WO2020143719A1 - 一种终端设备 - Google Patents

一种终端设备 Download PDF

Info

Publication number
WO2020143719A1
WO2020143719A1 PCT/CN2020/071207 CN2020071207W WO2020143719A1 WO 2020143719 A1 WO2020143719 A1 WO 2020143719A1 CN 2020071207 W CN2020071207 W CN 2020071207W WO 2020143719 A1 WO2020143719 A1 WO 2020143719A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
layer
terminal device
metal line
line
Prior art date
Application number
PCT/CN2020/071207
Other languages
English (en)
French (fr)
Inventor
杨育展
李建铭
王汉阳
廖奕翔
黄礼忠
朱广祥
于玢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20738844.8A priority Critical patent/EP3902061B1/en
Priority to US17/421,870 priority patent/US12009589B2/en
Publication of WO2020143719A1 publication Critical patent/WO2020143719A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings

Definitions

  • This application relates to the field of electronic devices, and more specifically, to a terminal device.
  • the antenna structures of commonly used terminals are all built-in antennas, and the antennas will be placed inside the terminal equipment.
  • more electronic components need to be integrated inside the terminal equipment, and the antenna is therefore limited by the internal structure of the terminal equipment and sacrifices its performance, making the antenna away from the terminal equipment.
  • the height (distance) of the circuit board is small, and the clearance area required for antenna radiation is also greatly reduced.
  • the metal components on the circuit board interfere with the radiation of the antenna. Therefore, the antenna has a degree of freedom in space. The efficiency and bandwidth are easily limited, and the current multi-antenna and multi-band design requirements are not met, which seriously affects the performance of the antenna and the quality of the terminal equipment.
  • the present application provides a terminal device. Since the metal line (antenna) of the terminal device is provided on the outer surface of the housing of the terminal device or embedded in the housing, the distance between the metal line and the circuit board of the terminal device can be increased and reduced The interference of the metal components on the circuit board to the metal line radiation (antenna radiation) increases the working bandwidth and efficiency of the antenna.
  • a terminal device in a first aspect, includes: a housing; a metal line disposed on an outer surface of the housing or embedded in the housing, the metal line used to receive or transmit an electromagnetic wave signal .
  • the metal line (antenna) of the terminal device is provided on the outer surface of the housing of the terminal device or embedded in the housing, the distance between the metal line and the circuit board of the terminal device can be increased and reduced
  • the interference of the metal components on the circuit board to the metal line radiation (antenna radiation) increases the working bandwidth and efficiency of the antenna.
  • the metal circuit since the metal circuit is not installed in the body of the terminal device, the metal circuit can be free from the influence of the structure and space of the electronic components in the body of the terminal device, which can greatly increase the spatial freedom of the metal circuit. Further improve the working efficiency of the antenna of the terminal device, thereby improving the quality of the signal received or transmitted by the terminal device.
  • the housing is an insulating housing
  • the metal line is disposed on an outer surface of the insulating housing or embedded in the insulating housing.
  • the terminal device further includes: a circuit board, which is used to set electronic components; a signal line, the signal line is provided on the circuit board, and the signal line exists between the metal line Gap, the signal line and the metal line feed the electromagnetic wave signal through the gap in a coupled manner.
  • the terminal device can accurately receive and transmit electromagnetic wave signals, avoiding unstable problems such as poor contact caused by the direct feed method, and further improve the antenna operation of the terminal device. Efficiency and quality.
  • the surface of the metal circuit is provided with a protective film, or the outer surface of the housing is provided with a protective film.
  • problems such as wear and tear of metal lines can be avoided, the durability and service quality of metal lines can be further improved, and the service life of metal lines can be extended.
  • the housing is composed of multiple insulating layers, and the metal line is embedded between any two layers of the multiple insulating layers.
  • the multilayer insulating layer is two insulating layers, both of which are plastic layers, or both of the insulating layers are glass layers, or, one of the two insulating layers
  • the layer is a glass layer, the other layer is a plastic layer, and a metal circuit is embedded between the two insulating layers.
  • the multilayer insulation layer is two insulation layers, one of the two insulation layers is glass, the other insulation layer is PET plastic, and the metal circuit is embedded in the two insulation layers in the middle.
  • the multilayer insulation layer is two insulation layers, both of which are glass layers, and a metal circuit is embedded in the middle of the two insulation layers.
  • one of the two insulating layers is glass, and the other insulating layer is PET plastic.
  • the two insulating layers are both glass layers, and there is a PVB layer between the two glass layers.
  • the metal line is disposed between any one of the two glass layers and the PVB layer.
  • the metal line is a light-transmitting metal line.
  • the light transmittance of the metal line is Y, where Y ranges from 50% ⁇ Y ⁇ 95%.
  • the casing is composed of two insulating layers, and the metal line is embedded between the two insulating layers.
  • the distance between the signal line and the metal line is X
  • the value range of X is 0.1 mm ⁇ X ⁇ 5 mm.
  • the shell is a glass shell.
  • the method for forming the protective film includes any one of a physical weather deposition method, a chemical weather deposition method, a ceramic coating method, a surface hardening solution method, and a film attachment method.
  • the metal circuit includes any one of a metal grid, silver paste, and copper wire.
  • the metal line is a metal grid
  • a metal layer is coated on the metal grid, and the metal layer is used to reduce the impedance of the metal grid.
  • the metal layer is a copper cladding layer.
  • the metallic copper layer is also coated with a metallic nickel layer.
  • the housing is a ceramic housing
  • the metal circuit is disposed on the surface of the ceramic housing or embedded in the ceramic housing.
  • the surface of the metal line is covered with glass glaze.
  • the outer surface of the housing is covered with glass glaze.
  • the metal line is a meshed metal line.
  • the line width of the meshed metal line ranges from 0.1 ⁇ m to 50 ⁇ m.
  • the multilayer insulation layer is two insulation layers, and the metal line is disposed in the middle of the two insulation layers, wherein one of the two insulation layers is a composite material layer, and the other layer It is a polyurethane PU layer.
  • the multilayer insulation layer is two insulation layers, and the metal line is disposed in the middle of the two insulation layers, wherein one of the two insulation layers is a composite material layer, and the other layer For the leather layer.
  • the ceramic material for preparing the ceramic shell is any one of ceramics such as zirconia, alumina, silicon carbide, silicon nitride, aluminum nitride, and boron carbide.
  • the composite material layer is made of one or more of plastic, polycarbonate PC, plastic, or rubber.
  • FIG. 1 is a side view of a schematic structure of a terminal device provided by this application.
  • Fig. 2 is a side view of a schematic structure in which a metal line is embedded in a housing.
  • FIG. 3 is a side view of a schematic structure of another metal circuit provided on the outer surface of the housing provided by the present application.
  • FIG. 4 is a side view of a schematic structure of an example of a signal line provided by this application.
  • FIG. 5 is a side view of another exemplary schematic structure of a signal line provided by this application.
  • FIG. 6 is a side view of another exemplary schematic structure of a signal line provided by this application.
  • FIG. 7 is a side view of another exemplary schematic structure of a signal line provided by the present application.
  • FIG 8 is a side view of another exemplary schematic structure of a signal line provided by this application.
  • FIG. 9 is a side view of another exemplary schematic structure of a signal line provided by this application.
  • FIG. 10 is a side view of another exemplary schematic structure of a signal line provided by the present application.
  • FIG. 11 is a side view of a schematic structure of an example of a protective film provided on an outer surface of a case provided by the present application.
  • FIG. 12 is a side view of a schematic structure of another example of a protective film provided on the outer surface of a housing provided by this application.
  • FIG. 13 is a side view of a schematic structure of an example of a case composed of two insulating layers provided by this application.
  • FIG. 14 is a side view of a schematic structure of an example of a case composed of two insulating layers provided by this application.
  • 15 is a side view of a schematic structure of an example of a case composed of two insulating layers provided by this application.
  • FIG. 16 is a schematic diagram of an example of a metal line provided by silver paste provided by this application.
  • FIG. 17 is a schematic diagram of an example of a metal circuit implemented by a metal grid provided by this application.
  • 18 is a schematic diagram of an example of the distance between a metal line and a signal line provided by this application.
  • 19 is a schematic diagram of another example of the distance between a metal line and a signal line provided by this application.
  • FIG. 20 is a schematic diagram of another example of the distance between a metal line and a signal line provided by this application.
  • 21 is a schematic diagram of another example of the distance between a metal line and a signal line provided by this application.
  • 22 is a schematic diagram of an example of the relative positional relationship between metal lines and signal lines according to an embodiment of the present application.
  • FIG. 23 is a schematic diagram of an example of a signal circuit with two metal circuits in an embodiment of the present application.
  • FIG. 24 is a schematic top view of an example of an embodiment of the present application in which a metal line is provided on the outer surface of a ceramic housing.
  • FIG. 25 is a schematic side view of a ceramic case in which a metal circuit is provided on the outer surface of the ceramic case when the outer surface of the ceramic case is a planar type according to an embodiment of the present application.
  • FIG. 26 is a schematic side view of a ceramic case in which a metal circuit is provided on the outer surface of the ceramic case when the outer surface of the ceramic case is a curved type according to an embodiment of the present application.
  • FIG. 27 is a schematic side view of a ceramic case in which metal lines are provided on the outer surface of the ceramic case when the outer surface of the ceramic case of the embodiment of the present application is curved.
  • FIG. 28 is a schematic side view of a ceramic case in which a metal circuit is provided on the outer surface of the ceramic case when the outer surface of the ceramic case is a flat type according to an embodiment of the present application.
  • FIG. 29 is a schematic side view of a ceramic case in which a metal circuit is provided on the outer surface of the ceramic case when the outer surface of the ceramic case is a curved type according to an embodiment of the present application.
  • FIG. 30 is a schematic side view of a ceramic case in which metal lines are provided on the outer surface of the ceramic case when the outer surface of the ceramic case of the embodiment of the present application is curved.
  • FIG. 31 is a schematic top view of another example of setting a metal line on the outer surface of a ceramic housing according to an embodiment of the present application.
  • FIG. 32 is a schematic diagram of an example of the distance between a metal line and a signal line provided by this application.
  • 33 is a schematic diagram of another example of the distance between a metal line and a signal line provided by this application.
  • FIG. 34 is a schematic top view of an example of an embodiment of the present application in which a grid-like metal line is provided on the outer surface of a ceramic housing.
  • FIG. 35 is a schematic side view of a ceramic case in which a grid-shaped metal circuit is provided on the outer surface of the ceramic case when the outer surface of the ceramic case is a planar type according to an embodiment of the present application.
  • FIG. 36 is a schematic side view of a ceramic case in which a grid-like metal circuit is provided on the outer surface of the ceramic case when the outer surface of the ceramic case is a curved type according to an embodiment of the present application.
  • FIG. 37 is a schematic side view of a ceramic case in which a grid-shaped metal circuit is provided on the outer surface of the ceramic case when the outer surface of the ceramic case of the embodiment of the present application is curved.
  • FIG. 38 is a schematic side view of an example of a grid-shaped metal line provided with glass glaze in an embodiment of the present application.
  • FIG. 39 is a schematic side view of another example of a grid-shaped metal line provided with glass glaze in an embodiment of the present application.
  • FIG. 40 is a schematic side view of another example in which glass glaze is provided on a grid-shaped metal circuit according to an embodiment of the present application.
  • FIG. 41 is a schematic diagram of an example of the distance between a grid-shaped metal line and a signal line provided by this application.
  • FIG. 42 is a schematic diagram of another example of the distance between a grid-shaped metal line and a signal line provided by this application.
  • FIG. 43 is a side view of a schematic structure of an example of a case provided by the present application composed of a composite material layer and an appearance PU layer.
  • FIG. 44 is a side view of another exemplary structure provided by the present application, in which a shell is composed of a composite material layer and an appearance PU layer.
  • FIG. 45 is a side view of another exemplary structure provided by the present application in which the outer shell is composed of a composite material layer and an appearance PU layer.
  • FIG. 46 is a side view of another exemplary structure provided by the present application in which a case is composed of a composite material layer and an appearance PU layer.
  • 47 is a schematic diagram of an example of the distance between a grid-shaped metal line and a signal line provided by this application.
  • 48 is a schematic diagram of another example of the distance between a grid-shaped metal circuit and a signal circuit provided by this application.
  • 49 is a schematic diagram of an example of the relative positional relationship between metal lines and signal lines according to an embodiment of the present application.
  • terminal devices such as mobile phones
  • the functions of terminal devices are increasing day by day, and the communication range covered is becoming wider and wider.
  • the demand and quantity of mobile phones for antennas are also increasing.
  • the design requirements for mobile phone antennas are becoming higher and higher. How to place more antennas in a limited space is one of the urgent problems in the field of antenna structure.
  • the commonly used antenna structure is a built-in antenna.
  • the antenna bracket is used as an antenna radiator to receive or send electromagnetic wave signals, and the antenna is arranged on the antenna bracket.
  • the antenna formed on the antenna bracket (for example, through laser direct molding technology) will be placed inside the mobile phone.
  • the types of antennas that can be selected include inverted-f antenna (IFA), monopole antenna (Monopole) or loop (Loop) antenna etc.
  • IFA inverted-f antenna
  • monopole antenna Monitoring
  • loop loop
  • the clearance area required for the antenna radiation will also be greatly reduced, the metal on the circuit board
  • the interference of the device to the radiation of the antenna is relatively large, so the antenna is easily limited in space freedom, antenna efficiency and bandwidth, and cannot meet the current design requirements of multiple antennas and multiple frequency bands.
  • Another kind of built-in antenna mainly uses laser direct forming (LDS) technology to plate the antenna on the inner surface of the glass back cover (or glass back cover) of the mobile phone.
  • the implementation method is to spray LDS coating on the inner surface of the glass back cover of the mobile phone, and then shape the antenna on the LDS coating by LDS technology.
  • the glass will be limited by the manufacturing restrictions of LDS (for example, LDS has its specific restrictions on the use of required equipment), and LDS coating will also affect the appearance of the outer surface of the glass, and the antenna is made in
  • the surface of the glass back cover will also have problems such as the fall of the antenna, which greatly limits the development of the existing mobile phones with regard to the appearance color and the performance requirements of the antenna structure resistance test.
  • the present application provides a terminal device, the antenna (metal line) of the terminal device is higher in height from the circuit board of the terminal device, that is, the distance between the antenna and the circuit board is farther. Therefore, the influence of the metal devices on the circuit board of the terminal equipment on the antenna radiation is reduced, and the bandwidth and efficiency of the antenna are increased.
  • the number and area of the antennas can also be increased according to needs, and the problems of antenna wear and tear and the like can be solved. Improve the working efficiency of the antenna of the terminal equipment and improve the user experience.
  • FIG. 1 is a side view of a schematic structure of a terminal device provided by this application.
  • the terminal device includes a circuit board 111, a housing 112, a metal line 113 (including 113a and 113b), and a signal line 114 ( Including 114a and 114b).
  • the metal line 113 is disposed on the outer surface of the housing 112 or embedded in the housing 112.
  • the metal line 113 is used to receive or transmit electromagnetic wave signals.
  • FIG. 1 is only exemplary, although not shown in FIG. 1, the terminal device may further include other components, for example, the display area 115 shown in FIG. 1, a power supply, a camera, a sensor, an input unit, and the like. This application does not limit the terminal equipment including other components.
  • the circuit board 111 may be a circuit main board of the terminal device, for example, a printed circuit board (PCB).
  • the circuit board 111 is a support body of various electronic components inside the terminal device and a carrier for the electrical connection of various electronic components.
  • the circuit board 111 is used to place various electronic components and wiring included in the terminal device.
  • the casing 112 corresponds to the casing of the terminal device. More specifically, the housing 112 may be a back cover (or back cover) of the terminal device.
  • the housing 112 may be an area where the terminal device directly contacts the outside except the display area 115, and the area may be made of an insulating material.
  • the housing 112 may be a back cover (back cover) of the smart phone, or may be a part of a side wall area where the back cover of the smart phone is connected to the display screen.
  • the metal line 113 corresponds to the antenna (antenna radiator) of the terminal device, and the metal line 113 (including 113a and 113b) radiates as the antenna of the terminal device.
  • the metal line 113 is used to receive electromagnetic wave signals sent by other devices or send electromagnetic field wave signals to other devices.
  • the metal circuit 113 is disposed on the outer surface of the housing 112 or embedded in the housing 113.
  • the signal line 114 (including 114a and 114b) corresponds to the feed-in section.
  • the feeding part is used to feed the electromagnetic wave signal received by the antenna radiator to the circuit board. Or the signal generated by the circuit board is fed into the antenna radiator and sent out.
  • Figure 1 shows two different signal lines.
  • the two signal lines 114 shown in FIG. 1 are both signal lines with shrapnel structure.
  • the signal line 114a in FIG. 1 is an L-shaped signal line, and the signal line 114b is an inverted U-shaped signal line.
  • One end of the signal line 114b is grounded, and one end is connected to the signal source 120.
  • the signal source 120 is located on the circuit board 111.
  • the signal source 120 is used to generate a signal, and the signal line feeds the signal generated by the signal source into the metal line for transmission.
  • FIG. 1 shows a side view of a schematic structure in which metal lines 113 a and 113 b are both provided on the outer surface (outer side) of the housing 112.
  • FIG. 2 is a side view of a schematic structure in which metal lines 113 a and 113 b are embedded in the housing 112.
  • FIG. 3 is a side view of a schematic structure of another metal line 113a and 113b provided on the outer surface of the housing 112 provided by the present application.
  • FIG. 1 shows that the metal circuit 113 can be provided on the outer surface of the housing 112 by printing, bonding, metal plating, etc.
  • the metal circuit 113 and the housing 112 are not on the same plane.
  • the metal wiring 113 may be fixed on a transparent thin film layer (film sheet), and then the thin film layer with the metal wiring 113 may be fixed on the outer surface of the housing 112.
  • FIG. 3 shows that the metal circuit 113 can be provided on the outer surface of the housing 112 by etching or the like.
  • the height of the metal line 113 is the same as the height of the outer surface of the housing 112.
  • the metal lines 113a and 113b may also be located at different positions.
  • the metal line 113a is disposed on the outer surface of the housing 112, and the metal line 113b is embedded in the housing 112.
  • the metal circuit 113b is disposed on the outer surface of the housing 112, and the metal circuit 113a is embedded in the housing 112, etc., and the embodiments of the present application are not limited herein.
  • the housing 112 may be an insulating housing, for example, a housing made of an insulating material (such as plastic or glass).
  • the metal line 113 is located on or inside the outer surface of the insulating shell 112.
  • there may be a non-insulated area on the inner or outer surface of the insulating housing for example, a part of the inner or outer surface of the insulating housing may be provided with non-insulated parts or components (such as metal sheet or copper foil) ), etc., and the metal line 113 is provided on an insulating area other than the non-insulating area on the inner or outer surface of the insulating case.
  • the housing 112 may also be a non-insulating housing, for example, a housing made of metal. There may be some areas on the outer surface of the non-insulating housing that are insulated, and the metal line 113 is disposed on the insulated area.
  • the metal line 113 is located on the insulating area on the outer surface of the housing 112.
  • the housing 112 may be an insulating housing or a non-insulating housing.
  • the number, specific location, and shape of the metal line 113 are not limited. Specifically, the number and location of metal lines can be flexibly set according to the working bandwidth and efficiency of the terminal device.
