WO2020143715A1 - 消融治疗术中快速规划系统及方法 - Google Patents

消融治疗术中快速规划系统及方法 Download PDF

Info

Publication number
WO2020143715A1
WO2020143715A1 PCT/CN2020/071197 CN2020071197W WO2020143715A1 WO 2020143715 A1 WO2020143715 A1 WO 2020143715A1 CN 2020071197 W CN2020071197 W CN 2020071197W WO 2020143715 A1 WO2020143715 A1 WO 2020143715A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
probe
range
tumor
parameter
Prior art date
Application number
PCT/CN2020/071197
Other languages
English (en)
French (fr)
Inventor
秦方雨
张康伟
张爱丽
邹金成
孙建奇
徐学敏
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US17/422,411 priority Critical patent/US20220117668A1/en
Publication of WO2020143715A1 publication Critical patent/WO2020143715A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0293Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument interstitially inserted into the body, e.g. needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1869Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • A61B2034/104Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2063Acoustic tracking systems, e.g. using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound

Definitions

  • This application relates to intraoperative rapid planning technology, in particular to a rapid planning system and method technology during ablation therapy.
  • Local ablation treatment of tumors is a treatment method that uses imaging equipment to guide precise positioning, inactivate tumor cells in situ, reduce tumor load, relieve local symptoms, and improve healing.
  • the most commonly used ablation methods mainly include cryoablation, radiofrequency ablation, and microwave ablation. They are now widely used in the treatment of benign and malignant tumors such as liver, lung, kidney, bone, thyroid, breast, and lymph nodes.
  • Multimodal ablation is a combination of cryoablation and radiofrequency ablation.
  • the rapid changes in temperature and stress within the tumor tissue completely disintegrate the tumor cells and release tumor antigens to the greatest extent, causing irreversible cell damage. Invasive ablation treatment of tumors.
  • the prior art currently only stays in the preoperative planning stage, that is, before the doctor inserts the needle, a proper needle insertion path and ablation conditions are given.
  • the actual needle position during the operation deviates from the planned needle position before the operation.
  • the ablation conditions are still planned according to the original plan, It may cause incomplete ablation. Therefore, it is very necessary to propose an ablation therapy intraoperative rapid planning system and method to promptly correct the incomplete ablation problem that may occur due to the actual intraoperative pin position deviating from the preoperative planning pin position.
  • the purpose of this application is to provide a system and method for rapid planning during ablation treatment, which solves the problem of incomplete ablation that may occur when the actual pin position deviates from the pre-planned pin position during ablation operation, which will be beneficial to achieve the focus area Precise control of thermal dose and ensure the effectiveness of ablation.
  • a rapid planning system for ablation therapy including:
  • the input device is used to obtain the actual position of the ablation probe relative to the tumor and the tumor boundary, the quantitative relationship between the ablation range of the ablation probe and the ablation parameter, and the maximum ablation range parameter of the ablation probe;
  • the calculation device is used to calculate the target treatment area based on the actual position of the ablation probe relative to the tumor and the tumor boundary, and determine the maximum ablation range of the ablation probe and the size of the target treatment area. If the maximum ablation range can cover the target treatment area, then calculate the ablation parameter for the ablation probe according to the actual position of the ablation probe and the target treatment area and the quantitative relationship between the ablation range of the ablation probe and the ablation parameter;
  • the output device is used to output the ablation parameter.
  • the calculation device is also used to output information indicating that the needle needs to be repaired or the position of the needle is changed if the maximum ablation range cannot cover the target treatment area.
  • the calculation device is also used to calculate the needle replacement position or the changed needle insertion position according to the target treatment area if the maximum ablation range cannot cover the target treatment area, and output through the output device The position of the complementary pin or the changed pin position.
  • the input device includes a first interface connected to an external imaging device for inputting image data from the external imaging device;
  • the input device also includes an image analysis module for performing image analysis on the image data to obtain the actual position and tumor boundary of the ablation probe relative to the tumor.
  • the external imaging device is an X-ray machine, CT machine, MRI machine, ultrasound machine, or other medical imaging imaging device.
  • the input device includes one of the following devices or any combination thereof: keyboard, mouse, touch screen.
  • the output device includes a display for displaying the ablation parameter.
  • the output device includes a second interface connected to the ablation control device for outputting the ablation parameters to the ablation control device for use by the ablation control device during the ablation process.
  • the calculation device calculates the ablation parameter of the ablation probe according to the following quantitative relationship between the ablation range of the ablation probe and the ablation parameter:
  • c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , and c 7 are constants related to the ablation probe model, and t is time.
  • the calculation device calculates the ablation parameter of the ablation probe according to the following quantitative relationship between the ablation range of the ablation probe and the ablation parameter:
  • c 7 , c 8 , c 9 , and c 10 are constants related to the ablation probe model, and t is time.
  • the calculation device calculates the ablation parameter of the ablation probe according to the following quantitative relationship between the ablation range of the ablation probe and the ablation parameter:
  • c 11 , c 12 , c 13 , c 14 , c 15 , and c 16 are constants related to the ablation probe model, and t is time.
  • the ablation probe includes unipolar, bipolar, and multipolar ablation probes.
  • the quantitative relationship of the ablation parameter includes: a functional relationship between the ablation range and power and time, a functional relationship between the ablation range and input energy, and a functional relationship between the ablation range and central temperature.
  • the safe boundary of the maximum ablation range is 5 mm beyond the tumor boundary, or any distance beyond the tumor boundary according to medical advice.
  • the ablation includes but is not limited to radiofrequency ablation, cryoablation, microwave ablation, and multimodal ablation.
  • This application also discloses a rapid planning method for ablation therapy, including:
  • the maximum ablation range of the ablation probe can cover the target treatment area
  • the quantitative relationship between the ablation probe's actual position, the target treatment area and the ablation range of the ablation probe and the ablation parameter quantitative calculation formula is used for the ablation probe
  • the ablation parameter of output the ablation parameter.
  • the method further includes: if the maximum ablation range cannot cover the target treatment area, outputting information indicating that the needle needs to be repaired or the needle position is changed through the output device.
  • the method further includes that, if the maximum ablation range cannot cover the target treatment area, calculating the needle insertion position after the needle replacement position is changed according to the target treatment area, and outputting the needle replacement position change through the output device Pin position.
  • the method further includes: acquiring image data from an external imaging device through an input device and performing image analysis on the image data to obtain the actual position of the ablation probe relative to the tumor and the tumor boundary.
  • the external imaging device is an X-ray machine, CT machine, MRI machine, ultrasound machine, or other medical imaging imaging device.
  • the input device includes one of the following devices or any combination thereof: keyboard, mouse, touch screen.
  • the output device includes a display for displaying the ablation parameter.
  • the ablation control device outputs the ablation parameters to the ablation control device for use by the ablation control device during the ablation process.
  • the quantitative relationship of the ablation parameter includes: a functional relationship between the ablation range and power and time, a functional relationship between the ablation range and input energy, and a functional relationship between the ablation range and central temperature.
  • the quantitative relationship between the ablation range of the ablation probe and the ablation parameters is:
  • c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , and c 7 are constants related to the ablation probe model, and t is time.
  • the quantitative relationship between the ablation range of the ablation probe and the ablation parameters is:
  • c 7 , c 8 , c 9 , and c 10 are constants related to the ablation probe model, and t is time.
  • the quantitative relationship between the ablation range of the ablation probe and the ablation parameters is:
  • c 11 , c 12 , c 13 , c 14 , c 15 , and c 16 are constants related to the ablation probe model, and t is time.
  • the ablation probe includes unipolar, bipolar, and multipolar ablation probes.
  • the safe boundary of the maximum ablation range is 5 mm beyond the tumor boundary, or any distance beyond the tumor boundary according to medical advice.
  • the ablation includes but is not limited to radiofrequency ablation, cryoablation, microwave ablation, and multimodal ablation.
  • This application also discloses a rapid planning system for ablation therapy, including:
  • the input device is used to obtain the actual position of the ablation probe relative to the tumor and the tumor boundary, the quantitative relationship between the ablation range of the ablation probe and the ablation parameter, and the maximum ablation range parameter of the ablation probe;
  • Output device for outputting the ablation parameter
  • Memory for storing computer executable instructions
  • the processor is configured to implement the steps in the method as described above when executing the computer-executable instructions.
  • the present application also discloses a computer-readable storage medium that stores computer-executable instructions, which when executed by a processor, implement the steps in the method as described above.
  • the embodiments of the present application include at least the following advantages:
  • FIG. 1 is a schematic structural diagram of an ablation therapy intraoperative rapid planning system according to the first embodiment of the present application
