WO2020143457A1 - 参考信号的传输方法和设备 - Google Patents

参考信号的传输方法和设备 Download PDF

Info

Publication number
WO2020143457A1
WO2020143457A1 PCT/CN2019/128530 CN2019128530W WO2020143457A1 WO 2020143457 A1 WO2020143457 A1 WO 2020143457A1 CN 2019128530 W CN2019128530 W CN 2019128530W WO 2020143457 A1 WO2020143457 A1 WO 2020143457A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
resource
sequence
occupied
frequency domain
Prior art date
Application number
PCT/CN2019/128530
Other languages
English (en)
French (fr)
Inventor
任晓涛
赵锐
郑方政
郑石磊
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020217023994A priority Critical patent/KR20210107838A/ko
Priority to JP2021539877A priority patent/JP7457028B2/ja
Priority to EP19908567.1A priority patent/EP3910826A4/en
Priority to US17/420,647 priority patent/US20220077983A1/en
Publication of WO2020143457A1 publication Critical patent/WO2020143457A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency

Definitions

  • Embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a reference signal transmission method and device.
  • the equipment In the long-term evolution (LTE) vehicle-to-everything (V2X) technology in related technologies (Rel-14/Rel-15 LTE V2X technology), the equipment (UE) is used for automatic gain control or use The duration of the guard interval is fixed at one symbol to complete the adjustment of the signal power entering the analog-to-digital conversion (ADC) and the conversion between the transceiver.
  • the demodulation reference signal (DMRS) used for data demodulation also occupies 4 symbols in a subframe, and the reference signal overhead is relatively high.
  • 5G new wireless access technology NR
  • the Internet of Vehicles technology has been further developed to meet the needs of new application scenarios.
  • 5G NR supports flexible subcarrier spacing configuration, which brings new challenges to the design of the NR V2X physical layer structure.
  • LTE V2X is a broadcast or multicast communication mode, and there is no unicast mode.
  • user-based resource occupancy perception, frequency offset estimation, channel measurement and channel estimation, etc. need to be performed in NR V2X, that is, each user should use a signal or a signal that can be distinguished
  • the channel performs functions such as resource occupancy perception, frequency offset estimation, and channel measurement.
  • the abscissa in FIG. 1 represents the time domain, and each column represents an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol; the ordinate represents the frequency domain.
  • AGC fixedly occupies the first OFDM symbol in the subframe
  • GP fixedly occupies the last OFDM symbol, with data or DMRS in the middle. It can be seen that of the 14 symbols in a subframe, AGC, GP, and DMRS occupy a total of 6 symbols, leaving only 8 symbols for data transmission.
  • NR V2X in order to support the newly introduced unicast communication mode between UE and UE, resource occupancy awareness, frequency offset estimation, channel measurement and channel estimation, etc. are required, so many new signals or channels need to be introduced To meet the above requirements, increase the complexity of system design and signaling overhead.
  • An object of embodiments of the present disclosure is to provide a reference signal transmission scheme that can use a single signal to complete at least two of the functions of resource occupancy awareness, automatic gain control measurement, frequency offset estimation, channel state information measurement, channel estimation, etc. This simplifies the complexity of V2X system design and reduces signaling overhead.
  • Embodiments of the present disclosure provide a reference signal transmission method, which is applied to a vehicle to any thing V2X system, including:
  • the first device receives the first reference signal sent by other devices through the direct link Sidelink;
  • At least two of the following processes are performed: resource occupancy sensing process, automatic gain control process, frequency offset estimation process, channel state information measurement process, and channel estimation process.
  • Embodiments of the present disclosure also provide a first device in a vehicle-to-anything V2X system, including: a transceiver, a memory, a processor, and a computer program stored on the memory and runable on the processor; among them,
  • the transceiver is used to receive the first reference signal sent by other devices through the direct link Sidelink;
  • the processor is configured to read a program in the memory and perform the following process: perform at least two of the following processes based on the first reference signal sent by the other device: resource occupancy sensing process, automatic gain control process, and frequency Offset estimation processing, channel state information measurement processing, and channel estimation processing.
  • An embodiment of the present disclosure also provides a first device, including:
  • the signal receiving unit is used to receive the first reference signal sent by other equipment through the direct link Sidelink;
  • the signal processing unit is configured to perform at least two of the following processes based on the first reference signal sent by the other device: resource occupancy sensing process, automatic gain control process, frequency offset estimation process, channel state information measurement process and channel Estimate processing.
  • An embodiment of the present disclosure provides a computer-readable storage medium, including instructions, which when executed on a computer, causes the computer to execute the method as described above.
  • the reference signal transmission method provided by the embodiments of the present disclosure implements multiple functions through the reference signal, which can simplify the complexity of V2X system design and reduce signaling overhead.
  • the embodiments of the present disclosure can also reduce the waste of time-frequency resources, and improve the performance of the bit error rate and resource utilization of Sidelink data transmission.
  • Figure 1 shows a schematic diagram of the V2X Sidelink subframe structure of the related art
  • FIG. 2 is a flowchart of a reference signal transmission method according to an embodiment of the present disclosure
  • FIG. 3 is an example diagram of reference signal distributed mapping in an embodiment of the present disclosure
  • FIG. 5 is another schematic diagram of sending reference signals using distributed mapping in an embodiment of the present disclosure.
  • FIG. 6 is another schematic diagram of sending reference signals using distributed mapping in an embodiment of the present disclosure
  • FIG. 7 is another schematic diagram of sending reference signals using distributed mapping in an embodiment of the present disclosure
  • FIG. 9 is another schematic diagram of sending reference signals using centralized mapping in an embodiment of the present disclosure.
  • FIG. 10 is another schematic diagram of sending reference signals using centralized mapping in an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a first device provided by an embodiment of the present disclosure.
  • FIG. 12 is another schematic structural diagram of a first device provided by an embodiment of the present disclosure.
  • LTE Long Time Evolution
  • LTE-Advanced LTE-A
  • NR NR systems
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single Carrier frequency division multiple access
  • SC-FDMA single Carrier Frequency-Division Multiple Access
  • CDMA systems can implement radio technologies such as CDMA2000, Universal Terrestrial Radio Access (UTRA) and so on.
  • UTRA includes Wideband CDMA (Wideband Code Multiple Access (WCDMA) and other CDMA variants.
  • WCDMA Wideband Code Multiple Access
  • the TDMA system can implement radio technologies such as Global System for Mobile (GSM).
  • OFDMA system can realize such as Ultra Mobile Broadband (Ultra Mobile Broadband, UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE 1102.11 (Wi-Fi), IEEE 1102.16 (WiMAX), IEEE 1102.20, Flash-OFDM, etc. Radio technology.
  • UTRA and E-UTRA are part of the Universal Mobile Telecommunications System (UMTS).
  • LTE and more advanced LTE are new UMTS versions that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project (3GPP)".
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • 3GPP 3rd Generation Partnership Project 2
  • the technology described herein can be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the following description describes the NR system for example purposes, and NR terminology is used in most of the description below, although these techniques can also be applied to applications other than NR system applications.
  • An embodiment of the present disclosure proposes a multi-purpose reference signal transmission method for a through link Sidelink.
  • the embodiment of the present disclosure may send resource scheduling assignment information (Scheduling Assignment, SA) or data (Data)
  • SA resource scheduling assignment information
  • Data data
  • the reference signal has a flexible duration and subcarrier spacing (SCS), can use a single signal to complete resource occupancy awareness (Sensing), automatic gain control measurement (AGC ), Frequency Offset Estimation (FOE), Channel State Information Measurement (CSI-RS), Channel Estimation (DMRS) and other functions, thereby avoiding the waste of time-frequency resources, and can improve the performance and resources of Bitlink data transmission error rate Take advantage of performance.
  • APC automatic gain control measurement
  • FOE Frequency Offset Estimation
  • CSI-RS Channel State Information Measurement
  • DMRS Channel Estimation
  • Embodiments of the present disclosure provide a reference signal, specifically a reference signal that can realize multiple functions, and can simultaneously have resource occupancy awareness (Sensing), automatic gain control measurement (AGC), and frequency offset estimation (FOE) , At least two functions of channel state information measurement (CSI-RS), channel estimation (DMRS), etc.
  • Sensing resource occupancy awareness
  • AGC automatic gain control measurement
  • FOE frequency offset estimation
  • CSI-RS channel state information measurement
  • DMRS channel estimation
  • the reference signal transmission method provided by the embodiment of the present disclosure is applied to a V2X system, and includes:
  • Step 21 The first device receives the first reference signal sent by the other device through the direct link (Sidelink).
  • the other device is any device except the first device in the V2X system.
  • the first device and the other device may communicate through the unicast Sidelink.
  • the first device may receive the first reference signal sent by the other device through the unicast Sidelink, and the first device may also use the unicast Sidelink to communicate with other devices.
  • the device sends a second reference signal.
  • Step 22 Perform at least two of the following processes based on the first reference signal sent by the other device: resource occupancy sensing process, automatic gain control process, frequency offset estimation process, channel state information measurement process, and channel estimation process.
  • the embodiments of the present disclosure use the first reference signal to implement multiple functions, which may specifically include resource occupancy sensing processing, automatic gain control processing, frequency offset estimation processing, and channel state information measurement At least two of processing and channel estimation processing.
  • resource occupancy sensing processing automatic gain control processing
  • frequency offset estimation processing frequency offset estimation processing
  • channel state information measurement At least two of processing and channel estimation processing.
  • the embodiments of the present disclosure extend the function of the reference signal in the related-art V2X system, so that it can implement at least two of the above functions, thereby avoiding introducing too many new signals or
  • the channel satisfies the unicast communication mode between supporting devices, and the system reduces the complexity of system design and reduces signaling overhead.
  • the first device may receive the first reference signal described in step 21 sent by other devices through Sidelink, or may send the reference signal to some other device (assumed to be the second device) through Sidelink, for example, the above
  • the reference signal transmission method may also include:
  • Step 23 The first device sends a second reference signal to the second device, where the second reference signal is used for the second device to perform at least two of the following processes: resource occupancy sensing process, automatic gain control process, and frequency offset Estimation processing, channel state information measurement processing, and channel estimation processing.
  • the first device may also determine the signal parameter of the second reference signal according to the device characteristics of the first device, where the device characteristics Including the device identification and/or the user group to which the device belongs, the signal parameters include at least one of the following parameters: the first sequence used by the first reference signal, the cyclic shift value of the first sequence, the first Reference signal mapping frequency domain position.
  • the second reference signal is changed from the frequency domain to the time domain, and becomes a plurality of repeated signals in the time domain, wherein at least one of the second reference signals
  • the repetitive signal is used for the second device to perform automatic gain control processing, and the remaining repetitive signals except the at least one repetitive signal are used for the second device to perform at least one of the following processes: resource occupancy sensing processing, frequency deviation Shift estimation processing, channel state information measurement processing, and channel estimation processing.
  • the first device may determine the first number of symbols of the first type for automatic gain control in the second reference signal according to the SCS adopted by the second reference signal.
  • the sequence of the second reference signal is subjected to frequency-domain discrete mapping processing and inverse fast Fourier transform (IFFT) processing to obtain and transmit the second reference signal.
  • IFFT inverse fast Fourier transform
  • reference signals such as the first reference signal and the second reference signal
  • the reference signals in this document refer to the embodiments of the present disclosure.
  • the reference signal of the embodiment of the present disclosure is an M sequence or ZC sequence with a predetermined length, and occupies the entire system operating bandwidth or part of the system operating bandwidth in the frequency domain, and occupies at least one symbol in the time domain.
  • the sequence length of the reference signal of the embodiment of the present disclosure occupies the entire system working bandwidth or part of the bandwidth in the frequency domain, and at least one symbol in the time domain; the entire working bandwidth may be a pre-configured BWP (part bandwidth).
  • the signal parameters of the reference signal include the sequence used by the first reference signal, the cyclic shift value of the sequence, and Frequency domain position; and, the same first reference signal can be multiplexed by multiple devices.
  • the reference signals of the embodiments of the present disclosure distinguish devices (users) or device groups (user groups) by different sequences, different cyclic shifts in the same sequence, or different frequency domain positions; multiple devices (users The same reference signal can be multiplexed.
  • the reference signal in the embodiment of the present disclosure can be mapped in the frequency domain through a comb-shaped mapping method and mapped into the entire system working bandwidth, and different devices occupy different positions of comb teeth.
  • Figure 3 shows an example of distributed mapping of reference signals, where user 1's reference signal MP1 is mapped into the entire system operating bandwidth; user 2's reference signal MP2 is also mapped into the entire system operating bandwidth; user 3's reference The signal MP3 is also mapped into the working bandwidth of the entire system. Moreover, the reference signals of each user occupy different positions of the comb teeth.
  • FIG. 3 a schematic diagram of a reference signal transmission method is given.
  • a small square in Fig. 3 represents one symbol in the time domain and one subcarrier in the frequency domain.
  • the reference signals located in the first symbol (such as MP1 to MP3) are all mapped in a comb-like manner and mapped to the entire system working bandwidth.
  • the reference signal can also perform channel state measurement and resource occupancy sensing on the unicast communication link before communication, and perform channel estimation and calculation of SA and Data on symbols #1 and #2 during communication. Frequency offset estimation, so that the reference signal can achieve multiple functions, can improve the performance of Sidelink data transmission error rate and resource utilization.
  • the reference signal of the embodiment of the present disclosure can also be mapped in a frequency domain in a continuous mapping manner, and mapped to part of the working bandwidth, and different devices (users) can occupy different parts of the bandwidth.
  • Fig. 4 shows an example of centralized mapping of reference signals, in which the reference signal MP1 of user 1 is mapped to a continuous part of the operating bandwidth in the frequency domain; the reference signal MP2 of user 2 is also mapped to system operation The continuous working bandwidth of a frequency domain in the bandwidth; the reference signal MP3 of user 3 is also mapped to the continuous working bandwidth of a frequency domain in the system operating bandwidth. Moreover, the bandwidth positions occupied by the reference signals of different users are different.
  • the subcarrier interval of the reference signal (first SCS) of the embodiment of the present disclosure may be different from the subcarrier interval (second SCS) of SA or Data subsequently transmitted.
  • the size of the first SCS of the reference signal is set according to the number of subcarriers in the operating bandwidth of the device that sends the reference signal to meet the requirement of accommodating the first reference signal. That is, the size of the first SCS enables the number of subcarriers in the working bandwidth to accommodate the first reference signal.
  • the reference signal of the embodiment of the present disclosure may use a small SCS to ensure that there are enough subcarriers to accommodate the sequence of the reference signal;
  • the reference signal of the embodiment of the present disclosure may use a large SCS to ensure that the reference signal sequence can cover the entire working bandwidth.
  • the number of symbols occupied by the reference signal in the embodiment of the present disclosure is determined according to the SCS adopted by the reference signal, so that the reference signal meets the time requirement required by the automatic gain control process to ensure that there are sufficient Time to complete the AGC measurement.
  • the reference signal may occupy one symbol or multiple symbols.
