WO2020145395A1 - 耐ルージュ性に優れたステンレス鋼及びステンレス鋼管、並びに純水蒸気経路部材 - Google Patents

耐ルージュ性に優れたステンレス鋼及びステンレス鋼管、並びに純水蒸気経路部材 Download PDF

Info

Publication number
WO2020145395A1
WO2020145395A1 PCT/JP2020/000726 JP2020000726W WO2020145395A1 WO 2020145395 A1 WO2020145395 A1 WO 2020145395A1 JP 2020000726 W JP2020000726 W JP 2020000726W WO 2020145395 A1 WO2020145395 A1 WO 2020145395A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
stainless steel
rouge
resistance
Prior art date
Application number
PCT/JP2020/000726
Other languages
English (en)
French (fr)
Inventor
晃太郎 関向
知明 齋田
一成 今川
晋 中上
博次 赤路
志郎 廣住
貴史 中島
雄太 延原
年司 松本
政克 鎌田
Original Assignee
日鉄ステンレス鋼管株式会社
トーステ株式会社
第一三共プロファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス鋼管株式会社, トーステ株式会社, 第一三共プロファーマ株式会社 filed Critical 日鉄ステンレス鋼管株式会社
Publication of WO2020145395A1 publication Critical patent/WO2020145395A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/36Phosphatising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/24Polishing of heavy metals of iron or steel

