WO2020144738A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2020144738A1
WO2020144738A1 PCT/JP2019/000198 JP2019000198W WO2020144738A1 WO 2020144738 A1 WO2020144738 A1 WO 2020144738A1 JP 2019000198 W JP2019000198 W JP 2019000198W WO 2020144738 A1 WO2020144738 A1 WO 2020144738A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
reheater
control device
air
Prior art date
Application number
PCT/JP2019/000198
Other languages
English (en)
French (fr)
Inventor
智典 小島
智隆 石川
達也 ▲雑▼賀
圭吾 岡島
野本 宗
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/000198 priority Critical patent/WO2020144738A1/ja
Priority to CN201980069208.XA priority patent/CN113227677B/zh
Priority to JP2020565048A priority patent/JP6937947B2/ja
Publication of WO2020144738A1 publication Critical patent/WO2020144738A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an air conditioner having a function of performing reheat dehumidification operation.
  • Patent Document 1 Conventionally, an air conditioner having a reheater and an evaporator provided indoors and a condenser provided outdoors has been known (for example, see Patent Document 1).
  • the air conditioner of Patent Document 1 controls the dehumidifying capacity of the evaporator by adjusting the amount of refrigerant flowing in the reheater and the amount of refrigerant flowing in the condenser.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an air conditioner that suppresses the bias of the refrigerant distributed in the refrigerant circuit and improves the operation efficiency.
  • the air conditioner according to the present invention includes a main circuit in which a compressor, a reheater, a first expansion valve, and an evaporator are sequentially connected by a main pipe, and a first expansion valve between the compressor and the reheater.
  • a refrigerant circuit including a cooling on-off valve, a condenser, and a cooling circuit in which a second expansion valve is connected by a cooling pipe that connects between the evaporator and the evaporator, and a controller that controls the refrigerant circuit.
  • the controller opens or closes the cooling on-off valve or the second expansion valve according to the determination result using the outside liquid temperature.
  • the amount of the refrigerant in the reheater can be adjusted according to the external liquid temperature, so that the deviation of the refrigerant distributed in the refrigerant circuit can be suppressed and the operation efficiency can be improved.
  • FIG. 1 is an overall configuration diagram of an air conditioner according to Embodiment 1 of the present invention. It is a block diagram which shows schematically the functional structure of the control apparatus of FIG. It is explanatory drawing which shows the state of a refrigerant circuit at the time of dehumidification operation of the air conditioning apparatus of FIG. It is explanatory drawing which shows the state of a refrigerant circuit at the time of the intermediate operation of the air conditioning apparatus of FIG. It is explanatory drawing which shows the state of a refrigerant circuit at the time of cooling operation of the air conditioning apparatus of FIG. It is explanatory drawing which shows the state of a refrigerant circuit at the time of the defrosting operation of the air conditioning apparatus of FIG.
  • Embodiment 1. 1 is an overall configuration diagram of an air conditioner according to Embodiment 1 of the present invention.
  • the air conditioner 100 adjusts the temperature and humidity of air in an air-conditioned space such as a room, and has a function of performing reheat dehumidification operation.
  • the air conditioner 100 has an indoor unit 70 installed in the air-conditioned space and an outdoor unit 80 installed outside the air-conditioned space.
  • the indoor unit 70 and the outdoor unit 80 are connected by the refrigerant pipe 20.
  • the inside of the air-conditioned space is also referred to as the indoor
  • the outside of the air-conditioned space is also referred to as the outdoor.
  • the indoor unit 70 is, for example, a floor-standing dehumidifier placed on the floor of the air-conditioned space, or a ceiling-mounted dehumidifier or a ceiling-mounted dehumidifier provided on the ceiling.
  • the indoor unit 70 includes a compressor 1, a reheat on-off valve 2, a reheater 3, a first expansion valve 4, an indoor heat exchanger 5, a cooling on-off valve 6, a second expansion valve 9, and a defrost on-off valve 10. Is housed.
  • the outdoor unit 80 is installed outdoors or in a machine room or the like. The outdoor unit 80 accommodates the outdoor heat exchanger 7 and the liquid reservoir 8.
  • the air conditioner 100 includes a compressor 1, a reheat on-off valve 2, a reheater 3, a first expansion valve 4, an indoor heat exchanger 5, a cooling on-off valve 6, an outdoor heat exchanger 7, a liquid reservoir 8,
  • the second expansion valve 9 and the defrosting on-off valve 10 are connected by a refrigerant pipe 20 and have a refrigerant circuit 30 in which the refrigerant circulates.
  • a single mixed refrigerant, a pseudo single mixed refrigerant, a non-azeotropic mixed refrigerant, or the like can be used.
  • a non-azeotropic mixed refrigerant for example, a mixed refrigerant of R32, R125, R134a, r1234yf, and CO 2 can be used.
  • the composition of R32 is 49 wt% to 55 wt%
  • the composition of R125 is 16 wt% to 22 wt%
  • the composition of R134a is 7 wt% to 13 wt%
  • the composition of r1234yf is 6 wt%.
  • the composition of CO 2 is 7wt% ⁇ 13wt%, having a composition ratio of the total is 100 wt%.
  • R448A, R449A, R407F or the like which is a non-azeotropic mixed refrigerant having a composition other than the above may be adopted.
  • the cooling pipe 22 is a pipe that connects the compressor 1 and the reheater 3 to the first expansion valve 4 and the indoor heat exchanger 5. More specifically, the cooling pipe 22 connects the main pipe 21 between the compressor 1 and the reheat on-off valve 2 and the main pipe 21 between the first expansion valve 4 and the indoor heat exchanger 5.
  • the bypass pipe 23 is a pipe that connects the discharge side of the compressor 1 to the space between the reheater 3 and the first expansion valve 4.
  • the discharge side of the compressor 1 is between the compressor 1 and the first connecting portion M.
  • the bypass pipe 23 is a pipe that connects the main pipe 21 between the compressor 1 and the first connection portion M and the main pipe 21 between the reheater 3 and the first expansion valve 4.
  • the defrosting on-off valve 10 that opens and closes the bypass pipe 23 is provided. That is, the refrigerant circuit 30 includes the bypass circuit 33 which is an open circuit in which the defrosting on-off valve 10 is provided in the bypass pipe 23.
  • the reheater 3 and the first expansion valve 4, and the outdoor heat exchanger 7 and the second expansion valve 9 are connected in parallel.
  • the reheater 3, the indoor heat exchanger 5, and the outdoor heat exchanger 7 are, for example, fin-and-tube heat exchangers formed by pipes through which a refrigerant flows and fins attached to the pipes.
  • the reheater 3 condenses the refrigerant by exchanging heat between the refrigerant compressed by the compressor 1 and the air.
  • the indoor heat exchanger 5 and the reheater 3 are provided on a common air passage.
  • the indoor heat exchanger 5 is an air heat exchanger that functions as an evaporator (cooler) that evaporates the refrigerant. That is, the indoor heat exchanger 5 evaporates the refrigerant by exchanging heat between the refrigerant expanded by at least one of the first expansion valve 4 and the second expansion valve 9 and air.
  • the outdoor heat exchanger 7 is an air heat exchanger that functions as a condenser that condenses the refrigerant. That is, the outdoor heat exchanger 7 condenses the refrigerant by exchanging heat between the refrigerant compressed by the compressor 1 and the air.
  • the reheat on-off valve 2, the cooling on-off valve 6, and the defrosting on-off valve 10 are, for example, electromagnetic valves having an open state and a closed state, and allow the refrigerant to pass in the open state.
  • the reheat on-off valve 2 shuts off the refrigerant that is about to flow to the reheater 3 via the first connection portion M.
  • the cooling on-off valve 6 shuts off the refrigerant that is about to flow to the outdoor heat exchanger 7 via the first connection portion M.
  • the defrosting on-off valve 10 When the defrosting on-off valve 10 is closed, the defrosting on-off valve 10 shuts off the refrigerant that is about to flow into the bypass pipe 23.
  • the liquid reservoir 8 is a member that stores excess refrigerant.
  • the indoor unit 70 is provided with an indoor blower 11 that sends air to the indoor heat exchanger 5 and the reheater 3.
  • the outdoor unit 80 is provided with an outdoor blower 12 that is attached to the outdoor heat exchanger 7 and sends air to the outdoor heat exchanger 7.
  • the indoor blower 11 and the outdoor blower 12 are blowers whose rotation speed is controlled by, for example, an inverter circuit or the like, and the amount of blown air can be adjusted.
  • the indoor unit 70 is provided with an indoor refrigerant leak sensor 41, a control device 50, pressure sensors 61 to 63, refrigerant temperature sensors 65 to 68, and an air temperature sensor 91.
  • the outdoor unit 80 is provided with a pressure sensor 64, a refrigerant temperature sensor 69, and an air temperature sensor 92.
  • the pressure sensor 64 is provided on the outlet side of the outdoor heat exchanger 7, that is, on the outlet of the outdoor heat exchanger 7 or in the vicinity of the outlet, and measures the condenser outlet pressure, which is the pressure of the refrigerant flowing out of the outdoor heat exchanger 7.
  • the refrigerant temperature sensor 68 is provided on the outlet side of the indoor heat exchanger 5, and measures the temperature of the refrigerant flowing out from the indoor heat exchanger 5 (evaporator outlet temperature).
  • the refrigerant temperature sensor 69 is provided on the outlet side of the outdoor heat exchanger 7, and measures the condenser outlet temperature (outside liquid temperature) which is the temperature of the refrigerant flowing out of the outdoor heat exchanger 7.
  • the air temperature sensors 91 and 92 are composed of, for example, thermistors.
  • the air temperature sensor 91 is provided at the suction port of the indoor unit 70 or the like, and measures the temperature of the air-conditioned space as the room temperature.
  • the air temperature sensor 92 is provided in the outdoor unit 80 and measures the temperature outdoors or in a machine room as the outside air temperature.
  • the indoor refrigerant leakage sensor 41 is provided in the air-conditioned space and detects refrigerant leakage.
  • the outdoor refrigerant leakage sensor 42 is provided outside the air-conditioned space and detects refrigerant leakage.
  • the indoor refrigerant leakage sensor 41 and the outdoor refrigerant leakage sensor 42 detect the refrigerant leakage
  • the indoor refrigerant leakage sensor 41 and the outdoor refrigerant leakage sensor 42 output a leakage signal indicating the occurrence of the refrigerant leakage to the control device 50.
  • Each pressure sensor outputs the measured pressure data to the control device 50.
  • Each temperature sensor outputs the measured temperature data to the control device 50. That is, each refrigerant leakage sensor, each pressure sensor, and each temperature sensor are electrically or optically connected to the control device 50.
  • the indoor unit 70 is provided with an abnormality alarm device 45 including at least one of a speaker and a light emitter.
  • An LED (light emitting diode) or the like can be used as the light emitting body.
  • the abnormality notification device 45 outputs a sound, a voice, a light, or the like according to an instruction from the control device 50 to notify the occurrence of the abnormality.
  • the control device 50 controls the refrigerant circuit 30. That is, the control device 50 acquires the outputs of the respective pressure sensors and the respective temperature sensors, and then the compressor 1, the reheat on-off valve 2, the first expansion valve 4, the cooling on-off valve 6, the second expansion valve 9, and the removal unit. It controls various actuators such as the frost on-off valve 10. Further, the control device 50 causes the abnormality notification device 45 to notify that an abnormality has occurred when an abnormality occurs. When the refrigerant leakage sensor detects an abnormality in the refrigerant leakage, the control device 50 of the first embodiment causes the abnormality alarm device 45 to output sound, voice, light, or the like.
  • the control device 50 is configured to include, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • the RAM is a volatile storage medium that stores various data.
  • the ROM is a non-volatile storage medium that stores an operation program for causing the control device 50 to execute operation control in each operation mode described later.
  • the controller 50 appropriately controls the compressor 1, the reheat on-off valve 2, the first expansion valve 4, the cooling on-off valve 6, the second expansion valve 9, the defrosting on-off valve 10, etc. according to the operation program in the ROM. Then, air conditioning is performed in each operation mode. That is, the control device 50 can be configured by an arithmetic device such as a CPU and an operation program that cooperates with the arithmetic device to realize the following various functions.
  • the flow of air in the indoor unit 70 will be briefly described.
  • air is taken into the indoor unit 70.
  • the air taken into the indoor unit 70 passes through the indoor heat exchanger 5 that functions as an evaporator, and the absolute humidity decreases. That is, when the air containing moisture passes through the indoor heat exchanger 5, the moisture in the air is condensed on the indoor heat exchanger 5, so that the absolute humidity of the air decreases.
  • the absolute humidity is lowered by passing through the indoor heat exchanger 5, and the air whose temperature is lowered is cold air having high relative humidity.
  • the air that has passed through the indoor heat exchanger 5 is reheated as it passes through the reheater 3, and the relative humidity decreases.
  • the air that has passed through the reheater 3 and has reduced relative humidity is blown out into the room.
  • the air taken into the indoor unit 70 is blown out into the room in a state where the relative humidity is decreased, so the relative humidity in the room is decreased. This is the flow of air in the indoor unit 70 during the dehumidification operation or the intermediate operation described later.
  • the surplus refrigerant detection unit 51c detects the generation of surplus refrigerant by any of the following methods, and outputs a detection signal to the operation control unit 51b when the generation of surplus refrigerant is detected.
  • the surplus refrigerant detection unit 51c can be configured to determine the degree of supercooling and determine whether the determined degree of supercooling is greater than the threshold value of supercooling. This determination is based on the fact that the degree of supercooling increases when surplus refrigerant is generated. That is, the surplus refrigerant detection unit 51c outputs a detection signal to the operation control unit 51b when the calculated supercooling degree is larger than the supercooling threshold value.
  • the surplus refrigerant detection unit 51c may acquire the discharge temperature from the refrigerant temperature sensor 66 and determine whether the acquired discharge temperature is lower than the discharge threshold value. Then, the surplus refrigerant detector 51c may output a detection signal to the operation controller 51b when the discharge temperature is lower than the discharge threshold.
  • the surplus refrigerant detection unit 51c may acquire the high pressure from the pressure sensor 62 and determine whether or not the acquired high pressure is higher than the high pressure threshold. Then, the surplus refrigerant detection unit 51c may output a detection signal to the operation control unit 51b when the high pressure is higher than the high pressure threshold.
  • the surplus refrigerant detection unit 51c may acquire the low pressure from the pressure sensor 61 and determine whether the acquired low pressure is higher than the low pressure threshold. Then, the surplus refrigerant detection unit 51c may output a detection signal to the operation control unit 51b when the low pressure is larger than the low pressure threshold.
  • the leak processing unit 51d acquires a leak signal from each of the indoor refrigerant leak sensor 41 and the outdoor refrigerant leak sensor 42.
  • the leakage processing unit 51d outputs an indoor leakage signal indicating the occurrence of indoor refrigerant leakage to the operation control unit 51b.
  • the leakage processing unit 51d outputs an outdoor leakage signal indicating the occurrence of refrigerant leakage outdoors to the operation control unit 51b.
  • the leakage processing unit 51d causes the abnormality alarm device 45 to output sound, voice, light, or the like when a leakage signal is output from at least one of the indoor refrigerant leakage sensor 41 and the outdoor refrigerant leakage sensor 42.
  • the leak processing unit 51d outputs a different sound, sound, light, or the like to the abnormality alarm device 45 when the leak signal is obtained from the indoor refrigerant leak sensor 41 and when the leak signal is obtained from the outdoor refrigerant leak sensor 42. You may output it.
  • the operation control unit 51b causes the air conditioner 100 to perform the dehumidification operation for dehumidifying the air in the air-conditioned space when the operation mode is set to the dehumidification operation mode by the user's operation or default setting.
  • the operation control unit 51b causes the air conditioner 100 to execute the intermediate operation.
  • the operation control unit 51b causes the air conditioner 100 to execute the cooling operation for cooling the air in the air-conditioned space.
  • the operation control unit 51b causes the air conditioner 100 to perform the defrosting operation of melting the frost attached to the indoor heat exchanger 5.
  • the operation control unit 51b closes the reheat on-off valve 2 when the indoor refrigerant leak sensor 41 detects a refrigerant leak, that is, when the indoor leak signal is output from the leak processing unit 51d, and the second reheat on/off valve 2 is closed.
  • the expansion valve 9 is fully closed.
  • the operation control unit 51b may fully close the first expansion valve 4 when the indoor refrigerant leak sensor 41 detects a refrigerant leak.
  • FIG. 3 is an explanatory diagram showing the state of the refrigerant circuit during the dehumidifying operation of the air conditioner of FIG. 1.
  • FIG. 4 is an explanatory diagram showing a state of the refrigerant circuit during intermediate operation of the air conditioner of FIG. 1.
  • FIG. 5 is explanatory drawing which shows the state of a refrigerant circuit at the time of cooling operation of the air conditioning apparatus of FIG.
  • FIG. 6 is an explanatory diagram showing the state of the refrigerant circuit during the defrosting operation of the air conditioner of FIG. 1.
  • 3 to 6 the open/close valve in the open state is shown in white and the open/close valve in the closed state is shown in black. Further, in FIGS. 3 to 6, the flow of the refrigerant is indicated by a broken line with an arrow. The valve control and the flow of the refrigerant in each operation mode will be described with reference to FIGS. 3 to 6.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the reheater 3 via the discharge pipe.
  • the indoor air blown by the indoor blower 11 and passing through the indoor heat exchanger 5 passes through the reheater 3. Therefore, the high-temperature high-pressure gas refrigerant flowing into the reheater 3 exchanges heat with the indoor air passing through the reheater 3 to radiate heat, condense and liquefy.
  • the refrigerant flowing out of the reheater 3 is decompressed by the first expansion valve 4 through the liquid pipe, becomes a gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 5.
  • the gas-liquid two-phase refrigerant flowing into the indoor heat exchanger 5 absorbs heat and gasifies due to heat exchange with the indoor air blown by the indoor blower 11, and returns to the compressor 1 as a low-temperature low-pressure gas refrigerant.
  • the air circulating in the indoor unit 70 by the indoor blower 11 is cooled by the low-temperature low-pressure gas-liquid two-phase refrigerant flowing in the indoor heat exchanger 5, and the temperature thereof drops to below the dew point.
  • moisture in the indoor air is condensed on the surface of the indoor heat exchanger 5, and the indoor air is dehumidified.
  • the air that has passed through the indoor heat exchanger 5 is heated by the high-temperature and high-pressure gas refrigerant in the reheater 3 to rise in temperature, and the relative humidity decreases.
  • the air conditioner 100 closes the cooling on-off valve 6 during the dehumidifying operation, thereby performing all heat dissipation in the refrigeration cycle indoors. That is, the air conditioner 100 performs an operation of heating the indoor air by the amount of heat added to the refrigerant by the compressor 1 and the latent heat of condensation of water vapor in the air. Therefore, the room air sucked into the air conditioner 100 during the dehumidifying operation is heated and dehumidified at the same time.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 7 and the reheater 3 through the discharge pipe.
  • the refrigerant radiated by radiating heat in the outdoor heat exchanger 7 and the reheater 3 is decompressed by the first expansion valve 4 and the second expansion valve 9 installed downstream of the liquid pipe to become a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flowing into the indoor heat exchanger 5 absorbs heat in the indoor heat exchanger 5 to be gasified, and is sucked into the compressor 1 through the suction pipe.
  • the control device 50 performs on/off control of the outdoor blower 12 according to the outside air temperature and high pressure and controls the indoor blower 11 to always be on.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 7 through the discharge pipe, exchanges heat with the outdoor air blown by the outdoor blower 12, radiates heat, condenses and liquefies. To do.
  • the refrigerant flowing out of the outdoor heat exchanger 7 is decompressed by the first expansion valve 4 via the liquid pipe to become a gas-liquid two-phase refrigerant, and then flows into the indoor heat exchanger 5.
  • the gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 5 exchanges heat with the indoor air blown by the indoor blower 11 to absorb heat and gasify, and returns to the compressor 1 as a low-temperature low-pressure gas refrigerant. That is, the air circulated by the indoor blower 11 is cooled in the indoor heat exchanger 5 by the low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the excess refrigerant during the cooling operation is appropriately stored in the liquid reservoir 8.
  • the cooling operation should be executed when the absolute humidity in the room is low or when the priority for lowering the room temperature is high. Because, when the temperature of the air decreases due to the cooling operation, the relative humidity increases. Then, when the relative humidity is high, the comfort is deteriorated, and inconvenience that dew condensation is likely to occur in the room occurs. Further, for example, when the temperature of the air drops below the dew point due to the cooling operation, the moisture in the indoor air is condensed on the surface of the indoor heat exchanger 5, the ventilation resistance increases, and the heat exchange capacity decreases. Is.
  • the indoor heat exchanger 5 is heated by the refrigerant and exchanges heat with the frost that has accumulated on the ice to melt the frost.
  • the refrigerant that has flowed into the indoor heat exchanger 5 is heat-exchanged with frost to lower its temperature and becomes low in temperature, and then heat-exchanges with the suction pipe to absorb heat to be gasified and becomes a low-temperature low-pressure gas refrigerant and compressed.
  • the control device 50 adjusts the amount of the refrigerant passing through the indoor heat exchanger 5 by setting the first expansion valve 4 to the minimum opening degree, and prevents the liquefied refrigerant from entering the compressor 1. Further, the control device 50 turns off the indoor blower 11. Therefore, during the defrosting operation, only heat exchange between the refrigerant passing through the indoor heat exchanger 5 and the frost adhering to the indoor heat exchanger 5 is simply performed.
  • the intermediate operation requires a relatively large amount of refrigerant because the refrigerant flows through the reheater 3 and the outdoor heat exchanger 7.
  • the dehumidifying operation requires a smaller amount of refrigerant than the intermediate operation. This is because in the dehumidifying operation, the refrigerant flows through the reheater 3, but the refrigerant does not flow through the outdoor heat exchanger 7. Therefore, during the dehumidifying operation, excess refrigerant may be generated. Then, when excess refrigerant is generated, there is a possibility that an abnormality such as an increase in high-pressure will occur. Further, when the temperature difference between the outside air temperature and the room temperature is large, the refrigerant is likely to be biased, so that excess refrigerant may be generated particularly in the cooling operation and the dehumidifying operation.
  • the operation control unit 51b opens both the reheat on-off valve 2 and the cooling on-off valve 6 and closes the defrosting on-off valve 10 as in the intermediate operation. Then, the operation control unit 51b uses the first expansion valve 4 provided downstream of the reheater 3 and the second expansion valve 9 provided downstream of the outdoor heat exchanger 7 in the refrigerant circuit 30. The refrigerant leveling process for leveling the refrigerant is performed.
  • the operation control unit 51b configures the refrigeration cycle by SC control (subcool control) using the second expansion valve 9 so that the amount of refrigerant distributed in the outdoor heat exchanger 7 is brought into an appropriate state.
  • SC control subcool control
  • the operation control unit 51b uses, for example, the temperature of the refrigerant at the outlet of the outdoor heat exchanger 7 so that the degree of supercooling by the outdoor heat exchanger 7 falls within the proper condenser range.
  • the opening degree of 9 is controlled.
  • the condenser proper range of the first embodiment is determined based on the determination value X and indicates that the amount of refrigerant in the outdoor heat exchanger 7 is proper.
  • the determination value X is set to, for example, 5 [K], and can be appropriately changed according to the configuration of the refrigerant circuit 30 and the like.
  • the degree of supercooling by the outdoor heat exchanger 7, that is, the degree of supercooling by the condenser is also referred to as “outer liquid SC”.
  • the refrigerant adjustment range of the first embodiment is a range that is determined based on the determination value P and indicates that the refrigerant distribution in the refrigerant circuit 30 is appropriate.
  • the operation control unit 51b controls the opening degree of the second expansion valve 9 by using the temperature of the refrigerant at the outlet of the outdoor heat exchanger 7, and the open/closed state of the reheat opening/closing valve 2, for example. And the opening degree of the first expansion valve 4 are controlled. That is, the operation control unit 51b obtains the external liquid SC by using the external liquid temperature measured by the refrigerant temperature sensor 69. When obtaining the external liquid SC, the operation control unit 51b acquires the high pressure from the pressure sensor 62 and the external liquid temperature from the refrigerant temperature sensor 69.
  • the operation control unit 51b calculates the condensation temperature CT by converting the high pressure into the saturation, and calculates the external liquid SC by subtracting the external liquid temperature from the calculated condensation temperature CT.
  • the operation control unit 51b controls the second expansion valve 9 and the reheat on-off valve 2 and the first expansion valve 4 in accordance with the obtained external liquid SC, thereby distributing to the outdoor heat exchanger 7. Adjust the amount of refrigerant.
