WO2017193377A1 - 下行控制信息的发送方法、检测方法和设备 - Google Patents

下行控制信息的发送方法、检测方法和设备 Download PDF

Info

Publication number
WO2017193377A1
WO2017193377A1 PCT/CN2016/082056 CN2016082056W WO2017193377A1 WO 2017193377 A1 WO2017193377 A1 WO 2017193377A1 CN 2016082056 W CN2016082056 W CN 2016082056W WO 2017193377 A1 WO2017193377 A1 WO 2017193377A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
control channel
signaling
channel region
configuration information
Prior art date
Application number
PCT/CN2016/082056
Other languages
English (en)
French (fr)
Inventor
李超君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/082056 priority Critical patent/WO2017193377A1/zh
Priority to KR1020187036021A priority patent/KR20190005989A/ko
Priority to CN201680085442.8A priority patent/CN109076513A/zh
Priority to EP16901332.3A priority patent/EP3451761B1/en
Priority to BR112018073215-0A priority patent/BR112018073215A2/pt
Priority to JP2018559977A priority patent/JP2019517208A/ja
Publication of WO2017193377A1 publication Critical patent/WO2017193377A1/zh
Priority to US16/189,718 priority patent/US10869304B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a method, a detection method, and a device for transmitting downlink control information.
  • the terminal device before receiving downlink data or transmitting uplink data, the terminal device needs to know scheduling information configured by the network device to the terminal device, such as time-frequency resource allocation, modulation and coding, and the like. The device also needs to notify the terminal device of the power control command information related to the uplink transmission. These scheduling information and power control command information are collectively referred to as downlink control information (DCI), which is used for scheduling data transmission.
  • DCI downlink control information
  • the specific implementation of the current DCI transmission is as follows: the network device mainly carries the DCI through the Physical Downlink Control Channel (PDCCH), and sends the DCI to the terminal device; for the terminal device, it needs to be in the search space.
  • the DCI is detected and acquired on multiple PDCCHs, so the terminal device needs to determine the search space.
  • the search space is a set of PDCCHs to be detected by the terminal device.
  • the current search space is composed of PDCCHs for scheduling 1ms data transmission, and is located in the first 1, 2, 3 or 4 symbols of a downlink subframe, or is located in a physical downlink shared channel (English: Physical Downlink Shared Channel, referred to as The symbol area of :PDSCH), and the occupied channel resources are relatively fixed. Therefore, the current search space does not have flexibility for data transmission of less than 1 ms, resulting in low transmission efficiency.
  • the embodiment of the invention provides a method, a detection method and a device for transmitting downlink control information, which are used to solve the problem that the current search space does not have flexibility for data transmission of less than 1 ms duration, resulting in low transmission efficiency.
  • a first aspect of the present invention provides a method for detecting downlink control information, where the solution is applied to a terminal device on a user side, and includes:
  • the terminal device detects downlink control information in the search space.
  • the first signaling may be used to indicate a frequency domain resource or a CCE resource occupied by the search space
  • the network device may configure the search space to occupy any frequency domain resource or CCE resource
  • the terminal device determines the network according to the first signaling.
  • the search space configured by the device acquires downlink control information in time, effectively improving data transmission efficiency, and in particular, solves the problem that downlink control information of less than 1 ms duration cannot be obtained in time.
  • the method before the detecting, by the terminal device, the downlink control information in the search space, the method further includes:
  • the terminal device determines a control channel region; the search space is located in the control channel region.
  • the first signaling indicates the aggregation level L and the search space start identifier Y
  • the terminal device determines the frequency domain resource or CCE resource occupied by the search space according to the configuration information, including:
  • N CCE represents the total number of available CCEs in the transmission time interval occupied by the search space.
  • the method before the determining, by the terminal device, the control channel area, the method further includes:
  • the terminal device receives the second signaling, the second signaling indicates a resource occupied by the control channel region, and the second signaling includes an N CCEG information domain, where the ith of the N CCEG information domains
  • the information field indicates that the control channel element group (English: control channel element group, CCEG) i-1 has H CCE configurations for the control channel region, i is a positive integer not greater than N CCEG , and the CCEG i -1 consists of G CCEs, G is a positive integer, and H is a non-negative integer not greater than G.
  • the G is equal to 8
  • the H is 0, 2, 4 or 8
  • the number of bits of the i-th information field is 2.
  • the configuration information of the search space indicates that the search space is located in CCEG j or the configuration information of the search space indicates that the starting point of the search space is located at CCEG j, where j is a non-negative integer smaller than N CCEG .
  • the first signaling further includes configuration information of the control channel region, where configuration information of the search space indicates that a starting point of the search space is CCE i, and the control channel region is The configuration information indicates that the control channel region occupies consecutive X CCEs, where X is a positive integer and i is a non-negative integer less than X;
  • the terminal device determines a control channel region, including:
  • the terminal device determines the control channel region according to configuration information of the control channel region.
  • the first signaling further includes configuration information of the control channel region, where configuration information of the control channel region indicates that the control channel region occupies consecutive E CCEGs, and the searching The configuration information of the space indicates that the starting point of the search space is CCEG i, where E is a positive integer and i is a non-negative integer less than E;
  • the terminal device determines a control channel region, including:
  • the terminal device determines the control channel region according to configuration information of the control channel region.
  • the method further includes:
  • the terminal device receives the third signaling, where the third signaling indicates that the control channel region occupies N short resource blocks; wherein each short resource block occupies 12 subcarriers in the frequency domain and occupies in the time domain 1 or 2 symbols, the N can be divisible by 3 or 4;
  • the terminal device determines a control channel region, including:
  • the terminal device determines the control channel region according to the third signaling.
  • the method before the determining, by the terminal device, the control channel region, the method further includes:
  • the terminal device receives fourth signaling, where the fourth signaling indicates that the control channel region occupies M consecutive virtual short resource blocks; and M is a positive integer that can be divisible by 3 or 4;
  • the terminal device determines a control channel region, including:
  • the terminal device Determining, by the terminal device, the M non-contiguous physical short source blocks occupied by the control channel region according to the mapping relationship between the virtual short resource block and the physical short resource block and the fourth signaling, where the virtual short resource block
  • the mapping relationship with the physical short resource block indicates the M consecutive virtual short resource block pairs There should be said M non-contiguous physical short resource blocks.
  • the method before the determining, by the terminal device, the control channel region, the method includes:
  • the terminal device receives a fifth signaling, where the fifth signaling indicates that the control channel region occupies consecutive Z CCEs, and the Z is a positive integer;
  • the terminal device determines a control channel region, including:
  • the terminal device determines the control channel region according to the fifth signaling.
  • a second aspect of the present invention provides a method for transmitting downlink control information, including:
  • the network device sends a first instruction, where the first signaling includes configuration information of a search space, where the configuration information is used to indicate a frequency domain resource or a CCE resource;
  • the network device sends downlink control information in the search space.
  • the method before the sending, by the network device, the first signaling, the method further includes:
  • the network device determines a control channel region, and the search space is located in the control channel region.
  • the first signaling specifically indicates an aggregation level of the search space and an identifier of the terminal device.
  • the configuration information of the search space indicates an aggregation level L and a search space start identifier Y.
  • the network device further includes:
  • the number of channels, N CCE represents the total number of available CCEs in the transmission time interval occupied by the search space.
  • the method further includes:
  • the network device sends a second signaling; the second signaling indicates a resource occupied by the control channel region; the second signaling includes N CCEG information fields; wherein, the N CCEG information domains
  • the i-th information field indicates that there are H CCEs in the control channel unit group CCEG i-1 for the control channel region, i is a positive integer not greater than N CCEG , and the CCEG i-1 is composed of G CCEs, G Is a positive integer, H is a non-negative integer not greater than G.
  • the G is equal to 8
  • the H is 0, 2, 4 or 8
  • the number of bits of the i-th information field is 2.
  • the configuration information of the search space indicates that the search space is located in CCEG j or the configuration information of the search space indicates that the starting point of the search space is located at CCEG j, where j is a non-negative integer smaller than N CCEG .
  • the first signaling further includes configuration information of the control channel region, where configuration information of the control channel region indicates that the control channel region occupies consecutive E CCEGs, and the searching The configuration information of the space indicates that the starting point of the search space is CCEG i, where E is a positive integer and i is a non-negative integer less than E.
  • the method before the network device sends the downlink control information in the search space, the method further includes:
  • the network device sends a third signaling, where the third signaling indicates that the control channel region occupies N short resource blocks; wherein each short resource block occupies 12 subcarriers in the frequency domain and occupies in the time domain. 1 or 2 symbols, the N can be divisible by 3 or 4.
  • the method before the network device sends the downlink control information in the search space, the method further includes:
  • the network device sends a fourth signaling; the fourth signaling indicates that the control channel region occupies M consecutive virtual short resource blocks; and M is a positive integer that can be divisible by 3 or 4;
  • the M consecutive virtual short resource blocks correspond to M non-contiguous physical short resource blocks.
  • the method before the network device sends the downlink control information in the search space, the method further includes:
  • the network device sends a fifth signaling; the fifth signaling indicates that the control channel region occupies consecutive Z CCEs, and the Z is a positive integer.
  • a third aspect of the present invention provides a terminal device, including:
  • a receiving module configured to receive first signaling, where the first signaling includes configuration information of a search space
  • the processing module determines, according to the configuration information of the search space, a frequency domain resource or a control channel unit CCE resource occupied by the search space;
  • the processing module is further configured to detect downlink control information in the search space.
  • the processing module is further configured to determine a control channel region; the search space is located in the control channel region.
  • the terminal device may be implemented by using a software device, or may be implemented as a terminal device by using a hardware device.
  • the device is specifically used to implement the technical solution for detecting each downlink control information provided by the first aspect, and the implementation principle thereof. Similar, please refer to the first aspect for specific implementation and details.
  • a fourth aspect of the present invention provides a network device, including: a sending module for sending a message; and a processing module for controlling execution of the instruction;
  • the processing module is configured to determine a search space
  • the sending module is used to:
  • the processing module is configured to determine a control channel region, where the search space is located in the control channel region.
  • the device for transmitting the downlink control information may be implemented by using a software device, or may be implemented as a network device by using a hardware device, or may be implemented as another control device, which is not limited thereto.
  • the device is specifically configured to implement the second aspect provided by the second aspect.
  • the technical solution of the method for transmitting the downlink control information is similar in its implementation principle. For the specific implementation manner and details, please refer to the second aspect.
  • a fifth aspect of the present invention provides a terminal device, including: a memory storing program instructions, a processor for controlling execution of program instructions, a transmitter for transmitting a message, and a receiver for receiving a message;
  • the receiver is configured to receive first signaling, where the first signaling includes configuration information of a search space;
  • the processor is configured to determine, according to the configuration information of the search space, a frequency domain resource or a control channel unit CCE resource occupied by the search space;
  • the processor is further configured to detect downlink control information in the search space.
  • the processor is further configured to determine a control channel region; the search space is located in the control channel region.
  • the technical solution that the terminal device provided by the solution is specifically used to implement the detection method of each downlink control information provided by the first aspect is similar to the technical solution.
  • a sixth aspect of the present invention provides a network device, including: a memory storing program instructions, a processor for controlling execution of program instructions, and a transmitter for transmitting a message;
  • the transmitter is used to:
  • the processor is configured to determine a control channel region, where the search space is located in the control channel region.
  • the network device provided by the solution is specifically used to implement the technical solution for sending the downlink control information provided by the first aspect.
  • the implementation principle and the technical effect are similar.
  • the network device can be configured to use the search space to occupy any frequency domain resource or CCE resource, and the terminal device determines the search space configured by the network device according to the first signaling, and obtains the downlink control in time.
  • the information effectively improves the data transmission efficiency, and in particular solves the problem that the downlink control information of less than 1 ms duration cannot be acquired in time.
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for detecting downlink control information according to the present invention
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for transmitting downlink control information according to the present invention
  • FIG. 3 is a schematic diagram of a search space indication in a search space determination scheme 2 of the present invention.
  • FIG. 4 is a schematic diagram of another search space indication in the search space determination scheme 2 of the present invention.
  • FIG. 5 is a schematic diagram of a search space indication in a search space determining scheme of the present invention.
  • FIG. 6 is a schematic diagram of a control channel area indication in the control channel area determining scheme 2 of the present invention.
  • FIG. 7 is a schematic diagram of another control channel region indication in the control channel region determining scheme 2 of the present invention.
  • FIG. 8 is a schematic diagram of a control channel area indication in a control channel area determining scheme 4 according to the present invention.
  • FIG. 9 is a schematic diagram of another control channel region indication in the control channel region determining scheme 4 of the present invention.
  • Embodiment 1 of a terminal device according to the present invention is a schematic structural diagram of Embodiment 1 of a terminal device according to the present invention.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a network device according to the present invention.
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of a terminal device according to the present invention.
  • FIG. 13 is a schematic structural diagram of Embodiment 2 of a network device according to the present invention.
  • the currently defined search space is composed of PDCCHs for scheduling 1ms data transmission, or is located in the first 1, 2, 3 or 4 symbols in one downlink subframe, or in the PDSCH symbol region (ie, one downlink subframe).
  • the last 13, 12, 11 or 10 symbols) and the occupied channel resources are relatively fixed. Therefore, the search space configuration is relatively fixed.
  • the fixed search space size does not have flexibility for data transmission of less than 1 ms, resulting in low transmission efficiency.
  • the present application proposes a new transmission scheme of downlink control information.
  • the transmission scheme of the downlink control information proposed by the present application is applied to a wireless communication system, such as a Third Generation mobile communication technology (3G), a 4.5G or a 5G communication system.
  • a wireless communication system including a terminal device or a terminal device, for example, a communication between a terminal device and a network device, or between a terminal device and a terminal device. Communicate, or communicate between a network device and a network device.
  • the terminal device can be a device that provides voice and or data connectivity to the user, a handheld device with wireless connectivity, or other processing device that is connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, Radio Access Network, RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • a radio access network eg, Radio Access Network, RAN
  • the computers can be portable, pocket, handheld, computer built-in or in-vehicle mobile devices that exchange language and or data with the wireless access network.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a wireless terminal may also be called a system, a subscriber unit (SU), a subscriber station (SS), a mobile station (millisecond station), a mobile station (millisecond station), a remote station (remote station, RS), access point (AP), remote terminal (RT), access terminal (AT), user terminal (UT), user agent (UA) , user equipment, or user equipment (UE).
  • the network device may be a base station, an enhanced base station, or a relay with scheduling function, or have a base station function. Equipment, etc.
  • the base station may be an evolved base station (evolved Node B, eNB or e-NodeB) in the LTE system, or may be a base station in other systems, which is not limited in the embodiment of the present invention.
  • FIG. 1 is a flowchart of Embodiment 1 of a method for detecting downlink control information according to the present invention. As shown in FIG. 1 , the method for detecting downlink control information is applied to a terminal device side, and specific implementation steps of the method are as follows:
  • the terminal device receives the first signaling, where the first signaling includes configuration information of a search space.
  • the network device or other control device can flexibly configure the resources occupied by the search space according to requirements, and send the configuration information of the search space to the terminal device by using the first signaling.
  • the configuration information of the search space is CCE resource configuration information of the search space.
  • the configuration information of the search space is frequency domain resource configuration information of the search space.
  • the configuration information of the search space is frequency domain resource configuration information and time domain resource configuration information of the search space.
  • the configuration information of the search space also indicates that the search space occupies S symbols, where S is a positive integer, for example, S is 1, 2, 3, 4, 6, or 7.
  • the search space is composed of one or more candidate downlink control channels, and each candidate downlink control channel can be used to carry DCI.
  • the search space is a collection of downlink candidate control channels.
  • the terminal device needs to listen to the candidate downlink control channel, so the search space is also the candidate downlink control channel set monitored by the terminal device.
  • the terminal device determines, according to the configuration information of the search space, a frequency domain resource or a CCE resource that is occupied by the search space.
  • the terminal device determines, according to the configuration information, CCE resources occupied by the search space.
  • the terminal device determines, according to the configuration information, a frequency domain resource occupied by the search space.
  • the terminal device determines, according to the configuration information, a frequency domain resource and a time domain resource that are occupied by the search space.
  • the terminal device determines the search space according to the resource indicated in the received first signaling.
  • the candidate downlink control channel in the search space is used to transmit downlink control information.
  • S103 The terminal device detects downlink control information in the search space.
  • the terminal device detects downlink control information in the search space. If the terminal device detects the downlink control information, the data transmission is performed according to the downlink control information.
  • the network device or other control device flexibly configures the search space according to requirements, and the terminal device determines the search space by using the first signaling sent by the network device or other control device, and detects the downlink control information. In this way, the network device can configure the search space to occupy any frequency domain resource or CCE resource.
  • the terminal device further acquires downlink control information in the configured search space in time, thereby effectively improving data transmission efficiency. For example, for a data transmission with a duration of less than 1 ms, the network device can configure a frequency domain resource or a CCE resource that is less occupied by the search space, thereby reducing the number of PDCCH blind detections of the terminal device, quickly obtaining downlink control information, and improving data transmission efficiency.
  • the terminal device detects downlink control information in the search space. If the terminal device detects a candidate control channel with a correct cyclic redundancy check (CRC), the DCI carried by the candidate control channel is a DCI sent by the network device to the terminal device for scheduling data transmission, otherwise, if If the terminal device does not detect the candidate control channel with the correct CRC, it indicates that the network device does not send the DCI to the terminal device.
  • CRC cyclic redundancy check
  • the present invention does not limit how the terminal device detects DCI. For example, the terminal device detects the DCI in the search space, and the terminal device may decode all or part of the candidate downlink control channels in the search space according to the information bit number of the DCI.
  • the data transmission may be performed according to the DCI and the network device.
  • the terminal device may receive the downlink data packet sent by the network device on the data transmission resource indicated by the DCI.
  • the terminal device may send the uplink data packet to the network device on the data transmission resource indicated by the DCI.
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for transmitting downlink control information according to the present invention. As shown in FIG. 2, the method for transmitting downlink control information is applied to a network device side.
  • the specific implementation steps of the method are as follows:
  • the network device sends a first instruction, where the first signaling includes configuration information of a search space, where the configuration information is used to indicate a frequency domain resource or a CCE resource.
  • the configuration information of the search space is CCE resource configuration information of the search space.
  • the configuration information of the search space is frequency domain resource configuration information of the search space.
  • the configuration information of the search space is frequency domain resource configuration information and time domain resource configuration information of the search space.
  • the method further includes: determining, by the network device, a frequency domain resource or a CCE resource or a time-frequency domain resource occupied by the search space.
  • the network device determines (or configures) the resources of the search space according to requirements, and sends the information to the terminal device by using the first instruction, so that the terminal device can determine the search space according to the resource indicated in the first instruction.
  • S202 The network device sends downlink control information in the search space.
  • the network device sends the downlink control information in the determined search space to enable the terminal device to detect and acquire the determined search space, and subsequently performs data scheduling according to the downlink control information.
  • the method before the sending, by the network device, the first signaling, the method further includes:
  • the network device determines a control channel region, and the search space is located in the control channel region.
  • the network device or other control device flexibly configures the search space according to requirements, and the terminal device determines the search space through the first instruction sent by the network device or other control device, and performs downlink control information.
  • the network device can configure the search space to occupy any frequency domain resource or CCE resource, and the terminal device obtains downlink control information in the configured search space in time, thereby effectively improving data transmission efficiency.
  • the following describes the transmission scheme of the downlink control information proposed by the present application by using a detailed example.
  • the LTE system is taken as an example, but the embodiment of the present invention is not applicable to the LTE system.
  • any wireless communication system that performs data transmission by scheduling may adopt the solution provided by the embodiment of the present invention.
  • each radio frame is composed of 10 subframes of 1 ms length, and each subframe includes 2 slots.
  • each slot consists of 7 symbols, that is, each slot is numbered ⁇ #0, #1, #2, #3, #4, #5 , symbolic composition of #6 ⁇ ;
  • each slot consists of 6 symbols, that is, each slot is numbered ⁇ #0, #1, #2,# 3, #4, #5 ⁇ symbol composition.
  • the length of a subframe may be shortened, for example, to a length of 0.2 ms or 0.25 ms or less per subframe.
