WO2024034470A1 - 通信装置、基地局及び通信方法 - Google Patents

通信装置、基地局及び通信方法 Download PDF

Info

Publication number
WO2024034470A1
WO2024034470A1 PCT/JP2023/028143 JP2023028143W WO2024034470A1 WO 2024034470 A1 WO2024034470 A1 WO 2024034470A1 JP 2023028143 W JP2023028143 W JP 2023028143W WO 2024034470 A1 WO2024034470 A1 WO 2024034470A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
transform precoder
control unit
communication device
base station
Prior art date
Application number
PCT/JP2023/028143
Other languages
English (en)
French (fr)
Inventor
大輝 前本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024034470A1 publication Critical patent/WO2024034470A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present disclosure relates to a communication device, a base station, and a communication method used in a mobile communication system.
  • the 3GPP (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, uses orthogonal frequency division multiplexing (OFDM) using a cyclic prefix (CP) as the waveform of an uplink signal.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM cyclic prefix
  • DFT-s-OFDM discrete Fourier transform spreading OFDM
  • DFT-s-OFDM is CP-OFDM to which a function of performing DFT spreading (hereinafter referred to as "transform precoder") is applied. Therefore, depending on whether or not a transform precoder is applied, it is possible to switch which waveform is used, DFT-s-OFDM or CP-OFDM.
  • a transform precoder is defined by a communication device by a network (e.g., a base station) using radio resource control (RRC) layer signaling (hereinafter referred to as "RRC signaling").
  • RRC radio resource control
  • RRC signaling the processing delay in the communication device is larger than when using signaling of a layer lower than the RRC layer, so it is difficult to apply the transform precoder at an appropriate timing depending on the situation. There is a possibility that it will not be possible to switch between the two.
  • the communication device includes a control unit and a base station that transmits downlink control information (DCI) or medium access control element (MACCE) including transform precoder information indicating whether or not to apply a transform precoder. and a receiving unit that receives data from the station.
  • the control unit determines a target frequency resource to be targeted by the transform precoder information, and applies the transform precoder to transmission of an uplink signal in the target frequency resource based on the transform precoder information. Decide whether or not to do so.
  • a base station includes a control unit that determines a target frequency resource as a target of transform precoder information indicating whether or not to apply a transform precoder, and a downlink that includes the transform precoder information. and a transmitter that transmits control information (DCI) or medium access control element (MACCE) to the communication device.
  • DCI control information
  • MACCE medium access control element
  • the communication method is a communication method executed by a communication device.
  • the communication method includes the steps of receiving, from a base station, downlink control information (DCI) or medium access control element (MACCE) including transform precoder information indicating whether or not to apply a transform precoder; determining a target frequency resource that is a target of form precoder information; and determining whether to apply the transform precoder to uplink signal transmission in the target frequency resource based on the transform precoder information. a step of determining.
  • DCI downlink control information
  • MACCE medium access control element
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a protocol stack according to the embodiment.
  • FIG. 3 is a diagram for explaining application of the transform precoder.
  • FIG. 4 is a diagram showing the configuration of the UE according to the embodiment.
  • FIG. 5 is a diagram showing the configuration of a base station according to the embodiment.
  • FIG. 6 is a sequence diagram for explaining an operation example according to the embodiment.
  • the present disclosure provides a communication device, a base station, and a communication method that can dynamically switch the waveform of an uplink signal using signaling of a layer lower than the RRC layer and appropriately transmit it. is one of the objectives.
  • the mobile communication system 1 is, for example, a system that complies with the 3GPP Technical Specification (TS).
  • TS Technical Specification
  • the mobile communication system 1 will be described using as an example a 5th Generation System (5G system) of the 3GPP standard, that is, a mobile communication system based on NR (New Radio).
  • 5G system 5th Generation System
  • NR New Radio
  • the mobile communication system 1 includes a network 10 and a user equipment (UE) 100 that communicates with the network 10.
  • the network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • the UE 100 is a communication device that communicates via the base station 200.
  • UE 100 may be a device used by a user.
  • the UE 100 is, for example, a mobile device such as a mobile phone terminal such as a smartphone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • UE 100 may be a vehicle (for example, a car, a train, etc.) or a device installed therein.
  • the UE 100 may be a transport aircraft other than a vehicle (for example, a ship, an airplane, etc.) or a device installed therein.
  • UE 100 may be a sensor or a device provided therein.
  • the UE 100 includes a terminal, a terminal device, a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, It may also be referred to by other names, such as a remote station, remote terminal, remote device, or remote unit.
  • the UE 100 is an example of a terminal, and the terminal may include factory equipment and the like.
  • the NG-RAN 20 includes multiple base stations 200.
  • Each base station 200 manages at least one cell.
  • a cell constitutes the smallest unit of communication area.
  • One cell belongs to one frequency (carrier frequency).
  • the term "cell" may represent a wireless communication resource, and may also represent a communication target of the UE 100.
  • Each base station 200 can perform wireless communication with the UE 100 located in its own cell.
  • the base station 200 communicates with the UE 100 using a RAN protocol stack. Details of the protocol stack will be described later.
  • the base station 200 is connected to other base stations 200 (which may be referred to as adjacent base stations) via the Xn interface.
  • Base station 200 communicates with neighboring base stations via the Xn interface.
  • the base station 200 also provides NR user plane and control plane protocol termination for the UE 100, and is connected to the 5GC 30 via the NG interface.
  • gNodeB gNodeB
  • the 5GC30 includes a core network device 300.
  • the core network device 300 includes, for example, an AMF (Access and Mobility Management Function) and/or a UPF (User Plane Function).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF performs mobility management of UE 100.
  • UPF provides functions specialized for U-plane processing.
  • AMF and UPF are connected to base station 200 via the NG interface.
  • the protocols in the wireless section between the UE 100 and the base station 200 include a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convert) layer.
  • a physical (PHY) layer a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convert) layer.
  • ence Protocol It has an RRC layer.
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of UE 100 and the PHY layer of base station 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing using hybrid ARQ (HARQ), random access procedures, etc.
  • Data and control information are transmitted between the MAC layer of UE 100 and the MAC layer of base station 200 via a transport channel.
  • the MAC layer of base station 200 includes a scheduler.
  • the scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and resources to be allocated to the UE 100.
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of UE 100 and the RLC layer of base station 200 via logical channels.
  • the PDCP layer performs header compression/expansion, and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer is the link between IP flow, which is the unit in which the core network performs QoS (Quality of Service) control, and radio bearer, which is the unit in which the AS (Access Stratum) performs QoS control. Perform mapping.
  • the RRC layer controls logical channels, transport channels and physical channels according to the establishment, re-establishment and release of radio bearers.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200.
  • the UE 100 When there is an RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in an RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in an RRC idle state. When the RRC connection between the RRC of the UE 100 and the RRC of the base station 200 is suspended, the UE 100 is in an RRC inactive state.
  • the NAS layer located above the RRC layer in the UE 100 performs session management and mobility management of the UE 100.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300.
  • the UE 100 has an application layer, etc. in addition to the wireless interface protocol.
  • radio frame configuration In 5G systems, downlink and uplink transmissions are configured within radio frames of 10 ms duration.
  • a radio frame is composed of 10 subframes.
  • one subframe may be 1 ms.
  • one subframe may be composed of one or more slots.
  • the number of symbols constituting one slot is 14 in a normal CP (Cyclic Prefix) and 12 in an extended CP. Further, the number of slots constituting one subframe changes depending on the set subcarrier interval.
  • the number of slots per subframe is 1 (i.e., 14 symbols), and if the subcarrier spacing is set to 30kHz, the number of slots per subframe is If the number of slots per subframe is 2 (i.e., 28 symbols) and 60kHz is set as the subcarrier spacing, the number of slots per subframe is 4 (i.e., 56 symbols) and the subcarrier spacing is 120kHz. is set, the number of slots per subframe is 8 (ie, 128 symbols). Further, when 60 kHz is set as the subcarrier interval for the extended CP, the number of slots per subframe is 4 (that is, 48 symbols).
  • the number of slots constituting one subframe is determined based on the subcarrier interval set by base station 200. Furthermore, the number of symbols constituting one subframe is determined based on the subcarrier interval set by base station 200. That is, the number of symbols constituting a 1 ms subframe is determined based on the subcarrier interval set by base station 200, and the length of each symbol (length in the time direction) changes.
  • the waveform of the signal transmitted and received by the mobile communication system 1 may be cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM) or discrete Fourier transform spread-orthogonal frequency division multiplexing (DFT-s-OFDM).
  • the downlink transmission waveform may be ODFM using a cyclic prefix (CP).
  • the uplink transmit waveform may be ODFM using CP with a transform precoding function that performs DFT spreading, which can be disabled or enabled.
  • FR Frequency Range
  • subcarrier mapping of an uplink transmit waveform can be mapped to subcarriers in one or more physical resource block (PRB) interlaces.
  • PRB physical resource block
  • CP-OFDM may be used for uplink signals such as physical uplink shared channel (PUSCH) and/or phase-tracking reference signals (PTRS). It's okay to be hit.
  • CP-OFDM may be used for downlink signals such as a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • CP-OFDM may be used for a signal used for direct communication between the UEs 100, such as a sidelink signal (eg, physical sidelink shared channel (PSSCH)).
  • PSSCH physical sidelink shared channel
  • CP-OFDM is a multicarrier waveform
  • PAPR peak to average power ratio
  • CP-OFDM is a multicarrier waveform
  • RS reference signal
  • the transmission band of the CP-OFDM transmission signal is not limited to a continuous frequency band (for example, one or more consecutive physical resource blocks (PRBs)), but also a discontinuous frequency band (for example, a plurality of discontinuous PRBs).
  • PRBs physical resource blocks
  • DFT-s-OFDM there are fewer restrictions on scheduling than DFT-s-OFDM. Therefore, for example, in a cell where the load is higher than a predetermined level, frequency use efficiency can be improved by using CP-OFDM.
  • DFT-s-OFDM Since DFT-s-OFDM has a single carrier waveform, it can reduce PAPR more than CP-OFDM. Therefore, power close to maximum rated power can be used, and a higher order modulation method and/or higher coding rate can be used. As a result, the power consumption of the UE 100 and/or the cost of the UE 100 can be reduced. Additionally, it becomes easier to secure a coverage area.
  • DFT-s-OFDM the transmission data sequence and RS of a certain UE 100 are time-division multiplexed onto different symbols. That is, the transmission data sequence and RS of a certain UE 100 are not frequency division multiplexed on different subcarriers of the same symbol, which is different from CP-OFDM. Further, the transmission band of the DFT-s-OFDM transmission signal is limited to a continuous frequency band (for example, one or more continuous PRBs).
  • DFT-s-OFDM differs from CP-OFDM shown in FIG. 5B shown in FIG. 3B in that it includes a transform precoder.
  • DFT-s-OFDM is CP-OFDM to which a transform precoder is applied.
  • the transform precoder may be a function that performs DFT spreading.
  • the transform precoder may also be referred to as transform precoding, DFT precoder, DFT precoding, or the like.
  • the encoded and modulated transmission data sequence or RS is input to an M-point DFT and transformed from the time domain to the frequency domain.
  • the output from the DFT is mapped to M subcarriers, input to an N-point Inverse Fast Fourier Transform (IFFT), and transformed from the frequency domain to the time domain.
  • IFFT Inverse Fast Fourier Transform
  • DFT may be replaced with Fast Fourier Transform (FFT)
  • IFFT may be replaced with Inverse Discrete Fourier Transform (IDFT).
  • N>M the input information to the IFFT that is not used is set to zero.
  • N may be equal to the number of subcarriers corresponding to a given frequency bandwidth (eg, bandwidth portion (BWP) or cell bandwidth).
  • M may be the number of subcarriers corresponding to the transmission bandwidth.
  • the output of the IFFT becomes a signal whose instantaneous power fluctuation is small and whose bandwidth depends on M.
  • the output from the IFFT is subjected to parallel-to-serial (P/S) conversion, and a CP is added.
  • CP is also called guard interval (GI).
  • GI guard interval
  • the encoded and modulated transmission data sequence and/or RS is mapped to a number of subcarriers equal to the transmission bandwidth and input to the IFFT. Input information to the IFFT that is not used is set to zero. The output from the IFFT is P/S converted and a CP is inserted. In this way, in CP-OFDM, since multicarriers are used, RS and transmission data sequences can be frequency division multiplexed. Note that it goes without saying that the transmission data sequence may be transmitted without frequency division multiplexing with the RS.
  • DFT-s-OFDM and CP-OFDM are in a trade-off relationship, so DFT-s-OFDM and CP-OFDM are It is desirable to switch between s-OFDM and CP-OFDM. Note that DFT-s-OFDM and CP-OFDM are switched depending on whether or not a transform precoder is applied.
  • RRC signaling radio resource control layer signaling
  • the target of instructions regarding whether to apply a transform precoder is not specified. For example, it is not specified in which serving cell and/or in which uplink bandwidth portion (UL BWP) the instruction is applied to PUSCH transmission and reception. For this reason, there is a concern that PUSCH transmission and reception cannot be performed between the base station 200 and the UE 100.
  • UL BWP uplink bandwidth portion
  • RRC radio resource control
  • the setting information regarding the transform precoder may be, for example, at least one of the following information.
  • the configuration information may be transmitted from the base station 200 to the UE 100 using a radio resource control (RRC) message. That is, base station 200 may transmit an RRC message including configuration information regarding the transform precoder to UE 100. Furthermore, the UE 100 may determine whether to apply a transform precoder to the uplink signal based on the configuration information included in the RRC message.
  • RRC radio resource control
  • the configuration information regarding the transform precoder includes configuration information (e.g., PUSCH- config).
  • PUSCH-config is included in the information (eg, BWP-UplinkDedicated) used to configure UE-specific parameters of one uplink BWP.
  • PUSCH transmissions are in a Downlink Control Information (DCI) format appended with a Cyclic Redundancy Check (CRC) (CRC parity bits) scrambled by a Cell Radio Network Temporary Identifier (C-RNTI) (i.e. used for PUSCH scheduling).
  • DCI format Downlink Control Information
  • CRC Cyclic Redundancy Check
  • C-RNTI Cell Radio Network Temporary Identifier
  • Enabling or disabling transform precoding for PUSCH transmission is configured in the UE 100 using transform precoder information (specifically, transformPrecoder), which is a parameter included in PUSCH-config. Ru.
  • Transform precoder information (transformPrecoder) is used for UE-specific selection of a transform precoder for PUSCH. If the transform precoder information (transformPrecoder) field does not exist, the UE 100 applies the value of the "msg3-transformPrecoder" field. Note that "msg3-transformPrecoder" is included in RACH-ConfigCommon.
  • the configuration information regarding the transform precoder may be configuration information (for example, ConfiguredGrantConfig) for configuring uplink transmission without a dynamic grant.
  • ConfiguredGrantConfig may be used to configure dynamic unlicensed uplink transmission according to two possible schemes.
  • the actual uplink grant may be configured via RRC and the physical downlink control channel (Configured Scheduling - addressed to the Radio Network Temporary Identifier (CS-RNTI)).
  • PDCCH Physical Downlink control channel
  • the two types of transmission without dynamic permission are CG (Configured Grant) type 1 PUSCH transmission and CG type 2 PUSCH transmission.
  • uplink grant is provided via RRC.
  • the uplink permission is stored as the configured uplink permission.
  • uplink permission is provided by PDCCH. That is, uplink grants are transmitted on PDCCH, used for PUSCH scheduling, and provided by DCI format with CS-RNTI.
  • the uplink permission is saved or cleared as a configured uplink permission based on L1 signaling indicating activation or deactivation of the configured uplink permission.
  • CG type 1 PUSCH transmission and CG type 2 PUSCH transmission are configured by RRC for the serving cell for each BWP.
  • the UE 100 stores the provided uplink permission and considers that the stored uplink permission has occurred at a predetermined timing.
  • the predetermined timing may be, for example, timing according to a period and/or an offset set using an RRC message.
  • UE 100 performs PUSCH transmission at predetermined timing.
  • ConfiguredGrantConfig is included in BWP-UplinkDedicated, which is used to configure UE-specific parameters of one uplink BWP.
  • ConfiguredGrantConfig includes transform precoder information (specifically, transformPrecoder).
  • transformPrecoder transform precoder information
  • the UE 100 can enable or disable transform precoding for CG type 1 PUSCH transmission/CG type 2 PUSCH transmission. Set. Therefore, the transform precoder information (transformPrecoder) enables or disables the transform precoder for type 1 and type 2. If the transform precoder information (transformPrecoder) field does not exist, UE 100 enables or disables transform precoding according to the “msg3-transformPrecoder” field in RACH-ConfigCommon, which will be described later.
  • the configuration information regarding the transform precoder may be configuration information (eg, RACH-ConfigCommon) for specifying cell-specific random access (RA) parameters.
  • RACH-ConfigCommon is used to specify cell-specific RA parameters.
  • RACH-ConfigCommon may be configuration information regarding random access procedures.
  • RACH-ConfigCommon is included in information (eg, BWP-UplinkCommon) used to configure cell-specific parameters (ie, common parameters) of one uplink BWP.
  • RACH-ConfigCommon includes transform precoder information (msg3-transformPrecoder).
  • msg3-transformPrecoder is Msg. 3 Enable the transmit transform precoder.
  • the UE 100 disables the transform precoder. Therefore, using the transform precoder information (msg3-transformPrecoder), which is a parameter included in RACH-ConfigCommon, Msg. 3 (UL-SCH of Msg. 3) is set in the UE 100 to enable (or disable) transform precoding for PUSCH transmission.
  • msg3-transformPrecoder which is a parameter included in RACH-ConfigCommon
  • Msg. 3. PUSCH transmission is performed in DCI format (i.e., DCI format used for PUSCH scheduling) with CRC added with scrambled by random access (RA) response grant (RA) or temporary C-RNTI (TC-RNTI). format).
  • RA response permission is given by Msg. 2 (ie, random access response).
  • the RA response grant is sent as a MAC payload for the RA response.
  • the configuration information regarding the transform precoder is configuration information for specifying the physical uplink shared channel (PUSCH) allocation for message A in the two-step RA type procedure (e.g., MsgA-PUSCH-Config). It may be.
  • MsgA-PUSCH-Config is used to specify the PUSCH assignment for message A in a two-step RA type procedure.
  • MsgA-PUSCH-Config may be configuration information regarding random access procedures.
  • MsgA-PUSCH-Config includes transform precoder information (msgA-TransformPrecoder). msgA-TransformPrecoder enables or disables the transform precoder for MsgA transmission.
  • Msg. Validity or invalidity of transform precoding for PUSCH transmission for Msg.A (specifically, UL-SCH of Msg.A) is set in the UE 100.
  • Msg. A PUSCH transmission is performed using the PUSCH resource configured with the parameters (for example, MsgA-PUSCH-Resource) included in MsgA-PUSCH-Config.
  • MsgA-PUSCH-Resource is included in BWP-UplinkCommon used to configure cell-specific parameters (common parameters) of one uplink BWP.
  • the UE 100 performs PUSCH transmission scheduled by an uplink grant (UL grant) (i.e., RA response grant) in a random access (RA) response, or DCI format 0 CRC scrambled by TC-RNTI (Temporary C-RNTI). Even if transform precoding is enabled or disabled according to transform precoder information (specifically, parameter: msg3-transformPrecoder) for PUSCH transmission scheduled by -0, good.
  • UL grant i.e., RA response grant
  • RA random access
  • TC-RNTI Temporal C-RNTI
  • the UE 100 performs Msg. of the RA procedure.
  • enable/disable of transform precoding may be applied according to transform precoder information (specifically, parameter: msgA-TransformPrecoder). If the parameter: msgA-TransformPrecoder is not set, the UE 100 transmits the Msg. A.
  • enable/disable of transform precoding may be applied according to the parameter: msg3-transformPrecoder.
  • DCI format 0_0 If DCI format 0_0 is received (i.e., PUSCH transmission is scheduled by DCI format 0_0), the UE 100 enables/disables transform precoding according to the parameter: msg3-transformPrecoder. disabled) may also be applied.
  • DCI format 0_0 is not received (i.e. PUSCH transmission was scheduled by DCI format 0_1/0_2), (a) If the parameter included in PUSCH-Config: transformPrecoder is set; The UE 100 may apply enable/disable of transform precoding according to transformPrecoder, which is a parameter included in push-Config. (ii) If DCI format 0_0 is not received, (b) If the parameter: transformPrecoder included in PUSCH-Config is not set, the UE 100 performs transform precoding according to the parameter: msg3-transformPrecoder. Enabled/disabled may also be applied.
  • the UE 100 may apply enabled/disabled transform precoding to PUSCH transmission based on the configured grant in the following cases (i) and (ii).
  • the UE 100 can enable/disable transform precoding according to the parameter: transformPrecoder included in ConfiguredGrantConfig. by applying (disabled) Good too.
  • the UE 100 may apply enable/disable of transform precoding according to the parameter: msg3-transformPrecoder. .
  • whether or not to apply the transform precoder is switched by RRC signaling.
  • whether or not to apply the transform precoder may be rephrased as whether or not to enable the transform precoder, or whether or not to activate the transform precoder.
  • UE configuration The configuration of the UE 100 according to the embodiment will be described with reference to FIG. 4.
  • UE 100 includes a communication section 110 and a control section 120.
  • the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200.
  • the communication unit 110 includes at least one transmitting unit 111 and at least one receiving unit 112.
  • the transmitting section 111 and the receiving section 112 may be configured to include a plurality of antennas and RF circuits.
  • An antenna converts a signal into radio waves and radiates the radio waves into space. Further, the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuit performs analog processing of signals transmitted and received via the antenna.
  • the RF circuit may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the control unit 120 performs various controls in the UE 100.
  • Control unit 120 controls communication with base station 200 via communication unit 110.
  • the operations of the UE 100 described above and below may be operations under the control of the control unit 120.
  • the control unit 120 may include at least one processor that can execute a program and a memory that stores the program.
  • the processor may execute the program to perform the operations of the control unit 120.
  • the control unit 120 may include a digital signal processor that digitally processes signals transmitted and received via the antenna and the RF circuit.
  • the digital processing includes processing of the RAN protocol stack. Note that the memory stores a program executed by the processor, parameters related to the program, and data related to the program.
  • Memory is ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Program
  • the memory may include at least one of a random access memory (RAM), and a flash memory. All or part of the memory may be contained within the processor.
  • the receiving unit 112 transmits downlink control information (DCI) or medium access control element (MACCE) including transform precoder information indicating whether or not to apply a transform precoder to the base station. It is received from station 200.
  • Control unit 120 of UE 100 determines a target frequency resource to be used as the target of transform precoder information. Based on the transform precoder information, the control unit 120 determines whether to apply a transform precoder to the transmission of uplink signals in the target frequency resource. Thereby, the UE 100 can dynamically switch the waveform of an uplink signal and transmit it in the target frequency resource targeted by the transform precoder information.
  • DCI downlink control information
  • MACCE medium access control element
  • the receiving unit 112 receives downlink control information (DCI) or medium access control element (MAC CE) including transform precoder information indicating whether to apply a transform precoder from the base station 200.
  • DCI downlink control information
  • MAC CE medium access control element
  • the control unit 120 sets a first parameter to be used when a transform precoder is applied, and a first parameter to be used when a transform precoder is not applied. Decide which of the two parameters to use.
  • the UE 100 determines either the first parameter or the second parameter for the parameters set for the target of the transform precoder information included in the DCI or MAC CE, thereby enabling the transform precoder Parameters related to the application of can be switched, and dynamic parameter switching is possible.
  • Base station configuration The configuration of base station 200 according to the embodiment will be described with reference to FIG. 5.
  • Base station 200 includes a communication section 210, a network communication section 220, and a control section 230.
  • the communication unit 210 receives a wireless signal from the UE 100 and transmits the wireless signal to the UE 100.
  • the communication unit 210 includes at least one transmitting unit 211 and at least one receiving unit 212.
  • the transmitter 211 and the receiver 212 may be configured to include an RF circuit.
  • the RF circuit performs analog processing of signals transmitted and received via the antenna.
  • the RF circuit may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the network communication unit 220 transmits and receives signals to and from the network.
  • the network communication unit 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to the adjacent base stations.
  • the network communication unit 220 receives a signal from the core network device 300 connected via the NG interface, and transmits the signal to the core network device 300, for example.
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls communication with the UE 100 via the communication unit 210, for example. Further, the control unit 230 controls communication with nodes (eg, adjacent base stations, core network devices 300) via the network communication unit 220, for example.
  • the operations of the base station 200 described above and below may be operations under the control of the control unit 230.
  • the control unit 230 may include at least one processor that can execute a program and a memory that stores the program.
  • the processor may execute the program to perform the operations of the control unit 230.
  • the control unit 230 may include a digital signal processor that digitally processes signals transmitted and received via the antenna and the RF circuit.
  • the digital processing includes processing of the RAN protocol stack. Note that the memory stores a program executed by the processor, parameters related to the program, and data related to the program. All or part of the memory may be contained within the processor.
  • the control unit 230 determines the target frequency resource to be the target of transform precoder information indicating whether or not to apply a transform precoder.