  • the operation control unit 51b may obtain the condensation temperature CT using the condenser outlet pressure obtained from the pressure sensor 64 instead of the high pressure obtained from the pressure sensor 62.
  • the operation control unit 51b determines whether the amount of refrigerant is excessive or insufficient during the cooling operation based on the external liquid SC. That is, the operation control unit 51b determines whether the external liquid SC is within the proper refrigerant amount range.
  • the proper refrigerant amount range of the first embodiment is a range that is determined based on the determination value Y and indicates that the refrigerant amount distributed to the outdoor heat exchanger 7 is proper.
  • the determination value Y is set to 5 [K], for example, and is appropriately changed according to the configuration of the refrigerant circuit 30 and the like.
  • the fact that the external liquid SC is within the proper range of the refrigerant amount corresponds to the proper amount of the refrigerant distributed in the outdoor heat exchanger 7.
  • the fact that the external liquid SC is larger than the cooling upper limit value corresponds to that the refrigerant distributed in the outdoor heat exchanger 7 is excessive.
  • the fact that the external liquid SC is smaller than the lower limit of cooling corresponds to the shortage of the refrigerant distributed in the outdoor heat exchanger 7.
  • the operation control unit 51b determines that the condensation temperature CT is lower than the determination threshold value for avoiding the high pressure abnormality, and the internal liquid temperature is lower than the evaporation temperature ET. It is determined whether or not both the indoor refrigerant discharge condition of being high is satisfied.
  • the outdoor high-pressure protection condition is a condition intended to prevent a high-pressure abnormality when the distribution of the refrigerant is increased outside the room.
  • the judgment threshold value during the cooling operation is a value obtained by subtracting the protection condensation temperature CTmax by the judgment value Y.
  • the protection condensation temperature CTmax is a threshold value at which high pressure protection is performed, and is set higher than the normal condensation temperature CT. That is, the operation control unit 51b is configured to perform high pressure protection when the condensation temperature CT reaches the protection condensation temperature CTmax.
  • the indoor refrigerant discharge condition is a condition for determining whether to discharge the refrigerant due to the differential pressure when the refrigerant is discharged from the indoor side, that is, when the refrigerant is replenished from the reheater 3 to the indoor heat exchanger 5. ..
  • the operation control unit 51b sets the first expansion valve 4 to the minimum opening degree and makes the refrigerant flow from the reheater 3 toward the indoor heat exchanger 5, The amount of refrigerant passing through the indoor heat exchanger 5 is adjusted.
  • the operation control unit 51b satisfies the condition that the external liquid SC is within the storage reference range from the time when the first expansion valve 4 is set to the minimum opening to the time when the adjustment reference time elapses, the first The expansion valve 4 is fully closed to end the refrigerant distribution control.
  • the adjustment reference time is set to 5 minutes, for example, and can be changed appropriately.
  • the operation control unit 51b determines whether the internal liquid temperature measured by the refrigerant temperature sensor 67 is lower than the condensation temperature CT. This determination is for determining whether or not the refrigerant can be discharged due to the differential pressure when the refrigerant is discharged to the indoor side. That is, when the internal liquid temperature is lower than the condensation temperature CT, the operation control unit 51b opens the reheat on-off valve 2 to disperse the refrigerant flowing to the outdoor heat exchanger 7 in the reheater 3, The refrigerant is stored in the reheater 3.
  • the operation control unit 51b reheats the reheat opening/closing when the condition that the external liquid SC is within the storage reference range is satisfied from the opening of the reheat on/off valve 2 until the opening/closing reference time elapses.
  • the valve 2 is closed and the refrigerant distribution control is ended.
  • the opening/closing reference time is set to 5 minutes, for example, and can be changed as appropriate.
  • the storage reference range during the cooling operation is a range that is determined based on the determination value Y and corresponds to an appropriate refrigerant storage amount in the reheater 3. More specifically, the storage reference range is a range from the value obtained by subtracting the judgment value Y by the coefficient c to the value obtained by adding the coefficient d to the judgment value Y.
  • the refrigerant storage amount of the reheater 3 is appropriate, that is, the refrigerant amount distributed to the outdoor heat exchanger 7 is appropriate.
  • the coefficient c and the coefficient d are 0 or a positive value, respectively, and are set according to the configuration of the refrigerant circuit 30 and can be changed as appropriate.
  • the coefficient c and the coefficient d may have the same value or different values.
  • the operation control unit 51b controls the opening degree of the first expansion valve 4 by using the temperature of the refrigerant at the outlet of the reheater 3, for example. That is, the operation control unit 51b obtains the degree of supercooling by the reheater 3 using the internal liquid temperature measured by the refrigerant temperature sensor 67.
  • the degree of supercooling by the reheater 3 is also referred to as “internal liquid SC”.
  • the operation control unit 51b acquires the high pressure from the pressure sensor 62 and the internal liquid temperature from the refrigerant temperature sensor 67.
  • the operation control unit 51b obtains the internal liquid SC by converting the high-pressure to saturation to obtain the condensation temperature, and subtracting the internal liquid temperature from the condensation temperature.
  • the operation control unit 51b controls the first expansion valve 4 and the cooling on-off valve 6 and the second expansion valve 9 in accordance with the obtained internal liquid SC to control the amount of refrigerant distributed in the reheater 3. Adjust.
  • the operation control unit 51b may use the reheater outlet pressure acquired from the pressure sensor 63 instead of the high pressure acquired from the pressure sensor 62 to determine the condensation temperature.
  • the operation control unit 51b determines whether the amount of refrigerant is excessive or insufficient during the dehumidifying operation based on the internal liquid SC. That is, the operation control unit 51b determines whether the internal liquid SC is within the proper refrigerant amount range.
  • the proper refrigerant amount range is a range that is determined based on the set determination value Z and indicates that the refrigerant amount distributed to the reheater 3 is proper.
  • the determination value Z is set to 5 [K], for example, and is appropriately changed according to the configuration of the refrigerant circuit 30 and the like.
  • the proper range of the refrigerant amount during the dehumidifying operation is the range from the value obtained by subtracting the judgment value Z by the coefficient e to the value obtained by adding the coefficient f to the judgment value Z.
  • the coefficient e and the coefficient f are 0 or a positive value, respectively, and are set according to the configuration of the refrigerant circuit 30 and appropriately changed.
  • the coefficient e and the coefficient f may have the same value or different values.
  • the determination value Z, the coefficient e, and the coefficient f are set such that the refrigerant distributed in the reheater 3 during the dehumidifying operation has an appropriate amount when the internal liquid SC is within the appropriate refrigerant amount range.
  • the fact that the internal liquid SC is within the proper range of the refrigerant amount corresponds to the proper amount of the refrigerant distributed in the reheater 3.
  • the fact that the internal liquid SC is larger than the dehumidification upper limit value means that the refrigerant distributed in the reheater 3 is excessive.
  • the fact that the internal liquid SC is smaller than the lower limit of dehumidification corresponds to a shortage of the refrigerant distributed in the reheater 3.
  • the operation control unit 51b determines that the condensation temperature CT is lower than the determination threshold value for avoiding the high pressure abnormality, and the external liquid temperature is lower than the evaporation temperature ET. It is determined whether or not both the outdoor refrigerant discharge condition of being high is satisfied.
  • the indoor high pressure protection condition is a condition intended to prevent a high pressure abnormality when the distribution of the refrigerant is increased to the indoor side.
  • the determination threshold value during the dehumidifying operation is a value obtained by subtracting the protective condensation temperature CTmax by the determination value Z.
  • the outdoor refrigerant discharge condition is a condition for determining whether or not the refrigerant is discharged from the outdoor side, that is, when the refrigerant is replenished from the outdoor heat exchanger 7 to the main circuit 31 by the differential pressure.
  • the operation control unit 51b determines whether the external liquid temperature measured by the refrigerant temperature sensor 69 is lower than the condensation temperature CT. This determination is for determining whether or not the refrigerant can be discharged due to the differential pressure when the refrigerant is discharged to the outdoor side. That is, when the external liquid temperature is lower than the condensation temperature CT, the operation control unit 51b opens the cooling on-off valve 6 and disperses the refrigerant flowing to the reheater 3 to the outdoor heat exchanger 7 side, so that the outdoor air is discharged. The refrigerant is stored in the heat exchanger 7 or the like.
  • the coefficient g, and the coefficient h if the internal liquid SC is within the storage reference range, the refrigerant storage amount of the outdoor heat exchanger 7 is appropriate, that is, the refrigerant amount distributed to the reheater 3 is appropriate.
  • the coefficient g and the coefficient h are 0 or a positive value, respectively, and are set according to the configuration of the refrigerant circuit 30 and can be changed as appropriate.
  • the coefficient g and the coefficient h may have the same value or different values.
  • the coefficients a to h may be set to values of about 1 [K] to 2 [K], respectively.
  • the intermediate operation requires a relatively large amount of refrigerant because the refrigerant flows through the reheater 3 and the outdoor heat exchanger 7.
  • the dehumidifying operation requires a smaller amount of refrigerant than the intermediate operation. This is because in the dehumidifying operation, the refrigerant flows through the reheater 3, but the refrigerant does not flow through the outdoor heat exchanger 7. Therefore, during the dehumidifying operation, excess refrigerant may be generated. Then, when excess refrigerant is generated, there is a possibility that an abnormality such as an increase in high-pressure will occur.
  • the air-conditioning apparatus 100 of Embodiment 1 is configured to execute the refrigerant amount adjustment operation when excess refrigerant is generated during the dehumidification operation.
  • the refrigerant amount adjustment control performed by the operation control unit 51b when excess refrigerant is generated will be described.
  • the operation control unit 51b When detecting the generation of excess refrigerant during the dehumidifying operation, the operation control unit 51b opens both the reheat on-off valve 2 and the cooling on-off valve 6 and closes the defrost on-off valve 10 as in the intermediate operation. And The operation control unit 51b uses the first expansion valve 4 provided downstream of the reheater 3 and the second expansion valve 9 provided downstream of the outdoor heat exchanger 7 to control the refrigerant amount adjustment. To execute. That is, the operation control unit 51b configures the refrigeration cycle by the SC control to secure the performance of the reheater 3 and stores the excess refrigerant that has passed through the outdoor heat exchanger 7 in the liquid pool 8 by the SH control. ..
  • the operation control unit 51b of the first embodiment executes the SC control of the first expansion valve 4 so as to keep the internal liquid SC at the reheat determination value or more.
  • the SC control by the operation control unit 51b the reheat amount of the reheater 3 required during the dehumidifying operation can be secured and the necessary and sufficient dehumidifying ability can be exhibited.
  • the control device 50 maintains the current operation state until it receives a drive command or a drive switching command from the control device (step S101/No).
  • the control device 50 receives the operation command or the operation switching command from the control device (step S101/Yes)
  • it starts the operation switching control. That is, the control device 50 opens the reheat opening/closing valve 2 and the cooling opening/closing valve 6 and closes the defrosting opening/closing valve 10 (step S102).
  • the control device 50 performs the refrigerant leveling process using the first expansion valve 4 and the second expansion valve 9. That is, the control device 50 starts the SC control using the second expansion valve 9 and the SH control using the first expansion valve 4 (step S103).
  • the control device 50 determines whether or not the leveling condition that the external liquid SC is within the proper condenser range and the suction SH is within the refrigerant adjustment range is satisfied (step S104). If the leveling condition is satisfied (step S104/Yes), the control device 50 starts the operation instructed by the operation command or the operation switching command (step S106). If the leveling condition is not satisfied (step S104/No), the control device 50 determines whether or not the leveling condition is satisfied at a predetermined interval until the elapsed time from the start of the operation switching control reaches the set time. Whether or not.
  • the interval at which the determination process of step S104 is performed may be constant or may be shortened according to the elapsed time (step S105/No, step S104).
  • step S104/No Even if the leveling condition is not satisfied (step S104/No), the control device 50 terminates the operation switching control when the elapsed time from the start of the operation switching control reaches the set time, and outputs the operation command or The operation instructed by the operation switching command is started (step S106).
  • the control device 50 determines whether or not the external liquid SC is within the proper refrigerant amount range when a predetermined time has elapsed after starting the cooling operation (step S201). If the external liquid SC is within the proper refrigerant amount range (step S201/Yes), the controller 50 ends the refrigerant distribution control (step S213).
  • step S201/No, step S202/Yes the control device 50 determines whether the internal liquid temperature measured by the refrigerant temperature sensor 67 is lower than the condensation temperature CT. It is determined whether or not (step S203).
  • step S203/No If the internal liquid temperature is equal to or higher than the condensation temperature CT (step S203/No), the control device 50 ends the refrigerant distribution control (step S213).
  • the control device 50 can store the refrigerant in the reheater 3 due to the differential pressure, and thus opens the reheat on-off valve 2. That is, the control device 50 changes the reheat on-off valve 2 from the closed state to the open state (step S204).
  • the control device 50 determines whether or not the external liquid SC is within the storage reference range (step S205). If the external liquid SC is within the storage reference range, the control device 50 closes the reheat on-off valve 2 to shut off the refrigerant flowing to the reheater 3 (step S207) and terminate the refrigerant distribution control (step S207). Step S213). If the external liquid SC is out of the storage reference range (step S205/No), the control device 50 executes step S205 at predetermined intervals until the elapsed time from the start of the refrigerant distribution control reaches the opening/closing reference time. The determination process is repeatedly executed. Here, the interval for performing the determination process of step S205 may be constant or may be shortened according to the elapsed time (step S206/No, step S205).
  • step S205/No Even if the external liquid SC is outside the storage reference range (step S205/No), the controller 50 turns on the reheat on-off valve 2 if the elapsed time from the start of the refrigerant distribution control reaches the open/close reference time.
  • the closed state is set (step S207), and the refrigerant distribution control is ended (step S213).
  • step S201/No If the external liquid SC is smaller than the cooling lower limit value (Ya) (step S201/No, step S202/No), the control device 50 satisfies both the outdoor high pressure protection condition and the indoor refrigerant discharge condition. It is determined whether or not (step S208). When determining that the outdoor high pressure protection condition is satisfied and the indoor refrigerant discharge condition is satisfied (step S208/Yes), the controller 50 adjusts the first expansion valve 4 to the minimum opening degree (step S209).
  • step S205 the control device 50 determines whether the external liquid SC is within the storage reference range (step S210). If the external liquid SC is within the storage reference range, the control device 50 fully closes the first expansion valve 4 (step S212) and ends the refrigerant distribution control (step S213).
  • step S210/No Even if the external liquid SC is outside the storage reference range (step S210/No), the control device 50 turns the first expansion valve 4 on if the elapsed time from the start of the refrigerant distribution control reaches the adjustment reference time.
  • the fully closed state is set (step S212), and the refrigerant distribution control is ended (step S213).
  • step S208/No the control device 50 ends the refrigerant distribution control (step S213).
  • the control device 50 performs a normal cooling operation until a certain period of time has passed (step S214/No), and when the certain period of time has passed (step S214/Yes), starts the process of step S201. That is, the control device 50 repeatedly executes the series of processes of steps S201 to S213 at regular intervals. Thus, in the air conditioning apparatus 100, once the refrigerant distribution control, which is a series of processes of steps S201 to S213, is performed during the cooling operation, the refrigerant distribution control is not performed until a certain period of time elapses.
  • a value different from the judgment value Y in step S201 may be used as the judgment value Y in steps S205 and S210.
  • FIG. 10 is a flowchart exemplifying the refrigerant distribution control during the dehumidifying operation by the control device of FIG. The operation flow in the refrigerant distribution control during the dehumidifying operation will be described with reference to FIG. 10.
  • step S301/No, step S302/Yes the controller 50 determines whether the external liquid temperature measured by the refrigerant temperature sensor 69 is lower than the condensation temperature CT. It is determined whether or not (step S303).
  • step S303/No When the external liquid temperature is equal to or higher than the condensation temperature CT (step S303/No), the controller 50b ends the refrigerant distribution control (step S313). On the other hand, if the external liquid temperature is lower than the condensation temperature CT (step S303/Yes), the controller 50 opens the cooling on-off valve 6. That is, the control device 50 changes the cooling on-off valve 6 from the closed state to the open state (step S304).
  • control device 50 determines whether or not the internal liquid SC is within the storage reference range. However, the determination value Z in step S305 may be different from the determination value Z in step S301 (step S305).
  • step S307 If the internal liquid SC is within the storage reference range, the control device 50 closes the cooling on-off valve 6 to shut off the refrigerant flowing to the outdoor heat exchanger 7 (step S307), and ends the refrigerant distribution control (step S307). Step S313). If the internal liquid SC is out of the storage reference range (step S305/No), the control device 50 executes step S305 at predetermined intervals until the elapsed time from the start of the refrigerant distribution control reaches the opening/closing reference time. The determination process is repeatedly executed. Here, the interval for performing the determination process of step S305 may be constant or may be shortened according to the elapsed time (step S306/No, step S305).
  • step S301/No, step S302/No If the internal liquid SC is smaller than the dehumidification lower limit value (Ze) (step S301/No, step S302/No), the control device 50 satisfies both the indoor high pressure protection condition and the outdoor refrigerant discharge condition. It is determined whether or not (step S308). When determining that the indoor high pressure protection condition is satisfied and the outdoor refrigerant discharge condition is satisfied (step S308/Yes), the control device 50 adjusts the second expansion valve 9 to the minimum opening degree (step S309).
  • step S310/No If the internal liquid SC is out of the storage reference range (step S310/No), the control device 50 performs step S310 at predetermined intervals until the elapsed time from the start of the refrigerant distribution control reaches the adjustment reference time. The determination process is repeatedly executed (step S310/No, step S311).
  • the control device 50 closes the reheat on-off valve 2, the defrosting on-off valve 10, and the cooling on-off valve 6 to open the second expansion valve.
  • the valve 9 is fully closed, the compressor 1 is operated, and the pump down operation is executed.
  • the control device 50 may set the rotation speeds of the indoor blower 11 and the outdoor blower 12 to be higher than the rotation speeds during the normal operation.
  • the refrigerant flows from the cooling on-off valve 6 to the outdoor heat exchanger 7, the outdoor heat exchanger 7, and the outdoor heat exchanger 7. It can be stored in the pipe to the liquid reservoir 8, the liquid reservoir 8, and the pipe from the liquid reservoir 8 to the second expansion valve 9.
  • control device 50 stops the operation of the compressor 1 when the suction side pressure becomes lower than the set value or when the discharge side pressure becomes higher than the set value. Then, the control device 50 closes the cooling on-off valve 6 after stopping the operation of the compressor 1. Thus, by closing the cooling on-off valve 6 after stopping the compressor 1, it is possible to suppress the reverse flow of the refrigerant. Then, as described above, the safety can be improved by stopping the operation of the air conditioning apparatus 100 stepwise.
  • the cooling on-off valve 6 After performing the pump-down operation, if there is no problem even if the refrigerant is circulated through the compressor 1, the outdoor heat exchanger 7, the second expansion valve 9, and the indoor heat exchanger 5, the cooling on-off valve 6 is opened. Then, the cooling operation can be executed. By performing the cooling operation, it is possible to prevent the temperature of the air-conditioned space from rising, so that it is possible to suppress deterioration in comfort.
  • the refrigerant leakage point is the reheat on-off valve 2. It is assumed that the case is specified between the first expansion valve 4 or between the defrost on-off valve 10 and the first expansion valve 4.
  • the reheat on-off valve 2 is turned on. It can be opened to perform the dehumidifying operation. By continuing the dehumidifying operation, it is possible to prevent an increase in humidity in the air-conditioned space, and thus it is possible to suppress deterioration in comfort.
  • the control device 50 responds to the determination result using the external liquid temperature. And controls the cooling on-off valve 6 or the second expansion valve 9. Therefore, the amount of the refrigerant in the reheater 3 can be adjusted according to the external liquid temperature, so that the deviation of the refrigerant distributed in the refrigerant circuit 30 can be suppressed and the operation efficiency can be improved.
  • control device 50 satisfies the condition that the degree of supercooling by the reheater 3 is within the storage reference range from the time when the second expansion valve 9 is set to the minimum opening to the time when the adjustment reference time elapses. At this time, the second expansion valve 9 is fully closed. Therefore, the instructed operation can be started promptly at the timing when the shortage of the refrigerant in the reheater 3 is resolved.
  • control device 50 sets the second expansion valve 9 to the minimum opening degree and then, when the adjustment reference time elapses without the supercooling degree of the reheater 3 falling within the storage reference range. 9 is fully closed. Therefore, it is possible to avoid a situation in which the instructed driving is not started for a long period of time, and thus it is possible to prevent a reduction in user comfort.
  • the control device 50 determines whether the external liquid temperature is lower than the condensation temperature. Then, if the external liquid temperature is lower than the condensation temperature, the control device 50 opens the cooling on-off valve 6. Therefore, the refrigerant can be discharged toward the outdoor heat exchanger 7 from the main circuit 31 including the reheater 3 in which the refrigerant is excessive. Therefore, the refrigerant distributed in the reheater 3 can be adjusted to an optimum amount, so that the efficiency of the dehumidifying operation can be improved.
  • the control device 50 satisfies the condition that the degree of supercooling by the reheater 3 is within the storage reference range from the opening of the cooling on-off valve 6 to the elapse of the opening/closing reference time, The cooling on-off valve 6 is closed. Therefore, the instructed operation can be promptly started at the timing when the excessive refrigerant in the reheater 3 is resolved.
  • the control device 50 closes the cooling opening/closing valve 6 after the opening/closing reference time has passed without opening the cooling opening/closing valve 6 and the degree of subcooling by the reheater 3 does not fall within the storage reference range. Put in a state. Therefore, it is possible to avoid a situation in which the instructed driving is not started for a long period of time, and thus it is possible to prevent a reduction in user comfort.
  • the control device 50 determines whether both the outdoor high pressure protection condition and the indoor refrigerant discharge condition are satisfied, and the outdoor high pressure protection is performed. If both the condition and the indoor refrigerant discharge condition are satisfied, the first expansion valve 4 is set to the minimum opening degree for a predetermined period. Therefore, since the refrigerant stored in the reheater 3 can be circulated, the shortage of the refrigerant in the outdoor heat exchanger 7 can be eliminated.
  • the control device 50 determines whether the internal liquid temperature is lower than the condensation temperature. Then, if the internal liquid temperature is lower than the condensation temperature, the control device 50 opens the reheat on-off valve 2. Therefore, it is possible to reduce the refrigerant flowing into the outdoor heat exchanger 7 having an excessive amount of refrigerant, so that it is possible to adjust the refrigerant distributed in the outdoor heat exchanger 7 to an optimum amount, thereby improving the efficiency of the cooling operation. be able to.
