WO2016119455A1 - 下行控制信息dci的配置、下行数据的接收方法及装置 - Google Patents

下行控制信息dci的配置、下行数据的接收方法及装置 Download PDF

Info

Publication number
WO2016119455A1
WO2016119455A1 PCT/CN2015/088303 CN2015088303W WO2016119455A1 WO 2016119455 A1 WO2016119455 A1 WO 2016119455A1 CN 2015088303 W CN2015088303 W CN 2015088303W WO 2016119455 A1 WO2016119455 A1 WO 2016119455A1
Authority
WO
WIPO (PCT)
Prior art keywords
serving cell
dci
cif
virtual carrier
downlink control
Prior art date
Application number
PCT/CN2015/088303
Other languages
English (en)
French (fr)
Inventor
杨维维
戴博
夏树强
梁春丽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016119455A1 publication Critical patent/WO2016119455A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to the field of communications, and in particular to a configuration of downlink control information DCI, a method and apparatus for receiving downlink data.
  • LTE-A Long Term Evolution Advanced
  • LTE-A Long Term Evolution Advanced
  • CA Carrier Aggregation
  • a carrier to be aggregated is called a component carrier (CC), which is also called a serving cell.
  • CC component carrier
  • PDCCH Physical Downlink Control Channel
  • SCC/SCell secondary component carrier/cell
  • the system includes at least one primary serving cell and a secondary serving cell, wherein the primary serving cell is always in an active state.
  • a physical downlink shared channel Physical Downlink Control Channel, hereinafter referred to as PDCCH
  • PDCCH Physical Downlink Control Channel
  • HS- Physical Downlink Shared Channel
  • the PDSCH)/terminal transmits a uplink data channel (Physical uplink shared channel, PUSCH for short), where the serving cell where the PDCCH is located is called a scheduling cell, and the serving cell where the PDSCH/PUSCH is located is called a scheduled serving cell.
  • PUSCH Physical uplink shared channel
  • the terminal detects a carrier indicator field (CIF) on the serving cell c, and the user equipment (User Equipment, UE for short) goes to the corresponding serving cell according to the value of the CIF. Solve the PDSCH.
  • CIF carrier indicator field
  • the terminal in the case of supporting aggregation of up to 32 serving cells, the terminal cannot correctly obtain the downlink control information of each serving cell, and an effective solution has not been proposed.
  • the present invention provides a configuration of the downlink control information DCI, a method and a device for receiving the downlink data, to at least solve the problem that the terminal cannot correctly obtain the downlink control information of each serving cell in the case of supporting aggregation of up to 32 serving cells in the related art.
  • the problem is a configuration of the downlink control information DCI, a method and a device for receiving the downlink data, to at least solve the problem that the terminal cannot correctly obtain the downlink control information of each serving cell in the case of supporting aggregation of up to 32 serving cells in the related art. The problem.
  • configuring the corresponding DCI for the aggregated serving cell further includes: when at least one of the aggregated carriers supporting the T carriers is configured and configured to perform self-scheduling, configuring, by using at least one of the following rules, a DCI corresponding to the serving cell: rule 1
  • the CRC length corresponding to the DCI is greater than L, where L is 16
  • Rule 2 the DCI includes a check field, where the size of the check field is F bits.
  • the method includes: configuring, in the case that the CIF is X bits, configuring, by using signaling, a virtual carrier indication corresponding to the serving cell, where the virtual carrier indication is used to indicate that the serving cell is in a virtual carrier set An index, wherein the virtual carrier set is obtained according to the signaling configuration.
  • the manner of configuring the virtual carrier indication corresponding to the serving cell includes at least one of: configuring the virtual carrier indication according to a correspondence between a DCI including the CIF and a PDSCH of the serving cell;
  • the CIF configures the virtual carrier indication.
  • the method before the sending, by the terminal, the DCI corresponding to the serving cell, the method further includes: grouping the aggregated serving cells.
  • the size of the DCI corresponding to each serving cell in each group is the same; or the size of the DCI format corresponding to each serving cell in each group is the same and each The private search spaces of the serving cells are the same, wherein the same common search space means that the starting point of the dedicated search space of each serving cell is the same as the search space.
  • the group index of each group is configured, where the group index is used to determine a search space corresponding to the groups.
  • the specific search space that is configured to belong to the serving cell in the same group is allocated to the physical downlink control channel PDCCH or the enhanced physical downlink control channel ePDCCH.
  • the specific search space in which the dedicated search space of the serving cell in any one of the packets is located is located in the same resource block pair set of the ePDCCH; and the dedicated search space in which the serving cell belonging to the different group is configured is located.
  • the number of sets is related to the number of groups.
  • the method before configuring the corresponding DCI for the aggregated serving cell, the method further includes: configuring the activated serving cell in a time division manner when carrier aggregation supporting at most T carriers is configured and self-scheduling is configured;
  • the method before configuring the corresponding DCI for the aggregated serving cell, the method further includes: when at most the carrier aggregation of the T carriers is supported and the self-scheduling is configured, configuring a total maximum number of blind detections corresponding to all activated serving cells.
  • the serving cell is a frequency division duplex FDD serving cell or a time division duplex TDD serving cell.
  • the DCI is configured by using at least one of the following rules when the aggregated carrier of the T carriers is configured and configured by self-scheduling: Rule 1: The CRC length corresponding to the DCI is greater than L, where L is 16; rule 2: The check domain is included in the DCI.
  • the virtual carrier indication is used to indicate an index of the serving cell in the virtual carrier set; and the correspondence between the DCI including the CIF and the PDSCH of the serving cell is acquired according to the CIF and the virtual carrier indication.
  • the virtual carrier set and/or the virtual carrier indication are obtained from signaling.
  • the method before receiving the downlink control information DCI, the method further includes: when at least the carrier aggregation of the T carriers is supported, and the self-scheduling is configured, the corresponding activated serving cell in each subframe/radio frame is obtained according to a time division manner.
  • the method before receiving the downlink control information DCI, the method further includes: performing blind aggregation detection on the activated serving cell according to the predetermined total maximum number of blind detections when carrier aggregation of T carriers is supported at most; and configuring self-scheduling;
  • the serving cell is a frequency division duplex FDD serving cell or a time division duplex TDD serving cell.
  • a device for configuring downlink control information DCI is provided, where the device is applied to a base station, including: a first configuration module, configured to support carrier aggregation of at most T carriers and configure cross-carrier scheduling
  • the device further includes: a second configuration module, configured to support carrier aggregation of the T carriers at most, and configure at least one of the following rules for configuring the DCI corresponding to the serving cell when the self-scheduling is configured: rule 1 The CRC length corresponding to the DCI is greater than L, where L is 16; Rule 2: the DCI includes a check field, where the size of the check field is F bits.
  • the apparatus further includes: a third configuration module, configured to configure, by using signaling, a virtual carrier indication corresponding to the serving cell, where the CIF is X bits, where the virtual carrier indication is used And indicating an index of the serving cell in a virtual carrier set, where the virtual carrier set is obtained according to the signaling configuration.
  • a third configuration module configured to configure, by using signaling, a virtual carrier indication corresponding to the serving cell, where the CIF is X bits, where the virtual carrier indication is used And indicating an index of the serving cell in a virtual carrier set, where the virtual carrier set is obtained according to the signaling configuration.
  • the third configuration module includes: a first configuration unit, configured to configure the virtual carrier indication according to a correspondence between a DCI including the CIF and a PDSCH of the serving cell; and/or, And a second configuration unit, configured to configure the virtual carrier indication according to the CIF.
  • the apparatus further comprises: a grouping module configured to group the aggregated serving cells.
  • the apparatus further includes: a fourth configuration module, configured to configure a DCI corresponding to each serving cell in each packet to have the same size; or, a fifth configuration module, configured to configure each serving cell in each packet
  • a fourth configuration module configured to configure a DCI corresponding to each serving cell in each packet to have the same size
  • a fifth configuration module configured to configure each serving cell in each packet
  • the corresponding DCI formats are the same size and the specific search spaces of the respective serving cells are the same, wherein the same specific search space means that the starting point of the dedicated search space of each serving cell and the search space are the same.
  • the apparatus further includes: a sixth configuration module, configured to configure a group index of each group, wherein the group index is used to determine a search space corresponding to each group.
  • a sixth configuration module configured to configure a group index of each group, wherein the group index is used to determine a search space corresponding to each group.
  • the apparatus further includes: a seventh configuration module, configured to configure a dedicated search space belonging to the serving cell in the same group to be distributed on the physical downlink control channel PDCCH or the enhanced physical downlink control channel ePDCCH.
  • a seventh configuration module configured to configure a dedicated search space belonging to the serving cell in the same group to be distributed on the physical downlink control channel PDCCH or the enhanced physical downlink control channel ePDCCH.
  • the apparatus further includes: an eighth configuration module, configured to configure a dedicated search space of the serving cell in any group to be in the same resource block pair set of the ePDCCH; and a ninth configuration module, configured to configure the group into different groups
  • the private search space of the serving cell is located in a different set of resource block pairs of the ePDCCH; wherein the number of resource block pairs of the ePDCCH is related to the number of packets.
  • the apparatus further includes: an activation module, configured to activate the serving cell in a time division manner.
  • the apparatus further includes: a configuration module, configured to configure a total maximum number of blind detections corresponding to all activated serving cells.
  • the serving cell is a frequency division duplex FDD serving cell or a time division duplex TDD serving cell.
  • the DCI is a DCI configured by using at least one of the following rules: Rule 1: The CRC length corresponding to the DCI is greater than L, where L is 16; rule 2: The check domain is included in the DCI.
  • the determining module includes: a receiving unit, configured to receive a virtual carrier indication when the CIF is X bits, where the virtual carrier indication is used to indicate an index of the serving cell in a virtual carrier set And a determining unit, configured to acquire, according to the CIF and the virtual carrier indication, a correspondence between a DCI including the CIF and a PDSCH of the serving cell.
  • the receiving unit is further configured to receive the virtual carrier set and/or the virtual carrier indication from signaling.
  • the determining module is further configured to determine, when the CIF is the same as the virtual carrier indication, that the DCI including the CIF is a DCI corresponding to a PDSCH of the serving cell.
  • the apparatus further includes: an obtaining module, configured to obtain a corresponding activated serving cell on each subframe/radio frame according to a time division manner.
  • the apparatus further includes: a detecting module configured to perform blind detection on the activated serving cell according to the predetermined total maximum number of blind detections.
  • the serving cell is a frequency division duplex FDD serving cell or a time division duplex TDD serving cell.
  • the problem that the terminal cannot correctly obtain the downlink control information of each serving cell in the case of supporting aggregation of up to 32 serving cells in the related art is solved, and the terminal correctly obtains the downlink control of supporting up to 32 aggregated serving cells. Information, so that the effect of the downlink data is correctly solved.
  • FIG. 1 is a flowchart of a method for configuring downlink control information DCI according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of an apparatus for configuring downlink control information DCI according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram (1) of a device for configuring downlink control information DCI according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram (2) of a device for configuring downlink control information DCI according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram (3) of a device for configuring downlink control information DCI according to an embodiment of the present invention
  • FIG. 6 is a structural block diagram (4) of a device for configuring downlink control information DCI according to an embodiment of the present invention
  • FIG. 7 is a structural block diagram (5) of a device for configuring downlink control information DCI according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram (6) of a device for configuring downlink control information DCI according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram (7) of a device for configuring downlink control information DCI according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram (8) of a device for configuring downlink control information DCI according to an embodiment of the present invention
  • FIG. 11 is a structural block diagram (9) of a device for configuring downlink control information DCI according to an embodiment of the present invention.