  • the reference signal of the embodiment of the present disclosure may be located in the first symbol in the time slot where the reference signal is located. For example, when the reference signal occupies only one symbol, the reference signal is located on the first symbol in the time slot where it is located. When the reference signal occupies multiple symbols, the reference signal is located on multiple symbols starting from the first symbol in the slot.
  • the reference signal of the embodiment of the present disclosure may also be located in the non-first symbol in the time slot where the reference signal is located. For example, when the reference signal occupies only one symbol, the reference signal may also be located on an intermediate symbol in the time slot in which the reference signal is located, or may be located on the last symbol in the time slot in which it is located. When the reference signal occupies multiple symbols, the reference signal is located on multiple symbols starting from a certain intermediate symbol in the time slot where it is located.
  • the reference signal of the embodiment of the present disclosure completely occupies all symbols of the time slot in the time domain, or part of the symbols of the time slot in the interval, and the reference signal occupies part of the system operating bandwidth in the frequency domain, Specifically, each N resource blocks RB is mapped with the reference signal, where N is an integer greater than or equal to 1.
  • the first device may perform at least two of the following processes according to the first reference signal: resource occupancy sensing process, automatic gain control process, frequency offset estimation process, channel state information measurement process, and channel estimation process .
  • resource occupancy sensing process automatic gain control process
  • frequency offset estimation process frequency offset estimation process
  • channel state information measurement process channel estimation process
  • Embodiment 1 The SCS of the reference signal may be different from the SCS of the SA or Data sent subsequently.
  • the first device may send a second reference signal to the second device.
  • the third SCS used by the second reference signal is different from the fourth SCS used by the first SA and the first Data.
  • the size of the third SCS is set according to the number of subcarriers in the operating bandwidth of the first device that can meet the requirement of accommodating the second reference signal, where the size of the third SCS is positively related to the system operating bandwidth Related.
  • the sequence length of the reference signal may be fixed, for example, the length is 255, but the SCS of the reference signal may be different from the SCS of the SA or Data sent subsequently, so that the reference signal can cover the entire bandwidth:
  • the reference signal uses a small SCS to ensure that there are enough subcarriers to accommodate the reference signal sequence
  • the operating bandwidth of V2X is 5MHz
  • the SCS configured by SA or Data is 15KHz
  • the configured SCS is 30KHz
  • the operating bandwidth of 5MHz is only 12 RBs, and it cannot accommodate a 255-length reference signal sequence. Therefore, it is necessary to use a smaller SCS for the reference signal.
  • a 15KHz SCS is used to ensure that A 255-length reference signal sequence is accommodated in a 5MHz bandwidth.
  • the reference signal uses a large SCS to ensure that the reference signal sequence can cover the entire bandwidth.
  • the operating bandwidth of V2X is 20MHz
  • the SCS configured by SA or Data is 60KHz
  • the working bandwidth of 20MHz has 100 RBs, and the 255-long reference signal sequence cannot cover the entire bandwidth, so the reference signal needs to use a larger SCS, for example, 60KHz, so It can be guaranteed that the 255-length reference signal sequence can cover the entire 20MHz bandwidth.
  • the SCS size of the reference signal sequence can be flexibly configured, and can be applied to a variety of SA/Data SCS situations and bandwidth situations.
  • Embodiment 2 Reference signal is used for resource occupancy awareness
  • the first device may perform the resource occupancy sensing process in step 22, that is, determine the resources occupied by the other device according to the first reference signal sent by the other device.
  • the first device obtains the signal strength of the first reference signal received on each resource segment of the system operating bandwidth, and determines the resources occupied by other devices according to the resource segment where the first reference signal whose signal strength exceeds a predetermined threshold is located
  • the first device determines the resource occupied by the other device according to the resource location binding relationship, where the resource location binding relationship includes: the first The first resource location binding relationship between the reference signal and SA, and the second resource location binding relationship between SA and Data.
  • the binding relationship between the reference signal and the SA may be the binding relationship between the sequence ID and/or cyclic shift information of the reference signal and the resource location of the SA.
  • the above resource location binding relationship is preset or configured through signaling.
  • the first device obtains the first cyclic redundancy check code CRC sequence used by the first reference signal according to the first reference signal sent by other devices, and according to the CRC sequence and the resource configuration mode Determine the first resource configuration mode corresponding to the first CRC sequence, and determine the resources occupied by the other devices according to the first resource configuration mode.
  • the first device determines the resource occupancy priority of the other device according to the sequence parameters used by the first reference signal sent by the other device, and compares the resource occupancy priority of the other device and the first device to determine The resources occupied by the other equipment, wherein the sequence parameters and the resource occupation priority have a preset correspondence, and the sequence parameters include a sequence index ID and/or a cyclic shift value.
  • a device with a higher resource occupation priority can take priority in occupying resources.
  • the following uses UE on the sending side and UE B on the receiving side as examples.
  • the sending side UE sends the reference signal before sending SA or Data. This signal is used To help the receiving side UE B use for resource occupancy awareness:
  • UE B judges whether the resource segment is occupied according to the received reference signal strength on each resource segment in the working frequency band, and then decides the resource used for the next SA or Data transmission.
  • the reference signal and SA have a binding relationship, and the reference signal can indicate the location of the time-frequency resource of the SA, and then the location of the time-frequency resource of the Data can be obtained by decoding the SA, thereby avoiding user-to-user SA collision and Data collision between users.
  • the reference signal has a binding relationship with SA, and SA has a binding relationship with Data, so that the reference signal can indicate the location of the time-frequency resource of SA, and SA can indicate the location of the time-frequency resource of Data, which can be passed Reference signal detection to avoid SA collision between users and Data collision between users.
  • Content detection method 2 The resource occupancy is implicitly included in the sequence, and different CRCs are used to indicate different resource configuration. UE B can accurately learn the resource usage through the sequence.
  • Priority or user group judgment The reference signal sequence ID or cyclic shift has different priority settings. For the reference signal sequence configured with a higher priority, resources can be preferentially occupied.
  • the reference signal when used for "resource occupancy awareness", the reference signal is multiplexed for resource occupancy awareness, and the resource occupancy of the current Sidelink unicast communication can be obtained, saving signaling signaling overhead and improving Resource utilization efficiency.
  • the device needs to send a reference signal before sending SA or Data.
  • the embodiment of the present disclosure may also send the reference signal before sending SA or Data, which will be described later through the embodiment.
  • Embodiment 3 The reference signal is used for automatic gain control processing:
  • the first device may perform the automatic gain control process in step 22, that is, adjust the scaling factor of the analog-to-digital converter in the local signal receiver according to the received signal strength of the first reference signal sent by the other device So that the signal strength of the first reference signal after being scaled by the analog-to-digital converter in the local signal receiver is within a preset range.
  • the first reference signal is converted to the time domain and becomes a plurality of repeated signals in the time domain.
  • the first device can adjust the scaling factor of the analog-to-digital converter in the local signal receiver according to the received signal strength of at least one repetitive signal in the first reference signal, and perform at least one of the following processes according to the remaining repetitive signals
  • the sending side UE Before sending SA, the sending side UE sends a reference signal, which is used to help the receiving side UE B to do automatic gain measurement, to avoid excessive SA quantization error caused by excessive ADC quantization error and subsequent SA and data reception. Problem of rising bit error rate.
  • the corresponding symbol duration is 67us, and the AGC duration is generally fixed, about 10-15us, so the AGC measurement can be completed by using the reference signal of half a symbol.
  • the corresponding symbol duration is 8us
  • the AGC duration is generally fixed, about 10 ⁇ 15us, so the reference signal of two symbols can be used to complete the AGC measurement.
  • a time-domain repeated reference signal can be obtained.
  • the half symbol is used as an AGC, the reference signal of the remaining half symbol can be used for other functions.
  • the reference signal is combed in the frequency domain at the transmitting end. After IFFT transformation before transmission, the frequency domain is converted to the time domain. The right part in FIG. The symbol is amplified, and it can be seen that the reference signal becomes a signal that repeats in the time domain within a symbol.
  • the information of the first half symbol and the second half symbol are exactly the same, so that after the receiving end receives, the reference signal of the first half symbol can be used AGC measurement is performed, and the reference signal of the second half symbol is used for other functions, such as resource occupancy status awareness.
  • the reference signal when performing automatic gain control processing, can be adaptively adjusted according to the configuration of the SCS, so as to ensure that there is sufficient time for ADC gain adjustment without causing waste of resources.
  • Embodiment 4 Reference signal is used for frequency offset estimation processing
  • the reference signal is used for "frequency offset estimation processing". Taking the transmitting side UE A and the receiving side UE B as an example:
  • the transmitting side UE A Before sending SA or Data, the transmitting side UE A sends a reference signal, which is used to help the receiving side UE B to estimate the frequency offset, and the reference signals of different users can estimate the frequency offset of different users respectively.
  • the estimated plan includes:
  • the reference signal is multiplexed to estimate the frequency offset, and the frequency offset of the currently transmitted data can be obtained, which is beneficial to subsequent data demodulation and decoding.
  • Embodiment 5 Reference signal is used for channel state information measurement:
  • the first device may perform channel state measurement according to the first reference signal sent by the other device to obtain channel state information, wherein the frequency occupied by the first reference signal sent by the other device
  • the domain resources are distributed at intervals in the entire system operating bandwidth, or the frequency domain resources occupied by the first reference signal sent by the other device are continuously distributed in part of the system operating bandwidth, and the The frequency domain resources occupied by a reference signal cover the entire system operating bandwidth.
  • the transmitting side UE A sends a reference signal before sending SA or Data.
  • the reference signal is used to help the receiving side UE B use for channel state information measurement:
  • UE A sends a full-bandwidth reference signal, and UE B receives the reference signal and obtains channel state information on the entire working bandwidth, and then selects a resource with a better channel state from it as the next data transmission resource;
  • UE B directly uses the comb-shaped reference signal covering the entire working bandwidth to measure the channel state information
  • UE A sends multiple reference signals, covering part of the bandwidth each time, and after receiving multiple reference signals, UB B can obtain channel state information on the entire working bandwidth.
  • reference signals are multiplexed for channel state information measurement, and channel state information of current Sidelink unicast communication can be obtained, which saves CSI-RS signaling overhead and improves resource utilization efficiency.
  • Embodiment 6 The reference signal is used for channel estimation processing:
  • the first device may perform channel estimation based on the first reference signal sent by the other device, or the first device may use the first reference signal and demodulation reference sent by the other device Signal DMRS, channel estimation.
  • the sending side UE A Before sending SA or Data, the sending side UE A sends a reference signal, which is used to help the receiving side UE B to do channel estimation;
  • the reference signal is multiplexed for channel estimation, and the channel H value of the current Sidelink unicast communication can be obtained, which saves the signaling overhead of DMRS and improves the resource utilization efficiency.
  • the DMRS of this embodiment is distributed before the SA or Data. If the SA or Data occupies multiple symbols, other DMRSs need to be inserted in the subsequent symbols.
  • Embodiment 7 The reference signal is used for resource occupancy sensing processing, and the binding relationship between SA and Data 1: The SA and Data frequency domain resource positions are the same:
  • the reference signal is bound to the resource position of SA, and the resource position of SA and Data is bound.
  • the resource position of SA can be obtained through a specific reference signal, and then the resource position of Data can be obtained through SA, thereby avoiding resource collision between SA and Data.
  • the frequency domain resource location occupied by the SA is the same as the frequency domain resource location occupied by the Data bound to the SA, and the frequency domain resource locations of the Data corresponding to different SAs do not overlap each other.
  • the first device may determine the SA of the other device according to the first resource location binding relationship Frequency domain resource location; and, according to the resource location of the SA of the other device, determine resources not occupied by the SA and Data of the other device, to obtain available resources of the SA and Data of the first device.
  • FIG. 6 shows a schematic diagram of reference signal transmission using a centralized mapping scheme.
  • the resource location of SA and the resource location of Data are completely the same in the frequency domain.
  • MP1 indicates the resource location of SA1
  • SA1 indicates the resource location of Data1. Since the resource location of SA and Data are completely aligned in the frequency domain, and the resource location of Data corresponding to SA does not coincide, the UE does not need to decode the content of SA, as long as the SA is different, you can ensure the data There is no collision of resource locations.
  • association and binding relationship are: MP1 is associated with SA1, and SA1 is associated with Data1.
  • MP2 and MP3 are similar.
  • Data1 is the data resource occupied by User1; SA1 is the control resource occupied by User1.
  • Data2/3 is similar to SA2/3. The following examples are similar.
  • Embodiment 8 The reference signal is used for resource occupancy sensing processing, and the binding relationship between SA and Data 2: The frequency domain starting resource positions of SA and Data are the same:
  • the frequency domain resource location occupied by the SA and the frequency domain resource location occupied by the Data bound by the SA have the same start position, the same or different end positions, and the data bound by different SAs
  • the occupied frequency domain resource positions do not overlap or overlap partially.
  • the first device may determine the frequency domain resource position of the SA of the other device according to the first resource position binding relationship, and Parse the SA of the other device to obtain the resource location of the data of the other device; and determine that there is no overlap with the resource location of the data of the other device as the availability of the data of the first device Resources, and determine the available resources of the SA of the first device according to the second resource location binding relationship and the available resources of the data of the first device.
  • the reference signal has a binding relationship with the resource location of SA
  • SA has a binding relationship with the resource location of Data.
  • the resource position of SA can be obtained through a specific reference signal, and then the resource position of Data can be obtained through SA, thereby avoiding resource collision between SA and Data.
  • the starting resource position of SA and the starting resource position of Data are the same in the frequency domain, but the ending position may be the same or different, and the frequency domain positions indicated by multiple SAs There may be some overlaps.
  • MP1 indicates the resource location of SA1
  • SA1 indicates the resource location of Data1.
  • MP2 indicates the resource location of SA2, SA2 indicates the resource location of Data2, and Data2 belongs to a part of Data1.
  • UE3 first receives MP1 and associates it with SA1, and then decodes the contents of SA1 to learn that SA1 is associated with Data1.
  • UE3 determines to use Data3, and then from Data3 Associated with SA3, UE3 finally determines to use Data3 and SA3, thereby ensuring that neither SA3 nor Data3 selected by UE3 will collide with other SAs or Data.
  • Embodiment 9 The reference signal is used for resource occupancy sensing processing, and the binding relationship between SA and Data 3: There is no frequency domain alignment relationship between the resources of SA and Data:
  • the frequency domain resource location occupied by the SA and the frequency domain resource location occupied by the Data bound by the SA are different in start and end positions, and the data bound by different SAs is occupied Of the frequency domain resources do not overlap or overlap partially.
  • the first device may determine the frequency domain of the SA of the other device according to the first resource location binding relationship The resource location, and parse the SA of the other device to obtain the resource location of the data of the other device; and determine the data resource location that does not overlap with the resource location of the data of the other device as the first device.
  • the available resources of the Data and determine the available resources of the SA of the first device according to the second resource location binding relationship and the available resources of the Data of the first device.
  • the reference signal has a binding relationship with the resource location of SA
  • SA has a binding relationship with the resource location of Data.
  • the resource position of SA can be obtained through a specific reference signal, and then the resource position of Data can be obtained through SA, thereby avoiding resource collision between SA and Data.
  • the start resource position of SA and the start resource position and end resource position of Data are not aligned in the frequency domain, and the frequency domain positions indicated by multiple SAs may have Partially coincide.
  • MP1 indicates the resource location of SA1
  • SA1 indicates the resource location of Data1.
  • MP2 indicates the resource location of SA2, and SA2 indicates the resource location of Data2.
  • MP3 indicates the resource location of SA3, SA3 indicates the resource location of Data3, and Data3 belongs to a part of Data2.
  • UE3 first receives MP1 and associates with SA1, then associates with SA1 to Data1, and then determines the use of Data2 and Data3 through the location of Data1, so UE3 determines to use Data3, and then associates from Data3 to SA3, so, UE3 finally determines to use Data3 and SA3, thereby ensuring that neither SA3 nor Data3 selected by UE3 will collide with other SAs or Data.
  • Embodiment 10 The reference signal is not located at the first symbol of the time slot, and is not used for AGC:
  • the reference signal is bound to the resource position of SA, and the resource position of SA and Data is bound.
  • the resource position of SA can be obtained through a specific reference signal, and then the resource position of Data can be obtained through SA, thereby avoiding resource collision between SA and Data.
  • the reference signal is no longer located at the first symbol of the time slot in which the reference signal is located, but at the middle position of a time slot.
  • the advantage of this is that the reference signal can be used to estimate the frequency offset more accurately.
  • the start resource position of the SA and the start resource position and the end resource position of the Data are not aligned in the frequency domain, and the frequency domain positions indicated by multiple SAs may have Partially coincide.
  • MP1 indicates the resource location of SA1
  • SA1 indicates the resource location of Data1.
  • MP2 indicates the resource location of SA2, and SA2 indicates the resource location of Data2.
  • MP3 indicates the resource location of SA3, SA3 indicates the resource location of Data3, and Data1 and Data2 have an overlapping relationship.
  • UE3 associates with SA1 by receiving MP1, and then associates with Data1 through SA1, and then determines the availability of Data3 through the location of Data1, so UE3 determines to use Data3, and then associates from Data3 to SA3, then UE3 finally determines Data3 and SA3 are used to ensure that SA3 and Data3 selected by UE3 will not collide with other SAs or Data.
  • Embodiment 11 The reference signal does not occupy one symbol, but multiple symbols:
  • the reference signal is bound to the resource position of SA, and the resource position of SA and Data is bound.
  • the resource position of SA can be obtained through a specific reference signal, and then the resource position of Data can be obtained through SA, thereby avoiding resource collision between SA and Data.
  • the reference signal is no longer located at the first symbol of the time slot, but is located in multiple symbols of a time slot.
  • the advantage of this is that the reference signal can be used to estimate the frequency offset more accurately.
  • the reference signal can occupy all symbols in the time domain, or as shown in FIG. 10, a reference signal is placed every other symbol.
  • the reference signal is sparse in the frequency domain, and one reference signal may be placed on each resource block (RB), or one reference signal on each multiple RBs.
  • RB resource block
  • the start resource position of SA, the start resource position of Data, and the end resource position are not aligned in the frequency domain.
  • MP1 indicates the resource location of SA1
  • SA1 indicates the resource location of Data1.
  • MP2 indicates the resource location of SA2, and SA2 indicates the resource location of Data2.
  • MP3 indicates the resource location of SA3, and SA3 indicates the resource location of Data3.
  • UE3 associates with SA1 by receiving MP1, and then associates with Data1 through SA1, and then determines the availability of Data3 through the location of Data1, so UE3 determines to use Data3, and then associates from Data3 to SA3, then UE3 finally determines Data3 and SA3 are used to ensure that SA3 and Data3 selected by UE3 will not collide with other SAs or Data.
  • the embodiments of the present disclosure also provide an apparatus for implementing the above method.
  • an embodiment of the present disclosure provides a schematic structural diagram of a first device 1100 in a V2X system, including: a processor 1101, a transceiver 1102, a memory 1103, and a bus interface, where:
  • the first device 1100 further includes: a computer program stored on the memory 1103 and executable on the processor 1101.
  • the transceiver 1102 is configured to receive the first reference signal sent by other devices through the direct link Sidelink;
  • the processor 1101 is configured to read a program in a memory and perform the following process: perform at least two of the following processes according to the first reference signal sent by the other device: resource occupancy sensing process, automatic gain control process, Frequency offset estimation processing, channel state information measurement processing, and channel estimation processing.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1101 and various circuits of the memory represented by the memory 1103 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 1102 may be a plurality of elements, including a transmitter and a receiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1103 may store data used by the processor 1101 in performing operations.
  • the first reference signal is an M sequence or a ZC sequence of a predetermined length, and occupies the entire system operating bandwidth or part of the system operating bandwidth in the frequency domain, and occupies at least one symbol in the time domain.
  • the signal parameters of the first reference signal there is a correspondence between the signal parameters of the first reference signal and the device group or device, where the signal parameters include the sequence used by the first reference signal, the cyclic shift value of the sequence, and Frequency domain position; and, the same first reference signal can be multiplexed by multiple devices.
  • the first reference signal is mapped into the entire system working bandwidth through a comb-shaped mapping method, and different devices occupy different positions of comb teeth.
  • the first reference signal is mapped to a continuous partial bandwidth in the system working bandwidth through continuous mapping, and different devices occupy different partial bandwidths.
  • the first subcarrier interval SCS of the first reference signal is different from the second SCS of resource scheduling allocation information SA/Data Data subsequently sent by the other device; the size of the first SCS is based on The number of subcarriers in the working bandwidth of the other devices can be set to meet the requirement of accommodating the first reference signal.
  • the number of symbols occupied by the first reference signal is determined according to the SCS used by the first reference signal, so that the first reference signal meets the time requirement required for automatic gain control processing.
  • the first reference signal is located at the first symbol in the time slot where it is located.
  • the first reference signal is located at a non-first symbol in the time slot where it is located.
  • the first reference signal completely occupies all symbols of the time slot in the time domain or some symbols of the time slot in the interval, and the first reference signal occupies part of the system operating bandwidth in the frequency domain,
  • a first reference signal is mapped to every N resource blocks RB, where N is an integer greater than or equal to 1.
  • the processor 1101 is further configured to determine the resource occupied by the other device according to the first reference signal sent by the other device.
  • the processor 1101 is further configured to obtain the signal strength of the first reference signal received on each resource segment of the system operating bandwidth, and according to the resource segment where the first reference signal whose signal strength exceeds a predetermined threshold is located, Determine the resources occupied by other devices.
  • the processor 1101 is further configured to determine the resource occupied by the other device according to the resource location binding relationship after receiving the first reference signal sent by the other device, wherein the resource location is bound
  • the relationship includes: a first resource location binding relationship between the first reference signal and SA, and a second resource location binding relationship between SA and Data.
  • the resource location binding relationship is preset or configured through signaling.
  • the processor 1101 is further configured to obtain the first cyclic redundancy check code CRC sequence used by the first reference signal according to the first reference signal sent by other devices, and according to the CRC
  • the preset correspondence between the sequence and the resource configuration mode determines the first resource configuration mode corresponding to the first CRC sequence, and, according to the first resource configuration mode, determines the resources occupied by the other devices.
  • the processor 1101 is further configured to determine the resource occupation priority of the other device according to the sequence parameter used by the first reference signal sent by the other device, and compare the resource of the other device with the first device
  • the occupation priority determines the resources occupied by the other devices, wherein the sequence parameters have a preset correspondence with the resource occupation priority, and the sequence parameters include a sequence index ID and/or a cyclic shift value.
  • the frequency domain resource location occupied by the SA is the same as the frequency domain resource location occupied by the Data bound to the SA, and the frequency domain resource locations of the Data corresponding to different SAs do not overlap each other.
  • the processor 1101 is further configured to determine the frequency domain resource location of the SA of the other device according to the first resource location binding relationship after receiving the first reference signal sent by the other device; And, according to the resource location of the SA of the other device, determine the resources not occupied by the SA and Data of the other device, and obtain the available resources of the SA and Data of the first device.
  • the frequency domain resource location occupied by the SA and the frequency domain resource location occupied by the Data bound by the SA have the same start position, the same or different end positions, and the data bound by different SAs
  • the occupied frequency domain resources do not overlap or overlap partially;
  • the frequency domain resource location occupied by the SA and the frequency domain resource location occupied by the data bound by the SA are different from each other, and the frequency domain occupied by the data bound by different SAs
  • the resource locations do not overlap or overlap partially.
  • the processor 1101 is further configured to determine the frequency domain resource location of the SA of the other device according to the first resource location binding relationship after receiving the first reference signal sent by the other device, And parse the SA of the other device to obtain the resource location of the Data of the other device; and,
  • the processor 1101 is further configured to adjust the scaling factor of the analog-to-digital converter in the local signal receiver according to the received signal strength of the first reference signal sent by the other device, so that the local signal is received
  • the signal strength of the first reference signal after scaling processing by the on-board analog-to-digital converter is within a preset range.
  • the first reference signal is converted to the time domain, and becomes multiple repetitive signals in the time domain;
  • the processor 1101 is further configured to adjust the scaling factor of the analog-to-digital converter in the local signal receiver according to the received signal strength of at least one repetitive signal in the first reference signal, and perform the following processing according to the remaining repetitive signals At least one of: resource occupancy sensing processing, frequency offset estimation processing, channel state information measurement processing, and channel estimation processing.
  • the processor 1101 is further configured to perform correlation processing on the received sequence corresponding to the first reference signal and the local sequence, and divide the received sequence after the correlation processing into a first partial sequence and a second partial sequence; The first partial sequence and the second partial sequence are correlated to obtain an initial frequency offset estimation value.
  • the processor 1101 is further configured to add different frequency offset adjustments on the basis of the initial frequency offset estimation value to obtain multiple different frequency offset attempt values; use the multiple different The frequency offset attempt value performs phase compensation on the received sequence, and uses the phase-compensated received sequence and the local sequence to perform correlation operations to obtain a correlation peak, and takes the maximum value of multiple correlation peaks corresponding to multiple different frequency offset attempt values The corresponding frequency deviation attempt value is used as the final frequency deviation estimation value.
  • the processor 1101 is further configured to perform channel state measurement according to the first reference signal sent by the other device to obtain channel state information, where the first reference signal sent by the other device occupies Frequency domain resources are distributed at intervals in the entire system operating bandwidth, or the frequency domain resources occupied by the first reference signal sent by the other device are continuously distributed in part of the system operating bandwidth, and the other devices send multiple times The frequency domain resources occupied by the first reference signal cover the entire system working bandwidth.
  • the processor 1101 is further configured to perform channel estimation based on the first reference signal sent by the other device, or the first device may perform demodulation according to the first reference signal sent by the other device and demodulate Refer to the signal DMRS for channel estimation.
  • the transceiver 1102 is further configured to send a second reference signal to the second device, where the second reference signal is used for the second device to perform at least two of the following processes: resource occupation awareness processing, automatic Gain control processing, frequency offset estimation processing, channel state information measurement processing, and channel estimation processing.
  • the processor 1101 is further configured to determine the signal parameters of the second reference signal according to the device characteristics of the first device before sending the second reference signal, where the device characteristics Including the device identification and/or the user group to which the device belongs, the signal parameters include at least one of the following parameters: a first sequence adopted by the first reference signal, a cyclic shift value of the first sequence, the first Reference signal mapping frequency domain position.
  • the transceiver 1102 is further configured to determine the first number of symbols of the first type used for automatic gain control in the second reference signal according to the SCS adopted by the second reference signal.
  • the sequence of the second reference signal is subjected to frequency domain discrete mapping processing and inverse fast Fourier transform IFFT processing to obtain and transmit the second reference signal, wherein the second reference signal undergoes the IFFT processing from the frequency domain Switch to the time domain and become multiple repetitive signals in the time domain.
  • At least one repetitive signal is used for the second device to perform automatic gain control processing, and the remaining repetitive signal is used for the second device to perform at least one of the following processes Species: resource occupancy sensing processing, frequency offset estimation processing, channel state information measurement processing, and channel estimation processing.
  • the third SCS used by the second reference signal is different from the fourth SCS used by the first SA and the first Data, and the size of the third SCS is based on the operating bandwidth of the first device
  • the number of sub-carriers in can be set to meet the requirement of accommodating the second reference signal, where the size of the third SCS is positively related to the operating bandwidth of the system.
  • an embodiment of the present disclosure provides another structure of the first device 120 in the V2X system.
  • the first device 120 includes:
  • the signal receiving unit 121 is configured to receive the first reference signal sent by other devices through the direct link Sidelink;
  • the signal processing unit 122 is configured to perform at least two of the following processes based on the first reference signal sent by the other device: resource occupancy sensing process, automatic gain control process, frequency offset estimation process, channel state information measurement process and Channel estimation processing.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present disclosure.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the hybrid automatic repeat request confirmation codebook transmission method of various embodiments of the present disclosure.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本公开公开了一种参考信号的传输方法和设备,所述方法应用于车辆到任意事物V2X系统,包括:第一设备接收其他设备通过直通链路Sidelink发送的第一参考信号;根据所述其他设备发送的第一参考信号,进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。