  • control device 50 when the control device 50 satisfies the condition that the degree of supercooling by the condenser is within the storage reference range during the period from the opening of the reheat on-off valve 2 to the opening/closing reference time, The thermal on-off valve 2 is closed. Therefore, the operation can be restarted promptly at the timing when the excess refrigerant in the outdoor heat exchanger 7 is resolved.
  • control device 50 closes the reheat opening/closing valve 2 when the opening/closing reference time elapses after the supercooling degree by the condenser does not fall within the storage reference range after the reheat opening/closing valve 2 is opened. Put in a state. Therefore, it is possible to avoid a situation in which the driving is not restarted for a long period of time, and thus it is possible to prevent a reduction in user comfort.
  • the refrigerant amount is appropriately adjusted by the operation switching control and the refrigerant distribution control described above. Therefore, in the dehumidifying operation, the reheat amount of the reheater 3 required during the dehumidifying operation can be secured and the necessary and sufficient dehumidifying ability can be exhibited. Further, in the cooling operation, the amount of condensation of the outdoor heat exchanger 7 required during the cooling operation can be secured and the necessary and sufficient cooling capacity can be exhibited.
  • the control device 50 has a function of performing the refrigerant leveling process within a predetermined period after closing the cooling on-off valve 6 and the reheat on-off valve 2 when the compressor 1 is started and when the operation mode is switched. doing. Then, in the refrigerant leveling process, the control device 50 controls the opening degree of the second expansion valve 9 so that the degree of supercooling by the condenser is within the proper range of the condenser, and the degree of superheat by the evaporator is the refrigerant. The opening degree of the first expansion valve 4 is controlled so that it falls within the adjustment range. Therefore, the distribution of the refrigerant in the refrigerant circuit 30 can be optimized.
  • the control device 50 sets the supercooling degree by the condenser within the proper condenser range within the set time after closing the cooling on-off valve 6 and the reheat on-off valve 2.
  • the instructed operation is started. Therefore, it is possible to quickly start the instructed operation at the timing when the refrigerant in the refrigerant circuit 30 is leveled.
  • the control device 50 starts the instructed operation when the set time has elapsed if the leveling condition is not satisfied within the set time. Therefore, it is possible to avoid a situation in which the instructed driving is not started for a long period of time, and thus it is possible to prevent a reduction in user comfort.
  • the air conditioning apparatus 100 of Embodiment 1 suppresses the reduction of the reheating capacity by the combination of the SC control of the second expansion valve 9 and the SH control of the first expansion valve 4, and causes the liquid back. It is possible to avoid the occurrence of damage to the compressor 1.
  • the control device 50 closes the cooling on-off valve 6, so that the stagnation of the refrigerant in the outdoor heat exchanger 7 can be prevented, and thus the dehumidifying operation can be prevented. It is possible to prevent a decrease in capacity and efficiently perform dehumidification operation. Further, the control device 50 may fully close the second expansion valve 9 during the dehumidifying operation. In this way, it is possible to prevent the refrigerant from flowing into the main circuit 31 from the cooling circuit 32, so that the operation efficiency of the dehumidifying operation can be improved.
  • the main circuit 31 includes a reheat on-off valve 2 that performs an opening/closing operation between the reheater 3 and a connecting portion between the main pipe 21 and the cooling pipe 22 between the compressor 1 and the reheater 3. have.
  • the control device 50 is configured to close the reheat on-off valve 2 during the cooling operation. Therefore, the refrigerant can be prevented from flowing into the reheater 3, so that the refrigerant circulation can be facilitated during the cooling operation and the operation efficiency can be improved.
  • the control device 50 may fully close the first expansion valve 4 during the cooling operation.
  • the control device 50 closes the reheat on-off valve 2 and fully closes the second expansion valve 9. Therefore, the refrigerant can be prevented from flowing into the main circuit 31 provided in the room, and the refrigerant can be stored in the outdoor heat exchanger 7 and the liquid reservoir 8 to suppress the leakage of the refrigerant into the room. You can In addition, the control device 50 may fully close the first expansion valve 4 when the refrigerant leakage sensor 41 detects the refrigerant leakage.
  • the refrigerant leakage into the room can be reduced.
  • the reheat on-off valve 2 and the defrost on-off valve 10 are closed, and the first expansion valve 4 is fully closed, so that the refrigerant circuit from the re-heat on-off valve 2 to the first expansion valve 4 is independent. By doing so, the identification of the refrigerant leakage location may be promoted.
  • control device 50 closes the cooling on-off valve 6 and fully closes the first expansion valve 4 when the outdoor refrigerant leak sensor 42 detects a refrigerant leak. Thereby, the flow of the refrigerant to the outside can be blocked, and the refrigerant outside the room can be stored in the indoor heat exchanger 5, so that the leakage of the refrigerant outside the room can be suppressed.
  • control device 50 may fully close the second expansion valve 9 when the outdoor refrigerant leak sensor 42 detects a refrigerant leak. By doing so, the refrigerant circuit from the cooling on-off valve 6 to the second expansion valve 9 can be made independent, and the leakage location of the refrigerant can be quickly specified.
  • the control device 50 can adjust the refrigerant distribution to an appropriate amount as described above. Therefore, the amount of heating by the reheater 3 can be secured and the indoor unit 70 can exhibit the dehumidifying ability.
  • Embodiment 2 The air conditioner according to the second embodiment is configured to reduce the variation in the blowout temperature.
  • the configuration of the air conditioner of the second embodiment is similar to the configuration illustrated in FIGS. 1 and 2. Therefore, the same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • FIG. 11 is an explanatory diagram illustrating a specific configuration of the indoor heat exchanger according to Embodiment 2 of the present invention.
  • the indoor heat exchanger 5 is a plate fin tube heat exchanger including a plurality of heat transfer tubes 13, a plurality of fins 14, a refrigerant distributor 15, and a header 16.
  • the reheater 3 of the second embodiment is a plate fin tube heat exchanger configured similarly to the indoor heat exchanger 5. That is, the reheater 3 includes a plurality of heat transfer tubes 13, a plurality of fins 14, a refrigerant distributor 15, and a header 16.
  • the number of heat transfer tubes 13, the number of fins 14, the number of stages, and the number of rows are examples. That is, for each of the indoor heat exchanger 5 and the reheater 3, the number of heat transfer tubes 13, the number of fins 14, the number of stages, and the number of rows can be appropriately changed.
  • a non-azeotropic mixed refrigerant in which a plurality of kinds of refrigerants are mixed may be used as a refrigerant to circulate in the refrigerant circuit.
  • the temperature of the non-azeotropic mixed refrigerant changes due to a phase change under the same pressure. Therefore, for example, when the non-azeotropic mixed refrigerant passes through the evaporator, the temperature of the upstream side becomes lower than that of the downstream side in the evaporation process. Further, when the non-azeotropic mixed refrigerant passes through the condenser, the temperature becomes higher on the upstream side than on the downstream side in the condensation process.
  • FIG. 12 is an explanatory diagram exemplifying a Mollier diagram of a non-azeotropic mixed refrigerant.
  • FIG. 13 is a Mollier diagram showing a specific example of the temperature gradient of the non-azeotropic mixed refrigerant.
  • the isotherm of the azeotropic mixed refrigerant is shown by a solid line
  • the part of the isotherm of the non-azeotropic mixed refrigerant between the saturated liquid line and the saturated vapor line is shown by a broken line. That is, when a non-azeotropic mixed refrigerant is used, a temperature gradient is generated between the inlet and the outlet of the heat exchanger in the evaporation process and the condensation process that change at a constant pressure.
  • FIG. 13 illustrates the case where the temperature gradient between the inlet and the outlet of the indoor heat exchanger 5 in the low temperature range of the non-azeotropic mixed refrigerant is about 5°C.
  • the refrigerant temperature on the inlet side of the indoor heat exchanger 5 is ⁇ 12° C.
  • the refrigerant temperature on the outlet side is ⁇ 7° C. That is, in the indoor heat exchanger 5, the refrigerant temperature on the inlet side is lower than the refrigerant temperature on the outlet side. Therefore, a difference occurs in the blowing temperature between the inlet and the outlet of the indoor heat exchanger 5.
  • the non-azeotropic mixed refrigerant containing CO 2 is, for example, a mixed refrigerant of R32, R125, R134a, r1234yf, and CO 2 .
  • the composition of R32 is 49 wt% to 55 wt%
  • the composition of R125 is 16 wt% to 22 wt%
  • the composition of R134a is 7 wt% to 13 wt%
  • the composition of r1234yf is 6 wt% to 12 wt %
  • the composition of CO 2 is 7 wt% to 13 wt %.
  • the total composition ratio of R32, R125, R134a, r1234yf, and CO 2 is 100 wt %.
  • the low-temperature low-pressure liquid-state refrigerant that has been decompressed and expanded by the first expansion valve 4 flows into the indoor heat exchanger 5 from the inlet of the refrigerant distributor 15.
  • the refrigerant that has flowed in from the inlet of the refrigerant distributor 15 is distributed by the refrigerant distributor 15 and flows from the outlets of the refrigerant distributor 15 to the plurality of heat transfer tubes 13.
  • the refrigerant flowing into the heat transfer tube 13 flows along the axial direction of the heat transfer tube 13. On the surfaces of the heat transfer tubes 13 and the fins 14, the indoor air to be cooled is blown by the indoor blower 11.
  • the air blown to the indoor heat exchanger 5 by the indoor blower 11 flows in the direction opposite to the refrigerant flowing through the heat transfer tube 13.
  • the air conditioner 100 reduces the heat exchange loss and improves the performance of the indoor heat exchanger 5 by making the air blown to the indoor heat exchanger 5 and the refrigerant flowing through the heat transfer tube 13 face each other. There is.
  • the refrigerant flowing through the heat transfer tube 13 exchanges heat with the indoor air in contact with the heat transfer tube 13 and the fins 14, and absorbs the heat of the indoor air.
  • the refrigerant that has exchanged heat with the indoor air in the heat transfer tube 13 flows in from the inlet of the header 16, merges with the header 16, and flows from the outlet of the header 16 to the compressor 1.
  • the high-temperature high-pressure gaseous refrigerant that has been heated and compressed by the compressor 1 flows in from the inlet of the refrigerant distributor 15.
  • the refrigerant that has flowed in from the inlet of the refrigerant distributor 15 is distributed by the refrigerant distributor 15, and flows from the respective outlets of the refrigerant distributor 15 to the plurality of heat transfer tubes 13.
  • the refrigerant flowing into the heat transfer tube 13 flows along the axial direction of the heat transfer tube 13. Air cooled by passing through the indoor heat exchanger 5 is blown to the surfaces of the heat transfer tubes 13 and the fins 14.
  • the reheater 3 and the room are arranged such that the inlet side of the indoor heat exchanger 5 faces the outlet side of the reheater 3 and the outlet side of the evaporator faces the inlet side of the reheater 3.
  • the temperature difference generated in the indoor heat exchanger 5 is further increased in the reheater 3. That is, if the above arrangement is adopted, the temperature difference between the inlet and the outlet of the heat exchanger, which occurs when a non-azeotropic mixed refrigerant is used, causes the blowout temperature at the time of reheat dehumidification to vary depending on the part. Will occur.
  • the air that has passed through the portion of the indoor heat exchanger 5 having the lowest refrigerant temperature passes through the portion of the reheater 3 that has the highest refrigerant temperature.
  • the indoor heat exchanger 5 and the reheater 3 are arranged. That is, the indoor heat exchanger 5 and the reheater 5 are arranged so that the air passing through the portion of the indoor heat exchanger 5 having the highest refrigerant temperature passes through the portion of the reheater 3 having the lowest refrigerant temperature. 3 and 3 are arranged.
  • the indoor heat exchanger 5 and the reheater 3 are provided on a common air passage, as in Embodiment 1.
  • FIG. 14 is an explanatory diagram showing an arrangement example of the evaporator and the reheater in the air conditioner according to the second embodiment of the present invention.
  • the intervals between the wavy lines shown inside the indoor heat exchanger 5 and the reheater 3 correspond to high and low refrigerant temperatures. That is, in FIG. 14, the wavy line is illustrated so that the refrigerant temperature becomes higher as the distance between the wavy lines becomes narrower and the refrigerant temperature becomes lower as the distance between the wavy lines becomes wider.
  • the temperature of the refrigerant inlet side is lower than the temperature of the refrigerant outlet side.
  • the temperature on the inlet side of the refrigerant is higher than the temperature on the outlet side of the refrigerant.
  • the air that has passed through the refrigerant inlet side of the indoor heat exchanger 5 passes through the refrigerant outlet side of the reheater 3 and the indoor heat exchanger
  • the air that has passed through the refrigerant outlet side of 5 is arranged so as to pass through the refrigerant inlet side of the reheater 3.
  • the indoor heat exchanger 5 and the reheater 3 are both provided so that the refrigerant flows from the upper part to the lower part.
  • the optimum arrangement may be appropriately selected based on the arrangement of each device and the blowout temperature from each heat exchanger according to the pass pattern.
  • FIG. 14 exemplifies the case where the number of rows of each heat exchanger is one, the number of rows of each heat exchanger may be two or more, without being limited to this. Even when at least one of the indoor heat exchanger 5 and the reheater 3 has two or more rows, the indoor heat exchanger 5 and the reheater 3 are based on the heat distribution of each heat exchanger. You should decide the placement of.
  • FIG. 15 is a table showing the states of each on-off valve and each expansion valve at the time of refrigerant leakage in the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the control device 50 according to the second embodiment acquires the leak signals from the indoor refrigerant leak sensor 41 and the outdoor refrigerant leak sensor 42.
  • the control device 50 closes the reheat on-off valve 2 on the indoor side and fully opens the first expansion valve 4 on the downstream side of the reheater 3 when detecting refrigerant leakage inside the room.
  • the refrigerant existing in the flow path from the first connection portion M to the second connection portion N via the reheater 3 and the first expansion valve 4 can be guided to the indoor heat exchanger 5 side.
  • the control device 50 detects the refrigerant leakage inside the room, it opens the outdoor cooling on-off valve 6 and fully closes the second expansion valve 9 downstream of the outdoor heat exchanger 7.
  • the refrigerant can be stored outside the room. Therefore, when the refrigerant leaks in the room, it is possible to suppress the filling of the inert gas in the room, and thus it is possible to improve safety.
  • the control device 50 controls the refrigerant circuit 30 by using the dryness, by taking advantage of the characteristics of the non-azeotropic mixed refrigerant.
  • the dryness cannot be calculated when the pseudo-azeotropic refrigerant is used. Therefore, it is common to control the refrigerant circuit using the superheat degree and the supercooling degree calculated from the high temperature and low pressure saturation temperatures and the refrigerant temperature, and since the state of the refrigerant is unknown, conventionally, the calculated superheat degree is used. Also, a method of controlling the degree of supercooling with a likelihood is adopted.
  • the dryness can be obtained from the pressure and the temperature, and the state of the refrigerant can be known from the obtained dryness, so that reliability can be obtained without designing with likelihood.
  • High control can be built. That is, if a non-azeotropic mixed refrigerant is used, control along the saturation line on the Mollier diagram is possible, and thus control that makes good use of the capacity of the heat exchanger can be constructed. This is because the non-azeotropic mixed refrigerant has a temperature gradient of the two-phase refrigerant.
  • the air conditioning apparatus 100 measures the temperature of the low-pressure sensor that measures the pressure on the suction side of the compressor 1 and the position at which the dryness of the indoor heat exchanger 5 (dryness on the low-pressure side) is acquired. And an evaporator temperature sensor that operates. Then, the control device 50 can obtain the dryness on the low pressure side from the pressure detected by the low pressure sensor and the temperature detected by the evaporator temperature sensor. For a non-azeotropic refrigerant, the dryness on the low pressure side can be uniquely obtained from the pressure and the temperature of the refrigerant.
  • the low pressure sensor corresponds to the pressure sensor 61 of FIG. 1
  • the evaporator temperature sensor corresponds to the refrigerant temperature sensor 68 of FIG.
  • a high-pressure sensor that measures the pressure on the discharge side of the compressor 1 and a condenser temperature sensor that measures the temperature at the position where the dryness of the reheater 3 or the outdoor heat exchanger 7 (dryness on the high-pressure side) is acquired. And are preferably provided. Then, the control device 50 can obtain the dryness on the high pressure side from the pressure detected by the high pressure sensor and the temperature detected by the condenser temperature sensor. In the non-azeotropic refrigerant, the dryness on the high pressure side is uniquely obtained from the pressure and the temperature of the refrigerant.
  • the high pressure sensor corresponds to the pressure sensors 62, 63 and 64 of FIG.
  • the condenser temperature sensor corresponds to the refrigerant temperature sensors 67 and 69 of FIG.
  • the dryness of the reheater 3 is obtained from the pressure measured by the pressure sensor 62 or the pressure sensor 63 and the temperature measured by the refrigerant temperature sensor 67.
  • the dryness of the outdoor heat exchanger 7 is obtained from the pressure measured by the pressure sensor 62 or the pressure sensor 64 and the temperature measured by the refrigerant temperature sensor 69.
  • a non-azeotropic mixed refrigerant is used as the refrigerant circulating inside. Therefore, in the indoor heat exchanger 5, the temperature on the refrigerant inlet side becomes lower than the temperature on the refrigerant outlet side. Further, in the reheater 3, the temperature on the inlet side of the refrigerant becomes higher than the temperature on the outlet side of the refrigerant.
  • the air that has passed through the refrigerant inlet side of the indoor heat exchanger 5 passes through the refrigerant inlet side of the reheater 3 and the indoor heat exchanger
  • the air passing through the refrigerant outlet side in 5 is arranged so as to pass through the refrigerant outlet side in the reheater 3.
  • the paths of the refrigerant flowing through the indoor heat exchanger 5 and the reheater 3 can be defined as shown in FIG. Therefore, it is possible to reduce the variation of the blowout temperature and the unevenness of the humidity caused by the variation of the blowout temperature. Therefore, it is possible to suppress the variation of the temperature of the air blown from the indoor unit 70 to the air-conditioned space, and It is possible to stabilize the state.
  • Other effects and the like are similar to those of the first embodiment.
  • FIG. 16 is a whole block diagram of the air conditioning apparatus which concerns on Embodiment 3 of this invention.
  • the air conditioning apparatus 200 of the third embodiment differs from the air conditioning apparatus 100 of the first and second embodiments in part of the configuration of the refrigerant circuit 30. Constituent members similar to those in the first and second embodiments are designated by the same reference numerals and the description thereof will be omitted.
  • the refrigerant circuit 30 of the third embodiment is different from the first embodiment in that the liquid reservoir 8 is not mounted and the accumulator 18 is mounted, and other configurations are provided. Is the same as in the first embodiment.
  • the air conditioner 200 can store the refrigerant in the accumulator 18 during the transient liquid back, and can further reduce the risk of damage to the compressor.
  • the third embodiment by executing the operation switching control and the refrigerant distribution control described in the first embodiment, it is possible to operate with the optimal refrigerant amount in each of the reheater 3 and the outdoor heat exchanger 7. Become. Therefore, the capacity of the air conditioner 200 can be appropriately maintained, and the transiently generated surplus refrigerant can be stored in the inexpensive accumulator 18. That is, even if the refrigerant returns toward the compressor 1 due to the liquid bag, the liquid compression in the compressor 1 can be suppressed by the action of the accumulator 18, and thus the highly reliable air conditioner 200 is provided. can do.
  • the degree of subcooling by the reheater 3, that is, the internal liquid SC can be obtained from the high pressure obtained from the pressure sensor 62 and the internal liquid temperature obtained from the refrigerant temperature sensor 67, as described above.
  • the control device 50 can calculate the internal liquid SC by calculating the condensation temperature by converting the high-pressure pressure into saturation and subtracting the internal liquid temperature from the condensation temperature.
  • the degree of subcooling by the outdoor heat exchanger 7, that is, the external liquid SC is obtained from the condenser outlet pressure acquired from the pressure sensor 64 and the outdoor heat exchanger outlet temperature acquired from the refrigerant temperature sensor 69, as described above.
  • the control device 50 calculates the condensation temperature CT by performing saturation conversion of the condenser outlet pressure, and subtracts the outside liquid temperature from the condensation temperature CT to obtain the degree of supercooling at the outlet of the outdoor heat exchanger 7. SC can be obtained.
  • the control device 50 may obtain the condensation temperature CT using the high pressure obtained from the pressure sensor 62 instead of the condenser outlet pressure obtained from the pressure sensor 64.
  • each on-off valve and each expansion valve when the refrigerant leaks indoors or outdoors is the same as in the above-described first and second embodiments.
  • the air conditioner 200 may apply the arrangement configuration of the reheater 3 and the indoor heat exchanger 5 in the second embodiment described above, and the dryness is used as in the case of the second embodiment.
  • the refrigerant circuit 30 may be controlled.
  • the air conditioner 200 of the third embodiment it is possible to prevent the dehumidifying ability from decreasing and to efficiently perform the dehumidifying operation.
  • the refrigerant circuit 30 including the liquid reservoir 8 as in the first embodiment it is necessary to perform an operation for ensuring the degree of superheat of the second expansion valve 9 for protection according to the liquid back. .. Therefore, in order to store the excess refrigerant, an expensive high-pressure container such as the liquid reservoir 8 having a large capacity is required.
  • the air-conditioning apparatus 200 of the third embodiment even if the refrigerant returns toward the compressor 1 due to the liquid back, the action of the accumulator 18 causes the operation of the compressor 1 without using the liquid reservoir. Liquid compression can be suppressed. Therefore, the reliability as an air conditioner can be improved.
  • the air conditioner 200 separates the non-azeotropic mixed refrigerant into gas and liquid by the accumulator 18, stores the high-boiling-point refrigerant in the accumulator 18, and uses the low-boiling-point refrigerant during defrosting operation. Increase heat capacity. That is, the air conditioner 200 stores the high-boiling-point refrigerant contained in the non-azeotropic mixed refrigerant in the accumulator 18 and the low-boiling-point refrigerant contained in the non-azeotropic mixed refrigerant in the refrigerant circuit 30 during the defrosting operation. Circulate. Therefore, the defrosting time can be shortened. Other effects and the like are similar to those of the first and second embodiments.
  • control device 50 performs both the operation switching control and the refrigerant distribution control has been illustrated, but the present invention is not limited to this, and the control device 50 does not have the function of performing the operation switching control. May be. Further, the control device 50 may be configured to perform the refrigerant distribution control only in one of the dehumidifying operation and the cooling operation.
  • the air conditioner 100 does not have to have the function of performing the cooling operation and the defrosting operation, and in this case, the reheat on-off valve 2 becomes unnecessary. Therefore, in the main circuit 31, the compressor 1, the reheater 3, the first expansion valve 4, and the indoor heat exchanger 5 are sequentially connected by the main pipe 21. Further, in Embodiments 1 and 2, an example in which the liquid reservoir 8 is provided in the refrigerant circuit 30 has been shown, but the present invention is not limited to this, and the refrigerant circuit 30 in Embodiments 1 and 2 has the liquid reservoir 8. You don't have to.
  • the present invention is not limited to this, and at least the reheater 3 and the indoor heat exchanger 5 in the configuration of the main circuit 31 are illustrated. Should be placed in the air-conditioned space.
  • the refrigerant circuit 30 of the first to third embodiments may not have the bypass circuit 33. However, if the refrigerant circuit 30 is not provided with the bypass circuit 33, the defrosting operation in the flow path as in the first embodiment becomes impossible.
  • the invention is not limited to this, and the outdoor refrigerant leakage sensor 42 may be provided in the air-conditioned space and the outdoor unit 80. It may be provided outside.
  • control device 50 is provided inside the indoor unit 70
  • the present invention is not limited to this, and the control device 50 may be provided inside the outdoor unit 80.
  • the outdoor unit 80 is provided with an outdoor control device that controls the operation of each actuator of the outdoor unit 80 such as the outdoor blower 12, and the control device 50 and the outdoor control device cooperate to control the air conditioner 100 or 200. You may.
  • the processing of each on-off valve and each expansion valve at the time of refrigerant leakage illustrated in FIG. 15 can be applied to the configurations of the first and third embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷媒が循環する冷媒回路と、冷媒回路を制御する制御装置と、有する空気調和装置。冷媒回路は、圧縮機、再熱器、第1膨張弁、及び蒸発器が主配管により順次連結された主回路と、圧縮機と再熱器との間から第1膨張弁と蒸発器との間までをつなぐ冷却配管によって冷却開閉弁、凝縮器、及び第2膨張弁が連結された冷却回路と、を含む。再熱器及び蒸発器は、空調空間に配置され、凝縮器は、空調空間の外部に配置されている。制御装置は、除湿運転時において、再熱器による過冷却度が冷媒量適正範囲外であれば、外液温を用いた判定の結果に応じて冷却開閉弁又は第2膨張弁を制御するものである。また、制御装置は、冷却運転時において、凝縮器による過冷却度が冷媒量適正範囲外であれば、内液温を用いた判定の結果に応じて主回路の再熱開閉弁又は第1膨張弁を制御するものである。