  • FIG. 2 is a schematic flowchart of a rapid planning method for ablation therapy according to the second embodiment of the present application
  • FIG. 3 is a schematic flowchart of an example of steps 204 to 205 according to the second embodiment of the present application
  • FIG. 4 is a schematic diagram of the definition of the X, Y, Z directions and the ablation range of the ablation probe according to an example of the present application
  • FIG. 5 shows that the position of the acupuncture needle deviates from the center of the tumor when the ablation probe is actually inserted
  • FIG. 6 is an example of defining the range of ablation according to the actual pin position according to an example of the present application
  • Ablation procedures applicable to various embodiments of the present application include, but are not limited to, radiofrequency ablation, cryoablation, microwave ablation, multimodal ablation, and the like. Since the requirements of multi-modal ablation for thermal dose control are more precise, the following will combine the drawings and take multi-modal ablation as an example to further describe the implementation of the present application in detail, so as to enhance the purpose and technical solution of the present application And advantages.
  • the first embodiment of the present application relates to an ablation therapy intraoperative rapid planning system. Its structure is shown in FIG. 1.
  • the ablation therapy intraoperative rapid planning system includes an input device 101, an output device 103, and a computing device 102.
  • the input device 101 is used to obtain the actual position of the ablation probe relative to the tumor and the tumor boundary, the quantitative relationship between the ablation range of the ablation probe and the ablation parameter, and the maximum ablation range parameter of the ablation probe.
  • the input device 101 includes a first interface connected to an external imaging device 104, and the input device 101 acquires image data from the external imaging device 104 through the first interface.
  • the input device 101 further includes an image analysis module 1011.
  • the image analysis module 1011 is used to perform image analysis on the acquired image data to obtain the actual position of the ablation probe relative to the tumor and the tumor boundary.
  • the external imaging device 104 includes at least an X-ray machine, CT machine, MRI machine, ultrasound machine, or other medical imaging imaging device.
  • the input device 101 includes at least one of the following devices or any combination thereof: a keyboard, a mouse, and a touch screen.
  • the maximum ablation range parameter of the ablation probe can be obtained in various ways. Alternatively, it can be obtained by querying a database or a configuration table according to the specifications of the ablation probe. Alternatively, the input device 101 (such as a keyboard, a mouse, etc.) may be used for direct input or selection from a list.
  • the specifications of the ablation probe may be a monopolar, bipolar or multipolar ablation probe, and so on.
  • the computing device 102 is used to calculate the target treatment area based on the actual position of the ablation probe relative to the tumor and the tumor boundary, and determine the maximum ablation range of the ablation probe and the size of the target treatment area. If the maximum ablation range can cover the target treatment area, then calculate the ablation parameter for the ablation probe according to the actual position of the ablation probe and the target treatment area and the quantitative relationship between the ablation range of the ablation probe and the ablation parameter; Wherein, the target treatment area is the range of the target treatment area required to cover the tumor and ablation safety boundary in three-dimensional space.
  • the computing device 102 is also used to output information indicating that the needle needs to be repaired or the position of the needle is changed if the maximum ablation range cannot cover the target treatment area.
  • the calculation device 102 is also used to calculate the needle replacement position or the changed needle position according to the target treatment area if the maximum ablation range cannot cover the target treatment area, and output through the output device 103 The position of the complementary pin or the changed pin position.
  • the calculation module has multiple methods for determining whether the maximum ablation range can cover the target treatment area.
  • the calculation module first obtains the image data after the actual insertion of the pin and defines The X and Y directions are perpendicular to the pin direction, and the Z direction is parallel to the pin direction, and the ablation center point on the ablation probe is the origin O(x o , y o , z o ); then, the calculation module is in the same coordinate system Within, obtain the actual pin position of the ablation probe and the coordinates of the tumor boundary points (x i , y i , z i ) after considering the ablation safety boundary, and the actual position of the ablation probe relative to the tumor, calculate the X, Y , The target treatment area range X t , Y t and Z t required to cover the tumor and ablation safety boundary in the three directions of Z (where: the maximum distance of each point of the tumor boundary on the cross-section to the YOZ plane is 2 times X
  • the calculation module The judgment result is: the maximum ablation range can cover the target treatment area; otherwise, the calculation module judgment result is: the maximum ablation range cannot cover the target treatment area.
  • the "ablation safety boundary” is preset; optionally, the ablation safety boundary is (5--10) mm beyond the tumor boundary, preferably 5 mm; optionally, the ablation safety boundary is beyond the tumor boundary according to medical advice Any distance.
  • the computing device 102 first establishes a quantitative relationship between the ablation range and ablation parameters of the ablation probe, and then first establishes a quantitative relationship between the ablation range and ablation parameters of the ablation probe, and then according to the quantitative relationship, the ablation probe To calculate the ablation parameters of the ablation probe.
  • the quantitative relationship can be applied to the prediction of the treatment temperature, and also to the prediction of the thermal dose and the damage range.
  • the quantitative relationship can be a linear relationship or a non-linear relationship.
  • the composition of the functional relationship of the quantitative relationship is a functional relationship between the ablation range and power and time; alternatively, the quantitative relationship is the ablation range and the input energy or central temperature Functional relationship.
  • the computing device 102 establishes the quantitative relationship between the ablation range of the ablation probe and the ablation parameters
  • the calculation module establishes a multimodal ablation theory based on the ablation probe The model; then in the finite element simulation software Comsol 5.2, the temperature field simulation calculation is performed, and the three directions of the ablation probe are parallel to the pin direction (Z direction) and perpendicular to the pin direction (X and Y directions).
  • the quantitative relationship between the ablation range and the ablation parameters of the ablation probe includes formula 1 and formula 2, where c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , and c 7 are Constant related to the ablation probe model, t is time.
  • the quantitative relationship between the ablation range and the ablation parameters of the ablation probe includes formula 3 and formula 4, where c 7 , c 8 , c 9 , and c 10 are constants related to the ablation probe model, t is time.
  • the quantitative relationship between the ablation range and the ablation parameters of the ablation probe includes formula 5 and formula 6, where c 11 , c 12 , c 13 , c 14 , c 15 , c 16 are related to the ablation Constant related to the probe model, t is time.
  • the calculation device 102 calculates the ablation parameter that meets the ablation requirements according to the gradient method, the table lookup method, or the neural network method.
  • the output device 103 is used to output the ablation parameter.
  • the output device 103 includes a display for displaying the ablation parameters, prompt information requiring needle supplementation, and the like.
  • the output device 103 includes a second interface connected to the ablation control device 105, and the second interface is used to output the ablation parameters to the ablation control device 105 for the ablation control device 105 to use during the ablation process.
  • the second embodiment is a method embodiment corresponding to this embodiment.
  • the technical details in this embodiment can also be applied to the first embodiment, and the technical details in the second embodiment can be applied to this embodiment.
  • the second embodiment of the present application relates to a multi-modal ablation therapy intraoperative rapid planning method, whose flow is shown in FIG. 2, and the method includes the following steps:
  • step 201 is performed: acquiring the actual position and tumor boundary of the ablation probe relative to the tumor.
  • the method further includes: acquiring image data from the external imaging device 104 through the input device 101 and performing image analysis on the image data to obtain the actual position of the ablation probe relative to the tumor and the tumor boundary.
  • the external imaging device 104 includes at least an X-ray machine, CT machine, MRI machine, ultrasound machine, or other medical imaging imaging device.
  • the input device 101 includes at least one of the following devices or any combination thereof: a keyboard, a mouse, and a touch screen.
  • the method before performing step 201, the method further includes acquiring ablation probe specifications and fixed parameter information.
  • the specifications of the ablation probe may be a monopolar, bipolar or multipolar ablation probe, and so on.
  • step 202 is performed: obtaining a quantitative relationship between the ablation range of the ablation probe and the ablation parameter.
  • the quantitative relationship can be applied to the prediction of the treatment temperature, and also to the prediction of the thermal dose and the damage range.
  • the quantitative relationship can be a linear relationship or a non-linear relationship.
  • the composition of the functional relationship of the quantitative relationship is a functional relationship between the ablation range and power and time; alternatively, the quantitative relationship is the ablation range and the input energy or central temperature Functional relationship.
  • step 203 is performed: acquiring the maximum ablation range parameter of the ablation probe.
  • the maximum ablation range parameter of the ablation probe is determined by the model of the selected ablation probe and the type of ablated tissue.
  • the maximum ablation range parameter of the ablation probe of the same type of ablation of the same type of tissue is the same, different models or different types of ablation