Definitions

  • the present invention relates to a stainless steel and a stainless steel tube having excellent rouge resistance, and a pure water vapor path member.
  • Rouge is believed to be due to the deposition of iron-based metal oxides. Since this metal oxide may be mixed in a product to cause a foreign substance, or may be eluted into pure water vapor to deteriorate water quality, it is desired to suppress the generation of rouge.
  • a method for suppressing the generation of rouge a method has been proposed in which the surface of austenitic stainless steel is passivated and the Cr concentration in the passivation film is increased to 45 atom% or more (Patent Document 1).
  • the steel type is limited to austenitic stainless steel, and it is not possible to improve the rouge resistance of various steel types.
  • the term “rouge resistance” means the property of suppressing the generation of rouge.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a stainless steel, a stainless steel pipe, and a pure water vapor passage member having excellent rouge resistance.
  • the present inventors have found that the composition of stainless steel (especially the balance of Cr and Mo contents) and the Cr concentration in the passivation film show that they are resistant to rouge. They have found that they are closely related, and have completed the present invention.
  • the present invention is C: 0.1 mass% or less, Si: 1.0 mass% or less, Mn: 2.0 mass% or less, P: 0.045 mass% or less, S: 0.03 mass% or less. , Ni: 30% by mass or less, Cr: 16 to 35% by mass, Mo: 6.0% by mass or less, Cu: 0.8% by mass or less, N: 0.3% by mass or less, with the balance being Fe and unavoidable.
  • a passive impurity and has a composition satisfying the relationship of the following formula (1) (in the formula, each element symbol means the content of each element), and the Cr concentration in the passivation film is 40 atomic% or more. It is a stainless steel with excellent rouge resistance. Cr+0.5Mo ⁇ 19 (1)
  • the present invention is C: 0.1 mass% or less, Si: 1.0 mass% or less, Mn: 2.0 mass% or less, P: 0.045 mass% or less, S: 0.03 mass% or less. , Ni: 30% by mass or less, Cr: 16 to 35% by mass, Mo: 6.0% by mass or less, Cu: 0.8% by mass or less, N: 0.3% by mass or less, with the balance being Fe and unavoidable.
  • a passive impurity and has a composition satisfying the relationship of the following formula (1) (in the formula, each element symbol means the content of each element), and the Cr concentration in the passivation film is 40 atomic% or more. It is a stainless steel pipe with excellent rouge resistance. Cr+0.5Mo ⁇ 19 (1)
  • the present invention is a pure water vapor path member including the above stainless steel or the above stainless steel pipe.
  • the stainless steel of this embodiment has C: 0.1 mass% or less, Si: 1.0 mass% or less, Mn: 2.0 mass% or less, P: 0.045 mass% or less, S: 0.03 mass%. % Or less, Ni: 30% by mass or less, Cr: 16 to 35% by mass, Mo: 6.0% by mass or less, Cu: 0.8% by mass or less, N: 0.3% by mass or less, and the balance Fe And inevitable impurities.
  • the stainless steel of another embodiment further includes one or more selected from the group consisting of Nb: 0.8 mass% or less, Ti: 0.8 mass% or less, and Al: 0.5 mass% or less. be able to.
  • the term “unavoidable impurities” means components such as O that are difficult to remove. This component is inevitably mixed in at the stage of melting the raw materials.
  • C is an element that affects the workability and corrosion resistance of stainless steel, and particularly in a composition system containing a large amount of Cr and Mo, if the content of C is too large, it hardens and the workability deteriorates. Therefore, the upper limit of the C content is set to 0.1% by mass, preferably 0.09% by mass, and more preferably 0.08% by mass, from the viewpoint of workability. On the other hand, the lower limit of the C content is not particularly limited, but is preferably 0.001 mass% and more preferably 0.003 mass% from the viewpoint of corrosion resistance.
  • Si is an element that affects the workability of stainless steel, and if the content of Si is too large, the workability decreases. Therefore, the upper limit of the Si content is set to 1.0 mass%, preferably 0.9 mass%, and more preferably 0.8 mass% from the viewpoint of workability. On the other hand, the lower limit of the Si content is not particularly limited, but is preferably 0.01% by mass, more preferably 0.05% by mass, and further preferably 0.1% by mass.
  • Mn is an element that affects the workability and corrosion resistance of stainless steel, and if the Mn content is too large, the workability and corrosion resistance decrease. Therefore, the upper limit of the Mn content is set to 2.0% by mass, preferably 1.9% by mass, and more preferably 1.8% by mass from the viewpoint of workability and corrosion resistance. On the other hand, the lower limit of the Mn content is not particularly limited, but is preferably 0.01% by mass, more preferably 0.05% by mass, and further preferably 0.1% by mass.
  • P is an element that affects the workability and corrosion resistance of stainless steel, and if the content of P is too large, the workability and corrosion resistance decrease. Therefore, the upper limit of the P content is set to 0.045 mass%, preferably 0.035 mass% from the viewpoint of workability and corrosion resistance. On the other hand, the lower limit of the P content is not particularly limited, but is preferably 0.001 mass%, more preferably 0.005 mass%, and further preferably 0.01 mass%.
  • S is an element that affects the workability and corrosion resistance of stainless steel, and if the content of S is too large, the workability and corrosion resistance decrease. Therefore, the upper limit of the S content is set to 0.03% by mass, preferably 0.02% by mass, and more preferably 0.015% by mass from the viewpoint of workability and corrosion resistance. On the other hand, the lower limit of the S content is not particularly limited, but is preferably 0.0001 mass%, more preferably 0.0005 mass%.
  • Ni is an element that affects the elution resistance of stainless steel, and if the Ni content is too large, the elution resistance is reduced and rouge is likely to occur. Further, Ni is also a component necessary for forming an austenite phase when the stainless steel is austenitic. Therefore, the upper limit of the Ni content is set to 30% by mass, preferably 25% by mass, from the viewpoint of elution resistance and rouge resistance. On the other hand, the lower limit of the Ni content is not particularly limited, but is preferably 0.01% by mass, more preferably 0.02% by mass.
  • Cr 16 to 35 mass%>
  • Cr is an element that affects the workability, corrosion resistance and rouge resistance of stainless steel, and if the content of Cr is too low, a passive film will not be formed sufficiently to ensure corrosion resistance and rouge resistance. I can't. Therefore, the lower limit of the Cr content is set to 16% by mass, preferably 17% by mass, and more preferably 18% by mass. On the other hand, if the content of Cr is too large, the corrosion resistance and the rouge resistance are improved, but the workability is deteriorated. Therefore, the upper limit of the Cr content is set to 35% by mass, preferably 32% by mass, and more preferably 30% by mass from the viewpoint of workability.
  • Mo is an element that affects the workability, corrosion resistance and rouge resistance of stainless steel. Mo is also an element having an action of regenerating the passive film when the passive film is damaged. However, if the content of Mo is too large, the workability decreases. Therefore, the upper limit of the Mo content is set to 6.0 mass%, preferably 5.8 mass% from the viewpoint of workability, corrosion resistance and rouge resistance. On the other hand, the lower limit of the Mo content is not particularly limited, but is preferably 0.01% by mass, more preferably 0.02% by mass, and further preferably 0.03% by mass.
  • Cu is an element that affects the workability, elution resistance and rouge resistance of stainless steel, and if the Cu content is too high, the workability and elution resistance decrease and the rouge easily occurs. Therefore, the upper limit of the Cu content is set to 0.8% by mass, preferably 0.48% by mass, from the viewpoint of workability, elution resistance and rouge resistance. On the other hand, the lower limit of the Cu content is not particularly limited, but is preferably 0.005% by mass, more preferably 0.02% by mass, and further preferably 0.04% by mass.
  • Nb and Ti are elements that affect the workability of stainless steel, and if the content of Nb and Ti is too large, the workability decreases. Therefore, the upper limit of the Nb and Ti contents is set to 0.8% by mass, preferably 0.6% by mass, and more preferably 0.4% by mass. On the other hand, the lower limit of the contents of Nb and Ti is not particularly limited, but is preferably 0.01% by mass, more preferably 0.05% by mass, and further preferably 0.1% by mass.