Description

参考信号的传输方法和设备
相关申请的交叉引用
本申请主张在2019年1月9日在中国提交的中国专利申请号No.201910021159.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,具体涉及一种参考信号的传输方法和设备。
背景技术
在相关技术中的长期演进(LTE)的车辆到任意事物(Vehicle-to-Everything,V2X)技术中(Rel-14/Rel-15 LTE V2X技术),设备(UE)用于自动增益控制或用于保护间隔的时长固定为一个符号,以完成进入模数转换(ADC)的信号功率的调整,以及完成收发之间的转换。而用于数据解调的解调参考信号(Demodulation Reference Signal,DMRS)也在一个子帧内占用了4个符号,参考信号开销比较高。而随着5G新无线接入技术(NR)的出现,促使车联网技术进一步发展,以满足新应用场景的需求。
5G NR支持灵活的子载波间隔的配置,这就给NR V2X物理层结构的设计带来了新的挑战,原来固定占用一个符号的自动增益控制(Automatic Gain Control,AGC)和保护间隔(Guard Period,GP),可能不能满足需求,需要重新进行设计。而LTE V2X是广播或组播式通信模式,并没有单播模式。为了满足NR V2X单播通信的需求,需要在NR V2X中进行基于用户的资源占用情况感知、频偏估计、信道测量与信道估计等,也就是说,每个用户要使用可以区分开的信号或信道去完成资源占用情况感知、频偏估计与信道测量等功能,同时还需要避免用户间这些信号或信道的碰撞而导致的性能下降。这样就需要引入很多新的信号或信道来满足以上需求,增加了系统设计的复杂度以及信令开销。
请参考图1所示的3GPP的R15版本中V2X直通链路(Sidelink)的子 帧结构,图1中的横坐标表示时域,每列代表一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号;纵坐标表示频域。AGC固定占用子帧中的第一个OFDM符号,GP固定占用最后一个OFDM符号,中间是数据或DMRS。可以看出,一个子帧14个符号中,AGC、GP以及DMRS共占用了6个符号,留给数据传输仅有8个符号。而在NR V2X中,为了支持新引入的UE与UE之间的单播通信模式,需要进行资源占用情况感知、频偏估计、信道测量与信道估计等,这样就需要引入很多新的信号或信道来满足以上需求,增加了系统设计的复杂度以及信令开销。
发明内容
本公开实施例的一个目的在于提供一种参考信号的传输方案,可以使用单一信号完成资源占用情况感知、自动增益控制测量、频率偏移估计、信道状态信息测量、信道估计等功能中的至少两种,简化了V2X系统设计的复杂度以及降低了信令开销。
本公开实施例提供了一种参考信号的传输方法,应用于车辆到任意事物V2X系统,包括:
第一设备接收其他设备通过直通链路Sidelink发送的第一参考信号;
根据所述其他设备发送的第一参考信号,进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
本公开实施例还提供了一种车辆到任意事物V2X系统中的第一设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,
所述收发机,用于接收其他设备通过直通链路Sidelink发送的第一参考信号;
所述处理器,用于读取存储器中的程序,执行下列过程:根据所述其他设备发送的第一参考信号,进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
本公开实施例还提供了一种第一设备,包括:
信号接收单元,用于接收其他设备通过直通链路Sidelink发送的第一参考信号;
信号处理单元,用于根据所述其他设备发送的第一参考信号,进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
本公开实施例提供了一种计算机可读存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如上所述的方法。
本公开实施例提供的参考信号的传输方法,通过参考信号实现多种功能,可以简化V2X系统设计的复杂度以及降低信令开销。另外,本公开实施例还可以减少时频资源的浪费,提高了Sidelink数据传输的误码率性能和资源利用性能。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示相关技术的V2X Sidelink子帧结构示意图;
图2为本公开实施例的参考信号的传输方法的一种流程图;
图3为本公开实施例中参考信号分布式映射的一个示例图;
图4为本公开实施例中参考信号集中式映射的一个示例图;
图5为本公开实施例中采用分布式映射的参考信号另一发送示意图;
图6为本公开实施例中采用分布式映射的参考信号另一发送示意图
图7为本公开实施例中采用分布式映射的参考信号另一发送示意图
图8为本公开实施例中采用分布式映射的参考信号另一发送示意图
图9为本公开实施例中采用集中式映射的参考信号另一发送示意图;
图10为本公开实施例中采用集中式映射的参考信号另一发送示意图;
图11为本公开实施例提供的第一设备的一种结构示意图;
图12为本公开实施例提供的第一设备的另一种结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)以及NR系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE  1102.11(Wi-Fi)、IEEE 1102.16(WiMAX)、IEEE 1102.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
本公开实施例提出一种用于直通链路Sidelink的多用途的参考信号的传输方法,相对于相关技术,本公开实施例可以在发送资源调度分配信息(Scheduling Assignment,SA)或数据(Data)之前发送多用途参考信号(MP-RS),该参考信号具有灵活的持续时长与子载波间隔(SubCarrier Spacing,SCS),可以使用单一信号完成资源占用情况感知(Sensing)、自动增益控制测量(AGC)、频率偏移估计(FOE)、信道状态信息测量(CSI-RS)、信道估计(DMRS)等功能,从而避免了时频资源的浪费,并可以提高Sidelink数据传输的误码率性能和资源利用性能。
本公开实施例提供了一种参考信号,具体是一种可以实现多种功能的参考信号,可以同时具备资源占用情况感知(Sensing)、自动增益控制测量(AGC)、频率偏移估计(FOE)、信道状态信息测量(CSI-RS)、信道估计(DMRS)等中的至少两种功能。
请参照图2,本公开实施例提供的参考信号的传输方法,应用于V2X系统,包括:
步骤21,第一设备接收其他设备通过直通链路(Sidelink)发送的第一参考信号。
这里,所述其他设备是V2X系统中除第一设备外的任一设备。第一设备与所述其他设备可以通过单播的Sidelink进行通信,例如,第一设备可以通过单播的Sidelink接收其他设备发送的第一参考信号,第一设备也可以通过单播的Sidelink向其他设备发送第二参考信号。
步骤22,根据所述其他设备发送的第一参考信号,进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
为了简化系统设计的复杂度以及降低信令开销,本公开实施例利用第一参考信号实现多种功能,具体可以包括资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理中的至少两种。后文中将通过更多实施例对以上各个功能的具体实现进行详细说明。
从以上步骤可以看出,本公开实施例扩展了相关技术V2X系统中的参考信号的功能,使之可以实现诸如以上功能中的至少两种,从而可以避免在系统中引入过多的新信号或信道来满足支持设备间的单播通信模式,系统降低了系统设计的复杂度以及减少了信令开销。
本公开实施例中第一设备可以通过Sidelink接收其他设备发送的步骤21中所述的第一参考信号,也可以通过Sidelink向某个其他设备(假设为第二设备)发送参考信号,例如,以上的参考信号传输方法还可以包括:
步骤23,第一设备向第二设备发送第二参考信号,所述第二参考信号用于供第二设备进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
这里,上述步骤23与步骤21~22之间并无严格的执行顺序的先后关系。
可选的,在发送步骤23中所述的第二参考信号之前,第一设备还可以根据所述第一设备的设备特征,确定所述第二参考信号的信号参数,其中,所述设备特征包括设备标识和/或设备所属的用户组,所述信号参数包括以下参数中的至少一项:第一参考信号采用的第一序列、所述第一序列的循环移位值、所述第一参考信号映射的频域位置。
另外,本公开实施例中,所述第二参考信号在经过所述IFFT处理,从频域换到时域,在时域上成为多个重复信号,其中所述第二参考信号中的至少一个重复信号用于供第二设备进行自动增益控制处理,除所述至少一个重复信号外的剩余重复信号用于供所述第二设备进行以下处理中的至少一种:资源占用感知处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。第一设备在发送所述第二参考信号时,可以根据所述第二参考信号采用的SCS,确定所述第二参考信号中用于自动增益控制的第一类符号的第一数量,对所述第二参考信号的序列进行频域离散映射处理以及逆向快速傅里叶变换(IFFT)处理,获得并发送所述第二参考信号。
下面将对本公开实施例采用的参考信号(如以上所述的第一参考信号和第二参考信号)的特点进行详细说明,若无特别说明,本文中的参考信号均是指本公开实施例采用的能够实现以上至少两种功能的参考信号。
(1)本公开实施例的参考信号是一种具有预定长度的M序列或ZC序列,且在频域上占用整个系统工作带宽或部分系统工作带宽,在时域上占用至少一个符号。
也就是说,本公开实施例的参考信号的序列长度在频域上占用整个系统工作带宽或者其中的部分带宽,时域上至少占用一个符号;所述整个工作带宽可以是预先配置的BWP(部分带宽)。
(2)本公开实施例的参考信号的信号参数与设备组或设备之间存在对应关系,其中,所述信号参数包括所述第一参考信号采用的序列、所述序列的循环移位值和频域位置;且,同一个第一参考信号可被多个设备复用。
也就是说,本公开实施例的参考信号通过不同的序列、同一序列下不同的循环移位、或者不同的频域位置来区分设备(用户)或设备组(用户组);多个设备(用户可以复用同一个参考信号。
(3)分布式映射:本公开实施例的参考信号可以通过梳状映射方式进行频域映射,映射到整个系统工作带宽中,且不同设备占用不同的梳齿位置。
图3给出了参考信号分布式映射的一个示例,其中用户1的参考信号MP1,映射到整个系统工作带宽中;用户2的参考信号MP2,也映射到整个系统工作带宽中;用户3的参考信号MP3,也映射到整个系统工作带宽中。 且,各个用户的参考信号分别占用不同的梳齿位置。
图3中以参考信号的SCS为30KHz为例,给出了一种参考信号发送方式示意图。图3中一个小方块,代表时域持续1个符号,频域为1个子载波。如图3所示,由于子载波间隔为30KHz,符号持续时长较长,因此仅需要一个符号的参考信号就可以完成AGC的功能。而位于第一个符号的参考信号(如MP1~MP3)均采用梳状映射方式,映射到整个系统工作带宽上。参考信号除了可以完成AGC功能之外,还可以对单播通信链路在通信之前进行信道状态测量与资源占用情况感知,在通信中进行符号#1和#2上的SA与Data的信道估计与频偏估计,这样可以实现了参考信号实现了多项功能,可以提高了Sidelink数据传输的误码率性能和资源利用性能。
(4)集中式映射:本公开实施例的参考信号还可以采用连续映射的方式进行频域映射,映射到部分工作带宽上,并且,不同的设备(用户)可以占用不同的部分带宽位置。
图4给出了参考信号集中式映射的一个示例,其中用户1的参考信号MP1,映射到系统工作带宽中的一频域连续的部分工作带宽;用户2的参考信号MP2,也映射到系统工作带宽中一频域连续的部分工作带宽;用户3的参考信号MP3,也映射到系统工作带宽中一频域连续的部分工作带宽。且,各个用户的的参考信号占用的带宽位置不同。
(5)本公开实施例的参考信号的子载波间隔(第一SCS)可以与随后发送的SA或Data的子载波间隔(第二SCS)可以不同。这里,所述参考信号的第一SCS的大小,是根据发送该参考信号的设备的工作带宽中的子载波数量能够满足容纳所述第一参考信号的需求设置。即,所述第一SCS的大小,使得工作带宽中的子载波数量能够容纳所述第一参考信号。
例如,当SA或Data配置的第二SCS较大并且设备工作带宽较小的时候,本公开实施例的参考信号可以采用较小的SCS,以保证有足够的子载波来容纳参考信号的序列;
又例如,当SA或Data配置的第二SCS较小并且设备工作带宽较大的时候,本公开实施例的参考信号可以采用较大的SCS,以保证参考信号的序列可以覆盖整个工作带宽。
(6)本公开实施例的参考信号所占用的符号数量,是根据所述参考信号采用的SCS确定的,以使所述参考信号满足自动增益控制处理所需要的时长要求,以保证有足够的时长完成AGC测量。通常,所述参考信号可以占用一个符号或多个符号。
(7)本公开实施例的参考信号可以位于所述参考信号所在时隙内的首个符号。例如,在所述参考信号仅占用一个符号时,所述参考信号位于所在时隙内的首个符号上。在所述参考信号占用多个符号时,所述参考信号位于从所在时隙内的首个符号起始的多个符号上。
(8)本公开实施例的参考信号还可以位于所述参考信号所在时隙内的非首个符号。例如,在所述参考信号仅占用一个符号时,所述参考信号还可以位于所述参考信号所在时隙内的某个中间符号上,也可以位于所在时隙内的最后一个符号上。在所述参考信号占用多个符号时,所述参考信号位于从所在时隙内的某个中间符号起始的多个符号上。
(9)本公开实施例的参考信号在时域上完全占用所在时隙的所有符号,或者,间隔占用所在时隙的部分符号,并且,所述参考信号在频域上占用部分系统工作带宽,具体的,每N个资源块RB映射有一个所述参考信号,这里,N为为大于或等于1的整数。
本公开实施例中,第一设备可以根据第一参考信号,执行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。下面将通过多个实施例分别对这些处理过程进行详细说明。