  • the maximum ablation range parameters of tissue ablation probes are different.
  • the maximum ablation range parameter of the ablation probe can be obtained in various ways. Alternatively, it can be obtained by querying a database or a configuration table according to the specifications of the ablation probe. Alternatively, the input device 101 (such as a keyboard, a mouse, etc.) may be used for direct input or selection from a list. Then, step 204 is performed: calculating the target treatment area according to the actual position of the ablation probe relative to the tumor and the tumor boundary.
  • step 205 it is determined whether the condition is satisfied: the maximum ablation range of the ablation probe can cover the target treatment area, and step 206 is performed if the condition is satisfied.
  • an embodiment combining steps 204 and 205 specifically includes the following sub-steps:
  • Start performing step 301 Obtain the image data after the actual pin insertion, define the X and Y directions perpendicular to the pin insertion direction, and the Z direction parallel to the pin insertion direction.
  • the ablation center point on the ablation probe is the origin O(x o , y o , z o );
  • , and the maximum distance of each point of the tumor boundary on the cross-section to the XOY plane is Z t , that is, Z t max
  • , the maximum distance of each point of the tumor boundary on the sagittal plane to the XOZ plane is Y t , that is, Y t max
  • step 303 is executed: the maximum effective ablation ranges X max , Y max , Z max and X t , Y t , and Z t of the model probe in the three directions of X, Y, and Z are matched;
  • step 304 is executed to determine whether the maximum ablation range can cover the target treatment area, or whether the conditions "X max ⁇ X t , Y max ⁇ Y t , Z max ⁇ Z t "are satisfied.
  • step 206 is executed. If the conditions "X max ⁇ X t , Y max ⁇ Y t , Z max ⁇ Z t "are satisfied, step 206 is executed. If the conditions "X max ⁇ X t , Y max ⁇ Y t , Z max ⁇ Z t "are not satisfied, step 207 is executed until the end.
  • the "ablation safety boundary” is preset; optionally, the ablation safety boundary is (5-10) mm beyond the tumor boundary, preferably 5 mm; optionally, the ablation safety boundary is beyond the tumor boundary according to medical advice Any distance.
  • step 206 is executed: calculating ablation parameters for the ablation probe according to the actual position of the ablation probe and the target treatment area, and outputting the ablation parameters.
  • step 206 further includes: first establishing a quantitative relationship between the ablation range of the ablation probe and ablation parameters, and then calculating the ablation probe's value based on the quantitative relationship, the actual position of the ablation probe and the target treatment area Ablation parameters.
  • the quantitative relationship can be applied to the prediction of the treatment temperature, and also to the prediction of the thermal dose and the damage range.
  • the quantitative relationship can be a linear relationship or a non-linear relationship.
  • the composition of the functional relationship of the quantitative relationship is a functional relationship between the ablation range and power and time; alternatively, the quantitative relationship is the ablation range and the input energy or central temperature Functional relationship.
  • An example of "establishing a quantitative relationship between the ablation range of the ablation probe and the ablation parameters" is: after considering the changes in the physical properties of the tissue after freezing, a multi-modal ablation theoretical model based on the ablation probe is first established;
  • the finite element simulation software Comsol 5.2 performs temperature field simulation calculations and calculates the ablation range of the ablation probe in three directions parallel to the pin direction (Z direction) and perpendicular to the pin direction (X and Y directions)
  • Figure 1 shows the definition of X, Y, and Z directions and Schematic diagram of the ablation range of the probe; for this ablation probe, clinically using energy control method for surgery, that is, the power is always kept constant, the energy input is controlled by changing the length of the ablation time, thereby changing the ablation range, so the final result is The relationship between the ablation range of the probe and the ablation time. Since the ablation range of the ablation probe has symmetry, the quantitative relationship between the ablation range in the X direction and the Y direction is the same.
  • the quantitative relationship between the ablation range and the ablation parameters of the ablation probe includes formula 1 and formula 2, where c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , and c 7 are Constant related to the ablation probe model, t is time.
  • the quantitative relationship between the ablation range and the ablation parameters of the ablation probe includes formula 3 and formula 4, where c 7 , c 8 , c 9 , and c 10 are constants related to the ablation probe model, t is time.
  • the quantitative relationship between the ablation range and the ablation parameters of the ablation probe includes formula 5 and formula 6, where c 11 , c 12 , c 13 , c 14 , c 15 , c 16 are related to the ablation Constant related to the probe model, t is time.
  • the calculation method of the ablation parameters that satisfy the ablation requirements can be based on the gradient method, the table lookup method, or the neural network method.
  • the method further includes step 207: if the condition of step 205 is not satisfied, that is, "the maximum ablation range of the ablation probe cannot cover the target treatment area", then output through the output device 103 indicates that the needle needs to be repaired or Change the pin position information.
  • step 208 is performed: calculating the needle supplement position or the changed pin position according to the target treatment area, and outputting the needle supplement position or the changed pin position through the output device 103.
  • the ablation probe may be reselected, and then steps 201-205 and step 206 are repeatedly performed.
  • This example takes a bipolar ablation probe (model 3cm) as an example, including the following:
  • Figure 4 shows the directions of X, Y, and Z Definition and schematic diagram of the ablation range of the probe; for this ablation probe, clinically using energy control method for surgery, that is, the power is always kept constant, the energy input is controlled by changing the length of the ablation time, thereby changing the ablation range; so finally The relationship between the ablation range of the probe and the ablation time is obtained. Because the ablation range of the ablation probe has symmetry, the quantitative relationship between the ablation range in the X direction and the Y direction is the same:
  • c 1 ⁇ 16 is a constant
  • t is time
  • the target treatment area ranges X t , Y t and Z t required to cover the tumor and ablation safety boundary in three directions.
  • S3 The maximum ablation ranges X max , Y max , Z max and X t , Y t , and Z t of the model probe in the three directions of X, Y, and Z match. If X max ⁇ X t , Y max ⁇ Y t , Z max ⁇ Z t , according to the quantitative relationship between the ablation range X p , Y p , Z p and the ablation parameters, and the size of X t , Y t , Z t , calculate the ablation parameters that meet the ablation requirements, And output the current planned ablation parameters.
  • each module shown in the embodiment of the multi-modal ablation therapy rapid planning system can refer to the relevant aspects of the foregoing multi-modal ablation therapy rapid planning method. Describe and understand.
  • the functions of each module shown in the embodiment of the multi-modal ablation therapy rapid planning system can be implemented by a program (executable instructions) running on the processor, or by a specific logic circuit.
  • the multi-modal ablation therapy intraoperative rapid planning system may also be stored in a computer-readable storage medium if it is implemented in the form of software function modules and sold or used as an independent product.
  • the technical solutions of the embodiments of the present application can essentially be embodied in the form of software products, and the computer software products are stored in a storage medium and include several instructions for A computer device (which may be a personal computer, server, or network device, etc.) executes all or part of the methods described in the embodiments of the present application.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory (ROM, Read Only Memory), a magnetic disk, or an optical disk. In this way, the embodiments of the present application are not limited to any specific combination of hardware and software.
  • the embodiments of the present application also provide a computer-readable storage medium in which computer-executable instructions are stored, and when the computer-executable instructions are executed by a processor, the method embodiments of the present application are implemented.
  • Computer-readable storage media including permanent and non-permanent, removable and non-removable media, can store information by any method or technology. The information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technologies, read-only compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable storage media do not include temporary storage computer-readable media (transitory media), such as modulated data signals and carrier waves.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technologies
  • CD-ROM compact disc read-only memory
  • embodiments of the present application also provide a multi-modal ablation therapy intraoperative rapid planning system, which includes parameters for acquiring the actual position of the ablation probe relative to the tumor, the tumor boundary, and the maximum ablation range parameter of the ablation probe An input device, an output device for outputting the ablation parameters, a memory for storing computer-executable instructions, and a processor; the processor is used to implement the above method embodiments when executing the computer-executable instructions in the memory Steps.
  • the processor may be a central processing unit (Central Processing Unit, referred to as "CPU"), may also be other general-purpose processors, digital signal processors (Digital Signal Processor, referred to as "DSP"), application-specific integrated circuits (Application Specific Integrated Circuit (abbreviated as "ASIC”) etc.
  • the foregoing memory may be a read-only memory (read-only memory, "ROM” for short), a random access memory (random access memory, "RAM” for short), a flash memory (Flash), a hard disk, or a solid-state hard disk.
  • the steps of the method disclosed in the embodiments of the present invention may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • an action is performed according to an element, it means that the action is performed at least according to the element, which includes two cases: the action is performed according to the element only, and according to the element and Other elements perform this behavior.
  • Expressions of multiple, multiple, multiple, etc. include 2, 2, 2 and 2 and more, 2 or more and 2 or more.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Surgical Instruments (AREA)

