WO2023232088A1 - 终端设备的后壳、终端设备及终端设备后壳的制作方法 - Google Patents

终端设备的后壳、终端设备及终端设备后壳的制作方法 Download PDF

Info

Publication number
WO2023232088A1
WO2023232088A1 PCT/CN2023/097530 CN2023097530W WO2023232088A1 WO 2023232088 A1 WO2023232088 A1 WO 2023232088A1 CN 2023097530 W CN2023097530 W CN 2023097530W WO 2023232088 A1 WO2023232088 A1 WO 2023232088A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
layer
glass fiber
terminal device
fiber layer
Prior art date
Application number
PCT/CN2023/097530
Other languages
English (en)
French (fr)
Inventor
杨育展
王晓飞
钱云贵
李笑乾
陈文俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023232088A1 publication Critical patent/WO2023232088A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular to a back shell of a terminal device, a terminal device, and a method for making a back shell of a terminal device.
  • This application provides a back shell of a terminal device, a terminal device, and a method for making the back shell of the terminal device, which enables more antennas to be installed in a limited space.
  • a back shell of a terminal device includes a fiberglass layer and an antenna.
  • the antenna is directly connected to a circuit board of the terminal device.
  • the fiberglass layer includes a groove, and all or part of the antenna is disposed in the groove; or, the antenna is disposed on the outer surface of the glass fiber layer, and the outer surface of the glass fiber layer is located away from the one side of the circuit board.
  • the formation methods of the groove include but are not limited to the following:
  • It is passively formed by pressing the antenna to the glass fiber layer based on hot press molding technology, passively formed by active processing, and passively formed by embedding the antenna into the glass fiber layer based on integrated molding technology.
  • Glass fiber can also be called fiberglass.
  • the outer surface of the fiber layer can, on the one hand, expand the Z-direction clearance area of the antenna, thereby improving the natural performance and enhancing the communication performance of the terminal equipment; on the other hand, On the one hand, it can improve the structural strength of the back shell, thus improving the overall drop resistance of the terminal device.
  • the glass fiber layer includes a connection hole, the connection hole corresponds to the antenna, and the antenna is directly connected to the circuit board for power supply, including:
  • the antenna is directly connected to the circuit board through the connection hole.
  • the groove is located on the surface layer of the glass fiber layer, the middle layer of the glass fiber layer, or the bottom layer of the glass fiber layer.
  • the back shell further includes a coating, the coating is located on the outer surface of the glass fiber layer, and the coating is used to present the back shell Appearance.
  • the material of the coating is one or more of the following:
  • the antenna is arranged on an antenna diaphragm, the antenna diaphragm is attached to the outer surface of the glass fiber layer, and the antenna diaphragm includes a decorative layer.
  • the back case further includes a hardening liquid layer, the hardening liquid layer is located on a side of the antenna diaphragm away from the glass fiber layer, and the hardening liquid layer The liquid layer is used to protect the antenna diaphragm.
  • the material of the hardened liquid layer is one or more of the following:
  • a second aspect provides a terminal device, including a back shell as in the first aspect or any implementation of the first aspect.
  • All or part of the antenna is pressed into the interior of the glass fiber layer based on thermoforming technology.
  • the antenna is pressed into the interior of the glass fiber layer based on thermoforming technology.
  • the Z-direction clearance area of the antenna can be expanded, thereby improving the natural performance and enhancing the communication performance of the terminal equipment. ;
  • it can improve the structural strength of the back shell, thus improving the overall drop resistance of the terminal device.
  • the method further includes:
  • connection hole is opened on the glass fiber layer, the connection hole corresponds to the antenna, and the antenna is directly connected to the circuit board through the connection hole.
  • the back shell further includes a coating
  • the method further includes:
  • the coating is sprayed on the outer surface of the fiberglass layer, and the coating is used to present the appearance of the rear shell.
  • a method for manufacturing a back shell of a terminal device includes a fiberglass layer and an antenna.
  • the antenna is directly connected to a circuit board of the terminal device.
  • the method includes:
  • a groove is processed in the glass fiber layer; all or part of the antenna is arranged in the groove.
  • the method further includes:
  • connection hole is opened on the glass fiber layer, the connection hole corresponds to the antenna, and the antenna is directly connected to the circuit board through the connection hole.
  • the back shell further includes a coating
  • the method further includes:
  • the coating is sprayed on the outer surface of the fiberglass layer, and the coating is used to present the appearance of the rear shell.
  • a method for manufacturing a back case of a terminal device includes a fiberglass layer and an antenna diaphragm, and the method includes:
  • the antenna diaphragm is attached to the outer surface of the glass fiber layer, and the outer surface of the glass fiber layer is located on the side of the circuit board away from the terminal device; a connection hole is opened on the glass fiber layer, The connection hole corresponds to the antenna diaphragm, and the antenna diaphragm is directly connected to the circuit board through the connection hole.
  • the Z-direction clearance area of the antenna can be expanded, thereby improving the natural performance and enhancing the communication performance of the terminal equipment; on the other hand, the back shell can be improved Structural strength, thereby improving the overall fall resistance of the terminal equipment.
  • the method further includes:
  • a hardened liquid layer is sprayed on the outer surface of the glass fiber layer.
  • the hardened liquid layer is located on the side of the antenna diaphragm away from the glass fiber layer.
  • the hardened liquid layer is used to protect the antenna diaphragm.
  • Figure 1 shows an implementation manner of the rear shell of the terminal device proposed in this application.
  • FIG. 2 shows an implementation manner of the rear shell of the terminal device proposed in this application.
  • FIG. 3 shows an implementation manner of the rear shell of the terminal device proposed in this application.
  • Figure 4 shows an implementation manner of the rear shell of the terminal device proposed in this application.
  • Figure 5 shows an implementation manner of the rear shell of the terminal device proposed in this application.
  • Figure 6 shows an implementation manner of the rear shell of the terminal device proposed in this application.
  • Figure 8 shows an implementation manner of the rear shell of the terminal device proposed in this application.
  • FIG 13 shows an implementation of the antenna diaphragm proposed in this application.
  • Figure 14 shows a possible relative positional relationship between the antenna and the glass fiber layer proposed in this application.
  • Figure 15 shows the performance simulation curves for the three antennas in Figure 14.
  • Figure 16 shows a schematic diagram of antenna #4.
  • MIMO Multiple-input multiple-output
  • Coupled feed Two circuit elements or two circuit networks are not in contact, but the distance (gap) between them is less than the threshold, so that electrical energy is conducted through coupling.
  • Direct feed As opposed to coupled feed, two circuit elements or two circuit networks are connected by a conductive entity.
  • the conductive entity can be a metal spring, a screw, etc.
  • Terminal equipment can include various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems with wireless communication functions, as well as various forms of mobile stations (MS) and soft terminals etc.
  • MS mobile stations
  • soft terminals etc.
  • mobile phones laptops, tablets, water meters, electricity meters, sensors, etc.
  • the terminal equipment may also be called user equipment (UE).
  • UE user equipment
  • This application provides a back case of a terminal device, which includes a fiberglass layer and an antenna.
  • the antenna is directly connected to a circuit board (for example, a printed circuit board (PCB)) of the terminal device.