  • one subframe includes N symbols (N is a positive integer), that is, one uplink subframe includes N uplink symbols, or one downlink subframe includes N downlink symbols. Both the upstream symbol and the downstream symbol are simply referred to as symbols.
  • the uplink symbol is called a single carrier-frequency division multiple access (SC-FDMA) symbol
  • the downlink symbol is called an orthogonal frequency division multiplexing (OFDM) symbol.
  • SC-FDMA single carrier-frequency division multiple access
  • OFDM orthogonal frequency division multiplexing
  • the TTI length is 1 ms, but the time domain resource actually occupied by the data transmission is equal to or less than 1 ms.
  • the first 1, 2, 3 or 4 symbols in one downlink subframe may be used to transmit the PDCCH. Therefore, the downlink data transmission with a TTI length of 1 ms may occupy less than 1 ms.
  • the last one symbol in an uplink subframe can be used to transmit a Sounding Reference Signal (SRS). Therefore, the uplink data transmission with a TTI length of 1 ms can occupy less than 1 ms.
  • SRS Sounding Reference Signal
  • the short TTI refers to a TTI whose TTI length is less than 1 ms, for example: 0.5 ms, or 1/2/3/4 symbol length.
  • the time domain resource occupied by the data transmission with the TTI length of short TTI is equal to or smaller than the length of the short TTI. For example, for a downlink data transmission with a TTI length of 4 symbols, if the 4 symbols include 1, 2 or 3 PDCCH symbols, then the data transmission only occupies 3, 2 or 1 symbols.
  • a resource element (RE) is the smallest unit in the time-frequency domain and is uniquely identified by an index pair (k, l), where k is a subcarrier index and l is a symbol index.
  • index pair k, l
  • resource units can also be identified by other forms of identification.
  • SRB Short Resource Block
  • An SRB occupies in the frequency domain Contiguous subcarriers and occupying in the time domain Symbols, Is a positive integer, Is a positive integer not greater than 7. E.g, Or 2, That is, the SRB and the RB (resource block) in the prior art occupy the same resources in the frequency domain, using the same number.
  • SREG Short Resource-Element Group
  • the available bandwidth may be the downlink system bandwidth, or the bandwidth used for short TTI downlink data transmission, or the bandwidth used for control channel transmission.
  • the short TTI downlink data transmission refers to downlink data transmission that occupies less than 1 ms time domain resources, and the bandwidth used for short TTI downlink data transmission may be configured for one terminal device or configured for a group of terminal devices.
  • the available bandwidth can be predefined or signaled by higher layer signaling.
  • the available bandwidth includes N SRB SRBs, that is, the N SRB is the number of SRBs included in the available bandwidth.
  • the N SRB SRBs may be consecutively allocated or discontinuously allocated.
  • the downlink control channel is a channel for carrying DCI, that is, the DCI is carried on the downlink control channel.
  • the downlink control channel is formed by combining L control channel elements (CCEs), and L is a positive integer, which is called an aggregation level (AL).
  • L can be 1, 2, 4 or 8.
  • the number of REs occupied by the cell-specific reference signal (CRS) is different, and the CRS cannot carry the downlink control information. Therefore, the number of REs occupied by the uplink and downlink control information of different symbols is similar, and different symbols are used.
  • the CCE included in the SRB or SREG can be different.
  • CCEs located in different symbols may include different SRB numbers or SREG numbers. For example, for a normal CP, 1 or 2 CRS antenna ports are configured, and the CCEs located in symbol #0 or symbol #4 in one slot include 4 SRBs or 4 SREGs, which are located in one slot.
  • the CCE on symbol #1, #2, #3, #5 or #6 includes 3 SRBs or 3 SREGs.
  • the CCEs located in symbol #0, symbol #1 or symbol #4 in one slot include 4 SRBs or 4 SREGs, and symbols located in one slot.
  • the CCE on #2, #3, #5 or #6 includes 3 SRBs or 3 SREGs.
  • the search space is composed of one or more candidate downlink control channels, and each candidate downlink control channel can be used to carry DCI.
  • the search space is a collection of downlink candidate control channels.
  • the terminal device needs to listen to the candidate downlink control channel, so the search space is also the candidate downlink control channel set monitored by the terminal device.
  • the search space is a terminal-specific search space, that is, the search space It is configured for a terminal device.
  • the search space is a group-specific search space, that is, the search space is configured for a group of terminal devices.
  • the group identifier can be used for indication.
  • the size of the search space can be determined according to Table 1.
  • a search space with an aggregation level of 1 consists of 3, 2 or 1 candidate downlink control channels with an aggregation level of 1.
  • the search space with aggregation level 2 consists of 3, 2 or 1 candidate downlink control channels with an aggregation level of 2.
  • a search space with an aggregation level of 4 consists of 2 or 1 candidate downlink control channels with an aggregation level of 4.
  • a search space with an aggregation level of 8 consists of 2 or 1 candidate downlink control channels with an aggregation level of 8.
  • one SRB occupies 12 consecutive subcarriers in the frequency domain and occupies 1 symbol in the time domain
  • one CCE includes 3 SRBs
  • the search space with aggregation level 1, 2, 4 or 8 is respectively 6,12 , 24 or 48 SRBs.
  • a CCE consists of 36 REs
  • a search space with an aggregation level of 1, 2, 4 or 8 consists of 72, 144, 288 or 576 REs, respectively.
  • the search space is a terminal-specific search space or a group-specific search space.
  • the search space is located in a short transmission time interval (short TT I, sTTI).
  • sTTI occupies 1 symbol, 2 symbols, 3 symbols, 4 symbols, or, 0.5 ms.
  • the first signaling includes CCE configuration information of the search space, that is, the first signaling indicates CCE resources occupied by the search space.
  • N CCE available CCEs in the sTTI and CCEs can be numbered from 0 to N CCE -1. That is, N CCE represents the total number of available CCEs in the transmission time interval m, and the transmission time interval m is one of a plurality of transmission time intervals included in the subframe in which the search space is located.
  • N CCEG available CCEGs in the sTTI and CCEG can be numbered from 0 to N CCEG -1.
  • one CCEG includes G CCEs, where G is a positive integer, for example, 1, 2, 3, 4, 8, or 16.
  • the search space cannot be used for PDSCH transmission. That is, the PDSCH is not mapped to resources occupied by the search space.
  • the search space can be The PDSCH overlaps in the time domain.
  • the network device can determine the frequency domain resource or the CCE resource occupied by the search space according to the current downlink control channel load, and notify the terminal device of the currently used search space by using the first signaling. In this way, the terminal device can obtain the frequency domain resource or the CCE resource occupied by the search space according to the first signaling, and can further receive the downlink data on the unoccupied frequency domain resource or the CCE resource, thereby reducing resource waste.
  • the frequency domain resource or the CCE resource indicated by the first signaling is as equal as possible to the frequency domain resource or CCE resource actually used.
  • the first signaling designed by the present invention has a small specific overhead.
  • the method further includes: before or after the terminal device determines the frequency domain resource or the CCE resource occupied by the search space according to the configuration information in the step 101 of the first embodiment, the method further includes:
  • the terminal device determines a control channel region.
  • the method further includes:
  • the network device determines a control channel region.
  • the search space is located in the control channel area, that is, the control channel area includes the search space. Then the terminal device detects downlink control information in the search space.
  • part of the resources occupied by the search space are located in the control channel area.
  • the terminal device may detect downlink control information only on a part of resources occupied by the search space.
  • the search space is not located in the control channel area, that is, the resource occupied by the control channel area does not include the resource occupied by the search space, indicating that no downlink control information is sent to the terminal device, so the terminal device may not detect the search space.
  • control channel region occupies S symbols in the time domain, where S is a positive integer, for example, S is 1, 2, 3, 4, 6, or 7.
  • control channel region is located within the available bandwidth in the frequency domain. It should be noted that the “control channel region is located in the available bandwidth in the frequency domain” includes two cases: “the frequency domain resource occupied by the control channel region is the entire available bandwidth” and “the frequency domain resource occupied by the control channel region is smaller than the available bandwidth”. .
  • the control channel region cannot be used for PDSCH transmission. That is, the PDSCH is not mapped to the control channel region. In this case, it can be considered that all downlink control channels or most of the downlink control channels in the control channel region are downlink control information carrying one or more terminal devices. Can not be used to transmit PDSCH.
  • the PDSCH is used to carry downlink shared channel (DL-SCH) data and/or paging channel (PCH) data. It can also be said that the PDSCH is used to carry downlink service data or higher layer signaling.
  • DL-SCH downlink shared channel
  • PCH paging channel
  • the network device can determine the control channel region according to the current downlink control channel load, and notify the terminal device of the currently used control channel region by signaling. In this way, the terminal device can learn the resources occupied by the control channel region according to the signaling, and can further receive the downlink data on the unoccupied resources, thereby reducing resource waste.
  • the resources occupied by the control channel area indicated by the signaling are as equal as possible to the resources actually used. For example, if the current network device needs to send 4 downlink control channels, and each downlink control channel needs to occupy 3 SRBs, the network device sends a signaling to notify the terminal device that the control channel region occupies 12 SRBs.
  • the terminal device determines, according to the received control channel area configuration signaling, a control channel area, where the control channel area configuration signaling indicates a resource occupied by the control channel area.
  • the control channel area configuration signaling indicates a time domain resource and/or a frequency domain resource occupied by the control channel area, or the second signaling indicates a CCE resource occupied by the control channel area.
  • the method further includes: the network device sending the control channel region configuration signaling.
  • the first signaling and/or the control channel area configuration signaling is physical layer signaling, for example, the first signaling and/or the control channel area configuration signaling is located in Rel-8. Defined control channel area.
  • the first signaling and/or the control channel area configuration signaling is sent by the network device to a terminal device or a group of terminal devices.
  • the control channel region defined by Rel-8 occupies the first 2, 3 or 4 symbol numbers of the one subframe; when the downlink system bandwidth is greater than At 10 RBs, the PDCCH region defined by Rel-8 occupies the first 1, 2 or 3 symbols of the one subframe.
  • control channel area configuration signaling may be named as different signaling names, for example, second signaling, third signaling, fourth signaling, fifth signaling, and Six signaling.
  • the configuration information in the first signaling is CCE resource configuration information of the search space, and the configuration information indicates at least one of Y, L, and M (L) , that is, the first signaling indicates Y, L, and M (L) at least one.
  • the terminal device On the terminal device side, the terminal device according to the configuration information (or the first signaling) and the search space formula Determine the search space, including:
  • N CCE indicates the total number of available CCEs.
  • the search space is located in the transmission time interval m
  • N CCE represents the total number of available CCEs in the transmission time interval m
  • the transmission time interval m is one of a plurality of transmission time intervals included in the subframe in which the search space is located.
  • the network device may send the foregoing first signaling to the terminal device, specifically indicating at least one of Y, L, and M (L) in the search space formula.
  • the first signaling indicates Y and L.
  • M (L) is the value indicated in Table 1, that is, the terminal device determines M (L) according to Table 1.
  • the network device can configure L according to the downlink channel state of the terminal device. When the downlink channel condition is good, configure a smaller L. Otherwise, configure a larger L.
  • the terminal device obtains the L value according to the first signaling.
  • the downlink control channel blind detection is performed in the search space with the aggregation level L, which can reduce the number of blind detections.
  • the network device can configure the search space to be located in different CCEs by adjusting Y as needed.
  • the first signaling indicates an aggregation level L of the search space.
  • the search space determines the second plan
  • the configuration information in the first signaling is the CCE resource configuration information of the search space, that is, the first signaling indicates the CCE resource occupied by the search space, and the second signaling indicates the resource occupied by the control channel region.
  • the second signaling includes N CCEG information fields, respectively indicating the number of CCEs allocated to the control channel region in the N CCEG CCEGs, where the i-th information field indicates that there are H CCEs configured in the CCEG i-1 to the control channel region.
  • i is a positive integer not greater than N CCEG
  • H is a non-negative integer.
  • the method further includes: the terminal device receives the second signaling, the second signaling indicates the resource occupied by the control channel region, and the second signaling includes the N CCEG information domain.
  • the i-th information field in the N CCEG information fields indicates that there are H CCEs in the control channel unit group CCEG i-1 for the control channel region, and i is a positive integer not greater than N CCEG .
  • CCEG i-1 is composed of G CCEs, G is a positive integer, and H is a non-negative integer not greater than G.
  • the G is equal to 8, and the number of bits of the i-th information field is 2.
  • the meaning is: CCEG i-1 is composed of 8 CCEs, the i-th information field includes 2-bit information, and the four states of 2-bit information respectively indicate the values of four kinds of H.
  • H is 0, 2, 4 or 8.
  • '00' indicates 0, '01' indicates 2
  • '10' indicates 4
  • '11' indicates 8.
  • the two information fields are '01' indicating that there are 2 CCEs in CCEG1 configured for the control channel region, and the third information field is '10' indicating that there are 4 CCEs in CCEG2 configured for the control channel region.
  • H is 1, 2, 4 or 8.
  • '00' indicates 1, '01' indicates 2, '10' indicates 4, and '11' indicates 8.
  • the G is equal to 4, that is, one CCEG is composed of 4 CCEs, and the i-th information field includes 1-bit information, and the two states of the 1-bit information respectively indicate values of the two types of H.
  • H is 0 or 4, and optionally, '0' and '1' indicate 0 and 4, respectively.
  • H is 2 or 4, and optionally, '0' and '1' indicate 2 and 4, respectively.
  • the G is equal to 16, that is, one CCEG is composed of 16 CCEs, and the i-th information field includes 3-bit information, and the eight states of the 3-bit information respectively indicate values of eight Hs.
  • the values of the eight Hs are eight values of 0, 1, 2, 4, 6, 8, 10, 12, 14 and 16.
  • the configuration information indicates that the search space is located at CCEG j or the configuration information (or first instruction) indicates a starting point of the search space. Located at CCEG j, where j is a non-negative integer less than N CCEG .
  • the first signaling indicates that the search space is located at CCEG j, and j is a non-negative integer smaller than N CCEG . This way, the search space cannot occupy multiple CCEGs.
  • the first signaling indicates that the starting point of the search space is located at CCEG j, and j is a non-negative integer less than N CCEG .
  • the first signaling indicates the value of j
  • G is the number of CCEs included in a CCEG
  • the number of candidate downlink control channels included in the search space when the aggregation level of the search space is large, multiple CCEGs may be occupied.
  • the search space is not configured, that is, the terminal device does not need to detect the downlink control information (no step 102).
  • N CCEG 3 if the terminal device is the first terminal device, the starting point of the search space is located at CCEG1; if the terminal device is the second terminal device, the starting point of the search space is located at CCEG2; if the terminal device is the third terminal The device, the starting point of the search space is located at CCEG0, but currently no CCCE0 is configured for the control channel area, so the third terminal device does not need to detect the downlink control information.
  • N CCEG 3 if the terminal device is the first terminal device, the starting point of the search space is located at CCEG1; The second terminal device, the starting point of the search space is located at CCEG2, and the search space includes two candidate downlink control channels with an aggregation level of 8, that is, the search control occupies CCEG2 and CCEG0; if the terminal device is the third terminal device, the starting point of the search space is located at CCEG0.
  • the CCE in CCEG0 is allocated to the second terminal device, so the third terminal device cannot detect the downlink control information.
  • the corresponding network side device sends the second signaling; the second signaling indicates resources occupied by the control channel region; and the second signaling includes N CCEG information fields;
  • the i-th information field in the N CCEG information fields indicates that there are H CCEs configured in the control channel unit group CCEG i-1 to the control channel region, where i is a positive integer not greater than N CCEG , CCEG i-1 is composed of G CCEs, G is a positive integer, and H is a non-negative integer not greater than G.
  • the G is equal to 8, the H is 0, 2, 4 or 8, or the H is 1, 2, 4 or 8, and the number of bits of the ith information field is 2.
  • the H is 0, 2, 4 or 8 or the H is 1, 2, 4 or 8, and the number of bits of the ith information field is 2.
  • the search space determines the program three
  • the first signaling includes configuration information of the search space, and further, the first signaling further includes configuration information of the control channel region.
  • the configuration information of the search space and the configuration information of the control channel area are jointly indicated, that is, located in the same information domain, and are referred to as first configuration information for convenience of later description.
  • the terminal device receives the first signaling, where the first signaling includes configuration information of the search space and configuration information of the control channel region; and the terminal device determines, according to the configuration information of the search space, the occupied space of the search space.
  • the CCE resource, and determining the CCE resources occupied by the control channel region according to the configuration information of the control channel region That is, the terminal device determines a control channel region and a search space according to the received first signaling, where the search space is located in the control channel region, and the first signaling indicates a resource occupied by the control channel region and the search space. At least two methods are included:
  • Method 1 The first instruction indicates that the control channel region occupies consecutive X CCEs, and indicates that the starting point of the search space is CCE i, where X is a positive integer and i is a non-negative integer smaller than X. That is, the configuration information of the search space indicates that the starting point of the search space is CCE i, and the configuration information of the control channel region indicates that the control channel region occupies consecutive X CCEs.
  • the control channel area occupies consecutive X CCEs, and the starting point of the X CCEs is CCE0.
  • the first signaling indicates the value of X and indicates the starting point of the search space, that is, the configuration information of the control channel region indicates that the value of X and the configuration information of the search space indicate that the starting point of the search space is CCE i.
  • FIG. 5 is a schematic diagram of a search space indication in a search space determining scheme of the present invention.
  • the first signaling also indicates that the starting point of the search space is CCE4.
  • the control channel area indicated by the first signaling is under one or more terminal devices The resources occupied by the row control channel. Through the first signaling, the terminal device can determine unused resources, and then receive the PDSCH at these unused resources. In this method, the number of information bits for indicating the search space and the control channel region is small.
  • Method 2 The first instruction indicates that the control channel region occupies consecutive ECCEGs, and indicates that the starting point of the search space is CCEG i, where E is a positive integer and i is a non-negative integer smaller than E. That is, the configuration information of the search space indicates that the starting point of the search space is CCEG i, and the configuration information of the control channel region indicates that the control channel region occupies consecutive E CCEGs.
  • the control channel area occupies consecutive ECCEGs, and the starting point of the consecutive E CCEGs is CCEG0, the first signaling indicates the value of E and the starting point indicating the search space is CCEG i, and the i is less than E.
  • the negative integer that is, the configuration information of the control channel region indicates that the value of E and the configuration information of the search space indicate that the starting point of the search space is CCEG i.
  • the G CCEs are continuously distributed. For example, in FIG. 5, one CCEG is composed of two CCEs, the control channel region occupies three consecutive CCEGs, the search space starting point of the first terminal device is CCEG0, and the search space starting point of the second terminal device is CCEG2.
  • the G CCEs are non-continuously distributed or equally spaced. Compared with method one, the introduction of CCEG can further reduce the first signaling overhead.
  • the first signaling in any one of the foregoing solutions may be sent by the network device, or may be sent by another control device, which is not limited in this application.
  • the third signaling indicates that the control channel region occupies N short resource blocks SRB or N SREGs, and the N is a positive integer.
  • the N may be divisible by C, and C is a positive integer, for example, C is equal to 3 or 4.
  • the description of SRB and SREG is as above.
  • the embodiments of the invention in this solution can be applied to the first signaling and search space determination.
  • the “third signaling” is replaced with “configuration information of the search space included in the first signaling”
  • the "control channel region” is replaced by the “search space”
  • the configuration information of the search space indicates
  • the search space occupies N short resource blocks SRB or N SREGs, and the N is a positive integer.
  • the specific content refers to the description in the scheme, and details are not described herein again.
  • the method includes: the terminal device receives the third Signaling, and then the terminal device determines the control channel region according to the third signaling.
  • the third signaling may be sent by the network device.
  • the specific implementation on the network device side is: before the network device sends the downlink control information in the search space, the network device sends the third signaling.
  • the network device determines the control channel region, including: the network device, the control channel region occupies N short resource blocks SRB or N SREGs.
  • the specific implementation includes the following methods:
  • the terminal device determines that the control channel region occupies N SRBs or N SREGs, where N is a positive integer.
  • the terminal device determines, according to the received third signaling, that the control channel region occupies N SRBs or N SREGs.
  • N can be divisible by C, excluding the redundant state indicated by the resource.
  • the control channel region occupies consecutive N SRBs or N SREGs
  • the third signaling indicates the start and end points of the consecutive N SRBs or N SREGs.
  • the third signaling includes The bit is used to indicate information of the consecutive N SRBs or N SREGs, where the N SRB is the number of SRBs or the number of SREGs included in the available bandwidth.
  • the control channel region occupies consecutive N SRBs or N SREGs, and the starting point of the consecutive N SRBs or N SREGs is the SREG with the smallest SRB number or the smallest SREG number among the available bandwidths.
  • the third signaling indicates the value of N, or indicates the end point of the consecutive N SRBs or N SREGs.
  • the third signaling includes The bits are used to indicate the information of the N.
  • the S SRB is based on the cell ID (Cell ID, Calculated, for example or or k is a positive integer.
  • the third signaling includes The bits are used to indicate the information of the N.
  • the terminal device determines, according to the received fourth signaling, that the control channel region occupies M virtual short resource blocks (VSRBs); and the terminal device according to the mapping relationship between the VSRBs and the physical short resource blocks (PSRBs) A physical short resource block PSRB occupied by the control channel region is determined.
  • VSRB and PSRB are the same as those defined at SRB.
  • FIG. 6 is a control channel area indication in the control channel area determining scheme 2 of the present invention. A schematic diagram, such as shown in Figure 6.
  • the VSRB may be referred to as a centralized virtual short resource block (localized VSRB, LVSRB).
  • the VSRB and the PSRB are not one-to-one mapping, that is, the consecutive VSRBs correspond to the non-contiguous PSRBs (ie, the distributed PSRBs), and
  • FIG. 7 is a schematic diagram of another control channel area indication in the control channel region determining scheme 2 of the present invention, for example, 7 shows that consecutive virtual short resource blocks correspond to non-contiguous physical short resource blocks.
  • the VSRB is a distributed virtual short resource block (distributed VSRB, DVSRB).
  • the second scheme is mainly described by VSRB and PSRB.
  • VSREG and PSREG refer to VSRB and PSRB. As long as VSRB is replaced by VSREG and PSRB is replaced by PSREG, it will not be described here.
  • the embodiments of the invention in this solution can be applied to the first signaling and search space determination.
  • the "fourth signaling" is replaced with “configuration information of the search space included in the first signaling”
  • the "control channel region” is replaced by the “search space”
  • the configuration information of the search space indicates
  • the search space occupies M virtual short resource blocks. The specific content refers to the description in the scheme, and details are not described herein again.
  • the fourth signaling indicates that the control channel region occupies M consecutive virtual short resource blocks or M consecutive virtual SREGs (VSREG, Virtual SREG), where M is a positive integer.
  • M may be divisible by C, and C is a positive integer, for example, C is equal to 3 or 4.