Description

空気調和装置
 本発明は、再熱除湿運転を行う機能をもつ空気調和装置に関する。
 従来から、室内に設けられた再熱器及び蒸発器と室外に設けられた凝縮器とを有する空気調和装置が知られている(例えば、特許文献1参照)。特許文献1の空気調和装置は、再熱器に流す冷媒の量と、凝縮器に流す冷媒の量とを調整することにより、蒸発器の除湿能力を制御するようになっている。
特開2011-133171号公報
 しかしながら、特許文献1の空気調和装置は、室内の温度と外気温度との差異により、各熱交換器に分布する冷媒に偏りが発生し、冷却運転又は再熱除湿運転を行うとき、液バックが生じたり、過熱運転になったりすることがある。液バックが発生すると、圧縮機での液圧縮が発生し、圧縮機が故障する可能性がある。また、過熱運転になると、圧縮機、再熱器、膨張弁、及び蒸発器の間を循環する冷媒の量が不足することから、能力が低下し、吐出温度が上昇するため、運転を効率よく行うことができない。
 本発明は、上記のような課題を解決するためになされたものであり、冷媒回路に分布する冷媒の偏りを抑制し、運転効率の向上を図る空気調和装置を提供することを目的とする。
 本発明に係る空気調和装置は、圧縮機、再熱器、第1膨張弁、及び蒸発器が主配管により順次連結された主回路と、圧縮機と再熱器との間から第1膨張弁と蒸発器との間までをつなぐ冷却配管によって冷却開閉弁、凝縮器、及び第2膨張弁が連結された冷却回路とを含み、冷媒が循環する冷媒回路と、冷媒回路を制御する制御装置と、有し、再熱器及び蒸発器は、空調空間に配置され、凝縮器は、空調空間の外部に配置され、制御装置は、空調空間の空気の除湿を行う除湿運転時において、再熱器による過冷却度が、再熱器に分布する冷媒量が適正であることを示す冷媒量適正範囲外であれば、凝縮器から流出する冷媒の温度である外液温を用いた判定の結果に応じて冷却開閉弁又は第2膨張弁を制御するものである。
 本発明によれば、除湿運転時の再熱器による過冷却度が冷媒量適正範囲外であれば、制御装置が外液温を用いた判定の結果に応じて冷却開閉弁又は第2膨張弁を制御する。よって、再熱器の冷媒量を外液温に応じて調整することができるため、冷媒回路に分布する冷媒の偏りを抑制し、運転効率の向上を図ることができる。
本発明の実施の形態1に係る空気調和装置の全体的な構成図である。 図1の制御装置の機能的構成を概略的に示すブロック図である。 図1の空気調和装置の除湿運転時における冷媒回路の状態を示す説明図である。 図1の空気調和装置の中間運転時における冷媒回路の状態を示す説明図である。 図1の空気調和装置の冷却運転時における冷媒回路の状態を示す説明図である。 図1の空気調和装置の除霜運転時における冷媒回路の状態を示す説明図である。 図1の制御装置が運転切替制御を実施するタイミングを示す説明図である。 図1の制御装置による運転切替制御に関する動作を示すフローチャートである。 図1の制御装置による冷却運転時の冷媒分布制御を例示したフローチャートである。 図1の制御装置による除湿運転時の冷媒分布制御を例示したフローチャートである。 本発明の実施の形態2に係る室内熱交換器の具体的な構成を例示した説明図である。 非共沸混合冷媒のモリエル線図を例示した説明図である。 非共沸混合冷媒の温度勾配の具体例を示すモリエル線図である。 本発明の実施の形態2の空気調和装置における蒸発器及び再熱器の配置例を示す説明図である。 本発明の実施の形態2の空気調和装置における冷媒漏洩時の各開閉弁及び各膨張弁の状態を示す表である。 本発明の実施の形態3に係る空気調和装置の全体的な構成図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の全体的な構成図である。空気調和装置100は、部屋などの空調空間における空気の温度及び湿度を調整するものであり、再熱除湿運転を行う機能を有している。空気調和装置100は、図1に示すように、空調空間内に設置される室内機70と、空調空間の外部に設置される室外機80と、を有している。室内機70と室外機80とは、冷媒配管20によって接続されている。以降では、空調空間内のことを室内ともいい、空調空間の外部のことを室外ともいう。
 室内機70は、例えば、空調空間の床に置かれる床置型除湿機、又は天井に設けられた天埋型除湿機もしくは天吊型除湿機などである。室内機70には、圧縮機1、再熱開閉弁2、再熱器3、第1膨張弁4、室内熱交換器5、冷却開閉弁6、第2膨張弁9、及び除霜開閉弁10が収容されている。室外機80は、屋外又は機械室などに設置される。室外機80には、室外熱交換器7及び液溜め8が収容されている。すなわち、空気調和装置100は、圧縮機1、再熱開閉弁2、再熱器3、第1膨張弁4、室内熱交換器5、冷却開閉弁6、室外熱交換器7、液溜め8、第2膨張弁9、及び除霜開閉弁10が冷媒配管20により接続され、冷媒が循環する冷媒回路30を有している。
 冷媒回路30を循環させる冷媒としては、単一混合冷媒、擬似単一混合冷媒、又は非共沸混合冷媒などを用いることができる。非共沸混合冷媒としては、例えば、R32、R125、R134a、r1234yf、及びCOの混合冷媒を用いることができる。この非共沸混合冷媒は、R32の組成が49wt%~55wt%であり、R125の組成が16wt%~22wt%であり、R134aの組成が7wt%~13wt%であり、r1234yfの組成が6wt%~12wt%であり、COの組成が7wt%~13wt%であり、合計が100wt%となる組成比をもつ。また、非共沸混合冷媒としては、上記以外の組成をもつ非共沸混合冷媒であるR448A、R449A、又はR407Fなどを採用してもよい。
 冷媒配管20は、主配管21と、冷却配管22と、バイパス配管23と、により構成されている。主配管21は、圧縮機1と再熱開閉弁2と再熱器3と第1膨張弁4と室内熱交換器5とを順次環状に連結する配管である。つまり、冷媒回路30は、圧縮機1、再熱開閉弁2、再熱器3、第1膨張弁4、及び室内熱交換器5が主配管21により接続されて形成された主回路31を含む。
 冷却配管22は、圧縮機1と再熱器3との間から第1膨張弁4と室内熱交換器5との間までをつなぐ配管である。より具体的に、冷却配管22は、圧縮機1と再熱開閉弁2との間の主配管21と、第1膨張弁4と室内熱交換器5との間の主配管21とを接続し、冷却開閉弁6と室外熱交換器7と液溜め8と第2膨張弁9とを連結する配管である。つまり、冷媒回路30は、冷却開閉弁6、室外熱交換器7、液溜め8、及び第2膨張弁9が冷却配管22により連結された開回路である冷却回路32を含む。ここで、圧縮機1と再熱開閉弁2との間の主配管21と、冷却配管22との接続部分を、第1接続部Mという。また、第1膨張弁4と室内熱交換器5との間と、冷却配管22との接続部分を、第2接続部Nという。
 バイパス配管23は、圧縮機1の吐出側から再熱器3と第1膨張弁4との間までをつなぐ配管である。本実施の形態1において、圧縮機1の吐出側とは、圧縮機1と第1接続部Mとの間のことである。より具体的に、バイパス配管23は、圧縮機1と第1接続部Mとの間の主配管21と、再熱器3と第1膨張弁4との間の主配管21とを接続する配管であり、バイパス配管23を開閉する除霜開閉弁10が設けられている。つまり、冷媒回路30は、バイパス配管23に除霜開閉弁10が設けられた開回路であるバイパス回路33を含む。ここで、図1に示すように、再熱器3及び第1膨張弁4と、室外熱交換器7及び第2膨張弁9とは、並列に接続されている。
 圧縮機1は、冷媒を吸入して圧縮し、高温高圧のガス状態にして吐出する。圧縮機1は、例えば、インバータ回路等によって回転数が制御され、冷媒の吐出量の調整が可能な圧縮機である。もっとも、圧縮機1は、一定の回転数で動作する一定速の圧縮機であってもよい。
 再熱器3、室内熱交換器5、及び室外熱交換器7は、例えば、冷媒が流れる配管と、該配管に取り付けられたフィンとにより形成されたフィンアンドチューブ型熱交換器である。再熱器3は、圧縮機1で圧縮された冷媒と空気との間で熱交換させることにより、冷媒を凝縮させる。空気調和装置100では、室内熱交換器5と再熱器3とが共通する風路上に設けられている。
 室内熱交換器5は、冷媒を蒸発させる蒸発器(冷却器)として機能する空気熱交換器である。つまり、室内熱交換器5は、第1膨張弁4及び第2膨張弁9のうちの少なくとも一方で膨張された冷媒と空気との間で熱交換させることにより、冷媒を蒸発させる。室外熱交換器7は、冷媒を凝縮させる凝縮器として機能する空気熱交換器である。つまり、室外熱交換器7は、圧縮機1で圧縮された冷媒と空気との間で熱交換させることにより、冷媒を凝縮させる。
 第1膨張弁4は、例えば電子膨張弁からなり、再熱器3の下流に配置されている。第1膨張弁4は、再熱器3で凝縮された冷媒を膨張させる。第2膨張弁9は、例えば電子膨張弁からなり、室外熱交換器7の下流に配置されている。第2膨張弁9は、室外熱交換器7で凝縮された冷媒を膨張させる。
 再熱開閉弁2、冷却開閉弁6、及び除霜開閉弁10は、例えば、開状態と閉状態とを有する電磁弁であり、開状態において冷媒を通過させる。再熱開閉弁2は、閉状態のとき、第1接続部Mを経由して再熱器3に流れようとする冷媒を遮断する。冷却開閉弁6は、閉状態のとき、第1接続部Mを経由して室外熱交換器7に流れようとする冷媒を遮断する。除霜開閉弁10は、閉状態のとき、バイパス配管23に流れようとする冷媒を遮断する。液溜め8は、余剰冷媒を貯留する部材である。
 また、室内機70には、室内熱交換器5及び再熱器3に風を送る室内送風機11が設けられている。室外機80には、室外熱交換器7に付設され、室外熱交換器7に風を送る室外送風機12が設けられている。本実施の形態1において、室内送風機11および室外送風機12は、例えばインバータ回路等によって回転数を制御され、送風量の調整が可能な送風機である。
 さらに、室内機70には、室内冷媒漏洩センサ41と、制御装置50と、圧力センサ61~63と、冷媒温度センサ65~68と、空気温度センサ91と、が設けられている。室外機80には、圧力センサ64と、冷媒温度センサ69と、空気温度センサ92と、が設けられている。
 圧力センサ61は、圧縮機1の吸入側に設けられ、圧縮機1によって吸入される冷媒の圧力である低圧圧力を計測する。圧力センサ62は、圧縮機1の吐出側に設けられ、圧縮機1から吐出される冷媒の圧力である高圧圧力を計測する。圧力センサ63は、再熱器3の出口側、すなわち再熱器3の出口又は出口近傍に設けられ、再熱器3から流出する冷媒の圧力である再熱器出口圧力を計測する。圧力センサ64は、室外熱交換器7の出口側、すなわち室外熱交換器7の出口又は出口近傍に設けられ、室外熱交換器7から流出する冷媒の圧力である凝縮器出口圧力を計測する。
 冷媒温度センサ65~69は、例えばサーミスタにより構成される。冷媒温度センサ65は、圧縮機1の吸入側に設けられ、圧縮機1に吸入される冷媒の温度である吸入温度を計測する。冷媒温度センサ66は、圧縮機1の吐出側に設けられ、圧縮機1から吐出される冷媒の温度である吐出温度を計測する。冷媒温度センサ67は、再熱器3の出口側に設けられ、再熱器3から流出する冷媒の温度である再熱器出口温度(内液温)を計測する。冷媒温度センサ68は、室内熱交換器5の出口側に設けられ、室内熱交換器5から流出する冷媒の温度(蒸発器出口温度)を計測する。冷媒温度センサ69は、室外熱交換器7の出口側に設けられ、室外熱交換器7から流出する冷媒の温度である凝縮器出口温度(外液温)を計測する。
 空気温度センサ91及び92は、例えばサーミスタにより構成される。空気温度センサ91は、室内機70の吸込口などに設けられ、空調空間の温度を室内温度として計測する。空気温度センサ92は、室外機80に設けられ、屋外又は機械室などの温度を外気温度として計測する。
 室内冷媒漏洩センサ41は、空調空間内に設けられ、冷媒の漏洩を検知する。室外冷媒漏洩センサ42は、空調空間の外部に設けられ、冷媒の漏洩を検知する。室内冷媒漏洩センサ41及び室外冷媒漏洩センサ42は、冷媒の漏洩を検知したとき、冷媒漏洩の発生を示す漏洩信号を制御装置50へ出力する。各圧力センサは、それぞれ、計測した圧力のデータを制御装置50へ出力する。各温度センサは、それぞれ、計測した温度のデータを制御装置50へ出力する。すなわち、各冷媒漏洩センサ、各圧力センサ、及び各温度センサは、電気的又は光学的に制御装置50と接続されている。
 また、室内機70には、スピーカ及び発光体のうちの少なくとも1つを含んで構成された異常報知器45が設けられている。発光体としては、LED(発光ダイオード)などを用いることができる。異常報知器45は、制御装置50からの指示に応じて、音、音声、又は光などを出力することにより、異常の発生を報知する。
 制御装置50は、冷媒回路30を制御するものである。すなわち、制御装置50は、各圧力センサ及び各温度センサの出力を取得して、圧縮機1、再熱開閉弁2、第1膨張弁4、冷却開閉弁6、第2膨張弁9、及び除霜開閉弁10などの各種アクチュエータを制御する。また、制御装置50は、異常が生じたときに異常報知器45に異常発生の旨を報知させる。本実施の形態1の制御装置50は、各冷媒漏洩センサにより、冷媒漏洩の異常を検知したとき、異常報知器45に、音、音声、又は光などを出力させる。
 制御装置50は、例えば、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、を含んで構成される。RAMは、各種データを記憶する揮発性の記憶媒体である。ROMは、後述する各運転モードによる運転制御を制御装置50に実行させるための動作プログラムなどを記憶する不揮発性の記憶媒体である。制御装置50は、ROM内の動作プログラムにしたがって、圧縮機1、再熱開閉弁2、第1膨張弁4、冷却開閉弁6、第2膨張弁9、及び除霜開閉弁10などを適宜制御し、各運転モードによる空調を実施する。すなわち、制御装置50は、CPUなどの演算装置と、こうした演算装置と協働して下記の各種機能を実現させる動作プログラムとによって構成することができる。
 ここで、室内機70における空気の流れについて概略的に説明する。室内送風機11が動作すると、室内機70に空気が取り込まれる。室内機70に取り込まれた空気は、蒸発器として機能する室内熱交換器5を通過して、絶対湿度が低下する。つまり、水分を含んだ空気が室内熱交換器5を通過することで、空気中の水分が室内熱交換器5に結露するため、空気の絶対湿度が低下する。室内熱交換器5を通過することで絶対湿度が低下し、温度が低下した空気は、相対湿度が高い冷たい空気となっている。室内熱交換器5を通過した空気は、再熱器3を通過することにより再加熱され、相対湿度が低下する。そして、再熱器3を通過して相対湿度が低下した空気は、室内に吹き出される。上記の通り、室内機70に取り込まれた空気は、相対湿度が低下して状態で室内に吹き出されるため、室内の相対湿度が低下する。これは、後述する除湿運転時又は中間運転時の室内機70における空気の流れである。
 図2は、図1の制御装置の機能的構成を概略的に示すブロック図である。制御装置50は、演算処理部51と、記憶部52と、を有している。演算処理部51は、設定処理部51aと、動作制御部51bと、余剰冷媒検出部51cと、漏洩処理部51dと、を有している。設定処理部51aは、空気調和装置100の操作用のコントロール装置(図示せず)などから、ユーザによる操作及び設定の内容を示す操作信号を受け付ける。そして、設定処理部51aは、操作信号に応じて、運転モード、目標温度、及び目標湿度などの設定を行う。
 余剰冷媒検出部51cは、下記の何れかの方法により余剰冷媒の発生を検出するものであり、余剰冷媒の発生を検出したときに、動作制御部51bへ検出信号を出力する。例えば、余剰冷媒検出部51cは、過冷却度を求めると共に、求めた過冷却度が過冷却閾値よりも大きいか否かを判定するように構成することができる。この判定は、余剰冷媒が発生しているときに過冷却度が大きくなることを利用したものである。つまり、余剰冷媒検出部51cは、求めた過冷却度が過冷却閾値よりも大きい場合に、動作制御部51bへ検出信号を出力する。
 また、余剰冷媒の検出には、余剰冷媒が発生しているときに冷媒の吐出温度が低くなることを利用してもよい。つまり、余剰冷媒検出部51cは、冷媒温度センサ66から吐出温度を取得し、取得した吐出温度が吐出閾値よりも小さいか否かを判定してもよい。そして、余剰冷媒検出部51cは、吐出温度が吐出閾値よりも小さいときに、動作制御部51bへ検出信号を出力してもよい。
 さらに、余剰冷媒の検出には、余剰冷媒が発生しているときに高圧圧力が上昇することを利用してもよい。つまり、余剰冷媒検出部51cは、圧力センサ62から高圧圧力を取得し、取得した高圧圧力が高圧閾値よりも大きいか否かを判定してもよい。そして、余剰冷媒検出部51cは、高圧圧力が高圧閾値よりも大きいときに、動作制御部51bへ検出信号を出力してもよい。
 加えて、余剰冷媒の検出には、余剰冷媒が発生しているときに低圧圧力が上昇することを利用してもよい。つまり、余剰冷媒検出部51cは、圧力センサ61から低圧圧力を取得し、取得した低圧圧力が低圧閾値よりも大きいか否かを判定してもよい。そして、余剰冷媒検出部51cは、低圧圧力が低圧閾値よりも大きいときに、動作制御部51bへ検出信号を出力してもよい。
 漏洩処理部51dは、室内冷媒漏洩センサ41及び室外冷媒漏洩センサ42のそれぞれから漏洩信号を取得する。漏洩処理部51dは、室内冷媒漏洩センサ41から漏洩信号が出力された場合、室内での冷媒漏洩の発生を示す室内漏洩信号を動作制御部51bへ出力する。漏洩処理部51dは、室外冷媒漏洩センサ42から漏洩信号が出力された場合、室外での冷媒漏洩の発生を示す室外漏洩信号を動作制御部51bへ出力する。
 また、漏洩処理部51dは、室内冷媒漏洩センサ41及び室外冷媒漏洩センサ42の少なくとも一方から漏洩信号が出力されたとき、異常報知器45に、音、音声、又は光などを出力させる。漏洩処理部51dは、室内冷媒漏洩センサ41から漏洩信号を取得した場合と、室外冷媒漏洩センサ42から漏洩信号を取得した場合とで、異なる音、音声、又は光などを、異常報知器45に出力させてもよい。
 動作制御部51bは、各圧力センサ及び各温度センサから定期的に計測データを取得する。そして、動作制御部51bは、設定処理部51aによる設定内容に応じて、取得した計測データを用い、空気調和装置100の各アクチュエータの動作を制御する。動作制御部51bは、例えば、圧縮機1の圧縮機モータ1a、室内送風機11のファンモータ11a、及び室外送風機12のファンモータ12aの回転数を制御する。
 動作制御部51bは、ユーザの操作又はデフォルトの設定により、運転モードが除湿運転モードに設定されている場合、空気調和装置100に、空調空間の空気の除湿を行う除湿運転を実行させる。動作制御部51bは、運転モードが中間運転モードに設定されている場合、空気調和装置100に中間運転を実行させる。動作制御部51bは、運転モードが冷却運転モードに設定されている場合、空気調和装置100に、空調空間の空気の冷却を行う冷却運転を実行させる。動作制御部51bは、運転モードが除霜運転モードに設定されている場合、室内熱交換器5に付着した霜を溶かす除霜運転を空気調和装置100に実行させる。
 例えば、動作制御部51bは、除湿運転時に冷却開閉弁6を閉状態にする。動作制御部51bは、除湿運転時に、第2膨張弁9を全閉の状態にしてもよい。このようにすれば、冷却回路32から主回路31への冷媒の流入を防ぐことができる。また、動作制御部51bは、冷却運転時に再熱開閉弁2を閉状態にする。動作制御部51bは、冷却運転時に、第1膨張弁4を全閉の状態にしてもよい。このようにすれば、再熱器3などに滞留している冷媒の室内熱交換器5への流入を防ぐことができる。
 また、動作制御部51bは、圧縮機1の起動時、及び運転モードの切り替え時に、冷媒回路30における冷媒を平準化するための運転切替制御を行う機能を有している。さらに、動作制御部51bは、各運転モードでの運転中において、冷媒回路30の状態を示す状態値に基づき、冷媒回路30における冷媒分布を適正にするための冷媒分布制御を実施する。運転切替制御及び冷媒分布制御の具体的な内容については後述する。
 加えて、動作制御部51bは、余剰冷媒が発生したとき、空気調和装置100に、後述する冷媒量調整運転を実行させる。つまり、動作制御部51bは、余剰冷媒検出部51cから検出信号が出力されたときに、再熱器3の性能を維持させつつ余剰冷媒を液溜め8に貯留させる冷媒量調整制御を実行する。
 さらに、動作制御部51bは、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、つまり漏洩処理部51dから室内漏洩信号が出力されたとき、再熱開閉弁2を閉状態にし、第2膨張弁9を全閉の状態にする。これにより、第1接続部Mから再熱器3へ流れる冷媒を遮断し、室内の冷媒を室外熱交換器7及び液溜め8に貯留することができるため、室内への冷媒の漏洩を抑制することができる。動作制御部51bは、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、第1膨張弁4を全閉の状態にしてもよい。このようにすれば、再熱器3などに滞留している冷媒の室内熱交換器5側への流入を防ぐことができる。そのため、冷媒の漏洩箇所が、第2接続部Nから室内熱交換器5及び圧縮機1を経て第1接続部Mまでの流路に存在する場合に、室内へのさらなる冷媒漏洩を抑制することができる。また、動作制御部51bは、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、再熱開閉弁2及び除霜開閉弁10を閉状態とし、第1膨張弁4を全閉の状態とすることで、再熱開閉弁2から再熱器3を経て第1膨張弁4までの冷媒回路を独立させ、冷媒漏洩箇所の特定を促進してもよい。
 また、動作制御部51bは、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、つまり漏洩処理部51dから室外漏洩信号が出力されたとき、冷却開閉弁6を閉状態にし、第1膨張弁4を全閉の状態にする。これにより、室外への冷媒の流れを遮断し、室外の冷媒を室内熱交換器5に貯蔵することができるため、室外での冷媒の漏洩を抑制することができる。動作制御部51bは、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、冷却開閉弁6を閉状態にすると共に第2膨張弁9を全閉の状態にして、冷却開閉弁6から第2膨張弁9までの冷媒回路を独立させることにより、冷媒の漏洩箇所の特定を促進してもよい。
 記憶部52には、制御装置50の動作プログラムが記憶されている。また、記憶部52には、空調制御に関する種々のデータが記憶される。例えば、記憶部52には、運転モード、目標温度、及び目標湿度などの設定内容のデータが記憶される。また、記憶部52には、過冷却閾値、吐出閾値、高圧閾値、又は低圧閾値などの、余剰冷媒の発生を検出する際の基準となる閾値の情報が記憶される。なお、過冷却閾値、吐出閾値、高圧閾値、及び低圧閾値は、予め設定されており、適宜設定変更することができる。
 図3は、図1の空気調和装置の除湿運転時における冷媒回路の状態を示す説明図である。図4は、図1の空気調和装置の中間運転時における冷媒回路の状態を示す説明図である。図5は、図1の空気調和装置の冷却運転時における冷媒回路の状態を示す説明図である。図6は、図1の空気調和装置の除霜運転時における冷媒回路の状態を示す説明図である。図3~図6では、開状態の開閉弁を白抜きで示し、閉状態の開閉弁を黒塗りで示す。また、図3~図6では、冷媒の流れを矢印つきの破線で示す。図3~図6を参照して、各運転モードにおける弁制御及び冷媒の流れについて説明する。
[除湿運転]
 図3に示すように、除湿運転時は、冷却開閉弁6及び除霜開閉弁10が閉状態にあり、再熱開閉弁2が開状態にある。つまり、制御装置50は、除湿運転モードに設定されている場合、再熱開閉弁2を開状態とし、冷却開閉弁6及び除霜開閉弁10を閉状態とする。
 したがって、圧縮機1から吐出された高温高圧のガス冷媒は、吐出配管を経て再熱器3に流入する。ここで、室内送風機11によって送風され、室内熱交換器5を通過した室内空気は、再熱器3を通過するようになっている。よって、再熱器3に流入した高温高圧のガス冷媒は、再熱器3を通過する室内空気と熱交換して放熱し、凝縮して液化する。そして、再熱器3から流出した冷媒は、液配管を経て第1膨張弁4で減圧され、気液二相冷媒となって室内熱交換器5に流入する。室内熱交換器5に流入した気液二相冷媒は、室内送風機11によって送風される室内空気との熱交換により吸熱してガス化し、低温低圧のガス冷媒となって圧縮機1に戻る。