Abstract

一种消融治疗术中快速规划系统及方法。系统包括输入装置(101)、计算装置(102)和输出装置(103),计算装置(102)通过输入装置(101)获取消融探针相对于肿瘤的实际位置和肿瘤边界,消融探针的消融范围与消融参数定量关系式,及消融探针的最大消融范围参数,并根据所获取的信息通过计算装置(102)得到消融探针的消融参数,然后通过输出装置(103)输出该消融参数,得到修正后的规划意见。解决了临床消融手术中实际插针位置偏离术前规划插针位置可能产生的不完全消融问题,有利于实现对病灶区域热剂量的精准控制,并确保消融术的有效性。

Description

消融治疗术中快速规划系统及方法 技术领域
本申请涉及术中快速规划技术,特别涉及一种消融治疗术中快速规划系统及方法技术。
背景技术
近年来肿瘤微创消融治疗发展迅速。肿瘤的局部消融治疗是借助影像设备的引导精准定位,原位灭活肿瘤细胞、降低肿瘤负荷、缓解局部症状、改善愈后的一种治疗手段。最常用的消融手段主要包括冷冻消融、射频消融、微波消融,现已在肝、肺、肾、骨、甲状腺、乳腺、淋巴结等良恶性肿瘤的治疗中广泛应用。
肿瘤的局部消融治疗还包括多模态消融术。多模态消融术是结合冷冻消融和射频消融两种微创消融方式,通过肿瘤组织内温度与应力的迅速变化,使肿瘤细胞完全崩解,最大程度释放肿瘤抗原,造成不可逆的细胞损伤的微创消融治疗肿瘤的手段。
然而,对于局部消融术而言,若想获得良好的临床效果,对于热剂量的精准和快速规划是必不可少的。
另一方面,现有技术目前还只停留在术前规划阶段,即在医生未插针之前,给予合适的插针路径和消融条件。但是医生在手术中,往往由于病人呼吸位移、体位变换以及医生自身操作经验等问题,导致术中实际插针位置偏离术前规划插针位置,此时如果仍按照原规划的消融条件进行消融,将可能导致不完全消融。因此,非常有必要提出一种消融治疗术中快速规划系统及方法,及时修正由于术中实际插针位置偏离术前规划插针位置而可能产生的 不完全消融问题。
发明内容
本申请的目的在于提供一种消融治疗术中快速规划系统及方法,解决了消融手术中实际插针位置偏离术前规划插针位置而可能产生的不完全消融问题,将有利于实现对病灶区域热剂量的精准控制,并确保消融术的有效性。
为了解决上述问题,本申请公开了一种消融治疗术中快速规划系统,包括:
输入装置,用于获取消融探针相对于肿瘤的实际位置和肿瘤边界,消融探针的消融范围与消融参数定量关系式,以及该消融探针的最大消融范围参数;
计算装置,用于根据该消融探针相对于肿瘤的实际位置和肿瘤边界计算目标治疗区域,并判断所述消融探针的最大消融范围和目标治疗区域的大小。如果该最大消融范围能够覆盖该目标治疗区域,则根据该消融探针的实际位置和该目标治疗区域以及消融探针的消融范围与消融参数定量关系式计算用于该消融探针的消融参数;
输出装置,用于输出该消融参数。
在一个优选例中,该计算装置还用于,如果该最大消融范围不能够覆盖该目标治疗区域,则通过该输出装置输出表示需要补针或改变插针位置的信息。
在一个优选例中,该计算装置还用于,如果该最大消融范围不能够覆盖该目标治疗区域,则根据该目标治疗区域计算补针位置或改变后的插针位置,并通过该输出装置输出该补针位置或改变后的插针位置。
在一个优选例中,该输入装置包括与外部成像设备连接的第一接口,用 于从外部成像设备输入影像数据;
该输入装置还包括图像分析模块,用于对该影像数据进行图像分析,得到该消融探针相对于肿瘤的实际位置和肿瘤边界。
在一个优选例中,该外部成像设备是X光机或CT机或MRI机或超声机或其他医学影像成像设备。
在一个优选例中,该输入装置包括以下设备之一或其任意组合:键盘,鼠标,触摸屏。
在一个优选例中,该输出装置包括显示器,用于显示该消融参数。
在一个优选例中,该输出装置包括与消融控制装置连接的第二接口,用于向该消融控制装置输出该消融参数,供该消融控制装置在消融过程中使用。
在一个优选例中,该计算装置根据以下消融探针的消融范围与消融参数定量关系式计算该消融探针的消融参数:
Figure PCTCN2020071197-appb-000001
Figure PCTCN2020071197-appb-000002
其中,c 1、c 2、c 3、c 4、c 5、c 6、c 7是与消融探针型号相关的常数,t为时间。
在一个优选例中,该计算装置根据以下消融探针的消融范围与消融参数定量关系式计算该消融探针的消融参数:
X p=Y p=c 7×t+c 8
Z p=c 9×t+c 10
其中,c 7、c 8、c 9、c 10是与消融探针型号相关的常数,t为时间。
在一个优选例中,该计算装置根据以下消融探针的消融范围与消融参数定量关系式计算该消融探针的消融参数:
X p=Y p=c 11×exp(-t/c 12)+c 13
Z p=c 14×exp(-t/c 15)+c 16
其中,c 11、c 12、c 13、c 14、c 15、c 16是与消融探针型号相关的常数,t为时间。
在一个优选例中,该消融探针包括单极、双极、多极消融探针。
在一个优选例中,该消融参数的定量关系包括:消融范围与功率以及时间的函数关系,消融范围与输入能量的函数关系,和消融范围与中心温度的函数关系。
在一个优选例中,该最大消融范围的安全边界为超出肿瘤边界5mm,或者根据医嘱超出肿瘤边界任意距离。
在一个优选例中,该消融术包括但不仅限于射频消融术、冷冻消融术、微波消融术、多模态消融术。
本申请还公开了一种消融治疗术中快速规划方法,包括:
获取消融探针相对于肿瘤的实际位置和肿瘤边界;
获取所述消融探针的消融范围与消融参数定量关系式;
获取该消融探针的最大消融范围参数;
根据该消融探针相对于肿瘤的实际位置和肿瘤边界计算目标治疗区域;
如果该消融探针的最大消融范围能够覆盖该目标治疗区域,则根据该消融探针的实际位置和该目标治疗区域及消融探针的消融范围与消融参数定量关系式计算用于该消融探针的消融参数,输出该消融参数。
在一个优选例中,还包括:如果该最大消融范围不能够覆盖该目标治疗区域,则通过该输出装置输出表示需要补针或改变插针位置的信息。
在一个优选例中,还包括,如果该最大消融范围不能够覆盖该目标治疗区域,则根据该目标治疗区域计算补针位置改变后的插针位置,并通过该输出装置输出该补针位置改变后的插针位置。
在一个优选例中,还包括:通过输入装置从外部成像设备获取影像数据和对该影像数据进行图像分析,来得到该消融探针相对于肿瘤的实际位置和 肿瘤边界。
在一个优选例中,该外部成像设备是X光机或CT机或MRI机或超声机或其他医学影像成像设备。
在一个优选例中,该输入装置包括以下设备之一或其任意组合:键盘,鼠标,触摸屏。
在一个优选例中,该输出装置包括显示器,用于显示该消融参数。
在一个优选例中,通过该输出装置向该消融控制装置输出该消融参数,供该消融控制装置在消融过程中使用。
在一个优选例中,该消融参数的定量关系式包括:消融范围与功率以及时间的函数关系,消融范围与输入能量的函数关系,和消融范围与中心温度的函数关系。
在一个优选例中,该消融探针的消融范围与消融参数定量关系式是:
Figure PCTCN2020071197-appb-000003
Figure PCTCN2020071197-appb-000004
其中,c 1、c 2、c 3、c 4、c 5、c 6、c 7是与消融探针型号相关的常数,t为时间。
在一个优选例中,该消融探针的消融范围与消融参数定量关系式是:
X p=Y p=c 7×t+c 8
Z p=c 9×t+c 10
其中,c 7、c 8、c 9、c 10是与消融探针型号相关的常数,t为时间。
在一个优选例中,该消融探针的消融范围与消融参数定量关系式是:
X p=Y p=c 11×exp(-t/c 12)+c 13
Z p=c 14×exp(-t/c 15)+c 16
其中,c 11、c 12、c 13、c 14、c 15、c 16是与消融探针型号相关的常数,t为时间。
在一个优选例中,该消融探针包括单极、双极、多极消融探针。
在一个优选例中,该最大消融范围的安全边界为超出肿瘤边界5mm,或者根据医嘱超出肿瘤边界任意距离。
在一个优选例中,该消融术包括但不仅限于射频消融术、冷冻消融术、微波消融术、多模态消融术。
本申请还公开了一种消融治疗术中快速规划系统,包括:
输入装置,用于获取消融探针相对于肿瘤的实际位置和肿瘤边界,消融探针的消融范围与消融参数定量关系式,以及该消融探针的最大消融范围参数;
输出装置,用于输出该消融参数;
存储器,用于存储计算机可执行指令;以及,
处理器,用于在执行该计算机可执行指令时实现如前文描述的方法中的步骤。
本申请还公开了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现如前文描述的方法中的步骤。
本申请实施方式中,与现有技术相比至少包括以下优点:
针对现有技术中存在的临床消融手术中实际插针位置偏离术前规划插针位置可能产生的不完全消融问题,提出了一种消融治疗术中快速规划系统及方法,该方法和系统作该不完全消融问题的修正方案,将有利于实现对病灶区域热剂量的精准控制,并确保消融术的有效性。
本申请的说明书中记载了大量的技术特征,分布在各个技术方案中,如果要罗列出本申请所有可能的技术特征的组合(即技术方案)的话,会使得说明书过于冗长。为了避免这个问题,本申请上述发明内容中公开的各个技术特征、在下文各个实施方式和例子中公开的各技术特征、以及附图中公开 的各个技术特征,都可以自由地互相组合,从而构成各种新的技术方案(这些技术方案均因视为在本说明书中已经记载),除非这种技术特征的组合在技术上是不可行的。例如,在一个例子中公开了特征A+B+C,在另一个例子中公开了特征A+B+D+E,而特征C和D是起到相同作用的等同技术手段,技术上只要择一使用即可,不可能同时采用,特征E技术上可以与特征C相组合,则,A+B+C+D的方案因技术不可行而应当不被视为已经记载,而A+B+C+E的方案应当视为已经被记载。
附图说明
图1是根据本申请第一实施方式的消融治疗术中快速规划系统结构示意图
图2是根据本申请第二实施方式的消融治疗术中快速规划方法流程示意图
图3是根据本申请第二实施方式的步骤204至步骤205的一个实施例流程示意图
图4是根据本申请一个示例的X、Y、Z方向定义以及消融探针消融范围示意图
图5是根据本申请一个示例的消融探针实际插针时插针位置与肿瘤中心发生偏离