  • FIG. 12 is a structural block diagram (10) of a device for configuring downlink control information DCI according to an embodiment of the present invention
  • FIG. 13 is a flowchart of a method for receiving downlink data according to an embodiment of the present invention.
  • FIG. 14 is a structural block diagram of a receiving apparatus for downlink data according to an embodiment of the present invention.
  • FIG. 15 is a structural block diagram (1) of a receiving apparatus for downlink data according to an embodiment of the present invention.
  • 16 is a structural block diagram (2) of a receiving apparatus for downlink data according to an embodiment of the present invention.
  • 17 is a structural block diagram (3) of a receiving apparatus for downlink data according to an embodiment of the present invention.
  • Figure 18 is a schematic view of the first embodiment of the present invention.
  • Figure 19 is a schematic view of Embodiment 2 of the present invention.
  • Figure 20 is a schematic view showing the fourth embodiment of the present invention.
  • Figure 21 is a schematic view showing Embodiment 5 of the present invention.
  • Figure 22 is a schematic view showing a sixth embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for configuring downlink control information DCI according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S104 the DCI corresponding to the serving cell is sent to the terminal.
  • the DCI corresponding to the aggregated serving cell is configured by using the foregoing mode 1 or mode 2, and the terminal can not correctly obtain the downlink control of each serving cell in the case of supporting aggregation of up to 32 serving cells in the related art.
  • the problem of information enables the terminal to correctly obtain downlink control information supporting up to 32 aggregated serving cells, so as to correctly solve the effect of downlink data.
  • the corresponding DCI is configured for the aggregated serving cell, and in another optional embodiment, when at most the aggregate carrier of the T carriers is supported and the self-scheduling is configured, at least one of the following rules is adopted as the service.
  • DCI corresponding to the cell configuration Rule 1: The CRC length corresponding to the DCI is greater than L, where L is 16; Rule 2: The DCI includes a check field, where the size of the check field is F bits. Therefore, the corresponding DCI is configured for the aggregated serving cell.
  • the virtual carrier indication corresponding to the serving cell is configured by signaling.
  • the virtual carrier indication is used to indicate an index of the serving cell in the virtual carrier set, wherein the virtual carrier set is obtained according to the signaling configuration. Therefore, the terminal can obtain a correspondence between the DCI including the CIF and the corresponding PDSCH according to the CIF and the virtual carrier indication, where the signaling is, for example, high layer signaling.
  • the virtual carrier indication may be configured according to the correspondence between the DCI of the CIF and the PDSCH of the serving cell, and the virtual carrier indication corresponding to the serving cell may be configured, and the virtual carrier indication may also be configured according to the CIF.
  • the aggregated serving cells are grouped before transmitting the DCI corresponding to the serving cell to the terminal.
  • configuring the DCIs corresponding to the serving cells in each packet to be the same size; or configuring the size of the DCI format corresponding to each serving cell in each packet.
  • the same and the specific search spaces of the respective serving cells are the same, wherein the same specific search space means that the starting point of the dedicated search space of each serving cell is the same as the search space.
  • the group index of each group is configured, wherein the group index is used to determine the search space corresponding to the respective groups.
  • the dedicated search spaces of the serving cells belonging to the same group are distributed on the physical downlink control channel PDCCH or the enhanced physical downlink control channel physical downlink control channel (Enhanced Physical Downlink Control Channel (referred to as ePDCCH).
  • PDCCH physical downlink control channel
  • ePDCCH enhanced Physical Downlink Control Channel
  • the search space is located in a different set of resource block pairs of the ePDCCH; wherein the number of resource block pairs of the ePDCCH is related to the number of packets.
  • the activated serving cell before configuring the corresponding DCI for the aggregated serving cell, if at most the carrier aggregation of the T carriers is supported and the self-scheduling is configured, the activated serving cell is configured in a time division manner; in another optional embodiment The total number of blind detections corresponding to all activated serving cells is configured.
  • the serving cell is a Frequency Division Duplex (FDD) serving cell or a Time Division Duplex (TDD) serving cell.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the downlink control information size, the search space distribution, and the group corresponding to the search space location may be the same or different; when the downlink control information is configured, the downlink control information size, the search space distribution, and The foregoing search space locations may be jointly configured or configured separately; the aggregated serving cell may be located on the licensed spectrum, or may be located on the unlicensed spectrum, or partially located on the licensed spectrum, and partially located on the unlicensed spectrum.
  • a device for configuring the downlink control information DCI is further provided, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a structural block diagram of a device for configuring downlink control information DCI according to an embodiment of the present invention.
  • the device is applied to a base station.
  • the device includes: a first configuration module 22 configured to support carriers of at most T carriers.
  • mode 2 setting CIF to X bits, where X is a positive integer and X is less than N
  • CIF is used to indicate a serving cell where the downlink shared channel PDSCH corresponding to the DCI including the CIF is located
  • the device further includes: a second configuration module 32, configured to support at most the T carriers.
  • a second configuration module 32 configured to support at most the T carriers.
  • Rule 1 DCI pair
  • the CRC length should be greater than L, where L is 16
  • Rule 2 The DCI includes a check field, where the size of the check field is F bits.
  • the apparatus further includes: a third configuration module 42 configured to be in a case where the CIF is X bits. And configuring, by the signaling, a virtual carrier indication corresponding to the serving cell, where the virtual carrier indication is used to indicate an index of the serving cell in the virtual carrier set, where the virtual carrier set is obtained according to the signaling configuration.
  • the third configuration module 42 includes: a first configuration unit 422, configured to be based on a DCI including the CIF.
  • the virtual carrier indication is configured with a correspondence between the PDSCH of the serving cell; and/or the second configuration unit 424 is configured to configure the virtual carrier indication according to the CIF.
  • FIG. 6 is a structural block diagram (4) of a configuration apparatus for downlink control information DCI according to an embodiment of the present invention. As shown in FIG. 6, the apparatus further includes: a grouping module 62 configured to group aggregated serving cells.
  • FIG. 7 is a structural block diagram (5) of a configuration apparatus for downlink control information DCI according to an embodiment of the present invention.
  • the apparatus further includes: a fourth configuration module 72, configured to configure each serving cell in each packet.
  • the corresponding DCIs have the same size; or the fifth configuration module 74 is configured to configure the DCI format corresponding to each serving cell in each packet to have the same size and the same specific search space of each serving cell, where the proprietary search is performed.
  • the same space means that the starting point of the proprietary search space of each serving cell is the same as the search space.
  • FIG. 8 is a structural block diagram (6) of a configuration apparatus for downlink control information DCI according to an embodiment of the present invention. As shown in FIG. 8, the apparatus further includes: a sixth configuration module 82 configured to configure a group index of each group, where The group index is used to determine the search space corresponding to each group.
  • a sixth configuration module 82 configured to configure a group index of each group, where The group index is used to determine the search space corresponding to each group.
  • FIG. 9 is a structural block diagram (7) of a configuration apparatus for downlink control information DCI according to an embodiment of the present invention. As shown in FIG. 9, the apparatus further includes: a seventh configuration module 92 configured to configure a serving cell belonging to the same packet.
  • the private search space is distributed over the physical downlink control channel PDCCH or the enhanced physical downlink control channel ePDCCH.
  • the apparatus further includes: an eighth configuration module 1002, configured to configure a serving cell in any packet.
  • the privileged search space is located in the same resource block pair set of the ePDCCH;
  • the ninth configuration module 1004 is configured to configure a different search resource space belonging to the serving cell in the different packet to be located in a different resource block pair set of the ePDCCH; wherein, ePDCCH
  • the number of resource block pairs is related to the number of groups.
  • FIG. 11 is a structural block diagram (9) of a configuration apparatus for downlink control information DCI according to an embodiment of the present invention. As shown in FIG. 11, the apparatus further includes: an activation module 1102, configured to activate the serving cell in a time division manner.
  • an activation module 1102 configured to activate the serving cell in a time division manner.
  • FIG. 12 is a structural block diagram (10) of a configuration apparatus for downlink control information DCI according to an embodiment of the present invention. As shown in FIG. 12, the apparatus further includes: a configuration module 1202 configured to configure a total maximum blind corresponding to the activated serving cell. Number of tests.
  • the serving cell is a frequency division duplex FDD serving cell or a time division duplex TDD serving cell.
  • FIG. 13 is a flowchart of a method for receiving downlink data according to an embodiment of the present invention. As shown in FIG. 13, the process includes the following steps:
  • Step S1304 Determine, according to the carrier indication field CIF included in the DCI, a serving cell where the downlink shared channel PDSCH corresponding to the DCI including the CIF is located;
  • Step S1306 Receive downlink data from the determined PDSCH of the serving cell.
  • the terminal determines, according to the carrier indication field CIF included in the DCI, the serving cell where the downlink shared channel PDSCH corresponding to the DCI of the CIF is located, where the DCI is configured according to the foregoing two modes, and the related art is solved.
  • the terminal In the case of supporting aggregation of up to 32 serving cells, the terminal cannot correctly obtain the downlink control information of each serving cell, and the terminal correctly obtains downlink control information supporting up to 32 aggregated serving cells, thereby correct Solve the effect of the downlink data.
  • the DCI is the DCI configured by using at least one of the following rules: Rule 1: The CRC length corresponding to the DCI is greater than L, where L is 16; Rule 2: The check field is included in the DCI.
  • the foregoing step S1304 involves determining, according to the carrier indication field CIF included in the DCI, a serving cell in which the downlink shared channel PDSCH corresponding to the DCI including the CIF is located.
  • the receiving is performed.
  • the virtual carrier indication where the virtual carrier indication is used to indicate an index of the serving cell in the virtual carrier set, and the correspondence between the DCI including the CIF and the PDSCH of the serving cell is obtained according to the CIF and the virtual carrier indication.
  • the virtual carrier set and/or virtual carrier indication is obtained from signaling.
  • the DCI is the DCI corresponding to the PDSCH of the serving cell.
  • the corresponding activated serving cell in each subframe/radio frame is obtained according to a time division manner; In an optional embodiment, in this case, blind detection of the activated serving cell according to the predetermined total maximum number of blind detections;
  • the serving cell is a frequency division duplex FDD serving cell or a time division duplex TDD Service area.
  • a device for receiving downlink data is provided, which is used to implement the foregoing embodiments and preferred embodiments, and is not described herein again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 14 is a structural block diagram of a device for receiving downlink data according to an embodiment of the present invention.
  • the device is applied to a terminal.
  • the device includes: a first receiving module 1402, configured to receive downlink control information DCI;
  • the second receiving module 1406 is configured to receive downlink data from the determined PDSCH of the serving cell.
  • the DCI is DCI configured by using at least one of the following rules: Rule 1: The CRC length corresponding to the DCI is greater than L, where L is 16; Rule 2: The verification domain is included in the DCI.
  • FIG. 15 is a structural block diagram (1) of a receiving apparatus for downlink data according to an embodiment of the present invention.
  • the determining module 1404 includes: a receiving unit 140402, configured to receive a virtual carrier when the CIF is X bits. An indication, where the virtual carrier indication is used to indicate an index of the serving cell in the virtual carrier set; the determining unit 140404 is configured to acquire, according to the CIF and the virtual carrier indication, a correspondence between the DCI including the CIF and the PDSCH of the serving cell.
  • the receiving unit 140402 is further configured to receive a virtual carrier set and/or a virtual carrier indication from the signaling.
