WO2020145451A1 - 편광자 보호용 폴리에스테르 필름과 그 제조방법 및 이를 구비하는 편광판 - Google Patents

편광자 보호용 폴리에스테르 필름과 그 제조방법 및 이를 구비하는 편광판 Download PDF

Info

Publication number
WO2020145451A1
WO2020145451A1 PCT/KR2019/002957 KR2019002957W WO2020145451A1 WO 2020145451 A1 WO2020145451 A1 WO 2020145451A1 KR 2019002957 W KR2019002957 W KR 2019002957W WO 2020145451 A1 WO2020145451 A1 WO 2020145451A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester
polarizer
primer layer
resin
Prior art date
Application number
PCT/KR2019/002957
Other languages
English (en)
French (fr)
Inventor
고명준
한승훈
김길중
박서진
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Priority to JP2021539548A priority Critical patent/JP2022517201A/ja
Priority to CN201980088289.8A priority patent/CN113272369B/zh
Publication of WO2020145451A1 publication Critical patent/WO2020145451A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • B29C55/026Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets of preformed plates or sheets coated with a solution, a dispersion or a melt of thermoplastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes

Definitions

  • the present invention relates to a polyester film for polarizer protection, more particularly, excellent adhesion, optical and mechanical properties, and relates to a polyester film for polarizer protection that can minimize interference after hard coating processing.
  • the polyester film has excellent dimensional stability, thickness uniformity, and optical transparency, and thus, its use range is very wide as a display device as well as various industrial materials.
  • a display device As interest in liquid crystal displays, organic light-emitting displays, and electronic papers has rapidly increased, research into replacing substrates of these display devices with polyester films instead of conventional glass substrates has been actively conducted.
  • the glass base As the glass base is replaced with the polyester film, the overall weight of the display device is reduced, the design flexibility can be imparted, the product is resistant to impact and has excellent moisture resistance, and it can be manufactured in a continuous process to produce a conventional glass substrate. It has the advantage of high productivity compared to.
  • the polyester film has an orientation angle by crystal and Boeing in the stretching process, and in the case of biaxial stretching, there are two optical axes, thereby changing the polarized light coming from the polarizer into an ellipse or circularly polarized light. , This causes a problem in which color changes or iridescent stains are visible in the human eye.
  • Japanese Patent Application Publication No. 2011-532061 and Korean Patent Application Publication No. 2017-0056027 disclose an invention using a polyester film as a polarizer protective film.
  • the polarizer protective film that requires surface processing such as a decrease in visibility due to a reflective rainbow, has emerged as a problem, while having a low in-plane phase difference, the orientation angle of the main chain Since no attempt has been made to lower, problems such as a decrease in productivity occur in obtaining an actual effective width, which is a hindrance in using the polyester film as a polarizer protective film.
  • the present invention is to solve the problems of the prior art as described above, the object of the present invention is to lower the draw ratio and the orientation angle of the polyester film to secure a low in-plane retardation (Re) and a high thickness direction retardation (Rth), At the same time, by adjusting the main chain crystal angle of the film to lower the main orientation angle as much as possible, it minimizes rainbow stains that may occur when viewed obliquely, and adds appropriate particles to the primer layer to ensure runability, and the primer layer is the base film.
  • Re in-plane retardation
  • Rth thickness direction retardation
  • the above object is formed on at least one side of at least one uniaxially stretched polyester base film and base film, and includes a primer layer comprising at least one resin selected from a polyurethane resin or a polyester resin and a curing agent. It is achieved by a polyester film for polarizer protection.
  • the curing agent may be composed of at least one resin selected from the group consisting of oxazoline-based, carbodiimide-based, and melamine-based.
  • the polyurethane-based resin or the polyester-based resin of the primer layer has a solid content of 4 to 7% in the total coating solution, and the curing agent has a ratio of 100:5 to 100:50 compared to the polyurethane-based or polyester-based resin.
  • the curing agent has a ratio of 100:5 to 100:50 compared to the polyurethane-based or polyester-based resin.
  • the polyurethane-based resin or the polyester-based resin may have a solid content of 4.5 to 5.5% in the total coating solution.
  • the primer layer may have a reflectance of 4% or less in a wavelength range of 550 nm.
  • the polyester base film may have an in-plane retardation (Re) of 500 nm or less, and a thickness direction retardation (Rth) of 8000 nm or more.
  • Re in-plane retardation
  • Rth thickness direction retardation
  • the polyester base film may have a surface orientation coefficient ( ⁇ P) of 0.164 or less.
  • the orientation angle of the main chain of the crystalline region (Crystalline Region) in the polyester base film may be 17 degrees or less.
  • the refractive index ratio between the primer layer and the base film satisfies Equation 4 below,
  • the primer layer may further include anionic surfactant and particles having an average particle diameter of 10 to 500 nm.
  • the adhesion between the base film and the primer layer and the moisture adhesion after 500 hours under high temperature and high humidity conditions at 60° C. and 90% humidity is 95% or more, and the adhesion between the primer layer and the post-processing resin may be 95% or more. .
  • the above object is in the first step of forming an unstretched sheet by melt extrusion of a polyester resin, and in the second and second steps of uniaxially stretching the unstretched sheet formed in the first step in the longitudinal direction (MD).
  • a third step and a third step of applying and drying a coating solution in which at least one resin selected from a polyurethane-based resin or a polyester-based resin and a curing agent are mixed on at least one surface of the sheet uniaxially stretched in the longitudinal direction and in a third step.
  • TD width direction
  • the fifth step of heat-setting the sheet stretched in the fourth step to form a polyester film for polarizer protection a method for manufacturing a polyester film for polarizer protection Can be achieved by
  • the stretching ratio in the longitudinal direction (MD) of the second step is 3.0 to 3.3 times
  • the stretching ratio in the width direction (TD) of the fourth step may be 3.0 to 3.6 times.
  • the heat setting temperature in the fifth step may be 180 to 220 °C.
  • the above object can be achieved by a polarizing plate provided on at least one surface of at least one of the polarizer protective polyester film according to the above.
  • the interference Mura phenomenon is minimized to improve productivity during post-processing, and it has an effect of improving visibility by suppressing iridescent stains that occur when viewed obliquely in a situation combined with a polarizer.
  • the primer layer and the base film have sufficient adhesiveness and have the effect of being able to secure high running properties.
  • the mechanical properties and moisture resistance of the material itself are improved to have an effect of having high reliability even in harsh environments.
  • FIG. 1 is a cross-sectional view of a polarizer protective polyester film according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a polarizer protective polyester film according to an embodiment of the present invention.
  • a polyester film for polarizer protection includes a base film 1 and a primer layer 2 formed on at least one surface of the base film 1.
  • the base film 1 is formed by melt extrusion of a polyester resin.
  • the polyester forming the base film 1 may be selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polyethylene isophthalate, and polycarbonate.
  • the base film 1 is processed by uniaxially stretching and/or biaxially stretching a film formed of polyester in the longitudinal direction (MD) and/or the width direction (TD). Since materials other than polycarbonate do not have crystallinity in the unstretched state, biaxial stretching may be preferable because mechanical strength is weak and difficulty in controlling the low thickness is incurred.
  • the base film 1 may further include an ultraviolet absorber to absorb ultraviolet rays.
  • the ultraviolet absorber may be at least one selected from the group consisting of benzotriazole-based, benzophenone-based, oxalic acid anilide-based, cyanoacrylate-based, and triazine-based.
  • the base film 1 may further add an antioxidant to suppress the discoloration (browning) of the ultraviolet absorber contained in the base film 1.
  • the thickness of the base film 1 is preferably 25 to 250um. If the thickness of the base film (1) is less than 25um, there is a problem that the yield may be lowered because wrinkles are easily mixed in the surface processing and lamination process, and if the thickness of the base film (1) exceeds 250um, it is difficult to control the phase difference. There is a problem that the overall thickness of the display becomes thick.
  • the polyester base film according to an embodiment of the present invention preferably has the properties shown in Table 1 below.
  • the polyester base film according to an embodiment of the present invention has physical properties shown in Table 1 in order to remove iridescent stains caused by distortion.
  • the in-plane retardation (Re) of the polyester base film may be defined as Equation 1.
  • Nx represents the refractive index in the longitudinal direction of the film or in the direction perpendicular to the light leakage axis when observing the cross-Nicol of the polarizer.
  • Ny represents the refractive index in the width direction of the film or in the direction of the axis in which light does not leak when observing the cross nicol of the polarizer.
  • d represents the thickness of the polarizer protective polyester film.
  • Nx corresponds to the film length direction and Ny corresponds to the film width direction.
  • the optical axis requires physical properties to maintain the polarization degree of polarized light as much as possible, and is also related to the occurrence of rainbow light stains. Therefore, the lower the in-plane retardation of the polarizer protective polyester film, the lower the glass (500 nm or less) ), and the closer the optical axis is to 0 degrees, the better. That is, when the in-plane retardation of the polyester base film exceeds 500 nm, it is difficult to maintain the polarization degree of the polarized light and a rainbow light stain is generated.
  • the thickness direction retardation (Rth) of the polyester base film may be defined as Equation 2.
  • Equation 2 Nx, Ny, and d are the same as those in Equation 1, and Nz represents the refractive index in the film thickness direction.
  • the thickness direction retardation is a value obtained by subtracting the refractive index (Nz) of the film thickness direction from the average value of the in-plane refractive index component ((Nx+Ny)/2), which is the thickness direction of the film, which is the thickness direction.
  • Nz refractive index
  • ((Nx+Ny)/2) average value of the in-plane refractive index component
  • the orientation angle of the main chain means the angle formed by the crystal of the main chain compared to the width direction of the film.
  • the orientation angle direction of the main chain direction is set by the crystallinity of the polyester-based material (polyester resin) with respect to the stretching direction.
  • MD longitudinal direction
  • TD width direction
  • the orientation angle of the main chain is 0 degrees at the end of the stretching in the width direction.
  • a bowing phenomenon occurs due to the residual stress after stretching, and a bow-shaped gradient is formed in the opposite direction to the film traveling direction by the boing phenomenon.
  • the heat treatment temperature is preferably 180 to 220°C, and 180 It is more preferably from 200°C. At this time, when the heat setting treatment temperature is less than 180°C, heat setting of the base film 1 and the primer layer 2 is not properly performed, and when it exceeds 220°C, a boeing phenomenon may occur.
  • the orientation angle of the main chain of the base film 1 is preferably 17 degrees or less, more preferably 10 degrees or less, and even more preferably 8 degrees or less.
  • the orientation angle of the main chain of the base film 1 exceeds 17 degrees, the optical axis identified by the polarizer cross nicotine increases, resulting in a problem that the phase difference increases.
  • the plane orientation coefficient ( ⁇ P) of the polyester base film is a numerical value for the orientation of the film and is defined as Equation 3.
  • Nx, Ny, and Nz are the same as the definition of Equation 2 described above. It is preferable that the surface orientation coefficient of the polyester base film is 0.164 or less. When the surface orientation coefficient of the polyester base film exceeds 0.164, the film is over-stretched, resulting in excessive shrinkage stress, which causes a problem of high heat shrinkage. More specifically, as shown in Equation 3, since the phase orientation difference in the thickness direction increases as the surface orientation coefficient increases at the same thickness, the numerical value may be advantageous.
  • a large plane orientation coefficient means that the refractive index (Nx) in the longitudinal direction of the film and the refractive index (Ny) in the width direction of the film are large, which means that the stretching ratio during biaxial stretching is large.
  • the orientation angle of the main chain In order to control the orientation angle of the main chain, it is necessary to minimize the residual stress after stretching and at the same time minimize the stress difference between the stretching portion and the heat treatment portion. However, when the stretching ratio is high, the residual shrinkage stress increases, so the orientation angle of the main chain is set to 17 degrees or less. It becomes difficult to adjust.
  • the stretching ratio in the longitudinal direction of the base film 1 is preferably 3.0 to 3.3 times, and the stretching ratio in the width direction is preferably 3.0 to 3.6 times.
  • the lengthwise stretching ratio of the base film 1 is less than 3.0, it is difficult to control the thickness of the film and the strength is low, resulting in a problem that the film tears in the longitudinal direction during lamination processing, and remains when the lengthwise stretching ratio exceeds 3.3.
  • the shrinkage stress becomes high, making it difficult to adjust the orientation angle of the main chain to 17 degrees or less.
  • the stretching ratio in the width direction of the base film 1 is less than 3.0, it is difficult to control the thickness of the film, and a problem occurs in the film tearing in the width direction in the lamination process of the polarizing plate. It becomes high and it becomes difficult to adjust the orientation angle of a main chain to 17 degrees or less. Adjusting within the stretching ratio in this range is more advantageous for adjusting the orientation angle of the main chain.