  • Al is an element that affects the workability of stainless steel, and if the content of Al is too large, the workability decreases. Therefore, the upper limit of the Al content is set to 0.5% by mass, preferably 0.3% by mass, and more preferably 0.2% by mass. On the other hand, the lower limit of the Al content is not particularly limited, but is preferably 0.01% by mass, more preferably 0.03% by mass, and further preferably 0.05% by mass.
  • N is an element that affects the workability of stainless steel, and if the content of N is too large, it hardens and the workability decreases. Therefore, the upper limit of the N content is set to 0.3% by mass, preferably 0.25% by mass, from the viewpoint of workability. On the other hand, the lower limit of the N content is not particularly limited, but is preferably 0.001 mass%, more preferably 0.003 mass%, and further preferably 0.005 mass%.
  • the stainless steel may contain elements known in the technical field as long as the effects of the present invention are not impaired.
  • each element symbol means the content of each element. If the relationship of the above formula (1) is not satisfied, stainless steel having desired rouge resistance cannot be obtained.
  • the lower limit value of Cr+0.5Mo in the above formula (1) is preferably 19.1, more preferably 19.2, and further preferably 19.3. With such a lower limit, the rouge resistance of stainless steel can be stably improved.
  • the upper limit of Cr+0.5Mo is not particularly limited, but is preferably 38, more preferably 35, and further preferably 33.
  • the "passivation film” means a chromium-rich oxide layer that improves the corrosion resistance (metal ion elution resistance) of stainless steel.
  • the Cr concentration in the passivation film is set to 40 atom% or more, preferably 45 atom% or more, and more preferably 50 atom% or more from the viewpoint of ensuring rouge resistance.
  • the upper limit of the Cr concentration in the passivation film is not particularly limited, but is preferably 90 atom %, more preferably 80 atom %, further preferably 75 atom %.
  • the Cr concentration in the passive film means that calculated by surface analysis of stainless steel using XPS (X-ray photoelectron spectroscopy).
  • the XPS measurement method is not particularly limited, but in this specification, the measurement was performed according to the following procedure. First, a wide area photoelectron spectrum was measured for the outermost surface (passive state film) of stainless steel, and qualitative analysis was performed. After that, Ar + sputtering was performed in the depth direction from the surface, and the narrow-range photoelectron spectrum of the designated element (Si, Cr, Fe, Ni, Mo) was measured for each constant sputtering depth. The elemental composition ratio (atomic %) was calculated at each sputtering depth, and the Cr concentration in the passive film was obtained.
  • the XPS measurement conditions are not particularly limited, but in this specification, the following conditions were used.
  • Analytical device Quantera SXM (fully automatic scanning X-ray photoelectron spectrometer) manufactured by Physical Electronics X-ray source: Monochromatic Al K ⁇ Output: 44.8W Beam diameter: 200 ⁇ m ⁇ Extraction angle: 45° Sputtering conditions: Ar + energy 1 keV, sputter rate about 2.24 nm/min (SiO 2 conversion)
  • the surface of the stainless steel preferably has an arithmetic average roughness Ra of 0.1 ⁇ m or less.
  • Ra arithmetic average roughness
  • rouge tends to be less likely to occur.
  • arithmetic mean roughness Ra as used herein means the value measured according to JIS B0601:2001.
  • the metal structure of stainless steel is not particularly limited, and may be any of ferrite type, austenite type, martensite type, and austenite/ferrite type.
  • the stainless steel having the above composition and the passive film can be manufactured according to a known method except that the slab having the above composition is used. Specifically, the slab having the above composition is hot-rolled, annealed and pickled, then cold-rolled, annealed and pickled repeatedly to a predetermined thickness, and then passivated. By carrying out, stainless steel can be manufactured. If necessary, the cold rolled steel sheet may be subjected to finishing such as mechanical polishing.
  • the passivation treatment is not particularly limited, but a treatment using an acidic solution may be performed. Specific examples of the passivation treatment include dipping treatment in an acidic solution, electrolytic polishing, and the like, but electrolytic polishing that can easily control the surface roughness of stainless steel is preferable.
  • the conditions of electropolishing are not particularly limited. For example, a mixed solution containing phosphoric acid and sulfuric acid is used, voltage is 3 to 15 V, current density is 3 to 20 A/dm 2 , temperature is 40 to 60° C., and time is 3 to 40 minutes. do
  • Stainless steel having the above composition and passivation film has excellent rouge resistance, so it is suitable for use in various parts that require rouge resistance.
  • the member that is required to have rouge resistance is not particularly limited, but a pure steam path member, for example, a pure steam generator, or a sterilizer that uses pure steam, a member used in a sterilization device or a disinfection device, and the device Related equipment (for example, a sanitary pipe) etc. are mentioned.
  • the “pure water vapor passage member” means a member that comes into contact with pure water vapor.
  • the “sanitary pipe” means a pipe that requires hygiene.
  • FIG. 1 shows a block diagram of a pure water supply system including a pure steam generator and a distilled water manufacturing device.
  • a pure steam generator 1 a distilled water producing device 2
  • a tank 3 a pump 4
  • a heat exchanger 5 a valve 6, a meter 7, a sensor 8, a piping member 9
  • the members used for the filter 10 may come into contact with pure water vapor. Therefore, in this pure water supply system, it is preferable to manufacture these members using the stainless steel of this embodiment.
  • the stainless steel pipe of the present embodiment has characteristics such as a composition and a passive film similar to those of the above stainless steel. Therefore, description of these features will be omitted.
  • the stainless steel pipe of the present embodiment can be manufactured by processing the above stainless steel into a tube. Specifically, a stainless steel pipe can be manufactured by bending stainless steel, welding both ends to each other, and then subjecting it to annealing, pickling, mechanical polishing and electrolytic polishing.
  • the stainless steel pipe of this embodiment is excellent in rouge resistance because it uses the above-mentioned stainless steel as a material.
  • the pure water vapor path member of the present embodiment includes the above stainless steel or the above stainless steel pipe. Since this pure water vapor passage member is excellent in rouge resistance, it is difficult for foreign substances (metal oxides) to be mixed in the product, and there is little risk that metal ions are eluted into pure water vapor to deteriorate water quality.
  • Examples 1 to 9 and Comparative Examples 1 to 5 A slab having the composition shown in Table 1 was hot-rolled, annealed, pickled, and repeatedly cold-rolled to manufacture a cold-rolled annealed sheet having a thickness of 1.0 mm. Next, the cold-rolled annealed plate was cut into a size of 30 mm ⁇ 50 mm, then mechanically polished at #600, and then electrolytically polished in a mixed solution containing phosphoric acid and sulfuric acid to obtain stainless steel. The electrolytic polishing was performed at a voltage of 3 to 15 V, a current density of 3 to 20 A/dm 2 , a temperature of 40 to 60° C., and a time of 3 to 40 minutes.
  • the Cr concentration in the passivation film was measured according to the above method, and the arithmetic mean roughness was measured using a surface roughness profiler (SURFCOM2900DX manufactured by Tokyo Seimitsu Co., Ltd.). Ra was measured. The results are shown in Table 2.
  • the stainless steels obtained in the above Examples and Comparative Examples were placed inside a pipe connected to a pure water vapor generator, and the pressure was 2 kg/cm 2 ⁇ G and the temperature was about 120° C. in a pure water vapor environment. An exposure test was conducted for one year.
  • the stainless steels of Examples 1 to 9 in which the composition and the Cr concentration in the passivation film were within the predetermined range had a color difference ⁇ E * ab of 10 or less, and the rouge was sufficiently generated. I was able to suppress it.
  • the color difference ⁇ E * ab becomes large, and the generation of rouge can be sufficiently suppressed. There wasn't.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