  • PCB printed circuit board
  • the fiberglass layer includes opposing outer surfaces and inner surfaces. As shown in Figure 1, the outer surface of the fiberglass layer is located on the side of the circuit board away from the terminal device, and the inner surface of the fiberglass layer is located on the circuit board close to the terminal device. side.
  • materials such as ceramic fiber, Kevlar fiber, polypropylene fiber or ultra-high molecular weight polyethylene fiber can also be used instead of glass fiber. It should be understood that the above-mentioned materials are lower in hardness than ceramics and glass.
  • the glass fiber layer includes a groove, and all or part of the antenna is disposed in the groove.
  • the antenna is arranged on the outer surface of the glass fiber layer.
  • the glass fiber layer including three layers (surface layer, middle layer and bottom layer) as an example to introduce the above first implementation method in detail.
  • the surface layer of the fiberglass layer is away from the circuit board of the terminal device, and the bottom layer of the fiberglass layer is close to the circuit board of the terminal device.
  • the glass fiber layer may also include only one layer, two layers, or four layers, etc., depending on the actual processing conditions.
  • disposing all or part of the antenna in the groove means that the antenna as a whole is at least partially embedded in the glass fiber layer in the thickness direction.
  • the groove is located on the surface of the glass fiber layer, and a part of the antenna is disposed in the groove. In other words, part of the antenna is embedded into the surface of the fiberglass layer.
  • the groove is located on the surface of the glass fiber layer, and the antennas are all arranged in the groove.
  • the antenna is embedded entirely into the surface of the fiberglass layer. If the size of the antenna remains unchanged, the groove in Figure 2 is deeper than in Figure 1.
  • the groove is located in the surface layer and the middle layer of the glass fiber layer.
  • the surface layer and the middle layer of the glass fiber layer both include grooves.
  • the groove is located in the bottom layer and the middle layer of the glass fiber layer, which is not limited by this application.
  • the groove is located in the middle layer of the glass fiber layer, and the antennas are all arranged in the groove. In other words, the antenna is embedded entirely into the middle layer of glass fiber layers.
  • connection hole can be determined according to the position of the antenna.
  • size of the connection hole can be determined according to the size of the antenna.
  • the connecting holes are not limited to cylindrical holes, square holes or other shaped holes.
  • the groove is located at the bottom of the glass fiber layer, and the antennas are all arranged in the groove.
  • the antenna is embedded entirely into the bottom layer of glass fiber.
  • the groove is located at the bottom of the glass fiber layer, and a part of the antenna is disposed in the groove. In other words, part of the antenna is embedded into the bottom layer of fiberglass.
  • the Z-direction clearance area in the solution in Figures 1 to 5 is larger, so the antenna performance will be better.
  • the surface layer, middle layer and bottom layer are all made of glass fiber.
  • the top, middle and bottom layers can be made of different materials.
  • the top, middle, and bottom layers are made of different materials.
  • the material of the surface layer and the bottom layer is the same, but the material of the middle layer is different from the surface layer and the bottom layer.
  • the surface layer and the bottom layer are made of glass fiber
  • the middle layer is made of plastic
  • a groove is provided in the middle layer
  • the antenna is placed in the groove.
  • connection holes are provided in the middle layer and the bottom layer to achieve direct feed connection between the antenna and the circuit board.
  • the conductive entities for the direct feed connection are not shown in Figure 7 .
  • the back shell may also include a coating, and the coating is located on the outer surface of the glass fiber layer.
  • the coating is located on the outer surface of the glass fiber layer.
  • Ceramic acrylic, polyvinyl butyral, polyurethane, styrene-based resin, unsaturated monomer anaerobic adhesive.
  • a mold may be used to press all or part of the antenna to the surface layer of the glass fiber layer. If this implementation is adopted, all or part of the antenna can be disposed in the groove while forming the groove.
  • the depth of the groove should be less than the thickness of the antenna. If the antenna is entirely placed in a groove, the depth of the groove should be greater than or equal to the thickness of the antenna. Regarding this, we will not go into details below.
  • the thickness of the antenna may be 1 to 100um. It should be understood that this application does not limit the thickness of the antenna and the thickness of the glass fiber layer in which the antenna is embedded.
  • Step 2 Based on hot pressing molding technology, the surface layer, middle layer and bottom layer of the fiberglass layer are pressed together.
  • step 2 can also be performed before step 1.
  • this step 3 is optional. However, if the coating is not sprayed, the antenna will be exposed, which will affect the service life of the antenna on the one hand, and it will not be beautiful on the other hand.
  • Step 1 Based on thermoforming technology, the antenna part is pressed to the middle layer of the glass fiber layer.
  • a mold can be used to laminate the antenna portion to an intermediate layer of fiberglass layers.
  • Step 3 Based on hot pressing molding technology, the surface layer, middle layer and bottom layer of the fiberglass layer are pressed together.
  • step 4 is optional.
  • Step 5 Open a connection hole on the glass fiber layer so that the antenna can be directly connected to the circuit board through the connection hole.
  • Step 1 Based on thermoforming technology, the entire antenna is pressed to the middle layer of the glass fiber layer.
  • a mold can be used to fully laminate the antenna to the middle layer of fiberglass layers.
  • Step 2 Based on hot pressing molding technology, the surface layer, middle layer and bottom layer of the fiberglass layer are pressed together.
  • Step 3 Spray coating on the outer surface of the fiberglass layer.
  • step 3 is optional.
  • Step 4 Open a connection hole on the glass fiber layer so that the antenna can be directly connected to the circuit board through the connection hole.
  • Step 1 Based on thermoforming technology, press all or part of the antenna to the bottom layer of the glass fiber layer.
  • molds can be used to laminate all or part of the antenna to the underlying layer of fiberglass.
  • Step 2 Based on hot pressing molding technology, the surface layer, middle layer and bottom layer of the fiberglass layer are pressed together.
  • step 2 can also be performed before step 1.
  • Step 3 Spray coating on the outer surface of the fiberglass layer.
  • step 3 is optional.
  • Step 1 Set a groove on the middle layer (plastic) and place the antenna entirely in the groove.
  • the methods of setting grooves on the plastic include but are not limited to any of the following:
  • Injection molding blow molding, blister molding, compression molding.
  • Step 2 Fix the surface layer (fiberglass), middle layer (plastic) and bottom layer (fiberglass) together.
  • top layer, middle layer and bottom layer can be fixed together based on thermoforming technology.
  • an adhesive layer is provided on the upper surface and lower surface of the intermediate layer (plastic) respectively, and the surface layer, the intermediate layer and the bottom layer are bonded together through the adhesive layer.
  • Step 3 Spray coating on the outer surface of the fiberglass layer.
  • step 3 is optional.
  • Step 4 Open connection holes on the bottom layer (glass fiber) and middle layer (plastic) so that the antenna can be directly connected to the circuit board through the connection holes.
  • the groove in this application can be passively formed by pressing the antenna, or formed by active processing.
  • the antenna can also be embedded in the glass fiber layer to passively form a groove based on one-piece molding technology. That is, when making the fiberglass layer, the antenna has been embedded in it based on one-piece molding technology.
  • the antenna can be embedded in the surface layer, middle layer or bottom layer of the glass fiber layer based on one-piece molding technology.
  • the fiberglass layer may also include connection holes to achieve direct power connection between the antenna and the circuit board.
  • the conductive entities for the direct feed connection are not shown in Figure 8 .