  • the transmitter 211 transmits downlink control information (DCI) or medium access control element (MAC CE) including transform precoder information to the UE 100.
  • DCI downlink control information
  • MAC CE medium access control element
  • the UE 100 can dynamically switch the waveform of an uplink signal and transmit it in the target frequency resource targeted by the transform precoder information.
  • the base station 200 can receive uplink signals whose waveforms have been dynamically switched.
  • Step S101 The transmitter 111 of the UE 100 may transmit to the base station 200 capability information indicating the capability of the UE 100, which is used to determine a predetermined time period to be described later.
  • the receiving unit 212 of the base station 200 may receive capability information from the UE 100.
  • the capability information determines time resources (for example, also referred to as resources in the time domain) for PUSCH transmission based on transform precoder information (hereinafter referred to as TP information or first TP information) included in the DCI or MAC CE, for example. It may be wireless access capability for
  • the transmitter 111 of the UE 100 may transmit, for example, a UE capability information message (UECapabilityInformation) including capability information to the base station 200.
  • UECapabilityInformation UECapabilityInformation
  • the control unit 230 of the base station 200 may determine timing information, which will be described later, based on capability information from the UE 100.
  • Step S102 The transmitter 211 of the base station 200 may transmit to the UE 100 an RRC message including timing information for determining timing (appropriately referred to as predetermined timing), which will be described later.
  • the receiving unit 112 of the UE 100 may receive timing information from the base station 200.
  • the timing information is information for determining the timing after a predetermined time has elapsed after receiving the TP information included in the DCI or MAC CE (that is, the predetermined timing).
  • the timing information may include, for example, information for determining time resources for PUSCH transmission based on TP information.
  • the information may indicate the slot, symbol, and/or starting position in which PUSCH transmission is performed.
  • the timing information sets the relationship between the slot, symbol, and/or starting position at which DCI or MAC CE including TP information is received and the slot, symbol, and/or starting position at which PUSCH transmission is performed. It may also be used to (prescribe).
  • the UE 100 When the UE 100 receives DCI or MAC CE including TP information in a certain slot, a certain symbol, and/or a certain starting position, the UE 100 determines the timing of the certain slot, the certain symbol, and/or the certain starting position, and the timing. PUSCH transmission may be performed based on the information.
  • the timing information may include information indicating the time until a predetermined timing based on reception of the PDCCH.
  • the timing information may include information indicating an offset value from a reference value for normal PUSCH transmission, or may include information indicating an offset value from a timing offset from a reference value for normal PUSCH transmission.
  • the timing information may include information indicating the validity period of the transform precoder information.
  • the transmitter 211 of the base station 200 may transmit an RRC message including timing information to the UE 100.
  • the RRC message may include configuration information regarding PUSCH configuration.
  • the configuration information may include timing information that is applied individually to the configuration information.
  • the timing information may include information common to multiple types of setting information regarding PUSCH.
  • the multiple types of configuration information may include, for example, at least one of PUSCH-config, ConfiguredGrantConfig, RACH-ConfigCommon, and MsgA-PUSCH-Config.
  • the transmitter 211 of the base station 200 may transmit an RRC message including target designation information that designates a target frequency resource, which will be described later, to the UE 100.
  • the receiving unit 112 of the UE 100 may receive target designation information from the base station 200.
  • Frequency resources are also referred to as resources in the frequency domain.
  • the target specification information may include information specifying the serving cell.
  • the targeting information may include information specifying a cell group.
  • the target specification information may include information specifying uplink BWP. That is, the targeting information may include one or more cell group indices, one or more serving cell indices, and/or one or more uplink BWP indices. In this embodiment, specifying may be used in the same meaning as setting.
  • the transmitter 211 of the base station 200 may transmit an RRC message including both the first parameter and the second parameter to the UE 100. Note that the transmitter 211 of the base station 200 may transmit the first parameter and the second parameter to the UE 100 in separate RRC messages.
  • the first parameter and/or the second parameter may be a parameter set for the target of transform precoder information.
  • the first parameter is used when a transform precoder is applied.
  • the second parameter is used when a transform precoder is not applied.
  • the parameters include a parameter related to a sequence of DMRS (Demodulation Reference Signal) related to PUSCH, a parameter related to a sequence of PTRS related to PUSCH, a parameter related to a sequence of PTRS related to PUSCH, and a parameter related to a sequence of PTRS related to PUSCH. It may be at least one of the parameters related to the determination of the Modulation and Channel Coding Scheme) table.
  • parameters related to the DMRS sequence related to PUSCH used when a transform precoder is applied i.e., when the transform precoder is enabled
  • a parameter related to the sequence of related PTRS and/or a parameter related to determination of the MCS table will be described as a first parameter.
  • parameters related to the sequence of DMRS related to the PUSCH, parameters related to the sequence of PTRS related to the PUSCH, and/or parameters related to the determination of the MCS table are used when a transform precoder is applied.
  • each of the parameters may be different.
  • a parameter related to a DMRS sequence related to PUSCH used when a transform precoder is applied may be the first parameter.
  • the parameter related to the PTRS sequence related to PUSCH used when the transform precoder is applied may be a third parameter.
  • the parameter related to determining the MCS table used when the transform precoder is applied may be a fourth parameter.
  • parameters related to the sequence of DMRS associated with the PUSCH used when the transform precoder is not applied i.e., when the transform precoder is disabled
  • parameters associated with the sequence of PTRS associated with the PUSCH A parameter and/or a parameter related to determining the MCS table will be referred to as a second parameter.
  • parameters related to the sequence of DMRS related to PUSCH, parameters related to the sequence of PTRS related to PUSCH, and/or parameters related to the determination of the MCS table used when a transform precoder is not applied may be different.
  • a parameter related to a DMRS sequence related to PUSCH used when a transform precoder is not applied may be a second parameter.
  • the parameter related to the PTRS sequence related to PUSCH used when the transform precoder is not applied may be the fifth parameter.
  • the parameter related to determining the MCS table used when the transform precoder is not applied may be the sixth parameter.
  • Step S103 The transmitter 211 of the base station 200 transmits DCI or MAC CE including TP information to the UE 100.
  • Receiving section 112 of UE 100 receives DCI or MAC CE including TP information from base station 200.
  • TP information indicates whether to apply a transform precoder.
  • the TP information may be information indicating whether to apply a transform precoder to the corresponding PUSCH transmission. That is, the TP information may be information indicating whether the transform precoder is valid or invalid. Further, the TP information may include target specification information.
  • the transmitter 211 may transmit DCI including TP information. Therefore, the transmitter 211 may transmit the TP information using the physical layer (ie, L1 signaling). For example, the transmitter 211 may transmit DCI including TP information on the PDCCH. Further, the transmitter 211 may transmit the MAC CE including TP information on the PDSCH.
  • the physical layer ie, L1 signaling.
  • the transmitter 211 may transmit DCI including TP information on the PDCCH.
  • the transmitter 211 may transmit the MAC CE including TP information on the PDSCH.
  • the DCI including TP information may be in the DCI format including TP information.
  • the DCI indicating whether or not to apply a transform precoder may be TP information.
  • the DCI format including TP information may be a DCI format used for PDSCH scheduling, a DCI format used for PUSCH scheduling, and/or a DCI format not used for PDSCH/PUSCH scheduling.
  • CRC parity bits scrambled by C-RNTI, CS-RNTI, and/or MCS-C-RNTI may be added to the DCI format including TP information.
  • the DCI including TP information may be included in the PDCCH order.
  • the PDCCH order may be used to initiate a random access (RA) procedure.
  • the random access procedure initiated (or directed) by the PDCCH order is also referred to as the Contention Free Random Access (CFRA) procedure.
  • CFRA Contention Free Random Access
  • a PDCCH order may initiate a 4-step CFRA procedure or a 2-step CFRA procedure.
  • the CRC of DCI format 1_0 is scrambled by C-RNTI and the frequency domain resource allocation field (i.e., frequency domain resource allocation field) is all "1"
  • DCI format 1_0 is started by the PDCCH order. It may be for RA procedures.
  • DCI format 1_0 (for example, DCI format 1_0 to which a CRC scrambled by C-RNTI is added) may be used for PDSCH scheduling. That is, when the values of the frequency domain resource allocation fields included in DCI format 1_0 are all set to "1", the DCI format 1_0 may be identified as a DCI format for PDCCH order. Further, if any value of the frequency domain resource allocation field included in DCI format 1_0 is set to a value other than "1", the DCI format 1_0 may be identified as a DCI format used for PDSCH scheduling.
  • DCI format 1_0 when DCI format 1_0 is used as a DCI format for PDCCH order, information indicating a random access preamble may be included in the DCI format 1_0.
  • the UE 100 may transmit the random access preamble.
  • the index of SS / PBCH Synchronizations Signal And / OR PHYSICAL BROADCAST CHANNEL
  • the information shown may be included.
  • TP information (DCI including TP information may be included) may be included in the DCI format 1_0.
  • reserved bits of DCI format 1_0 for PDCCH order may be used as TP information.
  • the transmitting unit 211 of the base station 200 may transmit an RRC message including information regarding a field of TP information (DCI including TP information) to the UE 100.
  • the information may be information indicating the presence or absence of a TP information field in the DCI (or DCI format), and/or information used to determine the number of bits of the field.
  • the control unit 120 of the UE 100 may determine (determine, identify) whether or not the DCI includes TP information (that is, the presence or absence of the TP information in the DCI) based on the information.
  • the transmitter 211 of the base station 200 may transmit to the UE 100 an RRC message that includes configuration information for monitoring the PDCCH for the DCI (or DCI format) that includes TP information.
  • the configuration information includes information for configuring a control resource set (for example, CORESET(s)) for monitoring PDCCH for DCI (or DCI format) including TP information, and/or information for configuring a control resource set (for example, CORESET(s)) for DCI (or DCI format) including TP information.
  • the search space set may include information for setting a search space set (Search Space Set(s)) for monitoring the PDCCH for (format).
  • the control unit 120 of the UE 100 may determine that the DCI received in the configured control resource set and/or search space set includes TP information.
  • the search space set includes a UE-specific search space set (also referred to as a USS set) and/or a common search space set (also referred to as a CSS set).
  • the transmitter 211 may transmit TP information including MAC CE. Therefore, the transmitter 211 may transmit the TP information in the MAC layer.
  • a MAC CE including TP information may be defined.
  • the MAC CE may also include TP information and a specific logical channel identifier (LCID) for identifying the MAC CE that includes the TP information.
  • the control unit 120 of the UE 100 may determine whether the MAC CE includes TP information based on a specific LCID.
  • the DCI or MAC CE may include target specification information.
  • the MAC CE may include TP information and target specification information.
  • the targeting information may include one or more cell group indices, one or more serving cell indices, and/or one or more uplink BWP indices.
  • the TP information included in the DCI or MAC CE may be referred to as first TP information.
  • the TP information included in the RRC message may be referred to as second TP information.
  • the TP information will be described as the first TP information unless otherwise specified.
  • Step S104 The control unit 120 of the UE 100 determines the target of TP information.
  • the control unit 120 determines a target frequency resource that is a target of TP information.
  • the target frequency resource may be at least one of a cell group, a serving cell, and a bandwidth portion (for example, an uplink bandwidth portion (UL BWP)). That is, the control unit 120 of the UE 100 may determine the cell group, serving cell, and/or bandwidth portion (for example, uplink bandwidth portion (UL BWP)) to which the TP information is applied.
  • the control unit 120 of the UE 100 transmits the TP information for uplink signal transmission in the cell group, the serving cell, and/or the bandwidth portion (for example, the uplink bandwidth portion (UL BWP)). may be applied.
  • control unit 120 may determine all configured serving cells and/or all uplink BWPs as target frequency resources. For example, the control unit 120 may determine all serving cells configured for the UE 100 and/or all uplink BWPs configured for the UE 100 as target frequency resources.
  • one or more uplink BWPs may be configured in one serving cell.
  • a base station may transmit an RRC message that includes information for configuring one or more uplink BWPs in each of one or more serving cells.
  • the control unit 120 may determine the target frequency resource based on the target designation information.
  • the target designation information includes information that designates a serving cell
  • the control unit 120 may determine the designated serving cell among the serving cells configured for the UE 100 as the target frequency resource.
  • the target designation information includes information that designates a cell group
  • the control unit 120 may determine the designated cell group among the cell groups configured for the UE 100 as the target frequency resource.
  • a cell group may be a master cell group and/or a secondary cell group.
  • the control unit 120 may determine the designated uplink BWP among the uplink BWPs configured for the UE 100 as the target frequency resource.
  • the control unit 120 may apply the TP information to the transmission of uplink signals in the target frequency resource determined based on the target designation information.
  • the control unit 120 may determine at least one of a serving cell scheduled using the DCI format and/or an uplink BWP as the target frequency resource. . That is, when the control unit 120 receives a DCI format including TP information, the control unit 120 determines a serving cell scheduled using the DCI format including the TP information and/or an uplink BWP as the target frequency resource. good. For example, when the control unit 120 receives a DCI format including TP information, the control unit 120 targets a serving cell and/or an uplink BWP to which PUSCH resources scheduled using the DCI format including the TP information are allocated. It may also be determined as a frequency resource. The control unit 120 may apply the TP information to the transmission of uplink signals in the target frequency resource.
  • the control unit 120 controls the uplink component carrier corresponding to the downlink component carrier on which the DCI format is received, and/or the downlink component carrier on which the DCI format is received.
  • An uplink BWP corresponding to the BWP may be determined as the target frequency resource.
  • the control unit 120 may determine as the target frequency resource an uplink BWP (for example, an uplink BWP with the same index as the downlink BWP) corresponding to the downlink BWP in which DCI including TP information has been detected. good.
  • the control unit 120 may determine the serving cell (uplink serving cell) in which the DCI format including the TP information is detected as the target frequency resource.
  • the DCI format including TP information includes the DCI format for PDCCH orders.
  • control unit 120 may determine the activated uplink BWP as the target frequency resource.
  • Step S105 Control unit 120 of UE 100 determines whether to apply a transform precoder to uplink signal transmission (for example, PUSCH transmission) in the target frequency resource. Control unit 120 determines whether to apply a transform precoder based on the TP information.
  • a transform precoder for example, PUSCH transmission
  • the control unit 120 may determine to apply a transform precoder to the transmission of uplink signals in the target frequency resource. On the other hand, if the TP information indicates that the transform precoder is not applied, the control unit 120 may determine that the transform precoder is not applied to the transmission of the uplink signal in the target frequency resource.
  • the control unit 120 When the control unit 120 receives the RRC message including the second TP information from the base station 200, the control unit 120 selects the TP information used for determining whether to apply the transform precoder, out of the first TP information and the second TP information. may be selected. That is, when the control unit 120 receives the first TP information and the second TP information, the control unit 120 determines whether or not to apply the transform precoder based on either the first TP information or the second TP information. good. For example, when the control unit 120 receives the first TP information, even if the second TP information is set (regardless of whether the second TP information is set), the control unit 120 performs a transceiver based on the first TP information.
  • the control unit 120 performs the transform based on the second TP information. It may also be determined whether or not to apply a precoder.
  • the control unit 120 determines that the second TP information is configuration information for configuring communication device-specific PUSCH parameters applicable to a specific bandwidth portion (uplink BWP) and/or uplink BWP without dynamic permission. If the first TP information is included in at least one of the setting information for setting transmission, the first TP information may be selected. That is, in this case, the control unit 120 may determine whether to apply the transform precoder based on the first TP information. For example, the control unit may select first TP information instead of second TP information included in PUSCH-config and/or ConfiguredGrantConfig.
  • the control unit 120 may select the second TP information when the second TP information is included in the setting information regarding the random access procedure. That is, in this case, the control unit 120 may determine whether to apply the transform precoder based on the second TP information.
  • the configuration information regarding the random access procedure may be RACH-ConfigCommon and/or MsgA-PUSCH-Config.
  • control unit 120 sets whether or not to apply the transform precoder based on the second TP information included in PUSCH-config and/or ConfiguredGrantConfig, and applies the transform precoder based on the first TP information.
  • it may be determined whether or not to apply the transform precoder according to the first TP information. For example, an instruction for applying a transform precoder based on the first TP information may overwrite a setting for applying a transform precoder based on the second TP information.
  • control unit 120 sets whether or not to apply the transform precoder based on the second TP information included in RACH-ConfigCommon and/or MsgA-PUSCH-Config, and also sets whether or not to apply the transform precoder based on the first TP information.
  • it may be determined whether or not to apply the transform precoder according to the second TP information. For example, an instruction for applying a transform precoder based on the first TP information does not have to overwrite a setting for applying a transform precoder based on the second TP information (for applying a transform precoder based on the second TP information). settings may be retained).
  • control unit 120 may select the first TP information instead of the second TP information included in PUSCH-config, ConfiguredGrantConfig, RACH-ConfigCommon, and/or MsgA-PUSCH-Config. That is, the control unit 120 is configured to determine whether or not to apply the transform precoder based on the second TP information included in PUSCH-config, ConfiguredGrantConfig, RACH-ConfigCommon, and/or MsgA-PUSCH-Config, and , when it is instructed whether to apply the transform precoder based on the first TP information, it may be determined whether to apply the transform precoder always according to the first TP information.
  • the control unit 120 switches whether or not to apply the transform precoder based on the TP information. If the control unit 120 determines to apply the transform precoder based on the TP information when the transform precoder is not applied to the transmission of the uplink signal in the target frequency resource, the control unit 120 applies the DFT-s-OFDM. Performs control to switch to using waveforms. On the other hand, if the transform precoder is applied to the transmission of uplink signals in the target frequency resource and the control unit 120 determines not to apply the transform precoder based on the TP information, the control unit 120 applies the CP- Control is performed to switch to use the OFDM waveform.
  • the control unit 120 may determine parameters used for transmitting uplink signals based on the TP information. Specifically, the control unit 120 controls the parameters set for the target of transform precoder information when the transform precoder is applied (that is, when the transform precoder is enabled). It is determined which of the first parameter to be used and the second parameter to be used when the transform precoder is not applied (that is, when the transform precoder is disabled) is used.
  • the control unit 120 controls, for example, parameters related to a DMRS sequence related to PUSCH (which may be PUSCH transmission), parameters related to a PTRS sequence related to PUSCH (which may be PUSCH transmission), and/or MCS (Modulation and The determined parameters are used as parameters related to determining the channel Coding Scheme) table.
  • the parameters related to determining the MCS table may include parameters related to determining the MCS table related to PUSCH transmission.
  • the control unit 120 sets the first parameter and the second parameter based on whether or not the transform precoder is applied (that is, based on whether the transform precoder is enabled or disabled). Either one of these may be used. For example, the control unit 120 may use the first parameter when a transform precoder is applied (that is, when the transform precoder is enabled). Further, the control unit 120 may use the second parameter when the transform precoder is not applied (that is, when the transform precoder is disabled). That is, the control unit 120 may determine which of the first parameter and the second parameter to use based on the TP information, and generate a DMRS sequence related to the PUSCH using the determined parameter.
  • control unit 120 may determine which of the first parameter and the second parameter to use based on the TP information, and generate a PTRS sequence related to the PUSCH using the determined parameter. Further, the control unit 120 may determine which of the first parameter and the second parameter to use based on the TP information, and determine the MCS table using the determined parameter. Here, the control unit 120 may use a parameter (first parameter or second parameter) related to the target resource determined as the target of the TP information.
  • the control unit 120 controls the target resource to which the TP information is applied (i.e., the target resource to which the TP information is applied)
  • the first parameter and/or the second parameter set for the uplink BWP to which the TP information is applied among the plurality of uplink BWPs may be used.
  • the control unit 120 may suspend (or suspend or temporarily stop) the parameter that is not used among the first parameter and the second parameter. That is, the control unit 120 sets the first parameter and the second parameter based on whether or not the transform precoder is applied (i.e., based on whether the transform precoder is enabled or disabled). Either one of the parameters may be used and the other may be suspended. For example, when a transform precoder is applied, the control unit 120 may use the first parameter and suspend the second parameter. Further, the control unit 120 may use the second parameter and suspend the first parameter when the transform precoder is not applied.
  • the control unit 120 may suspend parameters other than the parameters (first parameter or second parameter) related to the target resource determined as the target of the TP information.
  • the control unit 120 controls the target resource to which the TP information is applied (i.e., the target resource to which the TP information is applied) Or, using the first parameter and/or second parameter set for the upstream BWP to which the TP information is applied among the plurality of upstream BWPs, other parameters (the first parameter and/or, (second parameter) may be suspended. Therefore, the control unit 120 activates, for example, a parameter corresponding to the instruction of the TP information (that is, related to the target frequency resource determined as the target of the TP information) among the parameters set using the RRC message. Parameters that do not correspond to TP information (that is, not covered by TP information) may be suspended.
  • the control unit 120 determines that the transform precoder setting is active in the active BWP. Otherwise, the transform precoder configuration may be considered suspended.
  • the transform precoder setting may correspond to whether to apply the transform precoder (ie, enabling or disabling the transform precoder). Further, the transform precoder settings may include either the first parameter or the second parameter.
  • the control unit 120 controls the uplink BWP to which the transform precoder is applied (that is, the uplink signal is executed).
  • the first parameter set for the active BWP may be used (the first parameter may be considered to be active).
  • the control unit 120 controls the uplink BWP to which the transform precoder is applied (that is, the active BWP where the uplink signal is executed). ) may not be used (the second parameter may be considered to be suspend).
  • the control unit 120 controls the uplink BWP to which the transform precoder is not applied (that is, the active BWP where the uplink signal is executed). It is not necessary to use the first parameter set for (it may be assumed that the first parameter is suspend). In addition, when the invalidation of the transform precoder is instructed (or set), the control unit 120 controls the uplink BWP to which the transform precoder is not applied (that is, the active BWP where the uplink signal is executed). A second parameter may be used (the second parameter may be considered active).
  • Step S106 The transmitter 111 of the UE 100 may transmit an uplink signal (for example, PUSCH) to the base station 200.
  • the receiving unit 212 of the base station 200 may receive an uplink signal from the UE 100.
  • the control unit 120 determines to apply the transform precoder (that is, when the enablement of the transform precoder is instructed (or set))
  • the transmitting unit 111 applies the transform precoder in the target frequency resource. Transmits an uplink signal to which a precoder is applied.
  • the transmitting unit 111 may transmit the DMRS related to the PUSCH.
  • the transmitter 111 may transmit the DMRS related to the PUSCH in the target frequency resource to which the TP information is applied. Further, when the control unit 120 generates a sequence of PTRS related to the PUSCH using the first parameter, the transmitting unit 111 may transmit the PTRS related to the PUSCH. Here, the transmitter 111 may transmit the PTRS related to the PUSCH in the target frequency resource to which the TP information is applied. Further, when the control unit 120 determines the MCS table using the first parameter, the transmitting unit 111 may perform transmission on the PUSCH according to the MCS table. Here, the transmitter 111 may perform transmission on the PUSCH according to the MCS table in the target frequency resource to which the TP information is applied.
  • the transmitting unit 111 transmits an uplink signal to which the transform precoder is not applied in the target frequency resource. Further, when the control unit 120 generates a DMRS sequence related to the PUSCH using the second parameter, the transmitting unit 111 may transmit the DMRS related to the PUSCH. Here, the transmitter 111 may transmit the DMRS related to the PUSCH in the target frequency resource to which the TP information is applied. Further, when the control unit 120 generates a PTRS sequence related to the PUSCH using the second parameter, the transmitting unit 111 may transmit the PTRS related to the PUSCH.