  • the determining module 1404 is further configured to determine that the DCI including the CIF is the DCI corresponding to the PDSCH of the serving cell if the CIF is the same as the virtual carrier indication.
  • FIG. 16 is a structural block diagram (2) of a receiving apparatus for downlink data according to an embodiment of the present invention. As shown in FIG. 16, the apparatus further includes: an acquiring module 1602, configured to obtain each subframe/radio frame according to a time division manner. Corresponding activation service cell.
  • the apparatus further includes: a detecting module 1702, configured to activate a service according to a predetermined total maximum number of blind detections.
  • the cell performs blind detection.
  • the serving cell is a frequency division duplex FDD serving cell or a time division duplex TDD serving cell.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; The blocks are located in the first processor, the second processor, and the third processor, respectively.
  • the physical downlink control channel/enhanced physical downlink control channel (PDCCH/ePDCCH) is used to carry downlink control information (DCI), including: uplink scheduling information, downlink scheduling information, and uplink power control information.
  • DCI downlink control information
  • the DCI format is divided into the following types: DCI format0, DCI format1, DCI format1A, DCI format1B, DCI format1C, DCI format1D, DCI format2, DCI format2A, DCI format2B, DCI format2C, DCI format2D, DCI format3, DCI format3A and DCI format4 , where: DCI format0/4 is used to indicate the scheduling of uplink data on the physical uplink shared channel (PUSCH), DCI format1, DCI format1A, DCI format1B, DCI format1C, DCI format1D, DCI format2, DCI format2A, DCI format2B, DCI format2C, The DCI format 2D is used to indicate the scheduling of uplink and downlink data of the physical downlink shared channel (PDSCH), and the DCI format 3 and the DCI format 3A are used for different modes of the power control signaling of the physical uplink control channel and the PUSCH.
  • DCI format0/4 is used to indicate the scheduling of uplink data on the physical up
  • the physical resources of the PDCCH are transmitted in units of Control Channel Elements (CCEs).
  • the size of one CCE is 9 Resource Elements Group (REG), that is, 36 Resource Elements (REs).
  • One PDCCH may occupy 1, 2, 4, 8 CCEs.
  • a search space is defined for each aggregation level, including a public search space and a user device-specific search space.
  • the public search space carries the public information related to the system information block, the access response and the paging; the search space dedicated by the UE carries the uplink and downlink scheduling authorization information of the UE.
  • the UE When receiving the downlink control information, the UE detects each common search space with aggregation levels 4 and 8, and each UE-specific search space with aggregation levels of 1, 2, 4, and 8, common search space and UE-specific search. Spaces can overlap. The specific number of detections and the corresponding search space are shown in Table 1.
  • the UE is semi-statically set by the high layer signaling to one of the following multiple transmission modes, and receives the PDSCH data according to the indication of the PDCCH of the user-specific search space:
  • Mode 1 single antenna port; port 0;
  • Mode 2 transmit diversity
  • Mode 3 open loop spatial multiplexing
  • Mode 4 closed loop spatial multiplexing
  • Mode 5 multi-user multiple input multiple output
  • Mode 7 single antenna port; port 5;
  • Mode 8 double layer transmission mode; ports 7 and 8;
  • Mode 9 Up to 8 layers of transmission: Port 7-14;
  • Mode 10 Up to 8 layers of transmission: Port 7-14;
  • the UE shall decode the PDCCH and associated PDSCH according to the respective combinations defined in Table 2.
  • CRC Cyclic Redundancy Check
  • Temporary C-RNTI Cell Radio Network Temporary Identifier
  • Table 2 downlink transmission mode, correspondence table of DCI format, search space and transmission scheme
  • the UE shall decode the PDCCH and all associated PUSCHs according to the respective combinations defined in Table 3.
  • Table 3 uplink transmission mode, correspondence table of DCI format, search space and transmission scheme
  • an enhanced PDCCH (ePDCCH) is also introduced in the subsequent version.
  • the ePDCCH is different from the PDCCH in that the ePDCCH is multiplexed with the PDSCH by means of frequency multiplexing, and the ePDCCH is mapped in the frequency domain.
  • the base station configures k resource block pair sets to be used for transmitting ePDCCH, and one resource block pair set includes N resource block pairs, where k is greater than or equal to 1, and the value of N is 1, 2, 4 , 8, 16, 1 resource block pair includes 16 enhanced resource element groups (eREGs), and one resource block can be divided into 2 eCCEs or 4 eCCEs, and Ls corresponding to ePDCCHs of consecutive mappings -eCCe is composed of eREGs in one resource pair, and D-eCCEs corresponding to ePDCCHs of discrete mapping are composed of eREGs of a plurality of resource block pairs.
  • eREGs enhanced resource element groups
  • the LTE-A system introduces a carrier aggregation technology, that is, aggregates the bandwidth of the LTE system to obtain a larger bandwidth.
  • a carrier that performs aggregation is called a component carrier (CC), which is also called a serving cell.
  • CC component carrier
  • the primary component carrier/cell Primary Component Carrier/Cell
  • SCC/SCell Secondary Component Carrier/Cell
  • the high-level signaling indicates whether the serving cell is self-scheduling or cross-carrier scheduling. If it is self-scheduling, it indicates whether the CIF domain is included. If it is cross-carrier scheduling, it indicates the cell index where the scheduling information is located.
  • FIG. 18 is a schematic diagram of the first embodiment of the present invention. As shown in FIG. 18, it is assumed that there are five downlink serving cell aggregations, and the CIF domain is configured on the downlink control information of the serving cell 1, and the high layer signaling indicates ⁇ the serving cell 2, the serving cell. 3.
  • the scheduling information corresponding to the serving cell 4 ⁇ is on the serving cell 1, that is, the DCI with the CIF of 000 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 1, and the DCI with the CIF of 001 on the serving cell 1 is the serving cell.
  • 2 downlink control information corresponding to the PDSCH the DCI with the CIF of 010 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 3; the DCI with the CIF of 011 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 4.
  • the DCI with the CIF of 100 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 5.
  • the CIF field is configured on the downlink control information of the serving cell 1, and the high-level signaling indicates that the scheduling information corresponding to the ⁇ serving cell 2, the serving cell 3, the serving cell 4, ..., the serving cell 32 ⁇ is on the serving cell 1, that is, the serving cell 1
  • the DCI with a CIF of 00000 is the downlink control information corresponding to the PDSCH on the serving cell 1.
  • the DCI with the CIF of 00001 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 2, and the DCI with the CIF of 00010 on the serving cell 1 is the serving cell.
  • the DCI with the CIF of 00101 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 6.
  • the DCI with the CIF of 00110 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 7, and the CIF on the serving cell 1 is 00111.
  • the DCI is the downlink control information corresponding to the PDSCH on the serving cell 8.
  • the DCI with the CIF of 01000 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 9, and the D with the CIF of the serving cell 1 is 01001.
  • the CI is the downlink control information corresponding to the PDSCH on the serving cell 10.
  • the DCI with the CIF of 01010 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 11, and the DCI with the CIF of 01011 on the serving cell 1 is the PDSCH corresponding to the serving cell 12.
  • the DCI with the CIF of 01100 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 13
  • the DCI with the CIF of 01101 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 14, the serving cell 1
  • the DCI with the CIF of 01110 is the downlink control information corresponding to the PDSCH on the serving cell 15
  • the DCI with the CIF of 01111 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 16
  • the DCI with the CIF of 10000 is served on the serving cell 1.
  • the downlink control information corresponding to the PDSCH on the cell 17 is that the DCI with the CIF of 10001 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 18,
  • the DCI with the CIF of 10010 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 19;
  • the DCI with the CIF of 10011 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 20;
  • the CIF of the serving cell 1 is 10100.
  • the DCI is the downlink control information corresponding to the PDSCH on the serving cell 21, and the DCI with the CIF of 10101 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 22.
  • the DCI with the CIF of 10110 on the serving cell 1 is the PDSCH corresponding to the serving cell 23.
  • the downlink control information, the DCI with the CIF of 10111 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 24, and the DCI with the CIF of 11000 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 25, the serving cell 1
  • the DCI with the CIF of 11001 is the downlink control information corresponding to the PDSCH on the serving cell 26
  • the DCI with the CIF of 11010 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 27, and the DCI of the serving cell 1 with the CIF of 11011 is the service.
  • the downlink control information corresponding to the PDSCH on the cell 28, the DCI with the CIF of 11100 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 29, and the DC of the CIF of the serving cell 1 is 11101.
  • I is the downlink control information corresponding to the PDSCH on the serving cell 30.
  • the DCI with the CIF of 11110 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 31, and the DCI with the CIF of 11111 on the serving cell 1 is the PDSCH corresponding to the serving cell 32.
  • the problem of cross-carrier scheduling in up to 32 carrier aggregations can be solved by configuring a 5-bit CIF.
  • Step 1 The terminal obtains the virtual carrier set and the information of the scheduled serving cell and the scheduled serving cell according to the high layer signaling;
  • Step 2 The terminal obtains a correspondence between the DCI including the CIF and the corresponding PDSCH according to the CIF and the virtual carrier indication.
  • Step 3 The terminal obtains the corresponding PDSCH according to the DCI.
  • FIG. 20 is a schematic diagram of Embodiment 4 of the present invention.
  • the high layer signaling indicates whether the serving cell is self-scheduling or cross-carrier scheduling. If it is self-scheduling, indicating whether the CIF is included.
  • the domain, if cross-carrier scheduled, indicates the cell index and virtual carrier indication in which the scheduling information is located.
  • the aggregated serving cell is divided into two virtual serving cell sets according to the cell index indicating the scheduling information in the high layer signaling, ⁇ serving cell 3, serving cell 5, serving cell 7, serving cell 8, and serving cell 9
  • the serving cell 10 the serving cell 11 ⁇ corresponding scheduling information is on the serving cell 1, ⁇ the serving cell 2, the serving cell 6, the serving cell 12, the serving cell 13, the serving cell 14, the serving cell 15, the serving cell 16 ⁇
  • the scheduling information is on the serving cell 4, that is, ⁇ serving cell 1, serving cell 3, serving cell 5, serving cell 7, serving cell 8, serving cell 9, serving cell 10, serving cell 11 ⁇ corresponding to a virtual carrier set, ⁇ Serving cell 2, serving cell 4, serving cell 6, serving cell 12, serving cell 13, serving cell 14, serving cell 15, serving cell 16 ⁇ Should be a virtual carrier set.
  • the virtual carrier indication corresponding to the serving cell 3 is 001, and the DCI with the CIF of 001 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 3, and the virtual carrier corresponding to the serving cell 5 is indicated as 010, then the CIF on the serving cell 1
  • the DCI of 010 is the downlink control information corresponding to the PDSCH on the serving cell 5
  • the virtual carrier corresponding to the serving cell 7 is 011
  • the DCI with the CIF of 011 on the serving cell 1 is the downlink control information corresponding to the PDSCH on the serving cell 7
  • the virtual carrier indication corresponding to the cell 2 is 001, and the DCI with the CIF of 001 on the serving cell 4 is the scheduling information corresponding to the PDSCH on the serving cell 2
  • the virtual carrier corresponding to the serving cell 15 is indicated as 111, and the CIF on the serving cell 4 is 111.
  • the DCI is scheduling information corresponding to the PDSCH on the serving cell 15;
  • the carrier indication field and the virtual carrier indication manner can solve the problem of cross-carrier scheduling in up to 32 carrier aggregations, and the existing CIF domain does not need to be added, and the complexity of terminal detection is reduced.