  • the metal line may be located on the top, or the middle, or the lower part of the outer surface of the insulating back cover of the terminal device.
  • the embodiments of the present application are not limited herein.
  • the terminal device provided by the present application because the metal line is provided on the outer surface of the shell of the terminal device or embedded in the shell, the distance between the metal line and the circuit board of the terminal device can be increased, and the metal device on the circuit board is reduced
  • the interference to the metal line radiation (antenna radiation) increases the working bandwidth and efficiency of the antenna.
  • the metal circuit since the metal circuit is not installed in the body of the terminal device, the metal circuit can be free from the influence of the structure and space of the electronic components in the body of the terminal device, which can greatly increase the spatial freedom of the metal circuit. Further improve the working efficiency of the antenna of the terminal device, thereby improving the quality of the signal received or sent by the terminal device.
  • the signal line 114 a is grounded, one end of the signal line 114 b is grounded, and one end is connected to the signal source 120.
  • the signal source 120 is located on the circuit board 111.
  • the signal source 120 is used to generate a signal, and the signal line feeds the signal generated by the signal source into the metal line for transmission.
  • the signal line 114a can also be connected to the signal source 120, and both ends of the signal line 114b can be grounded.
  • the signal line 114a can also be connected to the signal source 120, and both ends of the signal line 114b are connected to the signal source 120.
  • the signal source 120 can transmit the generated signal to the signal line 114a and the signal line 114b through the circuit board 111.
  • the signal line may also have other shapes.
  • the embodiments of the present application are not limited herein.
  • the signal line 114c shown in FIG. 6 is a possible signal line shape.
  • One end of the signal line 114c is grounded, and one end is connected to the signal source 120.
  • both ends of the signal line 114c can be grounded.
  • both ends of the signal line 114c can be connected to the signal source 120.
  • the signal line 114d shown in FIG. 7 is another possible shape of the signal line.
  • One end of the signal line 114d is grounded, and one end is connected to the signal source 120.
  • both ends of the signal line 114 d can be grounded, and the signal source 120 can transmit the generated signal to the signal line 114 d through the circuit board 111.
  • the signal source 120 can be connected to both ends of the signal line 114d.
  • FIG. 9 is a schematic diagram of two signal lines on the circuit board 111.
  • the signal lines 114a and 114e shown in FIG. 9 are L-shaped signal lines.
  • the signal line 114a is grounded, and the signal line 114e is connected to the signal source 120.
  • the signal line 114a can also be connected to the signal source 120, and the signal line 114e can also be grounded.
  • the signal lines 114a and 114e are both grounded.
  • the signal lines 114a and 114e are both connected to the signal source 120.
  • the embodiments of the present application are not limited herein.
  • the signal line 114f shown in FIG. 10 is another possible shape of the signal line.
  • One end of the signal line 114f is grounded, and one end is connected to the signal source 120.
  • both ends of the signal line 114f can be grounded, and the signal source 120 can transmit the generated signal to the signal line 114f through the circuit board 111.
  • the signal source 120 can be connected to both ends of the signal line 114f.
  • the shapes, positions, and numbers of the signal lines shown in FIGS. 1 to 10 are merely exemplary. In the application examples of this book, the signal lines may also have other shapes, and the number of signal lines on the circuit board may be other numbers. The shape, number, and location of the signal lines shown in FIGS. 1 to 10 should not limit the embodiments of the present application.
  • the metal lines 113 all refer to 113a and 113b, and the signal line 114 is described by taking 114a and 114b as examples.
  • the metal line 113 and the signal line 114 there is a gap (gap) between the metal line 113 and the signal line 114 (for example, 114a and 114b), for example, there is a gap between the metal line 113a and the signal line 114a, and the metal line 113b and the signal line There is a gap between 114b. That is, there is no direct contact between the metal line 113 and the signal line 114, nor indirect contact through other connecting parts.
  • the signal line 114 and the metal line 113 are fed into the electromagnetic wave signal received by the metal line 113 through the gap in a coupled manner.
  • the feeding method between the metal line 113 and the signal line 114 is a coupled feeding method, rather than a direct feeding method.
  • the feeding method between the metal line 113a and the signal line 114a is coupled feed, and the feeding method between the metal line 113b and the signal line 114b is also coupled feed.
  • the direct feeding method is direct contact between the metal line and the signal line or indirect contact through other connecting parts (that is, direct electrical connection).
  • the signal line 114 feeds the electromagnetic wave signal generated by the circuit board 111 to the metal line 113 in a coupled manner, and the metal line 113 emits the electromagnetic wave signal.
  • the metal line 113 receives the electromagnetic wave signal sent by other devices, and then feeds into the signal line 114 in a coupled manner, and transmits it to the circuit board 111 through the signal line 114.
  • the terminal device can accurately receive and transmit the electromagnetic wave signal, avoiding the direct feed. Instability problems such as poor contact, further improve the efficiency and quality of the antenna operation of the terminal device.
  • FIGS. 11 and 12 are protective films 116 provided on the outer surface of the housing 112 Side view of the schematic structure.
  • a protective film (protective layer) 116 is provided on the outer surface of the housing 112.
  • a protective film 116 is provided on the surface of the metal line 113.
  • the protective film 116 is used to avoid problems such as wear and tear of the metal circuit 113, and to improve the stability and service life of the metal circuit 113.
  • 11 and 12 show that a protective film 116 is provided on the entire outer surface of the housing 112.
  • the protective film may be provided only on the surface of the metal line 113, and the protective film may not be provided in the area where the metal line is not arranged.
  • the embodiments of the present application are not limited herein.
  • the material of the protective film 116 may be a polymer material or a ceramic material.
  • the material of the protective film 116 is not limited, as long as it can protect the metal line 113 from abrasion, etc., and does not affect the metal line 113 to receive or send an electromagnetic wave signal.
  • the housing 112 may be composed of multiple insulating layers, and the metal circuit 113 is embedded between any two layers of the multiple insulating layer.
  • the case 112 is composed of two insulating layers as an example.
  • FIG. 13 is a side view of a schematic structure of the housing 112 composed of two insulating layers.
  • the two insulating layers are 112a and 112b, respectively.
  • 112a and 112b constitute a housing 112
  • metal lines 113a and 113b are disposed on the surface where the insulating layer 112a and the insulating layer 112b are in contact.
  • the metal circuits 113a and 113b may be fixed on the insulating layer 112b by bonding or etching, and then the insulating layer 112b and the insulating layer 112a are combined with each other to form a complete housing 112 as a whole.
  • the metal lines 113a and 113b are sandwiched between the insulating layer 112b and the insulating layer 112a. In this way, problems such as wear and tear of metal lines can also be avoided, the durability and service quality of metal lines can be further improved, and the service life of metal lines can be extended.
  • the thickness of the insulating layer 112b and the insulating layer 112a may be the same, for example, both are 0.3 mm.
  • the thickness of the insulating layer 112b and the insulating layer 112a may be different.
  • the two insulating layers are both plastic layers, or the two insulating layers are both glass layers, or one of the two insulating layers is a glass layer, and the other is a plastic layer ,
  • the metal circuit is embedded in the middle of the two insulating layers.
  • FIG. 14 is a side view of the schematic structure of the housing 112 composed of two insulating layers. As shown in FIG. 14, the two insulating layers are 112c and 112d, respectively.
  • the insulating layer 112c may be a glass layer, and the insulating layer 112d may be a polyethylene terephthalate (PET) plastic layer.
  • PET polyethylene terephthalate
  • the metal lines 113a and 113b are provided on the surface where the insulating layer 112c and the insulating layer 112d are in contact.
  • FIG. 14 is a side view of the schematic structure of the housing 112 composed of two insulating layers. As shown in FIG. 14, the two insulating layers are 112c and 112d, respectively.
  • the insulating layer 112c may be a glass layer, and the insulating layer 112d may be a polyethylene terephthalate (PET) plastic layer.
  • PET polyethylene terephthalate
  • the metal lines 113a and 113b are fixed on the insulating layer 112d by printing, bonding, metal plating, etc., and then The insulating layer 112c and the insulating layer 112d are combined with each other to form a complete housing 112 as a whole.
  • the metal lines 113a and 113b are provided on the insulating layer 112d by etching or the like, and then the insulating layer 112c and the insulating layer 112d are combined with each other to form a complete housing 112 as a whole.
  • the metal lines 113a and 113b may also be disposed on the insulating layer 112c by etching or the like, and then the insulating layer 112c and the insulating layer 112d are combined with each other to form a complete housing 112 as a whole.
  • the embodiment of the present application does not limit the specific manner of placing the metal line between any two insulating layers of the multilayer insulating layer.
  • the thickness of the insulating layer 112c and the insulating layer 112d may be the same, for example, both are 0.35 mm.
  • the thicknesses of the insulating layer 112c and the insulating layer 112d may have other values.
  • the thickness of the insulating layer 112c and the insulating layer 112d may also be different.
  • the insulating layer 112c may be a PET plastic layer, and the insulating layer 112d may be a glass layer.
  • the insulating layer 112c or 112d may be an insulating layer formed (or combined) of multiple insulating layers together.
  • the insulating layer 112c is an insulating layer integrally formed by multiple glass layers together.
  • the materials of the two insulating layers may be the same or different.
  • the materials of the insulating layer 112c and the insulating layer 112d may also be other materials.
  • the insulating layer 112d may also be polyethylene (PE) plastic, polypropylene (PP) plastic, polyvinyl chloride (Polyvinyl Chloride, PVC), or the like.
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl Chloride
  • the material of each insulating layer in the multiple insulating layers is not limited.
  • the material of each insulating layer in the multiple insulating layers may be the same or different.
  • the insulating layer 112c may also be a resin material (for example, epoxy resin), and the insulating layer 112d may also be a rubber material (for example, silicone rubber, fluororubber, etc.).
  • the insulating layer 112c may also be a fiber material (such as polyester, aramid, etc.), and the insulating layer 112d may also be a paint (such as polyurethane).
  • the embodiments of the present application are not limited herein.
  • the thickness of each insulating layer in the multiple insulating layers is not limited.
  • the thickness of each insulating layer in the multiple insulating layers may be the same or different.
  • the embodiments of the present application are not limited herein.
  • a layer of polyvinyl butyral between the insulating layer 112c and the insulating layer 112d, or between the insulating layer 112a and the insulating layer 112b , PVB) layer there may be a layer of polyvinyl butyral between the insulating layer 112c and the insulating layer 112d, or between the insulating layer 112a and the insulating layer 112b , PVB) layer.
  • a PVB layer (which may be referred to as a PVB interlayer) is provided between the insulating layer 112c and the insulating layer 112d, that is, the PVB layer is provided between the glass layer and the PET plastic layer as an example for description.
  • the metal lines 113a and 113b can be fixed on the insulating layer 112d (PET plastic layer) by printing, bonding, metal plating, etc., and then the PVB layer, the insulating layer 112c (glass layer), and the insulating layer 112d with the metal line fixed Combined with each other to form a complete housing 112 as a whole.
  • the insulating layer 112d PET plastic layer
  • the metal lines 113a and 113b can be fixed on the insulating layer 112d (PET plastic layer) by etching or the like, and then the PVB layer, the insulating layer 112c (glass layer), and the insulating layer 112d with the metal line fixed to each other Together, the complete housing 112 is formed as a whole.
  • the insulating layer 112d PET plastic layer
  • the insulating layer 112c glass layer
  • the insulating layer 112d with the metal line fixed to each other the complete housing 112 is formed as a whole.
  • the metal lines 113a and 113b can also be fixed on the PVB layer by printing, bonding, metal plating, etching, etc., and then the PVB layer, the insulating layer 112c, and the insulating layer 112d with the metal line fixed to each other Together, they form a complete housing 112 as a whole.
  • the metal lines 113a and 113b can also be fixed on the insulating layer 112c by printing, bonding, metal plating, etching, etc., and then the insulating layer 112c, PVB layer, and insulating layer 112d to which the metal lines are fixed Combined with each other to form a complete housing 112 as a whole.
  • a PVB layer may also be provided between the two glass layers, and then the metal circuit is provided on the PVB layer. Finally, the two glass layers and the PVB layer provided with the metal circuit are combined to form the housing 112. Alternatively, the metal circuit may be disposed on any one of the two glass layers, and finally the two glass layers and the PVB layer are combined to form the housing 112.
  • the thickness of the PVB layer is not limited, for example, the thickness of the PVB layer may range from 10 to 100 micrometers ( ⁇ m). Of course, the thickness of the PVB layer can also be other values, which is not limited in the embodiments of the present application.
  • an intermediate layer or an intermediate film composed of other materials may also be provided.
  • the intermediate layer or the intermediate film can make the combination of the two insulating layers more stable or firm.
  • the embodiments of the present application are not limited herein.
  • the housing 112 may be composed of more insulating layers.
  • the metal line 113 may be disposed between any two insulating layers.
  • the multiple metal lines may be located between the same two insulating layers or between two different insulating layers. The embodiments of the present application are not limited herein.
  • the housing 112 may be made of glass, that is, the housing 112 may be made of glass.
  • the metal wiring 113 may be disposed between any two glass layers.
  • the multiple glass layers when they are combined with each other to form a whole piece of glass shell, they can be combined by heating and melting.
  • the required temperature for heating and melting is between 120 and 600 degrees, which ultimately makes the multiple glass layers into a single glass.
  • multiple layers of glass can be bonded with a general adhesive, and finally the multiple layers of glass can be combined into one piece of glass.
  • the thickness of the final composite glass layer into a piece of glass may be 0.6 mm.
  • the housing 112 may also be a polymer material.
  • the housing 112 may also be a plastic housing, a rubber housing, or the like.
  • the metal line 113 may include any one of a metal grid, silver paste, and copper wire.
  • the metal line 113 may be implemented in the form of a metal mesh.
  • the metal line 113 can be realized by coating silver paste on the housing 112.
  • the metal line 113 may be realized by a metal copper wire.
  • FIG. 16 is a schematic diagram showing that the metal line 113a and the metal line 113b are implemented by silver paste.
  • the metal wiring 113a and the metal wiring 113b can be formed by brushing the silver paste on the outer surface of the housing 112 to form the metal wiring 113a and the metal wiring 113b, or by brushing the silver paste between any two insulating layers of the multilayer insulation layer.
  • FIG. 17 is a schematic diagram showing that the metal circuit 113a and the metal circuit 113b are implemented by a metal grid.
  • the metal grid may be prepared first, and then the metal grid is fixed to the outer surface of the housing 112 by bonding or welding, or The metal grid is fixed between any two insulating layers of the multilayer insulating layer to form a metal line 113a and a metal line 113b.
  • the metal circuit 113 may also be implemented in other forms, for example, the metal circuit 113 may be implemented in the form of a metal sheet. Or through LDS etching, light technology and so on.
  • the embodiments of the present application are not limited herein.
  • the metal circuit 113a may be implemented by silver paste
  • the metal circuit 113b may be implemented by a metal grid.
  • the embodiments of the present application are not limited herein.
  • the specific metal material of the metal circuit 113 is not limited.
  • the metal circuit 113 may be composed of metal materials such as copper, aluminum, and iron. Multiple metal lines can also be composed of different metal materials.
  • the embodiments of the present application are not limited herein.
  • the line width of the metal line 113 can be made very thin (for example, the line width is about 0.002 mm) to reach a range that cannot be recognized by the naked eye, so that the line formed by the metal line 113 is Transparent lines (transparent lines). That is, the metal line is transparent (transparent).
  • the circuit formed by the metal circuit 113 is a transparent circuit by means of a metal grid or coating a metal slurry.
  • the light transmittance of the metal line 113 is Y, wherein the value range of Y is 50% ⁇ Y ⁇ 95%.
  • a plurality of light-transmitting metal lines may be included in the plurality of metal lines.
  • the light transmittance of multiple light-transmitting metal lines may be different.
  • the embodiments of the present application are not limited herein.
  • a metal layer may be plated on the metal grid to reduce the metal grid impedance.
  • copper plating can be used to reduce the impedance of metal lines.
  • nickel can also be plated on the metal layer to prevent oxidation and corrosion of the metal circuit.
  • copper can also be plated on the metal line to reduce the impedance of the metal line.
  • nickel plating can be used on copper-plated metal lines to prevent oxidation and corrosion of the metal lines.
  • a protective film 116 is further provided on the outer surface of the housing 112 or the surface of the metal circuit 113.
  • the protective film 116 may be formed on the outer surface of the housing 112 or the surface of the metal line 113 in the following ways:
  • PVD Physical meteorological deposition
  • the chemical meteorological deposition method is mainly a method of forming a thin film by chemical reaction on the outer surface of the housing 112 or the surface of the metal line 113 by using one or more gas phase compounds or elements containing protective film material elements
  • Ceramic coating may be formed by spraying ceramic powder or particles on the outer surface of the housing 112 or the surface of the metal line 113 to form a protective film.
  • the coating (protective film) formed by the ceramic coating can be transparent or colored, as long as the coating can protect the metal lines.
  • Surface hardening liquid a surface hardening liquid layer (protective film) is formed on the outer surface of the housing 112 or the surface of the metal wiring 113 by spraying, dipping, dipping, or the like.
  • Surface hardening liquid layer of silicone-based hardening liquid.
  • Hardening conditions include ultraviolet (ultraviolet rays, UV) irradiation or moisture hardening.
  • the surface hardening liquid layer may be transparent or colored.
  • Protective film or decorative film A layer of film is attached to the outer surface of the housing 112 or the surface of the metal line 113, and the material of this film may be resin or glass. As long as the film can protect the metal line 113.
  • the outer surface of the housing 112 or the surface of the metal circuit 113 may also be implemented in any other feasible way or technology
  • the surface is provided with a protective film or coating, as long as the protective film or coating can avoid the wear of metal lines. Problems such as shedding.
  • the embodiments of the present application are not limited herein.
  • the metal lines 113a and 113b are disposed on the outer surface of the housing 112, there is a gap between the metal line 113a and the signal line 114a, and there is a gap between the metal line 113b and the signal line 114b.
  • the distance between the metal line 113a and the signal line 114a is X
  • the distance between the metal line 113a and the signal line 114a is S. That is, one signal line corresponds to one metal line, or the number of metal lines matched with one signal line is 1.
  • the feeding method between the metal line 113 and the signal line 114 is coupling feeding.
  • the value range of X is 0.1mm ⁇ X ⁇ 5mm.
  • the value range of S is 0.1mm ⁇ X ⁇ 5mm.
  • FIG. 19 shows a schematic diagram of another signal line.
  • the difference from FIG. 18 is that the signal lines 114a and 114b in FIG. 19 are provided on the bracket 117.
  • the bracket 117 is fixed on the circuit board 111, and the bracket 117 is used to support and fix the signal line 114.
  • the signal line 114 shown in FIG. 18 is directly fixed on the circuit board 111, and the structure shown in FIG. 18 does not include the bracket 117.
  • the distance between the metal line 113a and the signal line 114a is X
  • the distance between the metal line 113a and the signal line 114a is S.
  • the value range of X is 0.1mm ⁇ X ⁇ 5mm.
  • the value range of S is 0.1mm ⁇ X ⁇ 5mm.
  • 20 is a schematic diagram of a signal circuit when the metal circuit 113 is disposed between two insulating layers.
  • metal lines 113a and 113b are provided between two insulating layers 112a and 112b.
  • the distance between each metal line 113 and the signal line 114 is X, that is, one signal line corresponds to one metal line, or the number of metal lines matched with one signal line is 1.
  • the feeding method between the metal line 113 and the signal line 114 is coupling feeding.
  • the distance between the metal line 113a and the signal line 114a is X
  • the distance between the metal line 113a and the signal line 114a is S.
  • the value range of X is 0.1mm ⁇ X ⁇ 5mm.
  • the value range of S is 0.1mm ⁇ X ⁇ 5mm.
  • FIG. 21 shows a schematic diagram of another signal line.
  • the difference from FIG. 20 is that the signal line 114 in FIG. 21 is provided on the bracket 117.
  • the bracket 117 is fixed on the circuit board 111, and the bracket 117 is used to support and fix the signal line 114.
  • the signal line 114 shown in FIG. 20 is directly fixed on the circuit board 111, and the structure shown in FIG. 20 does not include the bracket 117.
  • the distance between the metal line 113a and the signal line 114a is X