C:0.1質量%以下、Si:1.0質量%以下、Mn:2.0質量%以下、P:0.045質量%以下、S:0.03質量%以下、Ni:30質量%以下、Cr:16~35質量%、Mo:6.0質量%以下、Cu:0.8質量%以下、N:0.3質量%以下を含み、残部がFe及び不可避的不純物からなると共に、下記式(1)の関係(式中、各元素記号は、各元素の含有量を意味する)を満たす組成を有するステンレス鋼である。このステンレス鋼は、不働態皮膜中のCr濃度が40原子%以上である。 Cr+0.5Mo≧19 (1)

Description

耐ルージュ性に優れたステンレス鋼及びステンレス鋼管、並びに純水蒸気経路部材
 本発明は、耐ルージュ性に優れたステンレス鋼及びステンレス鋼管、並びに純水蒸気経路部材に関する。
 医薬品、バイオテクノロジー、食品、化粧品などの分野では、滅菌装置、殺菌装置、消毒装置などの各種装置において、高純度水の蒸気(以下、「純水蒸気」という)を用いた処理が行われている。これらの装置及び関連設備の純水蒸気と接する部材には、オーステナイト系ステンレス鋼が一般に用いられているが、その表面にルージュと呼ばれる着色が発生することがある。
 ルージュは、鉄主体の金属酸化物の付着などに起因すると考えられている。この金属酸化物は、製品に混入して異物混入の原因となったり、純水蒸気に溶出して水質を劣化させたりする恐れがあることから、ルージュの発生を抑制することが望まれている。
 ルージュの発生を抑制する従来技術としては、オーステナイト系ステンレス鋼の表面を不働態化し、不働態皮膜中のCr濃度を45原子%以上に高める方法が提案されている(特許文献1)。
特開平11-29877号公報
 しかしながら、特許文献1の方法のように不働態皮膜中のCr濃度を高めただけでは、ルージュの発生を十分に抑制できないことがある。また、特許文献1の方法は、鋼種がオーステナイト系ステンレス鋼に限定されており、様々な鋼種の耐ルージュ性を向上させることもできない。ここで、本明細書において「耐ルージュ性」とは、ルージュの発生を抑制する特性のことを意味する。
 本発明は、上記のような問題を解決するためになされたものであり、耐ルージュ性に優れたステンレス鋼、ステンレス鋼管及び純水蒸気経路部材を提供することを目的とする。
 本発明者らは、上記の問題を解決すべく鋭意研究を行った結果、ステンレス鋼の組成(特に、Cr及びMoの含有量のバランス)及び不働態皮膜中のCr濃度が、耐ルージュ性と密接に関係していることを見出し、本発明を完成するに至った。
 すなわち、本発明は、C:0.1質量%以下、Si:1.0質量%以下、Mn:2.0質量%以下、P:0.045質量%以下、S:0.03質量%以下、Ni:30質量%以下、Cr:16~35質量%、Mo:6.0質量%以下、Cu:0.8質量%以下、N:0.3質量%以下を含み、残部がFe及び不可避的不純物からなると共に、下記式(1)の関係(式中、各元素記号は、各元素の含有量を意味する)を満たす組成を有し、不働態皮膜中のCr濃度が40原子%以上である、耐ルージュ性に優れたステンレス鋼である。
 Cr+0.5Mo≧19  (1)
 また、本発明は、C:0.1質量%以下、Si:1.0質量%以下、Mn:2.0質量%以下、P:0.045質量%以下、S:0.03質量%以下、Ni:30質量%以下、Cr:16~35質量%、Mo:6.0質量%以下、Cu:0.8質量%以下、N:0.3質量%以下を含み、残部がFe及び不可避的不純物からなると共に、下記式(1)の関係(式中、各元素記号は、各元素の含有量を意味する)を満たす組成を有し、不働態皮膜中のCr濃度が40原子%以上である、耐ルージュ性に優れたステンレス鋼管である。
 Cr+0.5Mo≧19  (1)
 さらに、本発明は、上記のステンレス鋼又は上記のステンレス鋼管を含む純水蒸気経路部材である。
 本発明によれば、耐ルージュ性に優れたステンレス鋼、ステンレス鋼管及び純水蒸気経路部材を提供することができる。
純水蒸気発生装置及び蒸留水製造装置を備える純水供給システムのブロック図である。
 以下、本発明のステンレス鋼、ステンレス鋼管及び純水蒸気経路部材の好適な実施形態について説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の要旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、改良などを行うことができる。各実施形態に開示されている複数の構成要素は、適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよいし、異なる実施形態の構成要素を適宜組み合わせてもよい。
(ステンレス鋼)
 本実施形態のステンレス鋼は、C:0.1質量%以下、Si:1.0質量%以下、Mn:2.0質量%以下、P:0.045質量%以下、S:0.03質量%以下、Ni:30質量%以下、Cr:16~35質量%、Mo:6.0質量%以下、Cu:0.8質量%以下、N:0.3質量%以下を含み、残部がFe及び不可避的不純物からなる。
 また、別の実施形態のステンレス鋼は、Nb:0.8質量%以下、Ti:0.8質量%以下、Al:0.5質量%以下からなる群から選択される1種以上をさらに含むことができる。
 ここで、本明細書において「不可避的不純物」とは、Oなどの除去することが難しい成分のことを意味する。この成分は、原料を溶製する段階で不可避的に混入する。
<C:0.1質量%以下>
 Cは、ステンレス鋼の加工性及び耐食性に影響を与える元素であり、特に多量のCr、Moを含む組成系においてCの含有量が多すぎると、硬質化して加工性が低下してしまう。したがって、Cの含有量の上限は、加工性の観点から、0.1質量%、好ましくは0.09質量%、さらに好ましくは0.08質量%に設定する。一方、Cの含有量の下限は、特に限定されないが、耐食性の観点から、好ましくは0.001質量%、より好ましくは0.003質量%である。
<Si:1.0質量%以下>
 Siは、ステンレス鋼の加工性に影響を与える元素であり、Siの含有量が多すぎると、加工性が低下する。したがって、Siの含有量の上限は、加工性の観点から、1.0質量%、好ましくは0.9質量%、より好ましくは0.8質量%に設定する。一方、Siの含有量の下限は、特に限定されないが、好ましくは0.01質量%、より好ましくは0.05質量%、さらに好ましくは0.1質量%である。
<Mn:2.0質量%以下>