实施例1:参考信号的SCS可以与随后发送的SA或Data的SCS不同。
在该实施例1中,第一设备可以向第二设备发送第二参考信号,所述第二参考信号采用的第三SCS,与所述第一SA和第一Data采用第四SCS不同,所述第三SCS的大小,是根据所述第一设备的工作带宽中的子载波数量能够满足容纳所述第二参考信号的需求设置的,其中,所述第三SCS的大小与系统工作带宽正相关。
具体的,参考信号的序列长度可以是固定的,比如长度是255,但参考信号的SCS可以与随后发送的SA或Data的SCS不同,以便参考信号能够正 好覆盖整个带宽:
a)当SA或Data配置的SCS较大并且工作带宽较小的时候,参考信号采用较小的SCS,以保证有足够的子载波来容纳参考信号序列;
例如:当V2X的工作带宽是5MHz时,在SA或Data配置的SCS为15KHz时,有25个RB,每个RB有12个子载波,可以容纳下255长的参考信号序列,但在SA或Data配置的SCS为30KHz时,5MHz的工作带宽只有12个RB,就无法容纳下255长的参考信号序列了,所以此时需要参考信号采用较小的SCS,例如,采用15KHz的SCS,这样可以保证在5MHz带宽中容纳下255长的参考信号序列。
b)当SA或Data配置的SCS较小并且工作带宽较大的时候,参考信号采用较大的SCS,以保证参考信号序列可以覆盖整个带宽。
例如:当V2X的工作带宽是20MHz时,在SA或Data配置的SCS为60KHz时,有25个RB,每个RB有12个子载波,255长的参考信号序列可以覆盖整个20MHz带宽,但在SA或Data配置的SCS为15KHz时,20MHz的工作带宽就有100个RB,255长的参考信号序列就无法覆盖整个带宽了,所以此时需要参考信号采用较大的SCS,例如,采用60KHz,这样可以保证255长的参考信号序列可以覆盖整个20MHz带宽。
可以看出,该实施例1中,参考信号序列的SCS大小可以灵活配置,能够适用于多种SA/Data的SCS情况与带宽情况。SCS大小的配置,可以通过向设备发送相关信令,从而为设备配置具体的SCS大小。
实施例2:参考信号用于资源占用情况感知
该实施例2中,第一设备可以执行步骤22中的资源占用感知处理,即根据所述其他设备发送的第一参考信号,确定所述其他设备占用的资源。
例如,所述第一设备获取系统工作带宽的各个资源段上接收到的第一参考信号的信号强度,并根据信号强度超出预定门限的第一参考信号所在的资源段,确定其他设备占用的资源
又例如,所述第一设备在接收到其他设备发送的第一参考信号后,根据资源位置绑定关系,确定所述其他设备占用的资源,其中,所述资源位置绑定关系包括:第一参考信号与SA之间的第一资源位置绑定关系,SA与Data 之间的第二资源位置绑定关系。具体的,参考信号与SA之间的绑定关系,可以是参考信号的序列ID和/或循环移位信息,与SA的资源位置之间的绑定关系。上述资源位置绑定关系是预先设定的,或者是通过信令配置的。
又例如,所述第一设备根据在接收到其他设备发送的第一参考信号后,获取该第一参考信号所采用的第一循环冗余校验码CRC序列,并根据CRC序列与资源配置模式之间的预设对应关系,确定第一CRC序列对应的第一资源配置模式,以及,根据所述第一资源配置模式,确定所述其他设备占用的资源。
又例如,所述第一设备根据其他设备发送的第一参考信号所采用的序列参数,确定所述其他设备的资源占用优先级,并比较其他设备与本第一设备的资源占用优先级,确定所述其他设备占用的资源,其中,所述序列参数与资源占用优先级之间具有预设对应关系,所述序列参数包括序列索引ID和/或循环移位值。可选的,具有较高资源占用优先级的设备,可以优先占用资源。
下面将以发送侧UE A和接收侧的UE B为例进行说明,参考信号在用于“资源占用感知处理”时,发送侧UE A在发送SA或Data之前,先发送参考信号,该信号用于帮助接收侧UE B用来做资源占用情况感知:
a)能量检测:UE B根据收到的工作频段上各资源段上的参考信号强度,来判断该资源段是否被占用,来决定下一步SA或Data发送所使用的资源。
b)内容检测方式一:参考信号与SA有绑定关系,通过参考信号就可以指示SA的时频资源占用位置,然后通过解码SA就可以获得Data的时频资源占用位置,从而可以避免用户间SA的碰撞与用户间Data的碰撞。
可选的,参考信号与SA有绑定关系,SA与Data有绑定关系,这样参考信号就可以指示SA的时频资源占用位置,而SA可以指示Data的时频资源占用位置,从而可以通过参考信号检测,避免用户间SA的碰撞以及用户间Data的碰撞。
c)内容检测方式二:将资源占用情况隐式地包含在序列中,采用不同的CRC来指示不同的资源配置情况,UE B通过序列就准确的得知资源使用情况。
d)优先级或用户组判断:参考信号序列ID或循环移位有不同的优先级设置,对于配置了比较高优先级的参考信号序列,可以优先占用资源。
该实施例2中,参考信号用于“资源占用情况感知”时,复用了参考信号进行资源占用情况感知,可以获得当前Sidelink单播通信的资源占用情况,节省了Sensing的信令开销,提升了资源利用效率。
另外,需要指出的是,该实施例中,设备在发送SA或Data之前,需要先发送参考信号。本公开实施例也可以先发送SA或Data之前,再发送参考信号,后续将通过实施例对此进行说明。
实施例3:参考信号用于自动增益控制处理:
该实施例3中,第一设备可以执行步骤22中的自动增益控制处理,即根据所述其他设备发送的第一参考信号的接收信号强度,调整本地信号接收机中模数转换器的缩放系数,使经所述本地信号接收机中模数转换器缩放处理后的所述第一参考信号的信号强度处于预设范围。
可选的,所述第一参考信号转换到时域,在时域上成为多个重复信号。这样,第一设备可以根据所述第一参考信号中的至少一个重复信号的接收信号强度,调整本地信号接收机中模数转换器的缩放系数,以及,根据剩余重复信号执行以下处理中的至少一种:资源占用感知处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
以发送侧UE A和接收侧的UE B为例:
发送侧UE A在发送SA之前,先发送参考信号,该信号用于帮助接收侧UE B用来做自动增益测量,避免信号强度波动过大导致ADC量化误差过大而导致的后续SA和数据接收的误码率上升问题。
a)SCS较小时,这时假设使用一个符号或半个符号的参考信号即可完成AGC测量;
比如:当SCS=15KHz时,对应到符号持续时长较大为67us,而AGC时长一般是固定的,大概是10~15us,所以这时使用半个符号的参考信号即可完成AGC测量。当SCS=60KHz时,对应到符号持续时长较大为17us,所以这时使用一个符号的参考信号即可完成AGC测量。
b)SCS较大时,需要使用两个或更多符号的参考信号才能完成AGC测 量;
比如:当SCS=120KHz时,对应到符号持续时长较大为8us,而AGC时长一般是固定的,大概是10~15us,所以这时使用两个符号的参考信号才能完成AGC测量。
c)剩余时长的参考信号用来做其它功能使用。
通过频域离散映射,可以获得时域重复的参考信号。这样当半个符号用作AGC时,剩余的半个符号的参考信号可以用来做其它功能使用。
如图5中的左半部分所示,在发送端将参考信号进行了频域梳状映射,在发送之前经过IFFT变换之后,从频域转换到时域,图5中的右边部分对其中一个符号进行放大,可以看出,参考信号成为在一个符号内时域重复的信号,前半个符号和后半个符号的信息完全相同,这样在接收端接收到之后,可以使用前半个符号的参考信号进行AGC测量,后半个符号的参考信号进行其他功能使用,比如进行资源占用状态感知。
该实施例在进行自动增益控制处理时,参考信号可以根据SCS的配置情况自适应的调整其时长,以便保证既有足够的时长用于ADC增益调整,又不会造成资源的浪费。
实施例4:参考信号用于频率偏移估计处理
该实施例中,参考信号用于“频率偏移估计处理”,以发送侧UE A和接收侧的UE B为例:
发送侧UE A在发送SA或Data之前,先发送参考信号,该信号用于帮助接收侧UE B用来做频率偏移估计,而不同用户的参考信号可以分别估计不同用户的频偏,具体的估计方案包括有:
a)将所述第一参考信号对应的接收序列与本地序列进行相关处理,将相关处理后的接收序列划分为第一部分序列和第二部分序列;利用所述第一部分序列和第二部分序列做相关,得到初始频偏估计值。
b)在初始频偏估计值基础上增加不同的频偏调整量,得到多个不同的频偏尝试值;
c)分别使用所述多个不同的频偏尝试值对接收序列进行相位补偿,并利用相位补偿后的接收序列与本地序列进行相关运算,获得相关峰值,并取多 个不同的频偏尝试值所对应的多个相关峰值的最大值所对应的频偏尝试值,作为最终的频偏估计值。
d)对于使用不同参考信号的不同用户,可以根据各自检测到的相关峰值的最大值,设置不同的频偏补偿。
该实施例复用参考信号进行频偏估计,可以获得当前发送数据的频率偏移,有利于后续的数据解调解码。
实施例5:参考信号用于信道状态信息测量:
在上述步骤22中,所述第一设备可以根据所述其他设备发送的第一参考信号,进行信道状态测量,获得信道状态信息,其中,所述其他设备发送的第一参考信号所占用的频域资源,在整个系统工作带宽中间隔分布,或者,所述其他设备发送的第一参考信号所占用的频域资源在部分的系统工作带宽中连续分布,且所述其他设备多次发送的第一参考信号所占用的频域资源覆盖整个系统工作带宽。
以发送侧UE A和接收侧的UE B为例:
例如,发送侧UE A在发送SA或Data之前,先发送参考信号,该参考信号用于帮助接收侧UE B用来做信道状态信息测量:
a)UE A发送全带宽参考信号,UE B收到参考信号后,获得整个工作带宽上的信道状态信息,然后从中选择信道状态较好的资源,作为下一步的数据传输资源;
b)对于分布式映射方式:UE B直接使用覆盖了全部工作带宽的梳齿状参考信号进行信道状态信息测量;
c)对于集中式映射方式:UE A发送多次参考信号,每次覆盖部分带宽,UB B收到多个参考信号之后,就可以获得整个工作带宽上的信道状态信息。
该实施例复用了参考信号进行信道状态信息测量,可以获得当前Sidelink单播通信的信道状态信息,节省了CSI-RS的信令开销,提升了资源利用效率。
实施例6:参考信号用于信道估计处理:
在上述步骤22中,所述第一设备可以根据所述其他设备发送的第一参考信号,进行信道估计,或者,所述第一设备根据所述其他设备发送的第一参考信号和解调参考信号DMRS,进行信道估计。
以发送侧UE A和接收侧的UE B为例:
发送侧UE A在发送SA或Data之前,先发送参考信号,该信号用于帮助接收侧UE B用来做信道估计;
a)在SCS比较小时,用于AGC的时长较少,参考信号有足够的时长用于信道估计,这时信道估计精度较高;
b)在SCS比较大时,用于AGC的时长较长,参考信号用于信道估计的时长较少或无法进行信道估计,这时需要新增DMRS完成信道估计。
该实施例复用参考信号进行信道估计,可以获得当前Sidelink单播通信的信道H值,节省了DMRS的信令开销,提升了资源利用效率。另外,该实施例的DMRS分布在SA或Data之前,如果SA或Data占用多个符号,还需要在后续的符号中插入其它的DMRS。
实施例7:参考信号用于资源占用感知处理,SA和Data之间的绑定关系1:SA与Data频域资源位置相同:
参考信号与SA的资源位置有绑定关系,SA与Data的资源位置有绑定关系。这样,就可以通过特定的参考信号获得SA的资源位置,进而通过SA获得Data的资源位置,从而避免了SA的资源碰撞与Data的资源碰撞。
例如,SA所占用的频域资源位置和该SA所绑定的Data所占用的频域资源位置相同,且不同的SA所对应的Data的频域资源位置互不重叠。在进行步骤22中的资源占用感知处理时,所述第一设备可以在接收到其他设备发送的第一参考信号后,根据所述第一资源位置绑定关系,确定所述其他设备的SA的频域资源位置;以及,根据所述其他设备的SA的资源位置,确定未被所述其他设备的SA和Data占用的资源,得到所述第一设备的SA和Data的可用资源。
图6给出了一种采用集中式映射方案的参考信号发送示意图,如图6所示,SA的资源位置与Data的资源位置在频域是完全相同的。MP1指示了SA1的资源位置,SA1指示了Data1的资源位置。由于SA的资源位置与Data的资源位置是在频域是完全对齐的,并且SA所对应的Data的资源位置没有重合,所以,UE不需要解码SA的内容,只要SA不同,就可以保证Data的资源位置是没有碰撞的。
这里,关联和绑定关系为:MP1关联SA1,SA1关联Data1。MP2和MP3也是类似的。另外,Data1是用户1所占用的数据资源;SA1是用户1所占用的控制资源。Data2/3与SA2/3也是类似的。以下实施例均类似。
实施例8:参考信号用于资源占用感知处理,SA和Data之间的绑定关系2:SA与Data的频域起始资源位置相同:
该实施例中,SA所占用的频域资源位置和该SA所绑定的Data所占用的频域资源位置的起始位置相同,结束位置相同或不同,且,不同的SA所绑定的Data所占用的频域资源位置互不重叠或存在部分重叠。在上述步骤22中,所述第一设备在接收到其他设备发送的第一参考信号后,可以根据所述第一资源位置绑定关系,确定所述其他设备的SA的频域资源位置,并解析所述其他设备的SA,得到所述其他设备的Data的资源位置;以及,确定与所述其他设备的Data的资源位置不存在重叠的Data资源位置,作为所述第一设备的Data的可用资源,并根据所述第二资源位置绑定关系以及所述第一设备的Data的可用资源,确定所述第一设备的SA的可用资源。
因为参考信号与SA的资源位置有绑定关系,SA与Data的资源位置有绑定关系。这样,就可以通过特定的参考信号获得SA的资源位置,进而通过SA获得Data的资源位置,从而避免了SA的资源碰撞与Data的资源碰撞。
如图7所示,在该实施例中,SA的起始资源位置与Data的起始资源位置在频域是相同的,但结束位置可以相同或不同,并且多个SA所指示的频域位置可能有部分重合。MP1指示了SA1的资源位置,SA1指示了Data1的资源位置。MP2指示了SA2的资源位置,SA2指示了Data2的资源位置,并且Data2属于Data1的一部分。这时,首先UE3通过接收MP1,关联到SA1,然后通过解码SA1的内容,获知SA1关联到Data1,然后通过Data1的位置,确定Data1和Data2都不能使用,于是UE3确定选择使用Data3,然后从Data3关联到SA3,于是,UE3最终确定使用Data3和SA3,从而保证了UE3所选用的SA3和Data3都不会和其他的SA或Data发生资源碰撞。