  • the distance between the metal line 113a and the signal line 114a is S.
  • the value range of X is 0.1mm ⁇ X ⁇ 5mm.
  • the value range of S is 0.1mm ⁇ X ⁇ 5mm.
  • the distances X and S between the metal line 113 and the signal line 114 may also be other values, as long as the distance between the metal line 113 and the signal line 114 is greater than 0. That is, there is no direct contact between the metal line 113 and the signal line 114, nor indirect contact through other connecting parts.
  • the distance between the metal line 113 and the signal line 114 may refer to the minimum distance (shortest distance) between the metal line 113 and the signal line 114, that is, the metal line 113 is located directly above the signal line 114.
  • the minimum distance between the metal line 113a and the signal line 114a may be the vertical distance between the metal line 113a and the signal line 114a.
  • the minimum distance between the metal line 113b and the signal line 114b may also be the distance in the vertical direction between the metal line 113b and the signal line 114b.
  • the distance between the metal line 113a and the signal line 114a can also refer to the distance between any position on the metal line 113a and any position on the signal line 114a, and between the metal line 113b and the signal line 114b The distance may also refer to the distance between any position on the metal line 113b and any position on the signal line 114b.
  • the embodiments of the present application are not limited herein.
  • the metal circuit 113a is disposed on the outer surface of the housing 112, and a bracket 117 in the shape of a rectangular parallelepiped is fixed on the circuit board 111.
  • the bracket 117 is used to support and fix the signal circuit 114a.
  • the metal circuit 113a is located directly above the signal circuit 114a.
  • the distance between the metal line 113a and the signal line 114a is X.
  • the value range of X is: 0.1mm ⁇ X ⁇ 5mm.
  • FIG. 23 shows a case where the number of metal lines 113 matched with one signal line 114 is one.
  • the number of metal lines matched with one signal line may be multiple.
  • FIG. 23 shows a case where the number of metal lines matched with the signal line 114a is two, and the two metal lines 113 may be 113a and 113b.
  • the distances between the metal lines 113a and 113b and the signal line 114a are L1 and L2, respectively.
  • the value range of L1 is 0.1mm ⁇ L1 ⁇ 5mm
  • the value range of L2 is 0.1mm ⁇ L2 ⁇ 5mm. of course.
  • the values of L1 and L2 can also be other values, as long as the values of L1 and L2 are greater than 0.
  • the housing 112 may also be made of ceramic material, and the metal circuit may be embedded on the outer surface of the ceramic housing 112 (or may also be referred to as a ceramic cover plate).
  • the metal circuit may be embedded in the housing 112.
  • the metal circuit can be made of inorganic conductive material, and the metal circuit can be used as an antenna radiator of the terminal device to complete the antenna function.
  • the outer surface of the metal circuit can be covered with a layer of glass glaze to protect the metal circuit and avoid the wear of the metal circuit.
  • the ceramic material may be any one of ceramics such as zirconia, alumina, silicon carbide, silicon nitride, aluminum nitride, and boron carbide. It should be understood that the housing 112 may also be made of Other ceramic materials are prepared, and the embodiments of the present application are not limited herein.
  • the metal circuit may be made of conductive silver paste. It should be understood that, in the embodiments of the present application, the metal circuit may also be made of one or more of other types of sintered conductive paste, which is not limited herein.
  • the glass glaze covered on the metal circuit may be a transparent colorless glaze, or a semi-transparent glaze or a color glaze.
  • This application is not limited here. It should be understood that, in addition to the glass glaze (or glass glaze layer) covering the metal line, other materials may be covered on the metal line to protect the metal line, and the embodiments of the present application are not limited herein.
  • the outer surface of the ceramic housing 112 may be flat or curved, for example, FIG. 24 shows an example of providing metal on the outer surface of the ceramic housing 112 Top schematic view of the line.
  • the direction indicated by the arrow in FIG. 24 is the longitudinal direction of the ceramic case 112.
  • FIG. 25 is a schematic side view of an example of the ceramic case 112 in which metal lines are provided on the outer surface of the ceramic case 112 when the outer surface of the ceramic case 112 is planar.
  • 26 and 27 are schematic diagrams of a side view of the ceramic housing 112 in which metal lines are provided on the outer surface of the ceramic housing 112 when the outer surface of the ceramic housing 112 is flat and curved, respectively.
  • the direction indicated by the arrow is the thickness direction of the ceramic housing 112.
  • the gold line shown in FIG. 24 may be chip-shaped.
  • glass glaze may also be provided on the entire outer surface of the housing 112.
  • Figs. 25 to 27 are schematic diagrams of providing glass glaze on metal lines.
  • 28 to 30 are schematic diagrams of setting glass glaze on the outer surface of the entire housing 112.
  • the area covered with the glass glaze on the outer surface of the housing 112 is not limited.
  • the thickness of the glass glaze layer is not limited in the embodiments of the present application.
  • the outer surface of the ceramic housing 112 may also have other shapes.
  • metal lines can be provided in any area on the outer surface of the ceramic housing 112. This application is not limited here.
  • a groove may also be formed inside the ceramic housing 112.
  • the metal line is arranged in the groove, and a layer of plastic or glass fiber or the like may be arranged on the surface of the metal line to protect the metal line.
  • the direction indicated by the arrow in FIG. 31 is the thickness direction of the ceramic housing 112.
  • the ceramic housing with embedded metal lines may be obtained by the following method:
  • the mold structure is designed, and the ceramic shell blank is prepared by the conventional molding process of ceramic materials such as dry pressing, casting, or injection.
  • the ceramic shell body is sintered and compacted under certain temperature, atmosphere, pressure and other sintering parameters to obtain the ceramic shell, and the processing of the ceramic shell size and shape is completed by computer numerical control machine tools, rough grinding, polishing and other methods.
  • the groove of the metal circuit is placed on the outer surface of the ceramic shell through the computer numerical control machine tool or laser engraving.
  • Inorganic conductive materials, solvents, binders and other polymer additives are mixed to prepare a conductive paste, and the conductive paste is applied to the grooves as subsequent metal line parts by spraying, brushing, etc.
  • the glass glaze is also applied to the groove by conventional glaze spraying, glazing and other glazing methods to cover the conductive paste.
  • the ceramic shell coated with conductive paste and glass glaze under a certain temperature, atmosphere, pressure and other sintering parameters to achieve the sintering of conductive material and glass glaze.
  • the finished ceramic cover plate with embedded antenna is obtained.
  • the appearance effect surface treatment includes one or more of plating, ink, film sticking, texture, and laser engraving.
  • the surface treatment of appearance effects may also include other treatment methods.
  • FIG. 32 is a schematic diagram showing an example of the relative positional relationship between metal lines and signal lines according to an embodiment of the present application.
  • the metal circuit shown in FIG. 32 is embedded in the outer surface of the ceramic casing 112, and the metal circuit is provided with glass glaze.
  • the signal lines 114a and 114b are respectively disposed on the bracket 117.
  • the bracket 117 is fixed on the circuit board 111, and the bracket 117 is used to support and fix the signal line 114.
  • the feeding method between the metal line and the signal line is coupling feeding.
  • the shortest distance between the metal line and the two signal lines 114a and 114b is X and S, respectively.
  • the value range of X is 0.1mm ⁇ X ⁇ 5mm.
  • the value range of S is 0.1mm ⁇ X ⁇ 5mm.
  • FIG. 33 is a schematic diagram of another example of the relative positional relationship between metal lines and signal lines according to an embodiment of the present application. Unlike FIG. 32, the structure shown in FIG. 33 does not include the bracket 117.
  • the signal line adopts the form of an elastic sheet, which is fixed on the circuit board 111.
  • the feeding method between the metal line and the signal line is coupling feeding.
  • the shortest distance between the metal line and the two signal lines 114a and 114b is X and S, respectively.
  • the value range of X is 0.1mm ⁇ X ⁇ 5mm.
  • the value range of S is 0.1mm ⁇ X ⁇ 5mm.
  • the distances X and S between the metal line and the signal line may also be other values, as long as the distance between the metal line and the signal line is greater than 0. That is, there is no direct contact between the metal line and the signal line, nor indirect contact through other connecting parts.
  • the housing 112 may also be made of ceramic material, and the antenna area on the ceramic housing 11 may be composed of grid lines, that is, the shape of the metal lines may be grid ( Grid-like) lines.
  • a grid-like metal circuit is embedded on the outer surface of the housing 112.
  • the metal circuit can be made of inorganic conductive materials, and the metal circuit can be used as an antenna radiator of the terminal device to complete the antenna function.
  • a layer of glass glaze may be covered on the outer surface of the meshed metal circuit to protect the metal circuit and prevent the metal circuit from being worn.
  • the meshed metal circuit may be made of an inorganic conductive material, for example, conductive silver paste. It should be understood that in the embodiment of the present application, the metal circuit may also be made of other types of sintered type One or more of the conductive pastes are made, and this application is not limited herein.
  • the outer surface of the ceramic housing 112 may be planar or curved.
  • FIG. 34 is a schematic plan view of an example in which a grid-like metal circuit is provided on the outer surface of the ceramic housing 112.
  • the direction indicated by the arrow in FIG. 34 is the longitudinal direction of the ceramic case 112.
  • FIG. 35 is a schematic side view of an example of the ceramic case 112 in which a grid-like metal circuit is provided on the outer surface of the ceramic case 112 when the outer surface of the ceramic case 112 is planar.
  • 36 and 37 are schematic diagrams of a side view of the ceramic housing 112 in which grid-like metal lines are provided on the outer surface of the ceramic housing 112 when the outer surface of the ceramic housing 112 is a planar type and a curved surface type, respectively.
  • the direction indicated by the arrow is the thickness direction of the ceramic case 112.
  • the outer surface of the ceramic housing 112 may also have other shapes.
  • metal lines can be provided in any area on the outer surface of the ceramic housing 112. This application is not limited here.
  • the shape of the area where the grid-shaped metal lines are provided may be: circular, square, rectangular, elliptical, racetrack, triangular, irregular shape Wait.
  • the metal circuit is grid-shaped and has a certain thickness
  • the three-dimensional shape of the metal circuit can be a sphere, a cube, a cuboid, a cylinder, an ellipsoid, a cone, or an irregular shaped body.
  • the three-dimensional outline of the metal lines shown in FIGS. 35 to 37 is a rectangular parallelepiped.
  • FIG. 38 is a schematic side view of the glass glaze on the grid-shaped metal circuit.
  • glass glaze in addition to covering the glass-like metal circuit area with glass glaze, glass glaze may also be provided on the outer surface of the entire housing 112.
  • FIG. 39 is a schematic diagram of a side view of a glass glaze layer disposed on the entire outer surface of the housing 112.
  • the glass glaze layer may only cover the grid-like metal circuit area.
  • FIG. 40 is a schematic view of a side view of a glass glaze layer provided on a grid-like metal circuit area.
  • the thickness of the glass glaze layer is not limited in the embodiments of the present application.
  • the ceramic shell with the grid-shaped metal circuit embedded therein may be obtained by the following method:
  • the mold structure is designed, and the ceramic shell blank is prepared by the conventional molding process of ceramic materials such as dry pressing, casting, or injection. Then, the ceramic shell blank is sintered and compacted under certain temperature, atmosphere, pressure and other sintering parameters to obtain the ceramic shell, and the ceramic shell size and shape are processed by computer numerical control machine tool, rough grinding and polishing.
  • grid grooves are processed on the outer surface of the ceramic shell by means of laser engraving and etching, and then inorganic conductive materials, solvents, adhesives and other polymers are processed
  • the additive is mixed and prepared into a conductive paste, and the conductive paste is applied to the meshed groove as a subsequent metal line (antenna) part by spraying, brushing, etc.
  • the ceramic shell coated with conductive paste into a certain temperature, atmosphere, pressure and other sintering parameters to achieve sintering of conductive material.
  • the finished ceramic cover plate with embedded antenna is obtained.
  • the ceramic material may be any one of ceramics such as zirconia, alumina, silicon carbide, silicon nitride, aluminum nitride, and boron carbide. It should be understood that the housing 112 may also be made of Other ceramic materials are prepared, and the embodiments of the present application are not limited herein.
  • the appearance effect surface treatment includes one or more of plating, ink, film sticking, texture, and laser engraving.
  • the surface treatment of appearance effects may also include other treatment methods.
  • FIG. 41 is a schematic diagram showing an example of the relative positional relationship between a grid metal circuit and a signal circuit according to an embodiment of the present application.
  • the meshed metal circuit shown in FIG. 41 is embedded in the outer surface of the ceramic housing 112.
  • the signal lines 114a and 114b are respectively disposed on the bracket 117.
  • the bracket 117 is fixed on the circuit board 111, and the bracket 117 is used to support and fix the signal line 114.
  • the feeding method between the metal line and the signal line is coupling feeding.
  • the shortest distance between the grid-shaped metal line and the two signal lines 114a and 114b is X and S, respectively.
  • the value range of X is 0.1mm ⁇ X ⁇ 5mm.
  • the value range of S is 0.1mm ⁇ X ⁇ 5mm.
  • FIG. 42 is a schematic diagram of another example of the relative positional relationship between metal lines and signal lines according to an embodiment of the present application.
  • the structure shown in FIG. 42 does not include the bracket 117.
  • the signal line adopts the form of an elastic sheet, which is fixed on the circuit board 11.
  • the feeding method between the metal line and the signal line is coupling feeding.
  • the shortest distance between the grid-shaped metal line and the two signal lines 114a and 114b is X and S, respectively.
  • the value range of X is 0.1mm ⁇ X ⁇ 5mm.
  • the value range of S is 0.1mm ⁇ X ⁇ 5mm.
  • the distances X and S between the metal line and the signal line may also be other values, as long as the distance between the metal line and the signal line is greater than 0. That is, there is no direct contact between the metal line and the signal line, nor indirect contact through other connecting parts.
  • the housing 112 may be composed of multiple insulating layers, and the metal line 113 is embedded in any two of the multiple insulating layers In the middle of the layer.
  • the case 112 is composed of two insulating layers as an example.
  • Figure 43 is 112a and 112b respectively.
  • 112a and 112b constitute a housing 112, and metal lines 113a and 113b are embedded in the insulating layer 112a.
  • the insulating layers 112a and 112b are then combined with each other to form a complete housing 112 as a whole.
  • FIG. 44 is a side view showing a schematic structure of the housing 112 composed of two insulating layers. As shown in FIG. 43, the two insulating layers are 112a and 112b, respectively. 112a and 112b constitute a housing 112, and the metal lines 113a and 113b are fixed on the insulating layer 112b by printing, bonding, metal plating, etc., and then the insulating layers 112a and 112b are combined with each other to form a complete housing 112 as a whole.
  • FIG. 45 is a side view showing a schematic structure of the housing 112 composed of two insulating layers. As shown in FIG. 45, the two insulating layers are 112a and 112b, respectively. 112a and 112b constitute a housing 112, and metal lines 113a and 113b are embedded in the insulating layer 112a.
  • FIG. 46 is a side view of a schematic structure of the housing 112 composed of two insulating layers. As shown in FIG. 46, the two insulating layers are 112a and 112b, respectively. 112a and 112b constitute the housing 112, and the metal lines 113a and 113b are fixed on the insulating layer 112b by printing, bonding, metal plating, or the like.
  • the insulating layer 112a may be made of polyurethane (Polyurethane, PU) material, or the insulating layer 112a may be made of leather material.
  • the insulating layer 112a may also be referred to as an appearance PU layer or a leather layer.
  • the insulating layer 112b may be made of a composite material, for example, the composite material layer may be made of plastic, polycarbonate (PC), PE plastic, PP plastic, PVC plastic, PET plastic, resin material, rubber material, fiber material or Any one or more of other polymer materials. This application does not limit the specific types of composite materials.
  • the insulating layer 112b may also be referred to as a composite material layer.
  • the metal circuits 113a and 113b can be fixed on the composite material layer by printing, bonding, metal plating, etching, etc., and then the composite material layer with the metal circuit fixed and the appearance PU layer can be combined with each other as a whole The upper shell 112 is complete.
  • Lineable, metal lines can be formed on the surface of the composite material layer, and the thickness of the composite material layer can range from 0.05 mm to 0.6 mm.
  • the metal antenna can be formed on the surface of the composite material layer by laser activation plating (Laser Activating Plating, LAP) or metal.
  • the thickness (depth) of the metal line can range from 1 ⁇ m to 500 ⁇ m.
  • FIG. 47 is a schematic diagram of a signal circuit when the metal circuit 113 is disposed between the composite material layer and the appearance PU layer.
  • the metal lines 113a and 113b are provided between the composite material layer and the appearance PU layer.
  • One signal line corresponds to one metal line, or the number of metal lines matched with one signal line is 1.
  • the feeding method between the metal line 113 and the signal line 114 is coupling feeding.
  • the distance between the metal line 113a and the signal line 114a is X
  • the distance between the metal line 113a and the signal line 114a is S.
  • the value range of X is 0.1mm ⁇ X ⁇ 5mm.
  • the value range of S is 0.1mm ⁇ X ⁇ 5mm.
  • FIG. 48 is a schematic diagram of a signal circuit in the case where another example of the metal circuit 113 is disposed between the composite material layer and the appearance PU layer in the embodiment of the present application. Unlike FIG. 48, the structure shown in FIG. 47 does not include the bracket 117.
  • the signal line adopts the form of an elastic sheet, which is fixed on the circuit board 111.
  • the metal lines 113a and 113b are disposed between the composite material layer and the appearance PU layer.
  • the feeding method between the metal line 113 and the signal line 114 is coupling feeding.
  • the distance between the metal line 113a and the signal line 114a is X
  • the distance between the metal line 113a and the signal line 114a is S.
  • the value range of X is 0.1mm ⁇ X ⁇ 5mm.
  • the value range of S is 0.1mm ⁇ X ⁇ 5mm.
  • the distances X and S between the metal line and the signal line may also be other values, as long as the distance between the metal line and the signal line is greater than 0. That is, there is no direct contact between the metal line and the signal line, nor indirect contact through other connecting parts.
  • the metal line 113a is provided on the outer surface of the composite material layer, and the casing includes the composite material layer and the appearance PU layer.
  • a bracket 117 in the shape of a rectangular parallelepiped is fixed on the circuit board 111. The bracket 117 is used to support and fix the signal line 114a, and the metal line 113a is located directly above the signal line 114a.
  • the distance between the metal line 113a and the signal line 114a is X.
  • the value range of X is: 0.1mm ⁇ X ⁇ 5mm.
  • the metal line 113a may be a grid-shaped metal line or a sheet-shaped metal line.
  • the number of metal lines matched with one signal line may be multiple.
  • the distance between each metal line and the signal line is greater than 0.
  • the distance between the metal line and the signal line may refer to the minimum distance (shortest distance) between the metal line and the signal line, that is, the metal line is located directly above the signal line.
  • the minimum distance between the metal line 113a and the signal line 114a may be the distance between the metal line 113a and the signal line 114a in the vertical direction.
  • the distance between the above metal line and the signal line may also refer to the distance between any position on the metal line and any position on the signal line. The embodiments of the present application are not limited herein.
  • the antenna (metal line) of the terminal device is provided on the outer surface of the shell of the terminal device or embedded in the shell, instead of being provided on the inner surface of the shell or the antenna device through the antenna bracket Internally, the distance between the metal line and the circuit board of the terminal device can be increased, the interference of the metal components on the circuit board to the metal line radiation (antenna radiation) is reduced, and the working bandwidth and efficiency of the antenna are increased.
  • a protective film is provided on the metal circuit to avoid problems such as wear and tear of the metal circuit, further improve the durability and quality of the metal circuit, and extend the service life of the metal circuit.
  • FIG. 1 to FIG. 23 are all Metal lines are provided on the outer surface or inside of the insulated back cover (back cover).
  • the metal line may also be provided on the outer surface of the insulating casing on the side of the terminal device or inside the casing.
  • the terminal device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Terminal devices can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), and wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or public land mobile communication networks (PLMN) in the future evolution
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • the terminal device and the like are not limited in this embodiment of the present application.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the disclosed system and device may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Telephone Set Structure (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供一种终端设备,该终端设备包括:外壳;金属线路,该金属线路设置于该外壳的外表面上或者内嵌于该外壳中,该金属线路用于接收或者发送电磁波信号。本申请提供的终端设备,由于将终端设备的金属线路(天线)设置在终端设备的外壳的外表面上或者内嵌于外壳中,可以增大金属线路距离终端设备的电路板的距离,降低了电路板上的金属器件对金属线路辐射(天线辐射)的干扰,增加了天线的工作带宽和效率。提高该终端设备的天线的工作效率,从而提高该终端设备接收信号或者发送信号的质量。