  • the transmitter 111 may transmit the PTRS related to the PUSCH in the target frequency resource to which the TP information is applied. Further, when the control unit 120 determines the MCS table using the second parameter, the transmitting unit 111 may perform transmission on the PUSCH according to the MCS table. Here, the transmitter 111 may perform transmission on the PUSCH according to the MCS table in the target frequency resource to which the TP information is applied.
  • the transmitter 111 transmits an uplink signal to which switching regarding application of the transform precoder has been applied.
  • a link signal may be transmitted to base station 200.
  • the control unit 120 may determine the predetermined timing based on timing information. For example, the control unit 120 sets the predetermined timing to a timing later than the normal uplink signal transmission timing (normal offset timing) (for example, a slot after a predetermined slot in which the normal uplink signal is to be transmitted). You may decide. Further, the control unit 120 may determine the predetermined timing based on the ability information.
  • normal offset timing for example, a slot after a predetermined slot in which the normal uplink signal is to be transmitted. You may decide. Further, the control unit 120 may determine the predetermined timing based on the ability information.
  • control unit 120 may return whether or not the transform precoder is applied based on information indicating the validity period of the TP information. That is, when the validity period of the TP information ends, the control unit 120 may restore the switching of application of the transform precoder.
  • control unit 120 may start (or trigger or execute) a random access procedure based on reception of the DCI or MAC CE including TP information.
  • the control unit 120 performs a contention-free random access (CFRA) procedure and/or a contention-based random access (CBRA) procedure based on reception of DCI or MAC CE including TP information.
  • Random Access Random Access
  • the control unit 120 may start a 4-step CFRA procedure and/or a 2-step CFRA procedure based on reception of DCI or MAC CE including TP information.
  • a 4-step CBRA procedure and/or a 2-step CBRA procedure may be initiated based on reception of the DCI or MAC CE including TP information.
  • the control unit 120 may start the CFRA procedure based on receiving the DCI format for the PDCCH order including TP information.
  • the random access procedure may be executed in an upper layer (for example, MAC layer) in the UE 100. That is, when the lower layer (e.g., physical layer) in the UE 100 receives the DCI including the TP information, the lower layer (e.g., the physical layer) transmits the TP information (or the DCI containing the TP information) to the upper layer (e.g., the MAC layer). May be supplied (or instructed). Moreover, the upper layer (for example, MAC layer) in UE100 may start a random access procedure based on the supply of the said TP information from a physical layer.
  • the lower layer e.g., physical layer
  • the upper layer e.g., the MAC layer
  • the base station 200 configures (or ).
  • the physical random access channel resource will also be referred to as PRACH occasion(s).
  • base station 200 may transmit an RRC message that includes information indicating a random access preamble and/or information indicating a PRACH opportunity.
  • the base station 200 may transmit a random access configuration (eg, RACH-ConfigDedicated) that includes information indicating a random access preamble and/or information indicating a PRACH opportunity.
  • a DCI format for PDCCH order including information indicating a random access preamble may be transmitted. That is, the base station 200 may configure a random access preamble and/or a PRACH opportunity for a random access procedure started based on reception of TP information.
  • the UE 100 transmits a random access preamble (also referred to as message 1 or message A) based on the start of the random access procedure. Furthermore, in the two-step RA procedure, the UE 100 may perform transmission on the PUSCH after transmitting the random access preamble. Here, the UE 100 may determine whether to apply a transform precoder to the transmission on the PUSCH after transmitting the random access preamble, based on the TP information. For example, the UE 100 may apply a transform precoder to the transmission on the PUSCH after transmitting the random access preamble, based on the TP information.
  • the base station 200 may set timing information for transmission on the PUSCH after transmitting the random access preamble. For example, the base station 200 may transmit an RRC message including timing information, and the UE 100 may perform transmission on the PUSCH after transmitting the random access preamble based on the timing information. That is, the UE 100 may determine the timing (eg, slot, symbol, and/or starting position) for transmission on the PUSCH after transmitting the random access preamble, based on the timing information. For example, the base station 200 may transmit a random access configuration (eg, RACH-ConfigDedicated) that includes timing information.
  • RACH-ConfigDedicated e.g, RACH-ConfigDedicated
  • the UE 100 also receives a random access response (RA response) (also referred to as message 2 or message B).
  • RA response also referred to as message 2 or message B
  • the UE 100 may monitor a DCI (which may also be a PDCCH) to which a CRC scrambled by the C-RNTI is added in order to receive a random access response (that is, receive a random access response on the PDSCH).
  • the base station 200 transmits information indicating a DC monitored time window (also referred to as ra-Response Window) to which a CRC scrambled by C-RNTI is added and/or information indicating a search space set.
  • An RRC message containing the information may be sent.
  • the search space set includes a USS set and/or a CSS set.
  • the base station 200 may set information indicating a time window and/or a search space set for the random access procedure started based on reception of the TP information. For example, the base station 200 transmits an RRC message including information indicating a time window and/or information indicating a search space set, and the UE 100 transmits a C- DCI to which a CRC with scrambled RNTI is added may be monitored. The UE 100 may consider that the random access procedure has been successfully completed based on the reception (or detection) of the DCI with the scrambled CRC added to the C-RNTI.
  • the UE 100 may also apply a transform precoder according to the TP information based on the successful completion of the random access procedure. Also, the UE 100 may not apply the transform precoder according to the TP information based on the successful completion of the random access procedure. That is, the UE 100 may perform uplink signal transmission according to the TP information based on the successful completion of the random access procedure.
  • the base station 200 may set timing information for uplink signal transmission based on the successful completion of the random access procedure. For example, the base station 200 transmits an RRC message including timing information, and the UE 100 transmits an uplink signal according to the TP information based on the timing information after the random access procedure is successfully completed. May be executed. For example, the UE 100 may perform uplink signal transmission according to the TP information after the random access procedure is successfully completed and after the time timing indicated by the timing information.
  • the UE 100 may execute uplink signal transmission according to the TP information. For example, the UE 100 may transmit an uplink signal according to the TP information after processing the timing advance command included in the random access response.
  • the UE 100 may perform transmission on the PUSCH (or transmission on the UL-SCH) based on the random access response. For example, the UE 100 may perform transmission on the PUSCH based on a random access response grant (RA response permission) included in the random access response (also referred to as message 3). For example, UE 100 may apply a transform precoder to transmission on the PUSCH based on TP information. Furthermore, the UE 100 does not need to apply a transform precoder to transmission on the PUSCH based on the TP information.
  • the base station 200 may set timing information for transmission on the PUSCH.
  • the base station 200 may transmit an RRC message including timing information, and the UE 100 may perform transmission on the PUSCH based on the timing information. That is, the UE 100 may determine the timing of transmission ((eg, slot, symbol, and/or starting position)) on the PUSCH based on the timing information.
  • the base station 200 may transmit a random access configuration (eg, RACH-ConfigDedicated) that includes timing information.
  • the base station 200 may include the timing information in the random access response and transmit it.
  • the UE 100 may receive contention resolution (also referred to as message 4). For example, the UE 100 may consider that the random access procedure has been successfully completed based on contention resolution reception (or detection). As mentioned above, the UE 100 may apply a transform precoder according to the TP information based on the successful completion of the random access procedure. Also, the UE 100 may not apply the transform precoder according to the TP information based on the successful completion of the random access procedure. That is, the UE 100 may perform uplink signal transmission based on the TP information based on the successful completion of the random access procedure. The base station 200 may also set timing information for uplink signal transmission based on the successful completion of the random access procedure.
  • the base station 200 may transmit an RRC message including timing information, and the UE 100 may perform uplink signal transmission based on the timing information after the random access procedure is successfully completed. .
  • the UE 100 may perform uplink signal transmission after the random access procedure is successfully completed and the time timing indicated by the timing information.
  • the receiving unit 112 of the UE 100 transmits downlink control information (DCI) or medium access control element (MAC CE) including transform precoder information indicating whether or not to apply a transform precoder to the base station 200.
  • DCI downlink control information
  • MAC CE medium access control element
  • Control unit 120 of UE 100 determines a target frequency resource to be used as the target of transform precoder information. Based on the transform precoder information, the control unit 120 determines whether to apply a transform precoder to the transmission of uplink signals in the target frequency resource. Thereby, the UE 100 can dynamically switch the waveform of an uplink signal and transmit it in the target frequency resource targeted by the transform precoder information. Thereby, the UE 100 can dynamically switch the waveform of an uplink signal and transmit it in the target frequency resource targeted by the transform precoder information.
  • the base station 200 can receive uplink signals whose waveforms have been dynamically switched.
  • control unit 120 determines all serving cells configured for the UE 100 or all uplink BWPs configured for the UE 100 as target frequency resources. As a result, the UE 100 becomes the target of the TP information, so that the base station 200 and the UE 100 can commonly recognize the target frequency resource without exchanging target designation information.
  • the receiving unit 112 may receive target designation information that designates target frequency resources from the base station 200.
  • the control unit 120 may determine the target frequency resource based on the target designation information. Thereby, the recognition of the target frequency resource can be shared between the base station 200 and the UE 100.
  • the target specification information may include information that specifies the serving cell as the target frequency resource.
  • the control unit 120 may determine a designated serving cell among the serving cells configured for the UE 100 as the target frequency resource. Thereby, even if a plurality of serving cells are configured in the UE 100, it is possible to flexibly control the serving cell that is the target of the TP information.
  • the target designation information may include information that designates a cell group as a target frequency resource. Based on the target designation information, the control unit 120 may determine a designated cell group among the cell groups configured for the UE 100 as the target frequency resource. Even if a plurality of cell groups are set in the UE 100, the cell groups that are the targets of TP information can be flexibly controlled.
  • the target designation information may include information that designates uplink BWP as the target frequency resource. Based on the target designation information, the control unit 120 can determine a designated uplink BWP among the uplink BWPs configured for the UE 100 as a target frequency resource. Even if a plurality of uplink BWPs are configured in the UE 100, it is possible to flexibly control the uplink BWP that is the target of TP information.
  • the receiving unit 112 may receive a radio resource control (RRC) message including target designation information from the base station 200.
  • RRC radio resource control
  • the RRC message can send a larger amount of information than DCI and MAC CE, making it easier to flexibly specify the target of TP information.
  • the receiving unit 112 may receive a MAC CE including target designation information from the base station 200. This makes it possible to dynamically switch the target of TP information compared to RRC signaling.
  • the MAC CE may receive a MAC CE including TP information and target specification information from the base station 200. Thereby, the UE 100 can immediately grasp the target of the TP information.
  • the DCI may be in a DCI format that includes TP information.
  • the control unit 120 may determine at least one of the serving cell and uplink BWP scheduled using the DCI format as the target frequency resource. Thereby, the UE 100 can grasp the target of TP information without explicitly specifying the target of TP information.
  • the DCI may be in a DCI format that includes TP information.
  • the control unit 120 may determine the uplink component carrier corresponding to the downlink component carrier on which the DCI format is received or the uplink BWP corresponding to the downlink BWP on which the DCI format is received as the target frequency resource. Thereby, the UE 100 can grasp the target of TP information without explicitly specifying the target of TP information.
  • the TP information may be first TP information.
  • the receiving unit 112 may receive a radio resource control (RRC) message including second TP information indicating whether to apply a transform precoder from the base station.
  • RRC radio resource control
  • the control unit 120 may select TP information used for determining whether to apply a transform precoder from among the first TP information and the second TP information. Thereby, application of the transform precoder can be flexibly controlled using the first TP information and the second TP information.
  • the control unit 120 also determines that the second TP information includes configuration information for configuring communication device-specific physical uplink shared channel (PUSCH) parameters applicable to a specific bandwidth portion (BWP), and dynamic permission. If the first TP information is included in at least one of the configuration information for configuring uplink transmission without the first TP information, the first TP information may be selected. That is, when the control unit 120 receives a communication device-specific parameter including the second TP information (that is, when the second TP information is set as a communication device-specific parameter), the control unit 120 performs a transform preform based on the first TP information. It may also be determined whether or not to apply a coder. Regarding these configuration information, the base station 200 can switch whether to apply the transform precoder at an appropriate timing using lower layer signaling. Furthermore, the base station 200 can perform efficient transform precoder switching specific to the communication device.
  • PUSCH physical uplink shared channel
  • BWP bandwidth portion
  • control unit 120 may select the second TP information when the second TP information is included in the setting information regarding the random access procedure. That is, when the control unit 120 receives a cell-specific parameter including the second TP information (that is, when the second TP information is set as a cell-specific parameter), the control unit 120 executes a transform precoder based on the second TP information. You may decide whether to apply it or not. Thereby, base station 200 can perform optimal transform precoder switching in consideration of the situation of the entire cell.
  • the receiving unit 112 may receive from the base station 200 a radio resource control (RRC) message that includes information regarding a field in the DCI that includes TP information. Thereby, the UE 100 can understand whether or not the DCI includes TP information.
  • RRC radio resource control
  • the receiving unit 112 may receive from the base station 200 a radio resource control (RRC) message including configuration information for monitoring DCI including TP information.
  • RRC radio resource control
  • the UE 100 can understand whether or not the DCI includes TP information.
  • the UE 100 can control a control resource set (i.e., a resource in the frequency domain) and/or a search space set (i.e., a resource in the time domain) for monitoring DCI including TP information.
  • the receiving unit 112 may receive from the base station 200 a MAC CE that includes TP information and a specific logical channel identifier for identifying the MAC CE that includes the TP information. Thereby, the UE 100 can grasp whether TP information is included in the MAC CE.
  • the receiving unit 112 receives downlink control information (DCI) or medium access control element (MAC CE) including transform precoder information indicating whether to apply a transform precoder from the base station 200.
  • DCI downlink control information
  • MAC CE medium access control element
  • the control unit 120 includes a first parameter used when a transform precoder is applied, and a first parameter used when a transform precoder is not applied.
  • the second parameter to be used is determined.
  • the UE 100 determines either the first parameter or the second parameter for the parameters set for the target of the transform precoder information included in the DCI or MAC CE, so that the transform precoder It is possible to switch parameters related to the application of , and dynamic parameter switching becomes possible.
  • the receiving unit 112 may receive an RRC message that includes both the first parameter and the second parameter. Thereby, after receiving the RRC message, the UE 100 can dynamically switch whether or not to apply the transform precoder using lower layer signaling.
  • the control unit 120 may suspend parameters that are not used for transmitting uplink signals among the first parameters and second parameters. Accordingly, since the parameters are suspended, the control unit 120 can use the parameters without delay when a parameter not used for transmitting an uplink signal is switched to be used for transmitting an uplink signal.
  • the uplink signal whose waveform is determined based on the TPI has been described using PUSCH as an example, but the present invention is not limited to this. Similar operations may be performed for other upstream signals (eg, PTRS, etc.) and other signals (eg, sidelink signals, etc.).
  • upstream signals eg, PTRS, etc.
  • signals eg, sidelink signals, etc.
  • the mobile communication system 1 was explained using an NR-based mobile communication system as an example.
  • the mobile communication system 1 is not limited to this example.
  • the mobile communication system 1 may be a system compliant with any TS of LTE (Long Term Evolution) or another generation system (for example, 6th generation) of the 3GPP standard.
  • Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
  • the mobile communication system 1 may be a system compliant with a TS of a standard other than the 3GPP standard.
  • the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • the mobile communication system 1 was explained using an NR-based mobile communication system as an example.
  • the mobile communication system 1 is not limited to this example.
  • the mobile communication system 1 may be a system compliant with any TS of LTE or other generation systems (for example, 6th generation) of the 3GPP standard.
  • Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
  • the mobile communication system 1 may be a system compliant with a TS of a standard other than the 3GPP standard.
  • steps in the operation of the embodiments described above do not necessarily have to be executed in chronological order in the order described in the flow diagram or sequence diagram. For example, steps in an operation may be performed in a different order than depicted in a flow diagram or sequence diagram, or in parallel. Also, some of the steps in the operation may be deleted, and additional steps may be added to the process. Furthermore, each of the above-mentioned operation flows is not limited to being implemented separately, but can be implemented by combining two or more operation flows. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • Computer-readable media allow programs to be installed on a computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • Non-transitory recording media are not particularly limited, but include, for example, CD-ROM (Compact Disk Read Only Memory) and DVD-ROM (Digital Versatile Disc Read Only Memory). Even if it is a recording medium such as good.
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a portion of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chip set, SoC (System On Chip)).
  • transmit may mean processing at least one layer within a protocol stack used for transmission, or physically transmitting a signal wirelessly or by wire. It may also mean sending to. Alternatively, “transmitting” may mean a combination of processing the at least one layer and physically transmitting the signal wirelessly or by wire. Similarly, “receive” may mean processing at least one layer within the protocol stack used for receiving, or physically receiving a signal, wirelessly or by wire. It can also mean that. Alternatively, “receiving” may mean a combination of processing the at least one layer and physically receiving the signal wirelessly or by wire.
  • “obtain/acquire” may mean obtaining information from among stored information, and may refer to obtaining information from among information received from other nodes. Alternatively, it may mean obtaining information by generating the information.
  • the words “based on” or “depending on/in response to” refer to “based solely on” or “only in response to,” unless expressly stated otherwise. ” does not mean.
  • references to “based on” means both “based solely on” and “based at least in part on.”
  • the phrase “in accordance with” means both “in accordance with” and “in accordance with, at least in part.”
  • “include” and “comprise” do not mean to include only the listed items; they may include only the listed items, or in addition to the listed items. This means that it may contain further items.
  • “or” does not mean exclusive disjunction, but rather disjunction.
  • any reference to elements using the designations “first,” “second,” etc. used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements.
  • first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • first and second element when articles are added by translation, for example, a, an, and the in English, these articles are used in the plural unless the context clearly indicates otherwise. shall include things.
  • a control unit (Additional note 1) a control unit; A receiving unit that receives downlink control information (DCI) or medium access control element (MAC CE) including transform precoder information indicating whether to apply a transform precoder from a base station, The control unit includes: determining a target frequency resource to be targeted by the transform precoder information; A communication device that determines whether to apply the transform precoder to transmission of an uplink signal in the target frequency resource based on the transform precoder information.
  • DCI downlink control information
  • MAC CE medium access control element
  • control unit determines all serving cells configured for the communication device or all uplink bandwidth portions (BWP) configured for the communication device as the target frequency resource. Communication device as described.
  • BWP uplink bandwidth portions
  • the receiving unit receives target designation information specifying the target frequency resource from the base station, The communication device according to supplementary note 1, wherein the control unit determines the target frequency resource based on the target designation information.
  • the target specification information includes information specifying a serving cell as the target frequency resource, The communication device according to supplementary note 3, wherein the control unit determines the designated serving cell among serving cells configured for the communication device as the target frequency resource based on the target designation information.
  • the target specification information includes information specifying a cell group as the target frequency resource, The communication device according to appendix 3 or 4, wherein the control unit determines the designated cell group among the cell groups set for the communication device as the target frequency resource based on the target designation information.
  • the target specification information includes information specifying uplink BWP as the target frequency resource
  • the control unit determines, based on the target designation information, the designated uplink BWP among the uplink BWPs set for the communication device as the target frequency resource. Any one of appendices 3 to 5. Communication devices as described in Section.
  • Appendix 9 The communication device according to appendix 8, wherein the MAC CE receives the MAC CE including the transform precoder information and the target specification information from the base station.
  • the DCI is a DCI format including the transform precoder information, The communication device according to supplementary note 1, wherein the control unit determines at least one of a serving cell and uplink BWP scheduled using the DCI format as the target frequency resource.
  • the DCI is a DCI format including the transform precoder information
  • the control unit determines, as the target frequency resource, an uplink component carrier corresponding to the downlink component carrier on which the DCI format is received or an uplink BWP corresponding to the downlink BWP on which the DCI format is received.
  • the transform precoder information is first transform precoder information
  • the receiving unit receives a radio resource control (RRC) message including second transform precoder information indicating whether to apply the transform precoder from the base station,
  • RRC radio resource control
  • the control unit selects transform precoder information to be used for determining whether to apply the transform precoder from among the first transform precoder information and the second transform precoder information. Additional Note 1 12.
  • the communication device according to any one of 11 to 11.
  • the control unit is configured such that the second transform precoder information includes configuration information for configuring communication device-specific physical uplink shared channel (PUSCH) parameters applicable to a specific bandwidth portion (BWP), and The communication device according to attachment 12, wherein the first transform precoder information is selected when the first transform precoder information is included in at least one of the configuration information for configuring uplink transmission without public permission.
  • PUSCH physical uplink shared channel
  • BWP bandwidth portion
  • Appendix 14 The communication device according to appendix 12 or 13, wherein the control unit selects the second transform precoder information when the second transform precoder information is included in setting information regarding a random access procedure.
  • the receiving unit receives from the base station a radio resource control (RRC) message that includes information regarding a field in the DCI that includes the transform precoder information,
  • RRC radio resource control
  • the receiving unit receives a radio resource control (RRC) message including configuration information for monitoring the DCI including the transform precoder information from the base station.
  • RRC radio resource control
  • the receiving unit receives the MAC CE including the transform precoder information and a specific logical channel identifier for identifying the MAC CE including the transform precoder information from the base station.
  • Appendix 1 17. The communication device according to any one of 16 to 16.
  • a base station comprising: a transmitter that transmits downlink control information (DCI) or medium access control element (MAC CE) including the transform precoder information to a communication device.
  • DCI downlink control information
  • MAC CE medium access control element
  • a communication method executed by a communication device comprising: receiving from a base station downlink control information (DCI) or medium access control element (MAC CE) including transform precoder information indicating whether to apply a transform precoder; determining a target frequency resource targeted by the transform precoder information; A communication method, comprising the step of determining, based on the transform precoder information, whether or not to apply the transform precoder to transmission of an uplink signal in the target frequency resource.
  • DCI downlink control information
  • MAC CE medium access control element

