WO2019095907A1 - 资源映射方法、确定方法、网络侧设备及用户终端 - Google Patents

资源映射方法、确定方法、网络侧设备及用户终端 Download PDF

Info

Publication number
WO2019095907A1
WO2019095907A1 PCT/CN2018/109976 CN2018109976W WO2019095907A1 WO 2019095907 A1 WO2019095907 A1 WO 2019095907A1 CN 2018109976 W CN2018109976 W CN 2018109976W WO 2019095907 A1 WO2019095907 A1 WO 2019095907A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource mapping
mapping configuration
resource
user terminal
bandwidth
Prior art date
Application number
PCT/CN2018/109976
Other languages
English (en)
French (fr)
Inventor
沈晓冬
孙鹏
潘学明
丁昱
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to ES18879911T priority Critical patent/ES2934409T3/es
Priority to JP2020524152A priority patent/JP7052033B2/ja
Priority to US16/757,307 priority patent/US11800489B2/en
Priority to EP22199568.1A priority patent/EP4135463A1/en
Priority to KR1020207017323A priority patent/KR102410379B1/ko
Priority to EP18879911.8A priority patent/EP3697153B1/en
Publication of WO2019095907A1 publication Critical patent/WO2019095907A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a resource mapping method, a determining method, a network side device, and a user terminal.
  • the communication protocol in the related art does not support resource mapping of distributed virtual resource blocks (distributed VRBs, DVRBs) for larger resource allocations and larger bandwidth configurations, due to the introduction of larger bandwidth and code block groups in 5G. (Code Block Group, CBG) transmission, in the case of large resource allocation, it is necessary to support DVRB mapping in such a scenario.
  • distributed VRBs distributed VRBs
  • DVRBs distributed virtual resource blocks
  • CBG Code Block Group
  • LTE Long Term Evolution
  • PRB physical resource block
  • LTE supports a smaller scale, according to the cell bandwidth.
  • the mapping of DVRB with a frequency interval of /4, the application of smaller frequency spacing allows the distributed transmission to be limited to a part of the bandwidth of the entire cell.
  • NR adopts two different types of type 1 and type 2 for the design of Precoding Resource Block Groups (PRGs), it is necessary to separately design different DVRB mapping schemes for this type, and determine its DVRB.
  • PRGs Precoding Resource Block Groups
  • an embodiment of the present disclosure provides a resource mapping method, which is applied to a network side device, and includes:
  • mapping the virtual resource block to the physical resource block according to the resource mapping configuration information and transmitting the resource mapping configuration information to the user terminal, so that the user terminal learns the resource dispersion by using the configuration parameter in the resource mapping configuration information.
  • the configuration parameter in the resource mapping configuration information includes at least one of the following:
  • the transmission bandwidth of the user terminal is the transmission bandwidth of the user terminal.
  • an embodiment of the present disclosure provides a resource determining method, which is applied to a user terminal, and includes:
  • the configuration parameter in the resource mapping configuration information includes at least one of the following:
  • the transmission bandwidth of the user terminal is the transmission bandwidth of the user terminal.
  • an embodiment of the present disclosure provides a network side device, including:
  • a processing module configured to determine resource mapping configuration information of the physical downlink control channel, and map the virtual resource block to the physical resource block according to the resource mapping configuration information
  • a sending module configured to send the resource mapping configuration information to the user terminal, so that the user terminal uses the configuration parameter in the resource mapping configuration information to learn the bandwidth occupied by the resource dispersion mapping;
  • the configuration parameter in the resource mapping configuration information includes at least one of the following:
  • the transmission bandwidth of the user terminal is the transmission bandwidth of the user terminal.
  • an embodiment of the present disclosure provides a user terminal, including:
  • a receiving module configured to receive resource mapping configuration information of a physical downlink control channel sent by the network side device
  • a processing module configured to determine, according to the configuration parameter in the resource mapping configuration information, a bandwidth occupied by the resource dispersion mapping
  • the configuration parameter in the resource mapping configuration information includes at least one of the following:
  • the transmission bandwidth of the user terminal is the transmission bandwidth of the user terminal.
  • an embodiment of the present disclosure provides a network side device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the computer program is implemented by the processor The steps of the resource mapping method.
  • an embodiment of the present disclosure provides a user terminal, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the computer program is executed by the processor to implement the foregoing The steps of the resource determination method.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, the step or implementation of the resource mapping method as described above is implemented. The steps of the resource determination method as described above.
  • FIG. 1 is a schematic diagram of a VRB that can be used for distributed scheduling
  • FIG. 2 is a schematic diagram of DVRB mapping after being configured as GAP1 and GAP2;
  • FIG. 3 is a schematic flowchart diagram of a resource mapping method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of mapping of a DVRB at a given bandwidth according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of mapping of a DVRB within a scheduling bandwidth according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart diagram of a resource determining method according to an embodiment of the present disclosure.
  • FIG. 7 is a structural block diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a user terminal according to an embodiment of the present disclosure.
  • the network side device decides which resource blocks (RBs) to allocate to a specific user terminal (User Equipment, UE), the downlink channel quality related to the time domain and the frequency domain may be taken into consideration. That is, channel-related frequency selective scheduling takes into account channel changes, such as channel changes caused by frequency selective fading, and then assigns those RBs that are of good channel quality (not necessarily consecutive) to the UE. Significantly increase the rate of the UE and the throughput of the entire cell.
  • RBs resource blocks
  • frequency selective scheduling requires the UE to report the downlink channel quality to the network side device, which brings a large signaling overhead, and needs to ensure that the network side device can successfully and timely receive the downlink channel quality information to avoid receiving or Received outdated information. Therefore, in some scenarios, frequency-selective scheduling is not applicable. For example, for low-speed services, such as voice services, the feedback signaling related to frequency selection brings relatively large overhead, which is not worth the loss; Under the high-speed rail, it is difficult or impossible to track the real-time channel quality, thus failing to provide the channel quality accuracy required for frequency selective scheduling.
  • an alternative solution is to distribute the downlink transmission to non-contiguous resource blocks in the frequency domain to obtain a frequency diversity gain, thereby improving the reliability of the transmission.
  • the PRB indicates a physical resource block
  • the VRB indicates a virtual resource block.
  • the network side device generally indicates the resource information to the user terminal through the VRB.
  • the specific physical resource mapping needs to be obtained after the VRB is mapped to the corresponding PRB.
  • the centralized PRB represents a user terminal.
  • the resource occupies a continuous PRB.
  • the distributed PRB indicates that a user terminal occupies a discontinuous PRB resource in the bandwidth, which can improve the frequency diversity gain of the system and improve the anti-jamming capability.
  • VRBs In LTE, two types of VRBs are defined: a centralized VRB (localized VRB, LVRB) and a distributed VRB (distributed VRB, DVRB).
  • a centralized VRB localized VRB, LVRB
  • a distributed VRB distributed VRB
  • the VRB pair and the PRB pair are not one-to-one.
  • the consecutive VRB numbers are mapped to the discontinuous PRB numbers, and the two slots in one subframe also have different mapping relationships.
  • this method is used to achieve "distributed" resource allocation.
  • the continuous VRB pair is mapped to the discontinuous PRB pair or the PRB pair is separated, the resource transmission of the two RBs of one PRB pair has a certain frequency interval (can be regarded as based on a slot)
  • the frequency hopping is designed to achieve diversity effects in frequency.
  • n VRB is used to represent the frequency position of the VRB
  • the range of VRBs that can be used for interleaving is Only the VRBs in this range can interleave the RB pairs to perform distributed VRB resource allocation.
  • the main purpose of this is to ensure the possibility of resource conflicts when different user terminals with multiple resource allocation modes reuse resources, that is, the distributed resources are concentrated on some physical resources.
  • the number of the RB may be allocated to 11 VRBs of 0 to 10. Note the parameters here Number of RBs that are not downstream bandwidth parameter The calculation according to the LTE protocol is as follows:
  • the current bandwidth is 5MHz. then If it is 10MHz bandwidth, then Therefore, for the 10 MHz bandwidth, only 46 VRB pairs can be used for frequency interleaving of RBs when the frequency interval GAP1 is used, so that distributed RB allocation can be performed.
  • the current bandwidth is 10MHz. then therefore, for the 10 MHz bandwidth, only 36 VRB pairs can be used for frequency interleaving of RBs when the frequency interval GAP2 is used, so that distributed RB allocation can be performed.
  • an interleaver is used to complete the mapping from VRB to PRB, and in order to implement DVRB, the mapped resources are dispersed as much as possible, and the mapped logical resources are required to be evenly distributed on the entire physical resources as much as possible.
  • Block interleaver can be used to complete the process by rewriting and scrambling the VRB by writing the VRB from the row and reading from the column.
  • the two most important parameters for a block interleaver are to determine the number of rows and the number of columns.
  • the resources mapped by the DVRB are distributed to the entire bandwidth, the resources are fragmented to some extent, so it is necessary to limit the bandwidth of the resource mapping.
  • DCI format 1A/1B/1D uses a distributed VRB allocation method, and its DCI Cyclic Redundancy Check (CRC) is used by the cell wireless network. If the downlink radio bandwidth is 6 to 49 RB, the number of VRBs allocated to the corresponding UE can be from 1 to the maximum. This value is very close to the system bandwidth, which is specified in the protocol; however, when the downlink bandwidth is 50 to 110 RBs, the number of VRBs allocated to the corresponding UE can be from 1 to a maximum of 16.
  • DCI Downlink Control Information
  • CRC DCI Cyclic Redundancy Check
  • the resources of the first 16 VRBs are mapped as shown in Figure 2.
  • the number is the logical number of the VRB.
  • PRB bundling is a physical resource block binding.
  • PRG Precoding Resource Block Groups
  • the UE may assume that under one serving cell, the precoding granularity is a plurality of resource blocks (PRBs) in the frequency domain.
  • the precoding resource block group (PRGS) size is divided according to the system bandwidth sum, and the PRG is composed of consecutive PRBs.
  • the UE can assume that in a PRG, all predetermined PRBs apply the same Precoder.
  • the size of the PRG is related to the bandwidth of the system.
  • P' is the number of PRBs included in one PRG, that is, PRG size.
  • resources allocated to the UE are represented by a bitmap, where each bit in the bitmap represents a resource block group, that is, an RBG, and 1 indicates a corresponding resource block. Assigned to this UE, 0 means unallocated.
  • the resource block group RBG is composed of one or more consecutive VRBs, and the VRB is of a centralized type.
  • the size P of the RBG (the number of RBs included) is related to the system bandwidth, as shown in Table 3:
  • the PRG configuration in the 5G NR may have two types: type 1 and type 2, where type 1 refers to a set of PRG sizes configured or predefined by the network side device, for example, [1, 2, 4, 8, 16], dynamically indicating the PRG size used by the user terminal by L1 signaling; type 2 means that the PRG size is equal to the number of resources that are continuously scheduled.
  • type 1 refers to a set of PRG sizes configured or predefined by the network side device, for example, [1, 2, 4, 8, 16], dynamically indicating the PRG size used by the user terminal by L1 signaling
  • type 2 means that the PRG size is equal to the number of resources that are continuously scheduled.
  • the resources in the NR support two types of resource allocation, a bitmap type (type 0) and a continuous resource allocation type (type 1).
  • Type 0 is in the form of a bitmap, because each bit of the bitmap represents an RBG (resource block group), and RBG represents an RB group.
  • the size of the RB group may be related to bandwidth, such as 20M system bandwidth, and each RBG. It includes 4 RBs, so that there are 25 RBGs in the 20M bandwidth, and the bitmap in the corresponding DCI has 25 bits. If an RBG is allocated to the UE, the bitmap corresponding bit of the DCI corresponding to the UE is set to 1.
  • Type 1 The resource allocated to the UE is a continuous VRB, and the mapping of the VRB to the actual physical resource PRB may be localized or distributed.
  • the protocol in the related art does not support resource mapping for DVRB under larger resource allocation and larger bandwidth configuration. Due to the introduction of larger bandwidth and CBG transmission in 5G, in the case of larger resource allocation, DVRB mapping is supported in this scenario.
  • NR uses two different types of type 1 and type 2 for the design of PRG, it is necessary to separately design different DVRB mapping schemes for this type, and determine the specific parameters of the interleaver of its DVRB mapping.
  • the technical problem to be solved by the present disclosure is to provide a resource mapping method, a determining method, a network side device, and a user terminal, which can meet the resource mapping needs of two different PRG types of type1 and type2.
  • the embodiment of the present disclosure provides a resource mapping method, which is applied to a network side device, as shown in FIG. 3, and includes:
  • Step 101 Determine resource mapping configuration information of a physical downlink control channel.
  • Step 102 Map the virtual resource block to the physical resource block according to the resource mapping configuration information, and send the resource mapping configuration information to the user terminal, so that the user terminal uses the configuration parameter in the resource mapping configuration information. Know the bandwidth occupied by the resource after the mapping;
  • the configuration parameter in the resource mapping configuration information includes at least one of the following:
  • the transmission bandwidth of the user terminal is the transmission bandwidth of the user terminal.
  • the network side device sends the resource mapping configuration information of the physical downlink control channel to the user terminal, where the resource mapping configuration information carries the configuration parameter, and the user terminal can determine the resource dispersion mapping according to the configuration parameter in the resource mapping configuration information.
  • the technical solution of the present disclosure can meet the resource mapping requirements of two different types of PRGs of type 1 and type 2, and improves the diversity gain of the resources while improving The availability of resources ensures the continuity of resources.
  • the interleave granularity (N unit ) of a block interleaver is generally a multiple of P' or P'. All VRBs are divided into N units group;
  • Block interleaver that is, by writing the VRB from the row, reordering and scrambling the VRB from the column readout, or VRB writing from the column, and reading out the VRB from the row to complete the reordering and scrambling of the VRB.
  • the above-mentioned interleaved logical resources are mapped to physical resources.
  • the resources mapped by the DVRB are distributed to the entire bandwidth, the resources are fragmented to some extent, so it is necessary to limit the resource mapping large bandwidth. At this time for The number will also be limited.
  • the independent variable includes at least the VRB number and the time slot number, wherein the VRB number has a value range of n
  • the value of PRB also has a certain range, and cannot exceed the limit of the number of physical resources.
  • n s is the number of the slot, where the slot number is introduced as an argument, which allows randomization between slots; in addition, for different
  • the results of N unit , N col , f( ⁇ ) mapping will also be different.
  • the DVRB of one of the UEs is notified in a mapping manner of a group of DVRBs (corresponding to different mapping bandwidths) through a protocol or a Radio Resource Control (RRC) signaling of the network side device.
  • the mapping mode, the sending the resource mapping configuration information to the user terminal includes:
  • Each resource mapping configuration mode includes a corresponding mapping function and a VRB number value range.
  • the network side device can control the DVRB mapping manner semi-statically, for example, the network side device controls the degree of dispersion after the DVRB mapping, that is, the size of the bandwidth occupied after the mapping, thereby effectively controlling the fragmentation of resources. Case.
  • the specific implementation can be as follows:
  • the network side device notifies the mapping mode of the specific DVRB by the RRC signaling, for example, when receiving the RRC signaling i, the f i ( ⁇ ) mapping function is used; wherein, f i ( ⁇ ) may have different functional forms, such as The bandwidth of the DVRB mapping corresponding to f i ( ⁇ ) may be different (such as full bandwidth or 1/2 bandwidth, corresponding to different application scenarios), and different or the same n VRB value range (corresponding to a smaller resource allocation and Large bandwidth configuration scenario).
  • the DVRB mapping mode of a group of UEs (corresponding to different mapping bandwidths) is configured by using a protocol or by RRC signaling of the network side device, and then a DVRB mapping mode is selected by using L1 signaling, where the The sending of the resource mapping configuration information to the user terminal includes:
  • the resource mapping configuration information is sent to the user terminal by using the L1 signaling, so that the user terminal selects a resource mapping configuration mode from multiple resource mapping configuration modes, and the resource may be configured by using L1 signaling.
  • the number of the mapping configuration information is sent to the user terminal, so that the user terminal selects a resource mapping configuration mode from multiple resource mapping configuration modes, where the multiple resource mapping configuration modes are pre-configured multiple resource mapping configurations.
  • the mode is a multiple resource mapping configuration mode that is sent to the user terminal by using the RRC signaling.
  • Each resource mapping configuration mode includes a corresponding mapping function and a VRB number value range.
  • the background of the embodiment is that the network side device can dynamically control the DVRB mapping manner, for example, the network side device controls the degree of dispersion after the DVRB mapping, that is, the size of the bandwidth occupied after the mapping, thereby effectively controlling the fragmentation of resources. happening.
  • the specific implementation may be as follows: the network side device notifies the mapping mode of the group of DVRBs by the RRC signaling or the mapping mode of a group of DVRBs specified by the protocol, and the specific signaling manner is adopted by the dynamic signaling of the L1, for example, when When receiving the L1 signaling i, the f i ( ⁇ ) mapping function is used; wherein f i ( ⁇ ) can have different functional forms, for example, the bandwidth of the DVRB mapping corresponding to f i ( ⁇ ) can be different (such as Bandwidth or 1/2 bandwidth, corresponding to different application scenarios), and different or the same n VRB value range (corresponding to a smaller resource allocation and a larger bandwidth configuration scenario).
  • the user terminal can implicitly determine a mapping mode of the DVRB in a set of DVRB mapping modes (corresponding to different mapping bandwidths) according to the bandwidth of the actually scheduled resource, and the bandwidth of the actually scheduled resource is scheduled.
  • the bandwidth occupied by the data is different from the transmission bandwidth, and refers to how much bandwidth is actually used by the scheduling.
  • the sending the resource mapping configuration information to the user terminal includes:
  • the mapping configuration mode is a pre-configured multiple resource mapping configuration mode or a plurality of resource mapping configuration modes that are sent to the user terminal by using RRC signaling.
  • Each resource mapping configuration mode includes a corresponding mapping function and a VRB number value range. And each resource mapping configuration mode corresponds to the number of scheduled resource blocks.
  • the DVRBs in the above specific embodiments 1 and 2 are all operations of resource decentralization performed in one bandwidth, and the resource decentralization in this embodiment is performed only in those resources scheduled. For ease of understanding, the difference between the two is shown in FIG. 4 and FIG. 5.