Description

一种终端设备
本申请要求于2019年1月9日提交中国国家知识产权局、申请号为201910019373.6、申请名称为“一种终端设备”的中国专利申请的优先权,以及于2019年2月3日提交中国专利局、申请号为201910108932.0、申请名称为“一种终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备领域,更为具体的,涉及一种终端设备。
背景技术
目前终端设备的功能日益月增,涵盖的通讯范围也越来越广。因此终端设备对于天线的需求与数量也不断的在增加。如何在有限的空间内放置更多的天线,则是天线结构领域亟需解决的问题之一。
目前常用终端设的天线结构都是内置天线,天线会被放置在终端设备的内部。但随着各种器件与功能对终端设备的要求不断提升,终端设备内部需要集成更多的电子元器件,天线也因此受到终端设备内部的结构局限而牺牲了其性能,使得天线距离终端设备的电路板的高度(距离)较小,造成天线辐射所需要的净空区域也会因此而大大的减小,电路板上的金属器件对天线辐射的干扰较大,因此天线在空间自由度上、天线的效率与带宽上都易受限,达不到目前多天线多频段的设计要求,严重的影响了天线的性能和终端设备的使用质量。
发明内容
本申请提供一种终端设备,由于将终端设备的金属线路(天线)设置在终端设备的外壳的外表面上或者内嵌于外壳中,可以增大金属线路距离终端设备的电路板的距离,降低了电路板上的金属器件对金属线路辐射(天线辐射)的干扰,增加了天线的工作带宽和效率。
第一方面,提供了一种终端设备,该终端设备包括:外壳;金属线路,该金属线路设置于该外壳的外表面上或者内嵌于该外壳中,该金属线路用于接收或者发送电磁波信号。
第一方面提供的终端设备,由于将终端设备的金属线路(天线)设置在终端设备的外壳的外表面上或者内嵌于外壳中,可以增大金属线路距离终端设备的电路板的距离,降低了电路板上的金属器件对金属线路辐射(天线辐射)的干扰,增加了天线的工作带宽和效率。而且由于金属线路不是设置在终端设备的本体内,金属线路可以不受终端设备的本体内电子元器件在结构和空间上的影响,可以很大程度上增加金属线路的空间自由度。进一步的提高该终端设备的天线的工作效率,从而提高该终端设备接收信号或者发送信号的质 量。
在一些可能的实现方式中,该外壳是绝缘外壳,该金属线路设置于该绝缘外壳的外表面上或者内嵌于该绝缘外壳中。
在一些可能的实现方式中,该终端设备还包括:电路板,该电路板用于设置电子元器件;讯号线路,该讯号线路设置于该电路板上,该讯号线路与该金属线路之间存在间隙,该讯号线路与该金属线路通过该空隙以耦合的方式馈入该电磁波信号。在该实现方式中,通过耦合式馈入,可以实现终端设备准确的接收和发送电磁波信号,避免由于直接馈入的方式导致的接触不良等不稳定的问题,进一步的提高终端设备的天线工作的效率和质量。
在一些可能的实现方式中,在该金属线路设置于该外壳的外表面的情况下,该金属线路表面设置有保护膜,或者该外壳的外表面设置有保护膜。在该实现方式中,可以避免金属线路的磨损和脱落等问题,进一步的提高金属线路的耐用性和使用质量,延长金属线路的使用寿命。
在一些可能的实现方式中,该外壳由多层绝缘层构成,该金属线路内嵌于该多层绝缘层的任意两层中间。
在一些可能的实现方式中,该多层绝缘层为两层绝缘层,该两层绝缘层均为塑料层,或者,该两层绝缘层均为玻璃层,或者,该两层绝缘层中一层为玻璃层,另一层为塑料层,金属线路内嵌于该两层绝缘层的中间。
在一些可能的实现方式中,该多层绝缘层为两层绝缘层,该两层绝缘层中的一层为玻璃,另一层绝缘层为PET塑料,金属线路内嵌于该两层绝缘层的中间。
在一些可能的实现方式中,该多层绝缘层为两层绝缘层,该两层绝缘层均为玻璃层,金属线路内嵌于该两层绝缘层的中间。
在一些可能的实现方式中,该两层绝缘层中的一层为玻璃,另一层绝缘层为PET塑料,该玻璃层和该PET塑料层之间存在PVB层,该金属线路设置于该PVB层和该PET塑料层之间,或者,该金属线路设置于该PVB层和该玻璃层之间。
在一些可能的实现方式中,该两层绝缘层均为玻璃层,两层玻璃层之间存在PVB层,该金属线路设置于两层玻璃层中任意一层玻璃层与该PVB层之间。
在一些可能的实现方式中,该金属线路为透光的金属线路。
在一些可能的实现方式中,该金属线路的透光率为Y,其中,Y的取值范围为50%≤Y≤95%。
在一些可能的实现方式中,该外壳由两层绝缘层构成,该金属线路内嵌于两层绝缘层中间。
在一些可能的实现方式中,该讯号线路与该金属线路之间的距离为X,X的取值范围为0.1mm≤X≤5mm。
在一些可能的实现方式中,该外壳为玻璃外壳。
在一些可能的实现方式中,形成该保护膜的方式包括:物理气象沉积方式、化学气象沉积方式、陶瓷镀膜方式、表面硬化液方式、贴附膜的方式中的任意一种。
在一些可能的实现方式中,该金属线路包括金属网格、银浆、铜丝中的任意一种。
在一些可能的实现方式中,在该金属线路为金属网格的情况下,在该金属网格上包覆有金属层,该金属层用于降低该金属网格的阻抗。
在一些可能的实现方式中,该金属层为铜包覆层。
在一些可能的实现方式中,该金属铜层外还包覆有金属镍层。
在一些可能的实现方式中,该外壳为陶瓷外壳,该金属线路设置于该陶瓷外壳的表面上或者内嵌于该陶瓷外壳中。
在一些可能的实现方式中,在该金属线路的表面上包覆有玻璃釉。
在一些可能的实现方式中,在该外壳的外表面上包覆有玻璃釉。
在一些可能的实现方式中,该金属线路为网格化的金属线路。
在一些可能的实现方式中,网格化的金属线路的线宽的范围为0.1μm至50μm之间。
在一些可能的实现方式中,外壳上有多个或者一个区域上设置网格状金属线路。
在一些可能的实现方式中,该多层绝缘层为两层绝缘层,该金属线路设置于该两层绝缘层的中间,其中,该两层绝缘层中一层为复合材料层,另一层为聚氨酯PU层。
在一些可能的实现方式中,该多层绝缘层为两层绝缘层,该金属线路设置于该两层绝缘层的中间,其中,该两层绝缘层中一层为复合材料层,另一层为皮革层。
在一些可能的实现方式中,制备陶瓷外壳的陶瓷材料为氧化锆、氧化铝、碳化硅、氮化硅、氮化铝、碳化硼等陶瓷中的任意一种。
在一些可能的实现方式中,该复合材料层由塑胶、聚碳酸酯PC、塑料、或者橡胶中的一种或者多种制备而成。
附图说明
图1是本申请提供的一种终端设备的示意性结构的侧视图。
图2是金属线路内嵌于外壳中的示意性结构的侧视图。
图3是本申请提供的另一种金属线路设置于外壳的外表面上的示意性结构的侧视图。
图4是本申请提供的一例讯号线路的示意性结构的侧视图。
图5是本申请提供的另一例讯号线路的示意性结构的侧视图。
图6是本申请提供的另一例讯号线路的示意性结构的侧视图。
图7是本申请提供的又一例讯号线路的示意性结构的侧视图。
图8是本申请提供的另一例讯号线路的示意性结构的侧视图。
图9是本申请提供的另一例讯号线路的示意性结构的侧视图。
图10是本申请提供的另一例讯号线路的示意性结构的侧视图。
图11是本申请提供的一例外壳的外表面设置的保护膜的示意性结构的侧视图。
图12是本申请提供的另一例外壳的外表面设置的保护膜的示意性结构的侧视图。
图13是本申请提供的一例外壳由两层绝缘层组成的示意性结构的侧视图。
图14是本申请提供的一例外壳由两层绝缘层组成的示意性结构的侧视图。
图15是本申请提供的一例外壳由两层绝缘层组成的示意性结构的侧视图。
图16是本申请提供的一例金属线路由银浆实现的示意图。
图17是本申请提供的一例金属线路由金属网格实现的示意图。
图18是本申请提供的一例金属线路和讯号线路之间的距离的示意图。
图19是本申请提供的另一例金属线路和讯号线路之间的距离的示意图。
图20是本申请提供的又一例金属线路和讯号线路之间的距离的示意图。
图21是本申请提供的另一例金属线路和讯号线路之间的距离的示意图。
图22是本申请实施例的一例金属线路和讯号线路相对位置关系的示意图。
图23是本申请实施例的一例讯号线路所搭配金属线路数量为两个的示意图。
图24是本申请实施例的一例在陶瓷外壳的外表面上设置金属线路的俯视示意图。
图25是本申请实施例的一例陶瓷外壳的外表面为平面型时在陶瓷外壳的外表面上设置金属线路的陶瓷外壳侧视的示意图。
图26是本申请实施例的一例陶瓷外壳的外表面为曲面型时在陶瓷外壳的外表面上设置金属线路的陶瓷外壳侧视的示意图。
图27是本申请实施例的另一例陶瓷外壳的外表面为曲面型时在陶瓷外壳的外表面上设置金属线路的陶瓷外壳侧视的示意图。
图28是本申请实施例的一例陶瓷外壳的外表面为平面型时在陶瓷外壳的外表面上设置金属线路的陶瓷外壳侧视的示意图。
图29是本申请实施例的一例陶瓷外壳的外表面为曲面型时在陶瓷外壳的外表面上设置金属线路的陶瓷外壳侧视的示意图。
图30是本申请实施例的另一例陶瓷外壳的外表面为曲面型时在陶瓷外壳的外表面上设置金属线路的陶瓷外壳侧视的示意图。
图31是本申请实施例的另一例在陶瓷外壳的外表面上设置金属线路的俯视示意图。
图32是本申请提供的一例金属线路和讯号线路之间的距离的示意图。
图33是本申请提供的另一例金属线路和讯号线路之间的距离的示意图。
图34是本申请实施例的一例在陶瓷外壳的外表面上设置网格状的金属线路的俯视示意图。
图35是本申请实施例的一例陶瓷外壳的外表面为平面型时在陶瓷外壳的外表面上设置网格状的金属线路的陶瓷外壳侧视的示意图。
图36是本申请实施例的一例陶瓷外壳的外表面为曲面型时在陶瓷外壳的外表面上设置网格状的金属线路的陶瓷外壳侧视的示意图。
图37是本申请实施例的另一例陶瓷外壳的外表面为曲面型时在陶瓷外壳的外表面上设置网格状的金属线路的陶瓷外壳侧视的示意图。
图38是本申请实施例的一例网格状的金属线路上设置玻璃釉的侧视的示意图。
图39是本申请实施例的另一例网格状的金属线路上设置玻璃釉的侧视的示意图。
图40是本申请实施例的另一例网格状的金属线路上设置玻璃釉的侧视的示意图。
图41是本申请提供的一例网格状的金属线路和讯号线路之间的距离的示意图。
图42是本申请提供的另一例网格状的金属线路和讯号线路之间的距离的示意图。
图43是本申请提供的一例外壳由复合材料层和外观PU层组成的示意性结构的侧视图。
图44是本申请提供的另一例外壳由复合材料层和外观PU层组成的示意性结构的侧视图。
图45是本申请提供的另一例外壳由复合材料层和外观PU层组成的示意性结构的侧视图。
图46是本申请提供的另一例外壳由复合材料层和外观PU层组成的示意性结构的侧视图。
图47是本申请提供的一例网格状的金属线路和讯号线路之间的距离的示意图。
图48是本申请提供的另一例网格状的金属线路和讯号线路之间的距离的示意图。
图49是本申请实施例的一例金属线路和讯号线路相对位置关系的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
目前终端设备(以手机为例)的功能日益月增,涵盖的通讯范围也越来越广。手机对于天线的需求与数量也不断的在增加,随着手机朝着薄型化、外壳金属化、玻璃化的发展,对手机的天线的设计要求也越来越高。如何在有限的空间内放置更多的天线,则是天线结构领域亟需解决的问题之一。
目前常用的天线结构都是内置天线,基本上是利用天线支架作为天线辐射体来接收或者发送电磁波信号,天线设置在天线支架上。在天线支架上成型的天线(例如通过激光直接成型技术)会被放置在手机的内部,天线可选择的种类包括倒F形天线(inverted-f antenna,IFA)、单极天线(Monopole)或环(Loop)天线等。但随着各种器件与功能在手机端的要求不断提升,手机内部需要集成更多的电子元器件,加之天线支架也会占据手机内部的空间,天线也往往因此受到手机内部结构的局限而牺牲了其性能。并且,由于天线距离手机的电路板的高度较低,即天线与手机的电路板之间的距离较小,天线辐射时所需要的净空区域也会因此而大大的减小,电路板上的金属器件对天线辐射的干扰较大,因此天线在空间自由度上、天线的效率与带宽上都易受限,达不到目前多天线多频段的设计要求。
另外的一种内置天线,主要是利用激光直接成型(laser direct structuring,LDS)技术在手机的玻璃后盖(或者称为玻璃背盖)的内表面上镀上天线。其实现方式为先在手机的玻璃后盖的内表面喷上LDS涂层,再将天线以LDS技术使其在LDS涂层上成形。但是,玻璃会受限于LDS等制成上的限制(例如,LDS有其特定所需设备的使用限制),并且,LDS涂层对于玻璃外表面的外观也会有所影响,而且天线做在玻璃后盖的表面也会有天线脱落等问题,大大局限了现有手机对于外观颜色以及天线抗结构测试性能要求的发展。
基于上述问题,本申请提供了一种终端设备,该终端设备的天线(金属线路)距离终端设备的电路板的高度较高,即天线与电路板之间的距离较远。从而降低终端设备的电路板上的金属器件对于天线辐射时所造成的影响,进而增加天线的带宽与效率。还可以根据需要增加天线的数量和面积,并且解决了天线磨损,脱落等问题。提高终端设备的天线的工作效率,提高用户体验。
图1是本申请提供的一种终端设备的示意性结构的侧视图,如图1所示,该终端设备包括电路板111、外壳112、金属线路113(包括113a和113b)和讯号线路114(包括114a和114b)。金属线路113设置于外壳112的外表面上或者内嵌于外壳112中。金属线路113用于接收或者发送电磁波信号。
应理解,图1只是示例性的,尽管在图1中未示出,终端设备还可以包括其他的部件,例如,图1中所示的显示区域115,电源、摄像头、传感器、输入单元等。本申请对终端设备包括其他部件不作限制。
其中,电路板111可以是终端设备的电路主板,例如可以是印刷电路板(printed circuit board,PCB)等。电路板111是终端设备内部的各种电子元器件的支撑体,也是各种电子元器件电气连接的载体。电路板111用于放置终端设备包括的各种电子元器件以及布线等。外壳112相当于终端设备的外壳。更为具体的,外壳112可以是终端设备的后盖(或者背盖)。例如,外壳112可以是终端设备除过显示区域115之外的与外界直接接触的区域,该区域可以由绝缘材料制成。以智能手机为例,外壳112可以是智能手机的后盖(背盖),也可以是智能手机的后盖与显示屏连接的侧壁区域部分。金属线路113相当于终端设备的天线(天线辐射体),金属线路113(包括113a和113b)作为终端设备的天线进行辐射。金属线路113用于接收其他设备发送的电磁波信号或者向其他设备发送电磁场波信号。金属线路113设置于外壳112的外表面上或者内嵌于外壳113中。讯号线路114(包括114a和114b)相当于馈入部。馈入部用于将天线辐射体接收到的电磁波信号馈入到电路板。或者将电路板产生的信号馈入到天线辐射体发送出去。图1所示的为两种不同结构的讯号线路。图1所示的两个讯号线路114均为弹片结构的讯号线路。图1中的讯号线路114a为L形的讯号线路,讯号线路114b为倒U形的讯号线路。讯号线路114b的一端接地,一端接讯号源120,讯号源120位于电路板111上。讯号源120用于产生信号,讯号线路将讯号源产生的信号馈入到金属线路中发射出去。