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信装置(100)は、制御部(120)と、トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を基地局(210)から受信する受信部(112)と、を備える。前記制御部は、前記トランスフォームプリコーダ情報の対象とする対象周波数リソースを決定し、前記トランスフォームプリコーダ情報に基づいて、前記対象周波数リソースにおける上りリンク信号の送信に前記トランスフォームプリコーダを適用するか否かを決定する。

Description

通信装置、基地局及び通信方法 関連出願への相互参照
 本出願は、2022年8月8日に出願された特許出願番号2022-126208号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 本開示は、移動通信システムで用いる通信装置、基地局及び通信方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)では、上りリンク信号の波形として、サイクリックプレフィックス(Cyclic Prefix:CP)を用いた直交周波数分割多重(OFDM)(以下、「CP-OFDM」という)、又は、離散フーリエ変換拡散(DFT spreading)OFDM(以下、「DFT-s-OFDM」)を適用することができる。DFT-s-OFDMは、DFT拡散を行う機能(以下、「トランスフォームプリコーダ」)を適用したCP-OFDMである。このため、トランスフォームプリコーダを適用するか否かによって、DFT-s-OFDM又はCP-OFDMのどちらの波形を用いるかを切り替えることができる。
 3GPPのリリース15及び16では、トランスフォームプリコーダを適用するかは、無線リソース制御(RRC)レイヤのシグナリング(以下、「RRCシグナリング」と称する)を用いてネットワーク(例えば、基地局)によって通信装置に設定される。しかしながら、RRCシグナリングを用いる場合、RRCレイヤより下位レイヤのシグナリングを用いる場合と比較して、通信装置における処理遅延が大きくなるため、状況に応じた適切なタイミングでトランスフォームプリコーダを適用するか否かを切り替えることができない虞がある。
 そこで、RRCシグナリングを用いて切り替えられていた上りリンク信号の波形をより動的に切り替えることで、上りリンク送信の柔軟な制御を可能とする技術の検討が行われている(例えば、非特許文献1参照)。
3GPP寄書「RWS-210307」
 第1の態様に係る通信装置は、制御部と、トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を基地局から受信する受信部と、を備える。前記制御部は、前記トランスフォームプリコーダ情報の対象とする対象周波数リソースを決定し、前記トランスフォームプリコーダ情報に基づいて、前記対象周波数リソースにおける上りリンク信号の送信に前記トランスフォームプリコーダを適用するか否かを決定する。
 第2の態様に係る基地局は、トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報の対象とする対象周波数リソースを決定する制御部と、前記トランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を通信装置へ送信する送信部と、を備える。
 第3の態様に係る通信方法は、通信装置で実行される通信方法である。当該通信方法は、トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を基地局から受信するステップと、前記トランスフォームプリコーダ情報の対象とする対象周波数リソースを決定するステップと、前記トランスフォームプリコーダ情報に基づいて、前記対象周波数リソースにおける上りリンク信号の送信に前記トランスフォームプリコーダを適用するか否かを決定するステップと、を備える。
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、実施形態に係る移動通信システムの構成を示す図である。 図2は、実施形態に係るプロトコルスタックの構成例を示す図である。 図3は、トランスフォームプリコーダの適用を説明するための図である。 図4は、実施形態に係るUEの構成を示す図である。 図5は、実施形態に係る基地局の構成を示す図である。 図6は、実施形態に係る動作例を説明するためのシーケンス図である。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 しかしながら、既存の3GPP技術仕様では、RRCレイヤよりも下位レイヤのシグナリングを用いて上りリンク信号の波形を動的に切り替えるための具体的な仕組みが存在しない。このため、RRCレイヤよりも下位レイヤのシグナリングを用いて上りリンク信号の波形を動的に切り替えて送信することが適切にできない懸念がある。
 そこで、本開示は、RRCレイヤよりも下位レイヤのシグナリングを用いて上りリンク信号の波形を動的に切り替えて適切に送信することを可能とする通信装置、基地局、及び通信方法を提供することを目的の一つとする。
 (システム構成)
 まず、図1を参照して、本実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5Gシステム)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信するユーザ装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。
 UE100は、基地局200を介して通信する通信装置である。UE100は、ユーザにより利用される装置であってよい。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、端末、端末装置、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。また、UE100は端末の一例であり、端末には工場機器等を含んでもよい。
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。1つのセルは、1つの周波数(キャリア周波数)に属する。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。プロトコルスタックの詳細については後述する。また、基地局200は、Xnインターフェイスを介して他の基地局200(隣接基地局と称されてもよい)に接続される。基地局200は、Xnインターフェイスを介して隣接基地局と通信する。また、基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、U-plane処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。
 (プロトコルスタックの構成例)
 次に、図2を参照して、本実施形態に係るプロトコルスタックの構成例について説明する。
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRCレイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 UE100においてRRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300のNASレイヤとの間では、NASシグナリングが伝送される。
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (無線フレーム構成)
 5Gシステムにおいて、下り送信及び上り送信は、10msの持続時間の無線フレーム内で構成される。例えば、無線フレームは、10個のサブフレームにより構成される。例えば、1つのサブフレームは、1msであってもよい。また、1つのサブフレームは、1以上のスロットにより構成されてもよい。例えば、1つのスロットを構成するシンボルの数は、通常CP(Cyclic Prefix)で14個であり、拡張CPで12個である。また、1つのサブフレームを構成するスロットの数は、設定されたサブキャリア間隔に応じて変化する。例えば、通常CPに対して、サブキャリア間隔として15kHzが設定された場合、サブフレーム当たりのスロットの数は1(すなわち、14シンボル)であり、サブキャリア間隔として30kHzが設定された場合、サブフレーム当たりのスロットの数は2(すなわち、28シンボル)であり、サブキャリア間隔として60kHzが設定された場合、サブフレーム当たりのスロットの数は4(すなわち、56シンボル)であり、サブキャリア間隔として120kHzが設定された場合、サブフレーム当たりのスロットの数は8(すなわち、128シンボル)である。また、拡張CPに対して、サブキャリア間隔として60kHzが設定された場合、サブフレーム当たりのスロットの数は4(すなわち、48シンボル)である。すなわち、基地局200によって設定されたサブキャリア間隔に基づいて、1つのサブフレームを構成するスロットの数が決定される。また、基地局200によって設定されたサブキャリア間隔に基づいて、1つのサブフレームを構成するシンボルの数が決定される。すなわち、基地局200によって設定されたサブキャリア間隔に基づいて、1msのサブフレームを構成するシンボルの数が決定され、各シンボルの長さ(時間方向の長さ)が変化する。
 (波形)
 図3を参照して、実施形態に係る移動通信システム1における波形について説明する。移動通信システム1で送受信される信号の波形は、サイクリックプレフィックス-直交周波数分割多重(CP-OFDM)、又は、離散フーリエ変換拡散-直交周波数分割多重(DFT-s-OFDM)であってもよい。5Gシステムに基づく移動通信システム1において、下りリンク送信波形は、サイクリックプレフィックス(CP)を用いたODFMであってよい。上りリンク送信波形は、無効化(disabled)又は有効(enabled)にできるDFT拡散を実行するトランスフォームプリコーディング機能と共にCPを用いたODFMであってよい。FR(Frequency Range)1での共有スペクトルチャネルアクセスを用いた動作では、上りリンク送信波形のサブキャリアマッピングは、1以上の物理リソースブロック(PRB)インターレースでのサブキャリアへマップできる。
 例えば、物理上りリンク共有チャネル(PUSCH)及び/又は位相トラッキング参照信号(Phase-Tracking-Reference-Signals:PTRS)等の上りリンク信号には、CP-OFDM又はDFT-s-OFDMのいずれかが用いられてもよい。一方、物理下りリンク共有チャネル(PDSCH)等の下り信号には、CP-OFDMが用いられてもよい。また、例えば、サイドリンク信号(例えば、物理サイドリンク共有チャネル(PSSCH))等のUE100間の直接通信に用いられる信号には、CP-OFDMが用いられてもよい。
 CP-OFDMは、マルチキャリア波形であるので、マルチパス干渉に強いという利点があるが、ピーク対平均電力比(Peak to Average Power Ratio:PAPR)が増大するという欠点がある。また、CP-OFDMは、マルチキャリア波形であるので、同一のシンボルの異なるサブキャリアに送信データ系列と参照信号(Reference Signal:RS)とを周波数分割多重できる。また、CP-OFDMの送信信号の送信帯域は、連続した周波数帯域(例えば、連続する一以上の物理リソースブロック(PRB))に限られず、不連続の周波数帯域(例えば、不連続の複数のPRB)で構成されてもよいので、DFT-s-OFDMと比べてスケジューリングの制約が少ない。このため、例えば、負荷が所定レベルよりも高いセルでは、CP-OFDMを利用することで周波数利用効率を向上できる。
 DFT-s-OFDMは、シングルキャリア波形であるので、CP-OFDMよりもPAPRを低減できる。このため、最大定格電力(Maximum rated power)に近い電力を利用でき、より高次の変調方式及び/又はより高い符号化率を利用することができる。この結果、UE100の消費電力及び/又はUE100のコストを低減できる。また、カバレッジエリアを確保し易くなる。一方、DFT-s-OFDMでは、あるUE100の送信データ系列及びRSは、異なるシンボルに時間分割多重される。すなわち、あるUE100の送信データ系列及びRSは、同一のシンボルの異なるサブキャリアに周波数分割多重されないでCP-OFDMと異なる。また、DFT-s-OFDMの送信信号の送信帯域は、連続した周波数帯域(例えば、連続する一以上のPRB)に制限される。
 図3Aに示すように、DFT-s-OFDMは、トランスフォームプリコーダを有する点で、図3Bに示す図5(B)に示すCP-OFDMと異なる。DFT-s-OFDMは、トランスフォームプリコーダが適用されたCP-OFDMである。トランスフォームプリコーダは、DFT拡散を行う機能であってよい。トランスフォームプリコーダは、トランスフォームプリコーディング、DFTプリコーダ又はDFTプリコーディング等と言い換えられてもよい。
 DFT-s-OFDMでは、符号化及び変調後の送信データ系列又はRSは、MポイントのDFTに入力され、時間領域から周波数領域に変換される。DFTからの出力は、M個のサブキャリアにマッピングされ、Nポイントの逆高速フーリエ変換(Inverse Fast Fourier Transform:IFFT)に入力され、周波数領域から時間領域に変換される。なお、DFTは、高速フーリエ変換(Fast Fourier Transform:FFT)に置き換えられてもよく、IFFTは、逆離散フーリエ変換(Inverse Discrete Fourier Transform:IDFT)に置き換えられてもよい。N>Mであり、使用されないIFFTへの入力情報は、ゼロに設定される。Nは、所定の周波数帯域幅(例えば、帯域幅部分(BWP)又はセルの帯域幅)に対応するサブキャリア数と等しくともよい。Mは、送信帯域幅に対応するサブキャリア数であってもよい。これにより、IFFTの出力は、瞬時電力変動が小さく帯域幅がMに依存する信号となる。IFFTからの出力は、パラレル/シリアル(Parallel to Serial:P/S)変換され、CPが付加される。CPは、ガードインターバル(GI)とも呼ばれる。このように、DFT-s-OFDMでは、シングルキャリアの特性を有する信号が生成され、1シンボルで送信される。なお、CPは、IFFTからの出力に対するP/S変換前に挿入されてもよい。
 CP-OFDMでは、符号化及び変調後の送信データ系列及び/又はRSは、送信帯域幅と等しい数のサブキャリアにマッピングされ、IFFTに入力される。使用されないIFFTへの入力情報は、ゼロに設定される。IFFTからの出力は、P/S変換され、CPが挿入される。このように、CP-OFDMでは、マルチキャリアが用いられるので、RSと送信データ系列を周波数分割多重できる。なお、RSと周波数分割多重せずに送信データ系列を送信してもよいことは勿論である。
 以上のように、DFT-s-OFDM及びCP-OFDMの特性はトレードオフの関係にあるので、種々のパラメータ(例えば、セルの負荷、スケジューリングの状況、アンテナの状態等)に応じて、DFT-s-OFDM及びCP-OFDMを切り替えることが望まれる。なお、DFT-s-OFDM及びCP-OFDMは、トランスフォームプリコーダを適用するか否かによって切り替えられる。
 3GPPのリリース15及び16では、トランスフォームプリコーダを適用するかは、無線リソース制御(RRC)レイヤのシグナリング(以下、「RRCシグナリング」と称する)を用いてネットワーク10(例えば、基地局200)によってUE100に設定される。しかしながら、RRCシグナリングを用いる場合、RRCレイヤより下位レイヤのシグナリングを用いる場合と比較して、通信装置における処理遅延が大きくなるため、状況に応じた適切なタイミングでトランスフォームプリコーダを適用するか否かを切り替えることができない虞がある。そこで、RRCシグナリングを用いて切り替えられていた上りリンク信号の波形をより動的に切り替えることで、上りリンク送信の柔軟な制御を可能とする技術の検討が行われている。
 しかしながら、既存の3GPP技術仕様では、RRCレイヤよりも下位レイヤのシグナリングを用いて上りリンク信号の波形を動的に切り替えるための具体的な仕組みが存在しない。このため、RRCレイヤよりも下位レイヤのシグナリングを用いて上りリンク信号の波形を動的に切り替えて送信することが適切にできない懸念がある。後述の一実施形態において、RRCレイヤよりも下位レイヤのシグナリングを用いて上りリンク信号の波形を動的に切り替えて適切に送信することを可能とするための動作について説明する。
 例えば、下位レイヤのシグナリングを用いて上りリンク信号の波形を動的に切り替える場合、トランスフォームプリコーダを適用するか否かに関する指示の対象が規定されていない。例えば、いずれのサービングセル及び/又はいずれの上りリンク帯域幅部分(UL BWP)におけるPUSCH送受信に対して当該指示が適用されるのかが規定されていない。このため、基地局200とUE100との間でPUSCH送受信を実行できない懸念がある。
 また、動的なトランスフォームプリコーダの切り替えに関連するパラメータ(例えば、無線リソース制御(RRC)パラメータ)の適用について規定されていない。例えば、RRCレイヤにおいて設定されたいずれのパラメータに対して、動的なトランスフォームプリコーダの切り替えが適用されるのかが規定されていない。このため、基地局200とUE100との間で上りリンク信号を適切に送受信できない懸念がある。後述の一実施形態において、適切なパラメータを用いて動的なトランスフォームプリコーダの切り替えを可能とするための動作について説明する。
 (トランスフォームプリコーダに関する設定情報)
 トランスフォームプリコーダに関する設定情報は、例えば、以下の少なくともいずれかの情報であってよい。当該設定情報は、無線リソース制御(RRC)メッセージを用いて基地局200からUE100へ送信されてよい。すなわち、基地局200は、トランスフォームプリコーダに関する設定情報を含むRRCメッセージをUE100へ送信してもよい。また、UE100は、当該RRCメッセージに含まれる当該設定情報に基づいて、上りリンク信号にトランスフォームプリコーダを適用するか否かを決定してもよい。
 第1に、トランスフォームプリコーダに関する設定情報は、特定の帯域幅部分(BWP)に適用可能な通信装置固有の物理上りリンク共有チャネル(PUSCH)パラメータを設定するための設定情報(例えば、PUSCH-config)であってよい。PUSCH-configは、1つの上りリンクBWPのUE固有パラメータを設定するために用いられる情報(例えば、BWP-UplinkDedicated)に含まれる。PUSCH送信は、セル無線ネットワーク一時識別子(C-RNTI)によってスクランブルされた巡回冗長検査(CRC)(CRCパリティビット)が付加された下りリンク制御情報(DCI)フォーマット(すなわち、PUSCHのスケジューリングに用いられるDCIフォーマット)を用いてスケジューリングされる。
 PUSCH-configに含まれるパラメータであるトランスフォームプリコーダ情報(具体的には、transformPrecoder)を用いて、PUSCH送信に対するトランスフォームプリコーディングの有効化(enable)又は無効化(disable)がUE100に設定される。トランスフォームプリコーダ情報(transformPrecoder)は、PUSCH用のトランスフォームプリコーダのUE固有の選択に用いられる。トランスフォームプリコーダ情報(transformPrecoder)のフィールドが存在しない場合、UE100は、「msg3-transformPrecoder」のフィールドの値を適用する。なお、「msg3-transformPrecoder」は、RACH-ConfigCommonに含まれる。
 第2に、トランスフォームプリコーダに関する設定情報は、動的な許可(dynamic grant)なしで上りリンク送信を設定するための設定情報(例えば、ConfiguredGrantConfig)であってよい。ConfiguredGrantConfigは、2つの可能なスキームに従った動的な許可なし上りリンク送信を設定するために用いられてよい。実際の上りリンク許可(uplink grant)は、RRCを介して設定されてもよいし、(設定されたスケジューリング(Configured Scheduling)-無線ネットワーク一時識別子(CS-RNTI)宛ての)物理下りリンク制御チャネル(PDCCH)を介して提供されてもよい。
 具体的には、動的な許可なしでの2種類の送信は、CG(Configured Grant)タイプ1 PUSCH送信と、CGタイプ2 PUSCH送信とがある。CGタイプ1 PUSCH送信では、上りリンク許可がRRCを介して提供される。当該上りリンク許可は、設定された上りリンク許可として保存(store)される。一方で、CGタイプ2 PUSCH送信では、上りリンク許可がPDCCHにより提供される。すなわち、上りリンク許可は、PDCCHで送信され、PUSCHのスケジューリングに用いられ、CS-RNTIを伴うDCIフォーマットによって提供される。当該上りリンク許可は、設定された上りリンク許可の有効化(activation)又は無効化(deactivation)を示すL1シグナリングに基づく設定された上りリンク許可として、保存又は消去(clear)される。CGタイプ1 PUSCH送信及びCGタイプ2 PUSCH送信は、BWP毎にサービングセルについてRRCによって設定される。
 UE100は、提供された上りリンク許可を保存し、所定のタイミングで保存された上りリンク許可が発生したとみなす。所定のタイミングは、例えば、RRCメッセージを用いて設定された周期及び/又はオフセットに従うタイミングであってよい。UE100は、所定のタイミングでPUSCH送信を実行する。
 ConfiguredGrantConfigは、1つの上りリンクBWPのUE固有(specific)パラメータを設定するために用いられるBWP-UplinkDedicatedに含まれる。ConfiguredGrantConfigは、トランスフォームプリコーダ情報(具体的には、transformPrecoder)を含む。ConfiguredGrantConfigに含まれるパラメータであるトランスフォームプリコーダ情報(transformPrecoder)を用いて、CGタイプ1 PUSCH送信/CGタイプ2 PUSCH送信に対するトランスフォームプリコーディングの有効化(enable)又は無効化(disable)がUE100に設定される。従って、トランスフォームプリコーダ情報(transformPrecoder)は、タイプ1及びタイプ2用のトランスフォームプリコーダを有効化又は無効化する。当該トランスフォームプリコーダ情報(transformPrecoder)のフィールドが存在しない場合、UE100は、後述のRACH-ConfigCommon内の「msg3-transformPrecoder」のフィールドに従ってトランスフォームプリコーディングを有効化又は無効化する。
 第3に、トランスフォームプリコーダに関する設定情報は、セル固有のランダムアクセス(RA)パラメータを指定するための設定情報(例えば、RACH-ConfigCommon)であってよい。RACH-ConfigCommonは、セル固有RAパラメータを指定するために用いられる。RACH-ConfigCommonは、ランダムアクセス手順に関する設定情報であってよい。RACH-ConfigCommonは、1つの上りリンクBWPのセル固有パラメータ(すなわち、共通パラメータ)を設定するために用いられる情報(例えば、BWP-UplinkCommon)に含まれる。RACH-ConfigCommonは、トランスフォームプリコーダ情報(msg3-transformPrecoder)を含む。msg3-transformPrecoderは、Msg.3送信のトランスフォームプリコーダを有効にする。msg3-transformPrecoderのフィールドが存在しない場合、UE100は、トランスフォームプリコーダを無効にする。従って、RACH-ConfigCommonに含まれるパラメータであるトランスフォームプリコーダ情報(msg3-transformPrecoder)を用いて、ランダムアクセス手順におけるMsg.3(Msg.3のUL-SCH)のためのPUSCH送信に対するトランスフォームプリコーディングの有効(又は無効)がUE100に設定される。