  • ⁇ Serving Cell 1 Serving Cell 2
  • Serving Cell 3 Serving Cell 4 ⁇
  • 28 serving cells are located in unauthorized.
  • the spectrum, ⁇ serving cell 5, serving cell 6, ..., serving cell 32 ⁇ is located in the unlicensed spectrum, and the aggregated downlink serving cells are divided into four groups, each group consisting of a serving cell on the licensed spectrum and seven unlicensed spectrums.
  • group 1 is composed of ⁇ serving cell 1, serving cell 5, serving cell 6, serving cell 7, serving cell 8, serving cell 9, serving cell 10, serving cell 11 ⁇
  • group 2 is composed of ⁇ serving cell 2 , serving cell 12, serving cell 13, serving cell 14, serving cell 15, serving cell 16, serving cell 17, serving cell 18 ⁇ , group 3 consisting of ⁇ serving cell 3, serving cell 19, serving cell 20, serving cell 21 , serving cell 22, serving cell 23, serving cell 24, serving cell 25 ⁇
  • group 4 consists of ⁇ serving cell 4, serving cell 26, serving cell 27, serving cell 28, serving cell 29, serving cell 30, serving cell 3 1, the service cell 32 ⁇ is composed.
  • the size of the DCI format corresponding to the serving cell in each group is the same, and the starting position of the search space corresponding to the serving cell in the group is the same.
  • FIG. 17 is a schematic diagram of Embodiment 5 of the present invention. As shown in FIG. 21, the search space of each group is continuously placed in FIG. 21, and the search spaces of each group may also be placed in a random, interleaved manner or the like.
  • the number of terminal blind detections can be reduced, and the power consumption of the terminal can be saved.
  • FIG. 22 is a schematic diagram of Embodiment 6 of the present invention, as shown in FIG.
  • the search space corresponding to ⁇ the serving cell 2, the serving cell 3, the serving cell 4, ..., the serving cell 32 ⁇ is located in the PDCCH and the ePDCCH region, and the high layer signaling configuration ⁇ the serving cell 2, the serving cell 3, the serving cell 4 ⁇ is One group, ⁇ serving cell 5, serving cell 6, ..., serving cell 32 ⁇ is a group because ⁇ service The cell 2, the serving cell 3, and the serving cell 4 ⁇ are a group, so the corresponding search space is distributed in the PDCCH region or the ePDCCH region, and the ⁇ serving cell 5, serving cell 6, ..., serving cell 32 ⁇ is a group, so the corresponding The search space is distributed in the ePDCCH region or the PDCCH region.
  • the frequency domain resources corresponding to the ePDCCH are continuous, and the frequency domain resources corresponding to the ePDCCH may also be discontinuous.
  • the blocking rate when scheduling multiple serving cells can be reduced, and the PDCCH performance can be improved.
  • serving cell 1 is a scheduling cell
  • the other serving cells are scheduled cells
  • the control channel of the serving cell 1 is ePDCCH
  • the high layer signaling configuration ⁇ serving cell 2 serving cell 3
  • serving cell 4 ⁇ is One group
  • ⁇ serving cell 5 serving cell 6, serving cell 7 ⁇ is a group
  • serving cell 32 ⁇ is a group, because ⁇ serving cell 2, serving cell 3, service
  • the cell 4 ⁇ is a group, so the corresponding search space is located in the ePDCCH first resource pair set, ⁇ the service cell 5, the serving cell 6, and the serving cell 7 ⁇ , so the corresponding search space is located in the ePDCCH second resource pair set.
  • ⁇ Serving Cell 8, Serving Cell 9..., Serving Cell 32 ⁇ is a group, so the corresponding search space is located in the ePDCCH third resource pair set.
  • the blocking rate when scheduling multiple serving cells can be reduced, and the PDCCH performance can be improved.
  • the fifth embodiment, the sixth embodiment, and the seventh embodiment may be configured separately or in combination.
  • the packets corresponding to the fifth embodiment, the sixth embodiment, and the seventh embodiment may be the same or different.
  • the CRC length corresponding to the DCI of the configured serving cell is 24.
  • the DCI of the configured serving cell includes a 2-bit check field.
  • the performance of the PDCCH is improved by increasing the length of the CRC and/or increasing the check domain to reduce the false alarm probability of the downlink control information.
  • the false alarm probability of downlink control information is reduced, and the performance of the PDCCH is improved.
  • the activated carrier is configured in a time division manner.
  • Subframe 1 activates up to 16 serving cells
  • subframe 2 activates up to 16 serving cells.
  • the false alarm probability of downlink control information is reduced, and the performance of the PDCCH is improved.
  • the UE further includes:
  • the maximum number of blind detections Mmax_CC performs blind detection on the PDCCH of each activated serving cell:
  • Method 1 The Mmax_CC corresponding to each activated serving cell is equivalent;
  • Method 2 The Mmax_CC corresponding to the serving cell on the primary serving cell and/or the licensed spectrum is the same as the existing maximum blind detection number, and the Mmax_CC corresponding to the other activated serving cells is equivalent.
  • Method 1 is used to determine Mmax_CC, that is, the Mmax_CC corresponding to each active cell is (800/16) and then rounded down to 50, according to the maximum number of blind detections 50.
  • the PDCCH of the serving cell is activated for blind detection.
  • the number of activated carriers is 16, and the Mmax is 800.
  • the method 2 determines Mmax_CC, then the Mmax_CC corresponding to the primary serving cell is 60 (same as the existing maximum blind detection number), and the maximum blind detection corresponding to the remaining 15 active serving cells After ((800-60)/15), it is rounded down to 49, and the PDCCH of each activated serving cell is blindly detected according to the maximum number of blind detections 50.
  • the number of activated carriers is 16 and the number of activated serving cells on the authorized carrier is 10.