 Mnは、ステンレス鋼の加工性及び耐食性に影響を与える元素であり、Mnの含有量が多すぎると、加工性及び耐食性が低下する。したがって、Mnの含有量の上限は、加工性及び耐食性の観点から、2.0質量%、好ましくは1.9質量%、さらに好ましくは1.8質量%に設定する。一方、Mnの含有量の下限は、特に限定されないが、好ましくは0.01質量%、より好ましくは0.05質量%、さらに好ましくは0.1質量%である。
<P:0.045質量%以下>
 Pは、ステンレス鋼の加工性及び耐食性に影響を与える元素であり、Pの含有量が多すぎると、加工性及び耐食性が低下する。したがって、Pの含有量の上限は、加工性及び耐食性の観点から、0.045質量%、好ましくは0.035質量%に設定する。一方、Pの含有量の下限は、特に限定されないが、好ましくは0.001質量%、より好ましくは0.005質量%、さらに好ましくは0.01質量%である。
<S:0.03質量%以下>
 Sは、ステンレス鋼の加工性及び耐食性に影響を与える元素であり、Sの含有量が多すぎると、加工性及び耐食性が低下する。したがって、Sの含有量の上限は、加工性及び耐食性の観点から、0.03質量%、好ましくは0.02質量%、より好ましくは0.015質量%に設定する。一方、Sの含有量の下限は、特に限定されないが、好ましくは0.0001質量%、より好ましくは0.0005質量%である。
<Ni:30質量%以下>
 Niは、ステンレス鋼の耐溶出性に影響を与える元素であり、Niの含有量が多すぎると、耐溶出性が低下すると共にルージュが発生し易くなる。また、Niは、ステンレス鋼がオーステナイト系である場合に、オーステナイト相形成に必要な成分でもある。したがって、Niの含有量の上限は、耐溶出性及び耐ルージュ性の観点から、30質量%、好ましくは25質量%に設定する。一方、Niの含有量の下限は、特に限定されないが、好ましくは0.01質量%、より好ましくは0.02質量%である。
<Cr:16~35質量%>
 Crは、ステンレス鋼の加工性、耐食性及び耐ルージュ性に影響を与える元素であり、Crの含有量が少なすぎると、不働態皮膜が十分に形成されず、耐食性及び耐ルージュ性を確保することができない。したがって、Crの含有量の下限は、16質量%、好ましくは17質量%、より好ましくは18質量%に設定する。一方、Crの含有量が多すぎると、耐食性及び耐ルージュ性は向上するものの、加工性が低下してしまう。したがって、Crの含有量の上限は、加工性の観点から、35質量%、好ましくは32質量%、より好ましくは30質量%に設定する。
<Mo:6.0質量%以下>
 Moは、ステンレス鋼の加工性、耐食性及び耐ルージュ性に影響を与える元素である。また、Moは不働態皮膜が損傷したときに、不働態皮膜を再生する作用を有する元素でもある。ただし、Moの含有量が多すぎると、加工性が低下する。したがって、Moの含有量の上限は、加工性、耐食性及び耐ルージュ性の観点から、6.0質量%、好ましくは5.8質量%に設定する。一方、Moの含有量の下限は、特に限定されないが、好ましくは0.01質量%、より好ましくは0.02質量%、さらに好ましくは0.03質量%である。
<Cu:0.8質量%以下>
 Cuは、ステンレス鋼の加工性、耐溶出性及び耐ルージュ性に影響を与える元素であり、Cuの含有量が多すぎると、加工性及び耐溶出性が低下すると共にルージュが発生し易くなる。したがって、Cuの含有量の上限は、加工性、耐溶出性及び耐ルージュ性の観点から、0.8質量%、好ましくは0.48質量%に設定する。一方、Cuの含有量の下限は、特に限定されないが、好ましくは0.005質量%、より好ましくは0.02質量%、さらに好ましくは0.04質量%である。
<Nb及びTi:0.8質量%以下>
 Nb及びTiは、ステンレス鋼の加工性に影響を与える元素であり、Nb及びTiの含有量が多すぎると、加工性が低下する。したがって、Nb及びTiの含有量の上限は、0.8質量%、好ましくは0.6質量%、さらに好ましくは0.4質量%に設定する。一方、Nb及びTiの含有量の下限は、特に限定されないが、好ましくは0.01質量%、より好ましくは0.05質量%、さらに好ましくは0.1質量%である。
<Al:0.5質量%以下>
 Alは、ステンレス鋼の加工性に影響を与える元素であり、Alの含有量が多すぎると、加工性が低下する。したがって、Alの含有量の上限は、0.5質量%、好ましくは0.3質量%、より好ましくは0.2質量%に設定する。一方、Alの含有量の下限は、特に限定されないが、好ましくは0.01質量%、より好ましくは0.03質量%、さらに好ましくは0.05質量%である。
<N:0.3質量%以下>
 Nは、ステンレス鋼の加工性に影響を与える元素であり、Nの含有量が多すぎると、硬質化して加工性が低下してしまう。したがって、Nの含有量の上限は、加工性の観点から、0.3質量%、好ましくは0.25質量%に設定される。一方、Nの含有量の下限は、特に限定されないが、好ましくは0.001質量%、より好ましくは0.003質量%、さらに好ましくは0.005質量%である。
 ステンレス鋼は、本発明の効果を阻害しない範囲において、当該技術分野において公知の元素を含有することができる。
 ステンレス鋼において、耐ルージュ性を向上させるためには、Cr及びMoの含有量のバランスが特に重要であり、下記式(1)の関係を満たす必要がある。
 Cr+0.5Mo≧19  (1)
 上記式(1)中、各元素記号は、各元素の含有量を意味する。
 上記式(1)の関係を満たさない場合、所望の耐ルージュ性を有するステンレス鋼が得られない。
 また、上記式(1)におけるCr+0.5Moの下限値は、好ましくは19.1、より好ましくは19.2、さらに好ましくは19.3である。このような下限とすることにより、ステンレス鋼の耐ルージュ性を安定して向上させることができる。一方、Cr+0.5Moの上限値は、特に限定されないが、好ましくは38、より好ましくは35、さらに好ましくは33である。
 ステンレス鋼は、不働態皮膜を表面に有する。ここで、本明細書において「不働態皮膜」とは、ステンレス鋼の耐食性(金属イオンの耐溶出性)を向上させるクロムリッチの酸化層のことを意味する。
 不働態皮膜中のCr濃度は、耐ルージュ性を確保する観点から、40原子%以上、好ましくは45原子%以上、さらに好ましくは50原子%以上に設定される。一方、不働態皮膜中のCr濃度の上限は、特に限定されないが、好ましくは90原子%、より好ましくは80原子%、さらに好ましくは75原子%である。
 ここで、不働態皮膜中のCr濃度は、XPS(X線光電子分光法)を用いたステンレス鋼の表面分析によって算出されるものを意味する。
 XPSの測定方法としては、特に限定されないが、本明細書では以下の手順に従って行った。
