
  7. 根据权利要求6所述的方法,其特征在于,所述通信服务可用性包括以下至少一项或多项:
    满足指定百分比值要求的时延;或者,
    时延满足指定时间要求的百分比值。
  8. 根据权利要求6或7所述的方法,其特征在于,所述通信服务可靠性包括以下至少一项或多项:
    发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,
    满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述第一数据包括以下一项或者多项:
    端到端时延,数据包时延预算,或者数据包与数据包间隔时延。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述网络数据分析功能网元接收第一请求消息,包括:
    所述网络数据分析功能网元通过网络能力开放网元接收来自应用功能网元的所述第一请求消息。
  11. 根据权利要求6至10中任一项所述的方法,其特征在于,所述网络数据分析功能网元发送第 二请求消息,包括:
    所述网络数据分析功能网元向时敏通信时同步功能网元发送所述第二请求消息;或者,
    所述网络数据分析功能网元向用户面功能网元发送所述第二请求消息;或者,
    所述网络数据分析功能网元向数据收集应用功能网元发送所述第二请求消息。
  12. 根据权利要求6至11中任一项所述的方法,其特征在于,所述网络数据分析功能网元接收所述第一数据,包括:
    所述网络数据分析功能网元接收来自时敏通信时同步功能网元的所述第一数据;或者,
    所述网络数据分析功能网元接收来自用户面功能网元的所述第一数据;或者,
    所述网络数据分析功能网元接收来自数据收集应用功能网元的所述第一数据。
  13. 根据权利要求7至12中任一项所述的方法,其特征在于,所述网络数据分析功能网元分析所述第一数据,以获取与所述通信服务特征关联的分析结果,包括:
    所述网络数据分析功能网元根据所述第一数据统计端到端时延、数据包时延预算,或者数据包与数据包间隔时延在所述指定时间内的累积分布函数和/或概率密度函数;
    所述网络数据分析功能网元根据所述累积分布函数和/或概率密度函数确定以下一项或者多项:
    满足指定百分比值要求的时延;或者,
    时延满足指定时间要求的百分比值。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,所述网络数据分析功能网元分析所述第一数据,以获取与所述通信服务特征关联的分析结果,包括:
    所述网络数据分析功能网元根据所述第一数据统计端到端时延、数据包时延预算,或者数据包与数据包间隔时延在所述指定时间内的累积分布函数和/或概率密度函数;
    所述网络数据分析功能网元根据所述累积分布函数和/或概率密度函数确定以下一项或者多项:
    发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,
    满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。
  15. 根据权利要求6至14中任一项所述的方法,其特征在于,所述网络数据分析功能网元发送与所述通信服务特征关联的分析结果,包括:
    所述网络数据分析功能网元通过网络能力开放网元向应用功能网元发送与所述通信服务特征关联的分析结果。
  16. 一种通信方法,其特征在于,包括:
    第一设备接收第一信息,所述第一信息包括用于指示对通信服务特征进行监测,所述通信服务特征包括通信服务可用性,和/或通信服务可靠性,所述通信服务可用性用于指示时延分布情况,所述通信服务可靠性用于指示发生故障与时间的关系;
    所述第一设备根据所述第一信息对通信服务特征进行监测,以获取与所述通信服务特征关联的第一数据,所述第一数据用于确定分析结果;
    所述第一设备发送所述第一数据。
  17. 根据权利要求16所述的方法,其特征在于,所述通信服务可用性包括以下至少一项或多项:
    满足指定百分比值要求的时延;或者,
    时延满足指定时间要求的百分比值。
  18. 根据权利要求16或17所述的方法,其特征在于,所述通信服务可靠性包括以下至少一项或多项:
    发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,
    满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。
  19. 根据权利要求16至18中任一项所述的方法,其特征在于,所述第一数据包括以下一项或者多项:
    端到端时延,数据包时延预算,或者数据包与数据包间隔时延。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于,所述第一设备发送第一数据,包括:
    所述第一设备向时敏通信时同步功能网元或用户面功能网元发送所述第一数据。
  21. 根据权利要求16至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备分析所述第一数据,并获取所述分析结果;
    所述第一设备发送所述分析结果。
  22. 根据权利要求21所述的方法,其特征在于,所述第一设备分析所述第一数据,以获取所述分析结果,包括:
    所述第一设备根据所述第一数据统计端到端时延、数据包时延预算,或者数据包与数据包间隔时延在指定时间内的累积分布函数和/或概率密度函数;
    所述第一设备根据所述累积分布函数和/或概率密度函数确定以下一项或者多项:
    满足指定百分比值要求的时延;或者,
    时延满足指定时间要求的百分比值。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第一设备分析所述第一数据,以获取所述分析结果,包括:
    所述第一设备根据所述第一数据统计端到端时延、数据包时延预算,或者数据包与数据包间隔时延在指定时间内的累积分布函数和/或概率密度函数;
    所述第一设备根据所述累积分布函数和/或概率密度函数确定以下一项或者多项:
    发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,
    满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。
  24. 一种通信方法,其特征在于,包括:
    应用功能网元向网络数据分析功能网元发送第一请求消息,所述第一请求消息用于请求订阅分析目标用户设备UE的通信服务特征,所述通信服务特征包括通信服务可用性,和/或通信服务可靠性,所述通信服务可用性用于指示时延分布情况,所述通信服务可靠性用于指示发生故障与时间的关系,所述第一请求消息包括所述目标UE的标识;