  • the mechanical properties (strength and elongation) and moisture resistance of the polyester film can be maintained at a low draw ratio as in the range of the draw ratio described above.
  • the primer layer 2 coated on at least one side of the base film 1 may be formed on one side of the base film 1, and if necessary, both sides of the base film 1 It can be formed on all. Since the polyester film for polarizer protection is often processed using an adhesive and/or an adhesive, a primer layer 2 can be formed on one side or both sides of the base film 1 as necessary.
  • the primer layer 2 can suppress the rainbow light phenomenon of the polyester film for polarizer protection. Even if the properties described in the above-described substrate film (1) are satisfied, since the rainbow light (reflected rainbow) that may occur in the post-processing process also becomes visible to the human eye, the primer layer (2) is applied on the substrate film (1). Coating can solve the iridescence phenomenon.
  • the iridescence phenomenon (reflective rainbow) is a stain that becomes a rainbow in the human eye depending on the refractive index and coating thickness of the base film (1), primer layer (2), and post-processing resin. If there is, it is a phenomenon that can be seen a lot. This is a phenomenon that occurs because the light reflected from the interface between the post-processing resin and the primer layer 2 and the interface between the primer layer 2 and the base film 1 causes reinforcement and offset interference, respectively.
  • the primer layer 2 preferably satisfies Equation 4 and Equation 5.
  • the primer layer 2 Since the occurrence of the rainbow light phenomenon (reflected rainbow) is the expression of rainbow light due to the interference of light generated by the difference in reflectance at each interface, the primer layer 2 according to an embodiment of the present invention is represented by Equation 4 and Equation By satisfying the condition of 5, the rainbow light reflection can be eliminated and the visibility can be improved.
  • a primer layer 2 is formed on at least one surface of the base film 1.
  • the primer layer 2 is an easy-adhesive layer and includes at least one main material selected from a water-dispersible polyester copolymer resin or a polyurethane-based resin as a binder resin.
  • the primer layer 2 may be formed of only one of the water-dispersible polyester copolymer resin or the polyurethane-based resin, and may be formed of a polymer resin including the water-dispersible polyester copolymer resin and the polyurethane-based resin.
  • the primer layer 2 may include organic or inorganic particles as particles to secure runability. It is preferable that the particles contained in the primer layer 2 have an average particle diameter of 10 to 500 nm. When the average particle size of the particles exceeds 500 nm, haze increases, and when the average particle size of the particles is less than 10 nm, surface roughness decreases, blocking occurs, or a film winding problem occurs, resulting in a problem that the appearance deteriorates. do.
  • the inorganic particles included in the primer layer 2 is at least one of silica particles and silica-organic composites, and preferably has a refractive index of 1.5 or more.
  • the refractive index of the inorganic particles is less than 1.5, the overall refractive index of the primer layer is lowered, resulting in a problem that a rainbow phenomenon occurs.
  • the primer layer 2 may include at least one selected from oxazoline-based, carbodiimide-based, and melamine-based curing agents (crosslinking agents).
  • the oxazoline-based curing agent inhibits or reacts with moisture that is absorbed by the polarizer protective polyester film, thereby preventing a blocking phenomenon that may occur during double-sided coating.
  • the melamine-based curing agent reacts with the main material, but by improving the strength of the coating film through its own curing reaction between the melamine, it prevents a blocking phenomenon that may occur during double-sided coating.
  • the primer layer 2 may further include additives such as anionic surfactants or antifoaming agents, and may include various kinds of additives other than surfactants.
  • the primer layer (2) is a mixture of a binder resin, a mixture of a polyester copolymer resin and a polyurethane-based resin, an oxazoline-based curing agent and an epoxy-based curing agent, a curing agent aqueous dispersion, surfactant aqueous dispersion and the number of inorganic particles It may be formed through a coating solution consisting of a dispersion.
  • the primer layer 2 may be formed by applying the above-described coating liquid on one side or both sides of the base film 1.
  • the coating thickness of the primer layer 2 is preferably 80 to 150nm. When the coating thickness of the primer layer 2 is less than 80 nm, a reflective rainbow may be observed after surface processing, and when it exceeds 150 nm, a problem occurs that a reflective rainbow and blocking occur.
  • the solid content of the polyurethane and/or polyester, which is the main material of the primer layer 2 is preferably 4 to 7% in the total coating solution and more preferably 4.5 to 5.5% in order to secure the coating thickness and refractive index.
  • the solid content of the main material is less than 4%, it is difficult to secure the coating thickness of the primer layer 2, and when the solid content of the main material exceeds 7%, stains, transverse stains and longitudinal directions that may occur during the coating of the primer layer 2 Stains and the like may occur.
  • the curing agent included in the primer layer 2 considering the reactivity with the main material, it is preferable to mix at a ratio of 100:5 to 100:50 compared to the main material.
  • the curing agent is less than 100:5 compared to the main material, the reactivity decreases, and thus blocking tends to occur.
  • it exceeds 100:50 compared to the main material aggregation tends to occur depending on the pH change of the coating liquid.
  • the curing agent is a carbodiimide type
  • the higher the proportion of the curing agent the higher the possibility of aggregation due to the high reactivity with the main polyurethane coating solution.
  • the manufacturing method of the polyester film for polarizer protection is a first step of forming a non-stretched sheet by melt-extruding a polyester resin, the lengthwise direction of the unstretched sheet formed in the first step (MD )
  • the second step of uniaxially stretching at least one surface of the sheet uniaxially stretched in the longitudinal direction, a coating solution in which any one selected from polyurethane-based resins or polyester-based resins or a polymer mixed resin and a curing agent mixed therebetween are mixed.
  • the polarizer protective polyester film according to an embodiment of the present invention preferably has a total light transmittance of 90% or more, more preferably 91% or more. When the total light transmittance is less than 90%, a problem occurs in that the luminance of the display material is lowered.
  • the polyester film for polarizer protection preferably has a transmittance of 1.5% or less at a wavelength of 370 nm and a transmittance of 9% or less at a wavelength of 380 nm. If the transmittance exceeds 1.5% in the 370nm wavelength band or the transmittance exceeds 9% in the 380nm wavelength band, a problem occurs in which reflection rainbow is observed after surface processing.
  • the polyester film for protecting a polarizer according to the present invention preferably has a haze of 1.5% or less, and more preferably 1% or less.
  • a haze of 1.5% or less, and more preferably 1% or less.
  • the polyester film for polarizer protection according to the present invention has an adhesion strength between the base film 1 and the primer layer 2 and a moisture adhesion strength of 95% or higher after high temperature and high humidity conditions of 500 hours under 60°C and 90% humidity, It is preferable that the adhesion between the primer layer 2 and the post-processing resin is also 95% or more.
  • the coating liquid constituting the primer layer was prepared in the configuration of Table 2 below.
  • Coating solution is binder resin 70% by weight of water and polyurethane resin (H-15, manufactured by Cheil Industries) 30% by weight Main material 1 and 70% by weight of water and polyester-based resin (TR620K, Takamatsu Yuji Co., Ltd.) Preparation)
  • Main material 2 composed of 30% by weight was composed by mixing in the ratio shown in Table 2 below.
  • a surfactant aqueous dispersion composed of 90% by weight of water and 10% by weight of anionic surfactant in the prepared coating solution, 0.5% by weight of the aqueous dispersion particle coating solution consisting of 70% by weight of silica particles and 30% by weight of water, and the remaining amount A coating solution was prepared using water.
  • the polyethylene terephthalate raw material chip is melt-extruded, a sheet is produced in an unstretched form from a casting roll, and the unstretched sheet produced is subjected to an stretching process and a heat setting process according to Table 3 to prepare a base film, and this is Example 1 To 4 (films 1 to 4).
  • a base film was prepared in the same manner as in Example 1, except that the stretching conditions and heat setting temperature in Table 3 were used, and this was set as Comparative Examples 1 to 4 (Films 5 to 8).
  • the biaxially stretched film is placed between two polarizing plates, observed with a cross nicol, and the angle with the film width direction is obtained in the vicinity of no light leakage, and the direction of the angle is Ny, perpendicular to it.
  • the phosphorus direction was defined as Nx, and the refractive index for each direction was measured.
  • the refractive index was measured using an Abbe refractometer (ATAGO, NAR-3T), and the eyepiece has a polarization function, so that the refractive index can be measured in each direction.
  • the phase difference was measured by multiplying the thickness of the film having the refractive index thus obtained.
  • the thickness of the protective film was measured using a micrometer (VL-50aS, Mitutoyo Corporation).
  • the thickness direction retardation was measured by the same equipment and the same method as those measured in the in-plane retardation direction.
  • the thickness direction refractive index (Nz) was calculated as an average value of the thickness direction refractive index in the Nx direction and the thickness direction refractive index in the Ny direction.
  • the surface orientation coefficient was calculated by applying the value of the refractive index of the above Abbe refractometer to Equation 3.
  • the sample was measured with the orientation angle measurement equipment (SST-4000, Shomura Nomura) to determine the crystal orientation of the main chain with respect to the film width direction.
  • SST-4000 Shomura Nomura
  • the prepared film was placed between two polarizing plates, and it was confirmed whether rainbow stains were generated. At this time, the observation angle was directly observed with the naked eye in the range of -90 o to 90 o with the angle facing the front of the sample being 0 o .
  • the reflectance at the wavelength of the visible light region was measured using a UV-visible (UV-3600, Shimadzu) equipment. First, attach a colored tape (black insulating tape, etc.) to the light on the opposite side of the surface to be measured, measure the reflectance of 300nm to 800nm using the above equipment, and then reflect the reflectance of 550nm wavelength. Confirmed.
  • Adhesion is made by cutting lines with a cutter, placing 2 mm*2 mm squares in a 10*10 matrix.
  • Cellophane tape No. 405, width: 24 mm, manufactured by NICHIBAN
  • the area of the resin layer remaining on the primer layer was visually observed, and the adhesion was calculated by Equation 6 above.
  • Examples 1 to 4 and Comparative Examples 1 to 4 are base films without forming a primer layer, and Examples 1 to 4 are formed with base films of films 1 to 4 satisfying the stretching ratio in the longitudinal direction and the width direction.
  • base films of films 5 to 8 that did not satisfy the stretching ratio conditions were formed.
  • the in-plane retardation (Re) satisfies all of 500 nm or less, which is the physical property value of the in-plane retardation (Re) in Table 1, and does not generate rainbow stains due to the transmitted rainbow. appear.
  • Comparative Examples 1 and 2 the in-plane retardation (Re) has a physical property value exceeding 500 nm, a plane orientation coefficient exceeding 0.164, and it was found that rainbow staining occurs due to the transmission rainbow. In addition, Comparative Examples 3 and 4 also showed that the surface orientation coefficient exceeded 0.164 and rainbow stains were generated according to the transmitted rainbow.
  • the draw ratio of the base film, the solid content ratio of the main material in the coating liquid is satisfied to be 4 to 7%, and the weight ratio of the main material:curing agent is 100:5 to 100:50
  • Examples 5 to 19 according to the present invention satisfies that the reflectivity of 4% or less of Equation 5, satisfies that the refractive index ratio of Equation 4 is 0.958 to 0.98, satisfies that the adhesion is 95% or more, and rainbow stains due to the reflected rainbow Did not appear.
  • Comparative Example 5 in which the ratio of solid content of the main material in the coating solution is 2% (when it is less than 4%) and the weight ratio of the main material:curing agent is 100:1 and does not satisfy 100:5 to 100:50, the reflectivity is 5.8%.
  • Rainbow that is not satisfied that the reflectance of Equation 5 is not more than 4%, the refractive index ratio is 0.914, the refractive index ratio of Equation 4 is 0.958 to 0.98, the adhesion is 85%, and the adhesion is 95% or more, and is not satisfied Staining has been shown to occur.
  • Comparative Example 6 in which the ratio of solid content of the main material in the coating solution is 10% (when it is more than 7%) and the weight ratio of the main material:curing agent is 100:75 and does not satisfy 100:5 to 100:50, the refractive index ratio is 0.99, which is expressed as Equation 4 It is not satisfied that the refractive index ratio of is 0.958 to 0.98, the adhesion is 90%, the adhesion is not more than 95%, and rainbow stains are generated according to the reflected rainbow.
  • Comparative Examples 5 to 6 which do not satisfy all of the above, were confirmed to generate rainbow stains due to transmission rainbow, and reflectance and refractive index ratio conditions was not satisfied, and it was confirmed that there was a problem in adhesion.
  • the polyester film for polarizer protection according to an embodiment of the present invention according to the above-mentioned content can improve the productivity during post-processing by minimizing the rainbow phenomenon after hard coating processing, and is used for protection of the polarizer as the transmission rainbow is improved. This is possible.
  • the polyester film for protecting a polarizer according to an embodiment of the present invention according to the above-mentioned content has excellent optical properties, and thus can be widely used as a protective film such as an antireflection film and a liquid crystal display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Polarising Elements (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