  • the dotted point is the scheduled VRB, and the DVRB in the scheduling bandwidth refers to the PRB in the PRB resource set corresponding to the VRB.
  • the scrambling is performed sequentially, which in some cases enables the performance of data transmission based on CBG transmission to be optimized without fragmenting resources.
  • the network side device notifies the UE of the mapping mode of a group of DVRBs through RRC signaling or the mapping mode of a group of DVRBs specified by the protocol, and the terminal dynamically updates according to the number of resources to be scheduled (usually the number of VRBs) Determine which mapping method is used, for example:
  • f 1 ( ⁇ ) and f 2 ( ⁇ ) have different functional forms:
  • the bandwidth of the DVRB mapping corresponding to f 1 ( ⁇ ) and f 2 ( ⁇ ) may be different (such as full bandwidth or 1/2 bandwidth, corresponding to different application scenarios); or the DVRB corresponding to f 1 ( ⁇ ) is For decentralization under a given bandwidth, the DVRB corresponding to f 2 ( ⁇ ) is decentralized within the scheduling bandwidth; different or the same n VRB value range (corresponding to a scenario of smaller resource allocation and larger bandwidth configuration).
  • a mapping manner of a DVRB may be implicitly determined in a set of DVRB mapping modes (corresponding to different mapping bandwidths) according to a configured possible transmission bandwidth (BWP bandwidth or bandwidth of a carrier).
  • the sending of the resource mapping configuration information to the user terminal includes:
  • the resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode includes a corresponding mapping function and a VRB number value.
  • the range and each resource mapping configuration mode corresponds to the configuration of a BWP.
  • the network side device notifies the mapping mode of the group of DVRBs by the RRC signaling or the mapping manner of a group of DVRBs by the protocol, and the terminal dynamically determines which mapping mode is adopted according to the BWP bandwidth, for example, Use the f i ( ⁇ ) mapping function; f i ( ⁇ ) can have different functional forms:
  • the bandwidth of the DVRB mapping corresponding to f i ( ⁇ ) may be different (such as full bandwidth or 1/2 bandwidth, corresponding to different application scenarios);
  • the DVRB corresponding to f i ( ⁇ ) is a DVRB at a given bandwidth or a DVRB within a scheduled bandwidth;
  • n VRB value range (corresponding to a scenario of smaller resource allocation and larger bandwidth configuration).
  • a mapping manner of a DVRB may be implicitly determined in a set of DVRB mapping modes (corresponding to different mapping bandwidths) according to a BWP bandwidth and a type of resource allocation (such as type 0 or type 1).
  • the sending of the resource mapping configuration information to the user terminal includes:
  • the mapping configuration mode, the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode corresponds to one A combination of BWP configuration and resource allocation types.
  • the specific implementation may be as follows: For the NR downlink resource allocation type 0 (bitmap type), the DVRB is decentralized on a given scheduled resource, that is, the block interleaver is only performed on the scheduled VRB;
  • the DVRB is decentralized at a given bandwidth, meaning that the block interleaver is performed within the BWP bandwidth or within a known bandwidth.
  • the mapping manner of the DVRB may be determined according to the DCI format, where the sending the resource mapping configuration information to the user terminal includes:
  • the resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or a plurality of resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode corresponds to one format of downlink control information.
  • the DCI formats of the two are different, and different mapping modes of the DVRB are considered.
  • the DVRB is decentralized under a given bandwidth, meaning that the block interleaver is performed within the BWP bandwidth or within a known bandwidth; for normal DCI, the DVRB is performed on the scheduled resources. Decentralized, meaning that block interleaver is only performed on the scheduled VRB.
  • the sending the resource mapping configuration information to the user terminal includes:
  • the user terminal Transmitting the resource mapping configuration information to the user terminal by using the downlink control information, so that the user terminal selects a resource mapping configuration manner from multiple resource mapping configuration manners according to the format of the downlink control information, where the multiple The bandwidth occupied by the resource-distributed mapping in the resource mapping configuration mode is the pre-allocated bandwidth or the bandwidth of the actually scheduled resource, wherein the pre-allocated bandwidth is configured by the network-side device or at least by the following parameters:
  • the transmission bandwidth in which the user terminal is located is located; and/or
  • the network side device sends a fallback DCI (return DCI) to convey control signaling, and considers a fixed PRG type to simplify the process;
  • RMSI Remaining system information
  • RAR message (message) 2
  • message 4 message 4
  • OSI system information
  • Physical Downlink shared channel Physical Downlink shared channel
  • DVRB is decentralized under a given bandwidth, meaning that block interleaver is performed within the initial access BWP bandwidth;
  • DVRB is decentralized on the scheduled resources, meaning that block interleaver is only performed on the scheduled VRB;
  • the DVRB mapping mode may be implicitly determined in a set of DVRB mapping modes (corresponding to different mapping bandwidths) according to the bandwidth of the actually scheduled resource, where the resource mapping configuration information is sent to the user terminal. Notifying the user terminal of the bandwidth value of the actually scheduled resource, so that the user terminal selects a resource mapping configuration mode from multiple resource mapping configuration modes according to the bandwidth value of the actually scheduled resource, and the multiple resource mapping
  • the configuration mode is a pre-configured multiple resource mapping configuration mode, and each resource mapping configuration mode corresponds to a bandwidth value.
  • RMSI is system information similar to SIB1 in LTE introduced in 5G NR.
  • the OSI is similar to the SIBx system information introduced in the 5G NR similar to the LTE except for the SIB1.
  • a physical random access channel (PRACH) channel is mainly used for the user terminal to initiate an uplink random access request, so that the network side device side further determines the subsequent response according to the request.
  • PRACH physical random access channel
  • the random access process in the related art mainly has four steps, as follows:
  • Step 1 Preamble Send (Message 1)
  • Step 2 Random Access Response (Message 2)
  • Step 3 Layer 2/Layer 3 Message (Message 3)
  • Step 4 Competition Resolution Message (Message 4)
  • Step 1 is mainly that the sequence generated by the Preamble (code) of the physical layer is mapped to the time-frequency resource of the physical layer
  • the step 2 is mainly that the network side device sends a random access response (Random Access Response, RAR) through the PDSCH channel.
  • RAR Random Access Response
  • RA-RNTI Random Access Radio Network Temporary ID
  • the first random access related message the message carrying the determined random access procedure message, such as an RRC connection request message, a location area update message, or a scheduling request message; the main purpose of the step 4 is to competing to resolve the message, and the contention is resolved.
  • the message is for C-RNTI or temporary C-RNTI.
  • the contention response message responds with the UE ID carried in the L2/L3 message.
  • the competition resolution message supports HARQ. If an L2/L3 message is successfully decoded after a contention collision occurs, only the UE that detected its own UE ID (or C-RNTI) will send a HARQ feedback message, while other UEs realize that there is a collision. The HARQ feedback message will not be sent, but the access process will be terminated as soon as possible and a new random access will be started.
  • the embodiment of the present disclosure further provides a resource determining method, which is applied to a user terminal, as shown in FIG. 6, and includes:
  • Step 201 Receive resource mapping configuration information of a physical downlink control channel sent by the network side device.
  • Step 202 Determine, according to the configuration parameter in the resource mapping configuration information, a bandwidth occupied by the resource dispersion mapping.
  • the configuration parameter in the resource mapping configuration information includes at least one of the following:
  • the transmission bandwidth of the user terminal is the transmission bandwidth of the user terminal.
  • the network side device sends the resource mapping configuration information of the physical downlink control channel to the user terminal, where the resource mapping configuration information carries the configuration parameter, and the user terminal can determine the resource dispersion mapping according to the configuration parameter in the resource mapping configuration information.
  • the technical solution of the present disclosure can meet the resource mapping requirements of two different types of PRGs of type 1 and type 2, and improves the diversity gain of the resources while improving The availability of resources ensures the continuity of resources.
  • the method further includes: after determining the bandwidth occupied by the resource-distributed mapping according to the configuration parameter in the resource mapping configuration information, the method further includes:
  • the downlink data is received on the determined bandwidth.
  • the resource mapping configuration information includes a mapping function from a VRB number to a PRB number or a number thereof, and the argument of the mapping function includes at least a VRB number and a slot number, wherein the value range of the VRB number is
  • the resource mapping configuration information of the physical downlink control channel sent by the receiving network side device includes:
  • the configuration mode is a pre-configured multiple resource mapping configuration mode or a plurality of resource mapping configuration modes that are sent to the user terminal in advance.
  • Each resource mapping configuration mode includes a corresponding mapping function and a VRB number value range.
  • the resource mapping configuration information of the physical downlink control channel sent by the receiving network side device includes:
  • the configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling.
  • Each resource mapping configuration mode includes a corresponding mapping function and a VRB number value range.
  • the resource mapping configuration information of the physical downlink control channel sent by the receiving network side device includes:
  • each resource mapping configuration mode includes a corresponding mapping function and a VRB number value range and each resource The mapping configuration mode corresponds to the number of scheduled resource blocks.
  • the resource mapping configuration information of the physical downlink control channel sent by the receiving network side device includes:
  • Each resource mapping configuration mode includes a corresponding mapping function and a VRB number value range, and each of the resource mapping configuration modes is configured by using a plurality of resource mapping configurations that are sent to the user terminal by using RRC signaling.
  • the resource mapping configuration mode corresponds to the configuration of a BWP.
  • the resource mapping configuration information of the physical downlink control channel sent by the receiving network side device includes:
  • the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode corresponds to a BWP configuration and A combination of resource allocation types.
  • the resource mapping configuration information of the physical downlink control channel sent by the receiving network side device includes:
  • Each resource mapping configuration mode corresponds to one format of downlink control information, which is a pre-configured multiple resource mapping configuration mode or a plurality of resource mapping configuration modes that are sent to the user terminal by using RRC signaling.
  • the resource mapping configuration information of the physical downlink control channel sent by the receiving network side device includes:
  • the bandwidth occupied by the resource-distributed mapping is the pre-allocated bandwidth or the bandwidth of the actually scheduled resource, wherein the pre-allocated bandwidth is configured by the network-side device or at least by the following parameters:
  • the transmission bandwidth in which the user terminal is located is located; and/or
  • the resource mapping configuration information of the physical downlink control channel sent by the receiving network side device includes:
  • the resource mapping configuration mode is a plurality of resource mapping configuration manners that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode corresponds to a bandwidth value.
  • the resource mapping configuration information indicates that the user terminal initially accesses, and the user terminal receives the physical downlink shared channel PDSCH that carries the remaining system information RMSI, message 2, message 4, and/or other system information OSI.
  • the bandwidth occupied by the resource-distributed mapping is the pre-allocated bandwidth or the bandwidth of the actually scheduled resource.
  • the embodiment of the present disclosure further provides a network side device, as shown in FIG. 7, including:
  • the processing module 31 is configured to determine resource mapping configuration information of the physical downlink control channel, and map the virtual resource block to the physical resource block according to the resource mapping configuration information;
  • the sending module 32 is configured to send the resource mapping configuration information to the user terminal, so that the user terminal learns the bandwidth occupied by the resource dispersion mapping by using the configuration parameter in the resource mapping configuration information;
  • the configuration parameter in the resource mapping configuration information includes at least one of the following:
  • the transmission bandwidth of the user terminal is the transmission bandwidth of the user terminal.
  • the network side device sends the resource mapping configuration information of the physical downlink control channel to the user terminal, where the resource mapping configuration information carries the configuration parameter, and the user terminal can determine the resource dispersion mapping according to the configuration parameter in the resource mapping configuration information.
  • the technical solution of the present disclosure can meet the resource mapping requirements of two different types of PRGs of type 1 and type 2, and improves the diversity gain of the resources while improving The availability of resources ensures the continuity of resources.
  • the resource mapping configuration information includes a mapping function from a VRB number to a PRB number or a number thereof, and the argument of the mapping function includes at least a VRB number and a slot number, wherein the value range of the VRB number is
  • the sending module is specifically configured to send the resource mapping configuration information to the user terminal by using RRC signaling, so that the user terminal selects a resource mapping configuration mode from multiple resource mapping configuration modes.
  • the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration modes that are sent to the user terminal in advance.
  • Each resource mapping configuration mode includes a corresponding mapping function and a VRB number value. range.
  • the sending module is specifically configured to send the resource mapping configuration information to the user terminal by using L1 signaling, so that the user terminal selects a resource mapping configuration mode from multiple resource mapping configuration modes.
  • the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode includes a corresponding mapping function and a VRB. Number range of values.
  • the sending module is specifically configured to notify the user terminal of the number of scheduled resource blocks, so that the user terminal selects one of multiple resource mapping configuration manners according to the number of the scheduled resource blocks.
  • a resource mapping configuration mode where the multiple resource mapping configuration modes are pre-configured multiple resource mapping configuration modes or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, where each resource mapping configuration mode includes The corresponding mapping function and the VRB number take a range of values and each resource mapping configuration mode corresponds to the number of scheduled resource blocks.
  • the sending module is specifically configured to send, to the user terminal, a configuration of a bandwidth part BWP allocated to the user terminal, so that the user terminal selects from multiple resource mapping configuration manners according to the configuration of the BWP.
  • a resource mapping configuration mode where the multiple resource mapping configuration modes are pre-configured multiple resource mapping configuration modes or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode The corresponding mapping function and the VRB number value range are included, and each resource mapping configuration mode corresponds to a BWP configuration.
  • the sending module is specifically configured to send, to the user terminal, a configuration and a resource allocation type of a BWP allocated to the user terminal, so that the user terminal is configured according to the configuration of the BWP and the resource allocation type.
  • Selecting a resource mapping configuration mode where the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configurations sent to the user terminal by using RRC signaling.
  • each resource mapping configuration mode corresponds to a combination of a BWP configuration and a resource allocation type.
  • the sending module is specifically configured to send the resource mapping configuration information to the user terminal by using downlink control information, so that the user terminal selects multiple resource mapping configuration manners according to the format of the downlink control information.
  • a resource mapping configuration mode where the multiple resource mapping configuration modes are pre-configured multiple resource mapping configuration modes or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode Corresponding to a format of downlink control information.
  • the sending module is specifically configured to send the resource mapping configuration information to the user terminal by using downlink control information, so that the user terminal selects multiple resource mapping configuration manners according to the format of the downlink control information.
  • a resource mapping configuration manner the bandwidth occupied by the resource-distributed mapping in the multiple resource mapping configuration manner is a pre-allocated bandwidth or a bandwidth of an actually scheduled resource, where the pre-allocated bandwidth is determined by the network-side device Configuration or at least by the following parameters:
  • the transmission bandwidth in which the user terminal is located is located; and/or
  • the sending module is specifically configured to notify the user terminal of the bandwidth value of the actually scheduled resource, so that the user terminal selects a resource mapping from multiple resource mapping configuration manners according to the bandwidth value of the actually scheduled resource.
  • the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode, and each resource mapping configuration mode corresponds to a bandwidth value.
  • the resource mapping configuration information indicates that the user terminal initially accesses, and the user terminal receives the physical downlink shared channel PDSCH that carries the remaining system information RMSI, message 2, message 4, and/or other system information OSI.
  • the bandwidth occupied by the resource-distributed mapping is the pre-allocated bandwidth or the bandwidth of the actually scheduled resource.
  • the embodiment of the present disclosure further provides a user terminal, as shown in FIG. 8, including:
  • the receiving module 41 is configured to receive resource mapping configuration information of a physical downlink control channel sent by the network side device.
  • the processing module 42 is configured to determine, according to the configuration parameter in the resource mapping configuration information, a bandwidth occupied by the resource dispersion mapping;
  • the configuration parameter in the resource mapping configuration information includes at least one of the following:
  • the transmission bandwidth of the user terminal is the transmission bandwidth of the user terminal.
  • the network side device sends the resource mapping configuration information of the physical downlink control channel to the user terminal, where the resource mapping configuration information carries the configuration parameter, and the user terminal can determine the resource dispersion mapping according to the configuration parameter in the resource mapping configuration information.
  • the technical solution of the present disclosure can meet the resource mapping requirements of two different types of PRGs of type 1 and type 2, and improves the diversity gain of the resources while improving The availability of resources ensures the continuity of resources.
  • the user terminal further includes:
  • a data receiving module configured to receive downlink data on the determined bandwidth.
  • the resource mapping configuration information includes a mapping function from a VRB number to a PRB number or a number thereof, and the argument of the mapping function includes at least a VRB number and a slot number, wherein the value range of the VRB number is