    所述网络数据分析功能网元接收来自所述应用功能网元的所述第一请求消息;
    所述网络数据分析功能网元获取与所述通信服务特征关联的第一数据;所述网络数据分析功能网元向所述应用功能网元发送所述分析结果;
    所述应用功能网元接收来自所述网络数据分析功能网元的所述分析结果。
  25. 根据权利要求24所述的方法,其特征在于,所述网络数据分析功能网元获取与所述通信服务特征关联的第一数据,包括:
    所述网络数据分析功能网元向第一设备发送第二请求消息,所述第二请求消息用于请求所述第一数据;
    所述第一设备接收来自所述网络数据分析功能网元的所述第二请求消息;
    所述第一设备根据所述第二请求消息对所述通信服务特征进行监测,以获取所述第一数据;
    所述第一设备向所述网络数据分析功能网元发送所述第一数据;
    所述网络数据分析功能网元接收来自所述第一设备的所述第一数据。
  26. 根据权利要求24或25所述的方法,其特征在于,所述应用功能网元向网络数据分析功能网元发送第一请求消息,包括:
    所述应用功能网元通过网络能力开放网元向所述网络数据分析功能网元发送所述第一请求消息;
    所述网络数据分析功能网元通过所述网络能力开放网元接收来自所述应用功能网元的所述第一请求消息。
  27. 根据权利要求24至26中任一项所述的方法,其特征在于,所述应用功能网元接收来自所述网络数据分析功能网元的所述分析结果,包括:
    所述网络数据分析功能网元通过网络能力开放网元向所述应用功能网元发送所述分析结果;
    所述应用功能网元通过所述网络能力开放网元接收来自所述网络数据分析功能网元的所述分析结果。
  28. 根据权利要求25所述的方法,其特征在于,所述第一设备为时敏通信时同步功能网元,或者,所述第一设备为用户面功能网元,或者,所述第一设备为数据收集应用功能网元。
  29. 根据权利要求24至28中任一项所述的方法,其特征在于,所述网络数据分析功能网元分析 所述第一数据,以获取与所述通信服务特征关联的分析结果,包括:
    所述网络数据分析功能网元根据所述第一数据统计端到端时延、数据包时延预算,或者数据包与数据包间隔时延在所述指定时间内的累积分布函数和/或概率密度函数;
    所述网络数据分析功能网元根据所述累积分布函数和/或概率密度函数确定以下一项或者多项:
    满足指定百分比值要求的时延;或者,
    时延满足指定时间要求的百分比值。
  30. 根据权利要求24至29中任一项所述的方法,其特征在于,所述网络数据分析功能网元分析所述第一数据,以获取与所述通信服务特征关联的分析结果,包括:
    所述网络数据分析功能网元根据所述第一数据统计端到端时延、数据包时延预算,或者数据包与数据包间隔时延在所述指定时间内的累积分布函数和/或概率密度函数;
    所述网络数据分析功能网元根据所述累积分布函数和/或概率密度函数确定以下一项或者多项:
    发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,
    满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。
  31. 根据权利要求24至30中任一项所述的方法,其特征在于,所述通信服务可用性包括以下至少一项或多项:
    满足指定百分比值要求的时延;或者,
    时延满足指定时间要求的百分比值。
  32. 根据权利要求24至31中任一项所述的方法,其特征在于,所述通信服务可靠性包括以下至少一项或多项:
    发生故障的平均时间,或者满足指定时间内发生故障的次数或时长;或者,
    满足指定时间内的无故障的概率,或者满足发生指定故障次数的时间。
  33. 根据权利要求24至32中任一项所述的方法,其特征在于,所述第一数据包括以下一项或者多项:
    端到端时延,数据包时延预算,或者数据包与数据包间隔时延。
  34. 一种通信装置,其特征在于,包括:
    用于实现权利要求1至5中任一项所述的方法的单元;或者,
    用于实现权利要求6至15中任一项所述的方法的单元;或者,
    用于实现权利要求16至23中任一项所述的方法的单元。
  35. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合;所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至23中任一项所述的方法。
  36. 一种通信服务监控系统,其特征在于,包括:
    用于执行如权利要求1至5中任一项所述的方法的应用功能网元;或者,
    用于执行如权利要求6至15中任一项所述的方法的网络数据分析功能网元。
  37. 根据权利要求36所述的通信服务监控系统,其特征在于,所述通信服务监控系统还包括用于执行如权利要求16至23中任一项所述的方法的第一设备。
  38. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的通信感知装置执行如权利要求1至5中任一项所述的方法,或者使得安装有所述芯片的通信装置执行如权利要求6至15中任一项所述的方法,或者,使得安装有所述芯片的通信装置执行如权利要求16至23中任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机实现如权利要求1至5中任一项所述的方法,或者使得所述计算机实现如权利要求6至15中任一项所述的方法,或者使得所述计算机实现如权利要求16至23中任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,包括:所述计算机可读存储介质上存储有计算机程序,当所述计算机程序运行时,使得所述计算机执行如权利要求1至5中任一项所述的方法,使得所述计算机执行如权利要求6至15中任一项所述的方法,使得所述计算机执行如权利要求16至23中任一项所述的方法。
PCT/CN2023/104947 2022-08-04 2023-06-30 通信方法和通信装置 WO2024027422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210931714.9 2022-08-04
CN202210931714.9A CN117560716A (zh) 2022-08-04 2022-08-04 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2024027422A1 true WO2024027422A1 (zh) 2024-02-08