 まず、ステンレス鋼の最表面(不働態皮膜)について広域光電子スペクトルを測定し、定性分析を行った。その後、表面から深さ方向に対してAr+スパッタを行い、一定スパッタ深さごとに指定元素(Si、Cr、Fe、Ni、Mo)の狭域光電子スペクトルを測定した。各スパッタ深さにおいて元素組成比(原子%)を算出し、不働態皮膜中のCr濃度を求めた。
 また、XPSの測定条件としては、特に限定されないが、本明細書では以下の条件で行った。
  分析装置:フィジカルエレクトロニクス(Physical Electronics)社製Quantera SXM(全自動走査型X線光電子分光装置)
  X線源:単色化Al Kα
  出力:44.8W
  ビーム径:200μmφ
  取出し角度:45°
  スパッタ条件:Ar+エネルギー1keV、スパッタレート約2.24nm/分(SiO2換算)
 ステンレス鋼の表面は、算術平均粗さRaが0.1μm以下であることが好ましい。Raが0.1μm以下であると、ルージュが発生し難くなる傾向にある。
 ここで、本明細書において「算術平均粗さRa」とは、JIS B0601:2001に準拠して測定されるものを意味する。
 ステンレス鋼の金属組織は、特に限定されず、フェライト系、オーステナイト系、マルテンサイト系、オーステナイト・フェライト系のいずれであってもよい。
 上記のような組成及び不働態皮膜を有するステンレス鋼は、上記の組成を有するスラブを用いること以外は、公知の方法に準じて製造することができる。具体的には、上記の組成を有するスラブを熱間圧延して焼鈍及び酸洗を行った後、所定の厚さになるまで冷間圧延、焼鈍及び酸洗を繰り返し行い、次いで不働態化処理を行うことによってステンレス鋼を製造することができる。また、必要に応じて、冷延鋼板に機械研磨などの仕上げ加工を施してもよい。
 不働態化処理としては、特に限定されないが、酸性溶液を用いた処理を行えばよい。不働態化処理の具体例としては、酸性溶液への浸漬処理、電解研磨などが挙げられるが、ステンレス鋼の表面粗さを制御し易い電解研磨が好ましい。
 電解研磨の条件は、特に限定されないが、例えば、リン酸及び硫酸を含む混合液を用い、電圧3~15V、電流密度3~20A/dm2、温度40~60℃、時間3~40分とすればよい。
 上記のような組成及び不働態皮膜を有するステンレス鋼は、耐ルージュ性に優れているため、耐ルージュ性が要求される各種部材に用いるのに適している。耐ルージュ性が要求される部材としては、特に限定されないが、純水蒸気経路部材、例えば、純水蒸気発生装置、又は純水蒸気を使用する滅菌装置、殺菌装置若しくは消毒装置に用いられる部材、当該装置に関連する設備(例えば、サニタリー管)などが挙げられる。なお、本明細書において「純水蒸気経路部材」とは、純水蒸気と接触する部材のことを意味する。また、「サニタリー管」とは、衛生性が要求される配管のことを意味する。
 ここで、一例として、純水蒸気発生装置及び蒸留水製造装置を備える純水供給システムのブロック図を図1に示す。図1に示されるように、この純水供給システムでは、純水蒸気発生装置1、蒸留水製造装置2、タンク3、ポンプ4、熱交換器5、バルブ6、計器7、センサー8、配管部材9及びフィルター10に用いられる部材が純水蒸気と接触する可能性がある。そのため、この純水供給システムでは、これらの部材を本実施形態のステンレス鋼を用いて作製することが好ましい。
(ステンレス鋼管)
 本実施形態のステンレス鋼管は、上記のステンレス鋼と同様の組成、不働態皮膜などの特徴を有する。したがって、これらの特徴については説明を省略する。
 本実施の形態のステンレス鋼管は、上記のステンレス鋼を管状に加工することによって製造することができる。具体的には、ステンレス鋼を曲げ加工し、両端部を突合わせて溶接した後、焼鈍、酸洗や、機械研磨及び電解研磨などの加工を施すことによってステンレス鋼管を製造することができる。
 本実施形態のステンレス鋼管は、上記のステンレス鋼を素材として用いているため、耐ルージュ性に優れている。
(純水蒸気経路部材)
 本実施形態の純水蒸気経路部材は、上記のステンレス鋼又は上記のステンレス鋼管を含む。この純水蒸気経路部材は、耐ルージュ性に優れているため、製品に異物(金属酸化物)が混入し難いと共に、純水蒸気に金属イオンが溶出して水質を劣化させる恐れも少ない。
 以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(実施例1~9及び比較例1~5)
 表1に示す組成を有するスラブを熱間圧延した後、焼鈍及び酸洗して冷間圧延を繰り返し、厚みが1.0mmの冷延焼鈍板を製造した。次に、冷延焼鈍板を30mm×50mmに切り出した後、#600の機械研磨を行い、次いでリン酸及び硫酸を含む混合液中で電解研磨を行ってステンレス鋼を得た。電解研磨は、電圧を3~15V、電流密度を3~20A/dm2、温度を40~60℃、時間を3~40分とした。
Figure JPOXMLDOC01-appb-T000001
 上記の実施例及び比較例で得られたステンレス鋼について、上記の方法に従って不働態皮膜中のCr濃度を測定すると共に、表面粗さ形状測定機(東京精密社製SURFCOM2900DX)を用いて算術平均粗さRaを測定した。その結果を表2に示す。
 次に、上記の実施例及び比較例で得られたステンレス鋼を、純水蒸気発生装置に接続された配管内部に設置し、圧力2kg/cm2・G、温度約120℃の純水蒸気環境下で1年間暴露試験を行った。暴露試験前後のステンレス鋼について、分光測色計(コニカミノルタ社製CM-2600d)を用い、L***色空間における色調L*、a*及びb*を測定し、色差ΔE* ab=〔(ΔL*2+(Δa*)2+(Δb*)21/2を算出した。この色差ΔE* abが10以下の場合、ルージュの発生を抑制できた(着色が少ない)と評価することができる。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、組成及び不働態皮膜中のCr濃度が所定の範囲内にある実施例1~9のステンレス鋼は、色差ΔE* abが10以下であり、ルージュの発生を十分に抑制することができた。
 これに対して、組成及び不働態皮膜中のCr濃度が所定の範囲外である比較例1~5のステンレス鋼は、色差ΔE* abが大きくなり、ルージュの発生を十分に抑制することができなかった。
 以上の結果からわかるように、耐ルージュ性に優れたステンレス鋼、ステンレス鋼管及び純水蒸気経路部材を提供することができる。
 1 純水蒸気発生装置
 2 蒸留水製造装置
 3 タンク
 4 ポンプ
 5 熱交換器
 6 バルブ
 7 計器
 8 センサー
 9 配管部材
 10 フィルター