  • the receiving module is specifically configured to receive RRC signaling that is sent by the network side device and that carries resource mapping configuration information, where the RRC signaling notifies the user terminal to select a resource from multiple resource mapping configuration modes.
  • the mapping configuration mode, the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or a plurality of resource mapping configuration manners that are sent to the user terminal in advance, and each resource mapping configuration mode includes a corresponding mapping function.
  • the VRB number range is specifically configured to receive RRC signaling that is sent by the network side device and that carries resource mapping configuration information, where the RRC signaling notifies the user terminal to select a resource from multiple resource mapping configuration modes.
  • the mapping configuration mode, the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or a plurality of resource mapping configuration manners that are sent to the user terminal in advance, and each resource mapping configuration mode includes a corresponding mapping function.
  • the VRB number range is specifically configured to receive RRC signaling that is sent by the network side device and that
  • the receiving module is specifically configured to receive L1 signaling that is sent by the network side device and that carries resource mapping configuration information, where the L1 signaling notifies the user terminal to select a resource from multiple resource mapping configuration modes.
  • the multiple resource mapping configuration modes are pre-configured multiple resource mapping configuration modes or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode includes corresponding The mapping function and the VRB number range.
  • the receiving module is specifically configured to receive the number of scheduled resource blocks sent by the network side device, and select a resource mapping configuration mode from multiple resource mapping configuration modes according to the number of the scheduled resource blocks.
  • the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode includes a corresponding mapping function.
  • the number of VRB number ranges and each resource mapping configuration mode corresponds to the number of scheduled resource blocks.
  • the receiving module is specifically configured to receive a configuration of a bandwidth part BWP allocated by the network side device for the user terminal, and select a resource mapping configuration from multiple resource mapping configuration manners according to the configuration of the BWP.
  • the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode includes a corresponding mapping manner.
  • the value of the function and the VRB number range and the configuration of each resource mapping corresponds to the configuration of a BWP.
  • the receiving module is specifically configured to receive a configuration and a resource allocation type of the BWP allocated by the network side device for the user terminal, and map from multiple resources according to the configuration of the BWP and the resource allocation type.
  • a resource mapping configuration mode is selected, where the multiple resource mapping configuration modes are pre-configured multiple resource mapping configuration modes or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each The resource mapping configuration mode corresponds to a combination of a BWP configuration and a resource allocation type.
  • the receiving module is specifically configured to receive downlink control information that is sent by the network side device and that carries resource mapping configuration information, and select a resource mapping configuration from multiple resource mapping configuration modes according to the format of the downlink control information.
  • the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode corresponds to one format. Downstream control information.
  • the receiving module is specifically configured to receive downlink control information that is sent by the network side device and that carries resource mapping configuration information, and select a resource mapping configuration from multiple resource mapping configuration modes according to the format of the downlink control information.
  • the bandwidth occupied by the resource-distributed mapping in the multiple resource mapping configuration manner is a pre-allocated bandwidth or a bandwidth of an actually scheduled resource, where the pre-allocated bandwidth is configured by the network-side device or at least
  • the following parameters are known:
  • the transmission bandwidth in which the user terminal is located is located; and/or
  • the receiving module is specifically configured to acquire a bandwidth value of a resource that is actually scheduled by the network side device, and select a resource mapping configuration mode from multiple resource mapping configuration modes according to the bandwidth value of the actually scheduled resource, where the multiple The resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or a plurality of resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode corresponds to a bandwidth value.
  • the resource mapping configuration information indicates that the user terminal initially accesses, and the user terminal receives the physical downlink shared channel PDSCH that carries the remaining system information RMSI, message 2, message 4, and/or other system information OSI.
  • the bandwidth occupied by the resource-distributed mapping is the pre-allocated bandwidth or the bandwidth of the actually scheduled resource.
  • Embodiments of the present disclosure also provide a network side device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor to implement The steps of the resource mapping method.
  • FIG. 9 is a structural diagram of a network side device according to an embodiment of the present disclosure, which can implement the details of the resource mapping method in the foregoing embodiment, and achieve the same effect.
  • the network side device 500 includes a processor 501, a transceiver 502, a memory 503, a user interface 504, and a bus interface, where:
  • the network side device 500 further includes: a computer program stored on the memory 503 and executable on the processor 501, and the computer program is executed by the processor 501 to perform the following steps: determining the physical downlink control channel Resource mapping configuration information; mapping the virtual resource block to the physical resource block according to the resource mapping configuration information, and transmitting the resource mapping configuration information to the user terminal, so that the user terminal uses the resource mapping configuration information
  • the configuration parameter is used to learn the bandwidth occupied by the resource-distributed mapping.
  • the configuration parameters in the resource mapping configuration information include: the number of available virtual resource blocks VRB in the downlink bandwidth. And/or the frequency interval after the adjacent VRB is mapped to the corresponding physical resource block PRB; and/or the transmission bandwidth in which the user terminal is located; and/or the bandwidth occupied by the scheduled data.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 501 and various circuits of memory represented by memory 503.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 502 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 504 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 501 is responsible for managing the bus architecture and general processing, and the memory 503 can store data used by the processor 501 in performing operations.
  • the resource mapping configuration information includes a mapping function from a VRB number to a PRB number or a number thereof, and the argument of the mapping function includes at least a VRB number and a slot number, where the value of the VRB number is
  • the following steps may be implemented: sending the resource mapping configuration information to the user terminal by using RRC signaling, so that the user terminal is configured from multiple resource mapping configurations.
  • sending the resource mapping configuration information to the user terminal by using RRC signaling so that the user terminal is configured from multiple resource mapping configurations.
  • Selecting a resource mapping configuration mode where the multiple resource mapping configuration manners are pre-configured multiple resource mapping configuration manners or multiple resource mapping configuration manners that are sent to the user terminal in advance, and each resource mapping configuration manner includes The mapping function and the VRB number range.
  • the following steps may be implemented: sending the resource mapping configuration information to the user terminal by using L1 signaling, so that the user terminal is configured from multiple resource mapping configurations.
  • Selecting a resource mapping configuration mode where the multiple resource mapping configuration modes are pre-configured multiple resource mapping configuration modes or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode
  • the mode includes the corresponding mapping function and the value range of the VRB number.
  • the following steps may be further implemented: notifying the user terminal of the number of scheduled resource blocks, so that the user terminal is configured according to the number of the resource blocks to be scheduled.
  • a resource mapping configuration mode is selected in the resource mapping configuration mode, where the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration manners that are sent to the user terminal by using RRC signaling.
  • Each resource mapping configuration mode includes a corresponding mapping function and a VRB number value range, and each resource mapping configuration mode corresponds to a number of scheduled resource blocks.
  • the following step may be further implemented: sending, to the user terminal, a configuration of a bandwidth part BWP allocated to the user terminal, so that the user terminal is configured according to the BWP.
  • Selecting a resource mapping configuration mode where the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configurations sent to the user terminal by using RRC signaling.
  • each resource mapping configuration mode includes a corresponding mapping function and a VRB number value range, and each resource mapping configuration mode corresponds to a BWP configuration.
  • the following steps may be further: sending, to the user terminal, a configuration and a resource allocation type of the BWP allocated to the user terminal, so that the user terminal is according to the BWP
  • the configuration and the resource allocation type are selected from a plurality of resource mapping configuration modes, where the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or is sent to the A plurality of resource mapping configurations of the user terminal, where each resource mapping configuration mode corresponds to a combination of a BWP configuration and a resource allocation type.
  • the following steps may be implemented: sending the resource mapping configuration information to the user terminal by using downlink control information, so that the user terminal is configured according to the format of the downlink control information.
  • each resource mapping configuration mode corresponds to downlink control information of one format.
  • the following steps may be implemented: sending the resource mapping configuration information to the user terminal by using downlink control information, so that the user terminal is configured according to the format of the downlink control information.
  • a resource mapping configuration mode is selected in the multiple resource mapping configuration manners, and the bandwidth occupied by the resource dispersion mapping in the multiple resource mapping configuration manners is a pre-allocated bandwidth or a bandwidth of an actually scheduled resource, where the pre-allocated The bandwidth is configured by the network side device or at least by the following parameters:
  • the transmission bandwidth in which the user terminal is located is located; and/or
  • the mapping configuration mode a resource mapping configuration mode is selected, where the multiple resource mapping configuration modes are pre-configured multiple resource mapping configuration modes, and each resource mapping configuration mode corresponds to a bandwidth value.
  • the resource mapping configuration information indicates that when the user terminal initially accesses, when the user terminal receives the RMSI, message 2, message 4, and/or the PDSCH of the OSI, the bandwidth occupied by the resource dispersal mapping is pre- The bandwidth allocated or the bandwidth of the resources being actually scheduled.
  • Embodiments of the present disclosure also provide a user terminal, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor to implement the resource as described above Determine the steps of the method.
  • FIG. 10 is a structural diagram of a user terminal according to an embodiment of the present disclosure, which can implement the details of the resource determining method in the foregoing embodiment, and achieve the same effect.
  • the user terminal 600 includes a processor 604, an antenna 601, a radio frequency device 602, a baseband device 603, a memory 605, a network interface 606, and a bus interface, wherein:
  • the user terminal 600 further includes: a computer program stored on the memory 605 and executable on the processor 604.
  • the computer program is executed by the processor 604 to perform the following steps: receiving the physicality sent by the network side device
  • the resource mapping configuration information of the downlink control channel is determined according to the configuration parameter in the resource mapping configuration information, where the configuration parameters in the resource mapping configuration information include: available virtual resources of the downlink bandwidth Number of block VRBs And/or the frequency interval after the adjacent VRB is mapped to the corresponding physical resource block PRB; and/or the transmission bandwidth in which the user terminal is located; and/or the bandwidth occupied by the scheduled data.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 604 and various circuits of memory represented by memory 605.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the network interface 606 may also be an interface capable of externally connecting to a desired device, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 604 is responsible for managing the bus architecture and general processing, and the memory 605 can store data used by the processor 604 when performing operations.
  • the computer program when executed by the processor 604, may further implement the step of receiving downlink data on the determined bandwidth.
  • the resource mapping configuration information includes a mapping function from a VRB number to a PRB number or a number thereof, and the argument of the mapping function includes at least a VRB number and a slot number, where the value of the VRB number is
  • the following steps may be implemented: receiving RRC signaling that is sent by the network side device and carrying resource mapping configuration information, where the RRC signaling notifies the user terminal from multiple In the resource mapping configuration mode, a resource mapping configuration mode is selected, where the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration modes that are sent to the user terminal in advance, each resource The mapping configuration mode includes the corresponding mapping function and the value range of the VRB number.
  • the following steps may be implemented: receiving L1 signaling that is sent by the network side device and carrying resource mapping configuration information, where the L1 signaling notifies the user terminal from multiple A resource mapping configuration mode is selected in the resource mapping configuration mode, where the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling.
  • Each resource mapping configuration mode includes a corresponding mapping function and a value range of the VRB number.
  • the following steps may be implemented: receiving the number of scheduled resource blocks sent by the network side device, and configuring the mapping from multiple resources according to the number of the scheduled resource blocks.
  • a resource mapping configuration mode is selected, where the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource is configured.
  • the mapping configuration mode includes a corresponding mapping function and a VRB number value range, and each resource mapping configuration mode corresponds to a number of scheduled resource blocks.
  • the following steps may be further: receiving a configuration of the bandwidth part BWP allocated by the network side device for the user terminal, and mapping from multiple resources according to the configuration of the BWP
  • a resource mapping configuration mode is selected, where the multiple resource mapping configuration modes are pre-configured multiple resource mapping configuration modes or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each The resource mapping configuration mode includes a corresponding mapping function and a VRB number value range, and each resource mapping configuration mode corresponds to a BWP configuration.
  • the following steps may be further: receiving a configuration and a resource allocation type of the BWP allocated by the network side device for the user terminal, according to the configuration and the BWP
  • the resource allocation type selects a resource mapping configuration mode from multiple resource mapping configuration modes, where the multiple resource mapping configuration mode is a pre-configured multiple resource mapping configuration mode or is sent to the user terminal through RRC signaling.
  • Each resource mapping configuration mode corresponds to a combination of a BWP configuration and a resource allocation type.
  • the following steps may be implemented: receiving downlink control information that is sent by the network side device and carrying resource mapping configuration information, and mapping from multiple resources according to the format of the downlink control information.
  • the configuration mode a resource mapping configuration mode is selected, where the multiple resource mapping configuration modes are pre-configured multiple resource mapping configuration modes or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each The resource mapping configuration mode corresponds to downlink control information of one format.
  • the following steps may be implemented: receiving downlink control information that is sent by the network side device and carrying resource mapping configuration information, and mapping from multiple resources according to the format of the downlink control information.
  • a resource mapping configuration mode is selected, and the bandwidth occupied by the resource-distributed mapping in the multiple resource mapping configuration mode is a pre-allocated bandwidth or a bandwidth of an actually scheduled resource, where the pre-allocated bandwidth is
  • the network side device configuration is at least known by the following parameters:
  • the transmission bandwidth in which the user terminal is located is located; and/or
  • the following steps may be performed: acquiring a bandwidth value of the resource actually scheduled by the network side device, and selecting one of the multiple resource mapping configuration manners according to the bandwidth value of the actually scheduled resource.
  • a resource mapping configuration mode where the multiple resource mapping configuration modes are pre-configured multiple resource mapping configuration modes or multiple resource mapping configuration modes that are sent to the user terminal by using RRC signaling, and each resource mapping configuration mode corresponds to A bandwidth value.
  • the resource mapping configuration information indicates that when the user terminal initially accesses, and the user terminal receives the PDSCH that carries the RMSI, message 2, message 4, and/or OSI, the bandwidth occupied by the resource dispersal mapping is The bandwidth of the pre-allocated bandwidth or the resources that are actually scheduled.
  • the embodiment of the present disclosure further provides a computer readable storage medium having a computer program stored thereon, the computer program being executed by a processor to implement the steps of the resource mapping method as described above or implemented as above The steps of the resource determination method.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSP devices, DSPDs), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSP devices digital signal processing devices
  • DSPDs digital signal processing devices
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • embodiments of the disclosed embodiments can be provided as a method, apparatus, or computer program product.
  • embodiments of the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • embodiments of the present disclosure may employ computer usable storage media (including but not limited to disk storage, compact disc read-on memory (CD-ROM), optical, in one or more of the computer usable program code.
  • CD-ROM compact disc read-on memory
  • Embodiments of the present disclosure are described with reference to flowchart illustrations and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the present disclosure. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing terminal device to produce a machine such that instructions are executed by a processor of a computer or other programmable data processing terminal device
  • Means are provided for implementing the functions specified in one or more of the flow or in one or more blocks of the flow chart.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing terminal device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the instruction device implements the functions specified in one or more blocks of the flowchart or in a flow or block of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种资源映射方法、确定方法、网络侧设备及用户终端。其中,资源映射方法,应用于网络侧设备,包括:确定物理下行控制信道的资源映射配置信息;根据所述资源映射配置信息将虚拟资源块映射到物理资源块,并将所述资源映射配置信息发送给用户终端,以使所述用户终端利用所述资源映射配置信息中的配置参数获知资源分散映射后所占用的带宽。