  • coupling feeding can also be used between the antenna and the circuit board.
  • a feeding conductor needs to be set on the circuit board, and the gap between the feeding conductor and the antenna is smaller than the preset threshold, so as to realize the coupling between the feeding conductor and the antenna. Signaling.
  • an insulating medium is provided between the feed conductor and the antenna.
  • the insulating medium may be plastic or plastic material.
  • the relative dielectric constant of the insulating medium is 2.0 to 20.0, and the tangent loss angle is 0.002 to 0.3, thereby reducing the loss generated when the electromagnetic wave generated by the feed conductor penetrates the insulating medium. It should be understood that the relative dielectric constant and tangent loss angle can also take other values without limitation.
  • the antenna can be placed in a plastic layer, a coating or hardened liquid layer is provided on the outer surface of the plastic layer, and a connection hole is provided to achieve direct feed between the antenna and the circuit board connect.
  • the conductive entities for the direct feed connection are not shown in Figure 11 .
  • This application does not limit the position of the antenna in the plastic layer.
  • the antenna is located on the bottom layer of the plastic layer; as shown in (b) of Figure 11, the antenna is located on the surface of the plastic layer.
  • the antenna in order to arrange the antenna on the outer surface of the glass fiber layer, the antenna can be placed on the outer surface of the glass fiber layer. Place the antenna diaphragm, and then attach the antenna diaphragm to the outer surface of the fiberglass layer.
  • connection holes are provided to achieve direct feed connection between the antenna and the circuit board. The conductive entities for the direct feed connection are not shown in Figure 12 .
  • the energy beam is used to irradiate the surface where the antenna needs to be formed, and then the metal layer is chemically plated. That is, the antenna can be printed directly onto the decorative film, thereby forming the antenna film.
  • the antenna when making the decorative film, can be disposed in the decorative film to form the antenna film.
  • the release film #2 is used to protect the outer surface of the antenna diaphragm so that the outer surface of the antenna diaphragm is not damaged.
  • the material of the hardened liquid layer may be one or more of the following:
  • Polyurethane resin acrylic resin, epoxy resin, amino resin, alkyd resin, silicone resin, silicone, silica, alumina, zirconia, graphene or diamond.
  • Step 1 Place the antenna on the outer surface of the fiberglass layer.
  • Step 2 Spray a coating or hardened liquid layer on the outer surface of the fiberglass layer to cover the antenna.
  • the antenna can be fixed to the outer surface of the glass fiber layer, on the other hand, the antenna can be protected, and in addition, the back shell of the terminal device can be decorated.
  • Step 3 Open a connection hole on the glass fiber layer so that the antenna can be directly connected to the circuit board through the connection hole.
  • Step 1 Set a groove in the plastic layer and place all the antennas in the groove.
  • the method of setting grooves in the plastic layer can refer to the above.
  • the plastic layer and the fiberglass layer can be fixed together based on thermoforming technology.
  • Step 3 Spray a coating or hardened liquid layer on the outer surface of the plastic layer.
  • Step 1 Place the antenna in the antenna diaphragm.
  • Step 2 Peel off the release film #1 and stick the antenna diaphragm to the outer surface of the fiberglass layer.