본 발명의 일 실시예에 따른 편광자 보호용 폴리에스테르 필름은 밀착력이 우수하고, 광학적, 기계적 성질이 우수하고, 하드코팅 가공 후 무지개 현상을 최소화할 수 있는 필름으로, 적어도 일축 이상 연신된 폴리에스테르로 형성된 기재필름 및 기재필름의 적어도 어느 하나의 일면에 형성되며 폴리우레탄계 수지 및 폴리에스테르계 수지 중에서 선택된 적어도 하나 이상의 수지와 경화제를 포함하는 프라이머층을 포함한다.

Description

편광자 보호용 폴리에스테르 필름과 그 제조방법 및 이를 구비하는 편광판
본 발명은 편광자 보호용 폴리에스테르 필름에 관한 것으로, 보다 상세하게는 밀착력이 우수하고, 광학적, 기계적 성질이 우수하며, 하드코팅 가공 후 간섭무라 을 최소화할 수 있는 편광자 보호용 폴리에스테르 필름에 관한 것이다.
일반적으로, 폴리에스테르 필름은 치수 안정성, 두께 균일성 및 광학적 투명성이 우수하여 디스플레이 기기뿐만 아니라 여러 산업용 재료로서 그 이용 범위가 매우 넓다. 특히, 최근 액정표시장치, 유기 발광표시장치, 전자종이에 대한 관심이 급증하면서 이들 표시장치의 기판을 종래의 유리 기판 대신 폴리에스테르 필름으로 대체하는 연구가 활발히 진행되고 있다. 폴리에스테르 필름으로 유리 기반을 대체하게 되면서 표시장치의 전체 무게가 가벼워지고 디자인의 유연성을 부여할 수 있으며, 충격에 강하며 내습성이 우수할 뿐만 아니라, 연속 공정으로 제조할 수 있어 종래의 유리 기판에 비해 생산성이 높은 이점을 가진다.
특히, 이러한 폴리에스테르 필름을 높은 광학적 특성이 요구되는 편광자 보호용 필름으로 사용하는 연구가 활발히 진행되고 있다. 기본적으로 폴리에스테르 필름은 연신 과정에서 결정 및 보잉(Bowing)에 의해 배향각을 가지게 되며, 2축 연신의 경우, 광축이 2개가 생김으로써, 편광자로부터 올라오는 편광을 타원이나 원편광 등으로 바꾸게 되고, 이로 인해 사람의 눈에 색감의 변화나 무지개 빛 얼룩이 보이게 되는 문제를 가지게 된다.
일본 공개특허 2011-532061호 및 한국 공개특허 2017-0056027호는 폴리에스테르 필름을 편광자 보호필름으로 사용하는 발명을 개시하고 있다. 그러나 폴리에스테르 필름을 편광자 보호 필름으로 사용하는 경우, 표면가공을 필요로 하는 편광자 보호필름에 대해서는 반사 레인보우에 의한 시인성 저하 등이 문제로 대두되고 있으며, 낮은 면내 위상차를 가지면서, 주쇄의 배향각을 낮추려는 시도는 없었기 때문에, 실제 유효폭을 얻어내는데 있어서 생산성 저하 등의 문제가 발생하여, 폴리에스테르 필름을 편광자 보호필름으로 사용하는데 있어서 장애가 되고 있다.
따라서 폴리에스테르 필름 자체의 광학적 특성과 더불어, 프라이머층 및 AG나 하드코팅등 각 층의 계면에서의 응력을 최소화할 수 있는 적절한 구조의 설계와 코팅층 간의 밀착성 및 시인성 저하 문제에 대한 해결이 요구되고 있다.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 폴리에스테르 필름의 연신 배율 및 배향각을 낮추어 낮은 면내 위상차(Re)와 높은 두께 방향 위상차(Rth)를 확보하고, 이와 동시에 필름의 주쇄 결정 각도를 조절하여 주 배향각을 최대한 낮추어 줌으로써, 비스듬히 관찰 시에 발생될 수 있는 무지개 얼룩을 최소화하고, 프라이머층에 적절한 입자를 첨가하여 주행성을 확보하고, 프라이머층이 기재필름과 충분한 이접착성을 가지게 할 뿐만 아니라, 프라이머층과 기재필름 사이의 굴절률비를 조절하여 간섭무라 현상을 최소화할 수 있는 편광자 보호용 폴리에스테르 필름과 그 제조방법 및 이를 구비하는 편광판을 제공하고자 하는 것이다.
본 발명의 상기 및 다른 목적과 이점은 바람직한 실시예를 설명한 하기의 설명으로부터 보다 분명해질 것이다.
상기 목적은, 적어도 1축 연신된 폴리에스테르 기재필름 및 기재필름의 적어도 어느 하나의 일면에 형성되며, 폴리우레탄계 수지 또는 폴리에스테르계 수지 중에서 선택된 적어도 하나 이상의 수지와 경화제를 포함하는 프라이머층을 포함하는 편광자 보호용 폴리에스테르 필름에 의해 달성된다.
바람직하게는, 경화제는 옥사졸린계, 카보디이미드계 및 멜라민계로 이루어진 군에서 선택되는 적어도 하나 이상의 수지로 구성될 수 있다.
바람직하게는, 프라이머층의 폴리우레탄계 수지 또는 폴리에스테르계 수지는 전체 도포액에서 고형분이 4 내지 7%이고, 경화제는 폴리우레탄계 수지 또는 폴리에스테르계 수지 대비 100:5 내지 100:50의 비율을 가질 수 있다.
더욱 바람직하게는, 폴리우레탄계 수지 또는 폴리에스테르계 수지는 전체 도포액에서 고형분이 4.5 ~ 5.5%일 수 있다.
바람직하게는, 프라이머층은 550nm의 파장대에서 반사율이 4% 이하일 수 있다.
바람직하게는, 폴리에스테르 기재필름은 면내 위상차(Re)가 500nm 이하이고, 두께 방향 위상차(Rth)가 8000nm 이상일 수 있다.
바람직하게는, 폴리에스테르 기재필름은 면배향계수(ΔP)가 0.164 이하일 수 있다.
바람직하게는, 폴리에스테르 기재필름 내 결정성 영역(Crystalline Region)의 주쇄의 배향각이 17도 이하일 수 있다.
바람직하게는, 프라이머층과 기재필름 사이의 굴절률 비율이 하기 수식 4를 만족하되,
[수식 4]
0.958 ≤ 프라이머층 굴절률/기재필름의 굴절률 ≤ 0.98이다.
바람직하게는, 프라이머층은 음이온성 계면활성제 및 평균입경이 10 내지 500nm인 입자를 더 포함할 수 있다.
바람직하게는, 기재필름과 프라이머층 사이의 부착력 및 60℃, 90% 습도 하에서 500시간의 고온 고습 조건후의 내습부착력은 95%인 이상이고, 프라이머층과 후가공 수지와의 부착력은 95% 이상일 수 있다.
또한, 상기 목적은, 폴리에스테르 수지를 용융 압출하여 미연신 시트를 형성하는 제1단계, 제1단계에서 형성된 미연신 시트를 길이 방향(MD)으로 1축 연신하는 제2단계, 제2 단계에서 길이 방향으로 1축 연신된 시트의 적어도 일면에 폴리우레탄계 수지 또는 폴리에스테르계 수지 중에서 선택된 적어도 하나 이상의 수지와 경화제가 혼합된 도포액을 도포하고 건조하는 제3단계, 제3단계에서 도포액이 도포된 시트를 폭 방향(TD)으로 2축 연신하는 제4단계 및 제4단계에서 연신된 시트를 열고정하여 편광자 보호용 폴리에스테르 필름을 형성하는 제5단계를 포함하는 편광자 보호용 폴리에스테르 필름의 제조방법에 의해 달성될 수 있다.
바람직하게는, 제2 단계의 길이 방향(MD)의 연신비는 3.0 내지 3.3배이고, 제4단계의 폭 방향(TD)의 연신비는 3.0 내지 3.6배일 수 있다.
바람직하게는, 제5단계에서 열고정 온도는 180 내지 220℃일 수 있다.
또한, 상기 목적은 상술한 내용에 따른 편광자 보호용 폴리에스테르 필름이 편광자의 적어도 어느 하나의 일면에 구비된 편광판에 의해 달성될 수 있다.
이상과 같이 본 발명에 따르면 간섭무라 현상을 최소화하여 후가공 시 생산성이 개선되며, 편광자와 합지된 상황에서 비스듬히 관찰 시 발생하는 무지개빛 얼룩을 억제하여 시인성을 개선할 수 있는 등의 효과를 가진다.
또한, 본 발명에 따르면 프라이머층과 기재필름이 충분한 이접착성을 가지며 높은 주행성을 확보할 수 있는 등의 효과를 가진다.
또한, 본 발명에 따르면 소재 자체의 기계적 특성 및 내습성 등이 개선되어 가혹한 환경에서도 높은 신뢰성을 갖는 등의 효과를 가진다.
다만, 본 발명의 효과들은 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 편광자 보호용 폴리에스테르 필름의 단면도이다.
이하, 본 발명의 실시예와 도면을 참조하여 본 발명을 상세히 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
달리 정의되지 않는 한, 본 명세서에서 사용되는 모든 기술적 및 과학적 용어는 본 발명이 속하는 기술 분야의 숙련자에 의해 통상적으로 이해되는 바와 동일한 의미를 갖는다. 상충되는 경우, 정의를 포함하는 본 명세서가 우선할 것이다. 또한 본 명세서에서 설명되는 것과 유사하거나 동등한 방법 및 재료가 본 발명의 실시 또는 시험에 사용될 수 있지만, 적합한 방법 및 재료가 본 명세서에 기재된다.
도 1은 본 발명의 일 실시예에 따른 편광자 보호용 폴리에스테르 필름의 단면도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 편광자 보호용 폴리에스테르 필름은 기재필름(1) 및 기재필름(1)의 적어도 일면 상에 형성된 프라이머층(2)을 포함한다.
기재필름(1)은 폴리에스테르 수지를 용융 압출하여 형성된다. 바람직하게는 기재필름(1)을 형성하는 폴리에스테르는 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리에틸렌이소프탈레이트, 폴리카보네이트로 이루어진 군에서 선택될 수 있다.
기재필름(1)은 폴리에스테르로 형성된 필름을 길이방향(MD) 및/또는 폭방향(TD)으로 1축 연신 및/또는 2축 연신하여 가공된다. 폴리카보네이트 이외의 소재는 미연신 상태에서는 결정성을 가지지 않기 때문에 기계적인 강도가 약하고, 낮은 후도 제어에 어려움이 따르기 때문에, 2축 연신이 바람직할 수 있다.
기재필름(1)은 자외선을 흡수할 수 있도록 자외선 흡수제를 더 포함할 수 있다. 이때 자외선 흡수제는 벤조트리아졸계, 벤조페논계, 옥살산 아닐리드계, 시아노아크릴레이트계, 및 트리아진계로 이루어지는 군에서 선택되는 적어도 1종 이상일 수 있다. 또한, 기재필름(1)은 기재필름(1)에 포함된 자외선 흡수제의 변색(갈변)을 억제하기 위해 산화방지제를 추가로 첨가할 수 있다.