  • SRB and SREG is as above.
  • the method further includes: the terminal device receiving the fourth signaling.
  • the terminal device determines the control channel region, where the terminal device determines, according to the mapping relationship between the virtual short resource block and the physical short resource block, and the fourth signaling, the M devices occupied by the control channel region.
  • the non-contiguous physical short-term source block, the mapping relationship between the virtual short resource block and the physical short resource block indicates that the M consecutive virtual short resource blocks correspond to the M non-contiguous physical short resource blocks.
  • the determining, by the terminal device, the control channel region, the determining, by the terminal device, the M occupied by the control channel region according to the mapping relationship between the VSREG and the physical SREG (PSSRG, Physical SREG) and the fourth signaling The non-contiguous PSREG, the mapping relationship between the VSREG and the PSREG indicates that the M consecutive VSREGs correspond to the M non-contiguous PSREGs.
  • the fourth signaling may be sent by the network device.
  • the solution may be implemented by: before the network device sends the downlink control information in the search space, the network device sends the fourth Signaling.
  • the determining, by the network device, the control channel region that: the network device determines that the control channel region occupies M non-contiguous physical short source blocks; and the network device according to the virtual short resource block and physical The mapping relationship of the short resource blocks determines that the control channel region occupies M consecutive virtual short source blocks.
  • mapping relationship between the virtual short resource block and the physical short resource block may be pre-configured; or, after the network device is configured, the signaling indicating the mapping relationship is sent to the terminal device, and then the terminal device receives the indication mapping. Signaling of the relationship.
  • the fourth signaling indicates that the control channel region occupies consecutive M VSRBs.
  • the fourth signaling indicates the start and end points of the consecutive M VSRBs.
  • the control channel area occupies consecutive M VSRBs, and the starting point of the consecutive M VSRBs is the VSRB with the smallest VSRB number in the available bandwidth, and the fourth signaling indicates the value of M.
  • the S SRB is based on the cell ID (Cell ID, Calculated, for example or or k is a positive integer.
  • the control channel area occupies consecutive M VSRBs
  • the starting point of the consecutive M VSRBs is a VSRB having the smallest VSRB number among the available bandwidths
  • the second signaling indicates the consecutive M VSRBs end.
  • the fourth signaling indicates the start and end points of the consecutive N VSRBLs.
  • the control channel area occupies consecutive N VSRBLs, and the starting point of the consecutive M VSRBs is the VSRB with the smallest VSRB number in the available bandwidth, and the fourth signaling indicates the value of N.
  • M N*P.
  • P is 3 or 4.
  • the fourth signaling includes The bits are used to indicate the information of the N.
  • the fourth signaling overhead is small, and the overhead is further reduced after the introduction of the VSRBL. If the network device cannot obtain accurate channel condition information, the DSVRB can be used to obtain the frequency domain diversity gain.
  • the first signaling indicates a CCE resource
  • the method includes: the terminal device receives a fifth signaling, where the fifth signaling indicates that the control channel region occupies consecutive Z CCE, the Z is a positive integer.
  • the embodiments of the invention in this solution can be applied to the first signaling and search space determination.
  • the "fifth signaling" is replaced with “configuration information of the search space included in the first signaling”
  • the "control channel region” is replaced by the “search space”
  • the configuration information of the search space indicates The search space occupies consecutive Z CCEs.
  • the specific content refers to the description in the scheme, and details are not described herein again.
  • the fifth signaling may be sent by the network device, and the implementation on the network device side is specifically: before the network device sends the downlink control information in the search space, the network device sends the fifth signaling.
  • the fifth signaling indicates that the control channel region occupies consecutive Z CCEs.
  • the meaning is that the terminal device determines, according to the received fifth signaling, that the control channel region occupies consecutive Z CCEs.
  • the fifth signaling indicates a start point and an end point of the consecutive Z CCEs.
  • the second signaling includes The bits are used to indicate information of the consecutive Z CCEs.
  • the starting point of the consecutive Z CCEs is CCE0
  • the second signaling indicates a value of Z
  • the fifth signaling indicates an end point of the consecutive Z CCEs.
  • the terminal device determines that the control channel region occupies M SRBs (SRB Group), and M is a positive integer.
  • the terminal device determines, according to the received sixth signaling, that the control channel region occupies M SRBGs. In this method, signaling overhead is reduced by introducing an SRBG indication.
  • VSREG and PSREG can refer to VSRB and PSRB.
  • PSRB can be replaced by the PSREG, and will not be described here.
  • the embodiments of the invention in this solution can be applied to the first signaling and search space determination. It suffices to replace the "sixth signaling" with “the configuration information of the search space included in the first signaling", and the "control channel region” is replaced with the "search space”. For example, the configuration information of the search space indicates The search space occupies M SRBGs. The specific content refers to the description in the scheme, and details are not described herein again.
  • one SRBG is composed of P SRBs, and P is a positive integer.
  • One SRBG is composed of P SRBs, and the P SRBs are continuously distributed.
  • P is a positive integer, for example, 1, 2, 3 or 4.
  • SRBG configuration 2 One SRBG is composed of P SRBs, which are discontinuously distributed or equally spaced. Where P is a positive integer, for example, 3, 6, 9 or 12.
  • FIG. 8 is a schematic diagram of a control channel region indication in the control channel region determining scheme 4 of the present invention. As shown in FIG. 8, the available bandwidth includes five SRBGs, and each SRBG is composed of three equally spaced SRBs. With this method, the three SRBs in one CCE are non-continuously distributed, and the frequency domain diversity gain can be obtained.
  • two methods for indicating the sixth signaling are:
  • the sixth signaling indicates that the control channel region occupies M SRBs (SRB Group), and M is a positive integer.
  • the sixth signaling includes an N SRBG bit for indicating the information of the M SRBGs, where one bit corresponds to one SRBG, that is, one bit is used to indicate an occupation of an SRBG, where For example, if the available bandwidth includes 50 SRBs, and one SRBG includes 3 SRBs, then the available bandwidth includes 16 or 17 (in this case, one SRBG includes 2 SRBs) SRBGs, so 16 or 17 bits are needed to indicate the control channel.
  • the frequency domain resources occupied by the area As shown in FIG.
  • the available bandwidth includes five SRBGs, each SRBG is composed of three equally spaced SRBs, and the sixth signaling includes 5 bits, and the first and fourth bits are both "1", indicating The control channel region occupies SRBG0 and SRBG3, so the terminal device determines that the control channel region occupies SRB0, 3, 5, 8, 10 and 13.
  • the control channel region occupies consecutive M SRBGs, and the sixth signaling indicates the start and end points of the consecutive M SRBGs.
  • the sixth signaling includes The bits are used to indicate information of the consecutive M SRBGs, where N SRBG is the number of SRBGs included in the available bandwidth.
  • the control channel region occupies consecutive M SRBs
  • the sixth signaling indicates the first SRBG (SRB Group) occupied by the control channel region, that is, the sixth signaling indicates the first SRBG of the M SRBGs. s position.
  • the sixth signaling includes The bit is used to indicate information of the first one of the M SRBGs. For example, 16 SRBGs are included in the available bandwidth, then 4 bits are required to indicate the location of the first SRBG.
  • the control channel area is a search space. At this time, the terminal device can determine M according to the size of the search space.
  • FIG. 9 is a schematic diagram of another control channel region indication in the control channel region determining scheme 4 of the present invention. As shown in FIG. 9, the control channel region using the SRBG configuration 2 occupies SRB0, 1, 5, 6, 10, and 11.
  • the method of the fourth method indicates that the control channel area occupies consecutive M SRBGs, and the starting point of the consecutive M SRBs is the SRBG with the smallest SRBG number in the available bandwidth, and the sixth signaling indicates the value of M.
  • the sixth signaling includes The bits are used to indicate the information of the M.
  • the SRBG mentioned in the indication methods of the four sixth signaling adopts the SRBG configuration one or the SRBG configuration two.
  • the terminal device 10 is a schematic structural diagram of Embodiment 1 of a terminal device according to the present invention.
  • the terminal device can be used to implement the technical solution of the terminal device in any of the foregoing solutions.
  • the terminal device 10 includes: a receiving module 11 and a sending module. 12, and processing module 13;
  • the receiving module 11 is configured to receive first signaling, where the first signaling includes configuration information of a search space;
  • the processing module 13 is configured to determine, according to the configuration information of the search space, a frequency domain resource or a control channel unit CCE resource occupied by the search space;
  • the processing module 13 is further configured to detect downlink control information in the search space.
  • the processing module 13 is further configured to determine a control channel region.
  • the search space is located in the control channel area.
  • the configuration information of the search space indicates the aggregation level L and the search space start identifier Y
  • the processing module 13 is specifically configured to:
  • the number of channels, N CCE represents the total number of available CCEs in the transmission time interval occupied by the search space.
  • the receiving module 11 is further configured to receive the second signaling, where the second signaling indicates resources occupied by the control channel region, and the second signaling includes N CCEG information fields, where the N the i-th channel information field indicating cell group information field of a CCEG CCEG i-1 H there a CCE assigned to the control channel region, i is a positive integer no greater than N CCEG, said CCEG i-1 by a G is composed of CCEs, G is a positive integer, and H is a non-negative integer not greater than G.
  • the G of the second signaling indication received by the receiving module 11 is equal to 8, the H is 0, 2, 4 or 8, and the number of bits in the ith information field is 2. .
  • the configuration information of the search space received by the receiving module 11 indicates that the search space is located in CCEG j or the configuration information of the search space indicates that the starting point of the search space is located in CCEG j, where j is A non-negative integer less than N CCEG .
  • the first signaling received by the receiving module 11 further includes configuration information of the control channel region, where configuration information of the search space indicates that a starting point of the search space is CCE i, and the control The configuration information of the channel area indicates that the control channel area occupies consecutive X CCEs, where X is a positive integer and i is a non-negative integer less than X;
  • the processing module 13 is specifically configured to: determine the control channel region according to the configuration information of the control channel region.
  • the first signaling received by the receiving module 11 further includes configuration information of the control channel region, where configuration information of the control channel region indicates that the control channel region occupies consecutive ECCEGs.
  • the configuration information of the search space indicates that the starting point of the search space is CCEG i, where E is a positive integer and i is a non-negative integer less than E;
  • the processing module 13 is specifically configured to: determine the control channel region according to the configuration information of the control channel region.
  • the receiving module 11 is further configured to receive third signaling, where the third signaling indicates that the control channel region occupies N short resource blocks; wherein each short resource block occupies 12 in a frequency domain.
  • the third signaling indicates that the control channel region occupies N short resource blocks; wherein each short resource block occupies 12 in a frequency domain.
  • One subcarrier and occupying 1 or 2 symbols in the time domain, the N can be divisible by 3 or 4;
  • the processing module is further configured to determine the control channel region according to the third signaling.
  • the receiving module 11 is further configured to receive fourth signaling, where the fourth signaling indicates that the control channel region occupies M consecutive virtual short resource blocks; and M is positive that can be divisible by 3 or 4. Integer
  • the processing module 13 is further configured to: determine, according to the mapping relationship between the virtual short resource block and the physical short resource block, and the fourth signaling, the M non-contiguous physical short source blocks occupied by the control channel region, The mapping relationship between the virtual short resource block and the physical short resource block indicates that the M consecutive virtual short resource blocks correspond to the M non-contiguous physical short resource blocks.
  • the receiving module 11 is further configured to receive a fifth signaling, where the fifth signaling indicates that the control channel region occupies consecutive Z CCEs, where the Z is a positive integer;
  • the processing module 13 is further configured to determine the control channel region according to the fifth signaling.
  • the receiving module 11 may also be referred to as a receiving unit 11, and the sending module 12 may also be referred to as a sending unit 12.
  • the processing module 13 may also be referred to as a processing unit 13.
  • the receiving module 11 and the transmitting module 12 may also be combined into a transceiver module.
  • the terminal device provided in this embodiment is used to perform the technical solution of the terminal device in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a network device according to the present invention.
  • the network device may be used to implement the technical solution of the network device in any of the foregoing embodiments.
  • the network device 20 includes: a sending module 21 and processing. Module 22;
  • the processing module 22 is configured to determine a search space
  • the sending module 21 is configured to:
  • the processing module 22 is further configured to determine a control channel region, where the search space is located in the control channel region.
  • the configuration information of the search space indicates an aggregation level L and a search space start identifier.
  • the processing module 22 is specifically configured to:
  • the number of channels, N CCE represents the total number of available CCEs in the transmission time interval occupied by the search space.
  • the sending module 21 is further configured to send the second signaling, where the second signaling indicates resources occupied by the control channel region, and the second signaling includes N CCEG information fields;
  • the i-th information field in the N CCEG information fields indicates that there are H CCEs in the control channel unit group CCEG i-1 for the control channel region, i is a positive integer not greater than N CCEG , and the CCEG i- 1 is composed of G CCEs, G is a positive integer, and H is a non-negative integer not greater than G.
  • the G of the second signaling indication sent by the sending module 21 is equal to 8
  • the H is 0, 2, 4 or 8
  • the number of bits of the ith information field is 2.
  • the configuration information of the search space sent by the sending module 21 indicates that the search space is located in the CCEG j or the configuration information of the search space indicates that the starting point of the search space is located in CCEG j, where j is less than N CCEG 's non-negative integer.
  • the first signaling received by the sending module 21 further includes configuration information of the control channel region, where the configuration information of the control channel region indicates that the control channel region occupies consecutive ECCEGs.
  • the configuration information of the search space indicates that the starting point of the search space is CCEG i, where E is a positive integer and i is a non-negative integer less than E.
  • the sending module 21 is further configured to send third signaling, where the third signaling indicates that the control channel region occupies N short resource blocks; wherein each short resource block occupies 12 in a frequency domain.
  • the third signaling indicates that the control channel region occupies N short resource blocks; wherein each short resource block occupies 12 in a frequency domain.
  • One subcarrier and occupying 1 or 2 symbols in the time domain, the N can be divisible by 3 or 4.
  • the sending module 21 is further configured to send fourth signaling, where the fourth signaling indicates that the control channel region occupies M consecutive virtual short resource blocks; and M is positive that can be divisible by 3 or 4. Integer
  • the M consecutive virtual short resource blocks correspond to M non-contiguous physical short resource blocks.
  • the sending module 21 is further configured to send the fifth signaling, where the fifth signaling indicates that the control channel region occupies consecutive Z CCEs, where the Z is a positive integer.
  • the network device in this embodiment may further include a receiving module, and
  • the delivery module 21 may also be referred to as a transmission unit 21, and the processing module 22 may also be referred to as a processing unit 22.
  • the receiving module 21 and the transmitting module may also be combined into a transceiver module.
  • the network device provided in this embodiment is used to perform the technical solution of the network device in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of a terminal device according to the present invention.
  • the terminal device may include: a processor 32, a transmitter 33, and a receiver 34.
  • the terminal device may further include a memory 31.
  • the receiver 34 is configured to receive first signaling, where the first signaling includes configuration information of a search space;
  • the processor 32 is configured to determine, according to the configuration information of the search space, a frequency domain resource or a control channel unit CCE resource occupied by the search space;
  • the processor 32 is configured to detect downlink control information in the search space.
  • the processor 32 is further configured to determine a control channel region; the search space is located in the control channel region.
  • the configuration information of the search space indicates an aggregation level L and a search space start identifier Y
  • the processor 32 is specifically configured to:
  • the number of channels, N CCE represents the total number of available CCEs in the transmission time interval occupied by the search space.
  • the receiver 34 is further configured to receive the second signaling, where the second signaling indicates resources occupied by the control channel region, and the second signaling includes N CCEG information fields, where the N the i-th channel information field indicating cell group information field of a CCEG CCEG i-1 H there a CCE assigned to the control channel region, i is a positive integer no greater than N CCEG, said CCEG i-1 by a G is composed of CCEs, G is a positive integer, and H is a non-negative integer not greater than G.
  • the G of the second signaling indication received by the receiver 34 is equal to 8, the H is 0, 2, 4 or 8, and the number of bits in the ith information field is 2. .
  • the configuration information of the search space received by the receiver 34 indicates that the search space is located in the CCEG j or the configuration information of the search space indicates that the starting point of the search space is located in CCEG j, where j is A non-negative integer less than N CCEG .
  • the first signaling received by the receiver 34 further includes configuration information of the control channel region, where configuration information of the search space indicates that a starting point of the search space is CCE i, and the control The configuration information of the channel area indicates that the control channel area occupies consecutive X CCEs, where X is a positive integer and i is a non-negative integer less than X;
  • the processor 32 is specifically configured to: determine the control channel region according to the configuration information of the control channel region.
  • the first signaling received by the receiver 34 further includes configuration information of the control channel region, where configuration information of the control channel region indicates that the control channel region occupies consecutive ECCEGs.
  • the configuration information of the search space indicates that the starting point of the search space is CCEG i, where E is a positive integer and i is a non-negative integer less than E;
  • the processor 32 is specifically configured to: determine the control channel region according to the configuration information of the control channel region.
  • the receiver 34 is further configured to receive third signaling, where the third signaling indicates that the control channel region occupies N short resource blocks; wherein each short resource block occupies 12 in a frequency domain.
  • the N can be divisible by 3 or 4;
  • the processor is further configured to determine the control channel region according to the third signaling.
  • the receiver 34 is further configured to receive fourth signaling, where the fourth signaling indicates that the control channel region occupies M consecutive virtual short resource blocks; and M is positive that can be divisible by 3 or 4. Integer
  • the processor 32 is further configured to: determine, according to the mapping relationship between the virtual short resource block and the physical short resource block, and the fourth signaling, the M non-contiguous physical short source blocks occupied by the control channel region, The mapping relationship between the virtual short resource block and the physical short resource block indicates that the M consecutive virtual short resource blocks correspond to the M non-contiguous physical short resource blocks.
  • the receiver 34 is further configured to receive a fifth signaling, where the fifth signaling indicates that the control channel region occupies consecutive Z CCEs, where the Z is a positive integer;
  • the processor 32 is further configured to determine the control channel region according to the fifth signaling.
  • FIG. 12 only shows a simplified design of the terminal device.
  • the terminal device can include any number of transmitters, receivers, processors, controllers, memories, etc., and all can implement the present invention.
  • the terminal devices are all within the scope of the present invention. Without loss of generality, the transmitter and receiver can also be combined into a transceiver.
  • the terminal device provided in this embodiment is used to perform the technical solution of any of the foregoing method embodiments.
  • the implementation principle and technical effects are similar, and will not be described here.
  • FIG. 13 is a schematic structural diagram of Embodiment 2 of a network device according to the present invention.
  • the network device includes: a processor 42 and a transmitter 43.
  • a memory 41 may also be included.
  • the processor 42 is operative to determine a search space.
  • the transmitter 43 is used to:
  • the processor 42 is further configured to determine a control channel region, where the search space is located in the control channel region.
  • the configuration information of the search space indicates an aggregation level L and a search space start identifier Y
  • the processor 42 is specifically configured to:
  • the number of channels, N CCE represents the total number of available CCEs in the transmission time interval occupied by the search space.
  • the transmitter 43 is further configured to send the second signaling; the second signaling indicates resources occupied by the control channel region; and the second signaling includes N CCEG information fields;
  • the i-th information field in the N CCEG information fields indicates that there are H CCEs in the control channel unit group CCEG i-1 for the control channel region, i is a positive integer not greater than N CCEG , and the CCEG i- 1 is composed of G CCEs, G is a positive integer, and H is a non-negative integer not greater than G.
  • the G indicated by the second signaling sent by the transmitter 43 is equal to 8
  • the H is 0, 2, 4 or 8
  • the number of bits in the ith information field is 2.
  • the configuration information of the search space sent by the sender 43 indicates that the search space is located in the CCEG j or the configuration information of the search space indicates that the starting point of the search space is located in CCEG j, where j is less than N CCEG 's non-negative integer.
  • the first signaling received by the transmitter 43 further includes configuration information of the control channel region, where configuration information of the control channel region indicates that the control channel region occupies consecutive ECCEGs.
  • the configuration information of the search space indicates that the starting point of the search space is CCEG i, Where E is a positive integer and i is a non-negative integer less than E.
  • the transmitter 43 is further configured to send third signaling, where the third signaling indicates that the control channel region occupies N short resource blocks; wherein each short resource block occupies 12 in a frequency domain.
  • the third signaling indicates that the control channel region occupies N short resource blocks; wherein each short resource block occupies 12 in a frequency domain.
  • One subcarrier and occupying 1 or 2 symbols in the time domain, the N can be divisible by 3 or 4.
  • the transmitter 43 is further configured to send fourth signaling, where the fourth signaling indicates that the control channel region occupies M consecutive virtual short resource blocks; and M is positive that can be divisible by 3 or 4. Integer
  • the M consecutive virtual short resource blocks correspond to M non-contiguous physical short resource blocks.
  • the transmitter 43 is further configured to send a fifth signaling, where the fifth signaling indicates that the control channel region occupies consecutive Z CCEs, where the Z is a positive integer.
  • FIG. 13 only shows a simplified design of the network device.
  • the network device can include any number of receivers, transmitters, processors, controllers, memories, etc., and all can implement the present invention.
  • Network devices are within the scope of the present invention.
  • the transmitter and receiver can also be combined into a transceiver.
  • the network device provided in this embodiment is used to perform the technical solution of any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the processor may be a central processing unit (English: Central Processing Unit, CPU for short), or other general-purpose processor, digital signal processor (English: Digital) Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the steps including the foregoing method embodiments are performed; and the foregoing storage medium includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, solid state hard disk, Magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种下行控制信息的发送方法、检测方法和设备,该方法包括:终端设备接收第一信令,所述第一信令包括搜索空间的配置信息;所述终端设备根据所述配置信息确定所述搜索空间占用的频域资源或CCE资源;所述终端设备在所述搜索空间中检测下行控制信息。网络设备可以配置搜索空间占用任意频域资源或CCE资源,终端设备根据第一信令确定网络设备配置的搜索空间,及时获取下行控制信息,有效提高数据传输效率,尤其解决了小于1ms时长的下行控制信息不能及时获取的问题。