Description

资源映射方法、确定方法、网络侧设备及用户终端
相关申请的交叉引用
本申请主张在2017年11月17日在中国提交的中国专利申请号No.201711148879.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是指一种资源映射方法、确定方法、网络侧设备及用户终端。
背景技术
相关技术中的通信协议不支持对于较大资源分配和较大的带宽配置下的分布式虚拟资源块(distributed VRB,DVRB)的资源映射,由于在5G中引入了更大的带宽和码块组(Code Block Group,CBG)传输,在较大的资源分配的情况下,需要在这种场景下支持DVRB映射。
在较小的资源分配和较大的带宽配置下,如长期演进(Long Term Evolution,LTE)中规定50物理资源块(physical resource block,PRB)以上,LTE支持采用尺度更小,按照小区带宽1/4量级的频率间隔的DVRB的映射,更小的频率间隔的应用允许将分布式传输限制在整个小区带宽的一部分。
在新空口(new radio,NR)中,由于上述的大资源分配和小资源分配的方案都同时存在需求,因此需要有一种融合的方案实现上述两种方案。
另外,由于NR对于预编码资源块组(Precoding Resource block Groups,PRG)的设计采用了type1和type2两种不同的类型,因此需要对于这种类型分开设计不同的DVRB的映射方案,并且确定其DVRB映射的交织器的具体参数。
发明内容
第一方面,本公开实施例提供了一种资源映射方法,应用于网络侧设备,包括:
确定物理下行控制信道的资源映射配置信息;
根据所述资源映射配置信息将虚拟资源块映射到物理资源块,并将所述资源映射配置信息发送给用户终端,以使所述用户终端利用所述资源映射配置信息中的配置参数获知资源分散映射后所占用的带宽;
其中,所述资源映射配置信息中的配置参数包括以下至少一个:
下行带宽的可用虚拟资源块VRB数目
Figure PCTCN2018109976-appb-000001
相邻VRB映射到对应的物理资源块PRB后的频率间隔;
用户终端所在的传输带宽;
调度的数据所占带宽。
第二方面,本公开实施例提供一种资源确定方法,应用于用户终端,包括:
接收网络侧设备发送的物理下行控制信道的资源映射配置信息;
根据所述资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽;
其中,所述资源映射配置信息中的配置参数包括以下至少一个:
下行带宽的可用虚拟资源块VRB数目
Figure PCTCN2018109976-appb-000002
相邻VRB映射到对应的物理资源块PRB后的频率间隔;
用户终端所在的传输带宽;
调度的数据所占带宽。
第三方面,本公开实施例提供一种网络侧设备,包括:
处理模块,用于确定物理下行控制信道的资源映射配置信息,根据所述资源映射配置信息将虚拟资源块映射到物理资源块;
发送模块,用于将所述资源映射配置信息发送给用户终端,以使所述用户终端利用所述资源映射配置信息中的配置参数获知资源分散映射后所占用的带宽;
其中,所述资源映射配置信息中的配置参数包括以下至少一个:
下行带宽的可用虚拟资源块VRB数目
Figure PCTCN2018109976-appb-000003
相邻VRB映射到对应的物理资源块PRB后的频率间隔;
用户终端所在的传输带宽;
调度的数据所占带宽。
第四方面,本公开实施例提供一种用户终端,包括:
接收模块,用于接收网络侧设备发送的物理下行控制信道的资源映射配置信息;
处理模块,用于根据所述资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽;
其中,所述资源映射配置信息中的配置参数包括以下至少一个:
下行带宽的可用虚拟资源块VRB数目
Figure PCTCN2018109976-appb-000004
相邻VRB映射到对应的物理资源块PRB后的频率间隔;
用户终端所在的传输带宽;
调度的数据所占带宽。
第五方面,本公开实施例提供一种网络侧设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述资源映射方法的步骤。
第六方面,本公开实施例提供一用户终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述资源确定方法的步骤。
第七方面,本公开实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述资源映射方法的步骤或实现如上所述资源确定方法的步骤。
附图说明
图1为可用于分布式调度的VRB的示意图;
图2为配置成GAP1和GAP2后的DVRB映射示意图;
图3为本公开实施例资源映射方法的流程示意图;
图4为本公开实施例在给定带宽下的DVRB的映射示意图;
图5为本公开实施例在调度带宽内的DVRB的映射示意图;
图6为本公开实施例资源确定方法的流程示意图;
图7为本公开实施例网络侧设备的结构框图;
图8为本公开实施例用户终端的结构框图;
图9为本公开实施例网络侧设备的组成示意图;
图10为本公开实施例用户终端的组成示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完成地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
网络侧设备在决定将哪些资源块(resource block,RB)分配给某个特定用户终端(User Equipment,UE)时,可能会将时域和频域相关的下行信道质量考虑在内。即信道相关的频选调度会将信道的变化,如由频率选择性衰落引起的信道变化等,考虑在内,然后将那些信道质量好的RB(不一定连续)分配给该UE,这样可能会显著地提升UE的速率以及整个小区的吞吐量。
然而频选调度要求UE上报下行信道质量给网络侧设备,这会带来较大的信令开销,同时需要保证网络侧设备能够成功并及时地接收到下行信道质量信息,以避免收不到或收到过时的信息。因此在某些场景下,频选调度是不适用的,例如:对于低速业务,如语音业务,与频选相关的反馈信令会带来相对较大的开销,得不偿失;在UE高速移动的场景下,如在高速运行的高铁上,很难或根本不可能跟踪实时信道质量,因而无法提供频选调度所需的信道质量精确度。
在这种情况下,一种可选的方案是将下行传输分布到频域内非连续的资源块上以获得频率分集增益,从而提高传输的可靠性。
为了实现上述两种不同目的的资源映射,引入了PRB和虚拟资源块(virtual resource block,VRB)的概念。其中PRB表示物理资源块,VRB表示虚拟资源块,网络侧设备一般通过VRB给用户终端指示资源信息,具体的物理资源映射需要通过VRB映射到对应PRB后才能得到,一般集中式PRB表示一个用户终端的资源占用连续的PRB,分布式PRB表示一个用户终端占用带宽上不连续的PRB资源,这样可以提高系统的频率分集增益,提高抗干 扰能力
在LTE中,定义了2种类型的VRB:集中式VRB(localized VRB,LVRB)和分布式VRB(distributed VRB,DVRB)。
在集中式的资源映射方式中,VRB对和PRB对是一一对应的,即VRB的位置就是PRB的位置,RB资源块编号n PRB=n VRB,范围是
Figure PCTCN2018109976-appb-000005
Figure PCTCN2018109976-appb-000006
下行的VRB的资源块数目,n pRB为下行PRB的编号;
在分布式的资源映射方式中,VRB对和PRB对不是一一对应的,连续的VRB编号将映射到不连续的PRB编号上,并且一个子帧内的2个时隙也有着不同的映射关系,如图1所示,通过这种方法来达到“分布式”的资源分配。无论是将连续的VRB对映射到不连续的PRB对上,还是分开每个PRB对,使一个PRB对的两个RB的资源传输带有一定的频率间隔(可以看成基于时隙(slot)的跳频),目的都是为了达到频率上的分集效应。
值得注意的是,并不是所有的VRB都可以用来进行交织的,如果用n VRB来表示VRB的频率位置,那么可以用来交织的VRB的范围是
Figure PCTCN2018109976-appb-000007
只有该范围内的VRB才可以进行RB对的交织,才可以进行分布式的VRB资源分配。这么做的主要目的是为了保证在有多种资源分配方式的不同用户终端复用资源的时候,减少资源冲突的可能性,即将分布式的资源集中在某一些物理资源上。
如图1所示,如果n VRB的范围是0~10,那么网络侧设备进行分布式资源调度时,RB的编号可能分配到0~10这11个VRB。注意这里的参数
Figure PCTCN2018109976-appb-000008
不是下行带宽的RB个数
Figure PCTCN2018109976-appb-000009
参数
Figure PCTCN2018109976-appb-000010
计算根据LTE的协议如下:
(1)如果采用时隙GAP1,则
Figure PCTCN2018109976-appb-000011
Figure PCTCN2018109976-appb-000012
比如当前是5MHz带宽,
Figure PCTCN2018109976-appb-000013
Figure PCTCN2018109976-appb-000014
Figure PCTCN2018109976-appb-000015
如果是10MHz带宽,
Figure PCTCN2018109976-appb-000016
Figure PCTCN2018109976-appb-000017
因此对于10MHz带宽来说,采用频率间隔GAP1时只有46个VRB对才可以进行RB的频率交织,才能进行分布式的RB分配。
(2)如果采用GAP2,则
Figure PCTCN2018109976-appb-000018
比如当前是10MHz带宽,
Figure PCTCN2018109976-appb-000019
Figure PCTCN2018109976-appb-000020
Figure PCTCN2018109976-appb-000021
因此对于10MHz带宽来说,采用频率间隔GAP2时只有36个VRB对才可以进行RB的频率交织,才能进行分布式的RB分配。
其中
Figure PCTCN2018109976-appb-000022
Figure PCTCN2018109976-appb-000023
分别由表1定义:
表1 (从TS36.211第6.2.3.2章节)
Figure PCTCN2018109976-appb-000024
一般来说会使用交织器来完成VRB到PRB的映射,并且为了实现DVRB,即使得映射后的资源尽可能分散,要求映射后的逻辑资源尽可能在整个物理资源上都均匀分布开。
Block interleaver(块状交织)可以用来完成这个过程,通过将VRB从行写入,从列读出完成VRB的重新排序和打乱。对于块状交织器最重要的两个参数是要确定其行数目和列数目。
在LTE的设计中,如前面所述,由于经过DVRB映射后的资源会分布到整个带宽上,会在一定程度上造成资源的碎片化,因此有必要限制资源映射大带宽。
因此在4G LTE的设计中规定了如下的原则:
(1)如果下行控制信息(Downlink Control Information,DCI)format(格式)1A/1B/1D使用分布式VRB分配方式,且其DCI的循环冗余校验(Cyclic Redundancy Check,CRC)由小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)加扰,则当下行带宽为6~49RB时,分配给 对应UE的VRB数可以从1个到最多
Figure PCTCN2018109976-appb-000025
个,这个值很接近系统带宽,在协议中有具体规定;然而当下行带宽为50~110RB时,分配给对应UE的VRB数可以从1个到最多16个。
(2)分布式的VRB到PRB映射,要避免连续分配的RB长度大于一半系统带宽,这样会导致资源的碎片化。
举例如下:
如在50PRB的配置下,当配置成GAP1和GAP2时候,前16个VRB映射后的资源情况如图2所示,其中的数字是VRB的逻辑编号。
LTE中由于DVRB还使用了intra-subfame hopping,也即是在一个subframe里面的两个slot使用了跳频,因此图2中画出了前后两个slot的映射。可以看到,GAP1的DVRB映射和GAP2的DVRB映射的主要区别在于映射后的资源的分布带宽。GAP1的分布带宽等于系统带宽,GAP2的分布带宽约为系统带宽的1/2的量级。
PRB bundling即物理资源块绑定。LTE中为了提高信道估计的质量,假定多个PRB使用相同的Precoder(赋形向量),这样接收端(也就是用户终端侧)可以将多个PRB联合起来做信道估计,在LTE中这样的配置叫做预编码资源块组(Precoding Resource block Groups,PRG)配置。
UE可以假定在一个服务小区下时,预编码粒度是频域中的多个资源块(PRB)。预编码资源块组(PRGS)大小划分依据系统带宽和,并且PRG是由连续的PRB组成。UE可以假设在一个PRG中,所有预定的PRB适用相同的Precoder。PRG的大小和系统的带宽相关,LTE中规定如表2所示:
表2
Figure PCTCN2018109976-appb-000026
其中,P′为一个PRG中包含的PRB的数目,即PRG size(大小)。
在LTE的在类型0的资源分配中,分配给UE的资源由位图(bitmap) 来表示,其中位图中的每一位代表一个资源块组,也就是RBG,置1表示相应的资源块分配给了此UE,0则表示未分配。资源块组RBG是由一个或多个连续的VRB组成,VRB是集中类型的,RBG的大小P(包含的RB数目)与系统带宽有关,如表3所示:
表3
Figure PCTCN2018109976-appb-000027
5G NR中的PRG配置可能有两种类型:type 1和type 2,其中,type 1是指由所述网络侧设备配置或者预定义一组PRG size的集合,比如,[1,2,4,8,16],通过L1信令动态指示所述用户终端使用的PRG size;type 2是指PRG size等于被连续调度的资源的数目。
NR中资源支持两种类型的资源分配,bitmap类型(type 0)和连续资源分配类型(type 1)。
类型0:类型0用bitmap的形式,因为bitmap的每个比特都代表一个RBG(resource block group),RBG代表一个RB组,RB组的大小可能与带宽有关,比如20M的系统带宽,每个RBG包括4个RB,这样20M带宽一共有25个RBG,对应的DCI中的bitmap就有25比特。如果将某个RBG分配给UE,就在UE对应的DCI的bitmap对应比特置1就可以了。
类型1:分配给UE的资源为一段连续的VRB,其VRB到实际物理资源PRB的映射可以是集中式(localized),也可以是分布式的(distributed)。
相关技术中的协议不支持对于较大资源分配和较大的带宽配置下的DVRB的资源映射,由于在5G中引入了更大的带宽和CBG传输,在较大的资源分配的情况下,需要在这种场景下支持DVRB映射。
由于NR对于PRG的设计采用了type1和type2两种不同的类型,因此 需要对于这种类型分开设计不同的DVRB的映射方案,并且确定其DVRB映射的交织器的具体参数。
本公开要解决的技术问题是提供一种资源映射方法、确定方法、网络侧设备及用户终端,能够满足type1和type2两种不同的PRG类型的资源映射需要。
本公开实施例提供了一种资源映射方法,应用于网络侧设备,如图3所示,包括:
步骤101:确定物理下行控制信道的资源映射配置信息;
步骤102:根据所述资源映射配置信息将虚拟资源块映射到物理资源块,并将所述资源映射配置信息发送给用户终端,以使所述用户终端利用所述资源映射配置信息中的配置参数获知资源分散映射后所占用的带宽;
其中,所述资源映射配置信息中的配置参数包括以下至少一个:
下行带宽的可用虚拟资源块VRB数目
Figure PCTCN2018109976-appb-000028
相邻VRB映射到对应的物理资源块PRB后的频率间隔;
用户终端所在的传输带宽;
调度的数据所占带宽。
本实施例中,网络侧设备向用户终端发送物理下行控制信道的资源映射配置信息,在该资源映射配置信息中携带有配置参数,用户终端可以根据资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽,进而在所确定的带宽上接收下行数据,本公开的技术方案能够满足type1和type2两种不同的PRG类型的资源映射需要,在保证了资源的分集增益的同时,提高了资源的可用性,保证了资源的连续性。
在DVRB的映射过程中,一般需要确定以下参数:
(1)块状交织器(Block interleaver)的交织颗粒度(N unit),一般来说是P′或者P′的倍数。所有的VRB以N unit为颗粒度分为
Figure PCTCN2018109976-appb-000029
组;
(2)确定交织矩阵的列数目(或者行数目),也就是N col,块状交织器的列数目。对
Figure PCTCN2018109976-appb-000030
组应用Block interleaver,即通过将VRB从行写入,从列读出完成VRB的重新排序和打乱,或者VRB从列写入,从行读出完成VRB的重新排序和打乱。
上述交织后的逻辑资源映射到物理资源,一般来说,由于经过DVRB映射后的资源会分布到整个带宽上,会在一定程度上造成资源的碎片化,因此有必要限制资源映射大带宽。此时对于
Figure PCTCN2018109976-appb-000031
的数目也会有一定的限制。
本实施例中,所述资源映射配置信息包括从VRB编号到PRB编号的映射函数或其编号f(·),n PRB=f(n VRB,n s),所述映射函数f(·)的自变量至少包括VRB编号和时隙编号,其中,VRB编号的取值范围为
Figure PCTCN2018109976-appb-000032
n PRB的取值也有一定范围,不能超出物理资源数目的限制,从
Figure PCTCN2018109976-appb-000033
n s是slot的编号,此处引入slot编号作为自变量,是允许slot之间的随机化;另外,对于不同的
Figure PCTCN2018109976-appb-000034
N unit,N col,f(·)映射的结果也会有所不同。
Figure PCTCN2018109976-appb-000035
接近于总的物理资源
Figure PCTCN2018109976-appb-000036
的时候,可利用的物理资源较多。但是由于资源分散映射后在物理上的频域间隔较小,因此分集的增益较小;当
Figure PCTCN2018109976-appb-000037
远小于总的物理资源
Figure PCTCN2018109976-appb-000038
的时候,可利用的物理资源较少,但是由于资源分散映射后在物理上的频域间隔较大,因此分集的增益较大。