 ここで、室内送風機11により室内機70を循環する空気は、室内熱交換器5を流れる低温低圧の気液二相冷媒によって冷却され、その温度が露点以下まで低下する。これにより、室内熱交換器5の表面で室内空気中の水分が結露し、室内空気が除湿される。その後、室内熱交換器5を通過した空気は、再熱器3で高温高圧のガス冷媒により加熱されて昇温し、相対湿度が低下する。
 このように、空気調和装置100は、除湿運転時に、冷却開閉弁6を閉状態にすることで、冷凍サイクル内の放熱をすべて室内で行う。つまり、空気調和装置100は、圧縮機1により冷媒に加わる熱量、及び空気中の水蒸気の凝縮潜熱の分だけ室内空気を加熱する運転を行う。したがって、除湿運転時の空気調和装置100に吸い込まれた室内空気は、加熱されると同時に除湿される。
[中間運転]
 図4に示すように、空調空間の空気の除湿と冷却とを同時に行う中間運転時は、再熱開閉弁2及び冷却開閉弁6が開状態にあり、除霜開閉弁10が閉状態にある。つまり、制御装置50は、中間運転モードに設定されている場合、再熱開閉弁2及び冷却開閉弁6を開状態とし、除霜開閉弁10を閉状態とする。
 したがって、圧縮機1から吐出された高温高圧のガス冷媒は、吐出配管を経て、室外熱交換器7に流入すると共に、再熱器3に流入する。そして、室外熱交換器7および再熱器3で放熱して液化した冷媒は、液配管の下流に設置された第1膨張弁4及び第2膨張弁9で減圧されて気液二相冷媒となり、室内熱交換器5に流入する。室内熱交換器5に流入した気液二相冷媒は、室内熱交換器5で吸熱してガス化し、吸入配管を経て圧縮機1に吸入される。制御装置50は、中間運転において、室外送風機12に対し、外気温度及び高圧圧力に応じたオンオフ制御を行うと共に、室内送風機11に対し、常時オンにする制御を行う。
[冷却運転]
 図5に示すように、空調空間の空気を冷却する冷却運転時は、冷却開閉弁6が開状態にあり、再熱開閉弁2及び除霜開閉弁10が閉状態にある。つまり、制御装置50は、冷却運転モードに設定されている場合、再熱開閉弁2及び除霜開閉弁10を閉状態とし、除霜開閉弁10を閉状態とする。
 したがって、圧縮機1から吐出された高温高圧のガス冷媒は、吐出配管を経て室外熱交換器7に流入し、室外送風機12によって送風される室外空気と熱交換して放熱し、凝縮して液化する。そして、室外熱交換器7から流出した冷媒は、液配管を経て第1膨張弁4で減圧されて気液二相冷媒となり、室内熱交換器5に流入する。室内熱交換器5に流入した気液二相冷媒は、室内送風機11により送風される室内空気と熱交換して吸熱してガス化し、低温低圧のガス冷媒となって圧縮機1に戻る。つまり、室内送風機11により循環する空気は、室内熱交換器5において低温低圧の気液二相冷媒により冷却される。なお、冷却運転時の余剰冷媒は、適宜、液溜め8に貯留される。
 ここで、冷却運転は、室内の絶対湿度が低いとき、又は室内の温度を下げる優先度が高いときに実行するとよい。なぜなら、冷却運転により空気の温度が低下すると、相対湿度が高くなる。そして、相対湿度が高くなると、快適性が低下すると共に、室内が結露しやすくなるといった不都合が生じるためである。また、例えば、冷却運転により、空気の温度が低下して露点以下になると、室内熱交換器5の表面で室内空気中の水分が結露して通風抵抗が増大し、熱交換能力が低下するためである。
[除霜運転]
 除霜運転は、室内熱交換器5に霜が着き、熱交換器としての性能が低下した際に行う霜取り運転のことである。図6に示すように、除霜運転時は、再熱開閉弁2及び冷却開閉弁6が閉状態にあり、除霜開閉弁10が開状態にある。つまり、制御装置50は、除霜運転モードに設定されている場合、再熱開閉弁2及び冷却開閉弁6を閉状態とし、除霜開閉弁10を開状態とする。したがって、圧縮機1から吐出された高温高圧のガス冷媒は、吐出配管及びバイパス回路33を経て、第1膨張弁4で減圧され、室内熱交換器5に流入する。
 ここで、室内熱交換器5は、冷媒により加熱され、着氷した霜と熱交換して霜を溶かす。室内熱交換器5に流入した冷媒は、霜との熱交換により温度が低下して低温になった後、吸入管と熱交換して吸熱してガス化し、低温低圧のガス冷媒となって圧縮機1に戻る。このとき、制御装置50は、第1膨張弁4を最小開度にすることで、室内熱交換器5を通過する冷媒の量を調整し、液化した冷媒が圧縮機1に入ることを防ぐ。また、制御装置50は、室内送風機11をオフにする。よって、除霜運転時は、単純に、室内熱交換器5を通過する冷媒と、室内熱交換器5に付着した霜との間の熱交換のみが行われる。
 上記の各運転のうち、中間運転は、再熱器3及び室外熱交換器7に冷媒を流すため、必要とする冷媒量が相対的に多くなる。一方、除湿運転は、中間運転と比較して、必要とする冷媒の量が少ない。除湿運転では、再熱器3に冷媒が流れるが、室外熱交換器7には冷媒が流れないためである。したがって、除湿運転を行っているときは、余剰冷媒が発生することがある。そして、余剰冷媒が発生すると、高圧圧力が上昇する等の異常が発生するおそれがある。また、外気温度と室内の温度との温度差が大きくなっているときは、冷媒の偏りが生じやすいため、特に冷却運転及び除湿運転において余剰冷媒が発生するおそれがある。
 こうした事情を勘案して、本実施の形態1の空気調和装置100は、圧縮機1の起動時、及び運転モードの切り替え時に、冷媒回路30における冷媒の平準化、つまり冷媒分布の適正化を目的とした運転切替制御を実施する。また、空気調和装置100は、各運転モードに移行した後、運転中の状態値を用いた冷媒分布制御により、再熱器3及び室外熱交換器7に分布する冷媒量の適正化を図る。
[運転切替制御]
 まずは、各種の運転モードへ移行する前に動作制御部51bが行う運転切替制御について説明する。図7は、図1の制御装置が運転切替制御を実施するタイミングを示す説明図である。図7に示すように、動作制御部51bは、冷却運転、中間運転、又は除湿運転が指示されて圧縮機1を起動する際、運転切替制御を実施した後に、指示された運転を開始する。また、動作制御部51bは、冷却運転から中間運転もしくは除湿運転に切り替える際、中間運転から冷却運転もしくは除湿運転に切り替える際、除湿運転から中間運転もしくは冷却運転に切り替える際、運転切替制御を実施した後に、指示された運転、つまり切り替え後の運転を開始する。
 ユーザは、リモートコントローラなどのコントロール装置を介して、ある運転モードによる運転開始を指示する操作、及び運転モードの切り替えを指示する操作を行うことができる。コントロール装置は、運転開始を指示する操作を受け付けると、制御装置50の設定処理部51aへ運転指示を送信する。コントロール装置は、運転モードの切り替えを指示する操作を受け付けると、制御装置50の設定処理部51aへ運転切替指示を送信する。設定処理部51aは、コントロール装置から運転指示又は運転切替指示を受信したとき、運転切替制御を実行する。
 運転切替制御時において、動作制御部51bは、中間運転のときと同様、再熱開閉弁2と冷却開閉弁6との双方を開状態とし、除霜開閉弁10を閉状態とする。そして、動作制御部51bは、再熱器3の下流に設けられた第1膨張弁4と、室外熱交換器7の下流に設けられた第2膨張弁9とを用いて、冷媒回路30内の冷媒を平準化するための冷媒平準化処理を実行する。
 冷媒平準化処理において、動作制御部51bは、第2膨張弁9を用いたSC制御(サブクール制御)により冷凍サイクルを構成することで、室外熱交換器7に分布する冷媒量を適正な状態とする。つまり、動作制御部51bは、例えば、室外熱交換器7の出口の冷媒の温度を利用して、室外熱交換器7による過冷却度が凝縮器適正範囲内に収まるように、第2膨張弁9の開度を制御する。本実施の形態1の凝縮器適正範囲は、判定値Xを基準として定まり、室外熱交換器7の冷媒量が適正であることを示す範囲である。判定値Xは、例えば5[K]に設定され、冷媒回路30の構成などに応じて適宜変更することができる。以降では、室外熱交換器7による過冷却度、つまり凝縮器による過冷却度のことを「外液SC」ともいう。
 より具体的に、凝縮器適正範囲は、判定値Xを係数αで減算した値から、判定値Xに係数βを加算した値までの範囲である。判定値X、係数α、及び係数βは、外液SCが凝縮器適正範囲内であれば、室外熱交換器7に分布する冷媒が適正量となるように設定される。係数α及び係数βは、それぞれ、0又は正の値であり、冷媒回路30の構成などに応じて設定され、適宜変更することができる。係数αと係数βとは同じ値であってもよく、異なる値であってもよい。係数α及び係数βは、1[K]~2[K]程度の値に設定するとよい。
 動作制御部51bは、冷媒温度センサ69において計測された外液温を用いて外液SCを求める。動作制御部51bは、外液SCを求める際、圧力センサ62から高圧圧力を取得すると共に、冷媒温度センサ67から内液温を取得する。動作制御部51bは、高圧圧力を飽和換算して凝縮温度CTを求め、求めた凝縮温度CTから外液温を減算することにより外液SCを求める。そして、動作制御部51bは、求めた外液SCに応じて第2膨張弁9を制御することにより、室外熱交換器7に分布する冷媒量を調整する。動作制御部51bは、圧力センサ62から取得する高圧圧力の代わりに、圧力センサ64から取得する凝縮器出口圧力を用いて凝縮温度CTを求めてもよい。
 また、冷媒平準化処理において、動作制御部51bは、第1膨張弁4を用いたSH制御(スーパーヒート制御)により冷凍サイクルを構成することで、余剰冷媒による液バックの防止を図ると共に、再熱器3及び室外熱交換器7に冷媒を貯留させる処理を実行する。つまり、動作制御部51bは、室内熱交換器5による過熱度(SH)が冷媒調整範囲内に収まるように、第1膨張弁4のSH制御を実行する。これにより、余剰冷媒が液溜め8に貯留され、圧縮機1への液戻りを抑制することができる。以降では、室内熱交換器5による過熱度、つまり蒸発器による過熱度のことを「吸入SH」ともいう。本実施の形態1の冷媒調整範囲は、判定値Pを基準として定まり、冷媒回路30における冷媒分布が適正であることを示す範囲である。
 より具体的に、冷媒調整範囲は、判定値Pを係数γで減算した値から、判定値Pに係数δを加算した値までの範囲である。判定値P、係数γ、及び係数δは、吸入SHが冷媒調整範囲内であれば、各凝縮器に冷媒が貯留され、余剰冷媒による液バックが防止できるように設定される。判定値Pは、例えば5[K]に設定され、冷媒回路30の構成などに応じて適宜変更することができる。係数γ及び係数δは、それぞれ、0又は正の値であり、冷媒回路30の構成などに応じて設定され、適宜変更することができる。係数γと係数δとは同じ値であってもよく、異なる値であってもよい。係数γ及び係数δは、1[K]~2[K]程度の値に設定するとよい。
 動作制御部51bは、吸入SHを求める際、圧力センサ61から低圧圧力を取得すると共に、冷媒温度センサ65から吸入温度を取得する。そして、動作制御部51bは、低圧圧力を飽和換算して蒸発温度ETを求め、吸入温度から蒸発温度ETを減算することにより、吸入SHを求める。もっとも、室内熱交換器5に冷媒温度センサを設け、当該冷媒センサによる計測温度を、制御装置50が蒸発温度ETとして用いるようにしてもよい。
 すなわち、動作制御部51bは、冷媒平準化処理において、「外液SC≒判定値X」かつ「吸入SH≒判定値P」という平準化条件を満たすか否かの判定を実行する。動作制御部51bは、予め決められた設定時間中に平準化条件を満たせば、指示された運転、つまり運転指示又は運転切替指示に示される運転を開始する。動作制御部51bは、設定時間中に平準化条件を満たさなくても、運転切替制御を開始してから設定時間が経過したときに、指示された運転を開始する。設定時間は、例えば5分に設定され、冷媒回路30の構成などに応じて適宜変更することができる。なお、平準化条件については、下記の動作説明において詳細に説明する。
[冷媒分布制御]
 次に、各運転に移行した後、運転中の状態値をもとに動作制御部51bが行う冷媒分布制御について説明する。本実施の形態1において、動作制御部51bは、前述の運転切替制御を実行し、冷却運転又は除湿運転に切り替わった場合に、運転中の状態値に基づく冷媒分布制御を実行する。
(冷却運転時の冷媒分布制御)
 冷却運転時において、動作制御部51bは、例えば、室外熱交換器7の出口の冷媒の温度を利用して、第2膨張弁9の開度を制御すると共に、再熱開閉弁2の開閉状態と第1膨張弁4の開度とを制御する。つまり、動作制御部51bは、冷媒温度センサ69において計測された外液温を用いて外液SCを求める。動作制御部51bは、外液SCを求める際、圧力センサ62から高圧圧力を取得すると共に、冷媒温度センサ69から外液温を取得する。そして、動作制御部51bは、高圧圧力を飽和換算して凝縮温度CTを求め、求めた凝縮温度CTから外液温を減算することにより外液SCを求める。動作制御部51bは、求めた外液SCに応じて、第2膨張弁9を制御すると共に、再熱開閉弁2及び第1膨張弁4を制御することで、室外熱交換器7に分布する冷媒量を調整する。動作制御部51bは、圧力センサ62から取得する高圧圧力の代わりに、圧力センサ64から取得する凝縮器出口圧力を用いて凝縮温度CTを求めてもよい。
 動作制御部51bは、外液SCをもとに、冷却運転時における冷媒量の過不足を判断する。すなわち、動作制御部51bは、外液SCが冷媒量適正範囲内であるか否かを判定する。本実施の形態1の冷媒量適正範囲は、判定値Yを基準として定まり、室外熱交換器7に分布する冷媒量が適正であることを示す範囲である。判定値Yは、例えば5[K]に設定され、冷媒回路30の構成などに応じて適宜変更される。
 より具体的に、冷却運転時における冷媒量適正範囲は、判定値Yを係数aで減算した値から判定値Yに係数bを加算した値までの範囲である。係数a及び係数bは、それぞれ、0又は正の値であり、冷媒回路30の構成などに応じて設定され、適宜変更される。判定値Y、係数a、及び係数bは、外液SCが冷媒量適正範囲内であれば、冷却運転時の室外熱交換器7に分布する冷媒が適正量となるように設定される。以降では、冷媒量適正範囲の下限値であって、判定値Yを係数aで減算した値のことを「冷却下限値」といい、冷媒量適正範囲の上限値であって、判定値Yに係数bを加算した値のことを「冷却上限値」ともいう。係数aと係数bとは、同じ値であってもよく、異なる値であってもよい。
 したがって、外液SCが冷媒量適正範囲内であることは、室外熱交換器7に分布する冷媒が適正量であることに相当する。外液SCが冷却上限値よりも大きいことは、室外熱交換器7に分布する冷媒が過多であることに相当する。外液SCが冷却下限値よりも小さいことは、室外熱交換器7に分布する冷媒が不足していることに相当する。
 動作制御部51bは、外液SCが冷却下限値よりも小さければ、凝縮温度CTが高圧異常を回避するための判定閾値よりも低いという室外高圧保護条件と、内液温が蒸発温度ETよりも高いという室内冷媒排出条件との双方を満たすか否かを判定する。
 室外高圧保護条件は、冷媒の分布を室外側に多くした際に高圧異常とならないようにすることを意図した条件である。本実施の形態1において、冷却運転時の判定閾値は、保護凝縮温度CTmaxを判定値Yで減算した値である。保護凝縮温度CTmaxは、高圧保護が実施される閾値であり、平常時の凝縮温度CTよりも高く設定される。つまり、動作制御部51bは、凝縮温度CTが保護凝縮温度CTmaxに到達したときに高圧保護を実施するようになっている。室内冷媒排出条件は、室内側からの冷媒排出、つまり再熱器3から室内熱交換器5へ向けての冷媒補填を実施するにあたり、差圧による冷媒排出の可否を判定するための条件である。
 動作制御部51bは、室外高圧保護条件及び室内冷媒排出条件を満たせば、第1膨張弁4を最小開度にして、再熱器3から室内熱交換器5に向けて冷媒が流れる状態とし、室内熱交換器5を通過する冷媒の量を調整する。そして、動作制御部51bは、第1膨張弁4を最小開度にしてから調整基準時間が経過するまでの間において、外液SCが貯留基準範囲内であるという条件を満たしたとき、第1膨張弁4を全閉の状態にして冷媒分布制御を終了する。調整基準時間は、例えば5分に設定され、適宜変更することができる。
 動作制御部51bは、外液SCが冷却上限値より大きければ、冷媒温度センサ67において計測された内液温が凝縮温度CT未満であるか否かを判定する。この判定は、室内側への冷媒排出を実施するにあたり、差圧による冷媒排出の可否を判断するためのものである。すなわち、動作制御部51bは、内液温が凝縮温度CT未満であれば、再熱開閉弁2を開状態にして、室外熱交換器7へ流れる冷媒を再熱器3に分散させることにより、再熱器3に冷媒を貯留する。
 また、動作制御部51bは、再熱開閉弁2を開状態にしてから開閉基準時間が経過するまでの間において、外液SCが貯留基準範囲内であるという条件を満たしたとき、再熱開閉弁2を閉状態にして、冷媒分布制御を終了する。開閉基準時間は、例えば5分に設定され、適宜変更することができる。冷却運転時の貯留基準範囲は、判定値Yを基準として定まり、再熱器3への適正な冷媒貯留量に対応する範囲である。より具体的に、貯留基準範囲は、判定値Yを係数cで減算した値から、判定値Yに係数dを加算した値までの範囲である。判定値Y、係数c、及び係数dは、外液SCが貯留基準範囲内であれば、再熱器3の冷媒貯留量が適正、つまり室外熱交換器7に分布する冷媒量が適正となるように設定される。係数c及び係数dは、それぞれ、0又は正の値であり、冷媒回路30の構成などに応じて設定され、適宜変更することができる。係数cと係数dとは、同じ値であってもよく、異なる値であってもよい。
(除湿運転の冷媒分布制御)
 除湿運転時において、動作制御部51bは、例えば、再熱器3の出口の冷媒の温度を利用して、第1膨張弁4の開度を制御する。つまり、動作制御部51bは、冷媒温度センサ67において計測された内液温を用いて再熱器3による過冷却度を求める。以降では、再熱器3による過冷却度のことを「内液SC」ともいう。動作制御部51bは、内液SCを求める際、圧力センサ62から高圧圧力を取得すると共に、冷媒温度センサ67から内液温を取得する。そして、動作制御部51bは、高圧圧力を飽和換算して凝縮温度を求め、凝縮温度から内液温を減算することにより内液SCを求める。動作制御部51bは、求めた内液SCに応じて、第1膨張弁4を制御すると共に、冷却開閉弁6及び第2膨張弁9を制御することで、再熱器3に分布する冷媒量を調整する。動作制御部51bは、圧力センサ62から取得する高圧圧力の代わりに、圧力センサ63から取得する再熱器出口圧力を用いて凝縮温度を求めてもよい。
 動作制御部51bは、内液SCをもとに、除湿運転時における冷媒量の過不足を判断する。すなわち、動作制御部51bは、内液SCが冷媒量適正範囲内であるか否かを判定する。冷媒量適正範囲は、設定された判定値Zを基準として定まり、再熱器3に分布する冷媒量が適正であることを示す範囲である。判定値Zは、例えば5[K]に設定され、冷媒回路30の構成などに応じて適宜変更される。
 本実施の形態1において、除湿運転時における冷媒量適正範囲は、判定値Zを係数eで減算した値から判定値Zに係数fを加算した値までの範囲である。係数e及び係数fは、それぞれ、0又は正の値であり、冷媒回路30の構成などに応じて設定され、適宜変更される。係数eと係数fとは、同じ値であってもよく、異なる値であってもよい。判定値Z、係数e、及び係数fは、内液SCが冷媒量適正範囲内であれば、除湿運転時の再熱器3に分布する冷媒が適正量となるように設定される。以降では、冷媒量適正範囲の下限値である判定値Zを係数eで減算した値のことを「除湿下限値」といい、冷媒量適正範囲の上限値である判定値Zに係数fを加算した値のことを「除湿上限値」ともいう。
 したがって、内液SCが冷媒量適正範囲内であることは、再熱器3に分布する冷媒が適正量であることに相当する。内液SCが除湿上限値よりも大きいことは、再熱器3に分布する冷媒が過多であることに相当する。内液SCが除湿下限値よりも小さいことは、再熱器3に分布する冷媒が不足していることに相当する。
 動作制御部51bは、内液SCが除湿下限値よりも小さければ、凝縮温度CTが高圧異常を回避するための判定閾値よりも低いという室内高圧保護条件と、外液温が蒸発温度ETよりも高いという室外冷媒排出条件との双方を満たすか否かを判定する。室内高圧保護条件は、冷媒の分布を室内側に多くした際に高圧異常とならないようにすることを意図した条件である。本実施の形態1において、除湿運転時の判定閾値は、保護凝縮温度CTmaxを判定値Zで減算した値である。室外冷媒排出条件は、室外側からの冷媒排出、つまり室外熱交換器7から主回路31への冷媒補填を実施するにあたり、差圧による排出可否を判定するための条件である。
 動作制御部51bは、室内高圧保護条件及び室外冷媒排出条件を満たせば、第2膨張弁9を最小開度にして、室外熱交換器7から室内熱交換器5に向けて冷媒が流れる状態とし、室内熱交換器5を通過する冷媒の量を調整する。そして、動作制御部51bは、第2膨張弁9を最小開度にしてから調整基準時間が経過するまでの間において、内液SCが貯留基準範囲内であるという条件を満たしたとき、第2膨張弁9を全閉の状態にして冷媒分布制御を終了する。
 動作制御部51bは、内液SCが除湿上限値よりも大きければ、冷媒温度センサ69において計測された外液温が凝縮温度CT未満であるか否かを判定する。この判定は、室外側への冷媒排出を実施するにあたり、差圧による冷媒排出の可否を判断するためのものである。すなわち、動作制御部51bは、外液温が凝縮温度CT未満であれば、冷却開閉弁6を開状態にし、再熱器3へ流れる冷媒を室外熱交換器7側へ分散させることにより、室外熱交換器7等に冷媒を貯留する。
 また、制御装置50は、冷却開閉弁6を開状態にしてから開閉基準時間が経過するまでの間において、内液SCが貯留基準範囲内であるという条件を満たしたとき、冷却開閉弁6を閉状態にして、冷媒分布制御を終了する。除湿運転時の貯留基準範囲は、判定値Zを基準として定まり、室外熱交換器7への適正な冷媒貯留量に対応する範囲である。本実施の形態1において、貯留基準範囲は、判定値Zを係数gで減算した値から、判定値Zに係数hを加算した値までの範囲である。判定値Z、係数g、及び係数hは、内液SCが貯留基準範囲内であれば、室外熱交換器7の冷媒貯留量が適正、つまり再熱器3に分布する冷媒量が適正となるように設定される。係数g及び係数hは、それぞれ、0又は正の値であり、冷媒回路30の構成などに応じて設定され、適宜変更することができる。係数gと係数hとは、同じ値であってもよく、異なる値であってもよい。なお、係数a~係数hは、それぞれ、1[K]~2[K]程度の値に設定するとよい。
[冷媒量調整運転]
 ところで、上記の各運転のうち、中間運転は、再熱器3及び室外熱交換器7に冷媒を流すため、必要とする冷媒量が相対的に多くなる。一方、除湿運転は、中間運転と比較して、必要とする冷媒の量が少ない。除湿運転では、再熱器3に冷媒が流れるが、室外熱交換器7には冷媒が流れないためである。したがって、除湿運転を行っているときは、余剰冷媒が発生することがある。そして、余剰冷媒が発生すると、高圧圧力が上昇する等の異常が発生するおそれがある。
 そこで、本実施の形態1の空気調和装置100は、除湿運転時において、余剰冷媒が発生したときに、冷媒量調整運転を実行するようになっている。以下、余剰冷媒が発生したときに動作制御部51bが行う冷媒量調整制御について説明する。
 動作制御部51bは、除湿運転中に、余剰冷媒の発生を検出すると、中間運転のときと同様、再熱開閉弁2及び冷却開閉弁6を共に開状態とし、除霜開閉弁10を閉状態とする。そして、動作制御部51bは、再熱器3の下流に設けられた第1膨張弁4と、室外熱交換器7の下流に設けられた第2膨張弁9とを用いて、冷媒量調整制御を実行する。つまり、動作制御部51bは、SC制御により冷凍サイクルを構成することで、再熱器3の性能を確保しつつ、SH制御によって室外熱交換器7を通過した余剰冷媒を液溜め8に貯留させる。
 本実施の形態1の動作制御部51bは、内液SCを再熱判定値以上に保つように、第1膨張弁4のSC制御を実行する。動作制御部51bによるSC制御により、除湿運転時に必要とする再熱器3の再熱量を確保して、必要十分な除湿能力を発揮することができる。