Description

下行控制信息的发送方法、检测方法和设备 技术领域
本发明实施例涉及通信技术,尤其涉及一种下行控制信息的发送方法、检测方法和设备。
背景技术
长期演进(Long Term Evolution,LTE)系统中,终端设备在接收下行数据或者发送上行数据前,需要知道网络设备配置给终端设备的调度信息,例如时频资源分配、调制编码方式等,另外,网络设备也需要通知终端设备与上行传输相关的功控命令信息。这些调度信息和功控命令信息统称为下行控制信息(downlink control information,DCI),该DCI用于调度数据的传输。
目前的DCI的传输的具体实现方式为:网络设备主要是通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)承载上述DCI,将该DCI发送给终端设备;对于终端设备,需要在搜索空间中一个或多个PDCCH上检测并获取该DCI,因此终端设备需要确定搜索空间。搜索空间为该终端设备待检测的PDCCH的集合。目前的搜索空间都是由用于调度1ms数据传输的PDCCH组成的,位于一个下行子帧的前1、2、3或4个符号,或者位于物理下行共享信道(英文:Physical Downlink Shared Channel,简称:PDSCH)的符号区域,且占用的信道资源较为固定。因此,目前的搜索空间对于小于1ms时长的数据传输不具备灵活性,导致传输效率较低。
发明内容
本发明实施例提供一种下行控制信息的发送方法、检测方法和设备,用于解决目前的搜索空间对于小于1ms时长的数据传输不具备灵活性,导致传输效率较低的问题。
本发明第一方面提供一种下行控制信息的检测方法,该方案应用在用户侧的终端设备中,包括:
终端设备接收第一信令,所述第一信令包括搜索空间的配置信息;
所述终端设备根据所述搜索空间的配置信息确定所述搜索空间占用的频域资源或者控制信道单元(英文:control channel element,简称:CCE)资源;
所述终端设备在所述搜索空间中检测下行控制信息。
在本方案中,实际上所述第一信令可以指示搜索空间占用的频域资源或者CCE资源,网络设备可以配置搜索空间占用任意频域资源或CCE资源,终端设备根据第一信令确定网络设备配置的搜索空间,及时获取下行控制信息,有效提高数据传输效率,尤其解决了小于1ms时长的下行控制信息不能及时获取的问题。
具体实现中,所述终端设备在所述搜索空间中检测下行控制信息之前,所述方法还包括:
所述终端设备确定控制信道区域;所述搜索空间位于所述控制信道区域。
在一具体实现方案中,所述第一信令指示聚合级别L和搜索空间起点标识Y,则所述终端设备根据所述配置信息确定所述搜索空间占用的频域资源或CCE资源,包括:
所述终端设备根据第一信令确定搜索空间包括编号为
Figure PCTCN2016082056-appb-000001
的CCE,其中,i=0,...,L-1,m=0,...,M(L)-1,M(L)为聚合级别为L的搜索空间中包含的候选下行控制信道个数,NCCE表示所述搜索空间占用的传输时间间隔里的可用CCE总数。
在另外一种具体实现方案中,所述终端设备确定控制信道区域之前,所述方法还包括:
所述终端设备接收第二信令,所述第二信令指示控制信道区域占用的资源,所述第二信令包括NCCEG个信息域,其中,所述NCCEG个信息域中的第i个信息域指示控制信道单元组(英文:control channel element group,简称:CCEG)i-1里有H个CCE配置给所述控制信道区域,i为不大于NCCEG的正整数,所述CCEG i-1由G个CCE组成,G为正整数,H为不大于G的非负整数。
在本方案中,优选的,所述G等于8,所述H为0,2,4或8,所述第i个信息域的比特数为2。
更进一步的,所述搜索空间的配置信息指示所述搜索空间位于CCEG j 或者所述搜索空间的配置信息指示所述搜索空间的起点位于CCEG j,其中,j为小于NCCEG的非负整数。
在另一种具体实现方案中,所述第一信令还包括所述控制信道区域的配置信息,所述搜索空间的配置信息指示所述搜索空间的起点为CCE i,所述控制信道区域的配置信息指示所述控制信道区域占用连续的X个CCE,其中,X为正整数,i为小于X的非负整数;
所述终端设备确定控制信道区域,包括:
所述终端设备根据所述控制信道区域的配置信息确定所述控制信道区域。
在另一种具体实现方案中,所述第一信令还包括所述控制信道区域的配置信息,所述控制信道区域的配置信息指示所述控制信道区域占用连续的E个CCEG,所述搜索空间的配置信息指示所述搜索空间的起点为CCEG i,其中,E为正整数,i为小于E的非负整数;
所述终端设备确定控制信道区域,包括:
所述终端设备根据所述控制信道区域的配置信息确定所述控制信道区域。
所述终端设备确定控制信道区域之前,还包括:
所述终端设备接收第三信令,所述第三信令指示所述控制信道区域占用N个短资源块;其中,每个短资源块在频域上占用12个子载波且在时域上占用1或2个符号,所述N可以被3或4整除;
所述终端设备确定控制信道区域,包括:
所述终端设备根据所述第三信令确定所述控制信道区域。
在另一种具体实现方案中,所述终端设备确定控制信道区域之前,还包括:
所述终端设备接收第四信令,所述第四信令指示所述控制信道区域占用M个连续的虚拟短资源块;M为可以被3或4整除的正整数;
所述终端设备确定控制信道区域,包括:
所述终端设备根据虚拟短资源块与物理短资源块的映射关系以及所述第四信令,确定所述控制信道区域占用的M个非连续的物理资短源块,所述虚拟短资源块与物理短资源块的映射关系指示所述M个连续的虚拟短资源块对 应所述M个非连续的物理短资源块。
在另一种具体实现方案中,所述终端设备确定控制信道区域之前,包括:
所述终端设备接收第五信令,所述第五信令指示所述控制信道区域占用连续的Z个CCE,所述Z为正整数;
所述终端设备确定控制信道区域,包括:
所述终端设备根据所述第五信令确定所述控制信道区域。
本发明第二方面提供一种下行控制信息的发送方法,包括:
网络设备发送第一指令,所述第一信令包括搜索空间的配置信息,所述配置信息用于指示频域资源或CCE资源;
所述网络设备在所述搜索空间中发送下行控制信息。
在一种具体的实现方案中,所述网络设备发送第一信令之前,还包括:
所述网络设备确定控制信道区域,所述搜索空间位于所述控制信道区域。
在一种具体的实现方案中,所述第一信令具体指示所述搜索空间的聚合级别和所述终端设备的标识。
在一种具体的实现方案中,所述搜索空间的配置信息指示聚合级别L和搜索空间起点标识Y,所述网络设备发送第一信令之前,还包括:
所述网络设备确定所述搜索空间包括编号为
Figure PCTCN2016082056-appb-000002
的CCE,其中,i=0,...,L-1,m=0,...,M(L)-1,M(L)为聚合级别为L的搜索空间中包含的候选下行控制信道个数,NCCE表示所述搜索空间占用的传输时间间隔里的可用CCE总数。
在一种具体的实现方案中,所述方法还包括:
所述网络设备发送第二信令;所述第二信令指示所述控制信道区域占用的资源;所述第二信令包括NCCEG个信息域;其中,所述NCCEG个信息域中的第i个信息域指示控制信道单元组CCEG i-1里有H个CCE配置给所述控制信道区域,i为不大于NCCEG的正整数,所述CCEG i-1由G个CCE组成,G为正整数,H为不大于G的非负整数。
在本方案中,优选的,所述G等于8,所述H为0,2,4或8,所述第i个信息域的比特数为2。
进一步的,所述搜索空间的配置信息指示所述搜索空间位于CCEG j 或者所述搜索空间的配置信息指示所述搜索空间的起点位于CCEG j,其中,j为小于NCCEG的非负整数。
在一种具体的实现方案中,所述第一信令还包括所述控制信道区域的配置信息,所述控制信道区域的配置信息指示所述控制信道区域占用连续的E个CCEG,所述搜索空间的配置信息指示所述搜索空间的起点为CCEG i,其中,E为正整数,i为小于E的非负整数。
在一种具体的实现方案中,所述网络设备在所述搜索空间中发送下行控制信息之前,所述方法还包括:
所述网络设备发送第三信令,所述第三信令指示所述控制信道区域占用N个短资源块;其中,每个短资源块在频域上占用12个子载波且在时域上占用1或2个符号,所述N可以被3或4整除。
在一种具体的实现方案中,所述网络设备在所述搜索空间中发送下行控制信息之前,所述方法还包括:
所述网络设备发送第四信令;所述第四信令指示所述控制信道区域占用M个连续的虚拟短资源块;M为可以被3或4整除的正整数;
所述M个连续的虚拟短资源块对应M个非连续的物理短资源块。
在一种具体的实现方案中,所述网络设备在所述搜索空间中发送下行控制信息之前,所述方法还包括:
所述网络设备发送第五信令;所述第五信令指示所述控制信道区域占用连续的Z个CCE,所述Z为正整数。
本发明第三方面提供一种终端设备,包括:
接收模块,用于接收第一信令,所述第一信令包括搜索空间的配置信息;
处理模块,根据所述搜索空间的配置信息确定所述搜索空间占用的频域资源或控制信道单元CCE资源;
所述处理模块还用于在所述搜索空间中检测下行控制信息。
可选的,所述处理模块还用于确定控制信道区域;所述搜索空间位于所述控制信道区域。
该终端设备可以通过软件实现,也可以通过硬件设备实现为终端设备,对此不做限制,该装置具体用来实现第一方面提供的每种下行控制信息的检测方法的技术方案,其实现原理类似,具体实现方式和细节请参考第一方面。
本发明第四方面提供一种网络设备,包括:用于发送消息的发送模块以及用于控制指令执行的处理模块;
所述处理模块,用于确定搜索空间;
所述发送模块用于:
发送第一指令,所述第一信令包括搜索空间的配置信息,所述配置信息用于指示频域资源或CCE资源;
在所述搜索空间中发送下行控制信息。
可选的,所述处理模块用于确定控制信道区域,所述搜索空间位于所述控制信道区域。
该下行控制信息的发送装置可以通过软件实现,也可以通过硬件设备实现为网络设备,也可以是实现为其他的控制设备,对此不做限制,该装置具体用来实现第二方面提供的每种下行控制信息的发送方法的技术方案,其实现原理类似,具体实现方式和细节请参考第二方面。
本发明第五方面提供一种终端设备,包括:存储有程序指令的存储器、用于控制程序指令执行的处理器、用于发送消息的发送器以及用于接收消息的接收器;
所述接收器用于接收第一信令,所述第一信令包括搜索空间的配置信息;
所述处理器用于根据所述搜索空间的配置信息确定所述搜索空间占用的频域资源或控制信道单元CCE资源;
所述处理器还用于在所述搜索空间中检测下行控制信息。
可选的,所述处理器还用于确定控制信道区域;所述搜索空间位于所述控制信道区域。
本方案提供的终端设备具体用来实现第以方面提供的每种下行控制信息的检测方法的技术方案,其实现原理和技术效果类似,具体实现方式和细节请参考第一方面。
本发明第六方面提供一种网络设备,包括:存储有程序指令的存储器、用于控制程序指令执行的处理器以及用于发送消息的发送器;
所述发送器用于:
发送第一指令,所述第一信令包括搜索空间的配置信息,所述配置信息用于指示频域资源或CCE资源;
在所述搜索空间中发送下行控制信息。
可选的,所述处理器用于确定控制信道区域,所述搜索空间位于所述控制信道区域。
本方案提供的网络设备具体用来实现第以方面提供的每种下行控制信息的发送方法的技术方案,其实现原理和技术效果类似,具体实现方式和细节请参考第二方面。
本发明提供的下行控制信息的发送方法、检测方法和设备,网络设备可以配置搜索空间占用任意频域资源或CCE资源,终端设备根据第一信令确定网络设备配置的搜索空间,及时获取下行控制信息,有效提高数据传输效率,尤其解决了小于1ms时长的下行控制信息不能及时获取的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明下行控制信息的检测方法实施例一的流程图;
图2为本发明下行控制信息的发送方法实施例一的流程图;
图3为本发明搜索空间确定方案二中一搜索空间指示示意图;
图4为本发明搜索空间确定方案二中另一搜索空间指示示意图;
图5为本发明搜索空间确定方案三中一搜索空间指示示意图;
图6为本发明控制信道区域确定方案二中一控制信道区域指示示意图;
图7为本发明控制信道区域确定方案二中另一控制信道区域指示示意图;
图8为本发明控制信道区域确定方案四中一控制信道区域指示示意图;
图9为本发明控制信道区域确定方案四中另一控制信道区域指示示意图;
图10为本发明终端设备实施例一的结构示意图;
图11为本发明网络设备实施例二的结构示意图;
图12为本发明终端设备实施例二的结构示意图;
图13为本发明网络设备实施例二的结构示意图。
具体实施方式
目前定义的搜索空间都是由用于调度1ms数据传输的PDCCH组成的,要么位于一个下行子帧中的前1、2、3或4个符号,或者位于PDSCH符号区域(即一个下行子帧中的后13、12、11或10个符号),且占用的信道资源较为固定。因此搜索空间配置较为固定,例如,固定的搜索空间大小,对于小于1ms时长的数据传输不具备灵活性,导致传输效率较低。为克服该问题,本申请提出一种新的下行控制信息的传输方案。
本申请提出的下行控制信息的传输方案应用于无线通信系统中,例如第三代移动通信技术(Third Generation mobile communication technology,3G)、4.5G或5G通信系统。具体地,本发明实施例可以应用于包括网络设备和终端设备(terminal device or terminal equipment)的无线通信系统中,例如,终端设备与网络设备之间进行通信,或者,终端设备与终端设备之间进行通信,或者,网络设备与网络设备之间进行通信。终端设备可以是指向用户提供语音和或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或车载的移动装置,它们与无线接入网交换语言和或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端也可以称为系统、订户单元(subscriber unit,SU)、订户站(subscriber station,SS),移动站(mobile station,毫秒)、移动台(mobile station,毫秒)、远程站(remote station,RS)、接入点(access point,AP)、远端设备(remote terminal,RT)、接入终端(access terminal,AT)、用户终端(user terminal,UT)、用户代理(user agent,UA)、用户设备、或用户装备(user equipment,UE)。网络设备可以是基站、增强型基站、或具有调度功能的中继、或具有基站功能的 设备等。其中,基站可以是LTE系统中的演进型基站(evolved Node B,eNB或e-NodeB),也可以其他系统中的基站,本发明实施例并不限定。
图1为本发明下行控制信息的检测方法实施例一的流程图,如图1所示,该下行控制信息的检测方法应用终端设备侧,该方法的具体实现步骤为:
S101:终端设备接收第一信令,所述第一信令包括搜索空间的配置信息。
在本步骤中,网络设备或者其他的控制设备可以根据需要灵活配置搜索空间占用的资源,并通过第一信令将搜索空间的配置信息发送给终端设备。
可选的,该搜索空间的配置信息为搜索空间的CCE资源配置信息。
可选的,该搜索空间的配置信息为搜索空间的频域资源配置信息。
可选的,该搜索空间的配置信息为搜索空间的频域资源配置信息和时域资源配置信息。例如,该搜索空间的配置信息还指示搜索空间占用S个符号,其中,S为正整数,例如,S为1,2,3,4,6或7。
其中,搜索空间由一个或多个候选下行控制信道组合而成,每个候选下行控制信道均能够用于承载DCI。简言之,搜索空间为下行候选控制信道的集合。终端设备需要监听候选下行控制信道,所以搜素空间也就是终端设备监听的候选下行控制信道集合。
S102:所述终端设备根据所述搜索空间的配置信息确定所述搜索空间占用的频域资源或CCE资源。
可选的,所述终端设备根据所述配置信息确定所述搜索空间占用的CCE资源。可选的,所述终端设备根据所述配置信息确定所述搜索空间占用的频域资源。可选的,所述终端设备根据所述配置信息确定所述搜索空间占用的频域资源和时域资源。
在本步骤中,终端设备根据接收的第一信令中指示的资源确定搜索空间。该搜索空间中的候选下行控制信道用来传输下行控制信息。
S103:所述终端设备在所述搜索空间中检测下行控制信息。
终端设备在搜索空间中检测下行控制信息。若终端设备检测到下行控制信息,进而根据该下行控制信息进行数据传输。
网络设备或者其他控制设备根据需要灵活配置搜索空间,终端设备通过网络设备或者其他控制设备发送的第一信令确定搜索空间,进行检测下行控制信息。这样,网络设备可以配置搜索空间占用任意频域资源或CCE资源, 终端设备进而在配置的搜索空间中及时获取下行控制信息,有效提高数据传输效率。例如,对于小于1ms时长的数据传输,网络设备可以配置搜索空间占用较少的频域资源或CCE资源,进而减少终端设备的PDCCH盲检测次数,快速获取下行控制信息,提高数据传输效率。
在上述方案中,可选的,终端设备在所述搜索空间中检测下行控制信息。终端设备如果检测到循环冗余校验(cyclic redundancy check,CRC)正确的候选控制信道,则该候选控制信道承载的DCI为网络设备发送给终端设备的用于调度数据传输的DCI,否则,如果终端设备没有检测到CRC正确的候选控制信道,则说明网络设备没有向终端设备发送DCI。需要说明的是,本发明对终端设备如何检测DCI不作限制。例如,终端设备在搜索空间中检测DCI,可以是终端设备根据DCI的信息比特数对搜索空间中所有或部分候选下行控制信道译码。
其中,可选的,如果终端设备检测到用于调度数据传输的DCI,则可以根据该DCI与网络设备进行数据传输。对于下行数据传输,终端设备可以在DCI指示的数据传输资源上接收网络设备发送的下行数据包,对于上行数据传输,终端设备可以在DCI指示的数据传输资源上向网络设备发送上行数据包。
图2为本发明下行控制信息的发送方法实施例一的流程图,如图2所示,该下行控制信息的传输方法应用在网络设备侧,该方法的具体实现步骤为:
S201:网络设备发送第一指令,所述第一信令包括搜索空间的配置信息,所述配置信息用于指示频域资源或CCE资源。
可选的,该搜索空间的配置信息为搜索空间的CCE资源配置信息。
可选的,该搜索空间的配置信息为搜索空间的频域资源配置信息。
可选的,该搜索空间的配置信息为搜索空间的频域资源配置信息和时域资源配置信息。
在网络设备发送第一信令之前,还包括:网络设备确定搜索空间占用的的频域资源或CCE资源或时频域资源。在本方案中,网络设备根据需要确定(或者说,配置)搜索空间的资源,并通过第一指令向终端设备进行发送,以使终端设备可以根据第一指令中指示的资源确定搜索空间。
S202:所述网络设备在所述搜索空间中发送下行控制信息。
网络设备在确定的搜索空间中发送下行控制信息以使终端设备能够在确定出的搜索空间上进行检测并获取,后续根据该下行控制信息进行数据调度。
可选的,所述网络设备发送第一信令之前,该方法还包括:
所述网络设备确定控制信道区域,所述搜索空间位于所述控制信道区域。
网络设备或者其他控制设备根据需要灵活配置搜索空间,终端设备通过网络设备或者其他控制设备发送的第一指令确定搜索空间,进行下行控制信息。这样,网络设备可以配置搜索空间占用任意频域资源或CCE资源,终端设备进而在配置的搜索空间中及时获取下行控制信息,有效提高数据传输效率。
下面通过详细的实例对本申请提出的下行控制信息的传输方案进行说明,首先为了便于对本申请实施例进行描述,先定义一些概念。以LTE系统为例进行介绍,但这并不意味着本发明实施例仅适用于LTE系统,实际上,任何通过调度进行数据传输的无线通信系统都可以采用本发明实施例提供的方案。
一、帧结构
现有LTE系统中,每个无线帧由10个1ms长度的子帧(subframe)组成,每个子帧包括2个时隙(slot)。对于普通循环前缀(Normal cyclic prefix,normal CP),每个slot由7个符号(symbol)组成,即每个slot由序号为{#0,#1,#2,#3,#4,#5,#6}的符号组成;对于长CP(Extended cyclic prefix,extended CP),每个slot由6个符号(symbol)组成,即每个slot由序号为{#0,#1,#2,#3,#4,#5}的符号组成。未来演进的LTE系统中,为了降低时延(latency),可以将子帧的长度缩短,例如缩短到每个子帧的长度为0.2ms或0.25ms或者更短。
本申请对子帧的时间长度以及一个符号的时间长度不做限制。不失一般性,一个子帧包括N个符号(N为正整数),即一个上行子帧包括N个上行符号,或者,一个下行子帧包括N个下行符号。上行符号和下行符号都简称为符号。其中,上行符号称为单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)符号,下行符号称为正交频分多址(orthogonal frequency division multiplexing,OFDM)符号。需要说明的是,若后续技术引入新的上行多址方式或下行多址方式,仍然可以称为符号。本发明对于上 行多址方式和下行多址方式不做限制。
二、TTI
目前的方案中TTI长度为1ms,但是的数据传输实际占用的时域资源等于或小于1ms。例如,一个下行子帧中的前1、2、3或4个符号可以用于传输PDCCH,因此,TTI长度为1ms的下行数据传输占用的时域资源可以小于1ms。一个上行子帧中的最后1个符号可以用于传输探测参考信号(Sounding Reference Signal,SRS),因此,TTI长度为1ms的上行数据传输占用的时域资源可以小于1ms。
短TTI是指TTI长度小于1ms的TTI,例如:0.5ms,或者,1/2/3/4个符号长度。同理,TTI长度为短TTI的数据传输占用的时域资源等于或小于短TTI的长度。例如,对于TTI长度为4个符号的一个下行数据传输,如果该4个符号包括1,2或3个PDCCH符号,那么该数据传输只占用了3,2或1个符号。
三、RE,短资源块,短资源单元组和可用带宽
资源单元(resource element,RE)是时频域上最小的单元,由索引对(k,l)唯一标识,其中,k为子载波索引,l为符号索引。当然,资源单元也可以通过其他形式的标识来标识。
本申请中,引入短资源块(Short Resource Block,SRB)的概念。一个SRB在频域上占用
Figure PCTCN2016082056-appb-000003
个连续的子载波且在时域上占用
Figure PCTCN2016082056-appb-000004
个符号,
Figure PCTCN2016082056-appb-000005
为正整数,
Figure PCTCN2016082056-appb-000006
为不大于7的正整数。例如,
Figure PCTCN2016082056-appb-000007
或2,
Figure PCTCN2016082056-appb-000008
也就是,SRB和现有技术里的RB(资源块,resource block)在频域上占用相同的资源,采用相同的编号。
本申请中,引入短资源单元组(SREG,Short Resource-Element Group)的概念。一个SREG在频域上占用
Figure PCTCN2016082056-appb-000009
个连续的子载波且在时域上占用
Figure PCTCN2016082056-appb-000010
个符号,
Figure PCTCN2016082056-appb-000011
为正整数,
Figure PCTCN2016082056-appb-000012
为不大于7的正整数。例如,
Figure PCTCN2016082056-appb-000013
或2,
Figure PCTCN2016082056-appb-000014
也就是,一个SREG在频域上占用一个RB且在时域上占用1或2个符号。