 なお、Msg.3 PUSCH送信は、ランダムアクセス(RA)応答許可(grant)、又は、一時的なC-RNTI(TC-RNTI)によってスクランブルされたCRCが付加されたDCIフォーマット(すなわち、PUSCHのスケジューリングに用いられるDCIフォーマット)でスケジューリングされる。RA応答許可は、Msg.2(すなわち、ランダムアクセス応答)に含まれる。RA応答許可は、RA応答用のMACペイロードとして送信される。
 第4に、トランスフォームプリコーダに関する設定情報は、2ステップRAタイプ手順でのメッセージA用の物理上りリンク共有チャネル(PUSCH)の割り当てを指定するための設定情報(例えば、MsgA-PUSCH-Config)であってよい。MsgA-PUSCH-Configは、2ステップRAタイプ手順でのメッセージA用のPUSCHの割り当てを指定するために用いられる。MsgA-PUSCH-Configは、ランダムアクセス手順に関する設定情報であってよい。MsgA-PUSCH-Configは、トランスフォームプリコーダ情報(msgA-TransformPrecoder)を含む。msgA-TransformPrecoderは、MsgA送信用のトランスフォームプリコーダを有効化又は無効化する。MsgA-PUSCH-Configに含まれるパラメータであるトランスフォームプリコーダ情報(msgA-TransformPrecoder)を用いて、ランダムアクセス手順におけるMsg.A(具体的には、Msg.AのUL-SCH)のためのPUSCH送信に対するトランスフォームプリコーディングの有効又は無効がUE100に設定される。
 なお、Msg.A PUSCH送信は、MsgA-PUSCH-Configに含まれるパラメータ(例えば、MsgA-PUSCH-Resource)で設定されたPUSCHリソースで実行される。MsgA-PUSCH-Resourceは、1つの上りリンクBWPのセルスペシフィックパラメータ(共通パラメータ)を設定するために用いられるBWP-UplinkCommonに含まれる。
 (PUSCH上でトランスフォームプリコーディングを適用するためのUE手順)
 PUSCH上でトランスフォームプリコーディングを適用するためのUE手順について説明する。
 UE100は、ランダムアクセス(RA)応答における上りリンクグラント(UL grant)(すなわち、RA応答許可)によってスケジュールされたPUSCH送信、又は、TC-RNTI(Temporary C-RNTI)によってCRCスクランブルされたDCIフォーマット0-0によってスケジュールされたPUSCH送信に対して、トランスフォームプリコーダ情報(具体的には、パラメータ:msg3-transformPrecoder)に従って、トランスフォームプリコーディングの有効(enabled)/無効(disabled)を適用してもよい。
 UE100は、RA手順のMsg.A PUSCH送信に対して、トランスフォームプリコーダ情報(具体的には、パラメータ:msgA-TransformPrecoder)に従って、トランスフォームプリコーディングの有効(enabled)/無効(disabled)を適用してもよい。もし、パラメータ:msgA-TransformPrecoderが設定されていない場合には、UE100は、Msg.A PUSCH送信に対して、パラメータ:msg3-transformPrecoderに従って、トランスフォームプリコーディングの有効(enabled)/無効(disabled)を適用してもよい。
 UE100は、NDI=1でCS-RNTI、C-RNTI、又はMCS-C-RNTIによってCRCスクランブルされたPDCCH、又は、によってスケジュールされたPUSCH送信に対して、以下の(i)、(ii)のケースで、トランスフォームプリコーディングの有効(enabled)/無効(disabled)を適用してもよい。
 (i)もし、DCI format 0_0を受信した場合(すなわち、PUSCH送信がDCI format 0_0によってスケジュールされた場合)、UE100は、パラメータ:msg3-transformPrecoderに従って、トランスフォームプリコーディングの有効(enabled)/無効(disabled)を適用してもよい。
 (ii)もしDCI format 0_0を受信していない場合(すなわち、PUSCH送信がDCI format 0_1/0_2によってスケジュールされた場合)、(a)PUSCH-Configに含まれるパラメータ:transformPrecoderが設定されている場合には、pusch-Configに含まれるパラメータであるtransformPrecoderに従って、UE100は、トランスフォームプリコーディングの有効(enabled)/無効(disabled)を適用してもよい。(ii)もしDCI format 0_0を受信していない場合、(b)PUSCH-Configに含まれるパラメータ:transformPrecoderが設定されていない場合には、パラメータ:msg3-transformPrecoderに従って、UE100は、トランスフォームプリコーディングの有効(enabled)/無効(disabled)を適用してもよい。
 UE100は、configured grantに基づくPUSCH送信に対して、以下の(i)、(ii)のケースで、トランスフォームプリコーディングの有効(enabled)/無効(disabled)を適用してもよい。(i)もしConfiguredGrantConfigに含まれるパラメータ:transformPrecoderが設定されている場合には、ConfiguredGrantConfigに含まれるパラメータ:transformPrecoderに従って、UE100は、トランスフォームプリコーディングの有効(enabled)/無効(disabled)を適用してもよい。(ii)もしConfiguredGrantConfigに含まれるパラメータ:transformPrecoderが設定されていない場合には、パラメータ:msg3-transformPrecoderに従って、UE100は、トランスフォームプリコーディングの有効(enabled)/無効(disabled)を適用してもよい。
 上述のように、RRCシグナリングによってトランスフォームプリコーダを適用するか否かが切り替えられる。なお、トランスフォームプリコーダを適用するか否かは、トランスフォームプリコーダを有効化(enable)するか否か、又は、アクティベート(activate)するか否か等と言い換えられてもよい。
 (UEの構成)
 図4を参照して、実施形態に係るUE100の構成について説明する。UE100は、通信部110及び制御部120を備える。
 通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、複数のアンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 このように構成されたUE100では、受信部112は、トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を基地局200から受信する。UE100の制御部120は、トランスフォームプリコーダ情報の対象とする対象周波数リソースを決定する。制御部120は、トランスフォームプリコーダ情報に基づいて、対象周波数リソースにおける上りリンク信号の送信にトランスフォームプリコーダを適用するか否かを決定する。これにより、UE100は、トランスフォームプリコーダ情報の対象とする対象周波数リソースにおいて、上りリンク信号の波形を動的に切り替えて送信することができる。
 また、受信部112は、トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を基地局200から受信する。制御部120は、トランスフォームプリコーダ情報の対象に対して設定されたパラメータについて、トランスフォームプリコーダが適用される場合に用いられる第1パラメータと、トランスフォームプリコーダが適用されない場合に用いられる第2パラメータとのいずれのパラメータを用いるかを決定する。これにより、UE100は、DCI又はMAC CEに含まれるトランスフォームプリコーダ情報の対象に対して設定されたパラメータについて、第1パラメータと第2パラメータとのいずれかに決定することで、トランスフォームプリコーダの適用に関するパラメータを切り替えることができ、動的なパラメータの切り替えが可能となる。
 (基地局の構成)
 図5を参照して、実施形態に係る基地局200の構成について説明する。基地局200は、通信部210と、ネットワーク通信部220と、制御部230とを有する。
 通信部210は、例えば、UE100からの無線信号を受信し、UE100への無線信号を送信する。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、RF回路を含んで構成されてもよい。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 ネットワーク通信部220は、信号をネットワークと送受信する。ネットワーク通信部220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワーク通信部220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワーク通信部220を介したノード(例えば、隣接基地局、コアネットワーク装置300)との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 このように構成された基地局200では、制御部230は、トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報の対象とする対象周波数リソースを決定する。送信部211は、トランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)をUE100へ送信する。これにより、UE100は、トランスフォームプリコーダ情報の対象とする対象周波数リソースにおいて、上りリンク信号の波形を動的に切り替えて送信することができる。基地局200は、動的に波形が切り替えられた上りリンク信号を受信することができる。
 (動作例)
 図6を参照して、移動通信システム1の動作例について説明する。
 ステップS101:
 UE100の送信部111は、後述する所定時間を決定するために用いられるUE100の能力を示す能力情報を基地局200へ送信してよい。基地局200の受信部212は、能力情報をUE100から受信してよい。
 能力情報は、例えば、DCI又はMAC CEに含まれるトランスフォームプリコーダ情報(以下、TP情報又は第1TP情報)に基づくPUSCH送信用の時間リソース(例えば、時間領域におけるリソースとも称される)を決定するための無線アクセス能力であってよい。UE100の送信部111は、例えば、能力情報を含むUE能力情報メッセージ(UECapabilityInformation)を基地局200へ送信してよい。
 基地局200の制御部230は、UE100からの能力情報に基づいて後述のタイミング情報を決定してもよい。
 ステップS102:
 基地局200の送信部211は、後述のタイミング(所定タイミングと適宜称する)を決定するためのタイミング情報を含むRRCメッセージをUE100へ送信してよい。UE100の受信部112は、タイミング情報を基地局200から受信してよい。
 タイミング情報は、後述するように、DCI又はMAC CEに含まれるTP情報を受信してから所定時間の経過後のタイミング(すなわち、所定タイミング)を決定するための情報である。タイミング情報は、例えば、TP情報に基づくPUSCH送信用の時間リソースを決定するための情報を含んでよい。当該情報は、PUSCH送信が実行されるスロット、シンボル、及び/又は、開始位置を示してよい。例えば、タイミング情報は、TP情報を含むDCI又はMAC CEを受信したスロット、シンボル、及び/又は、開始位置と、PUSCH送信が実行されるスロット、シンボル、及び/又は、開始位置との関係を設定(規定)するために用いられてもよい。UE100は、あるスロット、あるシンボル、及び/又は、ある開始位置においてTP情報を含むDCI又はMAC CEを受信した場合に、当該あるスロット、当該あるシンボル、及び/又は、当該ある開始位置と、タイミング情報とに基づいて、PUSCH送信を実行してもよい。
 タイミング情報は、PDCCHの受信を基準とした所定タイミングまでの時間を示す情報を含んでよい。タイミング情報は、通常のPUSCH送信の基準値からのオフセット値を示す情報を含んでもよいし、通常のPUSCH送信の基準値からオフセットされたタイミングからのオフセット値を示す情報を含んでもよい。タイミング情報は、トランスフォームプリコーダ情報の有効期間を示す情報を含んでもよい。
 基地局200の送信部211は、タイミング情報を含むRRCメッセージをUE100へ送信してもよい。RRCメッセージは、PUSCHの設定に関する設定情報を含んでよい。設定情報は、当該設定情報に個別に適用されるタイミング情報を含んでよい。タイミング情報は、PUSCHに関する複数種類の設定情報に共通の情報を含んでもよい。複数種類の設定情報は、例えば、PUSCH-config、ConfiguredGrantConfig、RACH-ConfigCommon、及びMsgA-PUSCH-Configの少なくともいずれかを含んでよい。
 また、基地局200の送信部211は、後述の対象周波数リソースを指定する対象指定情報を含むRRCメッセージをUE100へ送信してよい。UE100の受信部112は、対象指定情報を基地局200から受信してよい。周波数リソースは、周波数領域におけるリソースとも称される。
 対象指定情報は、サービングセルを指定する情報を含んでよい。対象指定情報は、セルグループを指定する情報を含んでよい。対象指定情報は、上りリンクBWPを指定する情報を含んでよい。すなわち、対象指定情報は、1つ又は複数のセルグループのインデックス、1つ又は複数のサービングセルのインデックス、及び/又は、1つ又は複数の上りリンクBWPのインデックスを含んでいてもよい。本実施形態において、指定することは、設定することと同じ意味で用いられてもよい。
 また、基地局200の送信部211は、第1パラメータと第2パラメータとの両方を含むRRCメッセージをUE100へ送信してよい。なお、基地局200の送信部211は、第1パラメータと第2パラメータとを別々のRRCメッセージにてUE100へ送信してもよい。
 第1パラメータ、及び/又は、第2パラメータは、トランスフォームプリコーダ情報の対象に対して設定されるパラメータであってよい。第1パラメータは、トランスフォームプリコーダが適用された場合に用いられる。第2パラメータは、トランスフォームプリコーダが適用されない場合に用いられる。当該パラメータ(すなわち、第1パラメータ、及び/又は、第2パラメータ)は、PUSCHに関連するDMRS(復調基準信号)のシーケンスに関連するパラメータ、PUSCHに関連するPTRSのシーケンスに関連するパラメータ、MCS(Modulationand channel Coding Scheme)テーブルの決定に関連するパラメータの少なくともいずれかであってよい。
 以下、説明を容易とするために、トランスフォームプリコーダが適用される場合(すなわち、トランスフォームプリコーダが有効化される場合)に用いられるPUSCHに関連するDMRSのシーケンスに関連するパラメータ、PUSCHに関連するPTRSのシーケンスに関連するパラメータ、及び/又は、MCSテーブルの決定に関連するパラメータを、第1のパラメータと記載する。しかしながら、トランスフォームプリコーダが適用される場合に用いられるPUSCHに関連するDMRSのシーケンスに関連するパラメータ、PUSCHに関連するPTRSのシーケンスに関連するパラメータ、及び/又は、MCSテーブルの決定に関連するパラメータのそれぞれが異なるパラメータであってもいいことは勿論である。例えば、トランスフォームプリコーダが適用される場合に用いられるPUSCHに関連するDMRSのシーケンスに関連するパラメータは、第1のパラメータであってもよい。また、トランスフォームプリコーダが適用される場合に用いられるPUSCHに関連するPTRSのシーケンスに関連するパラメータは、第3のパラメータであってもよい。また、トランスフォームプリコーダが適用される場合に用いられるMCSテーブルの決定に関連するパラメータは、第4のパラメータであってもよい。
 同様に、トランスフォームプリコーダが適用されない場合(すなわち、トランスフォームプリコーダが無効化される場合)に用いられるPUSCHに関連するDMRSのシーケンスに関連するパラメータ、PUSCHに関連するPTRSのシーケンスに関連するパラメータ、及び/又は、MCSテーブルの決定に関連するパラメータを、第2のパラメータと記載する。しかしながら、トランスフォームプリコーダが適用されない場合に用いられるPUSCHに関連するDMRSのシーケンスに関連するパラメータ、PUSCHに関連するPTRSのシーケンスに関連するパラメータ、及び/又は、MCSテーブルの決定に関連するパラメータのそれぞれが異なるパラメータであってもいいことは勿論である。例えば、トランスフォームプリコーダが適用されない場合に用いられるPUSCHに関連するDMRSのシーケンスに関連するパラメータは、第2のパラメータであってもよい。また、トランスフォームプリコーダが適用されない場合に用いられるPUSCHに関連するPTRSのシーケンスに関連するパラメータは第5のパラメータであってもよい。また、トランスフォームプリコーダが適用されない場合に用いられるMCSテーブルの決定に関連するパラメータは、第6のパラメータであってもよい。
 ステップS103:
 基地局200の送信部211は、TP情報を含むDCI又はMAC CEをUE100へ送信する。UE100の受信部112は、TP情報を含むDCI又はMAC CEを基地局200から受信する。TP情報は、トランスフォームプリコーダを適用するか否かを示す。例えば、TP情報は、対応するPUSCH送信に対して、トランスフォームプリコーダを適用するか否かを示すための情報であってもよい。すなわち、TP情報は、トランスフォームプリコーダの有効、又は、無効を示すための情報であってもよい。また、TP情報は、対象指定情報を含んでもよい。
 送信部211は、TP情報を含むDCIを送信してもよい。従って、送信部211は、物理レイヤ(すなわち、L1シグナリング)によりTP情報を送信してもよい。例えば、送信部211は、TP情報を含むDCIをPDCCHで送信してもよい。また、送信部211は、TP情報を含むMAC CEをPDSCHで送信してもよい。
 TP情報を含むDCIは、TP情報を含むDCIフォーマットであってよい。なお、トランスフォームプリコーダを適用するか否かを示すDCIが、TP情報であってもよい。TP情報を含むDCIフォーマットは、PDSCHのスケジューリングに用いられるDCIフォーマット、PUSCHのスケジューリングに用いられるDCIフォーマット、及び/又は、PDSCH/PUSCHのスケジューリングに用いられないDCIフォーマットであってよい。TP情報を含むDCIフォーマットには、C-RNTI、CS-RNTI、及び/又は、MCS-C-RNTIによってスクランブルされたCRCパリティビットが付加されてもよい。
 また、TP情報を含むDCIは、PDCCHオーダ(PDCCH order)に含まれてよい。PDCCHオーダは、ランダムアクセス(RA:Random Access)手順を開始するために用いられてよい。PDCCHオーダによって開始(又は、指示)されるランダムアクセス手順は、コンテンションフリーランダムアクセス(CFRA:Contention Free Random Access)手順とも称される。例えば、PDCCHオーダによって、4ステップCFRA手順、又は、2ステップCFRA手順が開始されてもよい。また、DCIフォーマット1_0のCRCがC-RNTIによってスクランブルされて、かつ周波数領域リソース割り当てフィールド(すなわち、周波数ドメインリソース割り当てフィールド)が全て“1”である場合、DCIフォーマット1_0は、PDCCHオーダにより開始されるRA手順用であってよい。
 ここで、DCIフォーマット1_0(例えば、C-RNTIによってスクランブルされたCRCが付加されたDCIフォーマット1_0)は、PDSCHのスケジューリングに用いられてもよい。すなわち、DCIフォーマット1_0に含まれる周波数領域リソース割り当てフィールドの値が全て“1”にセットされた場合、当該DCIフォーマット1_0は、PDCCHオーダ用のDCIフォーマットとして識別されてもよい。また、DCIフォーマット1_0に含まれる周波数領域リソース割り当てフィールドの値のいずれかが“1”以外にセットされた場合、当該DCIフォーマット1_0は、PDSCHのスケジューリングに用いられるDCIフォーマットとして識別されてもよい。
 例えば、DCIフォーマット1_0がPDCCHオーダ用のDCIフォーマットとして用いられる場合、当該DCIフォーマット1_0にランダムアクセスプリアンブルを示す情報が含まれてもよい。PDCCHオーダによって開始されたRA手順において、UE100は、当該ランダムアクセスプリアンブルを送信してもよい。また、DCIフォーマット1_0がPDCCHオーダ用のDCIフォーマットとして用いられる場合、当該DCIフォーマット1_0にSS/PBCH(Syncronization signal and/or Physical Broadcast channel)のインデックスを示す情報が含まれてもよい。ここで、DCIフォーマット1_0がPDCCHオーダ用のDCIフォーマットとして用いられる場合、当該DCIフォーマット1_0にTP情報(TP情報を含むDCIでもよい)が含まれてもよい。例えば、PDCCHオーダ用のDCIフォーマット1_0の予備ビットが、TP情報として用いられてもよい。
 なお、基地局200の送信部211は、TP情報(TP情報を含むDCIでもよい)のフィールドに関する情報を含むRRCメッセージをUE100へ送信してもよい。当該情報は、DCI(又はDCIフォーマット)における、TP情報のフィールドの有無を示す情報、及び/又は、当該フィールドのビット数を決定するために用いられる情報であってよい。UE100の制御部120は、当該情報に基づいて、DCIにTP情報が含まれるか否か(すなわち、DCIにおけるTP情報の有無)を判定(決定、識別)してもよい。
 また、基地局200の送信部211は、TP情報を含むDCI(又はDCIフォーマット)に対するPDCCHをモニタするための設定情報を含むRRCメッセージをUE100へ送信してもよい。当該設定情報は、TP情報を含むDCI(又はDCIフォーマット)に対するPDCCHをモニタするための制御リソースセット(例えば、CORESET(s))を設定する情報、及び/又は、TP情報を含むDCI(又はDCIフォーマット)に対するPDCCHをモニタするためのサーチスペースセット(Search Space Set(s))を設定する情報を含んでよい。UE100の制御部120は、設定された制御リソースセット及び/又はサーチスペースセットにて受信されたDCIは、TP情報を含むと判定してもよい。例えば、当該サーチスペースセットは、UEスペシフィックサーチスペースセット(USSセットとも称される)、及び/又は、コモンサーチスペースセット(CSSセットとも称される)を含む。