 動作制御部51bは、例えば、再熱器3の出口の冷媒の温度を利用して、第1膨張弁4の開度を制御する。すなわち、動作制御部51bは、上記同様に内液SCを求め、求めた内液SCが設定値となるように第1膨張弁4を制御する。これにより、再熱器3による再熱の熱量を制御して、設定された除湿能力を発揮することができる。また、動作制御部51bは、上記同様に求める吸入SHが凝縮判定値以上で維持されるように、第2膨張弁9のSH制御を実行する。これにより、余剰冷媒が液溜め8に貯留される。
 なお、動作制御部51bは、空気調和装置100の吹出し空気の温度、すなわち再熱器3を通過した空気の温度を利用して、第1膨張弁4の開度を制御してもよい。この場合、室内機70の吹出口に空気温度センサを設けておき、動作制御部51bは、当該空気温度センサによる計測温度が、設定された目標温度となるように、第1膨張弁4の開度を制御するとよい。ここで、空気調和装置100の吹出し空気の温度とは、室内機70から空調空間に吹き出される空気の温度のことであり、以降では、吹出し温度ともいう。
 図8は、図1の制御装置による運転切替制御に関する動作を示すフローチャートである。図8を参照して、運転切替制御に関する動作の流れを説明する。
 制御装置50は、コントロール装置から運転指令又は運転切替指令を受信するまで、現在の運転状態を維持する(ステップS101/No)。制御装置50は、コントロール装置から運転指令又は運転切替指令を受信すると(ステップS101/Yes)、運転切替制御を開始する。すなわち、制御装置50は、再熱開閉弁2及び冷却開閉弁6を開状態とし、除霜開閉弁10を閉状態とする(ステップS102)。そして、制御装置50は、第1膨張弁4と第2膨張弁9とを用いて冷媒平準化処理を実施する。つまり、制御装置50は、第2膨張弁9を用いたSC制御と、第1膨張弁4を用いたSH制御とを開始する(ステップS103)。
 次に、制御装置50は、外液SCが凝縮器適正範囲内であり、かつ吸入SHが冷媒調整範囲内であるという平準化条件を満たすか否かを判定する(ステップS104)。制御装置50は、平準化条件を満たしていれば(ステップS104/Yes)、運転指令又は運転切替指令において指示された運転を開始する(ステップS106)。制御装置50は、平準化条件を満たしていなければ(ステップS104/No)、運転切替制御を開始してからの経過時間が設定時間に到達するまで、所定の間隔で平準化条件を満たすか否かの判定を行う。ここで、ステップS104の判定処理を行う間隔は、一定であってもよく、経過時間に応じて短くしてもよい(ステップS105/No、ステップS104)。
 制御装置50は、平準化条件を満たしていなくても(ステップS104/No)、運転切替制御を開始してからの経過時間が設定時間に到達すれば、運転切替制御を終了し、運転指令又は運転切替指令において指示された運転を開始する(ステップS106)。
 図9は、図1の制御装置による冷却運転時の冷媒分布制御を例示したフローチャートである。図9を参照して、冷却運転時の冷媒分布制御における動作の流れを説明する。
 制御装置50は、冷却運転を開始して所定の時間が経過すると、外液SCが冷媒量適正範囲内であるか否かを判定する(ステップS201)。制御装置50は、外液SCが冷媒量適正範囲内であれば(ステップS201/Yes)、冷媒分布制御を終了する(ステップS213)。
 制御装置50は、外液SCが冷却上限値(Y+b)よりも大きければ(ステップS201/No、ステップS202/Yes)、冷媒温度センサ67において計測された内液温が凝縮温度CT未満であるか否かを判定する(ステップS203)。
 制御装置50は、内液温が凝縮温度CT以上であれば(ステップS203/No)、冷媒分布制御を終了する(ステップS213)。一方、制御装置50は、内液温が凝縮温度CT未満であれば(ステップS203/Yes)、差圧による再熱器3への冷媒貯留が可能なため、再熱開閉弁2を開放する。つまり、制御装置50は、再熱開閉弁2を閉状態から開状態にする(ステップS204)。
 次に、制御装置50は、外液SCが貯留基準範囲内であるか否かを判定する(ステップS205)。制御装置50は、外液SCが貯留基準範囲内であれば、再熱開閉弁2を閉状態にして、再熱器3へ流れる冷媒を遮断し(ステップS207)、冷媒分布制御を終了する(ステップS213)。制御装置50は、外液SCが貯留基準範囲外であれば(ステップS205/No)、冷媒分布制御を開始してからの経過時間が開閉基準時間に到達するまで、所定の間隔でステップS205の判定処理を繰り返し実行する。ここで、ステップS205の判定処理を行う間隔は、一定であってもよく、経過時間に応じて短くしてもよい(ステップS206/No、ステップS205)。
 制御装置50は、外液SCが貯留基準範囲外であっても(ステップS205/No)、冷媒分布制御を開始してからの経過時間が開閉基準時間に到達すれば、再熱開閉弁2を閉状態にし(ステップS207)、冷媒分布制御を終了する(ステップS213)。
 また、制御装置50は、外液SCが冷却下限値(Y-a)よりも小さければ(ステップS201/No、ステップS202/No)、室外高圧保護条件と室内冷媒排出条件との双方を満たすか否かを判定する(ステップS208)。制御装置50は、室外高圧保護条件を満たし、かつ室内冷媒排出条件を満たすと判定した場合(ステップS208/Yes)、第1膨張弁4を最小開度に調整する(ステップS209)。
 次に、制御装置50は、ステップS205と同様に、外液SCが貯留基準範囲内であるか否かを判定する(ステップS210)。制御装置50は、外液SCが貯留基準範囲内であれば、第1膨張弁4を全閉の状態にし(ステップS212)、冷媒分布制御を終了する(ステップS213)。
 制御装置50は、外液SCが貯留基準範囲外であれば(ステップS210/No)、冷媒分布制御を開始してからの経過時間が調整基準時間に到達するまで、所定の間隔でステップS210の判定処理を繰り返し実行する(ステップS210/No、ステップS211)。
 制御装置50は、外液SCが貯留基準範囲外であっても(ステップS210/No)、冷媒分布制御を開始してからの経過時間が調整基準時間に到達すれば、第1膨張弁4を全閉の状態にし(ステップS212)、冷媒分布制御を終了する(ステップS213)。また、制御装置50は、室外高圧保護条件及び室内冷媒排出条件のうちの少なくとも一方を満たさないと判定した場合(ステップS208/No)、冷媒分布制御を終了する(ステップS213)。
 制御装置50は、一定期間が経過するまで通常の冷却運転を行い(ステップS214/No)、一定期間が経過すると(ステップS214/Yes)、ステップS201の処理を開始する。すなわち、制御装置50は、一定期間ごとに、ステップS201~S213の一連の処理を繰り返し実行する。このように、空気調和装置100は、冷却運転時において、ステップS201~S213の一連の処理である冷媒分布制御を一度実施すると、一定期間が経過するまでは実施しないようになっている。よって、第1膨張弁4及び再熱開閉弁2の頻繁な開閉動作を回避することができるため、第1膨張弁4及び再熱開閉弁2の劣化を防ぎ、信頼性の向上を図ることができる。なお、ステップS205及びS210の判定値Yとして、ステップS201の判定値Yとは異なる値を用いてもよい。
 図10は、図1の制御装置による除湿運転時の冷媒分布制御を例示したフローチャートである。図10を参照して、除湿運転時の冷媒分布制御における動作の流れを説明する。
 制御装置50は、除湿運転を開始して所定の時間が経過すると、内液SCが冷媒量適正範囲内であるか否かを判定する(ステップS301)。制御装置50は、外液SCが冷媒量適正範囲内であれば(ステップS301/Yes)、冷媒分布制御を終了する(ステップS313)。
 制御装置50は、内液SCが除湿上限値(Z+f)よりも大きければ(ステップS301/No、ステップS302/Yes)、冷媒温度センサ69において計測された外液温が凝縮温度CT未満であるか否かを判定する(ステップS303)。
 制御装置50bは、外液温が凝縮温度CT以上であれば(ステップS303/No)、冷媒分布制御を終了する(ステップS313)。一方、制御装置50は、外液温が凝縮温度CT未満であれば(ステップS303/Yes)、冷却開閉弁6を開放する。つまり、制御装置50は、冷却開閉弁6を閉状態から開状態にする(ステップS304)。
 次に、制御装置50は、内液SCが貯留基準範囲内であるか否かを判定する。もっとも、ステップS305の判定値Zは、ステップS301の判定値Zとは異なる値であってもよい(ステップS305)。
 制御装置50は、内液SCが貯留基準範囲内であれば、冷却開閉弁6を閉状態にして、室外熱交換器7へ流れる冷媒を遮断し(ステップS307)、冷媒分布制御を終了する(ステップS313)。制御装置50は、内液SCが貯留基準範囲外であれば(ステップS305/No)、冷媒分布制御を開始してからの経過時間が開閉基準時間に到達するまで、所定の間隔でステップS305の判定処理を繰り返し実行する。ここで、ステップS305の判定処理を行う間隔は、一定であってもよく、経過時間に応じて短くしてもよい(ステップS306/No、ステップS305)。
 制御装置50は、内液SCが貯留基準範囲外であっても(ステップS305/No)、冷媒分布制御を開始してからの経過時間が開閉基準時間に到達すれば、冷却開閉弁6を閉状態にし(ステップS307)、冷媒分布制御を終了する(ステップS313)。
 また、制御装置50は、内液SCが除湿下限値(Z-e)よりも小さければ(ステップS301/No、ステップS302/No)、室内高圧保護条件と室外冷媒排出条件との双方を満たすか否かを判定する(ステップS308)。制御装置50は、室内高圧保護条件を満たし、かつ室外冷媒排出条件を満たすと判定した場合(ステップS308/Yes)、第2膨張弁9を最小開度に調整する(ステップS309)。
 次に、制御装置50は、ステップS305と同様、内液SCが貯留基準範囲内であるか否かを判定する(ステップS310)。制御装置50は、内液SCが貯留基準範囲内であれば、第2膨張弁9を全閉の状態にし(ステップS312)、冷媒分布制御を終了する(ステップS313)。
 制御装置50は、内液SCが貯留基準範囲外であれば(ステップS310/No)、冷媒分布制御を開始してからの経過時間が調整基準時間に到達するまで、所定の間隔でステップS310の判定処理を繰り返し実行する(ステップS310/No、ステップS311)。
 制御装置50は、内液SCが貯留基準範囲外であっても(ステップS310/No)、冷媒分布制御を開始してからの経過時間が調整基準時間に到達すれば、第2膨張弁9を全閉の状態にし(ステップS312)、冷媒分布制御を終了する(ステップS313)。また、制御装置50は、室内高圧保護条件及び室外冷媒排出条件のうちの少なくとも一方を満たさないと判定した場合(ステップS308/No)、冷媒分布制御を終了する(ステップS313)。
 制御装置50は、一定期間が経過するまで通常の冷却運転を行い(ステップS314/No)、一定期間が経過すると(ステップS314/Yes)、ステップS301の処理を開始する。すなわち、制御装置50は、一定期間ごとに、ステップS301~S313の一連の処理を繰り返し実行する。このように、空気調和装置100は、除湿運転時において、ステップS301~S313の一連の処理である冷媒分布制御を一度実施すると、一定期間が経過するまでは実施しないようになっている。よって、第2膨張弁9及び冷却開閉弁6の頻繁な開閉動作を回避することができるため、第2膨張弁9及び冷却開閉弁6の劣化を防ぎ、信頼性の向上を図ることができる。なお、ステップS305及びS310の判定値Zとして、ステップS301の判定値Zとは異なる値を用いてもよい。
[冷媒漏洩時の処理及び動作]
 次に、冷媒漏洩が発生した場合の制御装置50による処理内容、及び各開閉弁及び各膨張弁の動作内容の一例について説明する。
(室内冷媒漏洩センサ41が冷媒漏洩を検知した場合)
 室内冷媒漏洩センサ41が冷媒漏洩を検知した際、制御装置50は、再熱開閉弁2を閉状態にし、除霜開閉弁10を閉状態にし、冷却開閉弁6を開状態にし、第2膨張弁9を全閉とし、圧縮機1を運転させてポンプダウン運転を実行する。ポンプダウン運転を実行する際、制御装置50は、室内送風機11及び室外送風機12の回転数を、通常運転時の回転数よりも大きくするとよい。上記のような弁制御とポンプダウン運転により、室内で冷媒漏れが発生したとき、冷媒を、冷却開閉弁6から室外熱交換器7までの配管、室外熱交換器7、室外熱交換器7から液溜め8までの配管、液溜め8、及び液溜め8から第2膨張弁9までの配管に溜めることができる。
 また、制御装置50は、吸入側の圧力が設定値よりも低くなったとき、又は吐出側の圧力が設定値よりも高くなったときに、圧縮機1の運転を停止させる。そして、制御装置50は、圧縮機1の運転を停止させた後に、冷却開閉弁6を閉状態にする。このように、圧縮機1の停止後に冷却開閉弁6を閉状態にすることで、冷媒の逆流を抑制することができる。そして、上記のように、空気調和装置100の運転を段階的に停止することで、安全性の向上を図ることができる。
 なお、ポンプダウン運転を実行した後に、圧縮機1と室外熱交換器7と第2膨張弁9と室内熱交換器5とに冷媒を循環させでも支障がないときは、冷却開閉弁6を開にして冷却運転を実行することができる。冷却運転を実行することで、空調空間の温度上昇を防ぐことができるため、快適性の低下を抑制することができる。ここで、圧縮機1と室外熱交換器7と第2膨張弁9と室内熱交換器5とに冷媒を循環させでも支障がない状況としては、冷媒の漏洩箇所が、再熱開閉弁2と第1膨張弁4との間、又は除霜開閉弁10と第1膨張弁4との間などで特定されている場合が想定される。
 (室外冷媒漏洩センサ42が冷媒漏洩を検知した場合)
 室外冷媒漏洩センサ42が冷媒漏洩を検知した際、制御装置50は、再熱開閉弁2を開状態にし、除霜開閉弁10を閉状態にし、冷却開閉弁6を閉状態にし、第1膨張弁4を全閉とし、圧縮機1を運転させてポンプダウン運転を実行する。ポンプダウン運転を実行する際、制御装置50は、室内送風機11及び室外送風機12の回転数を、通常運転時の回転数よりも大きくするとよい。上記のような弁制御とポンプダウン運転により、室外で冷媒漏れが発生したとき、冷媒を、再熱器3及び再熱器3から第1膨張弁4までの配管などに溜めることができる。
 また、制御装置50は、吸入側の圧力が設定値よりも低くなったとき、又は吐出側の圧力が設定値よりも高くなったときに、圧縮機1の運転を停止させる。そして、制御装置50は、圧縮機1の運転を停止させた後に、再熱開閉弁2を閉状態にする。このように、圧縮機1の停止後に再熱開閉弁2を閉状態にすることで、冷媒の逆流を抑制することができる。そして、上記のように、空気調和装置100の運転を段階的に停止することで、安全性を高めることができる。
 なお、ポンプダウン運転を実行した後に、圧縮機1と再熱器3と第1膨張弁4と室内熱交換器5とに冷媒を循環させても支障がないときは、再熱開閉弁2を開にして、除湿運転を実行することができる。除湿運転を継続することで、空調空間の湿度上昇を防ぐことができるため、快適性の低下を抑制することができる。なお、圧縮機1と再熱器3と第1膨張弁4と室内熱交換器5とに冷媒を循環させても支障がない状況としては、冷媒の漏洩箇所が、冷却開閉弁6と第2膨張弁9との間などで特定されている場合が想定される。
 以上のように、本実施の形態1の空気調和装置100は、除湿運転時における内液SCが冷媒量適正範囲外であれば、制御装置50が、外液温を用いた判定の結果に応じて冷却開閉弁6又は第2膨張弁9を制御する。よって、再熱器3の冷媒量を外液温に応じて調整することができるため、冷媒回路30に分布する冷媒の偏りを抑制し、運転効率の向上を図ることができる。
 また、制御装置50は、再熱器3による過冷却度が冷媒量適正範囲の下限値よりも小さければ、室内高圧保護条件と室外冷媒排出条件との双方を満たすか否かを判定し、室内高圧保護条件と室外冷媒排出条件との双方を満たせば、第2膨張弁9を所定の期間最小開度にする。したがって、室外熱交換器7等に貯留された冷媒を主回路31に補填することができるため、再熱器3の冷媒不足を解消することができる。
 さらに、制御装置50は、第2膨張弁9を最小開度にしてから調整基準時間が経過するまでの間において、再熱器3による過冷却度が貯留基準範囲内であるという条件を満たしたとき、第2膨張弁9を全閉の状態にする。よって、再熱器3の冷媒不足が解消されたタイミングで、迅速に、指示された運転を開始することができる。加えて、制御装置50は、第2膨張弁9を最小開度にした後、再熱器3による過冷却度が貯留基準範囲内に収まらないまま調整基準時間が経過したとき、第2膨張弁9を全閉の状態にする。よって、指示された運転が長期に亘って開始されないような事態を回避することができるため、ユーザの快適性の低下を防ぐことができる。
 また、制御装置50は、再熱器3による過冷却度が冷媒量適正範囲の上限値よりも大きければ、外液温が凝縮温度未満であるか否かを判定する。そして、制御装置50は、外液温が凝縮温度未満であれば、冷却開閉弁6を開状態にする。よって、冷媒過多となっている再熱器3を含む主回路31から、室外熱交換器7に向けて冷媒を排出することができる。したがって、再熱器3に分布する冷媒を最適量に調整することができるため、除湿運転の効率を高めることができる。
 さらに、制御装置50は、冷却開閉弁6を開状態にしてから開閉基準時間が経過するまでの間において、再熱器3による過冷却度が貯留基準範囲内であるという条件を満たしたとき、冷却開閉弁6を閉状態にする。よって、再熱器3の冷媒過多が解消されたタイミングで、迅速に、指示された運転を開始することができる。加えて、制御装置50は、冷却開閉弁6を開状態にした後、再熱器3による過冷却度が貯留基準範囲内に収まらないまま開閉基準時間が経過したとき、冷却開閉弁6を閉状態にする。よって、指示された運転が長期に亘って開始されないような事態を回避することができるため、ユーザの快適性の低下を防ぐことができる。
 本実施の形態1の空気調和装置100は、冷却運転時における外液SCが冷媒量適正範囲外であれば、制御装置50が、内液温を用いた判定の結果に応じて再熱開閉弁2又は第1膨張弁4を制御する。よって、室外熱交換器7の冷媒量を外液温に応じて調整することができるため、冷媒回路30に分布する冷媒の偏りを抑制し、運転効率の向上を図ることができる。
 また、制御装置50は、凝縮器による過冷却度が冷媒量適正範囲の下限値よりも小さければ、室外高圧保護条件と室内冷媒排出条件との双方を満たすか否かを判定し、室外高圧保護条件と室内冷媒排出条件との双方を満たせば、第1膨張弁4を所定の期間最小開度にする。したがって、再熱器3に貯留された冷媒を循環させることができるため、室外熱交換器7の冷媒不足を解消することができる。
 さらに、制御装置50は、第1膨張弁4を最小開度にしてから調整基準時間が経過するまでの間において、凝縮器による過冷却度が貯留基準範囲内であるという条件を満たしたとき、第1膨張弁4を全閉の状態にする。よって、室外熱交換器7の冷媒不足が解消されたタイミングで、迅速に、運転を再開することができる。加えて、制御装置50は、第1膨張弁4を最小開度にした後、凝縮器による過冷却度が貯留基準範囲内に収まらないまま調整基準時間が経過したとき、第1膨張弁4を全閉の状態にする。よって、長期に亘って運転が再開されないような事態を回避することができるため、ユーザの快適性の低下を防ぐことができる。
 また、制御装置50は、凝縮器による過冷却度が冷媒量適正範囲の上限値よりも大きければ、内液温が凝縮温度未満であるか否かを判定する。そして、制御装置50は、内液温が凝縮温度未満であれば、再熱開閉弁2を開状態にする。よって、冷媒過多となっている室外熱交換器7へ流入する冷媒を減らすことができることから、室外熱交換器7に分布する冷媒を最適量に調整することができるため、冷却運転の効率を高めることができる。
 さらに、制御装置50は、再熱開閉弁2を開状態にしてから開閉基準時間が経過するまでの間において、凝縮器による過冷却度が貯留基準範囲内であるという条件を満たしたとき、再熱開閉弁2を閉状態にする。よって、室外熱交換器7の冷媒過多が解消されたタイミングで、迅速に、運転を再開することができる。加えて、制御装置50は、再熱開閉弁2を開状態にした後、凝縮器による過冷却度が貯留基準範囲内に収まらないまま開閉基準時間が経過したとき、再熱開閉弁2を閉状態にする。よって、長期に亘って運転が再開されないような事態を回避することができるため、ユーザの快適性の低下を防ぐことができる。
 すなわち、空気調和装置100は、上述した運転切替制御及び冷媒分布制御により冷媒量が適正に調整される。そのため、除湿運転では、除湿運転時に必要とする再熱器3の再熱量を確保して、必要十分な除湿能力を発揮することができる。また、冷却運転では、冷却運転時に必要とする室外熱交換器7の凝縮量を確保して、必要十分な冷却能力を発揮することができる。
 制御装置50は、圧縮機1の起動時及び運転モードを切り替える際、冷却開閉弁6及び再熱開閉弁2を閉状態にしてから、冷媒平準化処理を所定の期間内に実施する機能を有している。そして、制御装置50は、冷媒平準化処理において、凝縮器による過冷却度が凝縮器適正範囲内に収まるように第2膨張弁9の開度を制御し、かつ、蒸発器による過熱度が冷媒調整範囲内に収まるように第1膨張弁4の開度を制御する。よって、冷媒回路30における冷媒分布の適正化を図ることができる。
 また、制御装置50は、冷媒平準化処理において、冷却開閉弁6及び再熱開閉弁2を閉状態にしてから設定時間内において、凝縮器による過冷却度が凝縮器適正範囲内であり、かつ蒸発器による過熱度が冷媒調整範囲内であるという平準化条件を満たしたとき、指示された運転を開始する。よって、冷媒回路30における冷媒が平準化されたタイミングで、迅速に、指示された運転を開始することができる。加えて、制御装置50は、冷媒平準化処理において、設定時間内に平準化条件を満たさない場合は、設定時間が経過したときに、指示された運転を開始する。よって、指示された運転が長期に亘って開始されないような事態を回避することができるため、ユーザの快適性の低下を防ぐことができる。
 ところで、凝縮器による過冷却度を凝縮器適正範囲内に保つように、第2膨張弁9だけを制御すると、液バックが発生するおそれがある。第2膨張弁9のみの制御では、余剰冷媒を低減することができないためである。この点、制御装置50は、上記の通り、第2膨張弁9のSC制御に加え、蒸発器による加熱度を冷媒調整範囲内に保つための第1膨張弁4のSH制御を実行する。これにより、余剰冷媒が液溜め8に貯留されると共に、循環する冷媒を室外熱交換器7に溜めることができるため、液バックの発生を抑制することができる。すなわち、本実施の形態1の空気調和装置100は、第2膨張弁9のSC制御と第1膨張弁4のSH制御との組み合わせにより、再熱能力の低下を抑止し、かつ液バックに起因した圧縮機1の損傷発生を回避することができる。
 本実施の形態1の空気調和装置100では、除湿運転時に、制御装置50が冷却開閉弁6を閉状態にすることから、室外熱交換器7への冷媒の寝込みを防ぐことができるため、除湿能力の低下を防止し、除湿運転を効率よく行うことができる。また、制御装置50は、除湿運転時に、第2膨張弁9を全閉の状態にしてもよい。このようにすれば、冷却回路32から主回路31への冷媒の流入を防ぐことができるため、除湿運転の運転効率を高めることができる。
 また、主回路31は、圧縮機1と再熱器3との間の主配管21と冷却配管22との接続部分と、再熱器3との間に、開閉動作を行う再熱開閉弁2を有している。そして、制御装置50は、冷却運転時に、再熱開閉弁2を閉状態にするようになっている。よって、再熱器3への冷媒の流入を防ぐことができるため、冷却運転時の冷媒循環の円滑化と共に、運転効率の向上を図ることができる。加えて、制御装置50は、冷却運転時に、第1膨張弁4を全閉の状態にしてもよい。このようにすれば、第1接続部Mから再熱器3及び第1膨張弁4を経て第2接続部Nまでの流路に滞留している冷媒の、室内熱交換器5への流入を防ぐことができるため、冷却運転時の運転効率をさらに高めることができる。