기재필름(1)의 두께는 25 내지 250um인 것이 바람직하다. 기재필름(1)의 두께가 25um 미만인 경우 표면 가공 및 편광판 합지 과정에서 주름이 혼입되기 쉽기 때문에 수율이 낮아질 수 있는 문제가 있으며, 기재필름(1)의 두께가 250um를 초과하는 경우 위상차 제어가 어렵고 디스플레이 전체 두께가 두꺼워지는 문제가 있다.
본 발명의 일 실시예에 따른 폴리에스테르 기재필름은 하기 표 1의 물성을 갖는 것이 바람직하다.
항목 물성
면내 위상차(Re) 500nm 이하
두께 방향 위상차(Rth) 8000nm 이상
필름 주쇄의 주 배향각 17도 이하
면배향 계수(△P) 0.164 이하
즉 폴리에스테르 수지로 형성된 기재필름(1)은 길이방향(MD) 및 폭방향(TD)으로 2축 연신 공정을 거치게 되면 기재필름(1)의 복굴절에 따라, 편광의 왜곡이 발생한다. 이와 같은 편광의 왜곡에 의해 비스듬히 관찰 시(브루스터 각(Brewster's Angle) 근방) 무지개빛(Rainbow) 얼룩을 발생시킬 수 있다. 따라서 왜곡에 의해 발생하는 무지개빛 얼룩을 제거하기 위해 본 발명의 일 실시예에 따른 폴리에스테르 기재필름은 표 1과 같은 물성을 갖는 것이 바람직하다. 폴리에스테르 기재필름의 면내 위상차(Re)는 수식 1과 같이 정의될 수 있다.
Figure PCTKR2019002957-appb-M000001
수식 1에서 Nx는 필름 길이방향의 굴절률 또는 편광자의 크로스 니콜 관찰 시 빛이 새지 않는 축에서 수직인 방향의 굴절률을 나타낸다. Ny는 필름의 폭방향의 굴절률 또는 편광자의 크로스 니콜 관찰 시, 빛이 새지 않는 축의 방향의 굴절률을 나타낸다. 그리고 수식 1에서 d는 편광자 보호용 폴리에스테르 필름의 두께를 나타낸다.
수식 1에서 정의된 바와 같이, 광축이 0도인 경우에는 Nx는 필름 길이 방향과 일치하고, Ny는 필름의 폭방향과 일치한다는 것을 알 수 있다. 편광자 보호용 폴리에스테르 필름에서 광축은 편광된 빛의 편광도를 최대한 유지해야 하는 물성이 요구되며, 무지개 빛 얼룩의 발생과도 연관성이 있기 때문에, 편광자 보호용 폴리에스테르 필름의 면내 위상차는 낮을수록 유리(500nm이하)하고, 광축도 0도에 가까울수록 유리하다. 즉 폴리에스테르 기재필름의 면내 위상차가 500nm를 초과하면 편광된 빛의 편광도 유지가 어려우며 무지개 빛 얼룩이 발생하게 된다.
다음으로, 폴리에스테르 기재필름의 두께 방향 위상차(Rth)는 수식 2와 같이 정의될 수 있다.
Figure PCTKR2019002957-appb-M000002
수식 2에서, Nx, Ny, d는 수식 1의 정의와 동일하며, Nz는 필름 두께 방향의 굴절률을 나타낸다.
수식 2에서 정의된 바와 같이, 두께 방향 위상차는 면내 굴절률 성분의 평균값((Nx+Ny)/2)에서 필름 두께 방향의 굴절률(Nz)을 뺀 값에서 필름의 두께를 곱한 값이고, 이는 두께방향으로의 복굴절(double refraction)을 계산한 식으로서, 왜곡에 의한 무지개 빛 발생을 억제하기 위해서는 8000nm 이상의 값을 갖는 것이 바람직하다. 즉, 폴리에스테르 기재필름의 두께 방향 위상차가 8000nm 미만일 경우 왜곡에 의한 무지개 빛이 발생할 수 있다.
주쇄의 배향각은 필름의 폭방향 대비 주쇄의 결정이 이루고 있는 각도를 의미한다. 필름은 2축 연신 공정을 거쳐 열고정 처리를 하는 과정에서 연신 방향에 대한 폴리에스테르 계 재료(폴리에스테르 수지)의 결정성에 의해 주쇄 방향의 배향각 방향이 설정된다. 먼저, 폴리에스테르로 형성된 미연신 필름에 대해 길이방향(MD) 연신이 끝나고, 폭방향(TD)으로 연신을 하게 되는데, 이때 통상 폭방향의 연신 끝부분에서 주쇄의 배향각이 0도가 된다. 그리고 열고정 처리를 하면서, 연신 후 잔존 응력에 의해 보잉(bowing) 현상이 발생하게 되고, 보잉 현상에 의해 필름 진행 방향의 반대 방향으로 활 모양의 구배를 갖게 된다.
이러한 주쇄 결정의 배향은 광축의 변화를 야기시키기 때문에, 위상차가 제어된다 하더라도 무지개 빛의 얼룩이 나타날 수 있다. 이와 같은 무기재 빛 발생 현상을 억제하기 위해, 엣지부(필름의 모서리 부분)도 필름의 폭 중심의 물성과 최대한 유사하게 설정이 될 수 있도록, 보잉 현상을 억제할 필요가 있다. 보잉 현상의 억제를 위해서는 통상의 열고정 처리 온도 보다 낮은 온도에서 처리하여, 연신부와 열고정부의 응력 차이를 최소화해야 한다. 따라서, 이를 위해 열고정 처리 온도는 180 내지 220℃인 것이 바람직하며, 180 내지 200℃인 것이 더욱 바람직하다. 이때 열고정 처리 온도가 180℃ 미만인 경우 기재필름(1) 및 프라이머층(2)의 열고정이 제대로 이루어지지 않으며, 220℃를 초과하는 경우 보잉 현상이 발생할 수 있다.
기재필름(1)의 주쇄의 배향각은 17도 이하가 바람직하며, 10도 이하가 더욱 바람직하며, 8도 이하가 더더욱 바람직하다. 기재필름(1)의 주쇄의 배향각이 17도를 초과하면 편광자 크로스니콜로 확인되는 광축이 증가하게 되어 결국 위상차가 커지는 문제가 발생한다.
다음으로, 폴리에스테르 기재필름의 면 배향계수(△P)는 필름의 배향도에 대한 수치로 수식 3과 같이 정의된다.
Figure PCTKR2019002957-appb-M000003
수식 3에서, Nx, Ny, Nz는 상술한 수식 2의 정의와 동일하다. 폴리에스테르 기재필름의 면 배향계수는 0.164 이하인 것이 바람직하다. 폴리에스테르 기재필름의 면 배향계수가 0.164를 초과하면 필름이 과연신된 것으로 지나친 수축응력이 발생하여 열수축이 많이 높아지는 문제가 발생한다. 보다 구체적으로 수식 3과 같이, 동일 두께에서 면 배향계수가 클수록 두께 방향 위상차가 커지기 때문에, 수치적으로는 클수록 유리할 수 있다. 그러나 면 배향계수가 크다는 것은 필름 길이방향의 굴절률(Nx)과 필름의 폭방향의 굴절률(Ny)이 크다는 의미이며, 이는 2축 연신시의 연신비가 크다는 것을 의미한다. 그러나 주쇄의 배향각을 제어하기 위해서는 연신 후 잔존 응력을 최소화함과 동시에 연신부와 열처리부의 응력 차이를 최소화해야 하지만, 연신비가 높을 경우 잔존 수축 응력이 높아지기 때문에, 주쇄의 배향각을 17도 이하로 조절하는 것이 어렵게 된다.
즉, 기재필름(1)을 2축 연신하되 면내 위상차 및 두께 방향 위상차가 상술한 수치대로 유지될 수 있도록 하는 선에서 최소의 연신비를 갖는 것이 중요하다. 이에 따라 기재필름(1) 길이 방향의 연신비는 3.0 내지 3.3배인 것이 바람직하며, 폭 방향의 연신비는 3.0 내지 3.6배인 것이 바람직하다. 기재필름(1)의 길이방향 연신비가 3.0 미만일 경우 필름의 후도 제어가 어렵고 강도가 낮아 편광판 합지 가공 시에 필름이 길이 방향으로 찢어지는 문제가 발생하고, 길이방향 연신비가 3.3을 초과하는 경우 잔존 수축 응력이 높아져 주쇄의 배향각을 17도 이하로 조절하는 것이 어렵게 된다. 또한, 기재필름(1)의 폭방향 연신비가 3.0 미만일 경우 필름의 후도 제어가 어려우며 편광판 합지 공정에서 폭 방향으로 필름이 찢어지는 문제가 발생하고, 폭방향 연신비가 3.6 초과하는 경우 잔존 수축 응력이 높아져 주쇄의 배향각을 17도 이하로 조절하는 것이 어렵게 된다. 이와 같은 범위의 연신비 안에서 조정하는 것이 주쇄의 배향각 조절에 더욱 유리하다. 또한, 폴리에스테르 필름의 기계적 특성(강도 및 신도) 및 내습성 등도 상술한 연신비의 범위와 같이 낮은 연신 배율에서 유지가 가능하다.
본 발명의 일 실시예에 따른 기재필름(1)의 적어도 일면 상에 코팅되는 프라이머층(2)은 기재필름(1)의 일면 상에 형성될 수 있으며, 필요에 따라 기재필름(1)의 양면 모두에 형성될 수 있다. 편광자 보호용 폴리에스테르 필름은 점착제 및/또는 접착제를 사용하는 가공이 이루어지는 경우가 많기 때문에, 필요에 따라 기재필름(1)의 일면 또는 양면 모두에 프라이머층(2)을 형성할 수 있다.
프라이머층(2)은 편광자 보호용 폴리에스테르 필름의 무지개 빛 현상을 억제할 수 있다. 상술한 기재필름(1)에 기재된 물성을 만족하였다고 하더라도, 후가공 과정에서 발생할 수 있는 무지개 빛(반사 레인보우) 또한 사람의 눈에 시인이 되기 때문에, 기재필름(1) 상에 프라이머층(2)을 코팅하여 무지개 빛 현상을 해결할 수 있다. 무지개 빛 현상(반사 레인보우)은 기재필름(1), 프라이머층(2) 및 후가공 수지의 굴절률 및 코팅 두께에 따라 사람의 눈에 무지개로 인신이 되는 얼룩으로, 흔히 물에 위에 박막의 기름층이 있을 경우, 많이 볼 수 있는 현상이다. 이는 후가공 수지와 프라이머층(2)의 계면, 프라이머층(2)과 기재필름(1)의 계면에서 반사되는 빛이 각각 보강, 상쇄 간섭을 일으키기 때문에 발생하는 현상이다.
이와 같은 무지개 빛 현상을 억제하기 위해 본 발명의 일 실시예에 따른 프라이머층(2)은 수식4 및 수식 5를 만족하는 것이 바람직하다.
Figure PCTKR2019002957-appb-M000004
Figure PCTKR2019002957-appb-M000005
무지개 빛 현상(반사 레인보우)의 발생은 각 계면에서의 반사율 차이에 의해 발생하는 빛의 간섭에 의한 무지개 빛의 발현이기 때문에, 본 발명의 일 실시예에 따른 프라이머층(2)은 수식 4 및 수식 5의 조건을 만족하여 무지개 빛 반사를 없애고 시인성을 향상시킬 수 있다.
이를 위해서 기재필름(1)의 적어도 1면 이상에 프라이머층(2)을 형성한다. 이때 프라이머층(2)은 이접착층으로서, 바인더 수지로 수분산 폴리에스테르 공중합체 수지나 폴리우레탄계 수지 중에서 선택된 적어도 1종 이상의 주재를 포함한다. 프라이머층(2)은 수분산 폴리에스테르 공중합체 수지 또는 폴리우레탄계 수지 중 어느 하나의 수지로만 형성될 수 있으며, 수분산 폴리에스테르 공중합체 수지 및 폴리우레탄계 수지를 포함하는 고분자 수지로 형성될 수 있다.