Family

ID=89811632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104947 WO2024027422A1 (zh) 2022-08-04 2023-06-30 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN117560716A (zh)
WO (1) WO2024027422A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109951824A (zh) * 2018-04-09 2019-06-28 华为技术有限公司 通信方法及装置
CN111699709A (zh) * 2018-01-11 2020-09-22 欧芬诺有限责任公司 监测和报告服务性能
WO2020200432A1 (en) * 2019-04-02 2020-10-08 Nokia Solutions And Networks Oy Communication control mechanism for time sensitive traffic
WO2021063627A1 (en) * 2019-10-04 2021-04-08 Nokia Technologies Oy Apparatus and method for subscribing analytic services to a user repository in the 5g core network
CN113038467A (zh) * 2019-12-06 2021-06-25 华为技术有限公司 一种事件信息上报方法及通信装置
US20210274392A1 (en) * 2020-02-27 2021-09-02 Huawei Technologies Co., Ltd. Methods, systems and apparatuses for management or network functions
WO2022159400A1 (en) * 2021-01-19 2022-07-28 Intel Corporation Quality of service monitoring in integrated cellular time sensitive bridged network

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699709A (zh) * 2018-01-11 2020-09-22 欧芬诺有限责任公司 监测和报告服务性能
CN109951824A (zh) * 2018-04-09 2019-06-28 华为技术有限公司 通信方法及装置
WO2020200432A1 (en) * 2019-04-02 2020-10-08 Nokia Solutions And Networks Oy Communication control mechanism for time sensitive traffic
WO2021063627A1 (en) * 2019-10-04 2021-04-08 Nokia Technologies Oy Apparatus and method for subscribing analytic services to a user repository in the 5g core network
CN113038467A (zh) * 2019-12-06 2021-06-25 华为技术有限公司 一种事件信息上报方法及通信装置
US20210274392A1 (en) * 2020-02-27 2021-09-02 Huawei Technologies Co., Ltd. Methods, systems and apparatuses for management or network functions
WO2022159400A1 (en) * 2021-01-19 2022-07-28 Intel Corporation Quality of service monitoring in integrated cellular time sensitive bridged network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Corrections for User Plane Latency Requirement", 3GPP TSG-WG SA2 MEETING #145E S2-2106744, 26 August 2021 (2021-08-26), XP052054615 *

Also Published As

Publication number Publication date
CN117560716A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US11864019B2 (en) Time-sensitive networking communication method and apparatus
US11463918B2 (en) Data processing method and apparatus, and data sending method and apparatus
CA3112926C (en) Slice information processing method and apparatus
CN111865830B (zh) 一种时延敏感网络业务tsn的处理方法、装置及系统
US20210014157A1 (en) Quality-of-Service Monitoring Method and Apparatus
AU2019386646B9 (en) User access control method, information sending method, and apparatus
KR102469191B1 (ko) 정보 전송방법 및 장치, 컴퓨터 판독가능 저장 매체
WO2019242664A1 (zh) 一种资源管理方法及装置
US20210274418A1 (en) Information Transmission Method and Apparatus
US11528239B2 (en) Time-sensitive networking communication method and apparatus for configuring virtual switching node
US20210273890A1 (en) Devices and methods for time sensitive communication in a communication network
US11824783B2 (en) Maximum data burst volume (MDBV) determining method, apparatus, and system
WO2023155575A1 (zh) 测量方法和测量装置
US20210160710A1 (en) Method and apparatus to support rach optimization and delay measurements for 5g networks
US20210385646A1 (en) End to end troubleshooting of mobility services
WO2024027422A1 (zh) 通信方法和通信装置
WO2022116061A1 (zh) 一种通信方法和装置
US20240214843A1 (en) Systems and methods for network management
WO2023061207A1 (zh) 一种通信方法、通信装置及通信系统
WO2023155475A1 (zh) 网络测量的方法和装置
WO2023060408A1 (zh) 感知数据的收集方法、装置、设备、系统及存储介质
WO2024099016A1 (zh) 一种通信方法及装置
US11509723B1 (en) Systems and methods for dynamic and efficient device monitoring via a network
WO2024099137A1 (zh) 通信方法、电子设备、通信系统、介质、芯片和程序产品
WO2022061675A1 (zh) 一种数据分析方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849132

Country of ref document: EP

Kind code of ref document: A1