  • the antenna membrane can be fixed to the outer surface of the glass fiber layer.
  • Step 3 Peel off the release film #2 and spray a hardened liquid layer on the outer surface of the antenna diaphragm.
  • Step 4 Open the connection hole so that the antenna can be directly connected to the circuit board through the connection hole.
  • the back shell has a larger space and can accommodate multiple antennas, thereby realizing the design of a multi-antenna system.
  • Figure 14 shows a possible relative positional relationship between the antenna and the glass fiber layer when looking down at the back shell of the terminal device, which includes three antennas, namely antenna #1, antenna #2 and antenna #3. .
  • the distance between antenna #1 and the upper edge of the fiberglass layer is 10mm; the distance between antenna #2 and the left edge of the fiberglass layer is 18mm, and the distance between antenna #2 and the upper edge of the fiberglass layer is 13mm; the distance between antenna #3 and the right edge of the fiberglass layer The distance is 21mm, and the distance between it and the upper edge of the fiberglass layer is 13mm.
  • Figure 15 shows the performance simulation curves for the three antennas in Figure 14.
  • the three concave curves are the modes of the three antennas, and the three convex curves are the system efficiencies of the three antennas. It can be seen from Figure 15 that there is antenna resonance and the antenna is working in the range of 2.5 to 3.2GHz.
  • the system efficiency of antenna #1 is approximately -3.0dB
  • the system efficiency of antenna #2 is approximately -3.0dB
  • the system efficiency of antenna #3 is approximately -1.8dB. Based on the above simulation results, three antennas can meet the usage requirements.
  • Figure 16 shows a schematic diagram of antenna #4
  • Figure 17 shows the performance simulation curve of antenna #4.
  • antenna #4 can also meet the usage requirements.
  • the present application also provides a terminal device with the above-mentioned back shell. That is, the rear shell of the terminal device includes a fiberglass layer and an antenna.
  • the fiberglass layer includes a groove, and all or part of the antenna is disposed in the groove; or, the antenna is disposed on the outer surface of the fiberglass layer. No further explanation will be given here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供了一种终端设备的后壳、终端设备及终端设备后壳的制作方法。其中,该后壳包括玻纤层和天线,天线与终端设备的电路板直馈电连接。玻纤层包括凹槽,天线的全部或部分设置于凹槽;或者,天线设置于玻纤层的外表面,玻纤层的外表面位于远离所述电路板的一侧。根据本申请的方案,一方面可以拓展天线的Z向净空区域,从而提升天性性能,使终端设备的通信性能得到增强;另一方面可以提高后壳的结构强度,从而提升终端设备整体的抗摔能力。此外,由于后壳的空间较大,可以将多个天线设置于玻纤层的内部,从而实现多天线系统的设计。进一步地,可以减少边框的缝隙,从而提升产品的外观。

Description

终端设备的后壳、终端设备及终端设备后壳的制作方法
本申请要求于2022年06月02日提交中国专利局、申请号为202210624116.7、申请名称为“终端设备的后壳、终端设备及终端设备后壳的制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种终端设备的后壳、终端设备及终端设备后壳的制作方法。
背景技术
近年来,随着通信技术的不断发展,终端设备内天线的数量越来越多。然而,终端设备内部的可用于设计天线的空间却越来越小。
在一些终端设备中,天线被设置到边框。在多天线的场景下,采用这种实现方式意味着需要在边框设计更多的缝隙。缝隙不但影响产品的外观,也会降低产品结构强度的可靠性。此外,将天线设置到边框还存在结构较脆,成本较高等问题。
在一些终端设备中,天线以支架的方式被置于终端设备的主板上。在这种实现方式中,支架距离主板的距离较近,天线容易受到主板上器件的影响,从而影响天线性能。并且,受限于终端设备内部的空间,支架的设计也会受到较大限制。
因此,在天线数量日益增长的情况下,如何在有限的空间内设置更多天线是一个亟待解决的问题。
发明内容
本申请提供一种终端设备的后壳、终端设备及终端设备后壳的制作方法,实现了在有限的空间内设置更多的天线。
第一方面,提供了一种终端设备的后壳,所述后壳包括玻纤层和天线,所述天线与所述终端设备的电路板直馈电连接。所述玻纤层包括凹槽,所述天线的全部或部分设置于所述凹槽;或者,所述天线设置于所述玻纤层的外表面,所述玻纤层的外表面位于远离所述电路板的一侧。
其中,该凹槽的形成方式包括但不限于以下几种:
基于热压成型技术将天线压合到玻纤层被动形成、主动加工形成、基于一体成型技术将天线嵌入玻纤层被动形成。
玻纤也可以称为玻璃纤维。
根据本申请的方案,通过在玻纤层设置凹槽,并将天线的全部或部分设置于凹槽(即,将天线的全部或部分设置于玻纤层的内部);或者将天线设置于玻纤层的外表面,一方面可以拓展天线的Z向净空区域,从而提升天性性能,使终端设备的通信性能得到增强;另 一方面可以提高后壳的结构强度,从而提升终端设备整体的抗摔能力。
此外,相比于将天线设置于终端设备的边框,采用本申请的方案,由于后壳的空间较大,可以将多个天线设置于玻纤层的内部,从而实现多天线系统的设计。
进一步地,将天线设置于终端设备的边框会存在缝隙,影响产品的外观,而采用本申请的方案可以减少边框的缝隙,甚至可以达到边框无缝的效果,从而提升产品的外观,也避免了终端设备工业设计(industry design,ID)的同质化,增强了产品的竞争力。