本申请中,可用带宽可以是下行系统带宽,或者用于短TTI下行数据传输的带宽,或者,用于控制信道传输的带宽。其中,短TTI下行数据传输指的是占用小于1ms时域资源的下行数据传输,用于短TTI下行数据传输的带宽可以 是配置给一个终端设备的,或者,配置给一组终端设备的。可用带宽可以是预定义的,或者高层信令通知的。其中,可用带宽上包括NSRB个SRB,即NSRB为可用带宽包括的SRB数。可选的,该NSRB个SRB可以是连续分配的或者非连续分配的。
四、下行控制信道及搜索空间
下行控制信道为用于承载DCI的信道,即DCI是承载在下行控制信道上的。可选的,下行控制信道由L个控制信道单元(control channel element,CCE)聚合而成,L为正整数,称为聚合级别(aggregation level,AL)。例如,L可以是1、2、4或8。可选的,一个CCE由C个SRB组成,C为正整数,例如,C=3,4或5。可选的,一个CCE由NCCE个RE组成,NCCE为正整数,例如,NCCE=36或者NCCE<36。可选的,一个CCE由C个SREG组成,C为正整数,例如,C=3,4或5。因为不同符号上,小区特定参考信号(CRS,cell-specific reference signal)占用的RE数不同,而CRS不能承载下行控制信息,因此,为了不同符号上下行控制信息占用的RE数类似,不同符号上的CCE包括的SRB或SREG可以不同。可选的,位于不同符号的CCE可以包括不同的SRB数或SREG数。例如,对于普通CP,1或2个CRS天线端口(antenna port)被配置,位于一个时隙中的符号#0或符号#4上的CCE包括4个SRB或4个SREG,位于一个时隙中的符号#1,#2,#3,#5或#6上的CCE包括3个SRB或3个SREG。例如,对于普通CP,4个CRS天线端口被配置,位于一个时隙中的符号#0,符号#1或符号#4上的CCE包括4个SRB或4个SREG,位于一个时隙中的符号#2,#3,#5或#6上的CCE包括3个SRB或3个SREG。
搜索空间由一个或多个候选下行控制信道组合而成,每个候选下行控制信道均能够用于承载DCI。简言之,搜索空间为下行候选控制信道的集合。终端设备需要监听候选下行控制信道,所以搜素空间也就是终端设备监听的候选下行控制信道集合。
可选的,该搜索空间是终端设备特定的搜索空间,也就是,该搜索空间 是配置给一个终端设备的。
可选的,该搜索空间是组特定的搜索空间,也就是,该搜索空间是配置给一组终端设备的。具体实现中可以通过组标识进行指示。
可选的,搜索空间的大小可根据表1确定。聚合级别为1的搜索空间由3,2或1个聚合级别为1的候选下行控制信道组成。聚合级别为2的搜索空间由3,2或1个聚合级别为2的候选下行控制信道组成。聚合级别为4的搜索空间由2个或1个聚合级别为4的候选下行控制信道组成。聚合级别为8的搜索空间由2个或1个聚合级别为8的候选下行控制信道组成。例如,一个SRB在频域上占用12个连续的子载波且在时域上占用1个符号,一个CCE包括3个SRB,聚合级别为1,2,4或8的搜索空间分别由6,12,24或48个SRB组成。例如,一个CCE包括36个RE,聚合级别为1,2,4或8的搜索空间分别由72,144,288或576个RE组成。该搜索空间为终端设备特定的搜索空间或组特定的搜索空间。
表1
Figure PCTCN2016082056-appb-000015
在上述方案的基础上,可选的,搜索空间位于短传输时间间隔(short TT I,sTTI)内。sTTI占用1个符号,2个符号,3个符号,4个符号,或者,0.5ms。
可选的,第一信令包括搜索空间的CCE配置信息,即第一信令指示搜索空间占用的CCE资源。该sTTI里存在NCCE个可用CCE,可用CCE从0编号到NCCE-1。也就是,NCCE表示传输时间间隔m里的可用CCE总数,传输时间间隔m为所述搜索空间所在子帧包括的多个传输时间间隔里的一个。该sTTI里存在NCCEG个可用CCEG,可用CCEG从0编号到NCCEG-1。其中,一个CCEG包括G个CCE,其中,G为正整数,例如,1,2,3,4,8或16。
可选的,搜索空间不能用于PDSCH传输。也就是,PDSCH不映射到搜索空间占用的资源。虽然搜索空间不能用于PDSCH传输,但是搜索空间可以和 PDSCH在时域上重叠,为了不浪费资源,网络设备可以根据当前的下行控制信道负载适时确定搜索空间占用的频域资源或CCE资源,并通过第一信令通知终端设备当前使用的搜索空间。这样,终端设备可以根据第一信令获知搜索空间占用的频域资源或CCE资源,进而可以在未被占用的频域资源或CCE资源上接收下行数据,降低了资源浪费。为了不浪费资源,本发明中,第一信令指示的频域资源或CCE资源尽量和真实使用的频域资源或CCE资源相等。另外,本发明设计的第一信令具体开销小的特点。
在上述实施例一的步骤101所述终端设备根据所述配置信息确定所述搜索空间占用的频域资源或CCE资源之前或同时或之后,该方法还包括:
所述终端设备确定控制信道区域。
相对应的,在上述实施例二的步骤201所述网络设备发送第一信令之前或同时或之后,还包括:
所述网络设备确定控制信道区域。
可选的,所述搜索空间位于所述控制信道区域内,即所述控制信道区域包含所述搜索空间。那么所述终端设备在所述搜索空间中检测下行控制信息。
可选的,搜索空间占用的部分资源位于所述控制信道区域内。此时,为了降低下行控制信道的盲检测次数,终端设备可以只在该搜索空间占用的部分资源上检测下行控制信息。
可选的,搜索空间没有位于所述控制信道区域内,即控制信道区域占用的资源不包括搜索空间占用的资源,说明没有下行控制信息发给该终端设备,所以终端设备可以不检测搜索空间。
可选的,控制信道区域在时域上占用S个符号,其中,S为正整数,例如,S为1,2,3,4,6或7。
可选的,控制信道区域在频域上位于可用带宽内。需要说明的是,“控制信道区域在频域上位于可用带宽内”包括“控制信道区域占用的频域资源为整个可用带宽”和“控制信道区域占用的频域资源小于可用带宽”两种情况。
可选的,所述控制信道区域不能用于PDSCH传输。也就是,PDSCH不映射到控制信道区域。此时,可以认为控制信道区域里的全部下行控制信道或大部分下行控制信道是承载了一个或多个终端设备的下行控制信息的,所 以不能用于传输PDSCH。PDSCH用于承载下行共享信道(downlink shared channel,DL-SCH)数据和/或寻呼信道(paging channel,PCH)数据。也可以说,PDSCH用于承载下行业务数据或者高层信令。因为控制信道区域不能用于PDSCH传输,为了不浪费资源,网络设备可以根据当前的下行控制信道负载适时确定控制信道区域,并通过信令通知终端设备当前使用的控制信道区域。这样,终端设备可以根据信令获知控制信道区域占用的资源,进而可以在未被占用的资源上接收下行数据,降低了资源浪费。为了不浪费资源,本发明中,信令指示的控制信道区域占用的资源尽量和真实使用的资源相等。例如,当前网络设备需要发送4个下行控制信道,且每个下行控制信道需要占用3个SRB,那么网络设备发送信令通知终端设备控制信道区域占用12个SRB。
可选的,终端设备根据接收到控制信道区域配置信令确定控制信道区域,所述控制信道区域配置信令指示控制信道区域占用的资源。具体的,所述控制信道区域配置信令指示控制信道区域占用的时域资源和/或频域资源,或者,第二信令指示控制信道区域占用的CCE资源。相应的,在网络设备确定控制信道区域之后,还包括:网络设备发送所述控制信道区域配置信令。
可选的,所述第一信令和/或所述控制信道区域配置信令是物理层信令,例如,所述第一信令和/或所述控制信道区域配置信令位于Rel-8定义的控制信道区域。可选的,所述第一信令和/或所述控制信道区域配置信令是网络设备发送给一个终端设备或一组终端设备的。其中,当下行系统带宽小于或者等于10个RB(Resource Block,资源块)时,Rel-8定义的控制信道区域占用该一个子帧的前2、3或4个符号号;当下行系统带宽大于10个RB时,Rel-8定义的PDCCH区域占用该一个子帧的前1,2或3个符号。
结合上述对控制信道区域和搜索空间的说明,下面对于搜索空间的确定方案和控制信道区域的确定方案分别进行说明。需要说明的是,对于不同的方案,所述控制信道区域配置信令会命名为不同的信令名称,例如,第二信令,第三信令,第四信令,第五信令和第六信令。
A、搜索空间的确定方案
一、搜索空间确定方案一
第一信令中的配置信息为搜索空间的CCE资源配置信息,该配置信息指示Y,L和M(L)中的至少一个,即第一信令指示Y,L和M(L)中的至少一个。
在终端设备侧,终端设备根据配置信息(或者说,第一信令)和搜索空间公式
Figure PCTCN2016082056-appb-000016
确定搜索空间,具体包括:
所述终端设备根据配置信息(或者说,第一信令)确定搜索空间包括编号为
Figure PCTCN2016082056-appb-000017
的CCE,其中,i=0,...,L-1,m=0,...,M(L)-1,M(L)为聚合级别为L的搜索空间中包含的候选下行控制信道个数,NCCE表示可用CCE总数。具体地,所述搜索空间位于传输时间间隔m,NCCE表示传输时间间隔m里的可用CCE总数,传输时间间隔m为所述搜索空间所在子帧包括的多个传输时间间隔里的一个。
在网络设备侧,网络设备可以向终端设备发送上述第一信令,具体指示所述搜索空间公式中的Y,L和M(L)中的至少一个。
可选的,第一信令指示Y和L。M(L)为表一中指示的值,即终端设备根据表一确定M(L)。此时,网络设备可以根据终端设备的下行信道状态配置L,下行信道条件好时,配置较小的L,否则配置较大的L,另外,终端设备根据第一信令获取到L值,只用在聚合级别为L的搜索空间中进行下行控制信道盲检测,可以减少盲检测次数。另外,网络设备可以根据需要,通过调整Y来配置搜索空间位于不同的CCE。
可选的,第一信令指示搜索空间的聚合级别L。此时,Y的值是预设的。例如,Y=0;或者,Y=nRNTI,nRNTI为终端设备标识;或者,
Figure PCTCN2016082056-appb-000018
Figure PCTCN2016082056-appb-000019
为小区标识;或者,Y等于根据Rel-8定义的终端设备特定搜索空间计算出来的Y值。
二、搜索空间确定方案二
第一信令中的配置信息为搜索空间的CCE资源配置信息,即第一信令指示搜索空间占用的CCE资源,第二信令指示控制信道区域占用的资源。第二信令包括NCCEG个信息域,分别指示NCCEG个CCEG里配置给控制信道区域的 CCE数,其中,第i个信息域指示CCEG i-1里有H个CCE配置给控制信道区域,i为不大于NCCEG的正整数,H为非负整数。
具体的,终端设备确定控制信道区域之前,还包括:所述终端设备接收第二信令,所述第二信令指示控制信道区域占用的资源,所述第二信令包括NCCEG个信息域,其中,所述NCCEG个信息域中的第i个信息域指示控制信道单元组CCEG i-1里有H个CCE配置给所述控制信道区域,i为不大于NCCEG的正整数,所述CCEG i-1由G个CCE组成,G为正整数,H为不大于G的非负整数。
可选的,所述G等于8,所述第i个信息域的比特数为2。其含义是:CCEG i-1由8个CCE组成,第i个信息域包括2比特信息,2比特信息的四种状态分别指示4种H的取值。例如H为0,2,4或8,可选的,‘00’指示0,‘01’指示2,‘10’指示4,‘11’指示8。图3为本发明搜索空间确定方案二中一搜索空间指示示意图,如图3所示,NCCEG=3,第一个信息域为‘00’指示CCEG0中没有CCE被配置给控制信道区域,第二个信息域为‘01’指示CCEG1中有2个CCE配置给控制信道区域,第三个信息域为‘10’指示CCEG2中有4个CCE配置给控制信道区域。例如H为1,2,4或8,可选的,‘00’指示1,‘01’指示2,‘10’指示4,‘11’指示8。
可选的,所述G等于4,即一个CCEG由4个CCE组成,第i个信息域包括1比特信息,1比特信息的两种状态分别指示2种H的取值。例如,H为0或4,可选的,‘0’和‘1’分别指示0和4。例如,H为2或4,可选的,‘0’和‘1’分别指示2和4。
可选的,所述G等于16,即一个CCEG由16个CCE组成,第i个信息域包括3比特信息,3比特信息的八种状态分别指示8种H的取值。例如,8种H的取值为0,1,2,4,6,8,10,12,14和16中的8种取值。
在上述任一种方案的基础上,所述配置信息(或者说,第一指令)指示所述搜索空间位于CCEG j或者所述配置信息(或者说,第一指令)指示所述搜索空间的起点位于CCEG j,其中,j为小于NCCEG的非负整数。
具体的,第一信令指示搜索空间位于CCEG j,j为小于NCCEG的非负整数。这样,搜索空间就不能占用多个CCEG。
可选的,第一信令指示搜索空间的起点位于CCEG j,j为小于NCCEG的非 负整数。具体地,第一信令指示j的取值,聚合级别为L的搜索空间包括编号为
Figure PCTCN2016082056-appb-000020
的CCE,其中,G为一个CCEG包括的CCE数,i=0,...,L-1,m=0,...,M(L)-1,M(L)为聚合级别为L的搜索空间中包含的候选下行控制信道个数。这样,搜索空间的聚合级别较大时,可能占用多个CCEG。当第二信令指示的CCEG j里没有CCE被配置给控制信道区域,那么搜索空间没有被配置,即终端设备不需要检测下行控制信息(无步骤102)。例如图3所示,NCCEG=3,若终端设备为第一终端设备,搜索空间的起点位于CCEG1;若终端设备为第二终端设备,搜索空间的起点位于CCEG2;若终端设备为第三终端设备,搜索空间的起点位于CCEG0,但是当前显示CCEG0没有CCE被配置给控制信道区域,所以第三终端设备不需要检测下行控制信息。图4为本发明搜索空间确定方案二中另一搜索空间指示示意图,例如图4所示,NCCEG=3,若终端设备为第一终端设备,搜索空间的起点位于CCEG1;若终端设备为第二终端设备,搜索空间的起点位于CCEG2,且搜索空间包括2个聚合级别为8的候选下行控制信道,即搜索控制占用CCEG2和CCEG0;若终端设备为第三终端设备,搜索空间的起点位于CCEG0,但是CCEG0里的CCE分配给第二终端设备了,所以第三终端设备检测不到下行控制信息。
在该搜索空间的确定方案二中,对应的网络侧设备发送第二信令;所述第二信令指示所述控制信道区域占用的资源;所述第二信令包括NCCEG个信息域;其中,所述NCCEG个信息域中的第i个信息域指示控制信道单元组CCEG i-1里有H个CCE配置给所述控制信道区域,i为不大于NCCEG的正整数,所述CCEG i-1由G个CCE组成,G为正整数,H为不大于G的非负整数。
可选的,所述G等于8,所述H为0,2,4或8,或者,所述H为1,2,4或8,所述第i个信息域的比特数为2。具体的实现方式可以参考终端设备侧的描述。
三、搜索空间确定方案三
第一信令中包括搜索空间的配置信息,进一步地,第一信令中还包括控制信道区域的配置信息。可选的,所述搜索空间的配置信息和所述控制信道区域的配置信息是联合指示的,即位于同一个信息域,为方便后面描述,记为第一配置信息。
在终端设备侧,终端设备接收第一信令,所述第一信令包括搜索空间的配置信息和控制信道区域的配置信息;所述终端设备根据所述搜索空间的配置信息确定搜索空间占用的CCE资源,并且根据控制信道区域的配置信息确定控制信道区域占用的CCE资源。也就是,终端设备根据接收到的第一信令确定控制信道区域和搜索空间,所述搜索空间位于所述控制信道区域,所述第一信令指示控制信道区域和搜索空间占用的资源。至少包括以下两种方法:
方法一、所述第一指令指示所述控制信道区域占用连续的X个CCE,且指示所述搜索空间的起点为CCE i,其中,X为正整数,i为小于X的非负整数。也就是,所述搜索空间的配置信息指示所述搜索空间的起点为CCE i,所述控制信道区域的配置信息指示所述控制信道区域占用连续的X个CCE。
具体的,控制信道区域占用连续的X个CCE,该X个CCE的起点为CCE0。第一信令指示X的取值以及指示搜索空间的起点,即控制信道区域的配置信息指示X的取值以及搜索空间的配置信息指示搜索空间的起点为CCE i。图5为本发明搜索空间确定方案三中一搜索空间指示示意图,例如图5中,第一信令指示X=6,对于第一终端设备,第一信令还指示搜索空间的起点为CCE0;对于第二终端设备,第一信令还指示搜索空间的起点为CCE4。可选的,第一信令是发给一个终端设备的,那么第一信令包括指示X的取值以及指示搜索空间的起点的B比特信息,即第一配置信息为B比特,其中,
Figure PCTCN2016082056-appb-000021
例如,NCCE=16,那么B=8。可选的,第一信令是发给U(U为正整数)个终端设备的,那么第一信令包括指示X的取值以及指示U个搜索空间的起点的B比特信息,其中,
Figure PCTCN2016082056-appb-000022
例如,U=2,NCCE=16,那么B=12。
方法一中,第一信令指示的控制信道区域为被一个或多个终端设备的下 行控制信道占用掉的资源。通过第一信令,终端设备可以确定未被使用的资源,进而在这些未被使用的资源接收PDSCH。该方法中,用于指示搜索空间和控制信道区域的信息比特数少。
方法二、所述第一指令指示所述控制信道区域占用连续的E个CCEG,且指示所述搜索空间的起点为CCEG i,其中,E为正整数,i为小于E的非负整数。也就是,所述搜索空间的配置信息指示所述搜索空间的起点为CCEG i,所述控制信道区域的配置信息指示所述控制信道区域占用连续的E个CCEG。
具体的,控制信道区域占用连续的E个CCEG,所述连续的E个CCEG的起点为CCEG0,第一信令指示E的取值以及指示搜索空间的起点为CCEG i,i为小于E的非负整数,即控制信道区域的配置信息指示E的取值以及搜索空间的配置信息指示搜索空间的起点为CCEG i。可选的,所述G个CCE连续分布。例如图5中,一个CCEG由2个CCE组成,控制信道区域占用连续的3个CCEG,第一终端设备的搜索空间起点为CCEG0,第二终端设备的搜索空间起点为CCEG2。可选的,所述G个CCE非连续分布或等间隔分布。相比方法一,引入CCEG可以进一步降低第一信令开销。
可选的,上述任一种方案中的第一信令均可以是网络设备发送的,也可以是其他的控制设备发送的,对此本申请不做限制。
B、控制信道区域的确定方案
四、控制信道区域确定方案一
第三信令指示所述控制信道区域占用N个短资源块SRB或者N个SREG,所述N为正整数。可选的,所述N可以被C整除,C为正整数,例如,C等于3或4。其中,SRB和SREG的描述见上文。
需要说明的是,本方案中的发明实施例可以应用于第一信令和搜索空间确定。只要把“第三信令”换成“第一信令中包括的搜索空间的配置信息”,“控制信道区域”换成“搜索空间”即可,例如,所述搜索空间的配置信息指示所述搜索空间占用N个短资源块SRB或者N个SREG,所述N为正整数。具体内容参照方案中的描述,在此不再赘述。
在所述终端设备确定控制信道区域之前,包括:所述终端设备接收第三 信令,然后,所述终端设备根据所述第三信令确定所述控制信道区域。
可选的,该第三信令也可以是网络设备发送的,在网络设备侧的具体实现为:网络设备在所述搜索空间中发送下行控制信息之前,网络设备发送第三信令。
网络设备确定控制信道区域,包括:网络设备所述控制信道区域占用N个短资源块SRB或者N个SREG。
其具体实现中包括以下几种方式:
第一种方式,终端设备确定控制信道区域占用N个SRB或N个SREG,其中,N为正整数。可选的,终端设备根据接收到的第三信令确定控制信道区域占用N个SRB或N个SREG。可选的,N可以被C整除,即N=C*a(a为正整数)。其中,C为一个下行物理信道最小占用的SRB数,或,C为一个CCE占用的SRB数,C为正整数,例如,C=3或4。该方法中,N可以被C整除,排除了资源指示的冗余状态。
第二种方式,控制信道区域占用连续的N个SRB或N个SREG,第三信令指示所述连续的N个SRB或N个SREG的起点和终点。这样,第三信令包括
Figure PCTCN2016082056-appb-000023
比特用于指示所述连续的N个SRB或N个SREG的信息,其中,NSRB为可用带宽包括的SRB数或SREG数。
第三种方式,控制信道区域占用连续的N个SRB或N个SREG,所述连续的N个SRB或N个SREG的起点为该可用带宽中具有最小SRB号的SRB或最小SREG号的SREG,第三信令指示N的取值,或者,指示所述连续的N个SRB或N个SREG的终点。这样,第三信令包括
Figure PCTCN2016082056-appb-000024
比特用于指示所述N的信息。
第四种方式,控制信道区域占用N个SRB或N个SREG,包括编号为(SSRB+i)mod NSRB的SRB或SREG,i=0,…,N-1,第三信令指示N的取值。其中,SSRB是根据小区标识(Cell ID,
Figure PCTCN2016082056-appb-000025
)计算出来的,例如
Figure PCTCN2016082056-appb-000026
或者
Figure PCTCN2016082056-appb-000027
或者
Figure PCTCN2016082056-appb-000028
k为正整数。这样,第三信令包括
Figure PCTCN2016082056-appb-000029
比特用于指示所述N的信息。
五、控制信道区域确定方案二
终端设备根据接收到的第四信令确定控制信道区域占用M个虚拟短资源块(Virtual Short Resource Block,VSRB);终端设备根据VSRB和物理短资源块(Physical Short Resource Block,PSRB)的映射关系确定控制信道区域占用的物理短资源块PSRB。需要说明的是,VSRB和PSRB的大小同SRB处定义。可选的,VSRB和PSRB一一映射,即nPRB=nVRB,nPRB为PSRB号(number),nVRB为VSRB号,图6为本发明控制信道区域确定方案二中一控制信道区域指示示意图,例如图6所示。此时,VSRB可以称为集中式虚拟短资源块(localized VSRB,LVSRB)。可选的,VSRB和PSRB不是一一映射,即连续的VSRB对应非连续的PSRB(即分布的PSRB),图7为本发明控制信道区域确定方案二中另一控制信道区域指示示意图,例如图7所示,即连续的虚拟短资源块对应非连续的物理短资源块。此时,VSRB为分布式虚拟短资源块(distributed VSRB,DVSRB)。需要说明的是,方案二主要以VSRB与PSRB进行说明。VSREG与PSREG的实现方式可以参照VSRB与PSRB,只要把VSRB换成VSREG,PSRB换成PSREG即可,在此不再赘述。
需要说明的是,本方案中的发明实施例可以应用于第一信令和搜索空间确定。只要把“第四信令”换成“第一信令中包括的搜索空间的配置信息”,“控制信道区域”换成“搜索空间”即可,例如,所述搜索空间的配置信息指示所述搜索空间占用M个虚拟短资源块。具体内容参照方案中的描述,在此不再赘述。
可选的,所述第四信令指示所述控制信道区域占用M个连续的虚拟短资源块或M个连续的虚拟SREG(VSREG,Virtual SREG),M为正整数。可选的,所述M可以被C整除,C为正整数,例如,C等于3或4。其中,SRB和SREG的描述见上文。
在终端设备侧,在所述终端设备确定控制信道区域之前,还包括:所述终端设备接收第四信令。
可选的,所述终端设备确定控制信道区域,包括:所述终端设备根据虚拟短资源块与物理短资源块的映射关系以及所述第四信令,确定所述控制信道区域占用的M个非连续的物理资短源块,所述虚拟短资源块与物理短资源块的映射关系指示所述M个连续的虚拟短资源块对应所述M个非连续的物理短资源块。
可选的,所述终端设备确定控制信道区域,包括:所述终端设备根据VSREG与物理SREG(PSREG,Physical SREG)的映射关系以及所述第四信令,确定所述控制信道区域占用的M个非连续的PSREG,所述VSREG与PSREG的映射关系指示所述M个连续的VSREG对应所述M个非连续的PSREG。