  • the method 2 determines Mmax_CC, then the Mmax_CC corresponding to the 10 activated serving cells on the authorized carrier is 60, and the remaining 6
  • the large blind detection number 50 performs blind detection on the PDCCH of each activated serving cell.
  • the false alarm probability of the downlink control information is reduced, and the performance of the PDCCH is improved.
  • the DCI of the aggregated serving cell is configured by the present invention, and the problem that the terminal cannot correctly obtain the downlink control information of each serving cell in the case of supporting aggregation of up to 32 serving cells in the related art is solved.
  • the terminal correctly obtains downlink control information supporting up to 32 aggregated serving cells, so as to correctly solve the effect of downlink data.
  • a storage medium is further provided, wherein the software includes the above-mentioned software, including but not limited to: an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • Mode 2 CIF Set to X bits, where X is a positive integer and X is less than N
  • the DCI corresponding to the serving cell is transmitted to the terminal.
  • the present invention solves the problem that the terminal cannot correctly obtain the downlink control information of each serving cell in the case of supporting aggregation of up to 32 serving cells in the related art, and realizes that the terminal correctly obtains support for up to 32 aggregated serving cells.
  • the downlink control information is used to correctly solve the effect of the downlink data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种下行控制信息DCI的配置、下行数据的接收方法及装置,其中,该DCI的配置的方法包括:至多支持T个载波的载波聚合且配置跨载波调度时,采用以下之一方式为聚合的服务小区配置对应的DCI:方式1:将载波指示域CIF设置为N比特,其中,N=ceil(log2(T)),N为正整数;方式2:将CIF设置为X比特,其中,X为正整数,X小于N;向终端发送与该服务小区对应的DCI。通过本发明解决了相关技术中在支持至多32个服务小区的聚合的情况下,终端无法正确的获得各个服务小区的下行控制信息的问题,实现了终端正确的获得支持至多32个聚合的服务小区的下行控制信息,从而正确的解得下行数据的效果。

Description

下行控制信息DCI的配置、下行数据的接收方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种下行控制信息DCI的配置、下行数据的接收方法及装置。
背景技术
为了满足高级国际电信联盟(International Telecommunication Union-Advanced,简称为ITU-Advanced)的要求,作为长期演进(Long-Term Evolution,简称为LTE)的演进标准的高级长期演进(Long Term Evolution Advanced,简称为LTE-A)系统需要支持更大的系统带宽(最高可达100MHz),并需要后向兼容LTE现有的标准。在现有的LTE系统的基础上,可以将LTE系统的带宽进行合并来获得更大的带宽,这种技术称为载波聚合(Carrier Aggregation,简称为CA)技术,该技术能够提高高级国际无线通信系统(International Mobile Telecommunication Advance,简称为IMT-Advance)的频谱利用率、缓解频谱资源紧缺,进而优化频谱资源的利用,现有载波聚合支持最多5个分量载波的聚合。
在引入了载波聚合的系统中,进行聚合的载波称为分量载波(Component Carrier,简称为CC),也称为一个服务小区(Serving Cell)。同时,还提出了主分量载波/小区(Primary Component Carrier/Cell,简称为PCC/PCell)和辅分量载波/小区(Secondary Component Carrier/Cell,简称为SCC/SCell)的概念,在进行了载波聚合的系统中,至少包含一个主服务小区和辅服务小区,其中主服务小区一直处于激活状态。LTE-A系统中引入跨载波调度即某服务小区上的物理下行控制信道(Physical Downlink Control Channel,简称为PDCCH)可以调度多个服务小区的物理下行共享信道(Physical Downlink Shared Channel,简称为HS-PDSCH)/终端发射上行数据信道(Physical uplink shared channel,简称为PUSCH),其中PDCCH所在的服务小区称为调度小区,PDSCH/PUSCH所在的服务小区称为被调度服务小区。当配置跨载波调度时,终端在服务小区c上检测到含有载波指示域(Carrier indicator field,简称CIF),那么用户设备(User Equipment,简称为UE)根据CIF的值去在对应的服务小区上解PDSCH。
在后续版本中,考虑支持至多32个服务小区的聚合。对于至多32个服务小区的聚合,需要考虑如何配置32个服务小区的下行控制信息才能使得终端正确的获得各个服务小区的下行控制信息,从而正确的解得下行数据。
针对相关技术中,在支持至多32个服务小区的聚合的情况下,终端无法正确的获得各个服务小区的下行控制信息的问题,还未提出有效的解决方案。
发明内容
本发明提供了下行控制信息DCI的配置、下行数据的接收方法及装置,以至少解决相关技术中在支持至多32个服务小区的聚合的情况下,终端无法正确的获得各个服务小区的下行控制信息的问题。
根据本发明的一个方面,提供了一种下行控制信息DCI的配置方法,包括:至多支持T个载波的载波聚合且配置跨载波调度时,采用以下之一方式为聚合的服务小区配置对应的DCI:方式1:将载波指示域CIF设置为N比特,其中,N=ceil(log2(T)),N为正整数;方式2:将所述CIF设置为X比特,其中,X为正整数,X小于N;其中,所述CIF用于指示与包含所述CIF的DCI对应的下行共享信道PDSCH所在的服务小区;向终端发送与所述服务小区对应的所述DCI。
可选地,为聚合的服务小区配置对应的DCI还包括:至多支持所述T个载波的聚合载波且配置自调度时,采用以下规则至少之一为所述服务小区配置对应的DCI:规则1:所述DCI对应的CRC长度大于L,其中L为16;规则2:所述DCI中包括校验域,其中所述校验域对应的大小为F比特。
可选地,包括:在所述CIF为X比特的情况下,通过信令配置所述服务小区对应的虚拟载波指示,其中,所述虚拟载波指示用于指示所述服务小区在虚拟载波集中的索引,其中,所述虚拟载波集根据所述信令配置得到。
可选地,配置所述服务小区对应的虚拟载波指示的方式包括以下至少之一:根据包含所述CIF的DCI和所述服务小区的PDSCH之间的对应关系配置所述虚拟载波指示;根据所述CIF配置所述虚拟载波指示。
可选地,向终端发送与所述服务小区对应的所述DCI之前还包括:对聚合的服务小区进行分组。
可选地,对聚合的服务小区进行分组之后包括:配置每个分组中各个服务小区所对应的DCI的大小相同;或者,配置每个分组内各个服务小区所对应的DCI格式的大小相同并且各个服务小区的专有搜索空间相同,其中,所述专有搜索空间相同是指各个服务小区的专有搜索空间的起始点和搜索空间大小相同。
可选地,对聚合的服务小区进行分组之后包括:配置各个分组的小组索引,其中,所述小组索引用于确定所述各个组对应的搜索空间。
可选地,对聚合的服务小区进行分组之后包括:配置属于相同分组内的服务小区的专有搜索空间分布于物理下行控制信道PDCCH或者增强的物理下行控制信道ePDCCH。
可选地,对聚合的服务小区进行分组之后包括:配置任一分组内的服务小区的专有搜索空间位于ePDCCH的同一资源块对集合;配置属于不同分组中的服务小区的专有搜索空间位于所述ePDCCH的不同的资源块对集合;其中,所述ePDCCH的资源块对 集合的个数与分组的个数有关。
可选地,为聚合的服务小区配置对应的DCI之前还包括:至多支持T个载波的载波聚合且配置自调度时,采用时分的方式配置激活的所述服务小区;
可选地,为聚合的服务小区配置对应的DCI之前还包括:至多支持T个载波的载波聚合且配置自调度时,配置所有激活服务小区对应的总的最大盲检测次数。
可选地,所述服务小区为频分双工FDD服务小区或者时分双工TDD服务小区。
根据本发明的另一个方面,还提供了一种下行数据的接收方法,包括:接收下行控制信息DCI;其中,至多支持T个载波的载波聚合且配置跨载波调度时,所述DCI为按照以下之一方式进行配置后的DCI:方式1:将所述CIF扩展为N比特,其中,N=ceil(log2(T)),其中,N为正整数;方式2:所述CIF为X比特,其中,X为正整数,X小于N;根据所述DCI中包括的载波指示域CIF确定与包含所述CIF的DCI对应的下行共享信道PDSCH所在的服务小区;从与确定的所述服务小区的PDSCH中接收下行数据。
可选地,至多配置所述T个载波的聚合载波且配置自调度时,所述DCI为采用以下规则至少之一进行配置后的DCI:规则1:所述DCI对应的CRC长度大于L,其中L为16;规则2:所述DCI中包括校验域。
可选地,根据所述DCI中包括的载波指示域CIF确定与包含所述CIF的DCI对应的下行共享信道PDSCH所在的服务小区包括:所述CIF为X比特的情况下,接收虚拟载波指示,其中,所述虚拟载波指示用于指示所述服务小区在虚拟载波集中的索引;根据所述CIF和所述虚拟载波指示获取包含所述CIF的DCI和所述服务小区的PDSCH的对应关系。
可选地,所述虚拟载波集和/或所述虚拟载波指示从信令中获取。
可选地,根据所述CIF和所述虚拟载波指示获取包含所述CIF的DCI和所述服务小区的PDSCH之间的对应关系包括:在所述CIF与所述虚拟载波指示相同的情况下,确定包含所述CIF的DCI为所述服务小区的PDSCH所对应的DCI。
可选地,接收下行控制信息DCI之前还包括:至多支持T个载波的载波聚合且配置自调度时,根据时分的方式获得各个子帧/无线帧上对应的激活服务小区。
可选地,接收下行控制信息DCI之前还保留:至多支持T个载波的载波聚合且配置自调度时,根据预定的总的最大盲检测次数对激活服务小区进行的盲检测;可选地,所述服务小区为频分双工FDD服务小区或者时分双工TDD服务小区。
根据本发明的一个方面,提供了一种下行控制信息DCI的配置装置,所述装置应用于基站,包括:第一配置模块,设置为至多支持T个载波的载波聚合且配置跨载波调度 时,采用以下之一方式为聚合的服务小区配置对应的DCI:方式1:将载波指示域CIF设置为N比特,其中,N=ceil(log2(T)),N为正整数;方式2:将所述CIF设置为X比特,其中,X为正整数,X小于N;其中,所述CIF用于指示与包含所述CIF的DCI对应的下行共享信道PDSCH所在的服务小区;发送模块,设置为向终端发送与所述服务小区对应的所述DCI。
可选地,所述装置还包括:第二配置模块,设置为至多支持所述T个载波的载波聚合且配置自调度时采用以下规则至少之一为所述服务小区配置对应的DCI:规则1:所述DCI对应的CRC长度大于L,其中L为16;规则2:所述DCI中包括校验域,其中所述校验域对应的大小为F比特。
可选地,所述装置还包括:第三配置模块,设置为在所述CIF为X比特的情况下,通过信令配置所述服务小区对应的虚拟载波指示,其中,所述虚拟载波指示用于指示所述服务小区在虚拟载波集中的索引,其中,所述虚拟载波集根据所述信令配置得到。
可选地,所述第三配置模块包括:第一配置单元,设置为根据包含所述CIF的DCI和所述服务小区的PDSCH之间的对应关系配置所述虚拟载波指示;和/或,第二配置单元,设置为根据所述CIF配置所述虚拟载波指示。
可选地,所述装置还包括:分组模块,设置为对聚合的服务小区进行分组。
可选地,所述装置还包括:第四配置模块,设置为配置每个分组中各个服务小区所对应的DCI的大小相同;或者,第五配置模块,设置为配置每个分组内各个服务小区所对应的DCI格式的大小相同并且各个服务小区的专有搜索空间相同,其中,所述专有搜索空间相同是指各个服务小区的专有搜索空间的起始点和搜索空间大小相同。