 送信部211は、MAC CEを含むTP情報を送信してもよい。従って、送信部211は、MACレイヤにおいてTP情報を送信してもよい。
 TP情報を含むMAC CEが規定されてもよい。また、MAC CEは、TP情報と、TP情報を含むMAC CEを識別するための特定の論理チャネル識別子(LCID)とを含んでよい。UE100の制御部120は、特定のLCIDに基づいて、MAC CEがTP情報を含むか否かを判定してよい。
 DCI又はMAC CEは、対象指定情報を含んでいてもよい。MAC CEは、TP情報と対象指定情報とを含んでいてもよい。対象指定情報は、1つ又は複数のセルグループのインデックス、1つ又は複数のサービングセルのインデックス、及び/又は、1つ又は複数の上りリンクBWPのインデックスを含んでいてもよい。
 なお、本明細書において、DCI又はMAC CEに含まれるTP情報は、第1TP情報と称することがある。RRCメッセージに含まれるTP情報は、第2TP情報と称することがある。以下において、TP情報は、特に断りがない限り、第1TP情報であるとして説明を進める。
 ステップS104:
 UE100の制御部120は、TP情報の対象を決定する。制御部120は、TP情報の対象とする対象周波数リソースを決定する。対象周波数リソースは、セルグループ、サービングセル、及び帯域幅部分(例えば、上りリンク帯域幅部分(UL BWP))の少なくともいずれかであってよい。すなわち、UE100の制御部120は、TP情報が適用されるセルグループ、サービングセル、及び/又は、帯域幅部分(例えば、上りリンク帯域幅部分(UL BWP))を決定してもよい。また、UE100の制御部120は、当該セルグループ、当該サービングセル、及び/又は、当該帯域幅部分(例えば、上りリンク帯域幅部分(UL BWP))における上りリンク信号の送信に対して、当該TP情報を適用してもよい。
 また、制御部120は、設定された全てのサービングセル、及び/又は、全ての上りリンクBWPを、対象周波数リソースとして決定してもよい。例えば、制御部120は、UE100に対して設定された全てのサービングセル、及び/又は、UE100に対して設定された全ての上りリンクBWPを、対象周波数リソースとして決定してもよい。ここで、ある1つのサービングセルにおいて、1つ又は複数の上りリンクBWPが設定されてもよい。例えば、基地局は、1つ又は複数のサービングセルのそれぞれにおいて、1つ又は複数の上りリンクBWPを設定するための情報を含むRRCメッセージを送信してもよい。
 また、制御部120は、対象指定情報に基づいて、対象周波数リソースを決定してもよい。制御部120は、対象指定情報がサービングセルを指定する情報を含む場合、UE100に対して設定されたサービングセルのうち指定されたサービングセルを対象周波数リソースとして決定してもよい。制御部120は、対象指定情報がセルグループを指定する情報を含む場合、UE100に対して設定されたセルグループのうち指定されたセルグループを対象周波数リソースとして決定してもよい。セルグループは、マスターセルグループ、及び/又は、セカンダリセルグループであってよい。制御部120は、対象指定情報が上りリンクBWPを指定する情報を含む場合、UE100に対して設定された上りリンクBWPのうち指定された上りリンクBWPを対象周波数リソースとして決定してもよい。制御部120は、対象指定情報に基づいて決定された対象周波数リソースにおける上りリンク信号の送信に対して、TP情報を適用してもよい。
 また、制御部120は、DCIがTP情報を含むDCIフォーマットである場合、当該DCIフォーマットを用いてスケジュールされるサービングセル、及び/又は、上りリンクBWPの少なくとも一方を対象周波数リソースとして決定してもよい。すなわち、制御部120は、TP情報を含むDCIフォーマットを受信した場合に、当該TP情報を含むDCIフォーマットを用いてスケジュールされたサービングセル、及び/又は、上りリンクBWPを対象周波数リソースとして決定してもよい。例えば、制御部120は、TP情報を含むDCIフォーマットを受信した場合に、当該TP情報を含むDCIフォーマットを用いてスケジュールされたPUSCHのリソースが割り当てられたサービングセル、及び/又は、上りリンクBWPを対象周波数リソースとして決定してもよい。制御部120は、対象周波数リソースにおける上りリンク信号の送信に対して、TP情報を適用してもよい。
 また、制御部120は、DCIがTP情報を含むDCIフォーマットである場合、当該DCIフォーマットが受信された下りリンクコンポーネントキャリアに対応する上りリンクコンポーネントキャリア、及び/又は、DCIフォーマットが受信された下りリンクBWPに対応する上りリンクBWPを、対象周波数リソースとして決定してもよい。例えば、制御部120は、TP情報を含むDCIを検出した下りリンクBWPに対応する上りリンクBWP(例えば、下りリンクBWPのインデックスと同一のインデックスの上りリンクBWP)を対象周波数リソースとして決定してもよい。すなわち、制御部120は、TP情報を含むDCIフォーマットを受信した場合に、当該TP情報を含むDCIフォーマットを検出したサービングセル(上りリンクサービングセル)を対象周波数リソースとして決定してもよい。上述のとおり、TP情報を含むDCIフォーマットは、PDCCHオーダ用のDCIフォーマットを含む。
 また、制御部120は、アクティベートされた上りリンクBWPを対象周波数リソースとして決定してもよい。
 ステップS105:
 UE100の制御部120は、対象周波数リソースにおける上りリンク信号の送信(例えば、PUSCH送信)にトランスフォームプリコーダを適用するか否かを決定する。制御部120は、TP情報に基づいて、トランスフォームプリコーダを適用するか否かを決定する。
 制御部120は、TP情報がトランスフォームプリコーダを適用することを示す場合、対象周波数リソースにおける上りリンク信号の送信にトランスフォームプリコーダを適用すると判定してよい。一方で、制御部120は、TP情報がトランスフォームプリコーダを適用しないことを示す場合、対象周波数リソースにおける上りリンク信号の送信にトランスフォームプリコーダを適用しないと判定してよい。
 制御部120は、第2TP情報を含むRRCメッセージを基地局200から受信している場合、第1TP情報と第2TP情報とのうち、トランスフォームプリコーダを適用するか否かの決定に用いるTP情報を選択してもよい。すなわち、制御部120は、第1TP情報及び第2TP情報を受信した場合において、第1TP情報及び第2TP情報のいずれか一方に基づいて、トランスフォームプリコーダを適用するか否かを決定してもよい。例えば、制御部120は、第1TP情報を受信した場合に、たとえ第2TP情報が設定されていたとしても(第2TP情報が設定されているかどうかに関わらず)、第1TP情報に基づいて、トランスフォームプリコーダを適用するか否かを決定してもよい。また、制御部120は、第2TP情報が設定されている場合に、たとえ第1TP情報を受信したとしても(第1TP情報を受信したかどうかに関わらず)、第2TP情報に基づいて、トランスフォームプリコーダを適用するか否かを決定してもよい。
 制御部120は、第2TP情報が、特定の帯域幅部分(上りリンクBWP)に適用可能な通信装置固有のPUSCHパラメータを設定するための設定情報、及び/又は、動的な許可なしで上りリンク送信を設定するための設定情報の少なくともいずれかに含まれる場合、第1TP情報を選択してもよい。すなわち、この場合において、制御部120は、第1TP情報に基づいて、トランスフォームプリコーダを適用するか否かを決定してもよい。例えば、制御部は、PUSCH-config及び/又はConfiguredGrantConfigに含まれる第2TP情報の代わりに、第1TP情報を選択してもよい。
 制御部120は、第2TP情報がランダムアクセス手順に関する設定情報に含まれる場合、第2TP情報を選択してもよい。すなわち、この場合において、制御部120は、第2TP情報に基づいて、トランスフォームプリコーダを適用するか否かを決定してもよい。ランダムアクセス手順に関する設定情報は、RACH-ConfigCommon、及び/又は、MsgA-PUSCH-Configであってよい。
 すなわち、制御部120は、PUSCH-config及び/又はConfiguredGrantConfigに含まれる第2TP情報に基づいてトランスフォームプリコーダを適用するか否かが設定され、且つ、第1TP情報に基づいてトランスフォームプリコーダを適用するか否かが指示された場合に、第1TP情報に従ってトランスフォームプリコーダを適用するか否かを決定してもよい。例えば、第1TP情報に基づくトランスフォームプリコーダの適用に対する指示が、第2TP情報に基づくトランスフォームプリコーダの適用に対する設定を上書きしてもよい。また、制御部120は、RACH-ConfigCommon、及び/又は、MsgA-PUSCH-Configに含まれる第2TP情報に基づいてトランスフォームプリコーダを適用するか否かが設定され、且つ、第1TP情報に基づいてトランスフォームプリコーダを適用するか否かが指示された場合に、第2TP情報に従ってトランスフォームプリコーダを適用するか否かを決定してもよい。例えば、第1TP情報に基づくトランスフォームプリコーダの適用に対する指示が、第2TP情報に基づくトランスフォームプリコーダの適用に対する設定を上書きしなくてもよい(第2TP情報に基づくトランスフォームプリコーダの適用に対する設定が維持されてもよい)。ここで、制御部120は、PUSCH-config、ConfiguredGrantConfig、RACH-ConfigCommon、及び/又は、MsgA-PUSCH-Configに含まれる第2TP情報の代わりに、第1TP情報を選択してもよい。すなわち、制御部120は、PUSCH-config、ConfiguredGrantConfig、RACH-ConfigCommon、及び/又は、MsgA-PUSCH-Configに含まれる第2TP情報に基づいてトランスフォームプリコーダを適用するか否かが設定され、且つ、第1TP情報に基づいてトランスフォームプリコーダを適用するか否かが指示された場合に、常に、第1TP情報に従ってトランスフォームプリコーダを適用するか否かを決定してもよい。
 制御部120は、TP情報に基づいて、トランスフォームプリコーダを適用するか否かを切り替える。制御部120は、対象周波数リソースにおける上りリンク信号の送信にトランスフォームプリコーダが適用されていない場合に、TP情報に基づいて、トランスフォームプリコーダを適用すると決定した場合、DFT-s-OFDMの波形を用いるように切り替える制御を行う。一方で、制御部120は、対象周波数リソースにおける上りリンク信号の送信にトランスフォームプリコーダが適用されている場合に、TP情報に基づいて、トランスフォームプリコーダを適用しないと決定した場合、CP-OFDMの波形を用いるように切り替える制御を行う。
 制御部120は、TP情報に基づいて、上りリンク信号の送信に用いられるパラメータを決定してよい。具体的には、制御部120は、トランスフォームプリコーダ情報の対象に対して設定されたパラメータについて、トランスフォームプリコーダが適用される場合(すなわち、トランスフォームプリコーダが有効化された場合)に用いられる第1パラメータと、トランスフォームプリコーダが適用されない場合(すなわち、トランスフォームプリコーダが無効化された場合)に用いられる第2パラメータとのいずれのパラメータを用いるかを決定する。制御部120は、例えば、PUSCH(PUSCH送信でもよい)に関連するDMRSのシーケンスに関連するパラメータ、PUSCH(PUSCH送信でもよい)に関連するPTRSのシーケンスに関連するパラメータ、及び/又は、MCS(Modulationand channel Coding Scheme)テーブルの決定に関連するパラメータとして、決定したパラメータを用いる。ここで、MCSテーブルの決定に関連するパラメータは、PUSCH送信に関連するMCSテーブルの決定に関連するパラメータを含んでもよい。
 制御部120は、トランスフォームプリコーダが適用されるか否かに基づいて(すなわち、トランスフォームプリコーダが有効化されているか無効化されているかに基づいて)、第1パラメータと第2パラメータとのいずれか一方を用いてもよい。例えば、制御部120は、トランスフォームプリコーダが適用される場合(すなわち、トランスフォームプリコーダが有効化されている場合)、第1パラメータを用いてもよい。また、制御部120は、トランスフォームプリコーダが適用されない場合(すなわち、トランスフォームプリコーダが無効化されている場合)、第2パラメータを用いてもよい。すなわち、制御部120は、TP情報に基づいて第1パラメータと第2パラメータとのいずれを用いるのかを決定し、決定したパラメータを用いてPUSCHに関連するDMRSのシーケンスを生成してもよい。また、制御部120は、TP情報に基づいて第1パラメータと第2パラメータとのいずれを用いるのかを決定し、決定したパラメータを用いてPUSCHに関連するPTRSのシーケンスを生成してもよい。また、制御部120は、TP情報に基づいて第1パラメータと第2パラメータとのいずれを用いるのかを決定し、決定したパラメータを用いてMCSテーブルを決定してもよい。ここで、制御部120は、TP情報の対象として決定された対象リソースに関連するパラメータ(第1のパラメータ、又は、第2のパラメータ)を用いてもよい。例えば、制御部120は、第1パラメータ、及び/又は、第2パラメータが1つ又は複数の上りBWPのそれぞれに対して設定された場合、TP情報が適用される対象リソース(すなわち、当該1つ又は複数の上りBWPのうちのTP情報が適用される上りBWP)に対して設定された第1パラメータ、及び/又は、第2パラメータを用いてもよい。
 ここで、制御部120は、第1パラメータと第2パラメータとのうち、用いないパラメータをサスペンド(又は、保留、一時停止)してもよい。すなわち、制御部120は、トランスフォームプリコーダが適用されるか否かに基づいて(すなわち、トランスフォームプリコーダが有効化されているか無効化されているかに基づいて)、第1パラメータと第2パラメータとのいずれか一方を用い、他方をサスペンドしてもよい。例えば、制御部120は、トランスフォームプリコーダが適用される場合に、第1パラメータを用い、第2パラメータをサスペンドしてもよい。また、制御部120は、トランスフォームプリコーダが適用されない場合に、第2パラメータを用い、第1パラメータをサスペンドしてもよい。ここで、制御部120は、TP情報の対象として決定された対象リソースに関連するパラメータ(第1のパラメータ、又は、第2のパラメータ)以外のパラメータをサスペンドしてもよい。例えば、制御部120は、第1パラメータ、及び/又は、第2パラメータが1つ又は複数の上りBWPのそれぞれに対して設定された場合、TP情報が適用される対象リソース(すなわち、当該1つ又は複数の上りBWPのうちのTP情報が適用される上りBWP)に対して設定された第1パラメータ、及び/又は、第2パラメータを用い、それ以外のパラメータ(第1パラメータ、及び/又は、第2パラメータ)をサスペンドしてもよい。従って、制御部120は、例えば、RRCメッセージを用いて設定されたパラメータのうち、TP情報の指示に対応する(すなわち、TP情報の対象として決定された対象周波数リソースに関連する)パラメータをアクティブだとみなし、TP情報に対応しない(すなわち、TP情報の対象外の)パラメータをサスペンドしてもよい。
 例えば、制御部120は、アクティブなトランスフォームプリコーダ設定を有し、トランスフォームプリコーダ設定が無効のインジケーションを受信していない場合、当該トランスフォームプリコーダ設定がアクティブなBWPでアクティブであるとみなされてよく、そうでない場合、トランスフォームプリコーダ設定がサスペンドされているとみなされてよい。トランスフォームプリコーダ設定は、トランスフォームプリコーダを適用するか否か(すなわち、トランスフォームプリコーダの有効化又は無効化)に対応してもよい。また、トランスフォームプリコーダ設定は、第1パラメータ又は第2パラメータのいずれかを含んでもよい。
 例えば、上述のとおり、制御部120は、トランスフォームプリコーダの有効化が指示(又は、設定)された場合、当該トランスフォームプリコーダが適用される上りリンクBWP(すなわち、上りリンク信号が実行されるアクティブなBWP)に対して設定された第1のパラメータを用いてもよい(第1のパラメータがアクティブであるとみなしてもよい)。また、制御部120は、トランスフォームプリコーダの有効化が指示(又は、設定)された場合、当該トランスフォームプリコーダが適用される上りリンクBWP(すなわち、上りリンク信号が実行されるアクティブなBWP)に対して設定された第2のパラメータを用いなくてもよい(第2のパラメータがサスペンドであるとみなしてもよい)。
 また、制御部120は、トランスフォームプリコーダの無効化が指示(又は、設定)された場合、当該トランスフォームプリコーダが適用されない上りリンクBWP(すなわち、上りリンク信号が実行されるアクティブなBWP)に対して設定された第1のパラメータを用いなくてもよい(第1のパラメータがサスペンドであるとみなしてもよい)。また、制御部120は、トランスフォームプリコーダの無効化が指示(又は、設定)された場合、当該トランスフォームプリコーダが適用されない上りリンクBWP(すなわち、上りリンク信号が実行されるアクティブなBWP)に対して設定された第2のパラメータを用いてもよい(第2のパラメータがアクティブであるとみなしてもよい)。
 ステップS106:
 UE100の送信部111は、上りリンク信号(例えば、PUSCH)を基地局200へ送信してよい。基地局200の受信部212は、上りリンク信号をUE100から受信してよい。例えば、制御部120がトランスフォームプリコーダを適用すると決定した場合(すなわち、トランスフォームプリコーダの有効化が指示(又は、設定)された場合)、送信部111は、対象周波数リソースにおいて、トランスフォームプリコーダが適用された上りリンク信号を送信する。また、制御部120が第1パラメータを用いてPUSCHに関連するDMRSのシーケンスを生成した場合、送信部111は、当該PUSCHに関連するDMRSを送信してもよい。ここで、送信部111は、TP情報が適用される対象周波数リソースにおいて、当該PUSCHに関連するDMRSを送信してもよい。また、制御部120が第1パラメータを用いてPUSCHに関連するPTRSのシーケンスを生成した場合、送信部111は、当該PUSCHに関連するPTRSを送信してもよい。ここで、送信部111は、TP情報が適用される対象周波数リソースにおいて、当該PUSCHに関連するPTRSを送信してもよい。また、制御部120が第1パラメータを用いてMCSテーブルを決定した場合、送信部111は、当該MCSテーブルに従って、PUSCHにおける送信を実行してもよい。ここで、送信部111は、TP情報が適用される対象周波数リソースにおいて、当該MCSテーブルに従ったPUSCHにおける送信を実行してもよい。
 また、制御部120がトランスフォームプリコーダを適用しないと決定した場合、送信部111は、対象周波数リソースにおいて、トランスフォームプリコーダが適用されていない上りリンク信号を送信する。また、制御部120が第2パラメータを用いてPUSCHに関連するDMRSのシーケンスを生成した場合、送信部111は、当該PUSCHに関連するDMRSを送信してもよい。ここで、送信部111は、TP情報が適用される対象周波数リソースにおいて、当該PUSCHに関連するDMRSを送信してもよい。また、制御部120が第2パラメータを用いてPUSCHに関連するPTRSのシーケンスを生成した場合、送信部111は、当該PUSCHに関連するPTRSを送信してもよい。ここで、送信部111は、TP情報が適用される対象周波数リソースにおいて、当該PUSCHに関連するPTRSを送信してもよい。また、制御部120が第2パラメータを用いてMCSテーブルを決定した場合、送信部111は、当該MCSテーブルに従って、PUSCHにおける送信を実行してもよい。ここで、送信部111は、TP情報が適用される対象周波数リソースにおいて、当該MCSテーブルに従ったPUSCHにおける送信を実行してもよい。
 送信部111は、トランスフォームプリコーダ情報(例えば、TP情報を含むDCI)を受信してから所定時間の経過後のタイミング(所定タイミング)で、トランスフォームプリコーダの適用に関する切り替えが適用された上りリンク信号を基地局200へ送信してよい。
 制御部120は、タイミング情報に基づいて所定タイミングを決定してもよい。制御部120は、例えば、通常の上りリンク信号の送信タイミング(通常のオフセットされたタイミング)よりも遅くなるタイミング(例えば、通常の上りリンク信号を送信すべき所定スロット後のスロット)を所定タイミングとして決定してもよい。また、制御部120は、能力情報に基づいて、所定タイミングを決定してもよい。
 なお、制御部120は、TP情報の有効期間を示す情報に基づいて、トランスフォームプリコーダの適用の有無を戻してもよい。すなわち、制御部120は、TP情報の有効期間が終了した場合、トランスフォームプリコーダの適用の切り替えを元に戻してよい。
 また、制御部120は、TP情報を含むDCI又はMAC CEの受信に基づいて、ランダムアクセス手順を開始(又は、トリガ、実行)してもよい。例えば、制御部120は、TP情報を含むDCI又はMAC CEの受信に基づいて、コンテンションフリーランダムアクセス(CFRA:Contention Free Random Access)手順、及び/又は、コンテンションベースランダムアクセス(CBRA:Contention Based Random Access)手順を開始してもよい。例えば、制御部120は、TP情報を含むDCI又はMAC CEの受信に基づいて、4ステップCFRA手順、及び/又は、2ステップCFRA手順を開始してもよい。また、TP情報を含むDCI又はMAC CEの受信に基づいて、4ステップCBRA手順、及び/又は、2ステップCBRA手順を開始してもよい。上述のとおり、制御部120は、TP情報を含むPDCCHオーダ用のDCIフォーマットの受信に基づいて、CFRA手順を開始してもよい。
 ここで、ランダムアクセス手順は、UE100における上位レイヤ(例えば、MACレイヤ)において実行されてもよい。すなわち、UE100における下位レイヤ(例えば、物理レイヤ)は、TP情報を含むDCIを受信した場合に、当該TP情報(又は、当該TP情報を含むDCIでもよい)を上位レイヤ(例えば、MACレイヤ)に供給(又は、指示)してもよい。また、UE100における上位レイヤ(例えば、MACレイヤ)は、物理レイヤからの当該TP情報の供給に基づいて、ランダムアクセス手順を開始してもよい。
 基地局200は、ランダムアクセス手順に用いられるランダムアクセスプリアンブル、物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)のリソース(例えば、周波数領域におけるリソース、及び/又は、時間領域におけるリソース)を設定(又は、指示してもよい)。以下、物理ランダムアクセスチャネルのリソースを、PRACH機会(occasion(s))とも記載する。例えば、基地局200は、ランダムアクセスプリアンブルを示す情報、及び/又は、PRACH機会を示す情報を含むRRCメッセージを送信してもよい。例えば、基地局200は、ランダムアクセスプリアンブルを示す情報、及び/又は、PRACH機会を示す情報を含むランダムアクセスの設定(例えば、RACH-ConfigDedicated)を送信してもよい。また、上述のとおり、ランダムアクセスプリアンブルを示す情報を含むPDCCHオーダ用のDCIフォーマットを送信してもよい。すなわち、基地局200は、TP情報の受信に基づいて開始されたランダムアクセス手順に対する、ランダムアクセスプリアンブル、及び/又は、PRACH機会を設定してもよい。