可选的,该第四信令可以是网络设备发送的,在网络设备侧,该方案可以实现为:所述网络设备在所述搜索空间中发送下行控制信息之前,所述网络设备发送第四信令。
可选的,所述网络设备确定控制信道区域,包括:所述网络设备确定所述控制信道区域占用M个非连续的物理资短源块;所述网络设备根据所述虚拟短资源块与物理短资源块的映射关系确定所述控制信道区域占用M个连续的虚拟资短源块。
可选的,所述网络设备确定控制信道区域,包括:所述网络设备确定所述控制信道区域占用M个非连续的PSREG;所述网络设备根据所述VSREG与PSREG的映射关系确定所述控制信道区域占用M个连续的VSREG。
在该方案中,虚拟短资源块与物理短资源块的映射关系可以是预先配置的;或者,网路设备配置后,把指示映射关系的信令发送给终端设备,然后终端设备接收该指示映射关系的信令。
具体包括以下几种实现方式:
第一种实现方式,第四信令指示控制信道区域占用连续的M个VSRB。例如,第四信令指示所述连续的M个VSRB的起点和终点。这样,第四信令包括
Figure PCTCN2016082056-appb-000030
比特用于指示所述连续的M个VSRB的信息,其中,MSRB为可用带宽包括的VSRB数。例如,MSRB=50,B=11。
第二种实现方式,控制信道区域占用连续的M个VSRB,所述连续的M个VSRB的起点为该可用带宽中具有最小VSRB号的VSRB,第四信令指示M的取值。这样,第四信令包括
Figure PCTCN2016082056-appb-000031
比特用于指示所述M的信息。例如,MSRB=50,B=6,起点为VSRB号为0的VSRB,指示M的取值的信息为001001(即M=9),那么控制信道区域占用VSRB编号为0~8的9个连续 VSRB。
第三种实现方式,控制信道区域占用M个VSRB,包括编号为(SSRB+i)mod NSRB的VSRB,i=0,…,M-1,第四信令指示M的取值。其中,SSRB是根据小区标识(Cell ID,
Figure PCTCN2016082056-appb-000032
)计算出来的,例如
Figure PCTCN2016082056-appb-000033
或者
Figure PCTCN2016082056-appb-000034
或者
Figure PCTCN2016082056-appb-000035
k为正整数。这样,第四信令包括
Figure PCTCN2016082056-appb-000036
比特用于指示所述M的信息。例如,MSRB=50,B=6,
Figure PCTCN2016082056-appb-000037
指示M的取值的信息为001001(即M=9),那么控制信道区域占用VSRB编号为45~49,0~3的9个连续VSRB。
第四种实现方式,控制信道区域占用连续的M个VSRB,所述连续的M个VSRB的起点为该可用带宽中具有最小VSRB号的VSRB,第二信令指示所述连续的M个VSRB的终点。这样,第二信令包括
Figure PCTCN2016082056-appb-000038
比特用于指示所述N的信息。例如,MVRB=50,B=6,起点为编号为0的VSRB,指示终点的信息为001001(即M=9),那么控制信道区域占用VSRB编号为0~9的10个连续VSRB。
第五种实现方式,第四信令指示控制信道区域占用连续的N个VSRBG(VSRB Group),其中,一个VSRBG由P个连续的VSRB组成,P为正整数,M=N*P。例如,P为3或4。例如,第四信令指示所述连续的N个VSRBG的起点和终点。这样,第四信令包括
Figure PCTCN2016082056-appb-000039
比特用于指示所述连续的N个VSRBG的信息,其中,NSRBG为可用带宽包括的VSRBG数。例如,NSRB=50,NSRBG=16,B=8。
第六种实现方式,控制信道区域占用连续的N个VSRBG,所述连续的M个VSRB的起点为该可用带宽中具有最小VSRB号的VSRB,第四信令指示N的取值。其中,M=N*P。例如,P为3或4。这样,第四信令包括
Figure PCTCN2016082056-appb-000040
比特用于指示所述N的信息。例如,NSRBG=16,B=4,P=3,起点为VSRB号为0的VSRB,指示N的取值的信息为0011(即N=3),所以 M=9,那么控制信道区域占用VSRB编号为0~8的9个连续VSRB。
本实现方式中,第四信令开销较小,尤其是引入VSRBG后进一步降低了开销。如果网络设备无法获得准确的信道状况信息,采用DSVRB可以获得频域分集增益。
六、控制信道区域确定方案三
所述第一信令指示CCE资源,在所述终端设备确定控制信道区域之前,包括:所述终端设备接收第五信令,所述第五信令指示所述控制信道区域占用连续的Z个CCE,所述Z为正整数。
需要说明的是,本方案中的发明实施例可以应用于第一信令和搜索空间确定。只要把“第五信令”换成“第一信令中包括的搜索空间的配置信息”,“控制信道区域”换成“搜索空间”即可,例如,所述搜索空间的配置信息指示所述搜索空间占用连续的Z个CCE。具体内容参照方案中的描述,在此不再赘述。
所述终端设备确定控制信道区域,包括:所述终端设备根据所述第五信令确定所述控制信道区域。
可选的,该第五信令可以是网络设备发送的,在网络设备侧的实现具体为:所述网络设备在所述搜索空间中发送下行控制信息之前,所述网络设备发送第五信令;所述第五信令指示所述控制信道区域占用连续的Z个CCE。
其含义是,终端设备根据接收到的第五信令确定控制信道区域占用连续的Z个CCE。
可选的,第五信令指示所述连续的Z个CCE的起点和终点。这样,第二信令包括
Figure PCTCN2016082056-appb-000041
比特用于指示所述连续的Z个CCE的信息。
可选的,所述连续的Z个CCE的起点为CCE0,第二信令指示Z的取值,或者,第五信令指示所述连续的Z个CCE的终点。
七、控制信道区域确定方案四
终端设备确定控制信道区域占用M个SRBG(SRB Group),M为正整数。可选的,终端设备根据接收到的第六信令确定控制信道区域占用M个SRBG。该方法中,通过引入SRBG指示,降低了信令开销。
需要说明的是,本方案主要以VSRB与PSRB进行说明,但是同样适用于VSREG与PSREG。VSREG与PSREG的实现方式可以参照VSRB与PSRB, 只要把VSRB换成VSREG,PSRB换成PSREG即可,在此不再赘述。
需要说明的是,本方案中的发明实施例可以应用于第一信令和搜索空间确定。只要把“第六信令”换成“第一信令中包括的搜索空间的配置信息”,“控制信道区域”换成“搜索空间”即可,例如,所述搜索空间的配置信息指示所述搜索空间占用M个SRBG。具体内容参照方案中的描述,在此不再赘述。
可选的,一个SRBG由P个SRB组成,P为正整数。两种SRBG的配置方案:
SRBG配置一:一个SRBG由P个SRB组成,所述P个SRB连续分布。其中,P为正整数,例如,1,2,3或4。可选的,M*P可以被C整除,C为正整数,例如,C=3或4。例如,P=4,C=3,那么M必须可以被3整除,例如3,6,9等等。例如,P=3,C=3,那么M可以为任意正整数。
SRBG配置二:一个SRBG由P个SRB组成,所述P个SRB非连续分布或等间隔分布。其中,P为正整数,例如,3,6,9或12。图8为本发明控制信道区域确定方案四中一控制信道区域指示示意图,如图8所示,可用带宽上包括5个SRBG,每个SRBG由3个等间隔分布的SRB组成。采用该方法,一个CCE内的3个SRB非连续分布,可以获得频域分集增益。
可选的,两种第六信令的指示方法:
指示方法一:第六信令指示控制信道区域占用M个SRBG(SRB Group),M为正整数。第六信令包括NSRBG比特用于指示所述M个SRBG的信息,一个比特对应一个SRBG,即一个比特用于指示一个SRBG的占用情况,其中,
Figure PCTCN2016082056-appb-000042
例如,可用带宽上包括50个SRB,一个SRBG包括3个SRB,那么可用带宽上包括16或17(该情况下,有一个SRBG包括2个SRB)个SRBG,所以需要16或17比特指示控制信道区域占用的频域资源。如图8所示,可用带宽上包括5个SRBG,每个SRBG由3个等间隔分布的SRB组成,第六信令包括5比特,第一个和第四个比特都为“1”,说明控制信道区域占用了SRBG0和SRBG3,因此终端设备确定控制信道区域占用了SRB0,3,5,8,10和13。
指示方法二:控制信道区域占用连续的M个SRBG,第六信令指示所述连续的M个SRBG的起点和终点。这样,第六信令包括
Figure PCTCN2016082056-appb-000043
比特用于指示所述连续的M个SRBG的信息,其中,NSRBG为可用带宽包括的SRBG数。
指示方法三:控制信道区域占用连续的M个SRBG,第六信令指示控制信道区域占用的第一个SRBG(SRB Group),即第六信令指示所述M个SRBG中的第一个SRBG的位置。第六信令包括
Figure PCTCN2016082056-appb-000044
比特用于指示所述M个SRBG中的第一个SRBG的信息。例如,可用带宽上包括16个SRBG,那么需要4比特指示第一个SRBG的位置。可选的,该控制信道区域为搜索空间。此时,终端设备可以根据搜索空间大小确定M。M=C*L*Nctl,其中,C为一个CCE占用的SRB数,L为聚合级别,Nctl为候选控制信道个数。例如,C=3,L=1,Nctl=2,那么M等于6。图9为本发明控制信道区域确定方案四中另一控制信道区域指示示意图,如图9所示,采用SRBG配置二下的控制信道区域占用SRB0,1,5,6,10和11。
指示方法四:控制信道区域占用连续的M个SRBG,所述连续的M个SRBG的起点为该可用带宽中具有最小SRBG号的SRBG,第六信令指示M的取值。这样,第六信令包括
Figure PCTCN2016082056-appb-000045
比特用于指示所述M的信息。
需要说明的是,四种第六信令的指示方法中提到的SRBG采用SRBG配置一或SRBG配置二。
图10为本发明终端设备实施例一的结构示意图,该终端设备可以用于执行前述任一方案中终端设备的技术方案,如图10所示,该终端设备10包括:接收模块11,发送模块12,以及处理模块13;
所述接收模块11用于接收第一信令,所述第一信令包括搜索空间的配置信息;
所述处理模块13用于根据所述搜索空间的配置信息确定所述搜索空间占用的频域资源或控制信道单元CCE资源;
所述处理模块13还用于在所述搜索空间中检测下行控制信息。
可选的,所述处理模块13还用于确定控制信道区域。
可选的,所述搜索空间位于所述控制信道区域。
可选的,所述搜索空间的配置信息指示聚合级别L和搜索空间起点标识Y,则所述处理模块13具体用于:
根据所述搜索空间的配置信息确定搜索空间包括编号为
Figure PCTCN2016082056-appb-000046
的CCE,其中,i=0,...,L-1,m=0,...,M(L)-1,M(L)为聚合级别为L的搜索空间中包含的候选下行控制信道个数,NCCE表示所述搜索空间占用的传输时间间隔里的可用CCE总数。
可选的,所述接收模块11还用于接收第二信令,所述第二信令指示控制信道区域占用的资源,所述第二信令包括NCCEG个信息域,其中,所述NCCEG个信息域中的第i个信息域指示控制信道单元组CCEG i-1里有H个CCE配置给所述控制信道区域,i为不大于NCCEG的正整数,所述CCEG i-1由G个CCE组成,G为正整数,H为不大于G的非负整数。
可选的,所述接收模块11接收到的所述第二信令指示的所述G等于8,所述H为0,2,4或8,所述第i个信息域的比特数为2。
可选的,所述接收模块11接收到的所述搜索空间的配置信息指示所述搜索空间位于CCEG j或者所述搜索空间的配置信息指示所述搜索空间的起点位于CCEG j,其中,j为小于NCCEG的非负整数。
可选的,所述接收模块11接收到的所述第一信令还包括所述控制信道区域的配置信息,所述搜索空间的配置信息指示所述搜索空间的起点为CCE i,所述控制信道区域的配置信息指示所述控制信道区域占用连续的X个CCE,其中,X为正整数,i为小于X的非负整数;
则所述处理模块13具体用于:根据所述控制信道区域的配置信息确定所述控制信道区域。
可选的,所述接收模块11接收的所述第一信令还包括所述控制信道区域的配置信息,所述控制信道区域的配置信息指示所述控制信道区域占用连续的E个CCEG,所述搜索空间的配置信息指示所述搜索空间的起点为CCEG i,其中,E为正整数,i为小于E的非负整数;
则所述处理模块13具体用于:根据所述控制信道区域的配置信息确定所述控制信道区域。
可选的,所述接收模块11还用于接收第三信令,所述第三信令指示所述控制信道区域占用N个短资源块;其中,每个短资源块在频域上占用12个子载波且在时域上占用1或2个符号,所述N可以被3或4整除;
所述处理模块还具体用于根据所述第三信令确定所述控制信道区域。
可选的,所述接收模块11还用于接收第四信令,所述第四信令指示所述控制信道区域占用M个连续的虚拟短资源块;M为可以被3或4整除的正整数;
所述处理模块13还具体用于:根据虚拟短资源块与物理短资源块的映射关系以及所述第四信令,确定所述控制信道区域占用的M个非连续的物理资短源块,所述虚拟短资源块与物理短资源块的映射关系指示所述M个连续的虚拟短资源块对应所述M个非连续的物理短资源块。
可选的,所述接收模块11还用于接收第五信令,所述第五信令指示所述控制信道区域占用连续的Z个CCE,所述Z为正整数;
所述处理模块13还具体用于根据所述第五信令确定所述控制信道区域。
需要说明的是,本实施例中,接收模块11也可以称为接收单元11,发送模块12也可以称为发送单元12,处理模块13也可以称为处理单元13。另外,接收模块11和发送模块12也可以合并为收发模块。
本实施例提供的终端设备,用于执行前述任一方法实施例中的终端设备的技术方案,其实现原理和技术效果类似,在此不再赘述。
图11为本发明网络设备实施例二的结构示意图,该网络设备可以用于执行前述任一实施例中网络设备的技术方案,如图11所示,该网络设备20包括:发送模块21以及处理模块22;
所述处理模块22用于确定搜索空间;
所述发送模块21用于:
发送第一指令,所述第一信令包括搜索空间的配置信息,所述配置信息用于指示频域资源或CCE资源;
在所述搜索空间中发送下行控制信息。
可选的,所述处理模块22还用于确定控制信道区域,所述搜索空间位于所述控制信道区域。
可选的,所述搜索空间的配置信息指示聚合级别L和搜索空间起点标识 Y,所述处理模块22具体用于:
确定所述搜索空间包括编号为
Figure PCTCN2016082056-appb-000047
的CCE,其中,i=0,...,L-1,m=0,...,M(L)-1,M(L)为聚合级别为L的搜索空间中包含的候选下行控制信道个数,NCCE表示所述搜索空间占用的传输时间间隔里的可用CCE总数。
可选的,所述发送模块21还用于发送第二信令;所述第二信令指示所述控制信道区域占用的资源;所述第二信令包括NCCEG个信息域;其中,所述NCCEG个信息域中的第i个信息域指示控制信道单元组CCEG i-1里有H个CCE配置给所述控制信道区域,i为不大于NCCEG的正整数,所述CCEG i-1由G个CCE组成,G为正整数,H为不大于G的非负整数。
可选的,所述发送模块21发送的所述第二信令指示的所述G等于8,所述H为0,2,4或8,所述第i个信息域的比特数为2。
可选的,所述发送模块21发送的所述搜索空间的配置信息指示所述搜索空间位于CCEG j或者所述搜索空间的配置信息指示所述搜索空间的起点位于CCEG j,其中,j为小于NCCEG的非负整数。
可选的,所述发送模块21接收的所述第一信令还包括所述控制信道区域的配置信息,所述控制信道区域的配置信息指示所述控制信道区域占用连续的E个CCEG,所述搜索空间的配置信息指示所述搜索空间的起点为CCEG i,其中,E为正整数,i为小于E的非负整数。
可选的,所述发送模块21还用于发送第三信令,所述第三信令指示所述控制信道区域占用N个短资源块;其中,每个短资源块在频域上占用12个子载波且在时域上占用1或2个符号,所述N可以被3或4整除。
可选的,所述发送模块21还用于发送第四信令;所述第四信令指示所述控制信道区域占用M个连续的虚拟短资源块;M为可以被3或4整除的正整数;
所述M个连续的虚拟短资源块对应M个非连续的物理短资源块。
可选的,所述发送模块21还用于发送第五信令;所述第五信令指示所述控制信道区域占用连续的Z个CCE,所述Z为正整数。
需要说明的是,本实施例中的网络设备还可以包括接收模块,另外,发 送模块21也可以称为发送单元21,处理模块22也可以称为处理单元22。另外,接收模块21和发送模块也可以合并为收发模块。
本实施例提供的网络设备,用于执行前述任一方法实施例中的网络设备的技术方案,其实现原理和技术效果类似,在此不再赘述。
图12为本发明终端设备实施例二的结构示意图,如图12所示,该终端设备可以包括:处理器32、发送器33以及接收器34,另外,还可以包括存储器31。
所述接收器34用于接收第一信令,所述第一信令包括搜索空间的配置信息;
所述处理器32用于根据所述搜索空间的配置信息确定所述搜索空间占用的频域资源或控制信道单元CCE资源;
所述处理器32用于在所述搜索空间中检测下行控制信息。
可选的,所述处理器32还用于确定控制信道区域;所述搜索空间位于所述控制信道区域。
可选的,所述搜索空间的配置信息指示聚合级别L和搜索空间起点标识Y,则所述处理器32具体用于:
根据所述搜索空间的配置信息确定搜索空间包括编号为
Figure PCTCN2016082056-appb-000048
的CCE,其中,i=0,...,L-1,m=0,...,M(L)-1,M(L)为聚合级别为L的搜索空间中包含的候选下行控制信道个数,NCCE表示所述搜索空间占用的传输时间间隔里的可用CCE总数。
可选的,所述接收器34还用于接收第二信令,所述第二信令指示控制信道区域占用的资源,所述第二信令包括NCCEG个信息域,其中,所述NCCEG个信息域中的第i个信息域指示控制信道单元组CCEG i-1里有H个CCE配置给所述控制信道区域,i为不大于NCCEG的正整数,所述CCEG i-1由G个CCE组成,G为正整数,H为不大于G的非负整数。
可选的,所述接收器34接收到的所述第二信令指示的所述G等于8,所述H为0,2,4或8,所述第i个信息域的比特数为2。
可选的,所述接收器34接收到的所述搜索空间的配置信息指示所述搜索空间位于CCEG j或者所述搜索空间的配置信息指示所述搜索空间的起点位于CCEG j,其中,j为小于NCCEG的非负整数。
可选的,所述接收器34接收到的所述第一信令还包括所述控制信道区域的配置信息,所述搜索空间的配置信息指示所述搜索空间的起点为CCE i,所述控制信道区域的配置信息指示所述控制信道区域占用连续的X个CCE,其中,X为正整数,i为小于X的非负整数;
则所述处理器32具体用于:根据所述控制信道区域的配置信息确定所述控制信道区域。
可选的,所述接收器34接收的所述第一信令还包括所述控制信道区域的配置信息,所述控制信道区域的配置信息指示所述控制信道区域占用连续的E个CCEG,所述搜索空间的配置信息指示所述搜索空间的起点为CCEG i,其中,E为正整数,i为小于E的非负整数;
则所述处理器32具体用于:根据所述控制信道区域的配置信息确定所述控制信道区域。
可选的,所述接收器34还用于接收第三信令,所述第三信令指示所述控制信道区域占用N个短资源块;其中,每个短资源块在频域上占用12个子载波且在时域上占用1或2个符号,所述N可以被3或4整除;
所述处理器还具体用于根据所述第三信令确定所述控制信道区域。
可选的,所述接收器34还用于接收第四信令,所述第四信令指示所述控制信道区域占用M个连续的虚拟短资源块;M为可以被3或4整除的正整数;
所述处理器32还具体用于:根据虚拟短资源块与物理短资源块的映射关系以及所述第四信令,确定所述控制信道区域占用的M个非连续的物理资短源块,所述虚拟短资源块与物理短资源块的映射关系指示所述M个连续的虚拟短资源块对应所述M个非连续的物理短资源块。
可选的,所述接收器34还用于接收第五信令,所述第五信令指示所述控制信道区域占用连续的Z个CCE,所述Z为正整数;
所述处理器32还具体用于根据所述第五信令确定所述控制信道区域。
可以理解的是图12仅仅示出了终端设备的简化设计,在实际应用中,终端设备可以包含任意数量的发送器、接收器、处理器、控制器、存储器等,而所有的可以实现本发明的终端设备都在本发明保护的范围之内。不失一般性,发送器和接收器也可以合并为收发器。
本实施例提供的终端设备,用于执行前述任一方法实施例的技术方案, 其实现原理和技术效果类似,在此不再赘述。
图13为本发明网络设备实施例二的结构示意图,如图13所示,该网络设备包括:处理器42以及发送器43。另外,还可以包括存储器41。
处理器42用于确定搜索空间。
所述发送器43用于:
发送第一指令,所述第一信令包括搜索空间的配置信息,所述配置信息用于指示频域资源或CCE资源;
在所述搜索空间中发送下行控制信息。
可选的,所述处理器42还用于确定控制信道区域,所述搜索空间位于所述控制信道区域。
可选的,所述搜索空间的配置信息指示聚合级别L和搜索空间起点标识Y,所述处理器42具体用于:
确定所述搜索空间包括编号为
Figure PCTCN2016082056-appb-000049
的CCE,其中,i=0,...,L-1,m=0,...,M(L)-1,M(L)为聚合级别为L的搜索空间中包含的候选下行控制信道个数,NCCE表示所述搜索空间占用的传输时间间隔里的可用CCE总数。
可选的,所述发送器43还用于发送第二信令;所述第二信令指示所述控制信道区域占用的资源;所述第二信令包括NCCEG个信息域;其中,所述NCCEG个信息域中的第i个信息域指示控制信道单元组CCEG i-1里有H个CCE配置给所述控制信道区域,i为不大于NCCEG的正整数,所述CCEG i-1由G个CCE组成,G为正整数,H为不大于G的非负整数。
可选的,所述发送器43发送的所述第二信令指示的所述G等于8,所述H为0,2,4或8,所述第i个信息域的比特数为2。
可选的,所述发送器43发送的所述搜索空间的配置信息指示所述搜索空间位于CCEG j或者所述搜索空间的配置信息指示所述搜索空间的起点位于CCEG j,其中,j为小于NCCEG的非负整数。
可选的,所述发送器43接收的所述第一信令还包括所述控制信道区域的配置信息,所述控制信道区域的配置信息指示所述控制信道区域占用连续的E个CCEG,所述搜索空间的配置信息指示所述搜索空间的起点为CCEG i, 其中,E为正整数,i为小于E的非负整数。
可选的,所述发送器43还用于发送第三信令,所述第三信令指示所述控制信道区域占用N个短资源块;其中,每个短资源块在频域上占用12个子载波且在时域上占用1或2个符号,所述N可以被3或4整除。
可选的,所述发送器43还用于发送第四信令;所述第四信令指示所述控制信道区域占用M个连续的虚拟短资源块;M为可以被3或4整除的正整数;
所述M个连续的虚拟短资源块对应M个非连续的物理短资源块。
可选的,所述发送器43还用于发送第五信令;所述第五信令指示所述控制信道区域占用连续的Z个CCE,所述Z为正整数。
可以理解的是图13仅仅示出了网络设备的简化设计,在实际应用中,网络设备可以包含任意数量的接收器、发送器、处理器、控制器、存储器等,而所有的可以实现本发明的网络设备都在本发明保护的范围之内。不失一般性,发送器和接收器也可以合并为收发器。
本实施例提供的网络设备,用于执行前述任一方法实施例的技术方案,其实现原理和技术效果类似,在此不再赘述。
在上述终端设备或网络设备的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (42)