可选地,所述装置还包括:第六配置模块,设置为配置各个分组的小组索引,其中,所述小组索引用于确定所述各个组对应的搜索空间。
可选地,所述装置还包括:第七配置模块,设置为配置属于相同分组内的服务小区的专有搜索空间分布于物理下行控制信道PDCCH或者增强的物理下行控制信道ePDCCH。
可选地,所述装置还包括:第八配置模块,设置为配置任一分组内的服务小区的专有搜索空间位于ePDCCH的同一资源块对集合;第九配置模块,设置为配置属于不同分组中的服务小区的专有搜索空间位于所述ePDCCH的不同的资源块对集合;其中,所述ePDCCH的资源块对集合的个数与分组的个数有关。
可选地,所述装置还包括:激活模块,设置为采用时分的方式激活所述服务小区。
可选地,所述装置还包括:配置模块,配置所有激活服务小区对应的总的最大盲检测次数。
可选地,所述服务小区为频分双工FDD服务小区或者时分双工TDD服务小区。
根据本发明的另一个方面,还提供了一种下行数据的接收装置,所述装置应用于终端,所述装置包括:第一接收模块,设置为接收下行控制信息DCI;其中,至多配置T个载波的载波聚合,并且配置了跨载波调度时,所述DCI为按照以下之一方式进行配置后的DCI:方式1:将所述CIF扩展为N比特,其中,N=ceil(log2(T)),其中,N为正整数;方式2:所述CIF为X比特,其中,X为正整数,X小于N;确定模块,设置为根据所述DCI中包括的载波指示域CIF确定与包含所述CIF的DCI对应的下行共享信道PDSCH所在的服务小区;第二接收模块,设置为从与确定的所述服务小区的PDSCH中接收下行数据。
可选地,至多支持所述T个载波的载波聚合且配置自调度时,所述DCI为采用以下规则至少之一进行配置后的DCI:规则1:所述DCI对应的CRC长度大于L,其中L为16;规则2:所述DCI中包括校验域。
可选地,所述确定模块包括:接收单元,设置为所述CIF为X比特的情况下,接收虚拟载波指示,其中,所述虚拟载波指示用于指示所述服务小区在虚拟载波集中的索引;确定单元,设置为根据所述CIF和所述虚拟载波指示获取包含所述CIF的DCI和所述服务小区的PDSCH的对应关系。
可选地,所述接收单元还设置为从信令中接收所述虚拟载波集和/或所述虚拟载波指示。
可选地,所述确定模块还设置为在所述CIF与所述虚拟载波指示相同的情况下,确定包含所述CIF的DCI为所述服务小区的PDSCH所对应的DCI。
所述装置还包括:获取模块,设置为根据时分的方式获得各个子帧/无线帧上对应的激活服务小区。
可选地,所述装置还包括:检测模块,设置为根据预定的总的最大盲检测次数对激活服务小区进行盲检测。
可选地,所述服务小区为频分双工FDD服务小区或者时分双工TDD服务小区。
通过本发明,采用在系统至多支持T个载波的聚合载波且配置跨载波调度时,采用以下之一方式为聚合的服务小区配置对应的DCI:方式1:将载波指示域CIF设置为N比特,其中,N=ceil(log2(T)),N为正整数;方式2:将CIF设置为X比特,其中,X为正整数,X小于N;其中,CIF用于指示与包含该CIF的DCI对应的下行共享信道PDSCH所在的服务小区;向终端发送与该服务小区对应的DCI。解决了相关技术中在支持至多32个服务小区的聚合的情况下,终端无法正确的获得各个服务小区的下行控制信息的问题,实现了终端正确的获得支持至多32个聚合的服务小区的下行控制信息,从而正确的解得下行数据的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的下行控制信息DCI的配置方法的流程图;
图2是根据本发明实施例的下行控制信息DCI的配置装置的结构框图;
图3是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(一);
图4是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(二);
图5是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(三);
图6是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(四);
图7是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(五);
图8是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(六);
图9是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(七);
图10是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(八);
图11是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(九);
图12是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(十);
图13是根据本发明实施例的下行数据的接收方法的流程图;
图14是根据本发明实施例的下行数据的接收装置的结构框图;
图15是根据本发明实施例的下行数据的接收装置的结构框图(一);
图16是根据本发明实施例的下行数据的接收装置的结构框图(二);
图17是根据本发明实施例的下行数据的接收装置的结构框图(三);
图18是关于本发明实施例一的示意图;
图19是关于本发明实施例二的示意图;
图20是关于本发明实施例四的示意图;
图21是关于本发明实施例五的示意图;
图22是关于本发明实施例六的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种下行控制信息DCI的配置方法,图1是根据本发明实施例的下行控制信息DCI的配置方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,至多支持T个载波的载波聚合且配置跨载波调度时,采用以下之一方式为聚合的服务小区配置对应的DCI:方式1:将载波指示域CIF设置为N比特,其中,N=ceil(log2(T)),N为正整数;方式2:将CIF设置为X比特,其中,X为正整数,X小于N;其中,CIF用于指示与包含该CIF的DCI对应的下行共享信道PDSCH所在的服务小区;
步骤S104,向终端发送与该服务小区对应的该DCI。
通过上述步骤,利用上述方式1或者方式2对聚合的服务小区配置对应的DCI,解决了相关技术中在支持至多32个服务小区的聚合的情况下,终端无法正确的获得各个服务小区的下行控制信息的问题,实现了终端正确的获得支持至多32个聚合的服务小区的下行控制信息,从而正确的解得下行数据的效果。
上述步骤S102中涉及到为聚合的服务小区配置对应的DCI,在另一个可选实施例中,至多支持所述T个载波的聚合载波且配置自调度时,采用以下规则至少之一为该服务小区配置对应的DCI:规则1:DCI对应的CRC长度大于L,其中L为16;规则2:DCI中包括校验域,其中校验域对应的大小为F比特。从而更优的为聚合的服务小区配置对应的DCI。
在该CIF为X比特的情况下,即,采用上述方式2为聚合的服务小区配置对应的DCI时,在一个可选实施例中,通过信令配置该服务小区对应的虚拟载波指示,其中,虚拟载波指示用于指示该服务小区在虚拟载波集中的索引,其中,虚拟载波集根据信令配置得到。从而使得终端可以根据CIF和虚拟载波指示得到包含该CIF的DCI和对应的PDSCH之间的对应关系,上述信令例如为高层信令。
在一个可选实施例中,可以根据包含CIF的DCI和服务小区的PDSCH之间的对应关系配置该虚拟载波指示,配置该服务小区对应的虚拟载波指示,也可以根据CIF配置该虚拟载波指示。
为了提高终端对DCI盲检的效率,在一个实施例中,向终端发送与该服务小区对应的DCI之前,对聚合的服务小区进行分组。
对聚合的服务小区进行分组之后,在一个可选实施例中,配置每个分组中各个服务小区所对应的DCI的大小相同;或者,配置每个分组内各个服务小区所对应的DCI格式的大小相同并且各个服务小区的专有搜索空间相同,其中,专有搜索空间相同是指各个服务小区的专有搜索空间的起始点和搜索空间大小相同。
对聚合的服务小区进行分组之后,在一个可选实施例中,配置各个分组的小组索引,其中,该小组索引用于确定该各个组对应的搜索空间。
对聚合的服务小区进行分组之后,在一个可选实施例中,配置属于相同分组内的服务小区的专有搜索空间分布于物理下行控制信道PDCCH或者增强的物理下行控制信道物理下行控制信道(Enhanced Physical Downlink Control Channel,简称为ePDCCH)。
对聚合的服务小区进行分组之后,在一个可选实施例中,配置任一分组内的服务小区的专有搜索空间位于ePDCCH的同一资源块对集合;配置属于不同分组中的服务小区的专有搜索空间位于该ePDCCH的不同的资源块对集合;其中,ePDCCH的资源块对集合的个数与分组的个数有关。
在一个可选实施例中,为聚合的服务小区配置对应的DCI之前,至多支持T个载波的载波聚合且配置自调度时,采用时分的方式配置激活的服务小区;在另一个可选实施例中,配置所有激活服务小区对应的总的最大盲检测次数。
在一个可选实施例中,上述服务小区为频分双工方式(Frequency Division Duplex,简称为FDD)服务小区或者时分双工(Time Division Duplex,简称为TDD)服务小区。
在一个可选实施例中,上述下行控制信息大小,上述搜索空间分布,上述搜索空间位置对应的分组可以相同,也可以不同;配置下行控制信息时,上述下行控制信息大小,上述搜索空间分布和上述搜索空间位置可以联合配置,也可以单独配置;上述聚合的服务小区可以位于授权频谱上,也可以位于非授权频谱上,也可以部分位于授权频谱上,部分位于非授权频谱上。
在本实施例中还提供了一种下行控制信息DCI的配置装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的下行控制信息DCI的配置装置的结构框图,装置应用于基站,如图2所示,该装置包括:第一配置模块22,设置为至多支持T个载波的载波聚合且配置跨载波调度时,采用以下之一方式为聚合的服务小区配置对应的DCI:方式1:将载波指示域CIF设置为N比特,其中,N=ceil(log2(T)),N为正整数;方式2:将CIF设置为X比特,其中,X为正整数,X小于N;其中,CIF用于指示与包含该CIF的DCI对应的下行共享信道PDSCH所在的服务小区;发送模块24,设置为向终端发送与该服务小区对应的DCI。
图3是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(一),如图3所示,该装置还包括:第二配置模块32,设置为至多支持所述T个载波的聚合载波且配置自调度时,采用以下规则至少之一为该服务小区配置对应的DCI:规则1:DCI对 应的CRC长度大于L,其中L为16;规则2:DCI中包括校验域,其中校验域对应的大小为F比特。
图4是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(二),如图4所示,该装置还包括:第三配置模块42,设置为在该CIF为X比特的情况下,通过信令配置该服务小区对应的虚拟载波指示,其中,虚拟载波指示用于指示该服务小区在虚拟载波集中的索引,其中,虚拟载波集根据信令配置得到。
图5是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(三),如图5所示,第三配置模块42包括:第一配置单元422,设置为根据包含该CIF的DCI和该服务小区的PDSCH之间的对应关系配置该虚拟载波指示;和/或,第二配置单元424,设置为根据该CIF配置该虚拟载波指示。
图6是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(四),如图6所示,该装置还包括:分组模块62,设置为对聚合的服务小区进行分组。
图7是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(五),如图7所示,该装置还包括:第四配置模块72,设置为配置每个分组中各个服务小区所对应的DCI的大小相同;或者,第五配置模块74,设置为配置每个分组内各个服务小区所对应的DCI格式的大小相同并且各个服务小区的专有搜索空间相同,其中,专有搜索空间相同是指各个服务小区的专有搜索空间的起始点和搜索空间大小相同。
图8是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(六),如图8所示,该装置还包括:第六配置模块82,设置为配置各个分组的小组索引,其中,该小组索引用于确定该各个组对应的搜索空间。
图9是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(七),如图9所示,该装置还包括:第七配置模块92,设置为配置属于相同分组内的服务小区的专有搜索空间分布于物理下行控制信道PDCCH或者增强的物理下行控制信道ePDCCH。
图10是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(八),如图10所示,该装置还包括:第八配置模块1002,设置为配置任一分组内的服务小区的专有搜索空间位于ePDCCH的同一资源块对集合;第九配置模块1004,设置为配置属于不同分组中的服务小区的专有搜索空间位于该ePDCCH的不同的资源块对集合;其中,ePDCCH的资源块对集合的个数与分组的个数有关。
图11是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(九),如图11所示,该装置还包括:激活模块1102,设置为采用时分的方式激活所述服务小区。
图12是根据本发明实施例的下行控制信息DCI的配置装置的结构框图(十),如图12所示,该装置还包括:配置模块1202,设置为配置激活服务小区对应的总的最大盲检测次数。
可选地,上述服务小区为频分双工FDD服务小区或者时分双工TDD服务小区。