实施例9:参考信号用于资源占用感知处理,,SA和Data之间的绑定关系3:SA与Data的资源没有频域对齐关系:
该实施例中,SA所占用的频域资源位置和该SA所绑定的Data所占用 的频域资源位置的起始位置和结束位置均不同,且,不同的SA所绑定的Data所占用的频域资源位置互不重叠或存在部分重叠。类似的额,在上述步骤22中,所述第一设备在接收到其他设备发送的第一参考信号后,可以根据所述第一资源位置绑定关系,确定所述其他设备的SA的频域资源位置,并解析所述其他设备的SA,得到所述其他设备的Data的资源位置;以及,确定与所述其他设备的Data的资源位置不存在重叠的Data资源位置,作为所述第一设备的Data的可用资源,并根据所述第二资源位置绑定关系以及所述第一设备的Data的可用资源,确定所述第一设备的SA的可用资源。
因为参考信号与SA的资源位置有绑定关系,SA与Data的资源位置有绑定关系。这样,就可以通过特定的参考信号获得SA的资源位置,进而通过SA获得Data的资源位置,从而避免了SA的资源碰撞与Data的资源碰撞。
如图8所示,在该实施例中,SA的起始资源位置与Data的起始资源位置以及结束资源位置在频域上都没有对齐关系,并且多个SA所指示的频域位置可能有部分重合。MP1指示了SA1的资源位置,SA1指示了Data1的资源位置。MP2指示了SA2的资源位置,SA2指示了Data2的资源位置。MP3指示了SA3的资源位置,SA3指示了Data3的资源位置,并且Data3属于Data2的一部分。这时,首先UE3通过接收MP1,关联到SA1,然后通过SA1关联到Data1,然后通过Data1的位置,确定Data2和Data3都可以使用,于是UE3确定选择使用Data3,然后从Data3关联到SA3,于是,UE3最终确定使用Data3和SA3,从而保证了UE3所选用的SA3和Data3都不会和其他的SA或Data发生资源碰撞。
实施例10:参考信号不是位于所在时隙的第一个符号处,不用来做AGC:
参考信号与SA的资源位置有绑定关系,SA与Data的资源位置有绑定关系。这样,就可以通过特定的参考信号获得SA的资源位置,进而通过SA获得Data的资源位置,从而避免了SA的资源碰撞与Data的资源碰撞。
这里,参考信号不再位于该参考信号所在时隙的第一个符号处,而是位于一个时隙的中间位置,这样做的好处是可以使用参考信号对频偏进行比较精确的估计。
如图9所示,在该实施例中,SA的起始资源位置与Data的起始资源位 置以及结束资源位置在频域上都没有对齐关系,并且多个SA所指示的频域位置可能有部分重合。MP1指示了SA1的资源位置,SA1指示了Data1的资源位置。MP2指示了SA2的资源位置,SA2指示了Data2的资源位置。MP3指示了SA3的资源位置,SA3指示了Data3的资源位置,并且Data1和Data2有重叠关系。这时,首先UE3通过接收MP1,关联到SA1,然后通过SA1关联到Data1,然后通过Data1的位置,确定Data3可以使用,于是UE3确定选择使用Data3,然后从Data3关联到SA3,于是,UE3最终确定使用Data3和SA3,从而保证了UE3所选用的SA3和Data3都不会和其他的SA或Data发生资源碰撞。
实施例11:参考信号不是占用一个符号,而是占用多个符号:
参考信号与SA的资源位置有绑定关系,SA与Data的资源位置有绑定关系。这样,就可以通过特定的参考信号获得SA的资源位置,进而通过SA获得Data的资源位置,从而避免了SA的资源碰撞与Data的资源碰撞。
这里,参考信号不再位于所在时隙的第一个符号处,而是位于一个时隙的多个符号中,这样做的好处是可以使用参考信号对频偏进行比较精确的估计。
具体的,参考信号在时域可以占用所有的符号,或者如图10所示,每隔一个符号放置一个参考信号。参考信号在频域是稀疏的,可以每个资源块(RB)上放置一个参考信号,或者每多个RB上放置一个参考信号。参考信号的密度越高,频偏估计的就越准确,但资源开销就会越大。
如图10所示,在该实施例中,SA的起始资源位置与Data的起始资源位置以及结束资源位置在频域上都没有对齐关系。MP1指示了SA1的资源位置,SA1指示了Data1的资源位置。MP2指示了SA2的资源位置,SA2指示了Data2的资源位置。MP3指示了SA3的资源位置,SA3指示了Data3的资源位置。这时,首先UE3通过接收MP1,关联到SA1,然后通过SA1关联到Data1,然后通过Data1的位置,确定Data3可以使用,于是UE3确定选择使用Data3,然后从Data3关联到SA3,于是,UE3最终确定使用Data3和SA3,从而保证了UE3所选用的SA3和Data3都不会和其他的SA或Data发生资源碰撞。
基于以上方法,本公开实施例还提供了实施上述方法的设备。
请参考图11,本公开实施例提供了V2X系统中的第一设备1100的一结构示意图,包括:处理器1101、收发机1102、存储器1103和总线接口,其中:
在本公开实施例中,第一设备1100还包括:存储在存储器上1103并可在处理器1101上运行的计算机程序。
所述收发机1102,用于接收其他设备通过直通链路Sidelink发送的第一参考信号;
所述处理器1101,用于读取存储器中的程序,执行下列过程:根据所述其他设备发送的第一参考信号,进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1101代表的一个或多个处理器和存储器1103代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1102可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1101负责管理总线架构和通常的处理,存储器1103可以存储处理器1101在执行操作时所使用的数据。
可选的,所述第一参考信号为预定长度的M序列或ZC序列,且在频域上占用整个系统工作带宽或部分系统工作带宽,在时域上占用至少一个符号。
可选的,所述第一参考信号的信号参数与设备组或设备之间存在对应关系,其中,所述信号参数包括所述第一参考信号采用的序列、所述序列的循环移位值和频域位置;且,同一个第一参考信号可被多个设备复用。
可选的,所述第一参考信号通过梳状映射方式,映射到整个系统工作带宽中,且不同设备占用不同的梳齿位置。
可选的,所述第一参考信号通过连续映射方式,映射到系统工作带宽中连续的部分带宽,且不同的设备占用不同的部分带宽。
可选的,所述第一参考信号的第一子载波间隔SCS与所述其他设备后续发送的资源调度分配信息SA/数据Data的第二SCS不同;所述第一SCS的大小,是根据所述其他设备的工作带宽中的子载波数量能够满足容纳所述第一参考信号的需求设置的。
可选的,所述第一参考信号所占用的符号数量,是根据所述第一参考信号采用的SCS确定的,以使所述第一参考信号满足自动增益控制处理所需要的时长要求。
可选的,所述第一参考信号位于所在时隙内的首个符号。
可选的,所述第一参考信号位于所在时隙内的非首个符号。
可选的,所述第一参考信号在时域上完全占用所在时隙的所有符号或间隔占用所在时隙的部分符号,并且,所述第一参考信号在频域上占用部分系统工作带宽,其中,每N个资源块RB映射有一个第一参考信号,所述N为大于或等于1的整数。
可选的,所述处理器1101,还用于根据所述其他设备发送的第一参考信号,确定所述其他设备占用的资源。
可选的,所述处理器1101,还用于获取系统工作带宽的各个资源段上接收到的第一参考信号的信号强度,并根据信号强度超出预定门限的第一参考信号所在的资源段,确定其他设备占用的资源。
可选的,所述处理器1101,还用于在接收到其他设备发送的第一参考信号后,根据资源位置绑定关系,确定所述其他设备占用的资源,其中,所述资源位置绑定关系包括:第一参考信号与SA之间的第一资源位置绑定关系,SA与Data之间的第二资源位置绑定关系。
可选的,所述资源位置绑定关系是预先设定的,或者是通过信令配置的。
可选的,所述处理器1101,还用于根据在接收到其他设备发送的第一参考信号后,获取该第一参考信号所采用的第一循环冗余校验码CRC序列,并根据CRC序列与资源配置模式之间的预设对应关系,确定第一CRC序列对应的第一资源配置模式,以及,根据所述第一资源配置模式,确定所述其他设备占用的资源。
可选的,所述处理器1101,还用于根据其他设备发送的第一参考信号所 采用的序列参数,确定所述其他设备的资源占用优先级,并比较其他设备与本第一设备的资源占用优先级,确定所述其他设备占用的资源,其中,所述序列参数与资源占用优先级之间具有预设对应关系,所述序列参数包括序列索引ID和/或循环移位值。
可选的,SA所占用的频域资源位置和该SA所绑定的Data所占用的频域资源位置相同,且不同的SA所对应的Data的频域资源位置互不重叠。
可选的,所述处理器1101,还用于在接收到其他设备发送的第一参考信号后,根据所述第一资源位置绑定关系,确定所述其他设备的SA的频域资源位置;以及,根据所述其他设备的SA的资源位置,确定未被所述其他设备的SA和Data占用的资源,得到所述第一设备的SA和Data的可用资源。
可选的,SA所占用的频域资源位置和该SA所绑定的Data所占用的频域资源位置的起始位置相同,结束位置相同或不同,且,不同的SA所绑定的Data所占用的频域资源位置互不重叠或存在部分重叠;
或者,SA所占用的频域资源位置和该SA所绑定的Data所占用的频域资源位置的起始位置和结束位置均不同,且,不同的SA所绑定的Data所占用的频域资源位置互不重叠或存在部分重叠。
可选的,所述处理器1101,还用于在接收到其他设备发送的第一参考信号后,根据所述第一资源位置绑定关系,确定所述其他设备的SA的频域资源位置,并解析所述其他设备的SA,得到所述其他设备的Data的资源位置;以及,
确定与所述其他设备的Data的资源位置不存在重叠的Data资源位置,作为所述第一设备的Data的可用资源,并根据所述第二资源位置绑定关系以及所述第一设备的Data的可用资源,确定所述第一设备的SA的可用资源。
可选的,所述处理器1101,还用于根据所述其他设备发送的第一参考信号的接收信号强度,调整本地信号接收机中模数转换器的缩放系数,使经所述本地信号接收机中模数转换器缩放处理后的所述第一参考信号的信号强度处于预设范围。
可选的,所述第一参考信号转换到时域,在时域上成为多个重复信号;
所述处理器1101,还用于根据所述第一参考信号中的至少一个重复信号 的接收信号强度,调整本地信号接收机中模数转换器的缩放系数,以及,根据剩余重复信号执行以下处理中的至少一种:资源占用感知处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
可选的,所述处理器1101,还用于将所述第一参考信号对应的接收序列与本地序列进行相关处理,将相关处理后的接收序列划分为第一部分序列和第二部分序列;利用所述第一部分序列和第二部分序列做相关,得到初始频偏估计值。
可选的,所述处理器1101,还用于在所述初始频偏估计值的基础上增加不同的频偏调整量,得到多个不同的频偏尝试值;分别使用所述多个不同的频偏尝试值对接收序列进行相位补偿,并利用相位补偿后的接收序列与本地序列进行相关运算,获得相关峰值,并取多个不同的频偏尝试值所对应的多个相关峰值的最大值所对应的频偏尝试值,作为最终的频偏估计值。
可选的,所述处理器1101,还用于根据所述其他设备发送的第一参考信号,进行信道状态测量,获得信道状态信息,其中,所述其他设备发送的第一参考信号所占用的频域资源,在整个系统工作带宽中间隔分布,或者,所述其他设备发送的第一参考信号所占用的频域资源在部分的系统工作带宽中连续分布,且所述其他设备多次发送的第一参考信号所占用的频域资源覆盖整个系统工作带宽。
可选的,所述处理器1101,还用于根据所述其他设备发送的第一参考信号,进行信道估计,或者,所述第一设备根据所述其他设备发送的第一参考信号和解调参考信号DMRS,进行信道估计。
可选的,所述收发机1102,还用于向第二设备发送第二参考信号,所述第二参考信号用于供第二设备进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
可选的,所述处理器1101,还用于在发送所述第二参考信号之前,根据所述第一设备的设备特征,确定所述第二参考信号的信号参数,其中,所述设备特征包括设备标识和/或设备所属的用户组,所述信号参数包括以下参数中的至少一项:第一参考信号采用的第一序列、所述第一序列的循环移位值、 所述第一参考信号映射的频域位置。
可选的,所述收发机1102,还用于根据所述第二参考信号采用的SCS,确定所述第二参考信号中用于自动增益控制的第一类符号的第一数量,对所述第二参考信号的序列进行频域离散映射处理以及逆向快速傅里叶变换IFFT处理,获得并发送所述第二参考信号,其中,所述第二参考信号在经过所述IFFT处理,从频域换到时域,在时域上成为多个重复信号,其中至少一个重复信号用于供第二设备进行自动增益控制处理,剩余重复信号用于供所述第二设备进行以下处理中的至少一种:资源占用感知处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
可选的,所述第二参考信号采用的第三SCS,与所述第一SA和第一Data采用第四SCS不同,所述第三SCS的大小,是根据所述第一设备的工作带宽中的子载波数量能够满足容纳所述第二参考信号的需求设置的,其中,所述第三SCS的大小与系统工作带宽正相关。
请参照图12,本公开实施例提供了V2X系统中的第一设备120的另一种结构,如图12所示,该第一设备120包括:
信号接收单元121,用于接收其他设备通过直通链路Sidelink发送的第一参考信号;
信号处理单元122,用于根据所述其他设备发送的第一参考信号,进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以 通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例混合自动重传请求确认码本的传输方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (51)