结合第一方面,在第一方面的某些实现方式中,所述玻纤层包括连接孔,所述连接孔与所述天线对应,所述天线与所述电路板直馈电连接,包括:
所述天线通过所述连接孔与所述电路板直馈电连接。
结合第一方面,在第一方面的某些实现方式中,所述凹槽位于所述玻纤层的表层、所述玻纤层的中间层或所述玻纤层的底层。
此外,表层、中间层和底层的材质可能不同。例如,表层和底层的材质为玻纤,中间层的材质为塑料,此时可以在中间层设置凹槽,并将天线设置于该凹槽中。此外,在中间层和底层设置连接孔,以实现天线与电路板的直馈电连接。
结合第一方面,在第一方面的某些实现方式中,所述后壳还包括涂层,所述涂层位于所述玻纤层的外表面,所述涂层用于呈现所述后壳的外观。
结合第一方面,在第一方面的某些实现方式中,所述涂层的材料为以下中的一项或多项:
陶瓷、丙烯酸酯、聚乙烯醇缩丁醛、聚氨酯、苯乙烯基树脂、不饱和单体厌氧胶。
结合第一方面,在第一方面的某些实现方式中,所述天线设置于所述玻纤层的外表面,包括:
所述天线设置于天线膜片,所述天线膜片贴覆于所述玻纤层的外表面,所述天线膜片包括装饰层。
此外,为了将天线设置于玻纤层的外表面,可以将天线设置于玻纤层的外表面,并在玻纤层的外表面设置涂层或硬化液层。
或者,为了将天线设置于玻纤层的外表面,可以在塑料层设置凹槽,并将天线全部设置于该凹槽中,再将塑料层设置到玻纤层的外表面。例如,基于热压成型技术将塑料层和玻纤层固定到一起;或者,在塑料层的下表面设置粘合层,通过该粘合层将塑料层和玻纤层粘合到一起。
结合第一方面,在第一方面的某些实现方式中,所述后壳还包括硬化液层,所述硬化液层位于所述天线膜片远离所述玻纤层的一侧,所述硬化液层用于保护所述天线膜片。
结合第一方面,在第一方面的某些实现方式中,所述硬化液层的材料为以下中的一项或多项:
聚氨酯树脂、丙烯酸树脂、环氧树脂、氨基树脂、醇酸树脂、有机硅树脂、硅氧烷、二氧化硅、氧化铝、氧化锆、石墨烯、金刚石。
第二方面,提供一种终端设备,包括如第一方面或第一方面的任一种实现方式中的后壳。
第三方面,提供一种终端设备的后壳的制作方法,所述后壳包括玻纤层和天线,所述天线与所述终端设备的电路板直馈电连接,所述方法包括:
基于热压成型技术将所述天线的全部或部分压合至所述玻纤层的内部。
根据本申请的方案,基于热压成型技术将天线的全部或部分压合至玻纤层的内部,一方面可以拓展天线的Z向净空区域,从而提升天性性能,使终端设备的通信性能得到增强;另一方面可以提高后壳的结构强度,从而提升终端设备整体的抗摔能力。
此外,相比于将天线设置于终端设备的边框,采用本申请的方案,由于后壳的空间较大,可以将多个天线设置于玻纤层的内部,从而实现多天线系统的设计。
进一步地,将天线设置于终端设备的边框会存在缝隙,影响产品的外观,而采用本申请的方案可以减少边框的缝隙,甚至可以达到边框无缝的效果,从而提升产品的外观,也避免了终端设备工业设计的同质化,增强了产品的竞争力。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:
在所述玻纤层上开连接孔,所述连接孔与所述天线对应,所述天线通过所述连接孔与所述电路板直馈电连接。
结合第三方面,在第三方面的某些实现方式中,所述后壳还包括涂层,所述方法还包括:
在所述玻纤层的外表面喷涂所述涂层,所述涂层用于呈现所述后壳的外观。
第四方面,提供一种终端设备的后壳的制作方法,所述后壳包括玻纤层和天线,所述天线与所述终端设备的电路板直馈电连接,所述方法包括:
在所述玻纤层加工凹槽;将所述天线的全部或部分设置于所述凹槽。
根据本申请的方案,通过在玻纤层加工凹槽,并将天线的全部或部分设置于凹槽,一方面可以拓展天线的Z向净空区域,从而提升天性性能,使终端设备的通信性能得到增强;另一方面可以提高后壳的结构强度,从而提升终端设备整体的抗摔能力。
此外,相比于将天线设置于终端设备的边框,采用本申请的方案,由于后壳的空间较大,可以将多个天线设置于玻纤层的内部,从而实现多天线系统的设计。
进一步地,将天线设置于终端设备的边框会存在缝隙,影响产品的外观,而采用本申请的方案可以减少边框的缝隙,甚至可以达到边框无缝的效果,从而提升产品的外观,也避免了终端设备工业设计的同质化,增强了产品的竞争力。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:
在所述玻纤层上开连接孔,所述连接孔与所述天线对应,所述天线通过所述连接孔与所述电路板直馈电连接。
结合第四方面,在第四方面的某些实现方式中,所述后壳还包括涂层,所述方法还包括:
在所述玻纤层的外表面喷涂所述涂层,所述涂层用于呈现所述后壳的外观。
第五方面,提供一种终端设备的后壳的制作方法,所述后壳包括玻纤层和天线膜片,所述方法包括:
将所述天线膜片贴覆到所述玻纤层的外表面,所述玻纤层的外表面位于远离所述终端设备的电路板的一侧;在所述玻纤层上开连接孔,所述连接孔与所述天线膜片对应,所述天线膜片通过所述连接孔与所述电路板直馈电连接。
根据本申请的方案,通过将天线设置于玻纤层的外表面,一方面可以拓展天线的Z向净空区域,从而提升天性性能,使终端设备的通信性能得到增强;另一方面可以提高后壳 的结构强度,从而提升终端设备整体的抗摔能力。
此外,相比于将天线设置于终端设备的边框,采用本申请的方案,由于后壳的空间较大,可以将多个天线设置于玻纤层的内部,从而实现多天线系统的设计。
进一步地,将天线设置于终端设备的边框会存在缝隙,影响产品的外观,而采用本申请的方案可以减少边框的缝隙,甚至可以达到边框无缝的效果,从而提升产品的外观,也避免了终端设备工业设计的同质化,增强了产品的竞争力。
结合第五方面,在第五方面的某些实现方式中,所述方法还包括:
在所述玻纤层的外表面喷涂硬化液层,所述硬化液层位于所述天线膜片远离所述玻纤层的一侧,所述硬化液层用于保护所述天线膜片。
附图说明
图1示出了本申请提出的终端设备后壳的一种实现方式。
图2示出了本申请提出的终端设备后壳的一种实现方式。
图3示出了本申请提出的终端设备后壳的一种实现方式。
图4示出了本申请提出的终端设备后壳的一种实现方式。
图5示出了本申请提出的终端设备后壳的一种实现方式。
图6示出了本申请提出的终端设备后壳的一种实现方式。
图7示出了本申请提出的终端设备后壳的一种实现方式。
图8示出了本申请提出的终端设备后壳的一种实现方式。
图9示出了本申请提出的终端设备后壳的一种实现方式。
图10示出了本申请提出的终端设备后壳的一种实现方式。
图11示出了本申请提出的终端设备后壳的一种实现方式。
图12示出了本申请提出的终端设备后壳的一种实现方式。
图13示出了本申请提出的天线膜片的一种实现方式。
图14示出了本申请提出的天线与玻纤层的一种可能的相对位置关系
图15示出了针对图14中三个天线的性能仿真曲线。
图16示出了天线#4的示意图。
图17示出了天线#4的性能仿真曲线。
具体实施方式
在本专利申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本专利申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本专利申请的限制。在本专利申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
应理解,在本申请实施例中,“A与B对应”表示A与B相关联。
为了方便理解,首先对本申请涉及的一些名词作出解释说明。
多输入多输出(multiple-input multiple-output,MIMO):在发送端和接收端都使用多 根天线,从而在发送端和接收端之间构成多个信道的天线系统。基于MIMO,可以在对现有频谱资源充分利用的基础上通过利用空间资源获取可靠性与有效性两方面的增益。
耦合馈电:两个电路元件或两个电路网络没有接触,但二者之间的距离(间隙)小于阈值,从而通过耦合的方式进行电能量的传导。
直馈:与耦合馈电相对,两个电路元件或两个电路网络通过导电实体连接。例如,该导电实体可以为金属弹片、螺钉等。
净空:天线区域不布地的空间大小。
终端设备:可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的移动台(mobile station,MS)、软终端等等。例如,手机、笔记本、平板电脑、水表、电表、传感器等。应理解,终端设备也可以称为用户设备(user equipment,UE)。
本申请提供一种终端设备的后壳,该后壳包括玻纤层和天线。其中,该天线与终端设备的电路板(例如,印刷电路板(printed circuit board,PCB))直馈电连接。
该玻纤层包括相互对立的外表面和内表面,如图1所示,玻纤层的外表面位于远离终端设备的电路板的一侧,玻纤层的内表面位于靠近终端设备的电路板的一侧。
此外,在本申请中,还可以用陶瓷纤维、凯夫拉纤维、聚丙烯纤维或超高分子量聚乙烯纤维等材料代替玻纤。应理解,上述材料相比于陶瓷、玻璃,属于硬度较低的材料。