 さらに、制御装置50は、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、再熱開閉弁2を閉状態にし、第2膨張弁9を全閉の状態にするようになっている。よって、室内に設けられた主回路31への冷媒の流入を防ぐことができ、室外熱交換器7及び液溜め8に冷媒を貯留することができるため、室内への冷媒の漏洩を抑制することができる。加えて、制御装置50は、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、第1膨張弁4を全閉の状態にしてもよい。このようにすれば、再熱器3などに滞留している冷媒の室内熱交換器5への流入を防ぐことができるため、冷媒の漏洩箇所が、再熱開閉弁2から再熱器3を経て第1膨張弁4までの流路上にない場合、室内への冷媒漏洩を低減することができる。また、再熱開閉弁2及び除霜開閉弁10を閉状態とし、第1膨張弁4を全閉の状態とすることで、再熱開閉弁2から第1膨張弁4までの冷媒回路を独立させることにより、冷媒漏洩箇所の特定を促進してもよい。
 また、制御装置50は、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、冷却開閉弁6を閉状態にし、第1膨張弁4を全閉にするようになっている。これにより、室外への冷媒の流れを遮断することができると共に、室外の冷媒を室内熱交換器5に貯留することができるため、室外での冷媒の漏洩を抑制することができる。加えて、制御装置50は、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、第2膨張弁9を全閉の状態にしてもよい。このようにすれば、冷却開閉弁6から第2膨張弁9までの冷媒回路を独立させることができ、冷媒の漏洩箇所を迅速に特定させることができる。
 ところで、運転切替制御及び冷媒分布制御を実施しない場合は、室内または室外の温度が低い方に冷媒が流れやすくなる。つまり、運転切替制御及び冷媒分布制御を行わなければ、室内の温度が室外の温度よりも低いときは、再熱器3に冷媒が流れやすくなるため、室内の温度が所望の温度よりも上昇し、相対湿度が所望の湿度よりも低下する。一方、室外の温度が室内の温度よりも低いときは、再熱器3に冷媒が流れにくくなるため、室内の温度が所望の目温度よりも低下し、相対湿度が所望の湿度よりも上昇する。この点、制御装置50は、上記の通り、冷媒分布を適正な量に調整することができる。そのため、再熱器3による加熱量を確保して、室内機70に除湿能力を発揮させることができる。
実施の形態2.
 本実施の形態2の空気調和装置は、吹出し温度のばらつきを低減するように構成されている。本実施の形態2の空気調和装置の構成は、図1及び図2に例示した構成と同様である。よって、実施の形態1と同等の構成部材については同一の符号を用いて説明は省略する。
 図11は、本発明の実施の形態2に係る室内熱交換器の具体的な構成を例示した説明図である。図11に示すように、室内熱交換器5は、複数本の伝熱管13と、複数枚のフィン14と、冷媒分配器15と、ヘッダ16と、により構成されたプレートフィンチューブ熱交換器である。また、本実施の形態2の再熱器3は、室内熱交換器5と同様に構成されたプレートフィンチューブ熱交換器である。すなわち、再熱器3は、複数本の伝熱管13と、複数枚のフィン14と、冷媒分配器15と、ヘッダ16と、により構成されている。なお、図11において、伝熱管13の本数、フィン14の枚数、段数、及び列数は一例である。すなわち、室内熱交換器5及び再熱器3のそれぞれについて、伝熱管13の本数、フィン14の枚数、段数、及び列数は、適宜変更することができる。
[非共沸混合冷媒の特徴]
 空気調和装置には、冷媒回路を循環させる冷媒として、複数種類の冷媒を混合した非共沸混合冷媒が用いられることがある。非共沸混合冷媒は、同圧力下において相変化で温度が変化する。そのため、例えば、蒸発器を非共沸混合冷媒が通過する場合、蒸発過程において、上流側の方が下流側よりも温度が低くなる。また、凝縮器を非共沸混合冷媒が通過する場合、凝縮過程において、上流側の方が下流側よりも温度が高くなる。
 図12は、非共沸混合冷媒のモリエル線図を例示した説明図である。図13は、非共沸混合冷媒の温度勾配の具体例を示すモリエル線図である。図12では、共沸混合冷媒の等温線を実線で示し、非共沸混合冷媒の等温線のうち、飽和液腺と飽和蒸気線との間の部分を破線で示す。つまり、非共沸混合冷媒を用いた場合、一定圧力で変化する蒸発工程及び凝縮工程において、熱交換器の入口-出口間に温度勾配が発生する。
 図13では、非共沸混合冷媒の低温域での室内熱交換器5の入口-出口間の温度勾配が約5℃の場合を例示している。この例では、室内熱交換器5の入口側の冷媒温度が-12℃となり、出口側の冷媒温度が-7℃となっている。すなわち、室内熱交換器5では、入口側の冷媒温度が、出口側の冷媒温度よりも低くなっている。そのため、室内熱交換器5の入口と出口とでは、吹出し温度に差異が生じる。
 非共沸混合冷媒のような温度勾配を有する冷媒を用いると、冷媒の温度が低い蒸発器の入口側では、空気の冷却が促進されて吹出し温度が低くなり、冷媒の温度が高い蒸発器の出口側では、吹出し温度が高くなる。つまり、熱交換器からの吹出し温度にばらつきが生じる。そして、ヒートポンプ式の再熱除湿が可能な空気調和装置では、吹出し温度のばらつきに起因して、空調空間の温湿度の安定性にむらが生じる。
 特に、COを含む冷媒では、温度勾配が大きくなるため、吹出し温度のばらつきが顕著となる。COを含む非共沸混合冷媒は、例えばR32、R125、R134a、r1234yf、及びCOの混合冷媒である。この例の非共沸混合冷媒は、R32の組成が49wt%~55wt%であり、R125の組成が16wt%~22wt%であり、R134aの組成が7wt%~13wt%であり、r1234yfの組成が6wt%~12wt%であり、COの組成が7wt%~13wt%である。そして、R32、R125、R134a、r1234yf、及びCOの組成比は、合計が100wt%となる。
 ここで、室内熱交換器5内の冷媒の流れについて説明する。まず、第1膨張弁4で減圧膨張された低温低圧の液状態の冷媒は、冷媒分配器15の流入口より室内熱交換器5に流入する。冷媒分配器15の流入口より流入した冷媒は、冷媒分配器15で分配され、冷媒分配器15のそれぞれの流出口より複数の伝熱管13へと流れる。伝熱管13に流入した冷媒は、伝熱管13の軸方向に沿って流れる。伝熱管13及びフィン14の表面には、冷却対象である室内の空気が、室内送風機11によって送風されている。本実施の形態2の空気調和装置100は、室内送風機11により室内熱交換器5に送風される空気が、伝熱管13を流れる冷媒と対向方向に流れるようになっている。空気調和装置100は、室内熱交換器5に送風される空気と伝熱管13を流れる冷媒とを対向させる対向流化により、熱交換損失を低減し、室内熱交換器5の性能向上を図っている。伝熱管13を流れる冷媒は、伝熱管13及びフィン14に接する屋内の空気との間で熱交換を行い、室内の空気の熱を吸熱する。伝熱管13にて室内の空気と熱交換を行った冷媒は、ヘッダ16の流入口より流入し、ヘッダ16で合流して、ヘッダ16の流出口より圧縮機1へと流れる。
 次に、再熱器3内の冷媒の流れについて説明する。まず、圧縮機1で加熱圧縮された高温高圧のガス状態の冷媒は、冷媒分配器15の流入口より流入する。冷媒分配器15の流入口より流入した冷媒は、冷媒分配器15で分配され、冷媒分配器15のそれぞれの流出口より複数の伝熱管13へと流れる。伝熱管13に流入した冷媒は、伝熱管13の軸方向に沿って流れる。伝熱管13及びフィン14の表面には、室内熱交換器5を通過して冷却された空気が送風されている。本実施の形態2の空気調和装置100は、再熱器3に送風される空気が、伝熱管13を流れる冷媒と対向方向に流れるようになっている。空気調和装置100は、再熱器3に送風される空気と伝熱管13を流れる冷媒とを対向させる対向流化により、熱交換損失を低減し、再熱器3の性能向上を図っている。伝熱管13を流れる冷媒は、室内熱交換器5で冷却され、伝熱管13及びフィン14に接する空気との間で熱交換を行い、空気へ熱を放熱する。伝熱管13にて空気と熱交換を行った冷媒は、ヘッダ16の流入口より流入し、ヘッダ16で合流して、ヘッダ16の流出口より第1膨張弁4へと流れる。
 非共沸混合冷媒を用いる場合、室内熱交換器5において、冷媒分配器15の流入口側と、ヘッダ16の流出口側との間には、熱交換能力に差異が生じる。したがって、冷媒分配器15の流入口側を通過した空気と、ヘッダ16の流出口側を通過した空気との間には、温度差が生じる。再熱器3においても同様に、冷媒分配器15の流入口側と、ヘッダ16の流出口側との間には、熱交換能力に差異が生じる。ただし、再熱器3では、室内熱交換器5とは逆に、入口側の冷媒温度が、出口側の冷媒温度よりも高くなっている。
 したがって、室内熱交換器5の入口側と再熱器3の出口側とが対向し、かつ蒸発器の出口側と再熱器3の入口側とが対向するように、再熱器3と室内熱交換器5とを配置すると、室内熱交換器5で生じた温度差が、再熱器3でさらに大きくなってしまう。つまり、上記のような配置を採ると、非共沸混合冷媒を用いた際に生じる、熱交換器の入口-出口間の温度差により、再熱除湿時の吹出し温度には、部位によって差異が発生することとなる。
 そこで、本実施の形態2の空気調和装置100は、室内熱交換器5のうちで冷媒温度が最も低い部分を通過した空気が、再熱器3のうちで冷媒温度が最も高い部分を通過するように、室内熱交換器5と再熱器3とが配置されている。つまり、室内熱交換器5のうちで冷媒温度が最も高い部分を通過した空気が、再熱器3のうちで冷媒温度が最も低い部分を通過するように、室内熱交換器5と再熱器3とが配置されている。なお、本実施の形態2の空気調和装置100においても、実施の形態1と同様、室内熱交換器5と再熱器3とは、共通する風路上に設けられている。
 図14は、本発明の実施の形態2の空気調和装置における蒸発器及び再熱器の配置例を示す説明図である。図14において、室内熱交換器5及び再熱器3の内部に示す波線同士の間隔は、冷媒温度の高低に対応している。すなわち、図14では、波線同士の間隔が狭くなれば冷媒温度が高くなり、波線同士の間隔が広くなれば冷媒温度が低くなるように、波線を例示している。
 つまり、室内熱交換器5は、冷媒の入口側の温度が、冷媒の出口側の温度よりも低くなっている。再熱器3は、冷媒の入口側の温度が、冷媒の出口側の温度よりも高くなっている。そして、室内熱交換器5と再熱器3とは、室内熱交換器5における冷媒の入口側を通過した空気が、再熱器3における冷媒の出口側を通過し、かつ、室内熱交換器5における冷媒の出口側を通過した空気が、再熱器3における冷媒の入口側を通過するように配置されている。
 例えば、図14に示すように、室内熱交換器5の冷媒温度が相対的に低い部分と、再熱器3の冷媒温度が相対的に高い部分とが対向し、かつ室内熱交換器5の冷媒温度が相対的に高い部分と、再熱器3の冷媒温度が相対的に低い部分とが対向するような配置を採ってもよい。室内熱交換器5及び再熱器3は、何れも、冷媒が上部から下部へ流れるように設けられている。室内熱交換器5と再熱器3との具体的な配置については、各機器の配置及びパスパターンによる各熱交換器からの吹出し温度をもとに、最適な配置を適宜選択すればよい。
 ところで、図14では、各熱交換器の列数が1列の場合を例示しているが、これに限らず、各熱交換器の列数は、2列以上であってもよい。室内熱交換器5及び再熱器3のうちの少なくとも1つの列数を2列以上とした場合においても、各熱交換器の熱分布をもとに、室内熱交換器5及び再熱器3の配置を決定するとよい。
 図15は、本発明の実施の形態2の空気調和装置における冷媒漏洩時の各開閉弁及び各膨張弁の状態を示す表である。本実施の形態2の制御装置50は、実施の形態1の場合と同様、室内冷媒漏洩センサ41及び室外冷媒漏洩センサ42のそれぞれから漏洩信号を取得するようになっている。
 制御装置50は、室内側で冷媒漏洩を検知した際、室内側の再熱開閉弁2を閉状態にすると共に、再熱器3の下流側の第1膨張弁4を全開にする。これにより、第1接続部Mから再熱器3及び第1膨張弁4を経て第2接続部Nまでの流路に存在する冷媒を、室内熱交換器5側へ導くことができる。さらに、制御装置50は、室内側で冷媒漏洩を検知した際、室外側の冷却開閉弁6を開状態にし、室外熱交換器7の下流側の第2膨張弁9を全閉にする。これらの弁制御により、冷媒を室外側に溜めることができる。よって、室内で冷媒が漏れた場合に、室内での不活性ガスの充満を抑止することができるため、安全性を高めることができる。
 制御装置50は、室外側で冷媒漏洩を検知した際、冷却開閉弁6を閉状態にし、第2膨張弁9を全開にする。これにより、冷却回路32に存在する冷媒を、室内熱交換器5側へ導くことができる。さらに、制御装置50は、室外側で冷媒漏洩を検知した際、再熱開閉弁2を開状態にすると共に、第1膨張弁4を全閉にする。これらの弁制御により、冷媒を室内側に溜めることができる。よって、室外で冷媒が漏れた場合に、室外での不活性ガスの充満を抑止することができるため、安全性を高めることができる。
 また、本実施の形態2では、非共沸混合冷媒の特性を生かし、制御装置50が、乾き度を用いて冷媒回路30を制御するようになっている。ところで、従来の擬似共沸冷媒は、二層冷媒の温度勾配がないため、擬似共沸冷媒を用いた場合は、乾き度を算出することができない。よって、高圧と低圧の飽和温度と冷媒温度から算出した過熱度及び過冷却度を用いて冷媒回路を制御するのが一般的であり、冷媒の状態がわからないことから、従来は、算出した過熱度及び過冷却度に尤度を持たせて制御するという手法が採られている。
 この点、非共沸混合冷媒では、圧力と温度とから乾き度を求めることができ、求めた乾き度から冷媒の状態がわかるため、尤度を持たせる設計をしなくても、信頼性の高い制御を構築することができる。すなわち、非共沸混合冷媒を用いれば、モリエル線図上の飽和線に沿った制御が可能となるため、熱交換器の容量を有用に活用した制御を構築することができる。非共沸混合冷媒は、二相冷媒の温度勾配があるためである。
 本実施の形態2の空気調和装置100は、圧縮機1の吸入側の圧力を計測する低圧センサと、室内熱交換器5の乾き度(低圧側の乾き度)を取得する位置の温度を計測する蒸発器温度センサと、を設けて構成するとよい。すると、制御装置50は、低圧センサが検出した圧力と、蒸発器温度センサが検出した温度とから、低圧側の乾き度を求めることができる。非共沸冷媒では、圧力と冷媒の温度から低圧側の乾き度が一意に求まる。ここで、低圧センサは、図1の圧力センサ61に相当し、蒸発器温度センサは、図1の冷媒温度センサ68に相当する。また、圧縮機1の吐出側の圧力を計測する高圧センサと、再熱器3又は室外熱交換器7の乾き度(高圧側の乾き度)を取得する位置の温度を計測する凝縮器温度センサと、を設けて構成するとよい。すると、制御装置50は、高圧センサが検出した圧力と、凝縮器温度センサが検出した温度とから、高圧側の乾き度を求めることができる。非共沸冷媒では、圧力と冷媒の温度から高圧側の乾き度が一意に求まる。ここで、高圧センサは、図1の圧力センサ62、63、64に相当し、凝縮器温度センサは、図1の冷媒温度センサ67、69に相当する。再熱器3の乾き度は、圧力センサ62又は圧力センサ63の計測圧力と、冷媒温度センサ67の計測温度とから求める。室外熱交換器7の乾き度は、圧力センサ62又は圧力センサ64の計測圧力と、冷媒温度センサ69の計測温度とから求める。
 以上のように、本実施の形態2の空気調和装置100によっても、除湿能力の低下を防止し、除湿運転を効率よく行うことができる。また、本実施の形態2において、室内熱交換器5と再熱器3とは、室内熱交換器5の吹出し温度が低くなる箇所と、再熱器3の吹出し温度が高くなる箇所とが、空気の流れにおいて重なるように配置されている。つまり、空気調和装置100は、室内熱交換器5及び再熱器3の各々の温度分布をもとに、室内熱交換器5の最も冷媒温度が低い部分と、再熱器3の最も冷媒温度が高い部分とが、共通する風路に対し重なるように構成されている。そのため、除湿運転時又は中間運転時において、温度のばらつきの少ない空気を室内に供給することができる。
 より具体的に、本実施の形態2の冷媒回路30は、内部を循環する冷媒として、非共沸混合冷媒が用いられている。そのため、室内熱交換器5は、冷媒の入口側の温度が、冷媒の出口側の温度よりも低くなる。また、再熱器3は、冷媒の入口側の温度が、冷媒の出口側の温度よりも高くなる。そして、室内熱交換器5と再熱器3とは、室内熱交換器5における冷媒の入口側を通過した空気が、再熱器3における冷媒の入口側を通過し、かつ、室内熱交換器5における冷媒の出口側を通過した空気が、再熱器3における冷媒の出口側を通過するように配置されている。例えば、室内熱交換器5及び再熱器3のそれぞれに流れる冷媒の経路は、図14のように規定することができる。よって、吹出し温度のばらつきと、吹出し温度のばらつきに起因した湿度のむらとを低減することができるため、室内機70から空調空間に吹き出される空気の温度のばらつきを抑制すると共に、室内の空気の状態の安定化を図ることができる。他の効果等については、実施の形態1と同様である。
実施の形態3.
 図16は、本発明の実施の形態3に係る空気調和装置の全体的な構成図である。本実施の形態3の空気調和装置200は、冷媒回路30の構成の一部が、実施の形態1及び2の空気調和装置100とは異なっている。実施の形態1及び2と同様の構成部材については同一の符号を用いて説明は省略する。
 図16に示すように、本実施の形態3の冷媒回路30は、液溜め8を搭載しておらず、アキュムレータ18を搭載している点で実施の形態1とは異なっており、他の構成については実施の形態1と同様である。空気調和装置200は、過渡的な液バック時にアキュムレータ18に冷媒を溜めることができ、圧縮機の損傷リスクをさらに低減可能とする。
 本実施の形態3では、実施の形態1で述べた運転切替制御及び冷媒分布制御を実行することで、再熱器3及び室外熱交換器7のそれぞれでの最適な冷媒量による運転が可能となる。そのため、空気調和装置200の能力を適正に維持することができると共に、過渡的に発生する余剰冷媒を、安価なアキュムレータ18に溜めておくことができる。つまり、液バックにより圧縮機1に向けて冷媒が戻ってきたとしても、アキュムレータ18の作用により、圧縮機1での液圧縮を抑制することができるため、信頼性の高い空気調和装置200を提供することができる。
 なお、再熱器3による過冷却度、すなわち内液SCは、上述したように、圧力センサ62から取得する高圧圧力と冷媒温度センサ67から取得する内液温から求めることができる。つまり、制御装置50は、高圧圧力を飽和換算して凝縮温度を求め、凝縮温度から内液温を減算することにより内液SCを求めることができる。また、室外熱交換器7による過冷却度、すなわち外液SCは、上述したように、圧力センサ64から取得する凝縮器出口圧力と冷媒温度センサ69から取得する室外熱交換器出口温度から求めることができる。つまり、制御装置50は、凝縮器出口圧力を飽和換算して凝縮温度CTを求め、凝縮温度CTから外液温を減算することにより、室外熱交換器7の出口の過冷却度である外液SCを求めることができる。制御装置50は、外液SCを求める際、圧力センサ64から取得する凝縮器出口圧力の代わりに、圧力センサ62から取得する高圧圧力を用いて凝縮温度CTを求めてもよい。
 室内外での冷媒漏洩時の各開閉弁及び各膨張弁の制御は、上述した実施の形態1及び2と同様である。また、空気調和装置200は、前述した実施の形態2における再熱器3と室内熱交換器5との配置構成を適用してもよく、実施の形態2の場合と同様、乾き度を用いて冷媒回路30を制御してもよい。
 以上のように、本実施の形態3の空気調和装置200によっても、除湿能力の低下を防止し、除湿運転を効率よく行うことができる。ところで、実施の形態1のように、液溜め8を備える冷媒回路30では、液バックに応じた保護のために、第2膨張弁9に対し、過熱度を確保する運転を実施する必要がある。したがって、余剰冷媒を貯留させるためには、容量の大きな液溜め8のような高価な高圧容器が必要となる。
 この点、本実施の形態3の空気調和装置200では、液バックにより圧縮機1に向けて冷媒が戻ってきたとしても、アキュムレータ18の作用により、液溜めを用いることなく、圧縮機1での液圧縮を抑制することができる。そのため、空気調和装置としての信頼性を高めることができる。
 そして、空気調和装置200は、非共沸混合冷媒を、アキュムレータ18により、気体と液体とに分離させ、高沸点の冷媒をアキュムレータ18に貯留させ、低沸点の冷媒を用いて除霜運転時の熱容量を増加させる。つまり、空気調和装置200は、除霜運転中において、非共沸混合冷媒に含まれる高沸点の冷媒をアキュムレータ18に貯留させ、非共沸混合冷媒に含まれる低沸点の冷媒を冷媒回路30に循環させる。そのため、霜取り時間の短縮を図ることができる。他の効果等については、実施の形態1及び2と同様である。
 上述した各実施の形態は、空気調和装置における好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、上記においては、制御装置50が、運転切替制御と冷媒分布制御との双方を行う場合を例示したが、これに限らず、制御装置50は、運転切替制御を行う機能を有していなくてもよい。また、制御装置50は、除湿運転又は冷却運転の何れか一方だけで冷媒分布制御を行うように構成してもよい。
 また、空気調和装置100は、冷却運転及び除霜運転を行う機能を有さなくてもよく、この場合は、再熱開閉弁2が不要となる。よって、主回路31は、圧縮機1、再熱器3、第1膨張弁4、及び室内熱交換器5が主配管21により順次連結されたものとなる。また、実施の形態1及び2では、冷媒回路30に液溜め8が設けられた例を示したが、これに限らず、実施の形態1及び2の冷媒回路30は、液溜め8を有しなくてもよい。さらに、上記各実施の形態では、主回路31が空調空間に配置されている場合を例示したが、これに限らず、主回路31の構成のうち、少なくとも再熱器3及び室内熱交換器5が空調空間に配置されていればよい。加えて、実施の形態1~3の冷媒回路30は、バイパス回路33を有しなくてもよい。ただし、冷媒回路30にバイパス回路33を設けなければ、本実施の形態1のような流路での除霜運転は不可となる。
 上記各実施の形態では、主回路31が空調空間に配置されている場合を例示したが、これに限らず、少なくとも再熱器3及び室内熱交換器5が空調空間に配置されていればよい。図1及び図16では、室内冷媒漏洩センサ41が室内機70の内部に設けられた例を示したが、これに限らず、室内冷媒漏洩センサ41は、空調空間の内部であって、室内機70の外部に設けられてもよい。同様に、図1及び図16では、室外冷媒漏洩センサ42が室外機80の内部に設けられた例を示したが、これに限らず、室外冷媒漏洩センサ42は、空調空間及び室外機80の外部に設けられてもよい。
 図1及び図16では、制御装置50が室内機70の内部に設けられた例を示したが、これに限らず、制御装置50は、室外機80の内部に設けられてもよい。また、室外機80に、室外送風機12などの室外機80の各アクチュエータの動作を制御する室外制御装置を設け、制御装置50と室外制御装置とが連携して、空気調和装置100又は200を制御してもよい。加えて、図15に例示した冷媒漏洩時の各開閉弁及び各膨張弁の処理は、実施の形態1及び3の構成に適用することもできる。
 1 圧縮機、1a 圧縮機モータ、2 再熱開閉弁、3 再熱器、4 第1膨張弁、5 室内熱交換器(蒸発器)、6 冷却開閉弁、7 室外熱交換器(凝縮器)、8 液溜め、9 第2膨張弁、10 除霜開閉弁、11 室内送風機、11a、12a ファンモータ、12 室外送風機、13 伝熱管、14 フィン、15 冷媒分配器、16 ヘッダ、18 アキュムレータ、20 冷媒配管、21 主配管、22 冷却配管、23 バイパス配管、30 冷媒回路、31 主回路、32 冷却回路、33 バイパス回路、41 室内冷媒漏洩センサ、42 室外冷媒漏洩センサ、45 異常報知器、50 制御装置、51 演算処理部、51a 設定処理部、51b 動作制御部、51c 余剰冷媒検出部、51d 漏洩処理部、52 記憶部、61~64 圧力センサ、65~69 冷媒温度センサ、70 室内機、80 室外機、91、92 空気温度センサ、100、200 空気調和装置、CT 凝縮温度、CTmax 保護凝縮温度、ET 蒸発温度、M 第1接続部、N 第2接続部、X、P、Y、Z 判定値、a~h、α、β、γ、δ 係数。