  1. 一种参考信号的传输方法,应用于车辆到任意事物V2X系统,包括:
    第一设备接收其他设备通过直通链路Sidelink发送的第一参考信号;
    根据所述其他设备发送的第一参考信号,进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
  2. 如权利要求1所述的方法,其中,所述第一参考信号为预定长度的M序列或ZC序列,且在频域上占用整个系统工作带宽或部分系统工作带宽,在时域上占用至少一个符号。
  3. 如权利要求1所述的方法,其中,所述第一参考信号的信号参数与设备组或设备之间存在对应关系,其中,所述信号参数包括所述第一参考信号采用的序列、所述序列的循环移位值和频域位置;且,同一个第一参考信号可被多个设备复用。
  4. 如权利要求1所述的方法,其中,所述第一参考信号通过梳状映射方式,映射到整个系统工作带宽中,且不同设备占用不同的梳齿位置。
  5. 如权利要求1所述的方法,其中,所述第一参考信号通过连续映射方式,映射到系统工作带宽中连续的部分带宽,且不同的设备占用不同的部分带宽。
  6. 如权利要求1所述的方法,其中,所述第一参考信号的第一子载波间隔SCS与所述其他设备后续发送的资源调度分配信息SA/数据Data的第二SCS不同;所述第一SCS的大小,是根据所述其他设备的工作带宽中的子载波数量能够满足容纳所述第一参考信号的需求设置的。
  7. 如权利要求1所述的方法,其中,所述第一参考信号所占用的符号数量,是根据所述第一参考信号采用的SCS确定的,以使所述第一参考信号满足自动增益控制处理所需要的时长要求。
  8. 如权利要求1所述的方法,其中,所述第一参考信号位于所在时隙内的首个符号。
  9. 如权利要求1所述的方法,其中,所述第一参考信号位于所在时隙内 的非首个符号。
  10. 如权利要求1所述的方法,其中,
    所述第一参考信号在时域上完全占用所在时隙的所有符号或间隔占用所在时隙的部分符号,并且,所述第一参考信号在频域上占用部分系统工作带宽,其中,每N个资源块RB映射有一个第一参考信号,所述N为大于或等于1的整数。
  11. 如权利要求1至10任一项所述的方法,其中,所述资源占用感知处理包括:
    根据所述其他设备发送的第一参考信号,确定所述其他设备占用的资源。
  12. 如权利要求11所述的方法,其中,所述确定所述其他设备占用的资源的步骤,包括:
    所述第一设备获取系统工作带宽的各个资源段上接收到的第一参考信号的信号强度,并根据信号强度超出预定门限的第一参考信号所在的资源段,确定其他设备占用的资源。
  13. 如权利要求11所述的方法,其中,所述确定所述其他设备占用的资源的步骤,包括:
    所述第一设备在接收到其他设备发送的第一参考信号后,根据资源位置绑定关系,确定所述其他设备占用的资源,其中,所述资源位置绑定关系包括:第一参考信号与SA之间的第一资源位置绑定关系,SA与Data之间的第二资源位置绑定关系。
  14. 如权利要求13所述的方法,其中,所述资源位置绑定关系是预先设定的,或者是通过信令配置的。
  15. 如权利要求11所述的方法,其中,所述确定所述其他设备占用的资源的步骤,包括:
    所述第一设备根据在接收到其他设备发送的第一参考信号后,获取该第一参考信号所采用的第一循环冗余校验码CRC序列,并根据CRC序列与资源配置模式之间的预设对应关系,确定第一CRC序列对应的第一资源配置模式,以及,根据所述第一资源配置模式,确定所述其他设备占用的资源。
  16. 如权利要求11所述的方法,其中,所述确定所述其他设备占用的资 源的步骤,包括:
    所述第一设备根据其他设备发送的第一参考信号所采用的序列参数,确定所述其他设备的资源占用优先级,并比较其他设备与本第一设备的资源占用优先级,确定所述其他设备占用的资源,其中,所述序列参数与资源占用优先级之间具有预设对应关系,所述序列参数包括序列索引ID和/或循环移位值。
  17. 如权利要求13所述的方法,其中,
    SA所占用的频域资源位置和该SA所绑定的Data所占用的频域资源位置相同,且不同的SA所对应的Data的频域资源位置互不重叠。
  18. 如权利要求17所述的方法,其中,
    所述根据资源位置绑定关系,确定所述其他设备占用的资源的步骤,包括:
    所述第一设备在接收到其他设备发送的第一参考信号后,根据所述第一资源位置绑定关系,确定所述其他设备的SA的频域资源位置;以及,
    根据所述其他设备的SA的资源位置,确定未被所述其他设备的SA和Data占用的资源,得到所述第一设备的SA和Data的可用资源。
  19. 如权利要求13所述的方法,其中,
    SA所占用的频域资源位置和该SA所绑定的Data所占用的频域资源位置的起始位置相同,结束位置相同或不同,且,不同的SA所绑定的Data所占用的频域资源位置互不重叠或存在部分重叠;
    或者,SA所占用的频域资源位置和该SA所绑定的Data所占用的频域资源位置的起始位置和结束位置均不同,且,不同的SA所绑定的Data所占用的频域资源位置互不重叠或存在部分重叠。
  20. 如权利要求19所述的方法,其中,
    所述根据资源位置绑定关系,确定所述其他设备占用的资源的步骤,包括:
    所述第一设备在接收到其他设备发送的第一参考信号后,根据所述第一资源位置绑定关系,确定所述其他设备的SA的频域资源位置,并解析所述其他设备的SA,得到所述其他设备的Data的资源位置;以及,
    确定与所述其他设备的Data的资源位置不存在重叠的Data资源位置,作为所述第一设备的Data的可用资源,并根据所述第二资源位置绑定关系以及所述第一设备的Data的可用资源,确定所述第一设备的SA的可用资源。
  21. 如权利要求1至8任一项所述的方法,其中,所述自动增益控制处理包括:
    根据所述其他设备发送的第一参考信号的接收信号强度,调整本地信号接收机中模数转换器的缩放系数,使经所述本地信号接收机中模数转换器缩放处理后的所述第一参考信号的信号强度处于预设范围。
  22. 如权利要求21所述的方法,其中,
    所述第一参考信号转换到时域,在时域上成为多个重复信号;
    所述根据所述其他设备发送的第一参考信号的接收信号强度,调整本地信号接收机中模数转换器的缩放系数的步骤,包括:根据所述第一参考信号中的至少一个重复信号的接收信号强度,调整本地信号接收机中模数转换器的缩放系数,以及,根据剩余重复信号执行以下处理中的至少一种:资源占用感知处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
  23. 如权利要求1至10任一项所述的方法,其中,所述频率偏移估计处理包括:
    将所述第一参考信号对应的接收序列与本地序列进行相关处理,将相关处理后的接收序列划分为第一部分序列和第二部分序列;
    利用所述第一部分序列和第二部分序列做相关,得到初始频偏估计值。
  24. 如权利要求23所述的方法,其中,所述频率偏移估计处理还包括:
    在所述初始频偏估计值的基础上增加不同的频偏调整量,得到多个不同的频偏尝试值;
    分别使用所述多个不同的频偏尝试值对接收序列进行相位补偿,并利用相位补偿后的接收序列与本地序列进行相关运算,获得相关峰值,并取多个不同的频偏尝试值所对应的多个相关峰值的最大值所对应的频偏尝试值,作为最终的频偏估计值。
  25. 如权利要求1至10任一项所述的方法,其中,所述信道状态信息测量处理包括:
    所述第一设备根据所述其他设备发送的第一参考信号,进行信道状态测量,获得信道状态信息,其中,所述其他设备发送的第一参考信号所占用的频域资源,在整个系统工作带宽中间隔分布,或者,所述其他设备发送的第一参考信号所占用的频域资源在部分的系统工作带宽中连续分布,且所述其他设备多次发送的第一参考信号所占用的频域资源覆盖整个系统工作带宽。
  26. 如权利要求1至10任一项所述的方法,其中,所述信道估计处理包括:
    所述第一设备根据所述其他设备发送的第一参考信号,进行信道估计,或者,
    所述第一设备根据所述其他设备发送的第一参考信号和解调参考信号DMRS,进行信道估计。
  27. 如权利要求1至10任一项所述的方法,其中,
    所述第一设备向第二设备发送第二参考信号,所述第二参考信号用于供第二设备进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
  28. 如权利要求27所述的方法,其中,在发送所述第二参考信号之前,所述方法还包括:
    根据所述第一设备的设备特征,确定所述第二参考信号的信号参数,其中,所述设备特征包括设备标识和/或设备所属的用户组,所述信号参数包括以下参数中的至少一项:第一参考信号采用的第一序列、所述第一序列的循环移位值、所述第一参考信号映射的频域位置。
  29. 如权利要求27所述的方法,其中,所述发送所述第二参考信号的步骤,包括:
    根据所述第二参考信号采用的SCS,确定所述第二参考信号中用于自动增益控制的第一类符号的第一数量,对所述第二参考信号的序列进行频域离散映射处理以及逆向快速傅里叶变换IFFT处理,获得并发送所述第二参考信号,其中,所述第二参考信号在经过所述IFFT处理,从频域换到时域,在时域上成为多个重复信号,其中至少一个重复信号用于供第二设备进行自动增益控制处理,剩余重复信号用于供所述第二设备进行以下处理中的至少一种: 资源占用感知处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
  30. 如权利要求27所述的方法,其中,
    所述第二参考信号采用的第三SCS,与所述第一SA和第一Data采用第四SCS不同,所述第三SCS的大小,是根据所述第一设备的工作带宽中的子载波数量能够满足容纳所述第二参考信号的需求设置的,其中,所述第三SCS的大小与系统工作带宽正相关。
  31. 一种车辆到任意事物V2X系统中的第一设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,
    所述收发机,用于接收其他设备通过直通链路Sidelink发送的第一参考信号;
    所述处理器,用于读取存储器中的程序,执行下列过程:根据所述其他设备发送的第一参考信号,进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
  32. 如权利要求31所述的第一设备,其中,
    所述处理器,还用于根据所述其他设备发送的第一参考信号,确定所述其他设备占用的资源。
  33. 如权利要求32所述的第一设备,其中,
    所述处理器,还用于获取系统工作带宽的各个资源段上接收到的第一参考信号的信号强度,并根据信号强度超出预定门限的第一参考信号所在的资源段,确定其他设备占用的资源。
  34. 如权利要求32所述的第一设备,其中,
    所述处理器,还用于在接收到其他设备发送的第一参考信号后,根据资源位置绑定关系,确定所述其他设备占用的资源,其中,所述资源位置绑定关系包括:第一参考信号与SA之间的第一资源位置绑定关系,SA与Data之间的第二资源位置绑定关系。
  35. 如权利要求32所述的第一设备,其中,
    所述处理器,还用于根据在接收到其他设备发送的第一参考信号后,获取该第一参考信号所采用的第一循环冗余校验码CRC序列,并根据CRC序列与资源配置模式之间的预设对应关系,确定第一CRC序列对应的第一资源配置模式,以及,根据所述第一资源配置模式,确定所述其他设备占用的资源。
  36. 如权利要求32所述的第一设备,其中,
    所述处理器,还用于根据其他设备发送的第一参考信号所采用的序列参数,确定所述其他设备的资源占用优先级,并比较其他设备与本第一设备的资源占用优先级,确定所述其他设备占用的资源,其中,所述序列参数与资源占用优先级之间具有预设对应关系,所述序列参数包括序列索引ID和/或循环移位值。
  37. 如权利要求34所述的第一设备,其中,
    SA所占用的频域资源位置和该SA所绑定的Data所占用的频域资源位置相同,且不同的SA所对应的Data的频域资源位置互不重叠。
  38. 如权利要求37所述的第一设备,其中,
    所述处理器,还用于在接收到其他设备发送的第一参考信号后,根据所述第一资源位置绑定关系,确定所述其他设备的SA的频域资源位置;以及,根据所述其他设备的SA的资源位置,确定未被所述其他设备的SA和Data占用的资源,得到所述第一设备的SA和Data的可用资源。
  39. 如权利要求34所述的第一设备,其中,
    SA所占用的频域资源位置和该SA所绑定的Data所占用的频域资源位置的起始位置相同,结束位置相同或不同,且,不同的SA所绑定的Data所占用的频域资源位置互不重叠或存在部分重叠;
    或者,SA所占用的频域资源位置和该SA所绑定的Data所占用的频域资源位置的起始位置和结束位置均不同,且,不同的SA所绑定的Data所占用的频域资源位置互不重叠或存在部分重叠。
  40. 如权利要求39所述的第一设备,其中,
    所述处理器,还用于在接收到其他设备发送的第一参考信号后,根据所述第一资源位置绑定关系,确定所述其他设备的SA的频域资源位置,并解 析所述其他设备的SA,得到所述其他设备的Data的资源位置;以及,
    确定与所述其他设备的Data的资源位置不存在重叠的Data资源位置,作为所述第一设备的Data的可用资源,并根据所述第二资源位置绑定关系以及所述第一设备的Data的可用资源,确定所述第一设备的SA的可用资源。
  41. 如权利要求31所述的第一设备,其中,
    所述处理器,还用于根据所述其他设备发送的第一参考信号的接收信号强度,调整本地信号接收机中模数转换器的缩放系数,使经所述本地信号接收机中模数转换器缩放处理后的所述第一参考信号的信号强度处于预设范围。
  42. 如权利要求41所述的第一设备,其中,
    所述第一参考信号转换到时域,在时域上成为多个时域上的重复信号;
    所述处理器,还用于根据所述第一参考信号中的至少一个重复信号的接收信号强度,调整本地信号接收机中模数转换器的缩放系数,以及,根据剩余重复信号执行以下处理中的至少一种:资源占用感知处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
  43. 如权利要求31所述的第一设备,其中,
    所述处理器,还用于将所述第一参考信号对应的接收序列与本地序列进行相关处理,将相关处理后的接收序列划分为第一部分序列和第二部分序列;利用所述第一部分序列和第二部分序列做相关,得到初始频偏估计值。
  44. 如权利要求43所述的第一设备,其中,
    所述处理器,还用于在所述初始频偏估计值的基础上增加不同的频偏调整量,得到多个不同的频偏尝试值;分别使用所述多个不同的频偏尝试值对接收序列进行相位补偿,并利用相位补偿后的接收序列与本地序列进行相关运算,获得相关峰值,并取多个不同的频偏尝试值所对应的多个相关峰值的最大值所对应的频偏尝试值,作为最终的频偏估计值。
  45. 如权利要求31所述的第一设备,其中,
    所述处理器,还用于根据所述其他设备发送的第一参考信号,进行信道状态测量,获得信道状态信息,其中,所述其他设备发送的第一参考信号所占用的频域资源,在整个系统工作带宽中间隔分布,或者,所述其他设备发送的第一参考信号所占用的频域资源在部分的系统工作带宽中连续分布,且 所述其他设备多次发送的第一参考信号所占用的频域资源覆盖整个系统工作带宽。
  46. 如权利要求31所述的第一设备,其中,
    所述处理器,还用于根据所述其他设备发送的第一参考信号,进行信道估计,或者,所述第一设备根据所述其他设备发送的第一参考信号和解调参考信号DMRS,进行信道估计。
  47. 如权利要求31所述的第一设备,其中,
    所述收发机,还用于向第二设备发送第二参考信号,所述第二参考信号用于供第二设备进行以下处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
  48. 如权利要求47所述的第一设备,其中,
    所述处理器,还用于在发送所述第二参考信号之前,根据所述第一设备的设备特征,确定所述第二参考信号的信号参数,其中,所述设备特征包括设备标识和/或设备所属的用户组,所述信号参数包括以下参数中的至少一项:第一参考信号采用的第一序列、所述第一序列的循环移位值、所述第一参考信号映射的频域位置。
  49. 如权利要求47所述的第一设备,其中,
    所述收发机,还用于根据所述第二参考信号采用的SCS,确定所述第二参考信号中用于自动增益控制的第一类符号的第一数量,对所述第二参考信号的序列进行频域离散映射处理以及逆向快速傅里叶变换IFFT处理,获得并发送所述第二参考信号,其中,所述第二参考信号在经过所述IFFT处理,从频域换到时域,在时域上成为多个重复信号,其中至少一个重复信号用于供第二设备进行自动增益控制处理,剩余重复信号用于供所述第二设备进行以下处理中的至少一种:资源占用感知处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
  50. 一种第一设备,包括:
    信号接收单元,用于接收其他设备通过直通链路Sidelink发送的第一参考信号;
    信号处理单元,用于根据所述其他设备发送的第一参考信号,进行以下 处理中的至少两种:资源占用感知处理、自动增益控制处理、频率偏移估计处理、信道状态信息测量处理和信道估计处理。
  51. 一种计算机可读存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如权利要求1至30任一项所述的方法。
PCT/CN2019/128530 2019-01-09 2019-12-26 参考信号的传输方法和设备 WO2020143457A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217023994A KR20210107838A (ko) 2019-01-09 2019-12-26 참조 신호의 전송 방법 및 기기
JP2021539877A JP7457028B2 (ja) 2019-01-09 2019-12-26 参照信号の伝送方法及び機器
EP19908567.1A EP3910826A4 (en) 2019-01-09 2019-12-26 REFERENCE SIGNAL TRANSMISSION METHOD AND DEVICE
US17/420,647 US20220077983A1 (en) 2019-01-09 2019-12-26 Reference signal transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910021159.4A CN111431678B (zh) 2019-01-09 2019-01-09 一种参考信号的传输方法和设备
CN201910021159.4 2019-01-09