图1所示的为金属线路113a和113b均设置于外壳112的外表面(外侧)上的示意性结构的侧视图。图2是金属线路113a和113b均内嵌于外壳112中的示意性结构的侧视图。图3是本申请提供的另一种金属线路113a和113b均设置于外壳112的外表面上的示意性结构的侧视图。图1所示的为金属线路113可以通过印刷、粘接、金属镀等方式设置于外壳112的外表面上,金属线路113与外壳112不在同一个平面上。例如,可以将金属线路113固定在透明的薄膜层(薄膜片)上,然后将带有金属线路113的薄膜层固定在外壳112的外表面上。
图3所示的为金属线路113可以通过蚀刻等方式设置于外壳112的外表面上。金属线路113的高度和外壳112的外表面的高度相同。可选的,金属线路113a和113b还可以位于不同的位置,例如,金属线路113a设置于外壳112的外表面上,金属线路113b内嵌于外壳112中。或者,金属线路113b设置于外壳112的外表面上,金属线路113a内嵌于外壳112中等,本申请实施例在此不作限制。
在本申请实施例中,外壳112可以为绝缘外壳,例如,可以是由绝缘材料(例如塑料或者玻璃)制成的外壳。金属线路113位于该绝缘外壳112的外表面上或者内部。可选的,在该绝缘外壳的内部或者外表面上可以存在非绝缘的区域,例如,在绝缘外壳的内部或者外表面上的部分区域可以设置非绝缘的部件或者组件(例如金属片或者铜箔)等,而金属线路113设置于该绝缘外壳的内部或者外表面除过非绝缘区域之外的绝缘区域上。
在本申请实施例中,外壳112也可以为非绝缘外壳,例如,可以是由金属制成的外壳。在该非绝缘外壳的外表面上可以存在部分区域是绝缘的,而金属线路113设置于该绝缘的区域上。
即在本申请实施例中,金属线路113是位于外壳112的外表面的绝缘区域上。而外壳112可以是绝缘外壳,也可以是非绝缘外壳。
应理解,在本申请实施例中,对于金属线路113数量和具体位置、以及形状等不作限 制。具体的,可以根据终端设备的工作带宽和效率灵活的设置金属线路的数量和位置。例如,金属线路可以位于终端设备的绝缘后盖外表面的顶部、或者中部,或者下部等。本申请实施例在此不作限制。
本申请提供的终端设备,由于将金属线路设置在终端设备的外壳的外表面上或者内嵌于外壳中,可以增大金属线路距离终端设备的电路板的距离,降低了电路板上的金属器件对金属线路辐射(天线辐射)的干扰,增加了天线的工作带宽和效率。而且由于金属线路不是设置在终端设备的本体内,金属线路可以不受终端设备的本体内电子元器件在结构和空间上的影响,可以很大程度上增加金属线路的空间自由度。进一步的提高该终端设备的天线的工作效率,从而提高该终端设备接收信号或者发送信号的质量。
如图1至图3所示的,讯号线路114a接地,讯号线路114b的一端接地,一端接讯号源120,讯号源120位于电路板111上。讯号源120用于产生信号,讯号线路将讯号源产生的信号馈入到金属线路中发射出去。
可选的,如图4所示,讯号线路114a也可接讯号源120,讯号线路114b的两端都可以接地。或者,如图5所示,讯号线路114a也可接讯号源120,讯号线路114b的两端都接讯号源120。在讯号线路114a和讯号线路114b的两端都接地的情况下,讯号源120可通过电路板111将产生的信号传输至讯号线路114a和讯号线路114b上。
应理解,在本申请实施例中,讯号线路还可以是其他形状的。本申请实施例在此不作限制。
例如,图6所示的讯号线路114c为一种可能的讯号线路的形状。讯号线路114c的一端接地,一端接讯号源120。可选的,讯号线路114c的两端都可以接地。或者,讯号线路114c的两端都可以接讯号源120。
又例如,图7所示的讯号线路114d为另一种可能的讯号线路的形状。讯号线路114d的一端接地,一端接讯号源120。可选的,如图8所示的,讯号线路114d的两端都可以接地,讯号源120可通过电路板111将产生的信号传输至讯号线路114d上。可选的,讯号线路114d的两端都可以接讯号源120。
又例如,图9所示的为电路板111上的讯号线路为两个的示意图。图9所示的讯号线路114a和114e均为L形的讯号线路。讯号线路114a接地,讯号线路114e接讯号源120。可选的,讯号线路114a也可以接讯号源120,讯号线路114e也可以接地。或者,讯号线路114a和114e均接地。或者,讯号线路114a和114e均接信号源120。本申请实施例在此不作限制。
又例如,图10所示的讯号线路114f为另一种可能的讯号线路的形状。讯号线路114f的一端接地,一端接讯号源120。可选的,讯号线路114f的两端都可以接地,讯号源120可通过电路板111将产生的信号传输至讯号线路114f。或者,讯号线路114f的两端都可以接讯号源120。
应理解,图1至图10所示的几种讯号线路的形状、位置以及个数等只是示例性的。在本书申请实施例中,讯号线路还可以是其他的形状,电路板上的讯号线路的个数还可是其他个数等。图1至图10所示讯号线路的形状、个数以及位置等不应该对本申请实施例造成任何限制。
在下文的描述中,金属线路113均指113a和113b,讯号线路114以114a和114b为 例进行说明。
如图1至图10所示,金属线路113和讯号线路114(例如114a和114b)之间存在空隙(间隙),例如,金属线路113a和讯号线路114a之间存在间隙,金属线路113b和讯号线路114b之间存在间隙。即金属线路113和讯号线路114之间不直接接触,也没有通过其他连接部件间接的接触。讯号线路114与金属线路113之间通过该空隙以耦合的方式馈入金属线路113接收的电磁波信号。金属线路113和讯号线路114之间的馈入方式为耦合式馈入,而不是直接馈入方式。例如,金属线路113a和讯号线路114a之间的馈入方式为耦合式馈入,金属线路113b和讯号线路114b之间馈入方式也为耦合式馈入。直接馈入方式为金属线路和讯号线路之间直接接触或者通过其他连接部件间接接触(即直接电连接的方式)。具体的,讯号线路114以耦合的方式向金属线路113馈入电路板111产生的电磁波信号,金属线路113将该电磁波信号发射出去。或者,金属线路113接收其他设备发送的电磁波信号,然后以耦合的方式馈入到讯号线路114中,通过讯号线路114传送到电路板上111。
由于金属线路113设置在外壳112的外表面上或者内嵌于外壳112中,因此,通过上述的耦合式馈入,可以实现终端设备准确的接收和发送电磁波信号,避免由于直接馈入的方式导致的接触不良等不稳定的问题,进一步的提高终端设备的天线工作的效率和质量。
在本申请实施例中,在金属线路113设置于外壳112的外表面的情况下,例如,如图11和图12所示的,图11和图12为外壳112的外表面设置的保护膜116的示意性结构的侧视图。在外壳112的外表面设置有保护膜(保护层)116。或者,在金属线路113表面设置有保护膜116。保护膜116用于避免金属线路113的磨损、脱落等问题,提高金属线路113的稳定性和使用寿命。图11和图12所示的为在整个外壳112的外表面设置有保护膜116。
可选的,还可以只在金属线路113表面的设置保护膜,而在没有布置金属线路的区域不设置保护膜。本申请实施例在此不作限制。
在本申请实施例中,对于保护膜116的材料,可以是高分子材料或者陶瓷材料等。本申请中对保护膜116的材料不作限制,只要可以起到保护金属线路113不受磨损等,并且不影响金属线路113接收或者发送电磁波信号即可。
通过在金属线路上设置用于保护金属线路的保护膜。可以避免金属线路的磨损和脱落等问题,进一步的提高金属线路的耐用性和使用质量,延长金属线路的使用寿命。
在本申请实施例中,对于金属线路113内嵌于外壳112中的方式中,外壳112可以由多层绝缘层构成,金属线路113内嵌于多层绝缘层的任意两层中间。
以外壳112由两层绝缘层组成为例进行说明。
图13所示的为外壳112由两层绝缘层组成的示意性结构的侧视图。如图13所示,两层绝缘层分别为112a和112b。112a和112b组成外壳112,金属线路113a和113b设置于绝缘层112a和绝缘层112b接触的面上。具体的,可以将金属线路113a和113b通过粘接或者蚀刻的方式固定在绝缘层112b上,然后将绝缘层112b和绝缘层112a相互结合在一起整体上形成完整的外壳112。即金属线路113a和113b夹在绝缘层112b和绝缘层112a之间。这样,也可以避免金属线路的磨损和脱落等问题,进一步的提高金属线路的耐用性和使用质量,延长金属线路的使用寿命。
可选的,绝缘层112b和绝缘层112a厚度可以相同,例如,均为0.3mm。或者,绝缘层112b和绝缘层112a厚度也可以不相同。
在一些可能的实现方式中,该两层绝缘层均为塑料层,或者,该两层绝缘层均为玻璃层,或者,该两层绝缘层中一层为玻璃层,另一层为塑料层,金属线路内嵌于该两层绝缘层的中间。
图14所示的为外壳112由两层绝缘层组成的示意性结构的侧视图。如图14所示,两层绝缘层分别为112c和112d。绝缘层112c可以为玻璃层,绝缘层112d可以为聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)塑料层。金属线路113a和113b设置于绝缘层112c和绝缘层112d接触的面上,图14所示的为将金属线路113a和113b通过印刷、粘接、金属镀等方式固定在绝缘层112d上,然后将绝缘层112c和绝缘层112d相互结合在一起整体上形成完整的外壳112。可选的。图15所示的为将金属线路113a和113b通过蚀刻等方式设置在绝缘层112d上,然后将绝缘层112c和绝缘层112d相互结合在一起整体上形成完整的外壳112。可选的。还可以将金属线路113a和113b通过蚀刻等方式设置在绝缘层112c上,然后将绝缘层112c和绝缘层112d相互结合在一起整体上形成完整的外壳112。本申请实施例对将金属线路设置于多层绝缘层的任意两层绝缘层中间的具体方式不作限制。
可选的,绝缘层112c和绝缘层112d厚度可以相同,例如,均为0.35mm。或者,绝缘层112c和绝缘层112d厚度还可以为其他值。
可选的,绝缘层112c和绝缘层112d厚度也可以不相同。
可选的,绝缘层112c可以为PET塑料层,绝缘层112d可以为玻璃层。
可选的,绝缘层112c或者112d可以是由多层绝缘层在一起整体上形成的(或者组合成的)绝缘层。例如,绝缘层112c是由多层玻璃层在一起整体上形成的绝缘层。
可选的,该两层绝缘层的材料可以相同,也可以不同。绝缘层112c和绝缘层112d的材料还可以为其他材料。例如,绝缘层112d还可以为聚乙烯(Polyethylene,PE)塑料、聚丙烯(Polypropylene,PP)塑料、聚氟乙烯(Polyvinyl Chloride,PVC)等。本申请实施例在此不作限制。
在本申请实施例中,对多层绝缘层中的每一层绝缘层的材料不作限制。并且,多层绝缘层中每一层绝缘层的材料可以相同,也可以不同。例如,上述的例子中,绝缘层112c还可以为树脂材料(例如环氧树脂),绝缘层112d还可以为橡胶材料(例如硅橡胶、氟橡胶等)。或者,绝缘层112c还可以为纤维材料(例如涤纶、芳纶等),绝缘层112d还可以为涂料(例如聚氨酯)等。本申请实施例在此不作限制。
在本申请实施例中,对多层绝缘层中的每一层绝缘层的厚度不作限制。多层绝缘层中每一层绝缘层的厚度可以相同,也可以不同。本申请实施例在此不作限制。
可选的,在本申请的一些实施例中,在绝缘层112c和绝缘层112d之间,或者,在绝缘层112a和绝缘层112b之间还可以存在一层聚乙烯醇缩丁醛(polyvinyl butyral,PVB)层。下文以PVB层(可以称为PVB中间膜)设置在绝缘层112c和绝缘层112d之间,即PVB层设置在玻璃层和PET塑料层之间为例进行说明。
金属线路113a和113b可以通过印刷、粘接、金属镀等方式固定在绝缘层112d(PET塑料层)上,然后将PVB层、绝缘层112c(玻璃层)、以及固定有金属线路的绝缘层112d 相互结合在一起整体上形成完整的外壳112。
可选的,金属线路113a和113b可以通过蚀刻等方式固定在绝缘层112d(PET塑料层)上,然后将PVB层、绝缘层112c(玻璃层)、以及固定有金属线路的绝缘层112d相互结合在一起整体上形成完整的外壳112。
可选的,还可以将金属线路113a和113b可以通过印刷、粘接、金属镀、蚀刻等方式固定在PVB层上,然后将固定有金属线路的PVB层、绝缘层112c、以及绝缘层112d相互结合在一起整体上形成完整的外壳112。
可选的,还可以将金属线路113a和113b可以通过印刷、粘接、金属镀、蚀刻等方式固定在绝缘层112c上,然后将固定有金属线路的绝缘层112c、PVB层、以及绝缘层112d相互结合在一起整体上形成完整的外壳112。
应理解,还可以在两层玻璃层之间设置PVB层,然后将金属线路设置在PVB层上,最终将两层玻璃层和设置有金属线路的PVB层结合在一起形成外壳112。或者,还可以将金属线路设置在两层玻璃层中的任意一层玻璃层上,最终将两层玻璃层和PVB层结合在一起形成外壳112。
还应理解,在本申请的实施例中,对PVB层的厚度不作限制,例如,PVB层厚度的范围可以是在10至100微米(μm)。当然,PVB层的厚度还可以是其他值,本申请实施例在此不作限制。
还应理解,在本申请的实施例中,除了可以在两层绝缘层之间设置PVB层外,还可可设置由其他材料组成的中间层或者中间膜。只要该中间层或者中间膜可以使得两层绝缘层结合的更加稳定或者牢固即可。本申请实施例在此不作限制。
应理解,外壳112可以由更多层绝缘层构成,例如,外壳112由3层或者4层绝缘层构成的情况下,金属线路113可以设置于任意两层绝缘层之间。对于金属线路有多个的情况下,多个金属线路可以位于相同的两层绝缘层之间,也可以分别位于不同的两层绝缘层之间。本申请实施例在此不作限制。
在本申请各个实施例中,外壳112可以为玻璃材质的,即外壳112可以为玻璃外壳。当玻璃外壳由多层玻璃层构成时,金属线路113可以设置在任意两层玻璃层之间。其中,多层玻璃层相互结合时形成整体的一块玻璃外壳时,可以通过加热熔融的方式结合,所需加热熔融的温度为120~600度之间,最终使得多层玻璃层合成为一块玻璃,成为最终的玻璃外壳。或者也可以以一般的粘合剂来粘接多层玻璃,最终使得多层玻璃层合成为一块玻璃。例如,将多层玻璃层最终合成为一块玻璃的厚度可以为0.6mm。
应理解,在本申请实施例中,外壳112除了可以为玻璃材质之外,还可以为高分子材料。例如,外壳112还可以塑料外壳、橡胶外壳等。本申请实施例中对制备外壳112的绝缘材料不作限制。
在本申请各个实施例中,金属线路113可以包括金属网格、银浆、铜丝中的任意一种。具体的,金属线路113可以以金属网格(metal mesh)的形式实现。或者,金属线路113可以通过在外壳112上涂布银浆实现。或者,金属线路113可以由金属铜丝实现。
图16所示的为金属线路113a和金属线路113b由银浆实现的示意图。可以通过将银浆刷在外壳112的外表面上形成金属线路113a和金属线路113b,或者将银浆刷在多层绝缘层的任意两层绝缘层之间,形成金属线路113a和金属线路113b。