在另一个实施例中提供了一种下行数据的接收方法,图13是根据本发明实施例的下行数据的接收方法的流程图,如图13所示,该流程包括如下步骤:
步骤S1302,接收下行控制信息DCI;其中,至多支持T个载波的载波聚合且配置跨载波调度时,该DCI为按照以下之一方式进行配置后的DCI:方式1:将CIF扩展为N比特,其中,N=ceil(log2(T)),其中,N为正整数;方式2:CIF为X比特,其中,X为正整数,X小于N;
步骤S1304,根据DCI中包括的载波指示域CIF确定与包含该CIF的DCI对应的下行共享信道PDSCH所在的服务小区;
步骤S1306,从与确定的该服务小区的PDSCH中接收下行数据。
通过上述步骤,终端根据DCI中包括的载波指示域CIF确定与包含该CIF的DCI对应的下行共享信道PDSCH所在的服务小区,其中,该DCI是根据上述两种方式配置的,解决了相关技术中在支持至多32个服务小区的聚合的情况下,终端无法正确的获得各个服务小区的下行控制信息的问题,实现了终端正确的获得支持至多32个聚合的服务小区的下行控制信息,从而正确的解得下行数据的效果。
在一个可选实施例中,至多配置T个载波的聚合载波且配置自调度时,DCI为采用以下规则至少之一进行配置后的DCI:规则1:DCI对应的CRC长度大于L,其中L为16;规则2:DCI中包括校验域。
上述步骤S1304中涉及根据DCI中包括的载波指示域CIF确定与包含该CIF的DCI对应的下行共享信道PDSCH所在的服务小区,在一个可选实施例中,该CIF为X比特的情况下,接收虚拟载波指示,其中,虚拟载波指示用于指示该服务小区在虚拟载波集中的索引,根据CIF和虚拟载波指示获取包含该CIF的DCI和该服务小区的PDSCH的对应关系。
在一个可选实施例中,虚拟载波集和/或虚拟载波指示从信令中获取。
根据CIF和虚拟载波指示获取包含CIF的DCI和该服务小区的PDSCH之间的对应关系的过程中,在一个可选实施例中,在CIF与虚拟载波指示相同的情况下,确定包含该CIF的DCI为服务小区的PDSCH所对应的DCI。
在一个可选实施例中,接收下行控制信息DCI之前,至多支持T个载波的载波聚合且配置自调度时,根据时分的方式获得各个子帧/无线帧上对应的激活服务小区;在另一个可选实施例中,在这种情况下,根据预定的总的最大盲检测次数对激活服务小区进行的盲检测;
在一个可选实施例中,上述服务小区为频分双工FDD服务小区或者时分双工TDD 服务小区。
在本实施例中还提供了一种下行数据的接收装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图14是根据本发明实施例的下行数据的接收装置的结构框图,该装置应用于终端,如图14所示,该装置包括:第一接收模块1402,设置为接收下行控制信息DCI;其中,在至多配置T个载波聚合,并且配置了跨载波调度时,该DCI为按照以下之一方式进行配置后的DCI:方式1:将CIF扩展为N比特,其中,N=ceil(log2(T)),其中,N为正整数;方式2:CIF为X比特,其中,X为正整数,X小于N;确定模块1404,设置为根据该DCI中包括的载波指示域CIF确定与包含该CIF的DCI对应的下行共享信道PDSCH所在的服务小区;第二接收模块1406,设置为从与确定的该服务小区的PDSCH中接收下行数据。
可选地,至多支持所述T个载波的载波聚合且配置自调度时,DCI为采用以下规则至少之一进行配置后的DCI:规则1:DCI对应的CRC长度大于L,其中L为16;规则2:该DCI中包括校验域。
图15是根据本发明实施例的下行数据的接收装置的结构框图(一),如图15所示,确定模块1404包括:接收单元140402,设置为该CIF为X比特的情况下,接收虚拟载波指示,其中,虚拟载波指示用于指示服务小区在虚拟载波集中的索引;确定单元140404,设置为根据CIF和虚拟载波指示获取包含该CIF的DCI和该服务小区的PDSCH的对应关系。
可选地,接收单元140402还设置为从信令中接收虚拟载波集和/或虚拟载波指示。
可选地,确定模块1404还设置为在该CIF与该虚拟载波指示相同的情况下,确定包含该CIF的DCI为该服务小区的PDSCH所对应的DCI。
图16是根据本发明实施例的下行数据的接收装置的结构框图(二),如图16所示,该装置还包括:获取模块1602,设置为根据时分的方式获得各个子帧/无线帧上对应的激活服务小区。
图17是根据本发明实施例的下行数据的接收装置的结构框图(三),如图17所示,该装置还包括:检测模块1702,设置为根据预定的总的最大盲检测次数对激活服务小区进行盲检测。
可选地,上述服务小区为频分双工FDD服务小区或者时分双工TDD服务小区。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述各个模块均位于同一处理器中;或者,上述各个模 块分别位于第一处理器、第二处理器和第三处理器…中。
针对相关技术中存在的上述问题,下面结合可选实施例进行说明,在本可选实施例中结合了上述可选实施例及其可选实施方式。
实施例一
现有LTE系统中,物理下行控制信道/增强的物理下行控制信道(PDCCH/ePDCCH)用于承载下行控制信息(DCI),包括:上行调度信息,下行调度信息和上行功率控制信息。DCI的格式分为以下几种:DCI format0,DCI format1,DCI format1A,DCI format1B,DCI format1C,DCI format1D,DCI format2,DCI format2A,DCI format2B,DCI format2C,DCI format2D,DCI format3,DCI format3A和DCI format4,其中:DCI format0/4用于指示物理上行共享信道(PUSCH)上上行数据的调度,DCI format1,DCI format1A,DCI format1B,DCI format1C,DCI format1D,DCI format2,DCI format2A,DCI format2B,DCI format2C,DCI format2D用于指示物理下行共享信道(PDSCH)上下行数据的调度,DCI format3和DCI format3A用于物理上行控制信道和PUSCH的功率控制信令的不同模式。
PDCCH传输的物理资源以控制信道元素(Control channel element,简称为CCE)为单位,一个CCE的大小为9个资源组(Resource element Group,REG)即36个资源元素(Resource element,RE)。一个PDCCH可能占用1,2,4,8个CCE。针对每个聚合等级定义一个搜索空间,包括公有搜索空间和用户设备专有搜索空间。公有搜索空间承载的是与系统信息块,随即接入响应以及寻呼相关的公有信息;UE专用的搜索空间承载的是UE各自的上下行调度授权信息。UE在接收下行控制信息时,检测聚合等级为4和8的各一公共搜索空间,以及聚合等级为1,2,4,8的各一UE专有搜索空间,公共搜索空间和UE专有搜索空间可以重叠。具体的检测次数和对应的搜索空间如表1所示。
表1检测次数和搜索空间对应关系表
Figure PCTCN2015088303-appb-000001
UE通过高层信令半静态的被设置为以下多种传输模式中的一种,按照用户专有的搜索空间的PDCCH的指示来接收PDSCH数据:
模式1:单天线端口;端口0;
模式2:发射分集;
模式3:开环空间复用;
模式4:闭环空间复用;
模式5:多用户多输入多输出;
模式6:闭环RANK=1预编码;
模式7:单天线端口;端口5;
模式8:双层传输模式;端口7和8;
模式9:至多8层传输:端口7-14;
模式10:至多8层传输:端口7-14;
如果UE被高层设置为用小区无线网络临时标识(Cell Radio Network Temporary Identifier,简称为Temporary C-RNTI)加扰的循环冗余校验码(Cyclic Redundancy Check,简称为CRC)来进行PDCCH解码,则UE应当按照表2中定义的相应组合来解码PDCCH和相关的PDSCH。
表2下行传输模式,DCI格式、搜索空间和传输方案的对应关系表
Figure PCTCN2015088303-appb-000002
Figure PCTCN2015088303-appb-000003
Figure PCTCN2015088303-appb-000004
如果UE被高层设置为用小区无线网络临时标识C-RNTI加扰的循环冗余校验来进行PDCCH解码,则UE应当按照表3中定义的相应组合来解码PDCCH和所有相关的PUSCH。
表3上行传输模式,DCI格式、搜索空间和传输方案的对应关系表
Figure PCTCN2015088303-appb-000005
为了解决PDCCH容量问题,后续版本还引入了增强的PDCCH(enhanced PDCCH,简称为ePDCCH),ePDCCH不同于PDCCH之处在于ePDCCH通过频率复用的方式与PDSCH复用,ePDCCH在频域上的映射方式有连续映射和离散映射,基站会配置k个资源块对集合用作传输ePDCCH,1个资源块对集合包括N个资源块对,其中,k大于等于1,N的值为1,2,4,8,16,1个资源块对包括16个增强的资源单元组(ennhanced Resource Element Group,简称eREG),1个资源块可以划分为2个eCCE或者4个eCCE,连续映射的ePDCCH对应的L-eCCe由1个资源对内的eREG构成,离散映射的ePDCCH对应的D-eCCE由多个资源块对的eREG构成。
LTE-A系统相对于LTE系统最为显著的特征是,LTE-A系统引入载波聚合技术,也就是将LTE系统的带宽进行聚合以获得更大的带宽。在引入载波聚合的系统中,进行聚合的载波称为分量载波(Component Carrier,简称为CC),也称为一个服务小区(Serving Cell)。同时,还提出了主分量载波/小区(Primary Component Carrier/Cell,简 称为PCC/PCell)和辅分量载波/小区(Secondary Component Carrier/Cell,简称为SCC/SCell)的概念。在进行了载波聚合的系统中,至少包含一个主服务小区和辅服务小区,其中主服务小区一直处于激活状态,并且规定PUCCH仅在Pcell上传输。
载波聚合中,高层信令指示服务小区是自调度还是跨载波调度,如果是自调度,指示是否含有CIF域,如果是跨载波调度的,指示调度信息所在的小区索引。图18是关于本发明实施例一的示意图,如图18所示,假设有5个下行服务小区聚合,服务小区1的下行控制信息上配置CIF域,高层信令指示{服务小区2,服务小区3,服务小区4}对应的调度信息在服务小区1上,即服务小区1上CIF为000的DCI为服务小区1上PDSCH对应的下行控制信息,服务小区1上CIF为001的DCI为服务小区2上PDSCH对应的下行控制信息,服务小区1上CIF为010的DCI为服务小区3上PDSCH对应的下行控制信息;服务小区1上CIF为011的DCI为服务小区4上PDSCH对应的下行控制信息;服务小区1上CIF为100的DCI为服务小区5上PDSCH对应的下行控制信息。
实施例二
假设有T=32个下行服务小区聚合,图19是关于本发明实施例二的示意图,如图19所示,载波指示域直接扩展为N=cel(log2(32))比特,配置了32个服务小区进行聚合,那么载波指示域为5比特,即N=5;
服务小区1的下行控制信息上配置CIF域,高层信令指示{服务小区2,服务小区3,服务小区4,…,服务小区32}对应的调度信息在服务小区1上,即服务小区1上CIF为00000的DCI为服务小区1上PDSCH对应的下行控制信息,服务小区1上CIF为00001的DCI为服务小区2上PDSCH对应的下行控制信息,服务小区1上CIF为00010的DCI为服务小区3上PDSCH对应的下行控制信息;服务小区1上CIF为00011的DCI为服务小区4上PDSCH对应的下行控制信息;服务小区1上CIF为00100的DCI为服务小区5上PDSCH对应的下行控制信息,服务小区1上CIF为00101的DCI为服务小区6上PDSCH对应的下行控制信息,服务小区1上CIF为00110的DCI为服务小区7上PDSCH对应的下行控制信息,服务小区1上CIF为00111的DCI为服务小区8上PDSCH对应的下行控制信息,服务小区1上CIF为01000的DCI为服务小区9上PDSCH对应的下行控制信息,服务小区1上CIF为01001的DCI为服务小区10上PDSCH对应的下行控制信息,服务小区1上CIF为01010的DCI为服务小区11上PDSCH对应的下行控制信息,服务小区1上CIF为01011的DCI为服务小区12上PDSCH对应的下行控制信息,服务小区1上CIF为01100的DCI为服务小区13上PDSCH对应的下行控制信息,服务小区1上CIF为01101的DCI为服务小区14上PDSCH对应的下行控制信息,服务小区1上CIF为01110的DCI为服务小区15上PDSCH对应的下行控制信息,服务小区1上CIF为01111的DCI为服务小区16上PDSCH对应的下行控制信息,服务小区1上CIF为10000的DCI为服务小区17上PDSCH对应的下行控制信息,服务小区1上CIF为10001的DCI为服务小区18上PDSCH对应的下行控制信息, 服务小区1上CIF为10010的DCI为服务小区19上PDSCH对应的下行控制信息;服务小区1上CIF为10011的DCI为服务小区20上PDSCH对应的下行控制信息;服务小区1上CIF为10100的DCI为服务小区21上PDSCH对应的下行控制信息,服务小区1上CIF为10101的DCI为服务小区22上PDSCH对应的下行控制信息,服务小区1上CIF为10110的DCI为服务小区23上PDSCH对应的下行控制信息,服务小区1上CIF为10111的DCI为服务小区24上PDSCH对应的下行控制信息,服务小区1上CIF为11000的DCI为服务小区25上PDSCH对应的下行控制信息,服务小区1上CIF为11001的DCI为服务小区26上PDSCH对应的下行控制信息,服务小区1上CIF为11010的DCI为服务小区27上PDSCH对应的下行控制信息,服务小区1上CIF为11011的DCI为服务小区28上PDSCH对应的下行控制信息,服务小区1上CIF为11100的DCI为服务小区29上PDSCH对应的下行控制信息,服务小区1上CIF为11101的DCI为服务小区30上PDSCH对应的下行控制信息,服务小区1上CIF为11110的DCI为服务小区31上PDSCH对应的下行控制信息,服务小区1上CIF为11111的DCI为服务小区32上PDSCH对应的下行控制信息。