示例性地,玻纤层的总厚度可以为0.45至0.6mm。应理解,本申请对玻纤层的厚度不予限制。
下面对本申请提出的终端设备的后壳的结构进行说明。
作为第一种实现方式,玻纤层包括凹槽,天线的全部或部分设置于该凹槽。作为第二种实现方式,天线设置于玻纤层的外表面。
接下来,以玻纤层包括三层(分别为表层、中间层和底层)为例,对上述第一种实现方式进行详细介绍。如图1所示,玻纤层的表层远离终端设备的电路板,玻纤层的底层靠近终端设备的电路板。应理解,本申请对玻纤层包括的层数不作限定。例如,该玻纤层还可以只包括一层,或者包括两层,或者包括四层等,视实际加工情况而定。
在本申请中,天线的全部或部分设置于凹槽是指:天线作为一个整体在厚度方向上至少部分嵌入到玻纤层中。
如图1所示,该凹槽位于玻纤层的表层,天线的一部分设置于该凹槽中。换句话说,天线的一部分嵌入到玻纤层的表层。
如图2所示,该凹槽位于玻纤层的表层,天线全部设置于该凹槽中。换句话说,天线整体嵌入到玻纤层的表层。如果天线的尺寸不变,相比于图1,图2中的凹槽更深。
如图3所示,该凹槽位于玻纤层的表层和中间层,此时,玻纤层的表层和中间层均包括凹槽。当然,作为另一种方式,该凹槽位于玻纤层的底层和中间层,本申请对此不予限制。
如图4所示,该凹槽位于玻纤层的中间层,天线全部设置于该凹槽中。换句话说,天线整体嵌入到玻纤层的中间层。
为了实现天线与终端设备的电路板的直馈电连接,在图1至图4所示的方案中还需要在玻纤层上设置连接孔,天线通过连接孔与电路板直馈电连接。图1至图4中未示出用于 直馈电连接的导电实体。
应理解,该连接孔的位置可以根据天线的位置确定。连接孔的大小可以根据天线的大小确定。连接孔也不限于是圆柱孔、方形孔或其他形状的孔。
如图5所示,该凹槽位于玻纤层的底层,天线全部设置于该凹槽中。换句话说,天线整体嵌入到玻纤层的底层。
如图6所示,该凹槽位于玻纤层的底层,天线的一部分设置于该凹槽中。换句话说,天线的一部分嵌入到玻纤层的底层。
在图5和图6中,由于天线有露出的部分,因此无需在玻纤层上设置连接孔,就可以实现天线与电路板的直馈电连接。
相比于图1至图4的方案,图5和图6的方案中无需设置连接孔,因此可以进一步降低后壳的制作成本和工艺难度。
相比于图6的方案,图1至图5的方案中Z向净空区域更大,因此天线的性能会更好。
上述图1至图6的方案中,表层、中间层和底层的材质均为玻纤。作为另一种方式,表层、中间层和底层的材质可以不同。例如,表层、中间层和底层的材质互不相同。又例如,表层和底层的材质相同,中间层的材质与表层和底层不同。
示例性地,如图7所示,表层和底层的材质为玻纤,中间层的材质为塑料,在中间层设置凹槽,并将天线设置于该凹槽中。此外,在中间层和底层设置连接孔,以实现天线与电路板的直馈电连接。图7中未示出用于直馈电连接的导电实体。
可选地,在图1至图7的方案中,该后壳还可以包括涂层,涂层位于玻纤层的外表面。通过喷涂涂层,一方面可以保护天线,另一方面可以装饰后壳(即,用于呈现后壳的外观)。例如,该涂层的颜色可以是黑色、白色等。本申请对该涂层的厚度不予限制,视实际情况而定。
示例性地,涂层的材料为以下中的一项或多项:
陶瓷、丙烯酸酯、聚乙烯醇缩丁醛、聚氨酯、苯乙烯基树脂、不饱和单体厌氧胶。
应理解,涂层的材料还可以为其他,具体可以视实际加工情况而定。
下面结合图1和图2,介绍该终端设备的后壳的制作方法。
步骤1:基于热压成型技术,将天线的全部或部分压合至玻纤层的表层。
示例性地,可以利用模具将天线的全部或部分压合到玻纤层的表层。如果采用这种实现方式,在形成凹槽的同时,即可将天线的全部或部分设置于凹槽中。
例如,在热压的过程中,可以先在120-180℃的温度下将玻纤预烘5-10s,然后在10-20公斤的压力下热压8-11s,再冷却至室温。冷却的方式不限于自然冷却或人工冷却。当然,热压时的工艺参数并不限于上述设定的工艺参数,具体根据实际加工情况、玻纤层的厚度等进行设定,本申请对此不做具体限定。关于热压的工艺参数下文不再赘述。
由于玻纤的硬度较小,将天线压合到玻纤层的工艺难度不大。如果选择硬度较大的材料(例如,陶瓷),将天线压合到陶瓷中的工艺难度很大,很难量产。即使能将天线压合到陶瓷中,受应力的影响,整个后壳的结构强度也难以保证。因此,本申请中通过选择玻纤材质,可以降低加工难度,降低成本,实现量产。关于选择玻纤材质的有益效果,下文不再赘述。
此外,除了通过压合的方式将天线压合至玻纤层的表层,还可以先在玻纤层的表层加 工凹槽,然后将天线的全部或部分设置于凹槽中。
应理解,如果将天线的部分设置于凹槽中,该凹槽的深度应小于天线的厚度。如果将天线全部设置于凹槽中,该凹槽的深度应大于或等于天线的厚度。关于此,下文不再赘述。
示例性地,天线的厚度可以为1至100um。应理解,本申请对天线的厚度以及天线嵌入玻纤层的厚度不予限制。
步骤2:基于热压成型技术,将玻纤层的表层、中间层和底层压合到一起。
应理解,本申请对步骤1和步骤2的顺序不作限定。即,步骤2还可以在步骤1之前执行。
步骤3:在玻纤层的外表面喷涂涂层,以覆盖天线。
应理解,该步骤3为可选的。但是,如果不喷涂层,天线会裸露在外面,一方面影响天线的使用寿命,另一方面也不美观。
步骤4:在玻纤层上开连接孔,使得天线通过连接孔与电路板直馈电连接。
下面结合图3,介绍该终端设备的后壳的制作方法。
步骤1:基于热压成型技术,将天线部分压合至玻纤层的中间层。
类似地,可以利用模具将天线部分压合到玻纤层的中间层。
步骤2:基于热压成型技术,将天线其他部分压合至玻纤层的表层。
此外,除了通过压合的方式,还可以先在玻纤层的表层和中间层加工凹槽,然后将天线置于中间层的凹槽中,再将表层置于中间层上,表层的凹槽与天线对应。
步骤3:基于热压成型技术,将玻纤层的表层、中间层和底层压合到一起。
步骤4:在玻纤层的外表面喷涂涂层。
应理解,该步骤4为可选的。
步骤5:在玻纤层上开连接孔,使得天线通过该连接孔与电路板直馈电连接。
下面结合图4,介绍该终端设备的后壳的制作方法。
步骤1:基于热压成型技术,将天线全部压合至玻纤层的中间层。
类似地,可以利用模具将天线全部压合到玻纤层的中间层。
此外,除了通过压合的方式将天线压合至玻纤层的中间层,还可以先在玻纤层的中间层加工凹槽,然后将天线全部设置于凹槽中。
步骤2:基于热压成型技术,将玻纤层的表层、中间层和底层压合到一起。
步骤3:在玻纤层的外表面喷涂涂层。
应理解,该步骤3为可选的。
步骤4:在玻纤层上开连接孔,使得天线通过该连接孔与电路板直馈电连接。
下面结合图5和图6,介绍该终端设备的后壳的制作方法。
步骤1:基于热压成型技术,将天线的全部或部分压合至玻纤层的底层。
类似地,可以利用模具将天线全部或部分压合到玻纤层的底层。
此外,除了通过压合的方式将天线压合至玻纤层的底层,还可以先在玻纤层的底层加工凹槽,然后将天线的全部或部分设置于凹槽中。
步骤2:基于热压成型技术,将玻纤层的表层、中间层和底层压合到一起。
应理解,本申请对步骤1和步骤2的顺序不作限定。即,步骤2还可以在步骤1之前执行。
步骤3:在玻纤层的外表面喷涂涂层。
应理解,该步骤3为可选的。
下面结合图7介绍该终端设备的后壳的制作方法。
步骤1:在中间层(塑料)上设置凹槽,并将天线全部设置于该凹槽中。
其中,在塑料上设置凹槽的方式包括但不限于以下中的任一种:
注塑成型、吹塑成型、吸塑成型、模压成型。
步骤2:将表层(玻纤)、中间层(塑料)和底层(玻纤)固定到一起。
作为一种方式,可以基于热压成型技术将表层、中间层和底层固定到一起。
作为另一种方式,在中间层(塑料)的上表面和下表面分别设置粘合层,通过该粘合层将表层、中间层和底层粘合到一起。
步骤3:在玻纤层的外表面喷涂涂层。
应理解,该步骤3为可选的。
步骤4:在底层(玻纤)和中间层(塑料)上开连接孔,使得天线通过该连接孔与电路板直馈电连接。
由上述图1至图6的方案可知,本申请中的凹槽可以是通过压合天线被动形成的,或者是主动加工形成的。除此之外,如图8所示,还可以基于一体成型技术将天线嵌入玻纤层中被动形成凹槽。即,在制作玻纤层时已经基于一体成型技术把天线嵌入其中了。示例性地,可以基于一体成型技术将天线嵌入玻纤层的表层、中间层或底层。可选地,玻纤层还可以包括连接孔,以实现天线与电路板的直馈电连接。图8中未示出用于直馈电连接的导电实体。
此外,针对图5和图6,天线与电路板之间也可以采用耦合馈电的方式。如图9所示,如果采用耦合馈电的方式,在电路板上还需设置馈电导体,并且馈电导体与天线之间的间隙小于预设阈值,从而实现馈电导体与天线之间的信号传导。
馈电导体和天线之间设置绝缘介质。示例性地,该绝缘介质可以为塑料或塑胶材质。示例性地,该绝缘介质的相对介电常数为2.0至20.0,正切损耗角为0.002至0.3,从而降低馈电导体产生的电磁波穿透绝缘介质时所产生的损耗。应理解,该相对介电常数和正切损耗角还可以取其他值,不予限制。