具体实施例一中,通过协议或者通过网络侧设备的无线资源控制(Radio Resource Control,RRC)信令,在一组DVRB的映射方式(对应不同的映射带宽)中通知其中的一种UE的DVRB映射方式,所述将所述资源映射配置信息发送给用户终端包括:
通过RRC信令将所述资源映射配置信息发送给所述用户终端,以使所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,还可以是通过RRC信令将所述资源映射配置信息的编号发送给所述用户终端,以使所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为预先发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
本实施例的背景是网络侧设备可以半静态的控制DVRB的映射方式,比如网络侧设备控制DVRB映射后的离散的程度,也就是映射后的占据的带宽的大小,从而有效控制资源的碎片化的情况。具体的实现可以如下:
网络侧设备通过RRC信令通知UE具体的DVRB的映射方式,如当收到RRC信令i时候,采用f i(·)映射函数;其中,f i(·)可以有不同的函数形式,比 如f i(·)对应的DVRB映射后的带宽可以是不同(如全带宽或1/2带宽,对应不同的应用场景),以及不同或者相同的n VRB取值范围(对应较小的资源分配和较大的带宽配置的场景)。
具体实施例二中,通过协议或者通过网络侧设备的RRC信令配置一组UE的DVRB映射方式(对应不同的映射带宽),之后通过L1信令选择一个DVRB的映射方式,所述将所述资源映射配置信息发送给用户终端包括:
通过L1信令将所述资源映射配置信息发送给所述用户终端,以使所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,还可以是通过L1信令将所述资源映射配置信息的编号发送给所述用户终端,以使所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
本实施例的背景是网络侧设备可以动态的控制DVRB的映射方式,比如网络侧设备控制DVRB映射后的离散的程度,也就是映射后的占据的带宽的大小,从而有效控制资源的碎片化的情况。具体的实现可以如下:网络侧设备通过RRC信令通知UE一组DVRB的映射方式或者由协议规定一组DVRB的映射方式,通过L1的动态信令通知具体采用了哪一种映射方式,如当收到L1信令i时候,采用f i(·)映射函数;其中,f i(·)可以有不同的函数形式,比如f i(·)对应的DVRB映射后的带宽可以是不同(如全带宽或1/2带宽,对应不同的应用场景),以及不同或者相同的n VRB取值范围(对应较小的资源分配和较大的带宽配置的场景)。
具体实施例三中,用户终端可以根据实际调度的资源的带宽,在一组DVRB映射方式(对应不同的映射带宽)中隐式确定一种DVRB的映射方式,实际调度的资源的带宽即调度的数据所占带宽有别于传输带宽,是指实际调度使用了多少带宽,所述将所述资源映射配置信息发送给用户终端包括:
将被调度的资源块的数目通知给所述用户终端,以便所述用户终端根据所述被调度的资源块的数目从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通 过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一被调度的资源块的数目。
上述的具体实施例一和二中的DVRB都是在一个带宽中进行的资源分散化的操作,本实施例的资源分散化只在被调度的那些资源中进行。为了便于理解,两者的差别如图4和图5所示,图中带点的是调度的VRB,在调度带宽内的DVRB指的是在该VRB所对应的PRB资源集合内将各个PRB的顺序进行打乱,这在某些情况下能够使得基于CBG传输的数据传输的性能得到优化,并且又不至于使得资源碎片化。
具体的实现可以如下:网络侧设备通过RRC信令通知UE一组DVRB的映射方式或者由协议规定一组DVRB的映射方式,终端根据被调度到的资源的数目(通常是VRB的数目)来动态的确定采用了哪一种映射方式,例:
当被调度的资源的数目小于等于一定值时候,采用f 1(·);
当被调度的资源的数目大于一定值时候,采用f 2(·);
f 1(·)和f 2(·)有不同的函数形式:
其中f 1(·)和f 2(·)对应的DVRB映射后的带宽可以是不同(如全带宽或1/2带宽,对应不同的应用场景);或者f 1(·)对应的DVRB是在给定带宽下的分散化,f 2(·)对应的DVRB是在调度带宽内分散化;不同或者相同的n VRB取值范围(对应较小的资源分配和较大的带宽配置的场景)。
具体实施例四中,可以根据配置的可能传输带宽(BWP带宽或者载波的带宽),在一组DVRB映射方式(对应不同的映射带宽)中隐式确定一种DVRB的映射方式,所述将所述资源映射配置信息发送给用户终端包括:
将为所述用户终端分配的带宽部分BWP的配置发送给所述用户终端,以便所述用户终端根据所述BWP的配置从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一BWP的配置。
具体的实现可以如下:网络侧设备通过RRC信令通知UE一组DVRB的 映射方式或者由协议规定一组DVRB的映射方式,终端根据BWP带宽来动态的确定采用了哪一种映射方式,例如对于采用f i(·)映射函数;f i(·)可以有不同的函数形式:
f i(·)对应的DVRB映射后的带宽可以是不同(如全带宽或1/2带宽,对应不同的应用场景);
或者f i(·)对应的DVRB是在给定带宽下的DVRB或者在调度带宽内的DVRB可选择;
不同或者相同的n VRB取值范围(对应较小的资源分配和较大的带宽配置的场景)。
具体实施例五中,可以根据BWP带宽和资源分配的类型(如type0或type1),在一组DVRB映射方式(对应不同的映射带宽)中隐式确定一种DVRB的映射方式,所述将所述资源映射配置信息发送给用户终端包括:
将为所述用户终端分配的BWP的配置和资源分配类型发送给所述用户终端,以便所述用户终端根据所述BWP的配置和所述资源分配类型从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一BWP的配置和资源分配类型的组合。
具体的实现可以如下:对于NR下行资源分配类型0(bitmap类型),DVRB是在给定被调度的资源上进行分散化,意即block interleaver只在被调度的VRB上面进行;
对于NR下行资源分配类型1(连续资源分配),DVRB是在给定带宽下进行分散化,意即block interleaver在BWP带宽内或者一个已知的带宽内上面进行。
具体实施例六中,可以根据DCI format来确定DVRB的映射方式,所述将所述资源映射配置信息发送给用户终端包括:
通过下行控制信息将所述资源映射配置信息发送给所述用户终端,以便所述用户终端根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射 配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一种格式的下行控制信息。
具体的实现可以如下:对于回退DCI和普通的DCI,两者的DCI格式不同,考虑采用不同的DVRB的映射方式。如:对于回退DCI,DVRB是在给定带宽下进行分散化,意即block interleaver在BWP带宽内或者一个已知的带宽内上面进行;对于普通的DCI,DVRB是在被调度的资源上进行分散化,意即block interleaver只在被调度的VRB上面进行。
进一步地,所述将所述资源映射配置信息发送给用户终端包括:
通过下行控制信息将所述资源映射配置信息发送给所述用户终端,以便所述用户终端根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式中的资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽,其中预分配的带宽是由所述网络侧设备配置或者至少由如下的参数获知:
下行带宽的可用VRB数目
Figure PCTCN2018109976-appb-000039
和/或
相邻VRB映射到对应的物理资源块PRB后的频率间隔;和/或
用户终端所在的传输带宽;和/或
调度的数据所占带宽。
具体实施例七中,在初始接入的时候,由于尚未有UE-specific的信令传达到终端,因此需要进行特殊的处理来确定具体使用DVRB映射。举例如下:当在初始接入的时候,网络侧设备发送fallback DCI(回退DCI)来传达控制信令,考虑采用固定的PRG type来简化流程;
当终端接收承载剩余系统信息(Remaining system information,RMSI),message(消息)2(RAR(random access response)),message 4,其他系统信息(Other system information,OSI)的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)时候,并且终端使用DVRB的方式进行接收的时候,考虑采用如下的默认方式进行接收:
(1)DVRB是在给定带宽下进行分散化,意即block interleaver在初始接入的BWP带宽内进行;
(2)DVRB是在被调度的资源上进行分散化,意即block interleaver只 在被调度的VRB上面进行;
(3)可以根据实际调度的资源的带宽,在一组DVRB映射方式(对应不同的映射带宽)中隐式确定一种DVRB的映射方式,所述将所述资源映射配置信息发送给用户终端包括:将实际调度的资源的带宽值通知给所述用户终端,以便所述用户终端根据实际调度的资源的带宽值从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式,每一资源映射配置方式对应一带宽值。
其中,RMSI是5G NR中引入的类似于LTE中SIB1的系统信息。OSI是5G NR中引入的类似于LTE中除去SIB1以外的其余SIBx系统信息。
对于相关技术中的4G LTE物理层设计中物理随机接入(Physical Random Access Channel,PRACH)信道主要用于用户终端侧发起上行随机接入请求,使得网络侧设备侧根据其请求进一步决定后续的响应。
相关技术中的随机接入过程主要有4个步骤,如下:
步骤1:前导码发送(Message 1)
步骤2:随机接入响应(Message 2)
步骤3:层2/层3消息(Message 3)
步骤4:竞争解决消息(Message 4)
其中步骤1主要有物理层的Preamble(码)生成的序列(sequence)映射到物理层的时频资源后发送;步骤2主要是网络侧设备通过PDSCH信道发送随机接入响应(Random Access Response,RAR),并用随机接入无线网络临时标识(Random Access Radio Network Temporary ID,RA-RNTI)加以识别,以识别在哪个时频时隙侦测到了接入前缀。如果因为几个UE在相同的前缀时频资源中选择了相同的标志而发生碰撞,这些UE也都会收到RAR;步骤3这是调度分配在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的第一个与随机接入相关的消息,这个消息携带了确定的随机接入过程消息,比如RRC连接请求消息、位置区更新消息,或者调度请求消息;步骤4主要目的是竞争解决消息,竞争解决消息是针对C-RNTI或者临时C-RNTI的。在后一种情况下,竞争解决消息回应的是L2/L3消息中携带的UE ID。竞争解决消息支持HARQ。如果竞争冲突发生之后,有一个L2/L3 消息被成功解码,则只有那个侦测到自己的UE ID(或者C-RNTI)的UE才会发HARQ反馈消息,而其它UE则意识到存在一个冲突,就不会发HARQ反馈消息,而是尽快结束这次接入过程,并开始一个新的随机接入。
本公开实施例还提供了一种资源确定方法,应用于用户终端,如图6所示,包括:
步骤201:接收网络侧设备发送的物理下行控制信道的资源映射配置信息;
步骤202:根据所述资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽;
其中,所述资源映射配置信息中的配置参数包括以下至少一个:
下行带宽的可用虚拟资源块VRB数目
Figure PCTCN2018109976-appb-000040
相邻VRB映射到对应的物理资源块PRB后的频率间隔;
用户终端所在的传输带宽;
调度的数据所占带宽。
本实施例中,网络侧设备向用户终端发送物理下行控制信道的资源映射配置信息,在该资源映射配置信息中携带有配置参数,用户终端可以根据资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽,进而在所确定的带宽上接收下行数据,本公开的技术方案能够满足type1和type2两种不同的PRG类型的资源映射需要,在保证了资源的分集增益的同时,提高了资源的可用性,保证了资源的连续性。
进一步地,所述根据所述资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽之后,所述方法还包括:
在所确定的带宽上接收下行数据。
进一步地,所述资源映射配置信息包括从VRB编号到PRB编号的映射函数或其编号,所述映射函数的自变量至少包括VRB编号和时隙编号,其中,VRB编号的取值范围为
Figure PCTCN2018109976-appb-000041
进一步地,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
接收所述网络侧设备发送的携带有资源映射配置信息的RRC信令,所述 RRC信令通知所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为预先发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
进一步地,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
接收所述网络侧设备发送的携带有资源映射配置信息的L1信令,所述L1信令通知所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
进一步地,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
接收所述网络侧设备发送的被调度的资源块的数目,根据所述被调度的资源块的数目从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一被调度的资源块的数目。
进一步地,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
接收所述网络侧设备发送的为所述用户终端分配的带宽部分BWP的配置,根据所述BWP的配置从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一BWP的配置。
进一步地,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
接收所述网络侧设备发送的为所述用户终端分配的BWP的配置和资源分配类型,根据所述BWP的配置和所述资源分配类型从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一BWP的配置和资源分配类型的组合。
进一步地,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
接收所述网络侧设备发送的携带有资源映射配置信息的下行控制信息,根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一种格式的下行控制信息。
进一步地,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
接收所述网络侧设备发送的携带有资源映射配置信息的下行控制信息,根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式中的资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽,其中预分配的带宽是由所述网络侧设备配置或者至少由如下的参数获知:
下行带宽的可用VRB数目
Figure PCTCN2018109976-appb-000042
和/或
相邻VRB映射到对应的物理资源块PRB后的频率间隔;和/或
用户终端所在的传输带宽;和/或
调度的数据所占带宽。
进一步地,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
获取所述网络侧设备实际调度的资源的带宽值,根据实际调度的资源的带宽值从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一带宽 值。
进一步地,所述资源映射配置信息指示在所述用户终端初始接入,所述用户终端接收承载剩余系统信息RMSI,消息message 2,message 4和/或其他系统信息OSI的物理下行共享信道PDSCH时,资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽。
本公开实施例还提供了一种网络侧设备,如图7所示,包括:
处理模块31,用于确定物理下行控制信道的资源映射配置信息,根据所述资源映射配置信息将虚拟资源块映射到物理资源块;
发送模块32,用于将所述资源映射配置信息发送给用户终端,以使所述用户终端利用所述资源映射配置信息中的配置参数获知资源分散映射后所占用的带宽;
其中,所述资源映射配置信息中的配置参数包括以下至少一个:
下行带宽的可用虚拟资源块VRB数目
Figure PCTCN2018109976-appb-000043
相邻VRB映射到对应的物理资源块PRB后的频率间隔;
用户终端所在的传输带宽;
调度的数据所占带宽。
本实施例中,网络侧设备向用户终端发送物理下行控制信道的资源映射配置信息,在该资源映射配置信息中携带有配置参数,用户终端可以根据资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽,进而在所确定的带宽上接收下行数据,本公开的技术方案能够满足type1和type2两种不同的PRG类型的资源映射需要,在保证了资源的分集增益的同时,提高了资源的可用性,保证了资源的连续性。
进一步地,所述资源映射配置信息包括从VRB编号到PRB编号的映射函数或其编号,所述映射函数的自变量至少包括VRB编号和时隙编号,其中,VRB编号的取值范围为
Figure PCTCN2018109976-appb-000044
进一步地,所述发送模块具体用于通过RRC信令将所述资源映射配置信息发送给所述用户终端,以使所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为预先发送给所述用户终端的多个资源映射配置方式,每一资源 映射配置方式包括对应的映射函数和VRB编号取值范围。
进一步地,所述发送模块具体用于通过L1信令将所述资源映射配置信息发送给所述用户终端,以使所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