  1. 一种下行控制信息的检测方法,其特征在于,包括:
    终端设备接收第一信令,所述第一信令包括搜索空间的配置信息;
    所述终端设备根据所述搜索空间的配置信息确定所述搜索空间占用的频域资源或控制信道单元CCE资源;
    所述终端设备在所述搜索空间中检测下行控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备在所述搜索空间中检测下行控制信息之前,所述方法还包括:
    所述终端设备确定控制信道区域;所述搜索空间位于所述控制信道区域。
  3. 根据权利要求1或2所述的方法,其特征在于,所述搜索空间的配置信息指示聚合级别L和搜索空间起点标识Y,则所述终端设备根据所述搜索空间的配置信息确定所述搜索空间占用的CCE资源,包括:
    所述终端设备根据所述搜索空间的配置信息确定搜索空间包括编号为
    Figure PCTCN2016082056-appb-100001
    的CCE,其中,i=0,...,L-1,m=0,...,M(L)-1,M(L)为聚合级别为L的搜索空间中包含的候选下行控制信道个数,NCCE表示所述搜索空间占用的传输时间间隔里的可用CCE总数。
  4. 根据权利要求2所述的方法,其特征在于,所述终端设备确定控制信道区域之前,所述方法还包括:
    所述终端设备接收第二信令,所述第二信令指示控制信道区域占用的资源,所述第二信令包括NCCEG个信息域,其中,所述NCCEG个信息域中的第i个信息域指示控制信道单元组CCEG i-1里有H个CCE配置给所述控制信道区域,i为不大于NCCEG的正整数,所述CCEG i-1由G个CCE组成,G为正整数,H为不大于G的非负整数。
  5. 根据权利要求4所述的方法,其特征在于,所述G等于8,所述H为0,2,4或8,所述第i个信息域的比特数为2。
  6. 根据权利要求4或5所述的方法,其特征在于,所述搜索空间的配置信息指示所述搜索空间位于CCEG j或者所述搜索空间的配置信息指示所述搜索空间的起点位于CCEG j,其中,j为小于NCCEG的非负整数。
  7. 根据权利要求2所述的方法,其特征在于,所述第一信令还包括所述 控制信道区域的配置信息,所述搜索空间的配置信息指示所述搜索空间的起点为CCE i,所述控制信道区域的配置信息指示所述控制信道区域占用连续的X个CCE,其中,X为正整数,i为小于X的非负整数;
    所述终端设备确定控制信道区域,包括:
    所述终端设备根据所述控制信道区域的配置信息确定所述控制信道区域。
  8. 根据权利要求2所述的方法,其特征在于,所述第一信令还包括所述控制信道区域的配置信息,所述控制信道区域的配置信息指示所述控制信道区域占用连续的E个CCEG,所述搜索空间的配置信息指示所述搜索空间的起点为CCEG i,其中,E为正整数,i为小于E的非负整数;
    所述终端设备确定控制信道区域,包括:
    所述终端设备根据所述控制信道区域的配置信息确定所述控制信道区域。
  9. 根据权利要求2所述的方法,其特征在于,所述终端设备确定控制信道区域之前,还包括:
    所述终端设备接收第三信令,所述第三信令指示所述控制信道区域占用N个短资源块;其中,每个短资源块在频域上占用12个子载波且在时域上占用1或2个符号,所述N可以被3或4整除;
    所述终端设备确定控制信道区域,包括:
    所述终端设备根据所述第三信令确定所述控制信道区域。
  10. 根据权利要求2所述的方法,其特征在于,所述终端设备确定控制信道区域之前,还包括:
    所述终端设备接收第四信令,所述第四信令指示所述控制信道区域占用M个连续的虚拟短资源块;M为可以被3或4整除的正整数;
    所述终端设备确定控制信道区域,包括:
    所述终端设备根据虚拟短资源块与物理短资源块的映射关系以及所述第四信令,确定所述控制信道区域占用的M个非连续的物理资短源块,所述虚拟短资源块与物理短资源块的映射关系指示所述M个连续的虚拟短资源块对应所述M个非连续的物理短资源块。
  11. 根据权利要求2所述的方法,其特征在于,所述终端设备确定控制 信道区域之前,包括:
    所述终端设备接收第五信令,所述第五信令指示所述控制信道区域占用连续的Z个CCE,所述Z为正整数;
    所述终端设备确定控制信道区域,包括:
    所述终端设备根据所述第五信令确定所述控制信道区域。
  12. 一种下行控制信息的发送方法,其特征在于,包括:
    网络设备发送第一指令,所述第一信令包括搜索空间的配置信息,所述配置信息用于指示频域资源或控制信道单元CCE资源;
    所述网络设备在所述搜索空间中发送下行控制信息。
  13. 根据权利要求12所述的方法,其特征在于,所述网络设备发送第一信令之前,还包括:
    所述网络设备确定控制信道区域,所述搜索空间位于所述控制信道区域。
  14. 根据权利要求12或13所述的方法,其特征在于,所述搜索空间的配置信息指示聚合级别L和搜索空间起点标识Y,所述网络设备发送第一信令之前,还包括:
    所述网络设备确定所述搜索空间包括编号为
    Figure PCTCN2016082056-appb-100002
    的CCE,其中,i=0,...,L-1,m=0,...,M(L)-1,M(L)为聚合级别为L的搜索空间中包含的候选下行控制信道个数,NCCE表示所述搜索空间占用的传输时间间隔里的可用CCE总数。
  15. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二信令;所述第二信令指示所述控制信道区域占用的资源;所述第二信令包括NCCEG个信息域;其中,所述NCCEG个信息域中的第i个信息域指示控制信道单元组CCEG i-1里有H个CCE配置给所述控制信道区域,i为不大于NCCEG的正整数,所述CCEG i-1由G个CCE组成,G为正整数,H为不大于G的非负整数。
  16. 根据权利要求15所述的方法,其特征在于,所述G等于8,所述H为0,2,4或8,所述第i个信息域的比特数为2。
  17. 根据权利要求15或16所述的方法,其特征在于,所述搜索空间的配置信息指示所述搜索空间位于CCEG j或者所述搜索空间的配置信息 指示所述搜索空间的起点位于CCEG j,其中,j为小于NCCEG的非负整数。
  18. 根据权利要求13所述的方法,其特征在于,所述第一信令还包括所述控制信道区域的配置信息,所述控制信道区域的配置信息指示所述控制信道区域占用连续的E个CCEG,所述搜索空间的配置信息指示所述搜索空间的起点为CCEG i,其中,E为正整数,i为小于E的非负整数。
  19. 根据权利要求13所述的方法,其特征在于,所述网络设备在所述搜索空间中发送下行控制信息之前,所述方法还包括:
    所述网络设备发送第三信令,所述第三信令指示所述控制信道区域占用N个短资源块;其中,每个短资源块在频域上占用12个子载波且在时域上占用1或2个符号,所述N可以被3或4整除。
  20. 根据权利要求13所述的方法,其特征在于,所述网络设备在所述搜索空间中发送下行控制信息之前,所述方法还包括:
    所述网络设备发送第四信令;所述第四信令指示所述控制信道区域占用M个连续的虚拟短资源块;M为可以被3或4整除的正整数;
    所述M个连续的虚拟短资源块对应M个非连续的物理短资源块。
  21. 根据权利要求13所述的方法,其特征在于,所述网络设备在所述搜索空间中发送下行控制信息之前,所述方法还包括:
    所述网络设备发送第五信令;所述第五信令指示所述控制信道区域占用连续的Z个CCE,所述Z为正整数。
  22. 一种终端设备,其特征在于,包括:
    接收模块,用于接收第一信令,所述第一信令包括搜索空间的配置信息;
    处理模块,用于根据所述搜索空间的配置信息确定所述搜索空间占用的频域资源或控制信道单元CCE资源;
    所述处理模块,还用于在所述搜索空间中检测下行控制信息。
  23. 根据权利要求22所述的终端设备,其特征在于,所述处理模块还用于确定控制信道区域;所述搜索空间位于所述控制信道区域。
  24. 根据权利要求22或23所述的终端设备,其特征在于,所述搜索空间的配置信息指示聚合级别L和搜索空间起点标识Y,则所述处理模块具体用于:
    根据所述搜索空间的配置信息确定搜索空间包括编号为
    Figure PCTCN2016082056-appb-100003
    的CCE,其中,i=0,...,L-1,m=0,...,M(L)-1,M(L)为聚合级别为L的搜索空间中包含的候选下行控制信道个数,NCCE表示所述搜索空间占用的传输时间间隔里的可用CCE总数。
  25. 根据权利要求23所述的终端设备,其特征在于,所述接收模块还用于接收第二信令,所述第二信令指示控制信道区域占用的资源,所述第二信令包括NCCEG个信息域,其中,所述NCCEG个信息域中的第i个信息域指示控制信道单元组CCEG i-1里有H个CCE配置给所述控制信道区域,i为不大于NCCEG的正整数,所述CCEG i-1由G个CCE组成,G为正整数,H为不大于G的非负整数。
  26. 根据权利要求25所述的终端设备,其特征在于,所述接收模块接收到的所述第二信令指示的所述G等于8,所述H为0,2,4或8,所述第i个信息域的比特数为2。
  27. 根据权利要求25或26所述的终端设备,其特征在于,所述接收模块接收到的所述搜索空间的配置信息指示所述搜索空间位于CCEG j或者所述搜索空间的配置信息指示所述搜索空间的起点位于CCEG j,其中,j为小于NCCEG的非负整数。
  28. 根据权利要求23所述的终端设备,其特征在于,所述接收模块接收到的所述第一信令还包括所述控制信道区域的配置信息,所述搜索空间的配置信息指示所述搜索空间的起点为CCE i,所述控制信道区域的配置信息指示所述控制信道区域占用连续的X个CCE,其中,X为正整数,i为小于X的非负整数;
    则所述处理模块具体用于:根据所述控制信道区域的配置信息确定所述控制信道区域。
  29. 根据权利要求23所述的终端设备,其特征在于,所述接收模块接收的所述第一信令还包括所述控制信道区域的配置信息,所述控制信道区域的配置信息指示所述控制信道区域占用连续的E个CCEG,所述搜索空间的配置信息指示所述搜索空间的起点为CCEG i,其中,E为正整数,i为小于E的非负整数;
    则所述处理模块具体用于:根据所述控制信道区域的配置信息确定所述控制信道区域。
  30. 根据权利要求23所述的终端设备,其特征在于,所述接收模块还用于接收第三信令,所述第三信令指示所述控制信道区域占用N个短资源块;其中,每个短资源块在频域上占用12个子载波且在时域上占用1或2个符号,所述N可以被3或4整除;
    所述处理模块还具体用于根据所述第三信令确定所述控制信道区域。
  31. 根据权利要求23所述的终端设备,其特征在于,所述接收模块还用于接收第四信令,所述第四信令指示所述控制信道区域占用M个连续的虚拟短资源块;M为可以被3或4整除的正整数;
    所述处理模块还具体用于:根据虚拟短资源块与物理短资源块的映射关系以及所述第四信令,确定所述控制信道区域占用的M个非连续的物理资短源块,所述虚拟短资源块与物理短资源块的映射关系指示所述M个连续的虚拟短资源块对应所述M个非连续的物理短资源块。
  32. 根据权利要求23所述的终端设备,其特征在于,所述接收模块还用于接收第五信令,所述第五信令指示所述控制信道区域占用连续的Z个CCE,所述Z为正整数;
    所述处理模块还具体用于根据所述第五信令确定所述控制信道区域。
  33. 一种网络设备,其特征在于,包括:
    处理模块,用于确定搜索空间;
    发送模块,用于发送第一指令,所述第一信令包括所述搜索空间的配置信息,所述配置信息用于指示频域资源或控制信道单元CCE资源;
    所述发送模块,还用于在所述搜索空间中发送下行控制信息。
  34. 根据权利要求33所述的网络设备,其特征在于,所述处理模块还用于确定控制信道区域,所述搜索空间位于所述控制信道区域。
  35. 根据权利要求33或34所述的网络设备,其特征在于,所述搜索空间的配置信息指示聚合级别L和搜索空间起点标识Y,所述处理模块具体用于:
    确定所述搜索空间包括编号为
    Figure PCTCN2016082056-appb-100004
    的CCE,其中,i=0,...,L-1,m=0,...,M(L)-1,M(L)为聚合级别为L的搜索空间中包含的候选下行控制信道个数,NCCE表示所述搜索空间占用的传输时间间隔里的可 用CCE总数。
  36. 根据权利要求34所述的网络设备,其特征在于,所述发送模块还用于发送第二信令;所述第二信令指示所述控制信道区域占用的资源;所述第二信令包括NCCEG个信息域;其中,所述NCCEG个信息域中的第i个信息域指示控制信道单元组CCEG i-1里有H个CCE配置给所述控制信道区域,i为不大于NCCEG的正整数,所述CCEG i-1由G个CCE组成,G为正整数,H为不大于G的非负整数。
  37. 根据权利要求36所述的网络设备,其特征在于,所述发送模块发送的所述第二信令指示的所述G等于8,所述H为0,2,4或8,所述第i个信息域的比特数为2。
  38. 根据权利要求36或37所述的网络设备,其特征在于,所述发送模块发送的所述搜索空间的配置信息指示所述搜索空间位于CCEG j或者所述搜索空间的配置信息指示所述搜索空间的起点位于CCEG j,其中,j为小于NCCEG的非负整数。
  39. 根据权利要求34所述的网络设备,其特征在于,所述发送模块接收的所述第一信令还包括所述控制信道区域的配置信息,所述控制信道区域的配置信息指示所述控制信道区域占用连续的E个CCEG,所述搜索空间的配置信息指示所述搜索空间的起点为CCEG i,其中,E为正整数,i为小于E的非负整数。
  40. 根据权利要求34所述的网络设备,其特征在于,所述发送模块还用于发送第三信令,所述第三信令指示所述控制信道区域占用N个短资源块;其中,每个短资源块在频域上占用12个子载波且在时域上占用1或2个符号,所述N可以被3或4整除。
  41. 根据权利要求34所述的网络设备,其特征在于,所述发送模块还用于发送第四信令;所述第四信令指示所述控制信道区域占用M个连续的虚拟短资源块;M为可以被3或4整除的正整数;
    所述M个连续的虚拟短资源块对应M个非连续的物理短资源块。
  42. 根据权利要求34所述的网络设备,其特征在于,所述发送模块还用于发送第五信令;所述第五信令指示所述控制信道区域占用连续的Z个CCE,所述Z为正整数。
PCT/CN2016/082056 2016-05-13 2016-05-13 下行控制信息的发送方法、检测方法和设备 WO2017193377A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2016/082056 WO2017193377A1 (zh) 2016-05-13 2016-05-13 下行控制信息的发送方法、检测方法和设备
KR1020187036021A KR20190005989A (ko) 2016-05-13 2016-05-13 다운링크 제어 정보 전송 방법 및 검출 방법 및 디바이스
CN201680085442.8A CN109076513A (zh) 2016-05-13 2016-05-13 下行控制信息的发送方法、检测方法和设备
EP16901332.3A EP3451761B1 (en) 2016-05-13 2016-05-13 Downlink control information sending method and detection method and device
BR112018073215-0A BR112018073215A2 (pt) 2016-05-13 2016-05-13 método de envio de informações de controle de enlace descendente, método de detecção de informações de controle de enlace descendente, e dispositivo
JP2018559977A JP2019517208A (ja) 2016-05-13 2016-05-13 ダウンリンク制御情報の送信方法、ダウンリンク制御情報の検出方法、及びデバイス
US16/189,718 US10869304B2 (en) 2016-05-13 2018-11-13 Downlink control information sending method, downlink control information detection method, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082056 WO2017193377A1 (zh) 2016-05-13 2016-05-13 下行控制信息的发送方法、检测方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/189,718 Continuation US10869304B2 (en) 2016-05-13 2018-11-13 Downlink control information sending method, downlink control information detection method, and device