또한 프라이머층(2)은 주행성 확보를 위해 입자로서 유기 또는 무기 입자를 포함할 수 있다. 프라이머층(2)에 포함되는 입자는 평균입경이 10 내지 500nm인 것이 바람직하다. 입자의 평균입경이 500nm를 초과하는 경우 헤이즈가 높아지는 문제가 발생되며, 입자의 평균입경이 10nm 미만인 경우 표면 조도가 낮아져, 블로킹이 발생하거나, 필름 권취에 문제가 발생하여 외관이 악화되는 문제가 발생된다.
또한, 프라이머층(2)에 포함되는 무기입자는 실리카 입자 및 실리카-유기물 합성체 중의 적어도 하나로서 굴절률이 1.5이상인 것이 바람직하다. 무기입자의 굴절률이 1.5 미만인 경우 프라이머 층의 전체적인 굴절율이 낮아져, 레인보우 현상이 발생하는 문제가 발생한다.
또한 프라이머층(2)은 경화제(가교제)로 옥사졸린계, 카보디이미드계, 멜라민계 중에서 선택된 적어도 1종 이상을 포함할 수 있다. 특히, 옥사졸린계 경화제는 편광자 보호용 폴리에스테르 필름에 투습되는 수분을 억제하거나 반응함으로써, 양면 코팅 시 발생할 수 있는 블로킹 현상을 방지한다. 또한 멜라민계 경화제는 주재와도 반응을 하지만, 멜라민 사이의 자체적인 경화반응을 통하여 도막 강도를 향상시킴으로써, 양면 코팅 시 발생할 수 잇는 블로킹 현상을 방지한다.
또한 프라이머층(2)은 음이온성 계면활성제 또는 소포제와 같은 첨가제를 더 포함할 수 있으며, 계면활성제 이외 다양한 종류의 첨가제를 포함할 수 있다.
또한 일례로서, 프라이머층(2)은 폴리에스테르 공중합체 수지와 폴리우레탄계 수지의 혼합물인 바인더 수지, 옥사졸린계 경화제와 에폭시계 경화제를 혼합하여 생성된 경화제 수분산액, 계면활성제 수분산액 및 무기입자 수분산액으로 이루어진 도포액을 통해 형성될 수 있다. 프라이머층(2)은 기재필름(1)의 일면 또는 양면 상에 상술한 도포액을 도포하여 형성될 수 있다. 이때 프라이머층(2)의 도포 두께는 80 내지 150nm인 것이 바람직하다. 프라이머층(2)의 도포 두께가 80nm 미만인 경우 표면 가공 후 반사 레인보우가 관찰될 수 있으며, 150nm를 초과하는 경우 반사 레인보우 및 블로킹이 발생하는 문제가 발생한다.
프라이머층(2)의 주재인 폴리우레탄 및/또는 폴리에스테르의 고형분은 코팅 두께 및 굴절률 확보를 위해 전체 도포액에서 4 내지 7%인 것이 바람직하며, 4.5 내지 5.5%인 것이 보다 바람직하다. 주재의 고형분이 4% 미만일 경우 프라이머층(2)의 코팅 두께 확보가 어렵고, 주재의 고형분이 7%를 초과할 경우 프라이머층(2)의 코팅 시에 발생할 수 있는 얼룩, 횡방향 얼룩 및 종방향 얼룩 등이 발생할 수 있다.
또한, 프라이머층(2)에 포함된 경화제는 주재와의 반응성을 고려하여, 주재 대비 100:5 내지 100:50의 비율로 혼합하는 것이 바람직하다. 경화제가 주재 대비 100:5 미만인 경우 반응성이 저하되어 블로킹 현상이 발생하기 쉬우며, 주재 대비 100:50을 초과하는 경우 도포액의 pH 변화에 따라 응집이 발생하기 쉽다. 특히, 경화제가 카보디이미드계 일 경우 주재인 폴리우레탄계 도포액과의 높은 반응성 때문에 경화제의 비율이 높을수록 응집이 일어날 가능성이 높다.
다음으로, 본 발명의 일 실시예에 따른 편광자 보호용 폴리에스테르 필름의 제조방법은 폴리에스테르 수지를 용융 압출하여 미연신 시트를 형성하는 제1단계, 제1단계에서 형성된 미연신 시트를 길이 방향(MD)으로 1축 연신하는 제2단계, 길이 방향으로 1축 연신된 시트의 적어도 일면에 폴리우레탄계 수지 및 폴리에스테르계 수지 중에서 선택된 어느 하나 또는 이들 간의 조합된 고분자 혼합 수지와 경화제가 혼합된 도포액을 도포하고 건조하는 제3단계, 도포액이 도포된 시트를 폭 방향(TD)으로 2축 연신하는 제4단계 및 연신된 시트를 열고정하여 편광자 보호용 폴리에스테르 필름을 형성하는 제5단계를 포함한다.
본 발명의 일 실시예에 따른 편광자 보호용 폴리에스테르 필름의 제조방법에서 상술한 편광자 보호용 폴리에스테르 필름과 중복된 설명은 생략하기로 한다.
본 발명의 일 실시예에 따른 편광자 보호용 폴리에스테르 필름은 전광선 투과율이 90% 이상인 것이 바람직하며, 91% 이상인 것이 더욱 바람직하다. 전광선 투과율이 90% 미만인 경우 디스플레이 소재의 휘도가 저하되는 문제가 발생한다.
본 발명의 일 실시예에 따른 편광자 보호용 폴리에스테르 필름은 370nm 파장대에서 투과율이 1.5% 이하이고, 380nm 파장대에서 투과율이 9% 이하인 것이 바람직하다. 370nm 파장대에서 투과율이 1.5%를 초과하거나 380nm 파장대에서 투과율이 9%를 초과하면 표면 가공 후 반사 레인보우가 관찰되는 문제가 발생한다.
또한, 본 발명에 따른 편광자 보호용 폴리에스테르 필름은 헤이즈가 1.5%이하인 것이 바람직하고, 1% 이하인 것이 더욱 바람직하다. 헤이즈가 1.5%를 초과하는 경우 투명성이 낮아져 명암비가 낮아지는 문제가 발생한다.
또한, 본 발명에 따른 편광자 보호용 폴리에스테르 필름은 기재필름(1)과 프라이머층(2) 사이의 부착력 및 60℃, 90% 습도 하에서 500시간의 고온 고습 조건후의 내습부착력이 95%인 이상이고, 프라이머층(2)과 후가공 수지와의 부착력 또한 95% 이상인 것이 바람직하다.
이하 실시예와 비교예를 통하여 본 발명의 구성 및 그에 따른 효과를 보다 상세히 설명하고자 한다. 그러나 본 실시예는 본 발명을 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
[실시예]
[제조예]
프라이머층을 구성하는 도포액을 하기 표 2의 구성으로 제조하였다.
도포액은 바인더 수지로 70중량%의 물과 폴리우레탄 수지(H-15, 제일공업사 제조) 30중량%로 구성된 주재 1과 70% 중량%의 물과 폴리에스테르계 수지(TR620K, 타카마츠 유지 사 제조) 30% 중량%로 구성된 주재2를 하기의 표 2와 같은 비율로 혼합하여 구성하였다. 이렇게 구성한 주재 수지 수분산액 20.0중량%와 내습성을 향상시키기 위한 옥사졸린계 경화제(WS500, 니폰 카바이드사 제조)로 40중량%와 물 60중량%로 구성된 경화제 1과 멜라민계 경화제(PM80, DIC사 제조)로 70% 중량%와 물 30 중량%로 경화제 2를 표 2와 같은 구성으로 첨가하였다. 제조된 도포액에 90중량%의 물과 음이온계 계면활성제 10중량%로 구성된 계면활성제 수분산액 1.0중량%과 실리카입자 70 중량%와 물 30중량%로 구성된 수분산 입자 도포액 0.5중량% 및 잔량의 물을 이용하여 도포액을 제조하였다.
도포액 구성
구분 주재1:주재2(중량비) 경화제1:경화제2(중량비) 주재고형분(%) 주재:경화제(중량비)
도포액1 1 : 0 1: 0 4 100:5
도포액 2 1 : 0 1: 0 5.5 100:5
도포액 3 1 : 0 1: 0 7 100:5
도포액4 1 : 0 1: 0 4 100:50
도포액 5 1 : 0 1: 0 5.5 100:50
도포액 6 1 : 0 1: 0 7 100:50
도포액7 0 : 1 1 : 1 4 100:5
도포액 8 0 : 1 1 : 1 5.5 100:5
도포액 9 0 : 1 1 : 1 7 100:5
도포액 10 0 : 1 1 : 1 4 100:50
도포액 11 0 : 1 1 : 1 5.5 100:50
도포액 12 0 : 1 1 : 1 7 100:50
도포액 13 1 : 1 1 : 1 4 100:5
도포액 14 1 : 1 1 : 1 5.5 100:5
도포액 15 1 : 1 1 : 1 7 100:5
도포액 16 1 : 1 1 : 1 2 100:1
도포액 17 1 : 1 1 : 1 10 100:75
[ 실시예 1~4]
폴리에틸렌테레프탈레이트 원료 칩을 용융 압출하고, 캐스팅 롤에서 미연신 형태로 시트를 제조하고, 제조된 미연신 시트를 표 3에 따른 연신 과정 및 열고정 과정을 수행하여 기재필름을 제조하고 이를 실시예 1 내지 4(필름 1 내지 4)로 하였다.
[실시예 5-19]
실시예 3의 기재 필름(필름 3) 제조 공정 중 미연신 시트를 제조한 후 길이 방향으로 1축 연신한 후 상기 표 2에 따른 각각의 도포액(도포액 1 내지 15)으로 metal bar #4를 이용하여 도포한 후 80℃ 온도에서 건조한 다음 폭 방향으로 2축 연신하여 편광자 보호용 폴리에스테르 필름을 제조하고 이를 표 4와 같이 실시예 5 내지 19로 하였다.
[비교예 1-4]
기재 필름의 제조 시 표 3의 연신 조건과 열고정 온도로 한 것을 제외하고는 실시예 1과 동일하게 하여 기재필름을 제조하고, 이를 비교예 1 내지 4(필름 5 내지 8)로 하였다.
[비교예 5-6]
실시예 3의 기재 필름(필름 3) 제조 공정 중 미연신 시트를 제조한 후 길이 방향으로 1축 연신한 후 상기 표 2에 따른 각각의 도포액(도포액 16 내지 17)으로 metal bar #4를 이용하여 도포한 후 80℃ 온도에서 건조한 다음 폭 방향으로 2축 연신하여 편광자 보호용 폴리에스테르 필름을 제조하고 이를 표 4와 같이 비교예 5 내지 6으로 하였다.
기재 필름 구성
구분 MD연신비 TD연신비 열고정 온도(℃) 필름 두께(um)
필름 1 3.0 3.1 220 50
필름 2 3.1 3.3 210 50
필름 3 3.2 3.4 200 50
필름 4 3.3 3.6 180 50
필름 5 3.1 3.8 210 50
필름 6 3.1 4.0 190 50
필름 7 3.4 3.3 210 50
필름 8 3.4 3.6 190 50
실시예 및 비교예의 구성
구분 시트 종류 도포액 종류 구분 시트 종류 도포액 종류
실시예 1 필름1 - 실시예 14 필름3 도포액10