图6是根据本申请一个示例的根据实际插针位置定义需要进行消融的范围大小
其中:
101-输入装置      102-计算装置      103-输出装置
104-外部成像设备  105-消融控制装置  1011-图像分析模块
具体实施方式
在以下的叙述中,为了使读者更好地理解本申请而提出了许多技术细节。但是,本领域的普通技术人员可以理解,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本申请各实施方式所适用的消融术包括但不仅限于射频消融术、冷冻消融术、微波消融术、多模态消融术等。由于多模态消融术对热剂量控制的要求更加精确,下面将结合附图,并以多模态消融术为例对本申请的实施方式作进一步地详细描述,便于增强对本申请的目的、技术方案和优点的认识。
本申请的第一实施方式涉及一种消融治疗术中快速规划系统,其结构如图1所示,该消融治疗术中快速规划系统包括输入装置101、输出装置103和计算装置102。
具体的:
(1)输入装置101用于获取消融探针相对于肿瘤的实际位置和肿瘤边界,消融探针的消融范围与消融参数定量关系式,以及该消融探针的最大消融范围参数。可选地,该输入装置101包括与外部成像设备104连接的第一接口,该输入装置101通过该第一接口从外部成像设备104获取影像数据。可选地,该输入装置101还包括图像分析模块1011,该图像分析模块1011用于对获取的影像数据进行图像分析,得到该消融探针相对于肿瘤的实际位置和肿瘤边界。可选地,该外部成像设备104至少包括X光机或CT机或MRI机或超声机或其他医学影像成像设备。可选地,该输入装置101至少包括以下设备之一或其任意组合:键盘,鼠标,触摸屏。
该消融探针的最大消融范围参数可以通过多种方式获取。可选地,可以根据消融探针的规格查询数据库或配置表得到。可选地,可以通过输入装置101(如键盘和鼠标等)直接输入或从列表中选择。
可选地,消融探针的规格可以是单极、双极或多极消融探针等等。
(2)计算装置102用于根据该消融探针相对于肿瘤的实际位置和肿瘤边界计算目标治疗区域,并判断所述消融探针的最大消融范围和目标治疗区域的大小。如果该最大消融范围能够覆盖该目标治疗区域,则根据该消融探针的实际位置和该目标治疗区域以及消融探针的消融范围与消融参数定量关系式计算用于该消融探针的消融参数;其中,该目标治疗区域是在三维空间上所需的覆盖肿瘤及消融安全边界的目标治疗区域范围。可选地,该计算装置102还用于,如果该最大消融范围不能够覆盖该目标治疗区域,则通过该输出装置103输出表示需要补针或改变插针位置的信息。可选地,该计算装置102还用于,如果该最大消融范围不能够覆盖该目标治疗区域,则根据该目标治疗区域计算补针位置或改变后的插针位置,并通过该输出装置103输出该补针位置或改变后的插针位置。
可选地,该计算模块对“该最大消融范围是否能够覆盖该目标治疗区域”的判断方法有多种,在一个实施例中,包括:该计算模块先获取实际插针后的影像数据,定义垂直于插针方向为X、Y方向,平行于插针方向为Z方向,消融探针上消融中心点为原点O(x o、y o、z o);然后,该计算模块在同一坐标系内,获取消融探针实际插针位置以及考虑消融安全边界后的肿瘤边界各点坐标(x i、y i、z i),及消融探针相对于肿瘤的实际位置,计算出在X、Y、Z三个方向上所需的覆盖肿瘤及消融安全边界的目标治疗区域范围X t、Y t、Z t(其中:横断面上肿瘤边界各点到YOZ平面的最大距离的2倍为X t,即X t=max|x i-x o|,横断面上肿瘤边界各点到XOY平面最大距离的2倍为Z t,即Z t=max|z i-z o|,矢状面上肿瘤边界各点到XOZ平面的最大距离的2倍为Y t,即Y t=max|y i-y o|);最后,将该型号探针在X、Y、Z三个方向上的最大消融范围X max、Y max、Z max和X t、Y t、Z t大小匹配,如果满足“X max≥X t,Y max≥Y t,Z max≥Z t”这一条件,则计算模块判断结果是:最大消融范围能够覆盖该目标治疗区域;否则计算模块判断结果是:最大消融范围不能够覆盖该目标治疗区域。该“消融安全边界”是预先设定的;可选地,该消融安全边界是超出肿瘤边界(5- 10)mm,其中优选为5mm;可选地,该消融安全边界是根据医嘱超出肿瘤边界任意距离。
可选地,计算装置102先建立消融探针的消融范围和消融参数的定量关系,然后根据先建立消融探针的消融范围和消融参数的定量关系式,然后根据该定量关系式、消融探针的实际位置和该目标治疗区域来计算该消融探针的消融参数。该定量关系式可以适用于对治疗温度的预测,还可以适用于对热剂量和损伤范围的预测。该定量关系式可以是线性关系,还可以是非线性关系。该定量关系式的函数关系组成有多种选择的,可选地,该定量关系式是消融范围与功率以及时间的函数关系;可选地,该定量关系式是消融范围与输入能量或者中心温度的函数关系。
“计算装置102建立消融探针的消融范围和消融参数的定量关系式”的一个实施例为:在考虑冷冻之后组织物理性质的改变,计算模块建立一个基于该消融探针的多模态消融理论模型;然后在有限元仿真软件Comsol 5.2中进行温度场仿真计算,并计算出该消融探针在与插针方向平行(Z方向)以及与插针方向垂直(X与Y方向)的三个方向上的消融范围与消融参数的定量关系式以及该型号消融探针在X、Y、Z三个方向上的最大消融范围X max、Y max、Z max,图4所示为X,Y,Z方向定义以及探针的消融范围示意图;因为对于该消融探针,临床上采用能量控制的方法进行手术,即功率始终保持恒定,通过改变消融时间的长短来控制能量的输入,从而改变消融范围,所以最后得到探针的消融范围与消融时间的关系,由于消融探针的消融范围具有对称性,因此X方向和Y方向消融范围的定量关系是相同的。
在一个具体实施例中,该消融探针的消融范围与消融参数定量关系式包括式①和式②,其中,c 1、c 2、c 3、c 4、c 5、c 6、c 7是与消融探针型号相关的常数,t为时间。
Figure PCTCN2020071197-appb-000005
   ①
Figure PCTCN2020071197-appb-000006
   ②
在一个具体实施例中,该消融探针的消融范围与消融参数定量关系式包括式③和式④,其中,c 7、c 8、c 9、c 10是与消融探针型号相关的常数,t为时间。
X p=Y p=c 7×t+c 8   ③
Z p=c 9×t+c 10    ④
在一个具体实施例中,该消融探针的消融范围与消融参数定量关系式包括式式⑤和式⑥,其中,c 11、c 12、c 13、c 14、c 15、c 16是与消融探针型号相关的常数,t为时间。
X p=Y p=c 11×exp(-t/c 12)+c 13   ⑤
Z p=c 14×exp(-t/c 15)+c 16    ⑥
可选地,该计算装置102根据梯度法、查表法或神经网络方法来计算该满足消融要求的消融参数。
(3)输出装置103用于输出该消融参数。可选地,该输出装置103包括显示器,用于显示该消融参数、需要补针的提示信息等。可选地,该输出装置103包括与消融控制装置105连接的第二接口,该第二接口用于向该消融控制装置105输出该消融参数,供该消融控制装置105在消融过程中使用。
第二实施方式是与本实施方式相对应的方法实施方式,本实施方式中的技术细节也可以应用于第一实施方式,第二实施方式中的技术细节可以应用于本实施方式。
本申请的第二实施方式涉及一种多模态消融治疗术中快速规划方法,其流程如图2所示,该方法包括以下步骤:
开始,执行步骤201:获取消融探针相对于肿瘤的实际位置和肿瘤边界。可选地,还包括:通过输入装置101从外部成像设备104获取影像数据和对该影像数据进行图像分析,来得到该消融探针相对于肿瘤的实际位置和肿瘤边界。可选地,该外部成像设备104至少包括X光机或CT机或MRI机或超 声机或其他医学影像成像设备。可选地,该输入装置101至少是包括以下设备之一或其任意组合:键盘,鼠标,触摸屏。
可选地,在执行步骤201之前,还包括获取消融探针规格和固定参数信息。可选地,消融探针的规格可以是单极、双极或多极消融探针等等。
之后,执行步骤202:获取消融探针的消融范围与消融参数定量关系式。该定量关系式可以适用于对治疗温度的预测,还可以适用于对热剂量和损伤范围的预测。该定量关系式可以是线性关系,还可以是非线性关系。该定量关系式的函数关系组成有多种选择的,可选地,该定量关系式是消融范围与功率以及时间的函数关系;可选地,该定量关系式是消融范围与输入能量或者中心温度的函数关系。
之后,执行步骤203:获取该消融探针的最大消融范围参数。该消融探针的最大消融范围参数由所选消融探针的型号和所消融组织类型确定的,相同型号消融相同类型组织的消融探针的最大消融范围参数是相同的,不同型号或消融不同类型组织的消融探针的最大消融范围参数是不同的。
该消融探针的最大消融范围参数可以通过多种方式获取。可选地,可以根据消融探针的规格查询数据库或配置表得到。可选地,可以通过输入装置101(如键盘和鼠标等)直接输入或从列表中选择。之后,执行步骤204:根据该消融探针相对于肿瘤的实际位置和肿瘤边界计算目标治疗区域。
之后,执行步骤205:判断是否满足条件:该消融探针的最大消融范围能够覆盖该目标治疗区域,如果满足该条件则执行步骤206。
如图3所示,步骤204和步骤205综合的一个实施例,具体包括以下子步骤:
开始执行步骤301:获取实际插针后的影像数据,定义垂直于插针方向为X、Y方向,平行于插针方向为Z方向,消融探针上消融中心点为原点O(x o、y o、z o);
之后执行步骤302:在同一坐标系内,获取消融探针实际插针位置以及考虑消融安全边界后的肿瘤边界各点坐标(x i、y i、z i),及消融探针相对于肿瘤的实际位置,计算出在X、Y、Z三个方向上所需的覆盖肿瘤及消融安全边界的目标治疗区域范围X t、Y t、Z t(其中:横断面上肿瘤边界各点到YOZ平面的最大距离的2倍为X t,即X t=max|x i-x o|,横断面上肿瘤边界各点到XOY平面最大距离的2倍为Z t,即Z t=max|z i-z o|,矢状面上肿瘤边界各点到XOZ平面的最大距离的2倍为Y t,即Y t=max|y i-y o|);