Publications (1)

Publication Number Publication Date
WO2020143457A1 true WO2020143457A1 (zh) 2020-07-16

Family

ID=71520423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128530 WO2020143457A1 (zh) 2019-01-09 2019-12-26 参考信号的传输方法和设备

Country Status (7)

Country Link
US (1) US20220077983A1 (zh)
EP (1) EP3910826A4 (zh)
JP (1) JP7457028B2 (zh)
KR (1) KR20210107838A (zh)
CN (1) CN111431678B (zh)
TW (1) TWI762850B (zh)
WO (1) WO2020143457A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220150937A1 (en) * 2019-03-13 2022-05-12 Lg Electronics Inc. Method for controlling plurality of antenna remote units in sidelink-supporting wireless communication system, and device therefor
CN111865533B (zh) * 2019-04-30 2022-04-15 大唐移动通信设备有限公司 一种信号处理方法、装置及通信设备
WO2022151490A1 (zh) * 2021-01-18 2022-07-21 北京小米移动软件有限公司 一种信道状态信息确定方法、装置及存储介质
US11856534B2 (en) * 2021-06-25 2023-12-26 Qualcomm Incorporated Transmitting sidelink reference signals for joint channel estimation and automatic gain control
CN115765941A (zh) * 2021-09-03 2023-03-07 展讯通信(上海)有限公司 通信方法及装置、计算机可读存储介质、通信设备
US11916851B2 (en) 2021-12-22 2024-02-27 Qualcomm Incorporated Dynamic automatic gain control (AGC) reference signaling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180062809A1 (en) * 2016-08-24 2018-03-01 Qualcomm Incorporated Demodulation reference signal sequence selection in device-to-device communication
CN107925533A (zh) * 2015-09-24 2018-04-17 英特尔公司 高速环境中的v2x性能增强
CN108631912A (zh) * 2017-03-23 2018-10-09 电信科学技术研究院 一种传输方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6208340B2 (ja) * 2013-07-12 2017-10-04 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて信号送受信方法及び装置
WO2017057987A1 (ko) * 2015-10-01 2017-04-06 엘지전자 주식회사 D2d 통신에서의 참조신호 송신 방법 및 단말
TWI575890B (zh) * 2015-10-19 2017-03-21 瑞昱半導體股份有限公司 通訊接收端及其自動增益控制方法
CN107659965B (zh) * 2016-07-26 2023-05-05 北京三星通信技术研究有限公司 资源选择的方法及设备
CN108307535B (zh) * 2016-08-25 2021-05-07 北京三星通信技术研究有限公司 传输数据的方法及设备
US10425264B2 (en) * 2017-01-09 2019-09-24 Lg Electronics Inc. Method of transmitting synchronization signal and apparatus therefor
US11356310B2 (en) * 2017-02-06 2022-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for minimizing performance impact from known signal distortions
CN108631973B (zh) * 2017-03-23 2021-08-20 大唐移动通信设备有限公司 一种信息指示的方法及设备
CN111434165B (zh) * 2017-06-16 2024-01-05 苹果公司 新无线电(nr)频域资源分配技术
CN109391403B (zh) * 2017-08-10 2021-07-06 上海诺基亚贝尔股份有限公司 用于无线信号的发送和接收的方法和装置
CN110999166B (zh) * 2017-09-07 2022-07-01 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN112640542B (zh) * 2018-09-27 2024-02-20 富士通株式会社 参考信号的发送和接收方法以及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925533A (zh) * 2015-09-24 2018-04-17 英特尔公司 高速环境中的v2x性能增强
US20180062809A1 (en) * 2016-08-24 2018-03-01 Qualcomm Incorporated Demodulation reference signal sequence selection in device-to-device communication
CN108631912A (zh) * 2017-03-23 2018-10-09 电信科学技术研究院 一种传输方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Discussion on Reference Signal for Sidelink Control and Data Channel Design", 3GPP DRAFT; R1-1812207, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 6, XP051478363 *
See also references of EP3910826A4 *

Also Published As

Publication number Publication date
TW202027522A (zh) 2020-07-16
EP3910826A1 (en) 2021-11-17
TWI762850B (zh) 2022-05-01
JP2022516670A (ja) 2022-03-01
CN111431678B (zh) 2021-07-30
CN111431678A (zh) 2020-07-17
US20220077983A1 (en) 2022-03-10
JP7457028B2 (ja) 2024-03-27
KR20210107838A (ko) 2021-09-01
EP3910826A4 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2020143457A1 (zh) 参考信号的传输方法和设备
CN113692059B (zh) 无线通信系统中的方法和设备
EP3573272B1 (en) Sending method and receiving method for sideband information, sending terminal and receiving terminal
TWI772312B (zh) 基於無線網絡的通信方法、終端設備和網絡設備
TWI737756B (zh) 傳輸數據的方法及裝置
TW201803382A (zh) 傳輸數據的方法、終端設備和網絡設備
US11258557B2 (en) Transmission method and device
US20220256373A1 (en) Signal processing method, device and communication device
EP3866530B1 (en) Uplink signal transmission method and device
KR20190053233A (ko) 신호 전송 방법 및 장치
CN111565458B (zh) 一种下行传输方法及其装置
WO2019095907A1 (zh) 资源映射方法、确定方法、网络侧设备及用户终端
US8543149B2 (en) Message-based approach for improved interference power estimation
KR20190054088A (ko) 신호를 전송하는 방법 및 장치
AU2016433341B2 (en) Information transmission method, network device and terminal device
CA3050335A1 (en) Signal transmission method and apparatus
CN110890953A (zh) 使用免授权频段的通信方法和通信装置
WO2018028532A1 (zh) 一种控制信道传输方法、装置及系统
CN113014363B (zh) Dmrs端口指示的方法及设备
CN112543086B (zh) 一种控制资源集合的设计方法、网络设备及终端设备
WO2024034473A1 (ja) 通信装置及び通信方法
WO2024034470A1 (ja) 通信装置、基地局及び通信方法
CN117751666A (zh) 无线通信系统中的上行链路控制信息速率匹配方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023994

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019908567

Country of ref document: EP

Effective date: 20210809