실시예 2 필름2 - 실시예 15 필름3 도포액11
실시예 3 필름3 - 실시예 16 필름3 도포액12
실시예 4 필름4 - 실시예 17 필름3 도포액13
실시예 5 필름3 도포액1 실시예 18 필름3 도포액14
실시예 6 필름3 도포액2 실시예 19 필름3 도포액15
실시예 7 필름3 도포액3 비교예1 필름5 -
실시예 8 필름3 도포액4 비교예2 필름6 -
실시예 9 필름3 도포액5 비교예3 필름7 -
실시예 10 필름3 도포액6 비교예4 필름8 -
실시예 11 필름3 도포액7 비교예5 필름3 도포액16
실시예 12 필름3 도포액8 비교예6 필름3 도포액17
실시예 13 필름3 도포액9
상기 실시예 1 내지 19 및 비교예 1 내지 6에 따른 필름을 사용하여 다음과 같은 실험예를 통해 물성을 측정하고 그 결과를 다음 표 5 및 6에 나타내었다.
[ 실험예 ]
(1) 면내 위상차 (Re) 측정
면내 위상차는 우선 2축 연신이 된 필름을 2매의 편광판 사이에 위치시켜, 크로스 니콜로 관찰하여, 빛이 새어 나오지 않는 부근에서 필름 폭방향과의 각도를 구하고, 그 각도의 방향을 Ny, 그에 수직인 방향을 Nx로 정의하여, 각 방향에 대한 굴절률을 측정하였다. 굴절률 측정은 아베 굴절계(ATAGO사, NAR-3T)를 이용하여 측정하였으며, 접안렌즈에 편광 기능이 있어, 각 방향 별로 구별하여 굴절률을 측정할 수 있도록 하였다. 이렇게 구한 굴절률을 제조한 필름의 두께를 곱하여, 위상차를 측정하였다. 보호 필름의 두께는 마이크로미터(VL-50aS, 미쯔도요사)를 이용하여 측정하였다.
(2) 두께 방향 위상차(Rth) 측정
두께 방향 위상차는 상기의 면내 위상차 방향에서 측정한 것과 동일 장비, 동일 방법으로 측정하였다. Nx방향에서의 두께 방향 굴절률과 Ny방향의 두께 방향 굴절률의 평균 값으로 두께 방향 굴절률(Nz)을 산출하였다.
(3) 면배향계수(△P) 측정
면배향계수는 위 아베굴절계의 굴절률을 측정한 값을 수식 3에 적용하여 산출하였다.
(4) 주쇄 배향각 측정
주쇄 배향각은 2축 연신을 하고 난 후, 샘플을 배향각 측정장비(SST-4000, 노무라 쇼지 사)로 필름 폭방향에 대한 주쇄의 결정 방향을 측정하였다.
(5) 투과 무지개 얼룩 검사
제조된 필름을 편광판 2매 사이에 넣고, 무지개 얼룩의 발생 유무를 확인하였다. 이때, 관찰 각도는 샘플의 정면을 바라보는 각도를 0o로 하여 -90o ~ 90o의 범위에서 직접 육안으로 관찰하였다.
(6) 반사율 측정
가시광선 영역대 파장에서의 반사율은 UV-visible(UV-3600, 시마즈 사)장비를 이용하여 측정하였다. 먼저 측정하고자 하는 면의 반대면에 빛의 반사가 잘 이루어 지도록 색을 가지는 테이프(검정색 절연 테이프 등)를 붙이고, 상기의 장비를 이용하여 300nm~800nm의 반사율을 측정한 후, 550nm 파장의 반사율을 확인하였다.
(7) 프라이머층 굴절률 및 기재필름 굴절률 측정
실리콘 기판 위에, 상기 실시예 5 내지 19 및 비교예 5 내지 6에서 제조한 도포액을 도포한 후, 120 ℃에서 건조하고, Ellipsometry(Elli-SE-aM12, 엘립소 테크 사)를 이용하여, 도포층만의 굴절률을 측정하였다. 이를 토대로, 프라이머층과 기재필름의 굴절률(Nx, Ny의 평균값)과의 비를 산출하였다.
(8) 반사 레인보우 측정
실시예 1 내지 19 및 비교예 1 내지 6에서 만들어진 필름에, 하드코팅 도포액을 도포하고, UV로 경화하였다. 이렇게 경화된 필름을 육안으로 반사 레인보우 발생 유무를 확인하였다.
(9) 부착력 측정
부착력은 절단기로 절단선을 만들어서, 10* 10의 매트릭스에 2㎜*2㎜ 정사각형들을 배치한다. 절단선이 있는 필름에 셀로판 테이프(No. 405, NICHIBAN제 넓이: 24㎜)을 붙이고, 벨벳을 이용하여, 테이프를 문질러서 필름에 강력하게 부착시킨 후, 수직으로 테이프를 떼어낸다. 프라이머층에 남아있는 수지층의 면적을 시각적으로 관찰하고, 상술한 수식 6에 의해 부착력을 계산하였다.
Figure PCTKR2019002957-appb-M000006
구분 시트종류 Re[nm] Rth[nm] 면배향계수 주쇄배향각[o](폭중심/단부) 투과Rainbow
실시예 1 필름1 225 8352 0.159 0/8
실시예 2 필름2 138 8264 0.161 0/9.7
실시예 3 필름3 110 8123 0.163 0/12
실시예 4 필름4 82 8050 0.164 0/17
비교예 1 필름5 625 8290 0.168 0/7 Δ
비교예 2 필름6 790 8325 0.175 0/5.5 X
비교예 3 필름7 420 7950 0.172 0/22 X
비교예 4 필름8 230 8005 0.169 0/19 Δ
(○: 양호, Δ: 약시인, X : 강시인)
구분 시트종류 도포액종류 반사율(%) 굴절률 비 반사레인보우 부착력
실시예 5 필름3 도포액1 3.8 0.958 96
실시예 6 필름3 도포액2 3.7 0.958 97
실시예 7 필름3 도포액3 3.6 0.958 95
실시예 8 필름3 도포액4 3.9 0.976 96
실시예 9 필름3 도포액5 3.7 0.976 98
실시예 10 필름3 도포액6 3.8 0.976 99
실시예 11 필름3 도포액7 2.9 0.964 100
실시예 12 필름3 도포액8 3.1 0.964 100
실시예 13 필름3 도포액9 3.1 0.964 100
실시예 14 필름3 도포액10 3.0 0.968 100
실시예 15 필름3 도포액11 2.9 0.968 100
실시예 16 필름3 도포액12 2.8 0.968 100
실시예 17 필름3 도포액13 4.0 0.961 96
실시예 18 필름3 도포액14 3.9 0.961 98
실시예 19 필름3 도포액15 3.8 0.961 96
비교예 5 필름3 도포액16 5.8 0.914 X 85
비교예 6 필름3 도포액17 2.9 0.99 90
( ○: 미시인, Δ : 약시인, X : 강시인)
상술한 실시예 1 내지 4와 비교예 1 내지 4는 프라이머층을 형성하지 않은 기재필름으로, 실시예 1 내지 4는 길이방향 및 폭방향 연신비 조건을 만족하는 필름 1 내지 4의 기재필름이 형성되었으며, 비교예 1 내지 4는 연신비 조건을 만족하지 못하는 필름 5 내지 8의 기재필름이 형성되었다.
상기 표 5에서 확인할 수 있는 바와 같이, 실시예 1 내지 4는 면내 위상차(Re)가 표 1의 면내 위상차(Re)의 물성치인 500nm 이하를 모두 만족하며, 투과 레인보우에 따른 무지개 얼룩이 발생하지 않는 것으로 나타났다.
반면에, 비교예 1 및 2는 면내 위상차(Re)의 물성치가 500nm를 초과하고, 면배향 계수가 0.164를 초과하며 투과 레인보우에 따른 무지개 얼룩이 발생하는 것으로 나타났다. 또한 비교예 3 및 4도 면배향 계수가 0.164를 초과하며 투과 레인보우에 따른 무지개 얼룩이 발생하는 것으로 나타났다.
실시예 5 내지 19 및 비교예 5, 6은 모두 필름 3을 기재필름으로 하였으나, 서로 다른 도포액으로 프라이머층을 형성하였다.
상술한 표 6에서 확인할 수 있는 바와 같이, 기재필름의 연신비, 도포액에서 주재의 고형분 비율이 4 내지 7%인 것을 만족하며, 주재:경화제의 중량비가 100:5 내지 100:50인 것을 만족하는 본 발명에 따른 실시예 5 내지 19는 수식 5의 반사율 4% 이하인 것을 만족하고, 수식 4의 굴절률 비가 0.958 내지 0.98인 것을 만족하며, 부착력이 95% 이상인 것을 만족하고, 반사 레인보우에 따른 무지개 얼룩이 발생하지 않는 것으로 나타났다.
반면에, 도포액에서 주재의 고형분 비율이 2%(4% 미만인 경우)이고 주재:경화제의 중량비가 100:1로 100:5 내지 100:50을 만족하지 못하는 비교예 5는 반사율이 5.8%로 수식 5의 반사율 4% 이하인 것을 만족하지 못하고, 굴절률 비가 0.914로 수식 4의 굴절률 비가 0.958 내지 0.98인 것을 만족하지 못하며, 부착력이 85%로 부착력이 95% 이상인 것을 만족하지 못하고, 반사 레인보우에 따른 무지개 얼룩이 발생하는 것으로 나타났다.
또한 도포액에서 주재의 고형분 비율이 10%(7% 초과인 경우)이고 주재:경화제의 중량비가 100:75로 100:5 내지 100:50을 만족하지 못하는 비교예 6은 굴절률 비가 0.99로 수식 4의 굴절률 비가 0.958 내지 0.98인 것을 만족하지 못하며, 부착력이 90%로 부착력이 95% 이상인 것을 만족하지 못하고, 반사 레인보우에 따른 무지개 얼룩이 발생하는 것으로 나타났다.
이와 같은 비교예 5 및 6은 비록 기재필름의 물성이 본 발명의 요구 물성을 만족할지라도, 프라이머층의 요구 물성을 만족하지 못하기 때문에, 완성된 편광자 보호용 폴리에스테르 필름에 문제가 발생함을 알 수 있다.
이상과 같이 상술한 여러 조건을 만족시키는 편광자 보호용 폴리에스테르 필름인 실시예 5 내지 19과 달리 이를 모두 만족시키지 못하는 비교예 5 내지 6은 투과 레인보우에 의한 무지개 얼룩 발생이 확인되었으며, 반사율 및 굴절률 비가 조건을 만족하지 못하고, 부착력에 문제가 있는 것이 확인되었다.
상술한 내용에 따른 본 발명의 일 실시예에 따른 편광자 보호용 폴리에스테르 필름은 하드코팅 가공 후 무지개 현상을 최소화하여 후가공시의 생산성을 좋게 할 수 있으며, 투과 레인보우가 개선됨에 따라 편광자의 보호용도로 사용이 가능하다. 또한 상술한 내용에 따른 본 발명의 일 실시예에 따른 편광자 보호용 폴리에스테르 필름은 광학적 특성이 우수하기 때문에 반사방지 필름 및 액정표시장치 등의 보호용 필름으로도 널리 사용 가능하다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (15)