接下来,对上述第二种实现方式进行详细介绍。相比于第一种实现方式,在第二种实现方式中不需要在玻纤层设置凹槽。因此,除了前文提到的材料,在第二种实现方式中,玻纤也可以用其他硬度较大的材料代替,例如陶瓷、玻璃等。
作为一种情况,如图10所示,可以将天线设置于玻纤层的外表面,在玻纤层的外表面设置涂层或硬化液层。此外,在玻纤层上设置连接孔,以实现天线与电路板的直馈电连接。图10中未示出用于直馈电连接的导电实体。
作为另一种情况,如图11所示,可以将天线设置于塑料层中,在塑料层的外表面设置涂层或硬化液层,并设置连接孔,以实现天线与电路板的直馈电连接。图11中未示出用于直馈电连接的导电实体。本申请对天线在塑料层中的位置不作限定。例如,如图11中的(a)所示,天线的位置在塑料层的底层;如图11中的(b)所示,天线的位置在塑料层的表层。
作为另一种情况,如图12所示,为了将天线设置在玻纤层的外表面,可以将天线设 置于天线膜片,再将天线膜片贴覆于玻纤层的外表面。此外,设置连接孔,以实现天线与电路板的直馈电连接。图12中未示出用于直馈电连接的导电实体。
其中,将天线设置于天线膜片的方式包括但不限于以下两种:
方式1:
利用能量束对需要形成天线的表面进行照射,然后进行化学镀金属层。即,可以将天线直接印刷到装饰膜片上,从而形成天线膜片。
方式2:
由于装饰膜片包括多层结构,在制作装饰膜片时,可以将天线设置于装饰膜片中,从而形成天线膜片。
图13示出了天线膜片的一种可能的结构,天线膜片包括装饰层、天线和粘合层。因此,可以通过该粘合层将天线膜片贴覆于玻纤层的外表面。示例性地,该天线膜片还包括离型膜#1和离型膜#2。
在将天线膜片贴覆于玻纤层的外表面之前,该粘合层可以由离型膜#1覆盖,该离型膜#1用于保持粘合层的粘性。在将天线膜片贴覆于玻纤层的外表面时,撕去该离型膜#1。该离型膜#1可以很好地保护粘合层,有效防止了粘合层被损坏而引起天线膜片在玻纤层表面粘合不牢的情况发生,提高了良品率。
该离型膜#2用于保护天线膜片的外表面,使得天线膜片的外表面不受损坏。
可选地,如图12所示,该终端设备的后壳还包括硬化液层,硬化液层位于天线膜片远离玻纤层的一侧,硬化液层用于保护天线膜片。
示例性地,硬化液层的材料可以为以下中的一项或多项:
聚氨酯树脂、丙烯酸树脂、环氧树脂、氨基树脂、醇酸树脂、有机硅树脂、硅氧烷、二氧化硅,氧化铝,氧化锆,石墨烯或金刚石。
应理解,硬化液层的材料还可以为其他,具体可以视实际加工情况而定。
下面结合图10,介绍该终端设备的后壳的制作方法。
步骤1:将天线置于玻纤层的外表面。
步骤2:在玻纤层的外表面喷涂涂层或硬化液层,以覆盖天线。
应理解,通过该步骤,一方面可以将天线固定到玻纤层的外表面,另一方面可以保护天线,此外还可以装饰终端设备的后壳。
步骤3:在玻纤层上开连接孔,使得天线通过该连接孔与电路板直馈电连接。
下面结合图11,介绍该终端设备的后壳的制作方法。
步骤1:在塑料层设置凹槽,并将天线全部设置于该凹槽中。
其中,在塑料层设置凹槽的方式可以参考上文。
步骤2:将塑料层和玻纤层固定到一起。
作为一种方式,可以基于热压成型技术将塑料层和玻纤层固定到一起。
作为另一种方式,在塑料层的下表面设置粘合层,通过该粘合层将塑料层和玻纤层粘合到一起。
步骤3:在塑料层的外表面喷涂涂层或硬化液层。
应理解,通过该步骤,一方面可以保护天线,另一方面还可以装饰终端设备的后壳。
步骤4:开连接孔,使得天线通过该连接孔与电路板直馈电连接。
下面结合图12和图13,介绍该终端设备的后壳的制作方法。
步骤1:将天线置于天线膜片中。
步骤2:撕去离型膜#1,将天线膜片贴覆到玻纤层的外表面。
应理解,通过该步骤可以将天线膜片固定到玻纤层的外表面。
步骤3:撕去离型膜#2,在天线膜片的外表面喷涂硬化液层。
步骤4:开连接孔,使得天线通过该连接孔与电路板直馈电连接。
根据本申请的方案,通过在玻纤层设置凹槽,并将天线的全部或部分设置于凹槽;或者将天线设置于玻纤层的外表面,一方面可以拓展天线的Z向净空区域,从而提升天性性能,使终端设备的通信性能得到增强;另一方面可以提高后壳的结构强度,从而提升终端设备整体的抗摔能力。
此外,相比于将天线设置于终端设备的边框,采用本申请的方案,由于后壳的空间较大,可以容纳多个天线,从而实现多天线系统的设计。
进一步地,将天线设置于终端设备的边框会存在缝隙,影响产品的外观,而采用本申请的方案可以减少边框的缝隙,甚至可以达到边框无缝的效果,从而提升产品的外观,也避免了终端设备工业设计(industry design,ID)的同质化,增强了产品的竞争力。
示例性地,图14给出了俯视终端设备的后壳时,天线与玻纤层的一种可能的相对位置关系,其中包括三个天线,分别为天线#1、天线#2和天线#3。天线#1与玻纤层上边缘之间间隔10mm;天线#2与玻纤层左边缘之间间隔18mm,与玻纤层上边缘之间间隔13mm;天线#3与玻纤层右边缘之间间隔21mm,与玻纤层上边缘之间间隔13mm。
应理解,本申请对天线的数量,以及天线与玻纤层的位置关系不作限定,可以视实际情况而定。
图15示出了针对图14中三个天线的性能仿真曲线,其中下凹的三条曲线分别为三个天线的模态,上凸的三条曲线分别为三个天线的系统效率。由图15可知,在2.5至3.2GHz的区间内存在天线谐振,有天线工作。此外,天线#1的系统效率大约为-3.0dB,天线#2的系统效率大约为-3.0dB,天线#3的系统效率大约为-1.8dB。基于以上仿真结果,三个天线可以满足使用需求。
图16示出了天线#4的示意图,图17示出了天线#4的性能仿真曲线。
图17中的(a)对应X=6mm,Y=17mm,由图可知,天线#4的天线谐振大概出现在2.5GHz,天线#4的系统效率大约为-2dB。
图17中的(b)对应X=6mm,Y=14mm,由图可知,天线#4的天线谐振大概出现在3.5GHz,天线#4的系统效率大约为-1.8dB。
图17中的(c)对应X=6mm,Y=7mm,由图可知,天线#4的天线谐振大概出现在4.9GHz,天线#4的系统效率大约为-1dB。
基于上述仿真结果,天线#4也可以满足使用需求。
除了上述终端设备的后壳,本申请还提供一种具有上述后壳的终端设备。即,该终端设备的后壳包括玻纤层和天线。玻纤层包括凹槽,天线的全部或部分设置于凹槽;或者,天线设置于玻纤层的外表面。在此不再展开说明。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖 在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种终端设备的后壳,其特征在于,
    所述后壳包括玻纤层和天线,所述天线与所述终端设备的电路板直馈电连接;
    所述玻纤层包括凹槽,所述天线的全部或部分设置于所述凹槽;或者,
    所述天线设置于所述玻纤层的外表面,所述玻纤层的外表面位于远离所述电路板的一侧。
  2. 根据权利要求1所述的终端设备,其特征在于,
    所述玻纤层包括连接孔,所述连接孔与所述天线对应,所述天线与所述电路板直馈电连接,包括:
    所述天线通过所述连接孔与所述电路板直馈电连接。
  3. 根据权利要求1或2所述的终端设备,其特征在于,
    所述凹槽位于所述玻纤层的表层、所述玻纤层的中间层或所述玻纤层的底层。
  4. 根据权利要求3所述的终端设备,其特征在于,
    所述后壳还包括涂层,所述涂层位于所述玻纤层的外表面,所述涂层用于呈现所述后壳的外观。
  5. 根据权利要求3所述的终端设备,其特征在于,
    所述涂层的材料为以下中的一项或多项:
    陶瓷、丙烯酸酯、聚乙烯醇缩丁醛、聚氨酯、苯乙烯基树脂、不饱和单体厌氧胶。
  6. 根据权利要求2所述的终端设备,其特征在于,
    所述天线设置于所述玻纤层的外表面,包括:
    所述天线设置于天线膜片,所述天线膜片贴覆于所述玻纤层的外表面,所述天线膜片包括装饰层。
  7. 根据权利要求6所述的终端设备,其特征在于,
    所述后壳还包括硬化液层,所述硬化液层位于所述天线膜片远离所述玻纤层的一侧,所述硬化液层用于保护所述天线膜片。
  8. 根据权利要求7所述的终端设备,其特征在于,
    所述硬化液层的材料为以下中的一项或多项:
    聚氨酯树脂、丙烯酸树脂、环氧树脂、氨基树脂、醇酸树脂、有机硅树脂、硅氧烷、二氧化硅、氧化铝、氧化锆、石墨烯、金刚石。
  9. 一种终端设备,其特征在于,包括如权利要求1-6中任一项所述的后壳。
  10. 一种终端设备的后壳的制作方法,其特征在于,所述后壳包括玻纤层和天线,所述天线与所述终端设备的电路板直馈电连接,所述方法包括:
    基于热压成型技术将所述天线的全部或部分压合至所述玻纤层的内部。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    在所述玻纤层上开连接孔,所述连接孔与所述天线对应,所述天线通过所述连接孔与所述电路板直馈电连接。