图17所示的为金属线路113a和金属线路113b由金属网格实现的示意图,可以先制备金属网格,再将金属网格通过粘接或者焊接等方式固定在外壳112的外表面上,或者将金属网格固定在多层绝缘层的任意两层绝缘层之间,形成金属线路113a和金属线路113b。
在本申请实施例中,金属线路113还可以以其他形式实现,例如,金属线路113可以以金属片的形式实现。或者通过LDS蚀刻、光照技术实现等。本申请实施例在此不作限制。
在本申请实施例中,多个金属线路可以以不同的方式实现,例如,金属线路113a可以由银浆实现,金属线路113b由金属网格实现等。本申请实施例在此不作限制。
在本申请实施例中,对金属线路113的具体的金属材料不作限制,例如,金属线路113可以由铜、铝、铁等金属材料组成。多个金属线路也可以由不同的金属材料组成。本申请实施例在此不作限制。
可选的,在本申请实施例中,可以将金属线路113的线路线宽做到非常细(例如线宽为0.002mm左右),达到肉眼无法辨识的范围,使得金属线路113所形成的线路为透明线路(透光线路)。即金属线路为透光(透明)的。例如,通过金属网格或者涂布金属浆液等方式使得金属线路113所形成的线路为透明线路。可选的,该金属线路113透光率为Y,其中,Y的取值范围为50%≤Y≤95%。
在本申请实施例中,多个金属线路中可以包括一部分透光的金属线路。多个透光的金属线路的透光率可以不同。本申请实施例在此不作限制。
可选的,在本申请实施例中,在金属线路113由金属网格实现并且金属网格的材料不是铜的情况下,可以在金属网格上镀一层金属层来降低该金属网格的阻抗。例如,可以通过镀铜的方式来降低金属线路的阻抗。进一步的,还可以在金属层上再镀镍来防止金属线路的氧化和腐蚀等。当然,在金属网格由其他形式实现(例如金属片或者金属丝等)的情况下,也可以在金属线路上镀铜来降低金属线路的阻抗。进一步的,还可以在镀铜的金属线路上的镀镍来防止金属线路的氧化和腐蚀等。
在本申请实施例中,在金属线路113设置于外壳112的外表面上的情况下,在外壳112的外表面或者金属线路113的表面上还设置有保护膜116。保护膜116可以通过下述的几种方式在外壳112的外表面或者金属线路113的表面形成:
1、物理气象沉积(physical vapor deposition,PVD):利用物理过程实现物质转移,将保护膜材料微粒喷涂在外壳112的外表面或者金属线路113的表面上。PVD基本方法包括真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)等。
2、化学气象沉积方式,主要是利用含有保护膜材料元素的一种或几种气相化合物或单质、在外壳112的外表面或者金属线路113的表面上进行化学反应生成薄膜的方法
3、陶瓷镀膜:陶瓷镀膜可以是将陶瓷粉末或者颗粒喷附在外壳112的外表面或者金属线路113的表面上形成保护膜。通过陶瓷镀膜形成的涂层(保护膜)可以为透明的或有颜色的,只要该涂层可以保护金属线路即可。
4、表面硬化液:通过喷涂、淋涂、浸涂等方式在外壳112的外表面或者金属线路113的表面上形成表面硬化液层(保护膜)。表面硬化液层硅胶系的硬化液。硬化条件包括紫外线(ultraviolet rays,UV)照射或湿气硬化等。表面硬化液层可为透明或有颜色的。
5、保护膜或装饰膜:在外壳112的外表面或者金属线路113的表面贴付一层膜,此膜的材质可以是树脂类或是玻璃等。只要该膜可以保护金属线路113即可。
在本申请实施例中,除了上述的几种在外壳112的外表面或者金属线路113的表面设置保护膜116外,还可以通过其他任何可行的方式或者技术在外壳112的外表面或者金属线路113的表面设置保护膜或者涂层,只要该保护膜或者涂层可以避免金属线路的磨损。脱落等问题。本申请实施例在此不作限制。
在本申请实施例中,由于金属线路113和讯号线路114之间存在空隙(间隙),即金属线路113和讯号线路114之间存在一段距离。如图18所示的,金属线路113a和113b设置在外壳112的外表面上,金属线路113a和讯号线路114a之间存在间隙,金属线路113b和讯号线路114b之间存在间隙。金属线路113a和讯号线路114a之间的距离为X,金属线路113a和讯号线路114a之间的距离为S。即一个讯号线路对应一个金属线路,或者与一个讯号线路搭配的金属线路的数量为1。金属线路113和讯号线路114之间的馈入方式为耦合式馈入。可选的,X的取值范围为0.1mm≤X≤5mm。S的取值范围为0.1mm≤X≤5mm。
图19示出了另一种讯号线路的示意图。与图18不同的是,图19中的讯号线路114a和114b设置在支架117上。支架117固定在电路板111上,支架117用于支撑和固定讯号线路114。而图18所示的讯号线路114直接固定在电路板111上,图18所示的结构中不包括支架117。金属线路113a和讯号线路114a之间的距离为X,金属线路113a和讯号线路114a之间的距离为S。可选的,X的取值范围为0.1mm≤X≤5mm。S的取值范围为0.1mm≤X≤5mm。
图20所示的金属线路113设置于两层绝缘层的中间的情况下讯号线路的示意图。如图20所示,金属线路113a和113b设置两层绝缘层112a和112b之间。每个金属线路113和讯号线路114之间的距离为X,即一个讯号线路对应一个金属线路,或者与一个讯号线路搭配的金属线路的数量为1。金属线路113和讯号线路114之间的馈入方式为耦合式馈入。金属线路113a和讯号线路114a之间的距离为X,金属线路113a和讯号线路114a之间的距离为S。可选的,X的取值范围为0.1mm≤X≤5mm。S的取值范围为0.1mm≤X≤5mm。
图21示出了另一种讯号线路的示意图。与图20不同的是,图21中的讯号线路114设置在支架117上。支架117固定在电路板111上,支架117用于支撑和固定讯号线路114。而图20所示的讯号线路114直接固定在电路板111上,图20所示的结构中不包括支架117。金属线路113a和讯号线路114a之间的距离为X,金属线路113a和讯号线路114a之间的距离为S。可选的,X的取值范围为0.1mm≤X≤5mm。S的取值范围为0.1mm≤X≤5mm。
应理解,在本申请实施例中,金属线路113和讯号线路114之间的距离X以及S还可以为其它值,只要金属线路113和讯号线路114之间的距离大于0即可。即金属线路113和讯号线路114之间不直接接触,也没有通过其他连接部件间接的接触。
还应理解,上述金属线路113和讯号线路114之间的距离可以是指金属线路113和讯号线路114之间的最小距离(最短距离),即金属线路113位于讯号线路114的正上方位置。例如,如图18至21所示的,金属线路113a和讯号线路114a之间的最小距离可以是金属线路113a和讯号线路114a在垂直方向上的距离。金属线路113b和讯号线路114b之间的最小距离也可以是金属线路113b和讯号线路114b在垂直方向上的距离。当然,上述 的金属线路113a和讯号线路114a之间的距离也可以是指金属线路113a的上的任意位置与讯号线路114a上的任意位置之间的距离,金属线路113b和讯号线路114b之间的距离也可以是指金属线路113b的上的任意位置与讯号线路114b上的任意位置之间的距离。本申请实施例在此不作限制。
图22是本申请实施例的一例金属线路和讯号线路相对位置关系的示意图。金属线路113a设置在外壳112的外表面上,长方体形状的支架117固定在电路板111上,支架117用于支撑和固定讯号线路114a,金属线路113a位于讯号线路114a的正上方位置。金属线路113a和讯号线路114a之间的距离为X。
可选的,X的取值范围为:0.1mm≤X≤5mm。
图23所示的为与一个讯号线路114所搭配金属线路113数量为一个的情况,在本申请实施例中,与一个讯号线路所搭配金属线路数量可以为多个。例如,图23所示为与讯号线路114a所搭配金属线路的数量为两个的情况,两个金属线路113可以为113a和113b。金属线路113a和113b与讯号线路114a之间的距离分别为L1和L2。可选的,L1的取值范围为0.1mm≤L1≤5mm,和/或,L2的取值范围为0.1mm≤L2≤5mm。当然。L1和L2取值还可以为其它值,只要L1和L2取值大于0即可。
可选的,在本申请实施例中,外壳112还可以由陶瓷材料制成,金属线路可以内嵌于陶瓷外壳112(或者也可以称为陶瓷盖板)的外表面上。或者,金属线路也可以内嵌于外壳112中。可选的,金属线路可以采用无机导电材料制成,金属线路可以作为终端设备的天线辐射体完成天线功能。可选的。而在金属线路的外表面可以覆盖一层玻璃釉以保护金属线路,避免金属线路的磨损。
可选的,在本申请实施例中,陶瓷材料可以为氧化锆、氧化铝、碳化硅、氮化硅、氮化铝、碳化硼等陶瓷中的任意一种,应理解,外壳112还可以由其他陶瓷材料制备而成,本申请实施例在此不作限制。
可选的,在本申请实施例中,金属线路可以由导电银浆制成。应理解,在本申请实施例中,金属线路还可以由其他类型的烧结型导电浆料中的等一种或多种制成,本申请在此不作限制。
可选的,在本申请实施例中,金属线路上覆盖的玻璃釉可以为透明无色釉,也可以为半透明釉或颜色釉等。本申请在此不作限制。应理解,除了在该金属线路上覆盖的玻璃釉(或者玻璃釉层)之外,还可以在该金属线路上覆盖其他材料以保护金属线路,本申请实施例在此不作限制。
可选的,在本申请实施例中,陶瓷外壳112的外表面可以为平面型的,或者也可以为曲面型的,例如,图24所示的为一例在陶瓷外壳112的外表面上设置金属线路的俯视示意图。图24中的箭头所示的方向为该陶瓷外壳112的长度方向。图25所示的为一例陶瓷外壳112的外表面为平面型时在陶瓷外壳112的外表面上设置金属线路的陶瓷外壳112侧视的示意图。图26和图27所示的分别为陶瓷外壳112的外表面为平面型和曲面型时在陶瓷外壳112的外表面上设置金属线路的陶瓷外壳112侧视的示意图。图25至图27中,箭头所示的方向为该陶瓷外壳112的厚度方向。图24所示的金线线路可以为片状的。
还应理解,在本申请实施例中,除了可在金属线路区域上覆盖玻璃釉之外,还可以在整个外壳112的外表面上设置玻璃釉。例如,图25至27所示的为在金属线路设置玻璃釉 的示意图。图28至30所示的为整个外壳112的外表面上设置玻璃釉的示意图。本申请实施例中对于外壳112的外表面上覆盖玻璃釉的区域不作限制。
可选的,本申请实施例中对于玻璃釉层的厚度也不作限制。
应理解,在本申请实施例中,该陶瓷外壳112的外表面还可以为其他形状。并且,金属线路可以在该陶瓷外壳112的外表面上的任意区域设置。本申请在此不作限制。
可选的,在本申请一些可能的实现方式中,还可以在陶瓷外壳112的内部开一个凹槽。金属线路设置在该凹槽中,并且,在该金属线路的表面上还可以设置一层塑料或者玻璃纤维等材料,用于保护金属线路。例如,如图31所示的,图31中,箭头所示的方向为该陶瓷外壳112的厚度方向。
可选的,本申请实施例中,内嵌金属线路的陶瓷外壳可以由如下方法获得:
首先,按照陶外壳的立体外形,设计模具结构,并通过干压、流延、或注射等陶瓷材料常规成型工艺,制备陶瓷外壳素坯。其次,将陶瓷外壳素坯在一定温度、气氛、压力等烧结参数下实现烧结致密,获得陶瓷外壳,并经过计算机数字控制机床、粗磨、抛光等方式完成陶瓷外壳尺寸、外形等加工。然后按照金属线路的外形、尺寸、位置等要求,通过计算机数字控制机床、或者镭雕等方式在陶瓷外壳的外表面加工放置金属线路的凹槽。将无机导电材料、溶剂、粘结剂等高分子添加剂混合制备成导电浆料,并通过喷涂、刷涂等方式将导电浆料涂覆至凹槽中作为后续的金属线路部分。待凹槽中的导电浆料干燥后,通过喷釉、涂釉等常规施釉方式,将玻璃釉料也涂覆至凹槽中,覆盖导电浆料。将涂覆完导电浆料、玻璃釉料的陶瓷外壳放入一定温度、气氛、压力等烧结参数下实现导电材料、玻璃釉烧结。最后经过抛光、外观效果表面处理等移动终端盖板的常用工艺,获得内嵌天线的陶瓷盖板成品。可选的,在本申请实施例中,外观效果表面处理包括镀膜、油墨、贴膜、纹理、镭雕等一种或多种。可选的,外观效果表面处理还可以包括其他的处理方式。
图32所示的为本申请实施例的一例金属线路和讯号线路相对位置关系的示意图。图32所示的金属线路设内嵌于陶瓷外壳112的外表面内,金属线路上设置有玻璃釉。讯号线路114a和114b分别设置在支架117上。支架117固定在电路板111上,支架117用于支撑和固定讯号线路114。金属线路和讯号线路之间的馈入方式为耦合式馈入。金属线路距离两个讯号线路114a和114b的最短距离分别为X和S,可选的,X的取值范围为0.1mm≤X≤5mm。S的取值范围为0.1mm≤X≤5mm。
图33所示的为本申请实施例的另一例金属线路和讯号线路相对位置关系的示意图,与图32不同的是,图33所示的结构中不包括支架117。讯号线路采用弹片的形式,该弹片固定在电路板111上。金属线路和讯号线路之间的馈入方式为耦合式馈入。金属线路距离两个讯号线路114a和114b的最短距离分别为X和S,可选的,X的取值范围为0.1mm≤X≤5mm。S的取值范围为0.1mm≤X≤5mm。
应理解,在本申请实施例中,金属线路和讯号线路之间的距离X以及S还可以为其它值,只要金属线路和讯号线路之间的距离大于0即可。即金属线路和讯号线路之间不直接接触,也没有通过其他连接部件间接的接触。
可选的,在本申请另一些实施例中,外壳112还可以由陶瓷材料制成,陶瓷外壳11上的天线区域可以为网格化的线条组成,即金属线路的形状可以为网格化(网格状)的线条。网格状的金属线路内嵌于该外壳112的外面上。金属线路可以采用无机导电材料制成, 金属线路可以作为终端设备的天线辐射体完成天线功能。可选的,在网格化的金属线路的外表面可以覆盖一层玻璃釉以保护金属线路,避免金属线路的磨损。
可选的,在本申请实施例中,网格化的金属线路可以无机导电材料制备,例如导电银浆制成,应理解,在本申请实施例中,金属线路还可以由其他类型的烧结型导电浆料中的等一种或多种制成,本申请在此不作限制。
可选的,在本申请实施例中,陶瓷外壳112的外表面可以为平面型的,或者也可以为曲面型的。例如,图34所示的为一例在陶瓷外壳112的外表面上设置网格状金属线路的俯视示意图。图34中的箭头所示的方向为该陶瓷外壳112的长度方向。图35所示的为一例陶瓷外壳112的外表面为平面型时在陶瓷外壳112的外表面上设置网格状金属线路的陶瓷外壳112侧视的示意图。图36和图37所示的分别为陶瓷外壳112的外表面为平面型和曲面型时在陶瓷外壳112的外表面上设置网格状金属线路的陶瓷外壳112侧视的示意图。图35至图37中,箭头所示的方向为该陶瓷外壳112的厚度方向。
应理解,在本申请实施例中,该陶瓷外壳112的外表面还可以为其他形状。并且,金属线路可以在该陶瓷外壳112的外表面上的任意区域设置。本申请在此不作限制。
应理解,在本申请实施例中,设置网格状金属线路的区域(或者也可以称为天线区域)的外形可以为:圆形、正方形、长方形、椭圆形、跑道形、三角形、不规则图形等。由于金属线路为网格状,具有一定的厚度,因此,金属线路立体外形可以为球体、立方体、长方体、圆柱体、椭球体、锥体、不规则异形体。例如,图35至图37中所示的金属线路立体外形为长方体。