 UE100は、ランダムアクセス手順の開始に基づいて、ランダムアクセスプリアンブルを送信する(メッセージ1、又は、メッセージAとも称される)。また、UE100は、2ステップRA手順において、ランダムアクセスプリアンブルの送信後に、PUSCHにおける送信を実行してもよい。ここで、UE100は、当該ランダムアクセスプリアンブルの送信後のPUSCHにおける送信に対して、TP情報に基づいてトランスフォームプリコーダを適用するか否かを決定してもよい。例えば、UE100は、当該ランダムアクセスプリアンブルの送信後のPUSCHにおける送信に対して、TP情報に基づいてトランスフォームプリコーダを適用してもよい。また、UE100は、当該ランダムアクセスプリアンブルの送信後のPUSCHにおける送信に対して、TP情報に基づいてトランスフォームプリコーダを適用しなくてもよい。基地局200は、当該ランダムアクセスプリアンブルの送信後のPUSCHにおける送信に対するタイミング情報を設定してもよい。例えば、基地局200は、タイミング情報を含むRRCメッセージを送信し、UE100は、当該タイミング情報に基づいて、当該ランダムアクセスプリアンブルの送信後のPUSCHにおける送信を実行してもよい。すなわち、UE100は、当該タイミング情報に基づいて、当該ランダムアクセスプリアンブルの送信後のPUSCHにおける送信に対するタイミング(例えば、スロット、シンボル、及び/又は、開始位置)を決定してもよい。例えば、基地局200は、タイミング情報を含むランダムアクセスの設定(例えば、RACH-ConfigDedicated)を送信してもよい。
 また、UE100は、ランダムアクセスレスポンス(RA応答)を受信する(メッセージ2、又は、メッセージBとも称される)。例えば、UE100は、ランダムアクセスレスポンスの受信(すなわち、PDSCHにおけるランダムアクセスレスポンスの受信)のために、C-RNTIによってスクランブルされたCRCが付加されたDCI(PDCCHでもよい)をモニタしてもよい。ここで、基地局200は、C-RNTIによってスクランブルされたCRCが付加されたDCモニタされる時間ウィンドウ(ra-ResponseWindowとも称される)を示す情報、及び/又は、サーチスペースセットを示す情報を含むRRCメッセージを送信してもよい。ここで、当該サーチスペースセットは、USSセット、及び/又は、CSSセットを含む。すなわち、基地局200は、TP情報の受信に基づいて開始されたランダムアクセス手順に対する、時間ウィンドウを示す情報、及び/又は、サーチスペースセットを設定してもよい。例えば、基地局200は、時間ウィンドウを示す情報、及び/又は、サーチスペースセットを示す情報を含むRRCメッセージを送信し、UE100は、当該時間ウィンドウ、及び/又は、当該サーチスペースセットにおいて、C-RNTIがスクランブルされたCRCが付加されたDCIをモニタしてもよい。UE100は、C-RNTIがスクランブルされたCRCが付加されたDCIの受信(又は、検出)に基づいて、ランダムアクセス手順が成功裏に完了したとみなしてもよい。
 また、UE100は、ランダムアクセス手順が成功裏に完了したことに基づいて、TP情報に従って、トランスフォームプリコーダを適用してもよい。また、UE100は、ランダムアクセス手順が成功裏に完了したことに基づいて、TP情報に従って、トランスフォームプリコーダを適用しなくてもよい。すなわち、UE100は、ランダムアクセス手順が成功裏に完了したことに基づいて、TP情報に従った上りリンク信号の送信を実行してもよい。ここで、基地局200は、当該ランダムアクセス手順が成功裏に完了したことに基づいた上りリンク信号の送信に対して、タイミング情報を設定してもよい。例えば、基地局200は、タイミング情報を含むRRCメッセージを送信し、UE100は、当該ランダムアクセス手順が成功裏に完了した後に、当該タイミング情報に基づいて、TP情報に従った上りリンク信号の送信を実行してもよい。例えば、UE100は、当該ランダムアクセス手順が成功裏に完了し、且つ、当該タイミング情報によって指示された時間タイミング後に、TP情報に従った上りリンク信号の送信を実行してもよい。
 また、UE100は、タイミングアドバンスコマンドを処理した後に、TP情報に従った上りリンク信号の送信を実行してもよい。例えば、UE100は、ランダムアクセスレスポンスに含まれるタイミングアドバンスコマンドを処理した後に、TP情報に従った上りリンク信号の送信を実行してもよい。
 また、4ステップCBRA手順において、UE100は、ランダムアクセスレスポンスに基づいて、PUSCHにおける送信(UL-SCHの送信でもよい)を実行してもよい。例えば、UE100は、ランダムアクセスレスポンスに含まれるランダムアクセスレスポンスグラント(RA応答許可)に基づいて、PUSCHにおける送信を実行してもよい(メッセージ3とも称される)。例えば、UE100は、当該PUSCHにおける送信に対して、TP情報に基づいてトランスフォームプリコーダを適用してもよい。また、UE100は、当該PUSCHにおける送信に対して、TP情報に基づいてトランスフォームプリコーダを適用しなくてもよい。基地局200は、当該PUSCHにおける送信に対するタイミング情報を設定してもよい。例えば、基地局200は、タイミング情報を含むRRCメッセージを送信し、UE100は、当該タイミング情報に基づいて、当該PUSCHにおける送信を実行してもよい。すなわち、UE100は、当該タイミング情報に基づいて、当該PUSCHにおける送信のタイミング((例えば、スロット、シンボル、及び/又は、開始位置))を決定してもよい。例えば、基地局200は、タイミング情報を含むランダムアクセスの設定(例えば、RACH-ConfigDedicated)を送信してもよい。また、基地局200は、タイミング情報をランダムアクセスレスポンスに含めて送信してもよい。
 また、4ステップCBRA手順において、UE100は、コンテンションレゾリューションを受信してもよい(メッセージ4とも称される)。例えば、UE100は、コンテンションレゾリューション受信(又は、検出)に基づいて、ランダムアクセス手順が成功裏に完了したとみなしてもよい。上述のとおり、UE100は、ランダムアクセス手順が成功裏に完了したことに基づき、TP情報に従って、トランスフォームプリコーダを適用してもよい。また、UE100は、ランダムアクセス手順が成功裏に完了したことに基づき、TP情報に従って、トランスフォームプリコーダを適用しなくてもよい。すなわち、UE100は、ランダムアクセス手順が成功裏に完了したことに基づいて、TP情報に基づいた上りリンク信号の送信を実行してもよい。また、基地局200は、当該ランダムアクセス手順が成功裏に完了したことに基づいた上りリンク信号の送信に対して、タイミング情報を設定してもよい。例えば、基地局200は、タイミング情報を含むRRCメッセージを送信し、UE100は、当該ランダムアクセス手順が成功裏に完了した後に、当該タイミング情報に基づいて、上りリンク信号の送信を実行してもよい。例えば、UE100は、当該ランダムアクセス手順が成功裏に完了し、当該タイミング情報によって指示された時間タイミング後に、上りリンク信号の送信を実行してもよい。
 以上のように、UE100の受信部112は、トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を基地局200から受信する。UE100の制御部120は、トランスフォームプリコーダ情報の対象とする対象周波数リソースを決定する。制御部120は、トランスフォームプリコーダ情報に基づいて、対象周波数リソースにおける上りリンク信号の送信にトランスフォームプリコーダを適用するか否かを決定する。これにより、UE100は、トランスフォームプリコーダ情報の対象とする対象周波数リソースにおいて、上りリンク信号の波形を動的に切り替えて送信することができる。これにより、UE100は、トランスフォームプリコーダ情報の対象とする対象周波数リソースにおいて、上りリンク信号の波形を動的に切り替えて送信することができる。基地局200は、動的に波形が切り替えられた上りリンク信号を受信することができる。
 また、制御部120は、UE100に対して設定された全てのサービングセル、又はUE100に対して設定された全ての上りリンクBWPを、対象周波数リソースとして決定する。これにより、UE100は、設定されたものがTP情報の対象となるため、対象指定情報のやり取りがなくても、基地局200とUE100との間で対象周波数リソースを共通に認識できる。
 また、受信部112は、対象周波数リソースを指定する対象指定情報を基地局200から受信してよい。制御部120は、対象指定情報に基づいて、対象周波数リソースを決定してよい。これにより、基地局200とUE100との間で、対象周波数リソースの認識を共有できる。
 また、対象指定情報は、対象周波数リソースとしてサービングセルを指定する情報を含んでよい。制御部120は、対象指定情報に基づいて、UE100に対して設定されたサービングセルのうち指定されたサービングセルを対象周波数リソースとして決定してよい。これにより、UE100に複数のサービングセルが設定されている場合であっても、TP情報の対象となるサービングセルを柔軟に制御できる。
 また、対象指定情報は、対象周波数リソースとしてセルグループを指定する情報を含んでよい。制御部120は、対象指定情報に基づいて、UE100に対して設定されたセルグループのうち指定されたセルグループを対象周波数リソースとして決定してよい。UE100に複数のセルグループが設定されている場合であっても、TP情報の対象となるセルグループを柔軟に制御できる。
 また、対象指定情報は、対象周波数リソースとして上りリンクBWPを指定する情報を含んでよい。制御部120は、対象指定情報に基づいて、UE100に対して設定された上りリンクBWPのうち指定された上りリンクBWPを対象周波数リソースとして決定できる。UE100に複数の上りリンクBWPが設定されている場合であっても、TP情報の対象となる上りリンクBWPを柔軟に制御できる。
 また、受信部112は、対象指定情報を含む無線リソース制御(RRC)メッセージを基地局200から受信してよい。これにより、RRCメッセージは、DCI及びMAC CEに比べると、多くの情報量を送れるため、TP情報の対象を柔軟に指定し易くなる。
 また、受信部112は、対象指定情報を含むMAC CEを基地局200から受信してよい。これにより、RRCシグナリングに比べて、TP情報の対象を動的に切り替え可能となる。
 また、MAC CEは、TP情報と対象指定情報とを含むMAC CEを基地局200から受信してよい。これにより、UE100は、TP情報の対象をすぐに把握できる。
 また、DCIは、TP情報を含むDCIフォーマットであってよい。制御部120は、DCIフォーマットを用いてスケジュールされるサービングセル及び上りリンクBWPの少なくとも一方を対象周波数リソースとして決定してよい。これにより、UE100は、TP情報の対象を明示的に指定されなくても、TP情報の対象を把握できる。
 また、DCIは、TP情報を含むDCIフォーマットであってよい。制御部120は、DCIフォーマットが受信された下りリンクコンポーネントキャリアに対応する上りリンクコンポーネントキャリア又はDCIフォーマットが受信された下りリンクBWPに対応する上りリンクBWPを対象周波数リソースとして決定してよい。これにより、UE100は、TP情報の対象を明示的に指定されなくても、TP情報の対象を把握できる。
 また、TP情報は、第1TP情報であってよい。受信部112は、トランスフォームプリコーダを適用するか否か示す第2TP情報を含む無線リソース制御(RRC)メッセージを基地局から受信してよい。制御部120は、第1TP情報及び第2TP情報のうち、トランスフォームプリコーダを適用するか否かの決定に用いるTP情報を選択してよい。これにより、トランスフォームプリコーダの適用について、第1TP情報と第2TP情報とで柔軟に制御することができる。
 また、制御部120は、第2TP情報が、特定の帯域幅部分(BWP)に適用可能な通信装置固有の物理上りリンク共有チャネル(PUSCH)パラメータを設定するための設定情報、及び動的な許可なしで上りリンク送信を設定するための設定情報の少なくともいずれかに含まれる場合、第1TP情報を選択してよい。すなわち、制御部120は、第2TP情報を含む通信装置固有のパラメータを受信した場合(すなわち、第2TP情報が通信装置固有のパラメータとして設定される場合)は、第1TP情報に基づいてトランスフォームプリコーダを適用するか否かを決定してもよい。これらの設定情報について、基地局200は、下位レイヤのシグナリングを用いて適切なタイミングでトランスフォームプリコーダを適用するか否かを切り替えることができる。また、基地局200は、通信装置固有に効率的なトランスフォームプリコーダの切り替えを実行することができる。
 また、制御部120は、第2TP情報が、ランダムアクセス手順に関する設定情報に含まれる場合、第2TP情報を選択してよい。すなわち、制御部120は、第2TP情報を含むセル固有のパラメータを受信した場合(すなわち、第2TP情報がセル固有のパラメータとして設定される場合)は、第2TP情報に基づいてトランスフォームプリコーダを適用するか否かを決定してもよい。これにより、基地局200は、セル全体の状況を考慮した最適なトランスフォームプリコーダの切り替えを実行することができる。
 また、受信部112は、TP情報が含まれるDCI中のフィールドに関する情報を含む無線リソース制御(RRC)メッセージを基地局200から受信してよい。これにより、UE100は、DCIにTP情報が含まれるか否かを把握できる。
 また、受信部112は、TP情報を含むDCIをモニタするための設定情報を含む無線リソース制御(RRC)メッセージを基地局200から受信してよい。これにより、UE100は、DCIにTP情報が含まれるか否かを把握できる。また、UE100がTP情報を含むDCIをモニタする制御リソースセット(すなわち、周波数領域におけるリソース)、及び/又は、サーチスペースセット(すなわち、時間領域におけるリソース)を制御することができる。
 また、受信部112は、TP情報と、TP情報を含むMAC CEを識別するための特定の論理チャネル識別子と、を含むMAC CEを基地局200から受信してよい。これにより、UE100は、MAC CEにTP情報が含まれるか否かを把握できる。
 また、受信部112は、トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を基地局200から受信する。制御部120は、トランスフォームプリコーダ情報の対象に対して設定されたパラメータについて、トランスフォームプリコーダが適用された場合に用いられる第1パラメータと、トランスフォームプリコーダが適用されていない場合に用いられる第2パラメータとのいずれのパラメータを用いるかを決定する。これにより、UE100は、DCI又はMAC CEに含まれるトランスフォームプリコーダ情報の対象に対して設定されたパラメータについて、第1パラメータと第2パラメータとのいずれかに決定することで、トランスフォームプリコーダの適用に関するパラメータを切り替えることができ、動的なパラメータの切り替えが可能となる。
 受信部112は、第1パラメータと第2パラメータとの両方を含むRRCメッセージを受信してよい。これにより、UE100は、RRCメッセージの受信後から、下位レイヤのシグナリングを用いてトランスフォームプリコーダを適用するか否かを動的に切り替えることができる。
 制御部120は、第1パラメータと第2パラメータとのうち、上りリンク信号の送信に用いないパラメータをサスペンドしてよい。これにより、制御部120は、パラメータがサスペンドされているため、上りリンク信号の送信に用いないパラメータが上りリンク信号の送信に用いられるように切り替えられた場合に、遅延なく用いることができる。
 (その他の実施形態)
 上述の実施形態では、TPIに基づいて波形が決定される上りリンク信号について、PUSCHを例に挙げて説明したが、これに限られない。他の上り信号(例えば、PTRS等)や他の信号(例えば、サイドリンク信号等)について、同様の動作が実行されてもよい。
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE(Long Term Evolution)又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。
 上述の実施形態の動作におけるステップは、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。さらに、上述の各動作フローは、別個独立に実施する場合に限らず、2以上の動作フローを組み合わせて実施可能である。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM(Compact Disk Read Only Memory)やDVD-ROM(Digital Versatile Disc Read Only Memory)等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC(System On Chip))として構成してもよい。
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「に基づいて(based on)」、「に応じて(depending on/in response to)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。さらに、本開示で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示で使用され得る。従って、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 (付記)
 上述の実施形態に関する特徴について付記する。
 (付記1)
 制御部と、
 トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を基地局から受信する受信部と、を備え、
 前記制御部は、
  前記トランスフォームプリコーダ情報の対象とする対象周波数リソースを決定し、
  前記トランスフォームプリコーダ情報に基づいて、前記対象周波数リソースにおける上りリンク信号の送信に前記トランスフォームプリコーダを適用するか否かを決定する
 通信装置。
 (付記2)
 前記制御部は、前記通信装置に対して設定された全てのサービングセル、又は前記通信装置に対して設定された全ての上りリンク帯域幅部分(BWP)を、前記対象周波数リソースとして決定する
 付記1に記載の通信装置。
 (付記3)
 前記受信部は、前記対象周波数リソースを指定する対象指定情報を前記基地局から受信し、
 前記制御部は、前記対象指定情報に基づいて、前記対象周波数リソースを決定する
 付記1に記載の通信装置。
 (付記4)
 前記対象指定情報は、前記対象周波数リソースとしてサービングセルを指定する情報を含み、
 前記制御部は、前記対象指定情報に基づいて、前記通信装置に対して設定されたサービングセルのうち前記指定されたサービングセルを前記対象周波数リソースとして決定する
 付記3に記載の通信装置。
 (付記5)
 前記対象指定情報は、前記対象周波数リソースとしてセルグループを指定する情報を含み、
 前記制御部は、前記対象指定情報に基づいて、前記通信装置に対して設定されたセルグループのうち前記指定されたセルグループを前記対象周波数リソースとして決定する
 付記3又は4に記載の通信装置。
 (付記6)
 前記対象指定情報は、前記対象周波数リソースとして上りリンクBWPを指定する情報を含み、
 前記制御部は、前記対象指定情報に基づいて、前記通信装置に対して設定された上りリンクBWPのうち前記指定された上りリンクBWPを前記対象周波数リソースとして決定する
 付記3から5のいずれか1項に記載の通信装置。
 (付記7)
 前記受信部は、前記対象指定情報を含む無線リソース制御(RRC)メッセージを前記基地局から受信する
 付記3から6のいずれか1項に記載の通信装置。
 (付記8)
 前記受信部は、前記対象指定情報を含む前記MAC CEを前記基地局から受信する
 付記3から6のいずれか1項に記載の通信装置。
 (付記9)
 前記MAC CEは、前記トランスフォームプリコーダ情報と前記対象指定情報とを含む前記MAC CEを前記基地局から受信する
 付記8に記載の通信装置。
 (付記10)
 前記DCIは、前記トランスフォームプリコーダ情報を含むDCIフォーマットであり、
 前記制御部は、前記DCIフォーマットを用いてスケジュールされるサービングセル及び上りリンクBWPの少なくとも一方を前記対象周波数リソースとして決定する
 付記1に記載の通信装置。
 (付記11)
 前記DCIは、前記トランスフォームプリコーダ情報を含むDCIフォーマットであり、
 前記制御部は、前記DCIフォーマットが受信された下りリンクコンポーネントキャリアに対応する上りリンクコンポーネントキャリア又は前記DCIフォーマットが受信された下りリンクBWPに対応する上りリンクBWPを前記対象周波数リソースとして決定する
 付記1に記載の通信装置。
 (付記12)
 前記トランスフォームプリコーダ情報は、第1トランスフォームプリコーダ情報であり、
 前記受信部は、前記トランスフォームプリコーダを適用するか否か示す第2トランスフォームプリコーダ情報を含む無線リソース制御(RRC)メッセージを前記基地局から受信し、
 前記制御部は、前記第1トランスフォームプリコーダ情報及び前記第2トランスフォームプリコーダ情報のうち、前記トランスフォームプリコーダを適用するか否かの決定に用いるトランスフォームプリコーダ情報を選択する
 付記1から11のいずれか1項に記載の通信装置。
 (付記13)
 前記制御部は、前記第2トランスフォームプリコーダ情報が、特定の帯域幅部分(BWP)に適用可能な通信装置固有の物理上りリンク共有チャネル(PUSCH)パラメータを設定するための設定情報、及び動的な許可なしで上りリンク送信を設定するための設定情報の少なくともいずれかに含まれる場合、前記第1トランスフォームプリコーダ情報を選択する
 付記12に記載の通信装置。
 (付記14)
 前記制御部は、前記第2トランスフォームプリコーダ情報が、ランダムアクセス手順に関する設定情報に含まれる場合、前記第2トランスフォームプリコーダ情報を選択する
 付記12又は13に記載の通信装置。
 (付記15)
 前記受信部は、前記トランスフォームプリコーダ情報が含まれる前記DCI中のフィールドに関する情報を含む無線リソース制御(RRC)メッセージを前記基地局から受信し、
 付記1から6のいずれか1項に記載の通信装置。
 (付記16)
 前記受信部は、前記トランスフォームプリコーダ情報を含む前記DCIをモニタするための設定情報を含む無線リソース制御(RRC)メッセージを前記基地局から受信する
 付記1から15のいずれか1項に記載の通信装置。
 (付記17)
 前記受信部は、前記トランスフォームプリコーダ情報と、前記トランスフォームプリコーダ情報を含む前記MAC CEを識別するための特定の論理チャネル識別子と、を含む前記MAC CEを前記基地局から受信する
 付記1から16のいずれか1項に記載の通信装置。
 (付記18)
 トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報の対象とする対象周波数リソースを決定する制御部と、
 前記トランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を通信装置へ送信する送信部と、を備える
 基地局。
 (付記19)
 通信装置で実行される通信方法であって、
 トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を基地局から受信するステップと、
 前記トランスフォームプリコーダ情報の対象とする対象周波数リソースを決定するステップと、
 前記トランスフォームプリコーダ情報に基づいて、前記対象周波数リソースにおける上りリンク信号の送信に前記トランスフォームプリコーダを適用するか否かを決定するステップと、を備える
 通信方法。
 