Claims (27)

  1.  圧縮機、再熱器、第1膨張弁、及び蒸発器が主配管により順次連結された主回路と、前記圧縮機と前記再熱器との間から前記第1膨張弁と前記蒸発器との間までをつなぐ冷却配管によって冷却開閉弁、凝縮器、及び第2膨張弁が連結された冷却回路とを含み、冷媒が循環する冷媒回路と、
     前記冷媒回路を制御する制御装置と、有し、
     前記再熱器及び前記蒸発器は、空調空間に配置され、
     前記凝縮器は、前記空調空間の外部に配置され、
     前記制御装置は、
     前記空調空間の空気の除湿を行う除湿運転時において、
     前記再熱器による過冷却度が、前記再熱器に分布する冷媒量が適正であることを示す冷媒量適正範囲外であれば、前記凝縮器から流出する冷媒の温度である外液温を用いた判定の結果に応じて前記冷却開閉弁又は前記第2膨張弁を制御する、空気調和装置。
  2.  前記制御装置は、
     前記再熱器による過冷却度が前記冷媒量適正範囲の下限値よりも小さければ、
     高圧異常を回避するための判定閾値よりも凝縮温度が小さいという室内高圧保護条件と、前記外液温が蒸発温度よりも高いという室外冷媒排出条件との双方を満たすか否かを判定し、
     前記室内高圧保護条件と前記室外冷媒排出条件との双方を満たせば、前記第2膨張弁を所定の期間最小開度にする、請求項1に記載の空気調和装置。
  3.  前記制御装置は、
     前記第2膨張弁を最小開度にしてから調整基準時間が経過するまでの間において、
     前記再熱器による過冷却度が前記再熱器への適正な冷媒貯留量に対応する貯留基準範囲内であるという条件を満たしたとき、前記第2膨張弁を全閉の状態にする、請求項2に記載の空気調和装置。
  4.  前記制御装置は、
     前記第2膨張弁を最小開度にした後、
     前記再熱器による過冷却度が前記貯留基準範囲内に収まらないまま前記調整基準時間が経過したとき、前記第2膨張弁を全閉の状態にする、請求項3に記載の空気調和装置。
  5.  前記制御装置は、
     前記再熱器による過冷却度が前記冷媒量適正範囲の上限値よりも大きければ、前記外液温が凝縮温度未満であるか否かを判定し、
     前記外液温が凝縮温度未満であれば、前記冷却開閉弁を開状態にする、請求項1~4の何れか一項に記載の空気調和装置。
  6.  前記制御装置は、
     前記冷却開閉弁を開状態にしてから開閉基準時間が経過するまでの間において、
     前記再熱器による過冷却度が前記再熱器への適正な冷媒貯留量に対応する貯留基準範囲内であるという条件を満たしたとき、前記冷却開閉弁を閉状態にする、請求項5に記載の空気調和装置。
  7.  前記制御装置は、
     前記冷却開閉弁を開状態にした後、
     前記再熱器による過冷却度が前記貯留基準範囲内に収まらないまま前記開閉基準時間が経過したとき、前記冷却開閉弁を閉状態にする、請求項6に記載の空気調和装置。
  8.  圧縮機、再熱器、第1膨張弁、及び蒸発器が主配管により順次連結された主回路と、前記圧縮機と前記再熱器との間から前記第1膨張弁と前記蒸発器との間までをつなぐ冷却配管によって冷却開閉弁、凝縮器、及び第2膨張弁が連結された冷却回路とを含み、冷媒が循環する冷媒回路と、
     前記冷媒回路を制御する制御装置と、有し、
     前記主回路は、
     前記圧縮機と前記再熱器との間の前記主配管と前記冷却配管との接続部分と、前記再熱器との間に、開閉動作を行う再熱開閉弁を有し、
     前記再熱器及び前記蒸発器は、空調空間に配置され、
     前記凝縮器は、前記空調空間の外部に配置され、
     前記制御装置は、
     前記空調空間の空気の冷却を行う冷却運転時において、
     前記凝縮器による過冷却度が、前記凝縮器に分布する冷媒量が適正であることを示す冷媒量適正範囲外であれば、前記再熱器から流出する冷媒の温度である内液温を用いた判定の結果に応じて前記再熱開閉弁又は前記第1膨張弁を制御する、空気調和装置。
  9.  前記制御装置は、
     前記凝縮器による過冷却度が前記冷媒量適正範囲の下限値よりも小さければ、
     高圧異常を回避するための判定閾値よりも凝縮温度が小さいという室外高圧保護条件と、前記内液温が蒸発温度よりも高いという室内冷媒排出条件との双方を満たすか否かを判定し、
     前記室外高圧保護条件と前記室内冷媒排出条件との双方を満たせば、前記第1膨張弁を所定の期間最小開度にする、請求項8に記載の空気調和装置。
  10.  前記制御装置は、
     前記第1膨張弁を最小開度にしてから調整基準時間が経過するまでの間において、
     前記凝縮器による過冷却度が前記再熱器への適正な冷媒貯留量に対応する貯留基準範囲内であるという条件を満たしたとき、前記第1膨張弁を全閉の状態にする、請求項9に記載の空気調和装置。
  11.  前記制御装置は、
     前記第1膨張弁を最小開度にした後、
     前記凝縮器による過冷却度が前記貯留基準範囲内に収まらないまま前記調整基準時間が経過したとき、前記第1膨張弁を全閉の状態にする、請求項10に記載の空気調和装置。
  12.  前記制御装置は、
     前記凝縮器による過冷却度が前記冷媒量適正範囲の上限値よりも大きければ、前記内液温が凝縮温度未満であるか否かを判定し、
     前記内液温が凝縮温度未満であれば、前記再熱開閉弁を開状態にする、請求項8~11の何れか一項に記載の空気調和装置。
  13.  前記制御装置は、
     前記再熱開閉弁を開状態にしてから開閉基準時間が経過するまでの間において、
     前記凝縮器による過冷却度が前記再熱器への適正な冷媒貯留量に対応する貯留基準範囲内であるという条件を満たしたとき、前記再熱開閉弁を閉状態にする、請求項12に記載の空気調和装置。
  14.  前記制御装置は、
     前記再熱開閉弁を開状態にした後、
     前記凝縮器による過冷却度が前記貯留基準範囲内に収まらないまま前記開閉基準時間が経過したとき、前記再熱開閉弁を閉状態にする、請求項13に記載の空気調和装置。
  15.  前記主回路は、
     前記圧縮機と前記再熱器との間の前記主配管と前記冷却配管との接続部分と、前記再熱器との間に、開閉動作を行う再熱開閉弁を有し、
     前記制御装置は、
     前記空調空間の空気の除湿を行う除湿運転、及び前記空調空間の空気の冷却を行う冷却運転を含む複数の運転モードを実施する機能と共に、前記圧縮機の起動時及び運転モードを切り替える際、前記冷却開閉弁及び前記再熱開閉弁を閉状態にしてから、前記冷媒回路内の冷媒を平準化する冷媒平準化処理を所定の期間内に実施する機能を有し、
     前記冷媒平準化処理において、
     前記凝縮器による過冷却度が、前記凝縮器の冷媒量が適正であることを示す凝縮器適正範囲内に収まるように前記第2膨張弁の開度を制御し、
     かつ、前記蒸発器による過熱度が、前記冷媒回路における冷媒分布が適正であることを示す冷媒調整範囲内に収まるように前記第1膨張弁の開度を制御する、請求項1~14の何れか一項に記載の空気調和装置。
  16.  前記制御装置は、
     前記冷媒平準化処理において、
     前記冷却開閉弁及び前記再熱開閉弁を閉状態にしてから設定時間内において、
     前記凝縮器による過冷却度が前記凝縮器適正範囲内であり、かつ前記蒸発器による過熱度が前記冷媒調整範囲内であるという平準化条件を満たしたとき、指示された運転を開始する、請求項15に記載の空気調和装置。
  17.  前記制御装置は、
     前記冷媒平準化処理において、
     前記設定時間内に前記平準化条件を満たさない場合は、前記設定時間が経過したとき、指示された運転を開始する、請求項16に記載の空気調和装置。
  18.  前記制御装置は、
     前記空調空間の空気の除湿を行う除湿運転時に、前記冷却開閉弁を閉状態にするものである、請求項1~17の何れか一項に記載の空気調和装置。
  19.  前記制御装置は、
     前記空調空間の空気の除湿を行う除湿運転時に、前記第2膨張弁を全閉の状態にするものである、請求項18に記載の空気調和装置。
  20.  前記主回路は、
     前記圧縮機と前記再熱器との間の前記主配管と前記冷却配管との接続部分と、前記再熱器との間に、開閉動作を行う再熱開閉弁を有し、
     前記制御装置は、
     前記空調空間の空気の冷却を行う冷却運転時に、前記再熱開閉弁を閉状態にするものである、請求項18又は19に記載の空気調和装置。
  21.  前記制御装置は、
     前記冷却運転時に、前記第1膨張弁を全閉の状態にするものである、請求項20に記載の空気調和装置。
  22.  前記空調空間に設けられ、冷媒の漏洩を検知する室内冷媒漏洩センサを有し、
     前記制御装置は、
     前記室内冷媒漏洩センサにおいて冷媒の漏洩が検知されたとき、前記再熱開閉弁を閉状態にし、前記第2膨張弁を全閉の状態にするものである、請求項20又は21に記載の空気調和装置。
  23.  前記空調空間の外部に設けられ、冷媒の漏洩を検知する室外冷媒漏洩センサを有し、
     前記制御装置は、
     前記室外冷媒漏洩センサにおいて冷媒の漏洩が検知されたとき、前記冷却開閉弁を閉状態にし、前記第1膨張弁を全閉の状態にするものである、請求項1~22の何れか一項に記載の空気調和装置。
  24.  前記冷媒回路は、
     内部を循環する冷媒として、非共沸混合冷媒が用いられている、請求項1~23の何れか一項に記載の空気調和装置。
  25.  前記蒸発器と前記再熱器とは、
     前記蒸発器における冷媒の入口側を通過した空気が、前記再熱器における冷媒の入口側を通過し、かつ、前記蒸発器における冷媒の出口側を通過した空気が、前記再熱器における冷媒の出口側を通過するように配置されている、請求項24に記載の空気調和装置。
  26.  前記蒸発器及び前記再熱器は、何れも、冷媒が上部から下部へ流れるように設けられている、請求項25に記載の空気調和装置。
  27.  前記冷媒回路は、
     前記圧縮機と前記蒸発器との間に設けられたアキュムレータと、
     前記圧縮機の吐出側から前記再熱器と前記第1膨張弁との間までをつなぐバイパス配管、及び前記バイパス配管を開閉する除霜開閉弁を備えたバイパス回路と、を有する、請求項24~26の何れか一項に記載の空気調和装置。
PCT/JP2019/000198 2019-01-08 2019-01-08 空気調和装置 WO2020144738A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/000198 WO2020144738A1 (ja) 2019-01-08 2019-01-08 空気調和装置
CN201980069208.XA CN113227677B (zh) 2019-01-08 2019-01-08 空气调和装置
JP2020565048A JP6937947B2 (ja) 2019-01-08 2019-01-08 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000198 WO2020144738A1 (ja) 2019-01-08 2019-01-08 空気調和装置

Publications (1)

Publication Number Publication Date
WO2020144738A1 true WO2020144738A1 (ja) 2020-07-16

Family

ID=71521561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000198 WO2020144738A1 (ja) 2019-01-08 2019-01-08 空気調和装置

Country Status (3)

Country Link
JP (1) JP6937947B2 (ja)
CN (1) CN113227677B (ja)
WO (1) WO2020144738A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114680360A (zh) * 2022-03-04 2022-07-01 青岛海尔空调电子有限公司 用于烟草的烘干系统和用于烟草的控制方法
US20230071382A1 (en) * 2020-11-10 2023-03-09 Rheem Manufacturing Company Air conditioning reheat systems and methods thereto
WO2023189383A1 (ja) * 2022-03-28 2023-10-05 株式会社富士通ゼネラル 空気調和機
WO2023228353A1 (ja) * 2022-05-26 2023-11-30 三菱電機株式会社 空気調和装置
WO2024029003A1 (ja) * 2022-08-03 2024-02-08 三菱電機株式会社 冷媒漏洩検知システムおよび漏洩検知装置
JP7539044B2 (ja) 2020-07-20 2024-08-23 パナソニックIpマネジメント株式会社 空気調和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194490A1 (ja) * 2019-03-26 2020-10-01 三菱電機株式会社 室外機及びそれを備える冷凍サイクル装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572363U (ja) * 1980-06-06 1982-01-07
JPH04369370A (ja) * 1991-06-14 1992-12-22 Hitachi Ltd 冷凍装置
JPH05312428A (ja) * 1992-05-11 1993-11-22 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH09257333A (ja) * 1996-03-19 1997-10-03 Daikin Ind Ltd 空気調和機
JPH09318205A (ja) * 1996-05-27 1997-12-12 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2001082761A (ja) * 1999-09-14 2001-03-30 Mitsubishi Electric Corp 空気調和機
JP2012127519A (ja) * 2010-12-13 2012-07-05 Panasonic Corp 空気調和機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6242321B2 (ja) * 2014-10-03 2017-12-06 三菱電機株式会社 空気調和機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572363U (ja) * 1980-06-06 1982-01-07
JPH04369370A (ja) * 1991-06-14 1992-12-22 Hitachi Ltd 冷凍装置
JPH05312428A (ja) * 1992-05-11 1993-11-22 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH09257333A (ja) * 1996-03-19 1997-10-03 Daikin Ind Ltd 空気調和機
JPH09318205A (ja) * 1996-05-27 1997-12-12 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2001082761A (ja) * 1999-09-14 2001-03-30 Mitsubishi Electric Corp 空気調和機
JP2012127519A (ja) * 2010-12-13 2012-07-05 Panasonic Corp 空気調和機

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7539044B2 (ja) 2020-07-20 2024-08-23 パナソニックIpマネジメント株式会社 空気調和装置
US20230071382A1 (en) * 2020-11-10 2023-03-09 Rheem Manufacturing Company Air conditioning reheat systems and methods thereto
CN114680360A (zh) * 2022-03-04 2022-07-01 青岛海尔空调电子有限公司 用于烟草的烘干系统和用于烟草的控制方法
CN114680360B (zh) * 2022-03-04 2023-06-16 青岛海尔空调电子有限公司 用于烟草的烘干系统和用于烟草的控制方法
WO2023189383A1 (ja) * 2022-03-28 2023-10-05 株式会社富士通ゼネラル 空気調和機
JP2023144715A (ja) * 2022-03-28 2023-10-11 株式会社富士通ゼネラル 空気調和機
JP7491334B2 (ja) 2022-03-28 2024-05-28 株式会社富士通ゼネラル 空気調和機
WO2023228353A1 (ja) * 2022-05-26 2023-11-30 三菱電機株式会社 空気調和装置
WO2024029003A1 (ja) * 2022-08-03 2024-02-08 三菱電機株式会社 冷媒漏洩検知システムおよび漏洩検知装置

Also Published As

Publication number Publication date
CN113227677A (zh) 2021-08-06
CN113227677B (zh) 2022-12-30
JP6937947B2 (ja) 2021-09-22
JPWO2020144738A1 (ja) 2021-09-09

Similar Documents

Publication Publication Date Title
WO2020144738A1 (ja) 空気調和装置
JP7003266B2 (ja) 空気調和装置
JP5774225B2 (ja) 空気調和装置
JP5125116B2 (ja) 冷凍装置
KR101387541B1 (ko) 공기조화기 및 공기조화기의 제상방법
ES2861271T3 (es) Dispositivo de refrigeración
US20110000234A1 (en) Air conditioning apparatus and refrigerant quantity determination method
JP2005016858A (ja) ヒートポンプ式空調装置、ヒートポンプ式空調装置の運転方法
JP3835453B2 (ja) 空気調和装置
JP6667719B2 (ja) 空気調和機
JP2017142038A (ja) 冷凍サイクル装置
JP2008082589A (ja) 空気調和装置
US11231186B2 (en) Refrigeration unit with a liquid heat source and reduced condensation at a utilization unit
WO2018221052A1 (ja) 制御装置、それを備えたマルチ型空気調和システム、及び制御方法並びに制御プログラム
WO2016208042A1 (ja) 空気調和装置
JP6120943B2 (ja) 空気調和装置
JP5955409B2 (ja) 空気調和装置
JP5693990B2 (ja) 空気熱源ヒートポンプエアコン
JP2009068728A (ja) 冷却装置
JP6758506B2 (ja) 空気調和装置
JPWO2016002009A1 (ja) 空気調和装置
JP5404231B2 (ja) 空気調和装置
JP7241880B2 (ja) 空気調和装置
WO2021171401A1 (ja) 空気調和装置
KR101303239B1 (ko) 공기조화기 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908359

Country of ref document: EP

Kind code of ref document: A1