Claims (7)

  1.  C:0.1質量%以下、Si:1.0質量%以下、Mn:2.0質量%以下、P:0.045質量%以下、S:0.03質量%以下、Ni:30質量%以下、Cr:16~35質量%、Mo:6.0質量%以下、Cu:0.8質量%以下、N:0.3質量%以下を含み、残部がFe及び不可避的不純物からなると共に、下記式(1)の関係(式中、各元素記号は、各元素の含有量を意味する)を満たす組成を有し、不働態皮膜中のCr濃度が40原子%以上である、耐ルージュ性に優れたステンレス鋼。
     Cr+0.5Mo≧19  (1)
  2.  Nb:0.8質量%以下、Ti:0.8質量%以下、Al:0.5質量%以下からなる群から選択される1種以上をさらに含む、請求項1に記載のステンレス鋼。
  3.  純水蒸気経路部材に用いられる、請求項1又は2に記載のステンレス鋼。
  4.  C:0.1質量%以下、Si:1.0質量%以下、Mn:2.0質量%以下、P:0.045質量%以下、S:0.03質量%以下、Ni:30質量%以下、Cr:16~35質量%、Mo:6.0質量%以下、Cu:0.8質量%以下、N:0.3質量%以下を含み、残部がFe及び不可避的不純物からなると共に、下記式(1)の関係(式中、各元素記号は、各元素の含有量を意味する)を満たす組成を有し、不働態皮膜中のCr濃度が40原子%以上である、耐ルージュ性に優れたステンレス鋼管。
     Cr+0.5Mo≧19  (1)
  5.  Nb:0.8質量%以下、Ti:0.8質量%以下、Al:0.5質量%以下からなる群から選択される1種以上をさらに含む、請求項4に記載のステンレス鋼管。
  6.  請求項1~3のいずれか一項に記載のステンレス鋼、又は請求項4若しくは5に記載のステンレス鋼管を含む純水蒸気経路部材。
  7.  サニタリー管である請求項6に記載の純水蒸気経路部材。
PCT/JP2020/000726 2019-01-10 2020-01-10 耐ルージュ性に優れたステンレス鋼及びステンレス鋼管、並びに純水蒸気経路部材 WO2020145395A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019002895A JP6786040B2 (ja) 2019-01-10 2019-01-10 耐ルージュ性に優れたステンレス鋼及びステンレス鋼管、並びに純水蒸気経路部材
JP2019-002895 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020145395A1 true WO2020145395A1 (ja) 2020-07-16