  1. 적어도 1축 연신된 폴리에스테르 기재필름; 및
    상기 기재필름의 적어도 어느 하나의 일면에 형성되며, 폴리우레탄계 수지 또는 폴리에스테르계 수지 중에서 선택된 적어도 하나 이상의 수지와 경화제를 포함하는 프라이머층;
    을 포함하는 편광자 보호용 폴리에스테르 필름.
  2. 제1항에 있어서,
    상기 경화제는 옥사졸린계, 카보디이미드계 및 멜라민계로 이루어진 군에서 선택되는 적어도 하나 이상의 수지인 편광자 보호용 폴리에스테르 필름.
  3. 제1항에 있어서,
    상기 프라이머층의 폴리우레탄계 수지 또는 폴리에스테르계 수지는 전체 도포액에서 고형분이 4 내지 7%이고, 상기 경화제는 폴리우레탄계 수지 또는 폴리에스테르계 수지 대비 100:5 내지 100:50의 비율을 갖는 편광자 보호용 폴리에스테르 필름.
  4. 제3항에 있어서,
    상기 프라이머층의 폴리우레탄계 수지 또는 폴리에스테르계 수지는 전체 도포액에서 고형분이 4.5 ~ 5.5%인 편광자 보호용 폴리에스테르 필름.
  5. 제1항에 있어서,
    상기 프라이머층은 550nm의 파장대에서 반사율이 4% 이하인 편광자 보호용 폴리에스테르 필름.
  6. 제1항에 있어서,
    상기 폴리에스테르 기재필름은 면내 위상차(Re)가 500nm 이하이고, 두께 방향 위상차(Rth)가 8000nm 이상인 편광자 보호용 폴리에스테르 필름.
  7. 제1항에 있어서,
    상기 폴리에스테르 기재필름은 면배향계수(ΔP)가 0.164 이하인 편광자 보호용 폴리에스테르 필름.
  8. 제1항에 있어서,
    상기 폴리에스테르 기재필름 내 결정성 영역(Crystalline Region)의 주쇄의 배향각이 17도 이하인 편광자 보호용 폴리에스테르 필름.
  9. 제1항에 있어서,
    상기 프라이머층과 상기 기재필름 사이의 굴절률 비율이 하기 수식 4를 만족하되,
    [수식 4]
    0.958 ≤ 프라이머층 굴절률/기재필름의 굴절률 ≤ 0.98
    인 편광자 보호용 폴리에스테르 필름.
  10. 제1항에 있어서,
    상기 프라이머층은 음이온성 계면활성제 및 평균입경이 10 내지 500nm인 입자를 더 포함하는 편광자 보호용 폴리에스테르 필름.
  11. 제1항에 있어서,
    상기 기재필름과 프라이머층 사이의 부착력 및 60℃, 90% 습도 하에서 500시간의 고온 고습 조건후의 내습부착력은 95%인 이상이고, 상기 프라이머층과 후가공 수지와의 부착력은 95% 이상인 편광자 보호용 폴리에스테르 필름.
  12. 폴리에스테르 수지를 용융 압출하여 미연신 시트를 형성하는 제1단계;
    상기 제1단계에서 형성된 미연신 시트를 길이 방향(MD)으로 1축 연신하는 제2단계;
    상기 제2 단계에서 길이 방향으로 1축 연신된 시트의 적어도 일면에 폴리우레탄계 수지 또는 폴리에스테르계 수지 중에서 선택된 적어도 하나 이상의 수지와 경화제가 혼합된 도포액을 도포하고 건조하는 제3단계;
    상기 제3단계에서 도포액이 도포된 시트를 폭 방향(TD)으로 2축 연신하는 제4단계; 및
    상기 제4단계에서 연신된 시트를 열고정하여 편광자 보호용 폴리에스테르 필름을 형성하는 제5단계를 포함하는 편광자 보호용 폴리에스테르 필름의 제조방법.
  13. 제12항에 있어서,
    상기 제2 단계의 길이 방향(MD)의 연신비는 3.0 내지 3.3배이고, 상기 제4단계의 폭 방향(TD)의 연신비는 3.0 내지 3.6배인 편광자 보호용 폴리에스테르 필름의 제조방법.
  14. 제12항에 있어서,
    상기 제5단계의 열고정 온도는 180 내지 220℃인 편광자 보호용 폴리에스테르 필름의 제조방법.
  15. 제1항 내지 제11항 중 어느 한 항에 따른 편광자 보호용 폴리에스테르 필름이 편광자의 적어도 어느 하나의 일면에 구비된 편광판.
PCT/KR2019/002957 2019-01-07 2019-03-14 편광자 보호용 폴리에스테르 필름과 그 제조방법 및 이를 구비하는 편광판 WO2020145451A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021539548A JP2022517201A (ja) 2019-01-07 2019-03-14 偏光子保護用ポリエステルフィルムとその製造方法及びこれを備える偏光板
CN201980088289.8A CN113272369B (zh) 2019-01-07 2019-03-14 用于保护偏振器的聚酯膜、其制造方法和包括其的偏光膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190001716A KR102052843B1 (ko) 2019-01-07 2019-01-07 편광자 보호용 폴리에스테르 필름과 그 제조방법 및 이를 구비하는 편광판
KR10-2019-0001716 2019-01-07