进一步地,所述发送模块具体用于将被调度的资源块的数目通知给所述用户终端,以便所述用户终端根据所述被调度的资源块的数目从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一被调度的资源块的数目。
进一步地,所述发送模块具体用于将为所述用户终端分配的带宽部分BWP的配置发送给所述用户终端,以便所述用户终端根据所述BWP的配置从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一BWP的配置。
进一步地,所述发送模块具体用于将为所述用户终端分配的BWP的配置和资源分配类型发送给所述用户终端,以便所述用户终端根据所述BWP的配置和所述资源分配类型从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一BWP的配置和资源分配类型的组合。
进一步地,所述发送模块具体用于通过下行控制信息将所述资源映射配置信息发送给所述用户终端,以便所述用户终端根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一种格式的 下行控制信息。
进一步地,所述发送模块具体用于通过下行控制信息将所述资源映射配置信息发送给所述用户终端,以便所述用户终端根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式中的资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽,其中预分配的带宽是由所述网络侧设备配置或者至少由如下的参数获知:
下行带宽的可用VRB数目
Figure PCTCN2018109976-appb-000045
和/或
相邻VRB映射到对应的物理资源块PRB后的频率间隔;和/或
用户终端所在的传输带宽;和/或
调度的数据所占带宽。
进一步地,所述发送模块具体用于将实际调度的资源的带宽值通知给所述用户终端,以便所述用户终端根据实际调度的资源的带宽值从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式,每一资源映射配置方式对应一带宽值。
进一步地,所述资源映射配置信息指示在所述用户终端初始接入,所述用户终端接收承载剩余系统信息RMSI,消息message 2,message 4和/或其他系统信息OSI的物理下行共享信道PDSCH时,资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽。
本公开实施例还提供了一种用户终端,如图8所示,包括:
接收模块41,用于接收网络侧设备发送的物理下行控制信道的资源映射配置信息;
处理模块42,用于根据所述资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽;
其中,所述资源映射配置信息中的配置参数包括以下至少一个:
下行带宽的可用虚拟资源块VRB数目
Figure PCTCN2018109976-appb-000046
相邻VRB映射到对应的物理资源块PRB后的频率间隔;
用户终端所在的传输带宽;
调度的数据所占带宽。
本实施例中,网络侧设备向用户终端发送物理下行控制信道的资源映射配置信息,在该资源映射配置信息中携带有配置参数,用户终端可以根据资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽,进而在所确定的带宽上接收下行数据,本公开的技术方案能够满足type1和type2两种不同的PRG类型的资源映射需要,在保证了资源的分集增益的同时,提高了资源的可用性,保证了资源的连续性。
进一步地,用户终端还包括:
数据接收模块,用于在所确定的带宽上接收下行数据。
进一步地,所述资源映射配置信息包括从VRB编号到PRB编号的映射函数或其编号,所述映射函数的自变量至少包括VRB编号和时隙编号,其中,VRB编号的取值范围为
Figure PCTCN2018109976-appb-000047
进一步地,所述接收模块具体用于接收所述网络侧设备发送的携带有资源映射配置信息的RRC信令,所述RRC信令通知所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为预先发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
进一步地,所述接收模块具体用于接收所述网络侧设备发送的携带有资源映射配置信息的L1信令,所述L1信令通知所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
进一步地,所述接收模块具体用于接收所述网络侧设备发送的被调度的资源块的数目,根据所述被调度的资源块的数目从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一被调度的资源块的数目。
进一步地,所述接收模块具体用于接收所述网络侧设备发送的为所述用 户终端分配的带宽部分BWP的配置,根据所述BWP的配置从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一BWP的配置。
进一步地,所述接收模块具体用于接收所述网络侧设备发送的为所述用户终端分配的BWP的配置和资源分配类型,根据所述BWP的配置和所述资源分配类型从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一BWP的配置和资源分配类型的组合。
进一步地,所述接收模块具体用于接收所述网络侧设备发送的携带有资源映射配置信息的下行控制信息,根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一种格式的下行控制信息。
进一步地,所述接收模块具体用于接收所述网络侧设备发送的携带有资源映射配置信息的下行控制信息,根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式中的资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽,其中预分配的带宽是由所述网络侧设备配置或者至少由如下的参数获知:
下行带宽的可用VRB数目
Figure PCTCN2018109976-appb-000048
和/或
相邻VRB映射到对应的物理资源块PRB后的频率间隔;和/或
用户终端所在的传输带宽;和/或
调度的数据所占带宽。
进一步地,所述接收模块具体用于获取所述网络侧设备实际调度的资源的带宽值,根据实际调度的资源的带宽值从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每 一资源映射配置方式对应一带宽值。
进一步地,所述资源映射配置信息指示在所述用户终端初始接入,所述用户终端接收承载剩余系统信息RMSI,消息message 2,message 4和/或其他系统信息OSI的物理下行共享信道PDSCH时,资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽。
本公开实施例还提供了一种网络侧设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述资源映射方法的步骤。
请参阅图9,图9是本公开实施例应用的网络侧设备的结构图,能够实现上述实施例中资源映射方法的细节,并达到相同的效果。如图9所示,网络侧设备500包括:处理器501、收发机502、存储器503、用户接口504和总线接口,其中:
在本公开实施例中,网络侧设备500还包括:存储在存储器503上并可在处理器501上运行的计算机程序,计算机程序被处理器501、执行时实现如下步骤:确定物理下行控制信道的资源映射配置信息;根据所述资源映射配置信息将虚拟资源块映射到物理资源块,并将所述资源映射配置信息发送给用户终端,以使所述用户终端利用所述资源映射配置信息中的配置参数获知资源分散映射后所占用的带宽;其中,所述资源映射配置信息中的配置参数包括:下行带宽的可用虚拟资源块VRB数目
Figure PCTCN2018109976-appb-000049
和/或相邻VRB映射到对应的物理资源块PRB后的频率间隔;和/或用户终端所在的传输带宽;和/或调度的数据所占带宽。
在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器501代表的一个或多个处理器和存储器503代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机502可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口504还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器501负责管理总线架构和通常的处理,存储器503可以存储处理器501在执行操作时所使用的数据。
可选的,所述资源映射配置信息包括从VRB编号到PRB编号的映射函数或其编号,所述映射函数的自变量至少包括VRB编号和时隙编号,其中,VRB编号的取值范围为
Figure PCTCN2018109976-appb-000050
可选的,计算机程序被处理器501执行时还可实现如下步骤:通过RRC信令将所述资源映射配置信息发送给所述用户终端,以使所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为预先发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
可选的,计算机程序被处理器501执行时还可实现如下步骤:通过L1信令将所述资源映射配置信息发送给所述用户终端,以使所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
可选的,计算机程序被处理器501执行时还可实现如下步骤:将被调度的资源块的数目通知给所述用户终端,以便所述用户终端根据所述被调度的资源块的数目从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一被调度的资源块的数目。
可选的,计算机程序被处理器501执行时还可实现如下步骤:将为所述用户终端分配的带宽部分BWP的配置发送给所述用户终端,以便所述用户终端根据所述BWP的配置从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置 方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一BWP的配置。
可选的,计算机程序被处理器501执行时还可实现如下步骤:将为所述用户终端分配的BWP的配置和资源分配类型发送给所述用户终端,以便所述用户终端根据所述BWP的配置和所述资源分配类型从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一BWP的配置和资源分配类型的组合。
可选的,计算机程序被处理器501执行时还可实现如下步骤:通过下行控制信息将所述资源映射配置信息发送给所述用户终端,以便所述用户终端根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一种格式的下行控制信息。
可选的,计算机程序被处理器501执行时还可实现如下步骤:通过下行控制信息将所述资源映射配置信息发送给所述用户终端,以便所述用户终端根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式中的资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽,其中预分配的带宽是由所述网络侧设备配置或者至少由如下的参数获知:
下行带宽的可用VRB数目
Figure PCTCN2018109976-appb-000051
和/或
相邻VRB映射到对应的物理资源块PRB后的频率间隔;和/或
用户终端所在的传输带宽;和/或
调度的数据所占带宽。
可选的,计算机程序被处理器501执行时还可实现如下步骤:将实际调度的资源的带宽值通知给所述用户终端,以便所述用户终端根据实际调度的资源的带宽值从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式,每一资源映射配置方式对应一带宽值。
可选的,所述资源映射配置信息指示在所述用户终端初始接入,所述用户终端接收RMSI,message 2,message 4和/或OSI的PDSCH时,资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽。
本公开实施例还提供了一种用户终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述资源确定方法的步骤。
请参阅图10,图10是本公开实施例应用的用户终端的结构图,能够实现上述实施例中资源确定方法的细节,并达到相同的效果。如图10所示,用户终端600包括:处理器604、天线601、射频装置602、基带装置603、存储器605、网络接口606和总线接口,其中:
在本公开实施例中,用户终端600还包括:存储在存储器605上并可在处理器604上运行的计算机程序,计算机程序被处理器604、执行时实现如下步骤:接收网络侧设备发送的物理下行控制信道的资源映射配置信息;根据所述资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽;其中,所述资源映射配置信息中的配置参数包括:下行带宽的可用虚拟资源块VRB数目
Figure PCTCN2018109976-appb-000052
和/或相邻VRB映射到对应的物理资源块PRB后的频率间隔;和/或用户终端所在的传输带宽;和/或调度的数据所占带宽。
在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器604代表的一个或多个处理器和存储器605代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。网络接口606还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器604负责管理总线架构和通常的处理,存储器605可以存储处理器604在执行操作时所使用的数据。
可选的,计算机程序被处理器604执行时还可实现如下步骤:在所确定的带宽上接收下行数据。
可选的,所述资源映射配置信息包括从VRB编号到PRB编号的映射函 数或其编号,所述映射函数的自变量至少包括VRB编号和时隙编号,其中,VRB编号的取值范围为
Figure PCTCN2018109976-appb-000053
可选的,计算机程序被处理器604执行时还可实现如下步骤:接收所述网络侧设备发送的携带有资源映射配置信息的RRC信令,所述RRC信令通知所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为预先发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
可选的,计算机程序被处理器604执行时还可实现如下步骤:接收所述网络侧设备发送的携带有资源映射配置信息的L1信令,所述L1信令通知所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
可选的,计算机程序被处理器604执行时还可实现如下步骤:接收所述网络侧设备发送的被调度的资源块的数目,根据所述被调度的资源块的数目从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一被调度的资源块的数目。
可选的,计算机程序被处理器604执行时还可实现如下步骤:接收所述网络侧设备发送的为所述用户终端分配的带宽部分BWP的配置,根据所述BWP的配置从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一BWP的配置。
可选的,计算机程序被处理器604执行时还可实现如下步骤:接收所述 网络侧设备发送的为所述用户终端分配的BWP的配置和资源分配类型,根据所述BWP的配置和所述资源分配类型从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一BWP的配置和资源分配类型的组合。
可选的,计算机程序被处理器604执行时还可实现如下步骤:接收所述网络侧设备发送的携带有资源映射配置信息的下行控制信息,根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一种格式的下行控制信息。
可选的,计算机程序被处理器604执行时还可实现如下步骤:接收所述网络侧设备发送的携带有资源映射配置信息的下行控制信息,根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式中的资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽,其中预分配的带宽是由所述网络侧设备配置或者至少由如下的参数获知:
下行带宽的可用VRB数目
Figure PCTCN2018109976-appb-000054
和/或
相邻VRB映射到对应的物理资源块PRB后的频率间隔;和/或
用户终端所在的传输带宽;和/或
调度的数据所占带宽。
可选的,计算机程序被处理器604执行时还可实现如下步骤:获取所述网络侧设备实际调度的资源的带宽值,根据实际调度的资源的带宽值从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一带宽值。
可选的,所述资源映射配置信息指示在所述用户终端初始接入,所述用户终端接收承载RMSI,message 2,message 4和/或OSI的PDSCH时,资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述资源映射方法的步骤或实现如上所述资源确定方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本公开实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、只读光盘(Compact Disc Read-Only Memory,CD-ROM)、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多 个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开实施例的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本公开实施例范围的所有变更和修改。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以做出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (49)