Family

ID=71520259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000726 WO2020145395A1 (ja) 2019-01-10 2020-01-10 耐ルージュ性に優れたステンレス鋼及びステンレス鋼管、並びに純水蒸気経路部材

Country Status (2)

Country Link
JP (1) JP6786040B2 (ja)
WO (1) WO2020145395A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633192A (ja) * 1992-07-14 1994-02-08 Sumitomo Metal Ind Ltd 高純度ガス用高耐食ステンレス鋼
JPH07243000A (ja) * 1994-03-08 1995-09-19 Sumitomo Metal Ind Ltd 高純度ガス用高Crステンレス鋼
JPH1129877A (ja) * 1997-05-15 1999-02-02 Jgc Corp ファウリングを防止した純蒸気関連装置とその製造方法
JP2000176643A (ja) * 1998-12-14 2000-06-27 Sumitomo Metal Ind Ltd 溶接部に酸化不動態膜を形成する方法
JP2016216782A (ja) * 2015-05-20 2016-12-22 新日鐵住金株式会社 オーステナイト系ステンレス鋼

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633192A (ja) * 1992-07-14 1994-02-08 Sumitomo Metal Ind Ltd 高純度ガス用高耐食ステンレス鋼
JPH07243000A (ja) * 1994-03-08 1995-09-19 Sumitomo Metal Ind Ltd 高純度ガス用高Crステンレス鋼
JPH1129877A (ja) * 1997-05-15 1999-02-02 Jgc Corp ファウリングを防止した純蒸気関連装置とその製造方法
JP2000176643A (ja) * 1998-12-14 2000-06-27 Sumitomo Metal Ind Ltd 溶接部に酸化不動態膜を形成する方法
JP2016216782A (ja) * 2015-05-20 2016-12-22 新日鐵住金株式会社 オーステナイト系ステンレス鋼

Also Published As

Publication number Publication date
JP2020111783A (ja) 2020-07-27
JP6786040B2 (ja) 2020-11-18

Similar Documents

Publication Publication Date Title
Antony et al. Role of microstructure on corrosion of duplex stainless steel in presence of bacterial activity
JP2016191149A (ja) オゾン含有水用二相ステンレス鋼
JP6652191B2 (ja) オーステナイト系ステンレス鋼材
WO2020153117A1 (ja) 燃料電池のセパレータ用のオーステナイト系ステンレス鋼板およびその製造方法
Shankar et al. Effect of heat treatment on the corrosion behaviour of Ti–5Ta–1.8 Nb alloy in boiling concentrated nitric acid
KR20150083457A (ko) 항균성이 우수한 페라이트계 스테인리스 강판 및 그 제조 방법
EP4119697A1 (en) Ferritic stainless steel and method for manufacturing same
JP2016128591A (ja) 溶接部靭性と耐水漏れ性に優れる貯湯・貯水容器用フェライト系ステンレス鋼およびその製造方法
JP2017534756A (ja) 双極燃料電池プレート
EP2835443B1 (en) Cr-containing austenitic alloy
KR102379904B1 (ko) 오스테나이트계 스테인리스강 및 그 제조 방법
WO2020145395A1 (ja) 耐ルージュ性に優れたステンレス鋼及びステンレス鋼管、並びに純水蒸気経路部材
JP6605066B2 (ja) Fe−Cr合金およびその製造方法
WO2011089730A1 (ja) 接触電気抵抗の低い通電部品用ステンレス鋼およびその製造方法
Rokosz et al. XPS analysis of nanolayer formed on AISI 304L SS after high-voltage electropolishing (HPEO)
JP6745373B1 (ja) 耐食性に優れたステンレス鋼およびその製造方法
WO2021019909A1 (ja) オーステナイト・フェライト系二相ステンレス鋼板
JP6658693B2 (ja) ステンレス鋼板
JP6505415B2 (ja) 加工性と耐食性に優れたFe−Cr−Ni系合金材料の表面処理方法
EP3342895B1 (en) Al-containing ferritic stainless steel and method for manufacturing same
Moffat et al. Effects of Alloy Chemistry on the Corrosion of FeNi Metal-Metalloid Metallic Glasses
AU2021259899B2 (en) Austenitic stainless steel and spring
JP2022155731A (ja) Fe-Cr合金およびその製造方法
Davies Effects of vanadium on polarization of 18% Cr ferritic stainless steel
JP2024127779A (ja) ステンレス鋼およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20737970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20737970

Country of ref document: EP

Kind code of ref document: A1