Publications (1)

Publication Number Publication Date
WO2020145451A1 true WO2020145451A1 (ko) 2020-07-16

Family

ID=68837177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002957 WO2020145451A1 (ko) 2019-01-07 2019-03-14 편광자 보호용 폴리에스테르 필름과 그 제조방법 및 이를 구비하는 편광판

Country Status (5)

Country Link
JP (1) JP2022517201A (ko)
KR (1) KR102052843B1 (ko)
CN (1) CN113272369B (ko)
TW (1) TWI708076B (ko)
WO (1) WO2020145451A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861464A (zh) * 2021-09-28 2021-12-31 中国科学技术大学 光学显示用聚酯薄膜及其制备方法和应用
KR20220052425A (ko) * 2020-10-20 2022-04-28 도레이첨단소재 주식회사 디스플레이 보호용 폴리에스테르 필름

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102438415B1 (ko) * 2020-09-03 2022-08-30 도레이첨단소재 주식회사 광학용 폴리에스테르 보호필름
KR102315358B1 (ko) * 2020-09-03 2021-10-19 도레이첨단소재 주식회사 광학용 폴리에스테르 보호필름 및 이의 제조방법
KR102389773B1 (ko) * 2020-12-09 2022-04-25 에스케이씨 주식회사 폴리에스테르계 필름 및 이의 제조 방법
TWI772231B (zh) 2020-12-07 2022-07-21 南韓商Skc股份有限公司 聚酯薄膜、其製備方法及包含其之保護薄膜
KR102471683B1 (ko) * 2020-12-07 2022-11-28 에스케이씨 주식회사 폴리에스테르계 필름 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607792B2 (ja) * 1977-03-02 1985-02-27 キヤノン株式会社 現像剤の濃度検出方法
KR20140146717A (ko) * 2013-06-17 2014-12-29 도레이첨단소재 주식회사 광학용 폴리에스테르 필름
WO2014209056A1 (ko) * 2013-06-27 2014-12-31 코오롱인더스트리 주식회사 폴리에스테르 필름 및 이의 제조방법
KR20160117152A (ko) * 2015-03-31 2016-10-10 코오롱인더스트리 주식회사 폴리에스테르 필름, 이의 제조방법 및 이를 이용한 편광판
KR20180102306A (ko) * 2017-03-07 2018-09-17 에스케이씨 주식회사 편광판용 폴리에스테르 보호필름과 이를 이용한 편광판

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169277A (ja) * 2007-01-10 2008-07-24 Teijin Dupont Films Japan Ltd 光学用易接着性ポリエステルフィルム
JP2009157361A (ja) * 2007-12-06 2009-07-16 Nitto Denko Corp 偏光板及び画像表示装置
JP2009300611A (ja) * 2008-06-11 2009-12-24 Nitto Denko Corp 偏光板及び液晶パネル
JP5606330B2 (ja) 2009-01-19 2014-10-15 株式会社カネカ 位相差フィルムの製造方法、光学フィルムの製造方法、画像表示装置の製造方法、並びに、液晶表示装置の製造方法
JP2011039363A (ja) * 2009-08-14 2011-02-24 Sumitomo Chemical Co Ltd 偏光板および液晶パネル
JP2012068427A (ja) * 2010-09-24 2012-04-05 Toray Advanced Film Co Ltd 反射防止フィルム
KR101285853B1 (ko) * 2010-12-23 2013-07-12 도레이첨단소재 주식회사 편광판 보호용 폴리에스테르 필름
JP5109094B2 (ja) * 2011-02-02 2012-12-26 東洋紡株式会社 偏光子保護用易接着性ポリエステルフィルム
CN103649182B (zh) * 2011-08-30 2016-11-02 东丽株式会社 偏振片脱模膜用双轴取向聚酯膜及使用其的层合体、以及偏振片的制造方法
JP5850135B2 (ja) * 2012-08-07 2016-02-03 東洋紡株式会社 偏光子保護用ポリエステルフィルム、偏光板および液晶表示装置
JP2015024511A (ja) * 2013-07-24 2015-02-05 日本ゼオン株式会社 複層フィルム、偏光板保護フィルム、および偏光板
KR101692109B1 (ko) * 2013-07-26 2017-01-02 주식회사 엘지화학 고휘도 편광판 및 이를 포함하는 액정표시장치
JP6504052B2 (ja) * 2014-04-09 2019-04-24 東レ株式会社 偏光子保護用ポリエステルフィルム及びそれを用いてなる偏光板
JP6361400B2 (ja) * 2014-09-17 2018-07-25 東レ株式会社 二軸延伸ポリエステルフィルム、それを用いた偏光板、液晶ディスプレイ
CN106832373B (zh) * 2015-12-03 2019-11-15 宁波长阳科技股份有限公司 一种光学用预涂聚酯膜及其制备方法及一种增亮膜
KR101694257B1 (ko) * 2016-06-20 2017-01-10 에스케이씨 주식회사 편광자 보호 필름, 이를 포함하는 편광판, 및 이를 구비한 표시 장치
JP2018132592A (ja) * 2017-02-14 2018-08-23 株式会社トッパンTomoegawaオプティカルフィルム 光学フィルム、これを用いた偏光板及びディスプレイ部材
WO2018230429A1 (ja) * 2017-06-13 2018-12-20 日東電工株式会社 積層体、積層体の製造方法、偏光板、および偏光板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607792B2 (ja) * 1977-03-02 1985-02-27 キヤノン株式会社 現像剤の濃度検出方法
KR20140146717A (ko) * 2013-06-17 2014-12-29 도레이첨단소재 주식회사 광학용 폴리에스테르 필름
WO2014209056A1 (ko) * 2013-06-27 2014-12-31 코오롱인더스트리 주식회사 폴리에스테르 필름 및 이의 제조방법
KR20160117152A (ko) * 2015-03-31 2016-10-10 코오롱인더스트리 주식회사 폴리에스테르 필름, 이의 제조방법 및 이를 이용한 편광판
KR20180102306A (ko) * 2017-03-07 2018-09-17 에스케이씨 주식회사 편광판용 폴리에스테르 보호필름과 이를 이용한 편광판

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220052425A (ko) * 2020-10-20 2022-04-28 도레이첨단소재 주식회사 디스플레이 보호용 폴리에스테르 필름
KR102472872B1 (ko) 2020-10-20 2022-12-01 도레이첨단소재 주식회사 디스플레이 보호용 폴리에스테르 필름
CN113861464A (zh) * 2021-09-28 2021-12-31 中国科学技术大学 光学显示用聚酯薄膜及其制备方法和应用
CN113861464B (zh) * 2021-09-28 2023-06-16 中国科学技术大学 光学显示用聚酯薄膜及其制备方法和应用

Also Published As

Publication number Publication date
TWI708076B (zh) 2020-10-21
CN113272369A (zh) 2021-08-17
TW202026681A (zh) 2020-07-16
CN113272369B (zh) 2022-12-13
JP2022517201A (ja) 2022-03-07
KR102052843B1 (ko) 2019-12-06

Similar Documents

Publication Publication Date Title
WO2020145451A1 (ko) 편광자 보호용 폴리에스테르 필름과 그 제조방법 및 이를 구비하는 편광판
WO2017091031A1 (ko) 편광자 보호필름, 편광판 및 이를 포함하는 표시장치
US20190243049A1 (en) Wide-band wavelength film, method for producing same, and method for producing circular polarization film
TWI798426B (zh) 寬頻帶波長薄膜及其製造方法,以及圓偏光薄膜的製造方法
US11366258B2 (en) Wide-band wavelength film, method for producing same, and method for producing circular polarization film
JP2006517486A (ja) 高分子光学フィルムの製造方法
KR101913730B1 (ko) 편광판용 폴리에스테르 보호필름과 이를 이용한 편광판
KR20100102292A (ko) 편광자의 제조방법, 편광자 및 이것이 구비된 편광판
WO2016171389A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2019031713A1 (ko) 액정표시장치
WO2017078290A1 (ko) 편광판 및 이를 포함하는 액정 표시 장치
WO2019124752A1 (ko) Ips 모드용 위상차 필름, 이를 포함하는 편광판 및 이를 포함하는 액정 표시장치
WO2021066401A1 (ko) 용융 압출식 편광필름
KR20220052425A (ko) 디스플레이 보호용 폴리에스테르 필름
WO2020204411A1 (ko) 편광판 및 이를 포함하는 광학표시장치
KR20230107792A (ko) 편광막 및 편광막의 제조 방법
WO2014088273A1 (ko) 편광판 및 이를 포함하는 액정표시장치
WO2013191418A1 (ko) 편광판 및 이를 포함하는 액정표시장치
KR102315358B1 (ko) 광학용 폴리에스테르 보호필름 및 이의 제조방법
WO2018124446A1 (ko) 편광판용 폴리에스테르 보호필름, 이를 포함하는 편광판, 및 이를 포함하는 액정표시장치
WO2022240017A1 (ko) 편광판 및 이를 구비한 화상표시장치
KR102466758B1 (ko) 광학용 폴리에스테르 기재필름
KR102438415B1 (ko) 광학용 폴리에스테르 보호필름
WO2023018029A1 (ko) 이축 연신 폴리에스테르 필름의 제조 방법
WO2020184862A1 (ko) 편광판 및 이를 포함하는 광학표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539548

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908126

Country of ref document: EP

Kind code of ref document: A1