之后执行步骤303:将该型号探针在X、Y、Z三个方向上的最大有效消融范围X max、Y max、Z max和X t、Y t、Z t大小匹配;
之后执行步骤304,判断最大消融范围是否能够覆盖该目标治疗区域,或者说是否满足“X max≥X t,Y max≥Y t,Z max≥Z t”这一条件。
进一步的说明:如果满足“X max≥X t,Y max≥Y t,Z max≥Z t”这一条件,则执行步骤206。如果不满足“X max≥X t,Y max≥Y t,Z max≥Z t”这一条件,则执行步骤207直至结束。
该“消融安全边界”是预先设定的;可选地,该消融安全边界是超出肿瘤边界(5-10)mm,其中优选为5mm;可选地,该消融安全边界是根据医嘱超出肿瘤边界任意距离。
最后,执行步骤206:根据该消融探针的实际位置和该目标治疗区域计算用于该消融探针的消融参数,输出该消融参数。
可选地,步骤206进一步包括:先建立消融探针的消融范围和消融参数的定量关系式,然后根据该定量关系式、消融探针的实际位置和该目标治疗区域来计算该消融探针的消融参数。该定量关系式可以适用于对治疗温度的预测,还可以适用于对热剂量和损伤范围的预测。该定量关系式可以是线性关系,还可以是非线性关系。该定量关系式的函数关系组成有多种选择的,可选地,该定量关系式是消融范围与功率以及时间的函数关系;可选地,该 定量关系式是消融范围与输入能量或者中心温度的函数关系。
“建立消融探针的消融范围和消融参数的定量关系式”的一个实施例为:在考虑冷冻之后组织物理性质的改变,先建立一个基于该消融探针的多模态消融理论模型;然后在有限元仿真软件Comsol 5.2中进行温度场仿真计算,并计算出该消融探针在与插针方向平行(Z方向)以及与插针方向垂直(X与Y方向)的三个方向上的消融范围与消融参数的定量关系式以及该型号消融探针在X、Y、Z三个方向上的最大有效消融范围X max、Y max、Z max,图一所示为X,Y,Z方向定义以及探针的消融范围示意图;因为对于该消融探针,临床上采用能量控制的方法进行手术,即功率始终保持恒定,通过改变消融时间的长短来控制能量的输入,从而改变消融范围,所以最后得到探针的消融范围与消融时间的关系,由于消融探针的消融范围具有对称性,因此X方向和Y方向消融范围的定量关系是相同的。
在一个具体实施例中,该消融探针的消融范围与消融参数定量关系式包括式①和式②,其中,c 1、c 2、c 3、c 4、c 5、c 6、c 7是与消融探针型号相关的常数,t为时间。
Figure PCTCN2020071197-appb-000007
   ①
Figure PCTCN2020071197-appb-000008
    ②
在一个具体实施例中,该消融探针的消融范围与消融参数定量关系式包括式③和式④,其中,c 7、c 8、c 9、c 10是与消融探针型号相关的常数,t为时间。
X p=Y p=c 7×t+c 8   ③
Z p=c 9×t+c 10     ④
在一个具体实施例中,该消融探针的消融范围与消融参数定量关系式包括式式⑤和式⑥,其中,c 11、c 12、c 13、c 14、c 15、c 16是与消融探针型号相关的常数,t为时间。
X p=Y p=c 11×exp(-t/c 12)+c 13    ⑤
Z p=c 14×exp(-t/c 15)+c 16     ⑥
以上,满足消融要求的消融参数的计算方法是可以根据梯度法、查表法或神经网络方法。
可选地,该方法还包括步骤207:如果不满足步骤205的条件,即“该消融探针的最大消融范围不能够覆盖该目标治疗区域”,则通过该输出装置103输出表示需要补针或改变插针位置的信息。可选地,在步骤207之后,执行步骤208:根据该目标治疗区域计算补针位置或改变后的插针位置,并通过该输出装置103输出该补针位置或改变后的插针位置。可选地,在步骤208之后,可以重新选择消融探针,然后重复执行步骤201-205和步骤206。
为了能够更好地理解本申请的技术方案,下面结合一个具体的示例来进行说明,该例子中罗列的细节主要是为了便于理解,不作为对本申请保护范围的限制。
该示例是以一款双极消融探针(型号为3cm)为例,包括以下内容:
S1:考虑冷冻之后组织物理性质的改变,建立一个基于该消融探针的多模态消融理论模型。然后在有限元仿真软件Comsol 5.2中进行温度场仿真计算,并计算出该消融探针在与插针方向平行(Z方向)以及与插针方向垂直(X与Y方向)的三个方向上的消融范围与消融参数的定量关系式以及该型号消融探针在X、Y、Z三个方向上的最大有效消融范围X max、Y max、Z max,图4所示为X,Y,Z方向定义以及探针的消融范围示意图;对于该消融探针,临床上采用能量控制的方法进行手术,即功率始终保持恒定,通过改变消融时间的长短来控制能量的输入,从而改变消融范围;因此最后得到探针的消融范围与消融时间的关系,由于消融探针的消融范围具有对称性,因此X方向和Y方向消融范围的定量关系是相同的:
Figure PCTCN2020071197-appb-000009
Figure PCTCN2020071197-appb-000010
或者:
X p=Y p=c 7×t+c 8
Z p=c 9×t+c 10
亦或者:
X p=Y p=c 11×exp(-t/c 12)+c 13
Z p=c 14×exp(-t/c 15)+c 16
其中,c 1~16为常数,t为时间。
S2:读取实际插针后的影像数据,垂直于插针方向定义为X、Y方向,以及平行于插针方向定义为Z方向,消融探针上消融中心点为原点O(x o、y o、z o),如图5所示;
获取消融探针实际插针位置以及考虑消融安全边界后的肿瘤边界各点坐标(x i、y i、z i),及消融探针相对于肿瘤的实际位置,计算出在X、Y、Z三个方向上所需的覆盖肿瘤及消融安全边界的目标治疗区域范围X t、Y t、Z t。如图6所示,其中:横断面上肿瘤边界各点到YOZ平面的最大距离的2倍为X t,即X t=max|x i-x o|,横断面上肿瘤边界各点到XOY平面最大距离的2倍为Z t,即Z t=max|z i-z o|,矢状面上肿瘤边界各点到XOZ平面的最大距离的2倍为Y t,即Y t=max|y i-y o|,即:
X t=2a
Y t=2c
Z t=2b
S3:将该型号探针在X、Y、Z三个方向上的最大消融范围X max、Y max、Z max和X t、Y t、Z t大小匹配,若X max≥X t,Y max≥Y t,Z max≥Z t,则根据消融范围X p、Y p、Z p与消融参数的定量关系,以及X t、Y t、Z t的大小,计算得到满足消融要求的消融参数,并输出当前规划的消融参数。在本实例中,只需将 X t、Y t、Z t代入定量关系式中,分别计算得到各自所需的消融时间,然后选取其中最大的消融时间即可满足消融要求。反之,则建议增加消融探针数目,重新进行规划计算。
需要说明的是,本领域技术人员应当理解,上述多模态消融治疗术中快速规划系统的实施方式中所示的各模块的实现功能可参照前述多模态消融治疗术中快速规划方法的相关描述而理解。上述多模态消融治疗术中快速规划系统的实施方式中所示的各模块的功能可通过运行于处理器上的程序(可执行指令)而实现,也可通过具体的逻辑电路而实现。本申请实施例上述多模态消融治疗术中快速规划系统如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬件和软件结合。
相应地,本申请实施方式还提供一种计算机可读存储介质,其中存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现本申请的各方法实施方式。计算机可读存储介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于,相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他 磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读存储介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
此外,本申请实施方式还提供一种多模态消融治疗术中快速规划系统,其中包括用于获取消融探针相对于肿瘤的实际位置,肿瘤边界和所述消融探针的最大消融范围参数的输入装置,用于输出所述消融参数的输出装置,用于存储计算机可执行指令的存储器,以及,处理器;该处理器用于在执行该存储器中的计算机可执行指令时实现上述各方法实施方式中的步骤。其中,该处理器可以是中央处理单元(Central Processing Unit,简称“CPU”),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,简称“DSP”)、专用集成电路(Application Specific Integrated Circuit,简称“ASIC”)等。前述的存储器可以是只读存储器(read-only memory,简称“ROM”)、随机存取存储器(random access memory,简称“RAM”)、快闪存储器(Flash)、硬盘或者固态硬盘等。本发明各实施方式所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
需要说明的是,在本专利的申请文件中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。本专利的申请文件中,如果提到根据某要素执行某行为,则是指至少根据该要素执行该行为的意思,其中包括了两种情况:仅根据该 要素执行该行为、和根据该要素和其它要素执行该行为。多个、多次、多种等表达包括2个、2次、2种以及2个以上、2次以上、2种以上。
在本申请提及的所有文献都被认为是整体性地包括在本申请的公开内容中,以便在必要时可以作为修改的依据。此外应理解,以上所述仅为本说明书的较佳实施例而已,并非用于限定本说明书的保护范围。凡在本说明书一个或多个实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本说明书一个或多个实施例的保护范围之内。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。