Publications (1)

Publication Number Publication Date
WO2017193377A1 true WO2017193377A1 (zh) 2017-11-16

Family

ID=60266876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082056 WO2017193377A1 (zh) 2016-05-13 2016-05-13 下行控制信息的发送方法、检测方法和设备

Country Status (7)

Country Link
US (1) US10869304B2 (zh)
EP (1) EP3451761B1 (zh)
JP (1) JP2019517208A (zh)
KR (1) KR20190005989A (zh)
CN (1) CN109076513A (zh)
BR (1) BR112018073215A2 (zh)
WO (1) WO2017193377A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112738840A (zh) * 2018-06-29 2021-04-30 Oppo广东移动通信有限公司 一种配置pdcch检测的方法及相关设备
US11800517B2 (en) 2018-06-12 2023-10-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting downlink signal and terminal device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3363139T3 (da) * 2016-11-02 2019-05-13 Ericsson Telefon Ab L M Overvågning af søgningsområder i trådløse kommunikationsnetværk
JP6935499B2 (ja) * 2016-12-19 2021-09-15 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 情報伝送方法、ネットワーク機器及び端末装置
CN108809582B (zh) * 2017-05-05 2021-07-20 华为技术有限公司 一种数据传输的方法和装置
WO2019095256A1 (en) * 2017-11-17 2019-05-23 Panasonic Intellectual Property Corporation Of America Base station, user equipment and wireless communication method
CN110536270B (zh) * 2018-09-28 2023-09-01 中兴通讯股份有限公司 数据发送、接收方法、装置、终端、基站及存储介质
CN112291049B (zh) * 2019-07-24 2023-03-31 中国移动通信有限公司研究院 节能信号的tci状态配置方法及装置
CN114946256A (zh) * 2020-01-13 2022-08-26 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200684A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
CN103391563A (zh) * 2012-05-11 2013-11-13 中兴通讯股份有限公司 下行控制信息发送方法、检测方法、基站及用户设备
US20140247816A1 (en) * 2011-10-13 2014-09-04 Lg Electronics Inc. Method and device for receiving control information in wireless communication system
CN104054290A (zh) * 2011-11-04 2014-09-17 高通股份有限公司 用于无线通信网络中的e-pdcch的搜索空间设计

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9344259B2 (en) * 2007-06-20 2016-05-17 Google Technology Holdings LLC Control channel provisioning and signaling
CN101478808B (zh) * 2009-01-21 2014-03-19 中兴通讯股份有限公司 一种下行控制信息的发送及检测方法
WO2012011240A1 (ja) * 2010-07-21 2012-01-26 パナソニック株式会社 基地局、端末、送信方法、及び受信方法
CN102355340B (zh) * 2011-08-12 2017-02-08 中兴通讯股份有限公司 下行控制信息发送、接收方法及装置
CN102547738B (zh) 2011-12-07 2015-02-25 北京邮电大学 控制信道资源分配方法以及基于其的终端盲检测方法
PL2797372T3 (pl) * 2012-01-19 2019-07-31 Sun Patent Trust Urządzenie nadawcze i sposób prowadzenia transmisji dla ulepszonego fizycznego kanału sterowania downlinkiem
US8589386B2 (en) * 2012-04-03 2013-11-19 Oracle International Corporation Card view for project resource search results
CN103546233B (zh) 2012-07-12 2016-12-28 电信科学技术研究院 一种盲检方式确定方法、盲检方法及装置
CN103716274B (zh) * 2012-09-29 2018-08-07 中兴通讯股份有限公司 下行控制信息的传输方法和装置
GB2509161B (en) 2012-12-21 2018-09-26 Sony Corp Telecommunications apparatus and method
US10149287B2 (en) * 2013-01-16 2018-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for sending and receiving downlink control information
CN104244417A (zh) * 2013-06-08 2014-12-24 北京三星通信技术研究有限公司 Tdd上行下行配置的指示方法及用户设备
US10805914B2 (en) * 2016-03-30 2020-10-13 Lg Electronics Inc. Method for receiving downlink control information in wireless communication system supporting unlicensed band, and device for supporting same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140247816A1 (en) * 2011-10-13 2014-09-04 Lg Electronics Inc. Method and device for receiving control information in wireless communication system
CN104054290A (zh) * 2011-11-04 2014-09-17 高通股份有限公司 用于无线通信网络中的e-pdcch的搜索空间设计
CN103200684A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
CN103391563A (zh) * 2012-05-11 2013-11-13 中兴通讯股份有限公司 下行控制信息发送方法、检测方法、基站及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3451761A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11800517B2 (en) 2018-06-12 2023-10-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting downlink signal and terminal device
CN112738840A (zh) * 2018-06-29 2021-04-30 Oppo广东移动通信有限公司 一种配置pdcch检测的方法及相关设备
CN112738840B (zh) * 2018-06-29 2022-12-06 Oppo广东移动通信有限公司 一种配置pdcch检测的方法及相关设备
US11540264B2 (en) 2018-06-29 2022-12-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for configuring PDCCH detection and related device

Also Published As

Publication number Publication date
KR20190005989A (ko) 2019-01-16
US20190082430A1 (en) 2019-03-14
US10869304B2 (en) 2020-12-15
EP3451761A1 (en) 2019-03-06
JP2019517208A (ja) 2019-06-20
EP3451761A4 (en) 2019-04-24
EP3451761B1 (en) 2020-04-29
CN109076513A (zh) 2018-12-21
BR112018073215A2 (pt) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2017193377A1 (zh) 下行控制信息的发送方法、检测方法和设备
US11323992B2 (en) Method for detecting downlink control information, terminal device, and network device
CN110463121B (zh) 用于接收下行链路数据传输的方法和装置
WO2016119455A1 (zh) 下行控制信息dci的配置、下行数据的接收方法及装置
WO2018054263A1 (zh) 发送或接收物理下行控制信道的方法和设备
EP3402240B1 (en) Method for detecting downlink control information, and method and device for transmitting downlink control information
CN113728714A (zh) 用于多段pusch的传送格式
WO2013067845A1 (zh) 下行控制信息的传输方法和设备
TW202038654A (zh) 用於多工上行控制資訊(uci)的方法及裝置
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
WO2019184565A1 (zh) 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端
WO2019095334A1 (zh) 一种下行控制信息的发送方法、终端设备和网络设备
WO2019029014A1 (zh) 通信方法、终端设备和网络设备
US20220095287A1 (en) Information Sending Method and Apparatus and Information Receiving Method and Apparatus
WO2014047904A1 (zh) 功率调整方法及系统、基站和用户设备
WO2017133340A1 (zh) 下行控制信道的确定方法及装置、终端、基站
WO2019095907A1 (zh) 资源映射方法、确定方法、网络侧设备及用户终端
CN114223169B (zh) 用于灵活的控制信道监听的装置和方法
WO2017080271A1 (zh) 传输调度信息的方法和装置
EP3886507A1 (en) Method and apparatus for reducing terminal power consumption in wireless communication system
US11949630B2 (en) Information processing method, device, equipment, and computer readable storage medium
JPWO2021211055A5 (zh)
JP7443557B2 (ja) Cch監視能力を管理するためのクライアントデバイス及びネットワークアクセスノード
EP4154456A1 (en) Scheduling multiple transport blocks each over multiple slots using single downlink control information (dci)
CN114868448A (zh) 用于配置pucch资源的用户设备和方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018559977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018073215

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016901332

Country of ref document: EP

Effective date: 20181127

ENP Entry into the national phase

Ref document number: 20187036021

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112018073215

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181112