  1. 一种资源映射方法,应用于网络侧设备,包括:
    确定物理下行控制信道的资源映射配置信息;
    根据所述资源映射配置信息将虚拟资源块映射到物理资源块,并将所述资源映射配置信息发送给用户终端,以使所述用户终端利用所述资源映射配置信息中的配置参数获知资源分散映射后所占用的带宽;
    其中,所述资源映射配置信息中的配置参数包括以下至少一个:
    下行带宽的可用虚拟资源块VRB数目
    Figure PCTCN2018109976-appb-100001
    相邻VRB映射到对应的物理资源块PRB后的频率间隔;
    用户终端所在的传输带宽;
    调度的数据所占带宽。
  2. 根据权利要求1所述的资源映射方法,其中,
    所述资源映射配置信息包括从VRB编号到PRB编号的映射函数或其编号,所述映射函数的自变量至少包括VRB编号和时隙编号,其中,VRB编号的取值范围为
    Figure PCTCN2018109976-appb-100002
  3. 根据权利要求2所述的资源映射方法,其中,所述将所述资源映射配置信息发送给用户终端包括:
    通过RRC信令将所述资源映射配置信息发送给所述用户终端,以使所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为预先发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
  4. 根据权利要求2所述的资源映射方法,其中,所述将所述资源映射配置信息发送给用户终端包括:
    通过L1信令将所述资源映射配置信息发送给所述用户终端,以使所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的 映射函数和VRB编号取值范围。
  5. 根据权利要求2所述的资源映射方法,其中,所述将所述资源映射配置信息发送给用户终端包括:
    将被调度的资源块的数目通知给所述用户终端,以便所述用户终端根据所述被调度的资源块的数目从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一被调度的资源块的数目。
  6. 根据权利要求2所述的资源映射方法,其中,所述将所述资源映射配置信息发送给用户终端包括:
    将为所述用户终端分配的带宽部分BWP的配置发送给所述用户终端,以便所述用户终端根据所述BWP的配置从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一BWP的配置。
  7. 根据权利要求1所述的资源映射方法,其中,所述将所述资源映射配置信息发送给用户终端包括:
    将为所述用户终端分配的BWP的配置和资源分配类型发送给所述用户终端,以便所述用户终端根据所述BWP的配置和所述资源分配类型从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一BWP的配置和资源分配类型的组合。
  8. 根据权利要求1所述的资源映射方法,其中,所述将所述资源映射配置信息发送给用户终端包括:
    通过下行控制信息将所述资源映射配置信息发送给所述用户终端,以便所述用户终端根据所述下行控制信息的格式从多个资源映射配置方式中选择 一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一种格式的下行控制信息。
  9. 根据权利要求1所述的资源映射方法,其中,所述将所述资源映射配置信息发送给用户终端包括:
    通过下行控制信息将所述资源映射配置信息发送给所述用户终端,以便所述用户终端根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式中的资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽,其中预分配的带宽是由所述网络侧设备配置或者至少由如下的参数获知:
    下行带宽的可用VRB数目
    Figure PCTCN2018109976-appb-100003
    和/或
    相邻VRB映射到对应的物理资源块PRB后的频率间隔;和/或
    用户终端所在的传输带宽;和/或
    调度的数据所占带宽。
  10. 根据权利要求1所述的资源映射方法,其中,所述将所述资源映射配置信息发送给用户终端包括:
    将实际调度的资源的带宽值通知给所述用户终端,以便所述用户终端根据实际调度的资源的带宽值从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式,每一资源映射配置方式对应一带宽值。
  11. 根据权利要求1所述的资源映射方法,其中,
    所述资源映射配置信息指示在所述用户终端初始接入,所述用户终端接收承载剩余系统信息RMSI,消息message 2,message 4和/或其他系统信息OSI的物理下行共享信道PDSCH时,资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽。
  12. 一种资源确定方法,应用于用户终端,包括:
    接收网络侧设备发送的物理下行控制信道的资源映射配置信息;
    根据所述资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽;
    其中,所述资源映射配置信息中的配置参数包括以下至少一个:
    下行带宽的可用虚拟资源块VRB数目
    Figure PCTCN2018109976-appb-100004
    相邻VRB映射到对应的物理资源块PRB后的频率间隔;
    用户终端所在的传输带宽;
    调度的数据所占带宽。
  13. 根据权利要求12所述的资源确定方法,还包括:所述根据所述资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽之后,
    在所确定的带宽上接收下行数据。
  14. 根据权利要求12所述的资源确定方法,其中,所述资源映射配置信息包括从VRB编号到PRB编号的映射函数或其编号,所述映射函数的自变量至少包括VRB编号和时隙编号,其中,VRB编号的取值范围为
    Figure PCTCN2018109976-appb-100005
  15. 根据权利要求14所述的资源确定方法,其中,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
    接收所述网络侧设备发送的携带有资源映射配置信息的RRC信令,所述RRC信令通知所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为预先发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
  16. 根据权利要求14所述的资源确定方法,其中,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
    接收所述网络侧设备发送的携带有资源映射配置信息的L1信令,所述L1信令通知所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
  17. 根据权利要求14所述的资源确定方法,其中,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
    接收所述网络侧设备发送的被调度的资源块的数目,根据所述被调度的 资源块的数目从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一被调度的资源块的数目。
  18. 根据权利要求14所述的资源确定方法,其中,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
    接收所述网络侧设备发送的为所述用户终端分配的带宽部分BWP的配置,根据所述BWP的配置从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一BWP的配置。
  19. 根据权利要求12所述的资源确定方法,其中,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
    接收所述网络侧设备发送的为所述用户终端分配的BWP的配置和资源分配类型,根据所述BWP的配置和所述资源分配类型从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一BWP的配置和资源分配类型的组合。
  20. 根据权利要求12所述的资源确定方法,其中,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
    接收所述网络侧设备发送的携带有资源映射配置信息的下行控制信息,根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一种格式的下行控制信息。
  21. 根据权利要求12所述的资源确定方法,其中,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
    接收所述网络侧设备发送的携带有资源映射配置信息的下行控制信息,根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式中的资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽,其中预分配的带宽是由所述网络侧设备配置或者至少由如下的参数获知:
    下行带宽的可用VRB数目
    Figure PCTCN2018109976-appb-100006
    和/或
    相邻VRB映射到对应的物理资源块PRB后的频率间隔;和/或
    用户终端所在的传输带宽;和/或
    调度的数据所占带宽。
  22. 根据权利要求12所述的资源确定方法,其中,所述接收网络侧设备发送的物理下行控制信道的资源映射配置信息包括:
    获取所述网络侧设备实际调度的资源的带宽值,根据实际调度的资源的带宽值从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一带宽值。
  23. 根据权利要求12所述的资源确定方法,其中,
    所述资源映射配置信息指示在所述用户终端初始接入,所述用户终端接收承载剩余系统信息RMSI,消息message 2,message 4和/或其他系统信息OSI的物理下行共享信道PDSCH时,资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽。
  24. 一种网络侧设备,包括:
    处理模块,用于确定物理下行控制信道的资源映射配置信息,根据所述资源映射配置信息将虚拟资源块映射到物理资源块;
    发送模块,用于将所述资源映射配置信息发送给用户终端,以使所述用户终端利用所述资源映射配置信息中的配置参数获知资源分散映射后所占用的带宽;
    其中,所述资源映射配置信息中的配置参数包括以下至少一个:
    下行带宽的可用虚拟资源块VRB数目
    Figure PCTCN2018109976-appb-100007
    相邻VRB映射到对应的物理资源块PRB后的频率间隔;
    用户终端所在的传输带宽;
    调度的数据所占带宽。
  25. 根据权利要求24所述的网络侧设备,其中,
    所述资源映射配置信息包括从VRB编号到PRB编号的映射函数或其编号,所述映射函数的自变量至少包括VRB编号和时隙编号,其中,VRB编号的取值范围为
    Figure PCTCN2018109976-appb-100008
  26. 根据权利要求25所述的网络侧设备,其中,
    所述发送模块用于通过RRC信令将所述资源映射配置信息发送给所述用户终端,以使所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为预先发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
  27. 根据权利要求25所述的网络侧设备,其中,
    所述发送模块用于通过L1信令将所述资源映射配置信息发送给所述用户终端,以使所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
  28. 根据权利要求25所述的网络侧设备,其中,
    所述发送模块用于将被调度的资源块的数目通知给所述用户终端,以便所述用户终端根据所述被调度的资源块的数目从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一被调度的资源块的数目。
  29. 根据权利要求25所述的网络侧设备,其中,
    所述发送模块用于将为所述用户终端分配的带宽部分BWP的配置发送给所述用户终端,以便所述用户终端根据所述BWP的配置从多个资源映射配 置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一BWP的配置。
  30. 根据权利要求24所述的网络侧设备,其中,
    所述发送模块用于将为所述用户终端分配的BWP的配置和资源分配类型发送给所述用户终端,以便所述用户终端根据所述BWP的配置和所述资源分配类型从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一BWP的配置和资源分配类型的组合。
  31. 根据权利要求24所述的网络侧设备,其中,
    所述发送模块用于通过下行控制信息将所述资源映射配置信息发送给所述用户终端,以便所述用户终端根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一种格式的下行控制信息。
  32. 根据权利要求24所述的网络侧设备,其中,
    所述发送模块用于通过下行控制信息将所述资源映射配置信息发送给所述用户终端,以便所述用户终端根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式中的资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽,其中预分配的带宽是由所述网络侧设备配置或者至少由如下的参数获知:
    下行带宽的可用VRB数目
    Figure PCTCN2018109976-appb-100009
    和/或
    相邻VRB映射到对应的物理资源块PRB后的频率间隔;和/或
    用户终端所在的传输带宽;和/或
    调度的数据所占带宽。
  33. 根据权利要求24所述的网络侧设备,其中,
    所述发送模块用于将实际调度的资源的带宽值通知给所述用户终端,以 便所述用户终端根据实际调度的资源的带宽值从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式,每一资源映射配置方式对应一带宽值。
  34. 根据权利要求24所述的网络侧设备,其中,
    所述资源映射配置信息指示在所述用户终端初始接入,所述用户终端接收承载剩余系统信息RMSI,消息message 2,message 4和/或其他系统信息OSI的物理下行共享信道PDSCH时,资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽。
  35. 一种用户终端,包括:
    接收模块,用于接收网络侧设备发送的物理下行控制信道的资源映射配置信息;
    处理模块,用于根据所述资源映射配置信息中的配置参数确定资源分散映射后所占用的带宽;
    其中,所述资源映射配置信息中的配置参数包括以下至少一个:
    下行带宽的可用虚拟资源块VRB数目
    Figure PCTCN2018109976-appb-100010
    相邻VRB映射到对应的物理资源块PRB后的频率间隔;
    用户终端所在的传输带宽;
    调度的数据所占带宽。
  36. 根据权利要求35所述的用户终端,还包括:
    数据接收模块,用于在所确定的带宽上接收下行数据。
  37. 根据权利要求35所述的用户终端,其中,
    所述资源映射配置信息包括从VRB编号到PRB编号的映射函数或其编号,所述映射函数的自变量至少包括VRB编号和时隙编号,其中,VRB编号的取值范围为
    Figure PCTCN2018109976-appb-100011
  38. 根据权利要求37所述的用户终端,其中,
    所述接收模块用于接收所述网络侧设备发送的携带有资源映射配置信息的RRC信令,所述RRC信令通知所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为预先发送给所述用户终端的多个资源映射配置方式,每一 资源映射配置方式包括对应的映射函数和VRB编号取值范围。
  39. 根据权利要求37所述的用户终端,其中,
    所述接收模块用于接收所述网络侧设备发送的携带有资源映射配置信息的L1信令,所述L1信令通知所述用户终端从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围。
  40. 根据权利要求37所述的用户终端,其中,
    所述接收模块用于接收所述网络侧设备发送的被调度的资源块的数目;
    所述处理模块用于根据所述被调度的资源块的数目从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一被调度的资源块的数目。
  41. 根据权利要求37所述的用户终端,其中,
    所述接收模块用于接收所述网络侧设备发送的为所述用户终端分配的带宽部分BWP的配置;
    所述处理模块用于根据所述BWP的配置从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式包括对应的映射函数和VRB编号取值范围且每一资源映射配置方式对应一BWP的配置。
  42. 根据权利要求35所述的用户终端,其中,
    所述接收模块用于接收所述网络侧设备发送的为所述用户终端分配的BWP的配置和资源分配类型;
    所述处理模块用于根据所述BWP的配置和所述资源分配类型从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一BWP的配置和资源分 配类型的组合。
  43. 根据权利要求35所述的用户终端,其中,
    所述接收模块用于接收所述网络侧设备发送的携带有资源映射配置信息的下行控制信息;
    所述处理模块具体用于根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一种格式的下行控制信息。
  44. 根据权利要求35所述的用户终端,其中,
    所述接收模块用于接收所述网络侧设备发送的携带有资源映射配置信息的下行控制信息;
    所述处理模块用于根据所述下行控制信息的格式从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式中的资源分散映射后所占用的带宽为预分配的带宽或实际被调度的资源的带宽,其中预分配的带宽是由所述网络侧设备配置或者至少由如下的参数获知:
    下行带宽的可用VRB数目
    Figure PCTCN2018109976-appb-100012
    和/或
    相邻VRB映射到对应的物理资源块PRB后的频率间隔;和/或
    用户终端所在的传输带宽;和/或
    调度的数据所占带宽。
  45. 根据权利要求35所述的用户终端,其中,
    所述接收模块用于获取所述网络侧设备实际调度的资源的带宽值;
    所述处理模块用于根据实际调度的资源的带宽值从多个资源映射配置方式中选择一资源映射配置方式,所述多个资源映射配置方式为预配置的多个资源映射配置方式或为通过RRC信令发送给所述用户终端的多个资源映射配置方式,每一资源映射配置方式对应一带宽值。
  46. 根据权利要求35所述的用户终端,其中,
    所述资源映射配置信息指示在所述用户终端初始接入,所述用户终端接收承载剩余系统信息RMSI,消息message 2,message 4和/或其他系统信息OSI的物理下行共享信道PDSCH时,资源分散映射后所占用的带宽为预分 配的带宽或实际被调度的资源的带宽。
  47. 一种网络侧设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至11中任一项所述资源映射方法的步骤。
  48. 一种用户终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求12至23中任一项所述资源确定方法的步骤。
  49. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至11中任一项所述资源映射方法的步骤或实现如权利要求12至23中任一项所述资源确定方法的步骤。
PCT/CN2018/109976 2017-11-17 2018-10-12 资源映射方法、确定方法、网络侧设备及用户终端 WO2019095907A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES18879911T ES2934409T3 (es) 2017-11-17 2018-10-12 Método de mapeo de recursos, método de determinación de recursos, dispositivo de lado de red y terminal de usuario
JP2020524152A JP7052033B2 (ja) 2017-11-17 2018-10-12 リソースマッピング方法、リソース決定方法、ネットワーク側機器およびユーザ端末
US16/757,307 US11800489B2 (en) 2017-11-17 2018-10-12 Resource mapping method, resource determination method, network side device and user equipment
EP22199568.1A EP4135463A1 (en) 2017-11-17 2018-10-12 Resource determination method, resource mapping method, user equipment, and network side device
KR1020207017323A KR102410379B1 (ko) 2017-11-17 2018-10-12 자원 매핑 방법, 확정 방법, 네트워크측 기기 및 사용자 단말기
EP18879911.8A EP3697153B1 (en) 2017-11-17 2018-10-12 Resource mapping method, resource determining method, network side device, and user terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711148879.4A CN109803412B (zh) 2017-11-17 2017-11-17 资源映射方法、确定方法、网络侧设备及用户终端
CN201711148879.4 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019095907A1 true WO2019095907A1 (zh) 2019-05-23