  12. 根据权利要求10或11所述的方法,其特征在于,所述后壳还包括涂层,所述方 法还包括:
    在所述玻纤层的外表面喷涂所述涂层,所述涂层用于呈现所述后壳的外观。
  13. 一种终端设备的后壳的制作方法,其特征在于,所述后壳包括玻纤层和天线,所述天线与所述终端设备的电路板直馈电连接,所述方法包括:
    在所述玻纤层加工凹槽;
    将所述天线的全部或部分设置于所述凹槽。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    在所述玻纤层上开连接孔,所述连接孔与所述天线对应,所述天线通过所述连接孔与所述电路板直馈电连接。
  15. 根据权利要求13或14所述的方法,其特征在于,所述后壳还包括涂层,所述方法还包括:
    在所述玻纤层的外表面喷涂所述涂层,所述涂层用于呈现所述后壳的外观。
  16. 一种终端设备的后壳的制作方法,其特征在于,所述后壳包括玻纤层和天线膜片,所述方法包括:
    将所述天线膜片贴覆到所述玻纤层的外表面,所述玻纤层的外表面位于远离所述终端设备的电路板的一侧;
    在所述玻纤层上开连接孔,所述连接孔与所述天线膜片对应,所述天线膜片通过所述连接孔与所述电路板直馈电连接。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    在所述玻纤层的外表面喷涂硬化液层,所述硬化液层位于所述天线膜片远离所述玻纤层的一侧,所述硬化液层用于保护所述天线膜片。
PCT/CN2023/097530 2022-06-02 2023-05-31 终端设备的后壳、终端设备及终端设备后壳的制作方法 WO2023232088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210624116.7A CN117220015A (zh) 2022-06-02 2022-06-02 终端设备的后壳、终端设备及终端设备后壳的制作方法
CN202210624116.7 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023232088A1 true WO2023232088A1 (zh) 2023-12-07

Family

ID=89025685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097530 WO2023232088A1 (zh) 2022-06-02 2023-05-31 终端设备的后壳、终端设备及终端设备后壳的制作方法

Country Status (2)

Country Link
CN (1) CN117220015A (zh)
WO (1) WO2023232088A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592185A (en) * 1993-03-30 1997-01-07 Mitsubishi Denki Kabushiki Kaisha Antenna apparatus and antenna system
CN103847110A (zh) * 2012-12-04 2014-06-11 联想(北京)有限公司 一种外壳的制造方法、外壳及电子设备
CN210576415U (zh) * 2019-12-17 2020-05-19 深圳市兴飞科技有限公司 智能手机玻璃盖天线布置结构及手机
CN112468638A (zh) * 2020-11-24 2021-03-09 东莞美景科技有限公司 一种内置天线的玻璃纤维壳体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592185A (en) * 1993-03-30 1997-01-07 Mitsubishi Denki Kabushiki Kaisha Antenna apparatus and antenna system
CN103847110A (zh) * 2012-12-04 2014-06-11 联想(北京)有限公司 一种外壳的制造方法、外壳及电子设备
CN210576415U (zh) * 2019-12-17 2020-05-19 深圳市兴飞科技有限公司 智能手机玻璃盖天线布置结构及手机
CN112468638A (zh) * 2020-11-24 2021-03-09 东莞美景科技有限公司 一种内置天线的玻璃纤维壳体及其制备方法

Also Published As

Publication number Publication date
CN117220015A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
KR102592280B1 (ko) 중간 프레임, 배터리 커버 및 전자 장치
EP3355162B1 (en) Casing of electronic device and method of manufacturing the same
WO2021047659A1 (zh) 一种中框、后盖及其制备方法和电子设备
CN108539386B (zh) 一种天线结构及无线终端
US8203491B2 (en) Housing, wireless communication device using the housing, and manufacturing method thereof
EP4020704A1 (en) Electronic device and method for fabricating antenna radiating body
US20090189827A1 (en) Housing, wireless communication device using the housing, and manufacturing method thereof
US10797377B2 (en) Mobile device and method for manufacturing the same
WO2020143719A1 (zh) 一种终端设备
US20110304517A1 (en) Housing of portable electronic device and method for making the same
TW201238744A (en) A wireless antenna module and method of fabricating the same
US9179537B2 (en) Methods for forming metallized dielectric structures
JP6378193B2 (ja) アンテナガラスカバーを有する電子装置
WO2021208900A1 (zh) 天线装置和电子设备
EP3462715B1 (en) Sealing of a slot in a housing of a mobile device
US20090213018A1 (en) Housing, wireless communication device using the housing, and manufacturing method thereof
WO2023232088A1 (zh) 终端设备的后壳、终端设备及终端设备后壳的制作方法
KR20130014784A (ko) 이동통신 단말기용 케이스 안테나 및 그를 채용한 이동통신 단말기
CN201797029U (zh) 一种具有谐振腔的高频滤波器
CN110278688A (zh) 壳体组件及电子设备
CN110290687B (zh) 一种屏蔽罩及具有屏蔽罩的电路板和制造方法
KR20170073321A (ko) 안테나 일체형 모바일 기기 케이스의 제조 방법
US20230246325A1 (en) Terminal device and antenna manufacturing method of terminal device
CN111834735A (zh) 一种阵列天线及基站设备
US20090189819A1 (en) Housing, wireless communication device using the housing, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815265

Country of ref document: EP

Kind code of ref document: A1