Claims (15)

  1. 一种消融治疗术中快速规划系统,其特征在于,包括:
    输入装置,用于获取消融探针相对于肿瘤的实际位置和肿瘤边界,消融探针的消融范围与消融参数定量关系式,以及所述消融探针的最大消融范围参数;
    计算装置,用于根据所述消融探针相对于肿瘤的实际位置和肿瘤边界计算目标治疗区域,并结合所述最大消融范围参数判断所述消融探针的最大消融范围能否覆盖所述目标治疗区域,如果所述最大消融范围能够覆盖所述目标治疗区域,则根据所述消融探针的实际位置和所述目标治疗区域以及所述消融探针的消融范围与消融参数定量关系式计算用于所述消融探针的消融参数;
    输出装置,用于输出所述消融参数。
  2. 根据权利要求1所述的系统,其特征在于,所述计算装置还用于,如果所述最大消融范围不能够覆盖所述目标治疗区域,则通过所述输出装置输出表示需要补针或改变插针位置的信息。
  3. 根据权利要求1所述的系统,其特征在于,所述计算装置还用于,如果所述最大消融范围不能够覆盖所述目标治疗区域,则根据所述目标治疗区域计算补针位置或改变后的插针位置,并通过所述输出装置输出所述补针位置或改变后的插针位置。
  4. 根据权利要求1所述的系统,其特征在于,所述输入装置包括与外部成像设备连接的第一接口,用于从外部成像设备输入影像数据;
    所述输入装置还包括图像分析模块,用于对所述影像数据进行图像分析,得到所述消融探针相对于肿瘤的实际位置和肿瘤边界。
  5. 根据权利要求4所述的系统,其特征在于,所述外部成像设备是X光 机或CT机或MRI机或超声机。
  6. 根据权利要求1所述的系统,其特征在于,所述输入装置包括以下设备之一或其任意组合:键盘,鼠标,触摸屏。
  7. 根据权利要求1所述的系统,其特征在于,所述输出装置包括显示器,用于显示所述消融参数。
  8. 根据权利要求1所述的系统,其特征在于,所述输出装置包括与消融控制装置连接的第二接口,用于向所述消融控制装置输出所述消融参数,供所述消融控制装置在消融过程中使用。
  9. 根据权利要求1所述的系统,其特征在于,所述计算装置根据以下消融探针的消融范围与消融参数定量关系式计算所述消融探针的消融参数:
    Figure PCTCN2020071197-appb-100001
    Figure PCTCN2020071197-appb-100002
    其中,c 1、c 2、c 3、c 4、c 5、c 6、c 7是与消融探针型号相关的固定系数。
  10. 根据权利要求1所述的系统,其特征在于,所述消融术包括射频消融术、冷冻消融术、微波消融术、多模态消融术。
  11. 一种消融治疗术中快速规划方法,其特征在于,包括:
    获取消融探针相对于肿瘤的实际位置和肿瘤边界;
    获取所述消融探针的消融范围与消融参数定量关系式;
    获取所述消融探针的最大消融范围参数;
    根据所述消融探针相对于肿瘤的实际位置和肿瘤边界计算目标治疗区域,并结合所述最大消融范围参数判断消融探针的最大消融范围能否覆盖所述目标治疗区域;
    如果所述消融探针的最大消融范围能够覆盖所述目标治疗区域,则根据所述消融探针的实际位置和所述目标治疗区域以及消融探针的消融范围与消 融参数定量关系式计算用于所述消融探针的消融参数,输出所述消融参数。
  12. 根据权利要求11所述的方法,其特征在于,还包括:如果所述最大消融范围不能够覆盖所述目标治疗区域,则通过所述输出装置输出表示需要补针或改变插针位置的信息。
  13. 根据权利要求11所述的方法,其特征在于,还包括,如果所述最大消融范围不能够覆盖所述目标治疗区域,则根据所述目标治疗区域计算补针位置或改变后的插针位置,并通过所述输出装置输出所述补针位置或改变后的插针位置。
  14. 一种消融治疗术中快速规划系统,其特征在于,包括:
    输入装置,用于获取消融探针相对于肿瘤的实际位置和肿瘤边界,消融探针的消融范围与消融参数定量关系式,以及所述消融探针的最大消融范围参数;
    输出装置,用于输出所述消融参数;
    存储器,用于存储计算机可执行指令;
    处理器,用于在执行所述计算机可执行指令时实现如权利要求11至13中任意一项所述的方法中的步骤。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如权利要求11至13中任意一项所述的方法中的步骤。
PCT/CN2020/071197 2019-01-10 2020-01-09 消融治疗术中快速规划系统及方法 WO2020143715A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/422,411 US20220117668A1 (en) 2019-01-10 2020-01-09 Fast planning system and method applicable to ablation therapy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910023929.9A CN109498155B (zh) 2019-01-10 2019-01-10 消融治疗术中快速规划系统及方法
CN201910023929.9 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020143715A1 true WO2020143715A1 (zh) 2020-07-16