还应理解,在网格状的金属线路上还可以设置玻璃釉(或者玻璃釉层),图38中所示为在网格状的金属线路设置玻璃釉侧视的示意图。
还应理解,在本申请实施例中,除了可在网格状的金属线路区域上覆盖玻璃釉之外,还可以在整个外壳112的外表面上设置玻璃釉。例如,图39中所示为在整个外壳112的外表面上设置玻璃釉层侧视的示意图。可选的,玻璃釉层也可以仅仅覆盖网格状金属线路区域上。例如,图40中所示为在网格状金属线路区域上设置玻璃釉层侧视的示意图。
应理解,本申请实施例中对于玻璃釉层的厚度也不作限制。
还应理解,在外壳112可以有多个或者一个区域上设置网格状金属线路。多个区域(即多个天线区域)的位置可以位于该外壳112外表面上的任意区域。本申请实施例在此不作限制。
可选的,在本申请实施例中,内嵌网格状的金属线路的陶瓷外壳可以由如下方法获得:
首先,按照陶瓷外壳的立体外形,设计模具结构,并通过干压、或流延、或注射等陶瓷材料常规成型工艺,制备陶瓷外壳素坯。然后将将陶瓷外壳素坯在一定温度、气氛、压力等烧结参数下实现烧结致密,获得陶瓷外壳,并经过算机数字控制机床、粗磨、抛光等方式完成陶瓷外壳尺寸、外形等加工。按照天线区域及其内部线条的外形、尺寸、位置等要求,通过镭雕、蚀刻等方式在陶瓷外壳的外表面加工网格化凹槽,然后将无机导电材料、溶剂、粘结剂等高分子添加剂混合制备成导电浆料,并通过喷涂、刷涂等方式将导电浆料涂覆至网格化凹槽作为后续的金属线路(天线)部分。将涂覆完导电浆料的陶瓷外壳放入一定温度、气氛、压力等烧结参数下实现导电材料烧结。最后经过抛光、外观效果表面处理等移动终端盖板的常用工艺,获得内嵌天线的陶瓷盖板成品。
可选的,在本申请实施例中,陶瓷材料可以为氧化锆、氧化铝、碳化硅、氮化硅、氮化铝、碳化硼等陶瓷中的任意一种,应理解,外壳112还可以由其他陶瓷材料制备而成,本申请实施例在此不作限制。
可选的,在本申请实施例中,外观效果表面处理包括镀膜、油墨、贴膜、纹理、镭雕等一种或多种。可选的,外观效果表面处理还可以包括其他的处理方式。
图41所示的为本申请实施例的一例网格化的金属线路和讯号线路相对位置关系的示意图。图41所示的网格化的金属线路设内嵌于陶瓷外壳112的外表面内。讯号线路114a和114b分别设置在支架117上。支架117固定在电路板111上,支架117用于支撑和固定讯号线路114。金属线路和讯号线路之间的馈入方式为耦合式馈入。网格状的金属线路距离两个讯号线路114a和114b的最短距离分别为X和S,可选的,X的取值范围为0.1mm≤X≤5mm。S的取值范围为0.1mm≤X≤5mm。
图42所示的为本申请实施例的另一例金属线路和讯号线路相对位置关系的示意图,图42所示的结构中不包括支架117。讯号线路采用弹片的形式,该弹片固定在电路板11上。金属线路和讯号线路之间的馈入方式为耦合式馈入。网格状的金属线路距离两个讯号线路114a和114b的最短距离分别为X和S,可选的,X的取值范围为0.1mm≤X≤5mm。S的取值范围为0.1mm≤X≤5mm。
应理解,在本申请实施例中,金属线路和讯号线路之间的距离X以及S还可以为其它值,只要金属线路和讯号线路之间的距离大于0即可。即金属线路和讯号线路之间不直接接触,也没有通过其他连接部件间接的接触。
可选的,在本申请一些可能的实现方式中,对于金属线路内嵌于外壳112中的方式中,外壳112可以由多层绝缘层构成,金属线路113内嵌于多层绝缘层的任意两层中间。
以外壳112由两层绝缘层组成为例进行说明。图43分别为112a和112b。112a和112b组成外壳112,金属线路113a和113b内嵌于绝缘层112a内。然后将绝缘层112a和112b相互结合在一起整体上形成完整的外壳112。
图44所示的为外壳112由两层绝缘层组成的示意性结构的侧视图。如图43所示,两层绝缘层分别为112a和112b。112a和112b组成外壳112,金属线路113a和113b通过印刷、粘接、金属镀等方式固定在绝缘层112b上,然后将绝缘层112a和112b相互结合在一起整体上形成完整的外壳112。
图45所示的为外壳112由两层绝缘层组成的示意性结构的侧视图。如图45所示,两层绝缘层分别为112a和112b。112a和112b组成外壳112,金属线路113a和113b内嵌于绝缘层112a内。
图46所示的为外壳112由两层绝缘层组成的示意性结构的侧视图。如图46所示,两层绝缘层分别为112a和112b。112a和112b组成外壳112,金属线路113a和113b通过印刷、粘接、金属镀等方式固定在绝缘层112b上。
可选的,绝缘层112a可以由聚氨酯(Polyurethane,PU)材料制成,或者,绝缘层112a可以由皮革材料制成。可选的,绝缘层112a也可以称为外观PU层或者皮革层。
绝缘层112b可以由复合材料制备而成,例如,复合材料层可以由塑胶、聚碳酸酯(Polycarbonate,PC)、PE塑料、PP塑料、PVC塑料、PET塑料、树脂材料、橡胶材料、纤维材料或者其他高分子材料中的任意一种或者多种等。本申请对于复合材料的具体类型 不作限制。绝缘层112b也可以称为复合材料层。
可选的,可以将金属线路113a和113b通过印刷、粘接、金属镀、蚀刻等方式固定在复合材料层层上,然后将固定有金属线路的复合材料层以及外观PU层相互结合在一起整体上形成完整的外壳112。
可线的,金属线路(天线)可以成形于复合材料层的表面上,复合材料层厚度的范围可以为0.05mm至0.6mm之间。例如,金属天线可以激光活化镀(Laser Activating Plating,LAP)或者金属等方式成形于复合材料层表面,可选的,金属线路的厚度(深度)范围可以为1μm至500μm之间。待复合材料层上的金属天线成形后,在复合材料层的上方黏合一层外观PU层,或皮革层,由于金属天线被PU层或者皮革层所包覆,金属天线并不会直接接触产品外表面,可以避免金属线路的磨损和脱落等问题,进一步的提高金属线路的耐用性和使用质量,延长金属线路的使用寿命。
图47所示的金属线路113设置于复合材料层以及外观PU层中间的情况下讯号线路的示意图。如图47所示,金属线路113a和113b设置在复合材料层以及外观PU层中间。一个讯号线路对应一个金属线路,或者与一个讯号线路搭配的金属线路的数量为1。金属线路113和讯号线路114之间的馈入方式为耦合式馈入。金属线路113a和讯号线路114a之间的距离为X,金属线路113a和讯号线路114a之间的距离为S。可选的,X的取值范围为0.1mm≤X≤5mm。S的取值范围为0.1mm≤X≤5mm。
图48所示的为本申请实施例中另一例金属线路113设置于复合材料层以及外观PU层中间的情况下讯号线路的示意图。与图48不同的是,图47所示的结构中不包括支架117。讯号线路采用弹片的形式,该弹片固定在电路板111上。金属线路113a和113b设置在复合材料层以及外观PU层中间。金属线路113和讯号线路114之间的馈入方式为耦合式馈入。金属线路113a和讯号线路114a之间的距离为X,金属线路113a和讯号线路114a之间的距离为S。可选的,X的取值范围为0.1mm≤X≤5mm。S的取值范围为0.1mm≤X≤5mm。
应理解,在本申请实施例中,金属线路和讯号线路之间的距离X以及S还可以为其它值,只要金属线路和讯号线路之间的距离大于0即可。即金属线路和讯号线路之间不直接接触,也没有通过其他连接部件间接的接触。
图49是本申请实施例的一例金属线路和讯号线路相对位置关系的示意图。金属线路113a设置在复合材料层的外表面上,外壳包括复合材料层和外观PU层。长方体形状的支架117固定在电路板111上,支架117用于支撑和固定讯号线路114a,金属线路113a位于讯号线路114a的正上方位置。金属线路113a和讯号线路114a之间的距离为X。
可选的,X的取值范围为:0.1mm≤X≤5mm。
可选的,金属线路113a可以为网格状的金属线路,也可以是片状的金属线路。
应理解,在本申请实施例中,与一个讯号线路所搭配金属线路数量可以为多个。多个金属线路分别与讯号线路之间的距离大于0。
还应理解,上述金属线路和讯号线路之间的距离可以是指金属线路和讯号线路之间的最小距离(最短距离),即金属线路位于讯号线路的正上方位置。例如,如图41或者图49所示的,金属线路113a和讯号线路114a之间的最小距离可以是金属线路113a和讯号线路114a在垂直方向上的距离。当然,上述的金属线路和讯号线路之间的距离也可以是 指金属线路上的任意位置与讯号线路上的任意位置之间的距离。本申请实施例在此不作限制。
本申请提供的终端设备,该终端设备的天线(金属线路)设置在终端设备的外壳的外表面上或者内嵌于外壳中,而不是设置在外壳的内表面上或者通过天线支架设置在终端设备内部,可以增大金属线路距离终端设备的电路板的距离,降低了电路板上的金属器件对金属线路辐射(天线辐射)的干扰,增加了天线的工作带宽和效率。并且,在金属线路上设置有保护膜,可以避免金属线路的磨损和脱落等问题,进一步的提高金属线路的耐用性和使用质量,延长金属线路的使用寿命。讯号线路与金属线路之间存在空隙,金属线路和讯号线路之间为耦合式馈入,而不是直接馈入方式,可以实现终端设备准确的接收和发送电磁波信号。避免由于直接馈入的方式导致的接触不良等不稳定的问题,进一步的提高终端设备的天线工作的效率和质量。
应理解,上述的各个实施例以及图所示的结构均为示例性的,不应该对本申请的保护范围产生任何限制,例如,上述的图1至图23中所示的均为在终端设备的绝缘后盖(背盖)的外表面或者内部设置金属线路。可选的,金属线路还可以设置在终端设备侧面的绝缘外壳的外表面上或者外壳内部等。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,例如,上述的各个实施例中某些部件可以是不必须的,或者可以新加入某些部件。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例 对此并不限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种终端设备,其特征在于,包括:
    外壳;
    金属线路,所述金属线路设置于所述外壳的外表面上或者内嵌于所述外壳中,所述金属线路用于接收或者发送电磁波信号。
  2. 根据权利要求1所述的终端设备,其特征在于,所述终端设备还包括:
    电路板,所述电路板用于设置电子元器件;
    讯号线路,所述讯号线路设置于所述电路板上,所述讯号线路与所述金属线路之间存在间隙,所述讯号线路与所述金属线路通过所述空隙以耦合的方式馈入所述电磁波信号。
  3. 根据权利要求1或2所述的终端设备,其特征在于,所述外壳由多层绝缘层构成,所述金属线路内嵌于所述多层绝缘层的任意两层中间。
  4. 根据权利要求3所述的终端设备,其特征在于,所述多层绝缘层为两层绝缘层,所述金属线路内嵌于所述两层绝缘层的中间,其中,所述两层绝缘层均为塑料层,或者,所述两层绝缘层均为玻璃层,或者,所述两层绝缘层中一层为玻璃层,另一层为塑料层。
  5. 根据权利要求4所述的终端设备,其特征在于,所述两层绝缘层中的一层为玻璃层,一层为聚对苯二甲酸乙二醇酯PET塑料,所述金属线路内嵌于所述两层绝缘层的中间。
  6. 根据权利要求5所述的终端设备,其特征在于,所述玻璃层和所述PET塑料层之间还包括聚乙烯醇缩丁醛PVB层,所述金属线路设置于所述PVB层和所述PET塑料层之间,或者,所述金属线路设置于所述PVB层和所述玻璃层之间。
  7. 根据权利要求4所述的终端设备,其特征在于,所述两层绝缘层均为玻璃层,所述两层玻璃层之间存在聚乙烯醇缩丁醛PVB层,所述金属线路设置于所述两层玻璃层中任意一层玻璃层与所述PVB层之间。
  8. 根据权利要求1至7中任一项所述的终端设备,其特征在于,所述金属线路为透光的金属线路。
  9. 根据权利要求8所述的终端设备,其特征在于,所述金属线路的透光率为Y,其中,Y的取值范围为50%≤Y≤95%。
  10. 根据权利要求1至9中任一项所述的终端设备,其特征在于,在所述金属线路设置于所述外壳的外表面的情况下,所述金属线路表面设置有保护膜,或者所述外壳的外表面设置有保护膜。
  11. 根据权利要求2所述的终端设备,其特征在于,所述讯号线路与所述金属线路之间的距离为X,X的取值范围为0.1mm≤X≤5mm。
  12. 根据权利要求1至10中任一项所述的终端设备,其特征在于,所述外壳为玻璃外壳。
  13. 根据权利要求10所述的终端设备,其特征在于,形成所述保护膜的方式包括:
    物理气象沉积方式、化学气象沉积方式、陶瓷镀膜方式、表面硬化液方式、贴附膜的方式中的任意一种。
  14. 根据权利要求1至13中任一项所述的终端设备,其特征在于,所述金属线路包括金属网格、银浆、铜丝中的任意一种。
  15. 根据权利要求14所述的终端设备,其特征在于,在所述金属线路为所述金属网格的情况下,在所述金属网格上包覆有金属层,所述金属层用于降低所述金属网格的阻抗。
  16. 根据权利要求15所述的终端设备,其特征在于,所述金属铜层外还包覆有金属镍层。
  17. 根据权利要求1或2所述的终端设备,其特征在于,
    所述外壳为陶瓷外壳,所述金属线路设置于所述陶瓷外壳的表面上或者内嵌于所述陶瓷外壳中。
  18. 根据权利要求17所述的终端设备,其特征在于,在所述金属线路的表面上包覆有玻璃釉。
  19. 根据权利要求17或18所述的终端设备,其特征在于,所述金属线路为网格化的金属线路。
  20. 根据权利要求3所述的终端设备,其特征在于,所述多层绝缘层为两层绝缘层,所述金属线路设置于所述两层绝缘层的中间,其中,所述两层绝缘层中一层为复合材料层,另一层为聚氨酯PU层。
  21. 根据权利要求20所述的终端设备,其特征在于,所述复合材料层由塑胶、聚碳酸酯PC、塑料、或者橡胶中的一种或者多种制备而成,
PCT/CN2020/071207 2019-01-09 2020-01-09 一种终端设备 WO2020143719A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20738844.8A EP3902061B1 (en) 2019-01-09 2020-01-09 Terminal device
US17/421,870 US12009589B2 (en) 2019-01-09 2020-01-09 Terminal device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910019373 2019-01-09
CN201910019373.6 2019-01-09
CN201910108932.0A CN110021821B (zh) 2019-01-09 2019-02-03 一种终端设备
CN201910108932.0 2019-02-03