Claims (19)

  1.  制御部(120)と、
     トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を基地局(210)から受信する受信部(112)と、を備え、
     前記制御部は、
      前記トランスフォームプリコーダ情報の対象とする対象周波数リソースを決定し、
      前記トランスフォームプリコーダ情報に基づいて、前記対象周波数リソースにおける上りリンク信号の送信に前記トランスフォームプリコーダを適用するか否かを決定する
     通信装置(100)。
  2.  前記制御部は、前記通信装置に対して設定された全てのサービングセル、又は前記通信装置に対して設定された全ての上りリンク帯域幅部分(BWP)を、前記対象周波数リソースとして決定する
     請求項1に記載の通信装置。
  3.  前記受信部は、前記対象周波数リソースを指定する対象指定情報を前記基地局から受信し、
     前記制御部は、前記対象指定情報に基づいて、前記対象周波数リソースを決定する
     請求項1に記載の通信装置。
  4.  前記対象指定情報は、前記対象周波数リソースとしてサービングセルを指定する情報を含み、
     前記制御部は、前記対象指定情報に基づいて、前記通信装置に対して設定されたサービングセルのうち前記指定されたサービングセルを前記対象周波数リソースとして決定する
     請求項3に記載の通信装置。
  5.  前記対象指定情報は、前記対象周波数リソースとしてセルグループを指定する情報を含み、
     前記制御部は、前記対象指定情報に基づいて、前記通信装置に対して設定されたセルグループのうち前記指定されたセルグループを前記対象周波数リソースとして決定する
     請求項3に記載の通信装置。
  6.  前記対象指定情報は、前記対象周波数リソースとして上りリンクBWPを指定する情報を含み、
     前記制御部は、前記対象指定情報に基づいて、前記通信装置に対して設定された上りリンクBWPのうち前記指定された上りリンクBWPを前記対象周波数リソースとして決定する
     請求項3に記載の通信装置。
  7.  前記受信部は、前記対象指定情報を含む無線リソース制御(RRC)メッセージを前記基地局から受信する
     請求項3から6のいずれか1項に記載の通信装置。
  8.  前記受信部は、前記対象指定情報を含む前記MAC CEを前記基地局から受信する
     請求項3から6のいずれか1項に記載の通信装置。
  9.  前記MAC CEは、前記トランスフォームプリコーダ情報と前記対象指定情報とを含む前記MAC CEを前記基地局から受信する
     請求項8に記載の通信装置。
  10.  前記DCIは、前記トランスフォームプリコーダ情報を含むDCIフォーマットであり、
     前記制御部は、前記DCIフォーマットを用いてスケジュールされるサービングセル及び上りリンクBWPの少なくとも一方を前記対象周波数リソースとして決定する
     請求項1に記載の通信装置。
  11.  前記DCIは、前記トランスフォームプリコーダ情報を含むDCIフォーマットであり、
     前記制御部は、前記DCIフォーマットが受信された下りリンクコンポーネントキャリアに対応する上りリンクコンポーネントキャリア又は前記DCIフォーマットが受信され
    た下りリンクBWPに対応する上りリンクBWPを前記対象周波数リソースとして決定する
     請求項1に記載の通信装置。
  12.  前記トランスフォームプリコーダ情報は、第1トランスフォームプリコーダ情報であり、
     前記受信部は、前記トランスフォームプリコーダを適用するか否か示す第2トランスフォームプリコーダ情報を含む無線リソース制御(RRC)メッセージを前記基地局から受信し、
     前記制御部は、前記第1トランスフォームプリコーダ情報及び前記第2トランスフォームプリコーダ情報のうち、前記トランスフォームプリコーダを適用するか否かの決定に用いるトランスフォームプリコーダ情報を選択する
     請求項1から6のいずれか1項に記載の通信装置。
  13.  前記制御部は、前記第2トランスフォームプリコーダ情報が、特定の帯域幅部分(BWP)に適用可能な通信装置固有の物理上りリンク共有チャネル(PUSCH)パラメータを設定するための設定情報、及び動的な許可なしで上りリンク送信を設定するための設定情報の少なくともいずれかに含まれる場合、前記第1トランスフォームプリコーダ情報を選択する
     請求項12に記載の通信装置。
  14.  前記制御部は、前記第2トランスフォームプリコーダ情報が、ランダムアクセス手順に関する設定情報に含まれる場合、前記第2トランスフォームプリコーダ情報を選択する
     請求項12に記載の通信装置。
  15.  前記受信部は、前記トランスフォームプリコーダ情報が含まれる前記DCI中のフィールドに関する情報を含む無線リソース制御(RRC)メッセージを前記基地局から受信し、
     請求項1から6のいずれか1項に記載の通信装置。
  16.  前記受信部は、前記トランスフォームプリコーダ情報を含む前記DCIをモニタするための設定情報を含む無線リソース制御(RRC)メッセージを前記基地局から受信する
     請求項1から6のいずれか1項に記載の通信装置。
  17.  前記受信部は、前記トランスフォームプリコーダ情報と、前記トランスフォームプリコーダ情報を含む前記MAC CEを識別するための特定の論理チャネル識別子と、を含む前記MAC CEを前記基地局から受信する
     請求項1から6のいずれか1項に記載の通信装置。
  18.  トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報の対象とする対象周波数リソースを決定する制御部(230)と、
     前記トランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を通信装置(100)へ送信する送信部(211)と、を備える
     基地局(210)。
  19.  通信装置(100)で実行される通信方法であって、
     トランスフォームプリコーダを適用するか否かを示すトランスフォームプリコーダ情報を含む下り制御情報(DCI)又は媒体アクセス制御要素(MAC CE)を基地局(210)から受信するステップと、
     前記トランスフォームプリコーダ情報の対象とする対象周波数リソースを決定するステップと、
     前記トランスフォームプリコーダ情報に基づいて、前記対象周波数リソースにおける上りリンク信号の送信に前記トランスフォームプリコーダを適用するか否かを決定するステップと、を備える
     通信方法。
     
PCT/JP2023/028143 2022-08-08 2023-08-01 通信装置、基地局及び通信方法 WO2024034470A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022126208 2022-08-08
JP2022-126208 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034470A1 true WO2024034470A1 (ja) 2024-02-15

Family

ID=89851699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028143 WO2024034470A1 (ja) 2022-08-08 2023-08-01 通信装置、基地局及び通信方法

Country Status (1)

Country Link
WO (1) WO2024034470A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200068539A1 (en) * 2017-05-05 2020-02-27 Huawei Technologies Co., Ltd. Control information obtaining method and apparatus
US20200374852A1 (en) * 2019-05-20 2020-11-26 Qualcomm Incorporated Techniques for resource block allocation in wireless communications
JP2022529889A (ja) * 2019-03-25 2022-06-27 オフィノ, エルエルシー 省電力コマンドの送受信
WO2022153966A1 (ja) * 2021-01-13 2022-07-21 シャープ株式会社 端末装置、基地局装置、および、通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200068539A1 (en) * 2017-05-05 2020-02-27 Huawei Technologies Co., Ltd. Control information obtaining method and apparatus
JP2022529889A (ja) * 2019-03-25 2022-06-27 オフィノ, エルエルシー 省電力コマンドの送受信
US20200374852A1 (en) * 2019-05-20 2020-11-26 Qualcomm Incorporated Techniques for resource block allocation in wireless communications
WO2022153966A1 (ja) * 2021-01-13 2022-07-21 シャープ株式会社 端末装置、基地局装置、および、通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on the UL waveform indication method", 3GPP DRAFT; R1-1718776, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 4 October 2017 (2017-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051353253 *

Similar Documents

Publication Publication Date Title
JP7171782B2 (ja) 基地局および方法
US11528701B2 (en) Framing, scheduling, and synchronization in wireless systems
JP6988934B2 (ja) 無線局、無線端末、及びこれらにより行われる方法
JP6044855B2 (ja) 通信方法、通信装置および集積回路
US11671295B2 (en) Method and NB wireless device for determining whether or not to transmit SR
KR20200083583A (ko) 무선 장치 성능에 기초한 통신
WO2018074068A1 (ja) 基地局装置、端末装置および通信方法
JP2019521595A (ja) 無線デバイスおよび無線ネットワークにおけるトーク前リッスンプロシージャ
CN113475138B (zh) 用户设备、基站装置及通信方法
WO2011097998A1 (zh) 非竞争随机接入的调度及前导码发送方法、系统和设备
CN112106401B (zh) 发送和接收寻呼和系统信息的系统和方法
US20160157211A1 (en) Wireless communication system, base station apparatus, terminal apparatus, wireless communication method, and integrated circuit
CN115380603B (zh) 资源检索程序
CN114616781A (zh) 反馈信道的无线电资源映射
CN111465113B (zh) 一种被用于无线通信的节点中的方法和节点
KR102288180B1 (ko) 데이터 전송 방법, 장치 및 통신 시스템
CN111937458A (zh) 终端装置、基站装置以及通信方法
KR20220055484A (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2012097696A1 (zh) 随机接入方法、用户设备及网络设备
WO2020218355A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
CN115486159A (zh) 用于侧链路的无线设备辅助资源选择
JP2020519058A (ja) 無線ネットワークにおける通信デバイスおよび方法
JP2019505109A (ja) データチャネル及び制御チャネルの両方のスケジューリングを伴うマルチサブフレームグラント
CN111405503A (zh) 一种被用于无线通信的节点中的方法和装置
JP2020074616A (ja) ユーザ機器およびランダムアクセス方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852441

Country of ref document: EP

Kind code of ref document: A1