Family

ID=65757556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071197 WO2020143715A1 (zh) 2019-01-10 2020-01-09 消融治疗术中快速规划系统及方法

Country Status (3)

Country Link
US (1) US20220117668A1 (zh)
CN (1) CN109498155B (zh)
WO (1) WO2020143715A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4257070A1 (en) * 2022-04-05 2023-10-11 Siemens Healthcare GmbH Method and system for automatic planning of a minimally invasive thermal ablation

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108830017B (zh) * 2018-07-05 2022-06-24 上海美杰医疗科技有限公司 基于个体阻抗的射频加热温度场预测系统
CN109498155B (zh) * 2019-01-10 2022-09-30 上海美杰医疗科技有限公司 消融治疗术中快速规划系统及方法
CN112336455B (zh) * 2019-08-06 2022-05-24 深圳钮迈科技有限公司 肿瘤治疗仪的模拟布针系统及方法
CN111012474A (zh) * 2019-09-17 2020-04-17 日照天一生物医疗科技有限公司 一种冷冻消融针及其消融系统
CN110882057B (zh) * 2019-12-11 2023-01-20 南京亿高微波系统工程有限公司 一种退针布针系统及其定位方法
CN112734909B (zh) * 2020-12-31 2022-02-01 杭州堃博生物科技有限公司 射频操作提示方法、电子装置及计算机可读存储介质
CN111653363A (zh) * 2020-06-23 2020-09-11 南京诺源医疗器械有限公司 一种基于仿真温度场的微波消融术中疗效评估方法
CN112790858B (zh) * 2020-12-31 2021-11-09 杭州堃博生物科技有限公司 消融参数配置方法、装置、系统及计算机可读存储介质
CN112741681B (zh) * 2020-12-31 2022-07-12 杭州堃博生物科技有限公司 电子装置、射频操作提示系统及存储介质
KR102486572B1 (ko) * 2021-01-05 2023-01-11 (주)아이엠지티 집속 초음파 장치 및 그 집속 초음파 치료순서 설정 방법
CN113378879B (zh) * 2021-05-06 2023-06-30 上海美杰医疗科技有限公司 术后肿瘤评估方法、装置及计算机存储介质
CN113705807B (zh) * 2021-08-26 2022-06-10 上海睿刀医疗科技有限公司 神经网络的训练装置及方法,消融布针规划装置及方法
CN113491577B (zh) 2021-09-07 2021-11-30 海杰亚(北京)医疗器械有限公司 多针联合冷冻消融的路径规划设备
CN113925605B (zh) * 2021-10-18 2023-12-08 杭州佳量医疗科技有限公司 一种包括辅助操作机器人的激光消融系统和机器人
CN117297756A (zh) * 2023-04-13 2023-12-29 海杰亚(北京)医疗器械有限公司 射频消融测控系统及测控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209653A (zh) * 2010-11-18 2013-07-17 皇家飞利浦电子股份有限公司 用于概率消融规划的系统和方法
CN103717167A (zh) * 2011-07-28 2014-04-09 皇家飞利浦有限公司 消融规划系统
CN106455990A (zh) * 2014-05-09 2017-02-22 美国医软科技公司 经皮治疗计划和治疗监测系统和方法
WO2018204498A1 (en) * 2017-05-03 2018-11-08 Covidien Lp Method and system for planning a surgical instrument path
CN109498155A (zh) * 2019-01-10 2019-03-22 上海交通大学 消融治疗术中快速规划系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100484491C (zh) * 2006-08-11 2009-05-06 北京肿瘤医院 一种重叠覆盖椭球体的消融灶产生系统及方法
WO2011080666A1 (en) * 2009-12-30 2011-07-07 Koninklijke Philips Electronics N.V. Dynamic ablation device
US20130072784A1 (en) * 2010-11-10 2013-03-21 Gnanasekar Velusamy Systems and methods for planning image-guided interventional procedures
CN102488553A (zh) * 2011-11-20 2012-06-13 黄金华 球形射频消融电极及其技术方法
CN103271767A (zh) * 2013-04-28 2013-09-04 黄金华 一种用于增强射频消融的方法
CN105997245B (zh) * 2016-01-28 2018-04-06 杭州奥视图像技术有限公司 一种利用椭球覆盖肿瘤精确模拟射频消融技术的方法
CN108095820B (zh) * 2018-02-07 2023-07-11 上海倍可达医疗科技有限公司 一种纳米刀肿瘤消融控制装置及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209653A (zh) * 2010-11-18 2013-07-17 皇家飞利浦电子股份有限公司 用于概率消融规划的系统和方法
CN103717167A (zh) * 2011-07-28 2014-04-09 皇家飞利浦有限公司 消融规划系统
CN106455990A (zh) * 2014-05-09 2017-02-22 美国医软科技公司 经皮治疗计划和治疗监测系统和方法
WO2018204498A1 (en) * 2017-05-03 2018-11-08 Covidien Lp Method and system for planning a surgical instrument path
CN109498155A (zh) * 2019-01-10 2019-03-22 上海交通大学 消融治疗术中快速规划系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4257070A1 (en) * 2022-04-05 2023-10-11 Siemens Healthcare GmbH Method and system for automatic planning of a minimally invasive thermal ablation

Also Published As

Publication number Publication date
CN109498155A (zh) 2019-03-22
CN109498155B (zh) 2022-09-30
US20220117668A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
WO2020143715A1 (zh) 消融治疗术中快速规划系统及方法
Zahid et al. Feasibility of using patient-specific models and the “minimum cut” algorithm to predict optimal ablation targets for left atrial flutter
Chang Considerations for thermal injury analysis for RF ablation devices
WO2020007245A1 (zh) 基于个体阻抗的射频加热温度场预测方法及其系统
Thomas et al. Catheter ablation to treat supraventricular arrhythmia in children and adults with congenital heart disease: what we know and where we are going
Fang et al. Digital medical technology based on 64-slice computed tomography in hepatic surgery
Chen et al. An analytical solution for temperature distributions in hepatic radiofrequency ablation incorporating the heat-sink effect of large vessels
Fang et al. Design of a novel electrode of radiofrequency ablation for large tumors: A finite element study
Singh et al. Quantification of thermal injury to the healthy tissue due to imperfect electrode placements during radiofrequency ablation of breast tumor
Linte et al. Lesion modeling, characterization, and visualization for image-guided cardiac ablation therapy monitoring
Mercado Montoya et al. Proactive esophageal cooling protects against thermal insults during high-power short-duration radiofrequency cardiac ablation
McAchran et al. Radiofrequency ablation of renal tumors: past, present, and future
Fang et al. Design of a novel electrode of radiofrequency ablation for large tumors: In vitro validation and evaluation
Gao et al. Temperature simulation of microwave ablation based on improved specific absorption rate method compared to phantom measurements
Duan et al. Probabilistic finite element method for large tumor radiofrequency ablation simulation and planning
Petras et al. Impact of electrode tip shape on catheter performance in cardiac radiofrequency ablation
Talbot et al. Interactive planning of cryotherapy using physics-based simulation
Villard et al. Virtual radiofrequency ablation of liver tumors
Evonich et al. Efficacy of pulmonary vein isolation with a novel hot balloon ablation catheter
WO2024036776A1 (zh) 多射频消融针的温度控制系统及其方法
Wang et al. Integrated treatment planning in percutaneous microwave ablation of lung tumors
Hanks et al. Optimization of an endoscopic radiofrequency ablation electrode
Kerbl et al. Intervention planning of hepatocellular carcinoma radio-frequency ablations
González-Suárez et al. Thermal impact of balloon occlusion of the coronary sinus during mitral isthmus radiofrequency ablation: an in-silico study
Benscoter et al. Visualization of catheter ablation for atrial fibrillation: Impact of devices and anatomy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20737917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20737917

Country of ref document: EP

Kind code of ref document: A1