Family

ID=66538885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109976 WO2019095907A1 (zh) 2017-11-17 2018-10-12 资源映射方法、确定方法、网络侧设备及用户终端

Country Status (7)

Country Link
US (1) US11800489B2 (zh)
EP (2) EP3697153B1 (zh)
JP (1) JP7052033B2 (zh)
KR (1) KR102410379B1 (zh)
CN (2) CN112888073B (zh)
ES (1) ES2934409T3 (zh)
WO (1) WO2019095907A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11277246B2 (en) * 2017-11-17 2022-03-15 Panasonic Intellectual Property Corporation Of America Base station, user equipment and wireless communication method
WO2022067784A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种信号传输的指示方法和通信装置
WO2024077618A1 (zh) * 2022-10-14 2024-04-18 北京小米移动软件有限公司 频域资源的确定方法及装置
KR20240066217A (ko) * 2022-11-04 2024-05-14 삼성전자주식회사 무선 통신 시스템에서 전 이중 통신을 위한 하향링크 데이터 채널 전송 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778394A (zh) * 2009-01-12 2010-07-14 大唐移动通信设备有限公司 一种实现资源映射的方法和装置
US8073062B2 (en) * 2007-02-08 2011-12-06 Motorola Mobility, Inc. Method and apparatus for downlink resource allocation in an orthogonal frequency division multiplexing communication system
CN102412951A (zh) * 2011-11-17 2012-04-11 武汉邮电科学研究院 Lte中分布式虚拟资源块映射到物理资源块的方法和装置
WO2013149594A1 (zh) * 2012-04-06 2013-10-10 华为技术有限公司 一种资源配置方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102142B (zh) * 2007-08-01 2013-02-27 中兴通讯股份有限公司 一种基于正交频分复用系统的分布式传输资源映射方法
KR100956828B1 (ko) * 2008-11-13 2010-05-11 엘지전자 주식회사 반(半)-지속적 스케줄링의 비활성화를 지시하는 방법 및 이를 이용한 장치
US9414370B2 (en) 2010-05-14 2016-08-09 Lg Electronics Inc. Method for allocating resources in a wireless communication system and a device for the same
US20120120888A1 (en) * 2010-11-02 2012-05-17 Samsung Electronics Co., Ltd. Apparatus and method for primary uplink shared channel hopping in a wireless network
CN107005996B (zh) * 2015-04-24 2019-07-09 华为技术有限公司 一种终端、基站和数据传输方法
JP6595098B2 (ja) * 2015-08-31 2019-10-23 華為技術有限公司 リソース割当方法及び装置
BR112019002748A2 (pt) * 2016-08-10 2019-05-14 Idac Holdings, Inc. método para uma unidade de transmissão/recepção sem fio, unidade de transmissão/recepção sem fio, e, estação-base
CN108347776B (zh) * 2017-01-25 2023-11-10 华为技术有限公司 一种通信系统中资源分配的方法及设备
CN108809507B (zh) * 2017-05-05 2021-01-29 华为技术有限公司 用于数据传输的方法、终端和网络设备
KR101950995B1 (ko) * 2017-06-08 2019-02-22 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 관련 시그널링 방법 및 상기 방법을 이용하는 장치
US20190150118A1 (en) * 2017-11-10 2019-05-16 Qualcomm Incorporated Virtual resource block to physical resource block mapping in new radio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8073062B2 (en) * 2007-02-08 2011-12-06 Motorola Mobility, Inc. Method and apparatus for downlink resource allocation in an orthogonal frequency division multiplexing communication system
CN101778394A (zh) * 2009-01-12 2010-07-14 大唐移动通信设备有限公司 一种实现资源映射的方法和装置
CN102412951A (zh) * 2011-11-17 2012-04-11 武汉邮电科学研究院 Lte中分布式虚拟资源块映射到物理资源块的方法和装置
WO2013149594A1 (zh) * 2012-04-06 2013-10-10 华为技术有限公司 一种资源配置方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "On DL/UL resource allocation", 3GPP TSG RAN WG1 MEETING 91, R1-1719793, 1 December 2017 (2017-12-01), XP051369536 *

Also Published As

Publication number Publication date
US11800489B2 (en) 2023-10-24
JP2021501525A (ja) 2021-01-14
US20220030550A1 (en) 2022-01-27
EP3697153A1 (en) 2020-08-19
ES2934409T3 (es) 2023-02-21
EP4135463A1 (en) 2023-02-15
EP3697153A4 (en) 2020-11-11
CN112888073B (zh) 2022-12-16
KR20200079548A (ko) 2020-07-03
KR102410379B1 (ko) 2022-06-16
CN109803412A (zh) 2019-05-24
EP3697153B1 (en) 2022-11-23
CN112888073A (zh) 2021-06-01
JP7052033B2 (ja) 2022-04-11
CN109803412B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN110463121B (zh) 用于接收下行链路数据传输的方法和装置
US11411790B2 (en) Flexible radio resource allocation
US20220312401A1 (en) Methods and apparatus for sending and receiving second stage sci, storage medium, sending ue, and receiving ue
EP3834569B1 (en) Method and apparatus for generating mac pdu
CN108029133B (zh) 用于降低lte上行链路传输的时延的方法和设备
US11395291B2 (en) Allocating transmission resources in communication networks that provide low latency services
US8767644B2 (en) Method and apparatus for contention-based granting in a wireless communication network
EP2584850B1 (en) Contention based uplink transmission
WO2019095907A1 (zh) 资源映射方法、确定方法、网络侧设备及用户终端
WO2018229736A1 (en) Waveform indication in wireless communication networks
EP4131818A1 (en) Harq-ack transmission method, user equipment and storage medium, and harq-ack reception method and base station
CN114097290A (zh) 用户装置及由用户装置执行的无线通信方法
WO2017193377A1 (zh) 下行控制信息的发送方法、检测方法和设备
WO2021018171A1 (zh) 上行传输方法、资源指示方法、装置、服务节点及介质
WO2019095739A1 (zh) 一种带宽指示方法、网络设备及终端设备
JP6720304B2 (ja) スケジューリング情報送信方法および装置
WO2019154106A1 (en) Grant-based uplink transmission
CN109803411B (zh) 资源映射方法、确定方法、网络侧设备及用户终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018879911

Country of ref document: EP

Effective date: 20200513

ENP Entry into the national phase

Ref document number: 20207017323

Country of ref document: KR

Kind code of ref document: A