Publications (1)

Publication Number Publication Date
WO2020143719A1 true WO2020143719A1 (zh) 2020-07-16

Family

ID=67188927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071207 WO2020143719A1 (zh) 2019-01-09 2020-01-09 一种终端设备

Country Status (4)

Country Link
US (1) US12009589B2 (zh)
EP (1) EP3902061B1 (zh)
CN (2) CN114204255A (zh)
WO (1) WO2020143719A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201119B2 (en) 2018-06-06 2021-12-14 At&S Austria Technologie & Systemtechnik Aktiengesellschaft RF functionality and electromagnetic radiation shielding in a component carrier
CN114204255A (zh) 2019-01-09 2022-03-18 华为技术有限公司 一种终端设备
CN113708049A (zh) * 2020-05-21 2021-11-26 华为技术有限公司 壳体结构、电子设备及壳体结构的制备方法
CN114069196A (zh) * 2020-07-30 2022-02-18 Oppo广东移动通信有限公司 壳体组件及其制备方法、天线组件和电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100033400A1 (en) * 2008-08-05 2010-02-11 Daniel Chang Spray non-contact cutting type antenna and its fabrication method
CN103179815A (zh) * 2011-12-24 2013-06-26 富泰华工业(深圳)有限公司 电子装置壳体
CN107181043A (zh) * 2017-05-22 2017-09-19 上海安费诺永亿通讯电子有限公司 一种无线移动终端
CN107492715A (zh) * 2017-08-09 2017-12-19 合肥联宝信息技术有限公司 天线及电子设备
CN108494913A (zh) * 2018-04-02 2018-09-04 Oppo广东移动通信有限公司 壳体组件、天线组件、天线组件的制作方法以及电子设备
CN108682936A (zh) * 2018-05-03 2018-10-19 Oppo广东移动通信有限公司 天线组件、壳体组件及电子设备
CN208045688U (zh) * 2018-04-23 2018-11-02 深圳市泽华永盛技术有限公司 一种电子设备用天线结构
CN108899633A (zh) * 2018-06-27 2018-11-27 上海徕木电子股份有限公司 一种用于车载装置的电子产品外部壳体结构
CN110021821A (zh) * 2019-01-09 2019-07-16 华为技术有限公司 一种终端设备

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933891B2 (en) 2002-01-29 2005-08-23 Calamp Corp. High-efficiency transparent microwave antennas
EP1868263A4 (en) * 2005-04-01 2009-08-12 Nissha Printing TRANSPARENT ANTENNA FOR DISPLAY, PHOTON-TRANSMITTER MEMBER FOR DISPLAY HAVING AN ANTENNA, AND ELEMENT FOR HOUSING, WITH ANTENNA
TWI304717B (en) 2006-07-04 2008-12-21 Lite On Technology Corp Electrical device and the method of fabricating the same
SE530778C2 (sv) 2006-12-08 2008-09-09 Perlos Oyj Antennanordning
JP4669069B2 (ja) 2008-02-19 2011-04-13 日本写真印刷株式会社 メッシュシート及び電子機器の筐体部品
CN201425967Y (zh) 2009-04-24 2010-03-17 深圳市垦鑫达科技有限公司 一种手机天线支架
KR20120013838A (ko) 2010-08-06 2012-02-15 삼성전기주식회사 안테나 패턴이 케이스에 매립되는 전자장치 및 그 제조방법
US20120206303A1 (en) * 2010-11-11 2012-08-16 Ethertronics, Inc Antenna system coupled to an external device
CN103327139B (zh) 2012-03-23 2018-11-13 联想(北京)有限公司 电子设备及其构成方法
JP5931784B2 (ja) 2013-03-21 2016-06-08 シャープ株式会社 構造体および無線通信装置
US9678540B2 (en) * 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
JP6636432B2 (ja) 2013-09-23 2020-01-29 アップル インコーポレイテッドApple Inc. セラミック材料に埋め込まれた電子部品
CN103633424A (zh) 2013-11-28 2014-03-12 华为技术有限公司 天线及通信产品
CN203826540U (zh) 2014-05-28 2014-09-10 惠州硕贝德无线科技股份有限公司 一种具有金属外壳的通讯设备的天线
CN104953267B (zh) * 2015-06-26 2018-09-25 丹阳正方纳米电子有限公司 一种电容耦合馈电的透明纳米材料天线
CN104953270A (zh) 2015-07-02 2015-09-30 瑞声精密制造科技(常州)有限公司 移动设备及其lds天线系统的制作方法
US10205216B2 (en) * 2016-05-06 2019-02-12 GM Global Technology Operations LLC Thin film antenna to FAKRA connector
KR102572543B1 (ko) 2016-09-29 2023-08-30 삼성전자주식회사 안테나를 포함하는 전자 장치
CN108565546A (zh) * 2016-12-09 2018-09-21 蓝思科技(长沙)有限公司 在玻璃后盖上制作天线的方法以及具有天线的玻璃后盖
CN106848561A (zh) * 2017-02-25 2017-06-13 深圳市聚龙高科电子技术有限公司 一种嵌入式天线
CN108539386B (zh) 2017-03-01 2020-02-21 华为技术有限公司 一种天线结构及无线终端
CN107611564A (zh) * 2017-08-31 2018-01-19 广东欧珀移动通信有限公司 电子设备
CN108232425B (zh) * 2017-12-29 2020-09-01 Oppo广东移动通信有限公司 天线组件及电子装置
CN208112888U (zh) 2018-04-23 2018-11-16 易力声科技(深圳)有限公司 通过l形探针馈电贴片天线来收发信号的耳机
US10734708B2 (en) * 2018-07-11 2020-08-04 Apple Inc. Antennas formed from conductive display layers
CN109119768A (zh) * 2018-08-12 2019-01-01 瑞声科技(南京)有限公司 Aog天线系统及移动终端

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100033400A1 (en) * 2008-08-05 2010-02-11 Daniel Chang Spray non-contact cutting type antenna and its fabrication method
CN103179815A (zh) * 2011-12-24 2013-06-26 富泰华工业(深圳)有限公司 电子装置壳体
CN107181043A (zh) * 2017-05-22 2017-09-19 上海安费诺永亿通讯电子有限公司 一种无线移动终端
CN107492715A (zh) * 2017-08-09 2017-12-19 合肥联宝信息技术有限公司 天线及电子设备
CN108494913A (zh) * 2018-04-02 2018-09-04 Oppo广东移动通信有限公司 壳体组件、天线组件、天线组件的制作方法以及电子设备
CN208045688U (zh) * 2018-04-23 2018-11-02 深圳市泽华永盛技术有限公司 一种电子设备用天线结构
CN108682936A (zh) * 2018-05-03 2018-10-19 Oppo广东移动通信有限公司 天线组件、壳体组件及电子设备
CN108899633A (zh) * 2018-06-27 2018-11-27 上海徕木电子股份有限公司 一种用于车载装置的电子产品外部壳体结构
CN110021821A (zh) * 2019-01-09 2019-07-16 华为技术有限公司 一种终端设备

Also Published As

Publication number Publication date
EP3902061A1 (en) 2021-10-27
US12009589B2 (en) 2024-06-11
EP3902061B1 (en) 2023-10-11
CN114204255A (zh) 2022-03-18
CN110021821A (zh) 2019-07-16
CN110021821B (zh) 2021-11-19
EP3902061A4 (en) 2022-03-02
US20220109234A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
WO2020143719A1 (zh) 一种终端设备
CN110034374B (zh) 电子设备
AU2016300858B2 (en) Coupled multi-bands antennas in wearable wireless devices
EP2733782B1 (en) Transparent antennas for wireless terminals
CN110048224A (zh) 天线模组和电子设备
CN201804995U (zh) 整合于环状壳体的天线结构
US20130082895A1 (en) Antenna Structures with Molded and Coated Substrates
TWI766962B (zh) 電子設備及其具有lds天線的基板以及基板製作方法
EP3709610B1 (en) Mobile terminal and method for manufacturing antenna thereof
CN201667386U (zh) 一种耦合式馈入天线及其手机
CN109273857B (zh) 移动通信设备
CN110278688A (zh) 壳体组件及电子设备
US9640854B2 (en) Wireless communication device
CN114454656A (zh) 壳体及其制备方法、电子设备
CN110506363A (zh) 天线装置
TW201742309A (zh) 天線片及其製造方法
KR101270946B1 (ko) 안테나 기능을 구비하는 휴대용 단말기 커버 제조 방법
CN201149897Y (zh) 透明金属薄膜式天线结构
WO2023232088A1 (zh) 终端设备的后壳、终端设备及终端设备后壳的制作方法
CN111653861B (zh) 一种天线与通讯设备壳体的一体化结构及制备方法
CN215989231U (zh) 一种超宽带天线及电子设备
CN216750267U (zh) 一种基于镭雕走线的nfc塑壳
TW201507275A (zh) 以陶瓷為基底的天線結構及其製作方法
CN205543214U (zh) 一种单元天线结构
KR200273804Y1 (ko) 평면형 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 20738844.8

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020738844

Country of ref document: EP

Effective date: 20210720