通过配置5比特的CIF可以解决至多32个载波聚合中跨载波调度的问题。
实施例三
下面给出方式2对应的终端侧行为:
步骤一:终端根据高层信令中得到虚拟载波集以及调度服务小区和被调度服务小区的信息;
步骤二:终端根据CIF和虚拟载波指示得到包含所述CIF的DCI和对应的PDSCH之间的对应关系;
步骤三:终端根据DCI获得对应的PDSCH。
实施例四
假设有16个下行服务小区聚合,图20是关于本发明实施例四的示意图,如图20所示,高层信令指示服务小区是自调度还是跨载波调度,如果是自调度,指示是否含有CIF域,如果是跨载波调度的,指示调度信息所在的小区索引和虚拟载波指示。如图所示,根据高层信令中指示调度信息所在的小区索引将聚合的服务小区分成2个虚拟服务小区集,{服务小区3,服务小区5,服务小区7,服务小区8,服务小区9,服务小区10,服务小区11}对应的调度信息在服务小区1上,{服务小区2,服务小区6,服务小区12,服务小区13,服务小区14,服务小区15,服务小区16}对应的调度信息在服务小区4上,也就是{服务小区1,服务小区3,服务小区5,服务小区7,服务小区8,服务小区9,服务小区10,服务小区11}对应一个虚拟载波集,{服务小区2,服务小区4,服务小区6,服务小区12,服务小区13,服务小区14,服务小区15,服务小区16}对 应一个虚拟载波集。
服务小区3对应的虚拟载波指示为001,那么服务小区1上CIF为001的DCI为服务小区3上PDSCH对应的下行控制信息,服务小区5对应的虚拟载波指示为010,那么服务小区1上CIF为010的DCI为服务小区5上PDSCH对应的下行控制信息;服务小区7对应的虚拟载波指示为011,那么服务小区1上CIF为011的DCI为服务小区7上PDSCH对应的下行控制信息;服务小区2对应的虚拟载波指示为001,那么服务小区4上CIF为001的DCI为服务小区2上PDSCH对应的调度信息;服务小区15对应的虚拟载波指示为111,那么服务小区4上CIF为111的DCI为服务小区15上PDSCH对应的调度信息;
通过载波指示域联合虚拟载波指示的方式可以解决至多32个载波聚合中跨载波调度的问题,而且不需要增加现有的CIF域,减少终端检测的复杂度。
实施例五
假设有32个下行服务小区聚合,其中4个服务小区位于授权频谱,即{服务小区1,服务小区2,服务小区3和服务小区4}为授权频谱上的小区,28个服务小区位于非授权频谱,{服务小区5,服务小区6,…,服务小区32}位于非授权频谱,将聚合的下行服务小区分为4组,每组由一个授权频谱上的服务小区和7个非授权频谱上的小区组成,即组1由{服务小区1,服务小区5,服务小区6,服务小区7,服务小区8,服务小区9,服务小区10,服务小区11}组成,组2由{服务小区2,服务小区12,服务小区13,服务小区14,服务小区15,服务小区16,服务小区17,服务小区18}组成,组3由{服务小区3,服务小区19,服务小区20,服务小区21,服务小区22,服务小区23,服务小区24,服务小区25}组成,组4由{服务小区4,服务小区26,服务小区27,服务小区28,服务小区29,服务小区30,服务小区31,服务小区32}组成。配置每组内的服务小区对应的DCI format的大小相同且组内服务小区对应的搜索空间起始位置相同,搜索空间的起始位置根据组索引确定,图17是关于本发明实施例五的示意图,如图21所示,图21给出的连续放置各组的搜索空间,各组的搜索空间也可以以随机,交织等方式放置。
通过分组和配置每个组内DCI format大小相同且每组对应的搜索空间相同,可以减少终端盲检测的次数,节省终端的功耗。
实施例六
假设32个服务小区聚合,其中服务小区1为调度小区,其他服务小区为被调度小区,服务小区1的控制信道为PDCCH和ePDCCH,图22是关于本发明实施例六的示意图,如图22所示,那么{服务小区2,服务小区3,服务小区4,…,服务小区32}对应的搜索空间位于PDCCH和ePDCCH区域,高层信令配置{服务小区2,服务小区3,服务小区4}为一组,{服务小区5,服务小区6,…,服务小区32}为一组,因为{服务 小区2,服务小区3,服务小区4}为一组,所以对应的搜索空间分布于PDCCH区域或者ePDCCH区域,{服务小区5,服务小区6,…,服务小区32}为一组,所以对应的搜索空间分布于ePDCCH区域或者PDCCH区域,图中ePDCCH对应的频域资源是连续的,ePDCCH对应的频域资源也可以是非连续的。
通过扩展搜索空间所在的区域,可以减少调度多个服务小区时的阻塞率,提高PDCCH性能。
实施例七
假设32个服务小区聚合,其中服务小区1为调度小区,其他服务小区为被调度小区,服务小区1的控制信道为ePDCCH,高层信令配置{服务小区2,服务小区3,服务小区4}为一组,{服务小区5,服务小区6,服务小区7}为一组,{服务小区8,服务小区9,…,服务小区32}为一组,因为{服务小区2,服务小区3,服务小区4}为一组,所以对应的搜索空间位于ePDCCH第一资源对集合,{服务小区5,服务小区6,服务小区7}为一组,所以对应的搜索空间位于ePDCCH第二资源对集合,{服务小区8,服务小区9…,服务小区32}为一组,所以对应的搜索空间位于ePDCCH第三资源对集合。
通过扩展搜索空间所在的区域,可以减少调度多个服务小区时的阻塞率,提高PDCCH性能。
实施例八
配置下行控制信息时,实施例五,实施例六和实施例七可以单独配置,也可以联合配置,其中实施例五,实施例六和实施例七对应的分组可以相同,也可以不同。
实施例九
假设有T=32个下行服务小区聚合且配置自载波调度;
具体实施例一
配置聚合的服务小区的DCI对应的CRC长度为24。
具体实施例二
配置聚合的服务小区的DCI中包含2比特校验域;
通过增加CRC的长度和/或增加校验域降低下行控制信息的虚警概率,提高PDCCH的性能。
实施例十
假设有T=32个下行服务小区聚合且配置自调度。
具体实施例一
配置所有激活小区对应的总的最大盲检测次数Mmax;
通过限制总的盲检测次数,减少下行控制信息的虚警概率,提高PDCCH的性能。
具体实施例二
采用时分的方式配置激活的载波。子帧1,激活最多16个服务小区,子帧2,激活最多16个服务小区。
通过限制每个子帧上激活的载波个数,达到降低下行控制信息的虚警概率,提高PDCCH的性能的作用。
实施例十一
假设有T=32个下行服务小区聚合且配置自载波调度;UE在获得下行控制之前还包括:
根据确定的所有激活服务小区对应的最大盲检测次数Mmax_CC对激活服务小区进行盲检测,根据以下方法之一确定每个激活服务小区对应的最大盲检测次数Mmax_CC,根据得到的各个激活服务小区对应的最大盲检测次数Mmax_CC对各个激活服务小区的PDCCH进行盲检测:
方法1:各个激活服务小区对应的Mmax_CC相当;
方法2:主服务小区和/或授权频谱上的服务小区对应的Mmax_CC和现有最大盲检测次数相同,其他激活服务小区对应的Mmax_CC相当。
具体实施例一
假设激活的载波个数为16个,Mmax为800,采用方法1确定Mmax_CC,即每个激活小区对应的Mmax_CC为(800/16)后向下取整=50,根据最大盲检测次数50对各个激活服务小区的PDCCH进行盲检测。
具体实施例二
激活的载波个数为16个,Mmax为800,采用方法2确定Mmax_CC,那么主服务小区对应的Mmax_CC为60(和现有最大盲检测次数相同),剩余15个激活服务小区对应的最大盲检测为((800-60)/15)后向下取整=49,根据最大盲检测次数50对各个激活服务小区的PDCCH进行盲检测。
具体实施例三
激活的载波个数为16个,处在授权载波上的激活服务小区个数为10个,采用方法2确定Mmax_CC,那么处在授权载波上的10个激活服务小区对应的Mmax_CC为60,剩余6个激活服务小区对应的最大盲检测为((800-60*10)/6)后向下取整=33,根据最 大盲检测次数50对各个激活服务小区的PDCCH进行盲检测。
通过限制总的盲检测次数达到降低下行控制信息的虚警概率,提高PDCCH的性能的作用。
综上所述,通过本发明对聚合的服务小区配置对应的DCI,解决了相关技术中在支持至多32个服务小区的聚合的情况下,终端无法正确的获得各个服务小区的下行控制信息的问题,实现了终端正确的获得支持至多32个聚合的服务小区的下行控制信息,从而正确的解得下行数据的效果。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明涉及通信领域,提供了一种下行控制信息DCI的配置、下行数据的接收方法及装置,其中,该DCI的配置的方法包括:至多支持T个载波的载波聚合且配置跨载波调度时,采用以下之一方式为聚合的服务小区配置对应的DCI:方式1:将载波指示域CIF设置为N比特,其中,N=ceil(log2(T)),N为正整数;方式2:将CIF设置为X比特,其中,X为正整数,X小于N;向终端发送与该服务小区对应的DCI。通过本发明解决了相关技术中在支持至多32个服务小区的聚合的情况下,终端无法正确的获得各个服务小区的下行控制信息的问题,实现了终端正确的获得支持至多32个聚合的服务小区的下行控制信息,从而正确的解得下行数据的效果。

Claims (40)

  1. 一种下行控制信息DCI的配置方法,包括:
    至多支持T个载波的载波聚合且配置跨载波调度时,采用以下之一方式为聚合的服务小区配置对应的DCI:
    方式1:将载波指示域CIF设置为N比特,其中,N=ceil(log2(T)),N为正整数;
    方式2:将所述CIF设置为X比特,其中,X为正整数,X小于N;
    其中,所述CIF用于指示与包含所述CIF的DCI对应的下行共享信道PDSCH所在的服务小区;
    向终端发送与所述服务小区对应的所述DCI。
  2. 根据权利要求1所述的方法,其中,为聚合的服务小区配置对应的DCI还包括:
    至多支持所述T个载波的载波聚合且配置自调度时采用以下规则至少之一为所述服务小区配置对应的DCI:
    规则1:所述DCI对应的CRC长度大于L,其中L为16;
    规则2:所述DCI中包括校验域,其中所述校验域对应的大小为F比特,F为大于0的正整数。
  3. 根据权利要求1所述的方法,其中,包括:
    在所述CIF为X比特的情况下,通过信令配置所述服务小区对应的虚拟载波指示,其中,所述虚拟载波指示用于指示所述服务小区在虚拟载波集中的索引,其中,所述虚拟载波集根据所述信令配置得到。
  4. 根据权利要求3所述的方法,其中,配置所述服务小区对应的虚拟载波指示的方式包括以下至少之一:
    根据包含所述CIF的DCI和所述服务小区的PDSCH之间的对应关系配置所述虚拟载波指示;
    根据所述CIF配置所述虚拟载波指示。
  5. 根据权利要求1所述的方法,其中,向终端发送与所述服务小区对应的所述DCI之前还包括:
    对聚合的服务小区进行分组。
  6. 根据权利要求5所述的方法,其中,对聚合的服务小区进行分组之后包括:
    配置每个分组中各个服务小区所对应的DCI的大小相同;或者,
    配置每个分组内各个服务小区所对应的DCI格式的大小相同并且各个服务小区的专有搜索空间相同,其中,所述专有搜索空间相同是指各个服务小区的专有搜索空间的起始点和搜索空间大小相同。
  7. 根据权利要求6所述的方法,其中,对聚合的服务小区进行分组之后包括:
    配置各个分组的小组索引,其中,所述小组索引用于确定所述各个组对应的搜索空间。
  8. 根据权利要求5所述的方法,其中,对聚合的服务小区进行分组之后包括:
    配置属于相同分组内的服务小区的专有搜索空间分布于物理下行控制信道PDCCH或者增强的物理下行控制信道ePDCCH。
  9. 根据权利要求5所述的方法,其中,对聚合的服务小区进行分组之后包括:
    配置任一分组内的服务小区的专有搜索空间位于ePDCCH的同一资源块对集合;
    配置属于不同分组中的服务小区的专有搜索空间位于所述ePDCCH的不同的资源块对集合;
    其中,所述ePDCCH的资源块对集合的个数与分组的个数有关。
  10. 根据权利要求2所述的方法,其中,为所述的服务小区配置对应的DCI之前还包括:采用时分的方式激活所述服务小区。
  11. 根据权利要求2所述的方法,其中,为所述的服务小区配置对应的DCI之前还包括:配置所有激活服务小区对应的总的最大盲检测次数。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述服务小区为频分双工FDD服务小区或者时分双工TDD服务小区。
  13. 一种下行数据的接收方法,包括:
    接收下行控制信息DCI;其中,至多配置T个载波的载波聚合,并且配置了跨载波调度时,所述DCI为按照以下之一方式进行配置后的DCI:
    方式1:将所述CIF扩展为N比特,其中,N=ceil(log2(T)),其中,N为正整数;
    方式2:所述CIF为X比特,其中,X为正整数,X小于N;
    根据所述DCI中包括的载波指示域CIF确定与包含所述CIF的DCI对应的下行共享信道PDSCH所在的服务小区;
    从与确定的所述服务小区的PDSCH中接收下行数据。
  14. 根据权利要求13所述的方法,其中,至多配置所述T个载波的载波聚合且配置自调度时,所述DCI为采用以下规则至少之一进行配置后的DCI:
    规则1:所述DCI对应的CRC长度大于L,其中L为16;
    规则2:所述DCI中包括校验域。
  15. 根据权利要求13所述的方法,其中,根据所述DCI中包括的载波指示域CIF确定与包含所述CIF的DCI对应的下行共享信道PDSCH所在的服务小区包括:
    所述CIF为X比特的情况下,接收虚拟载波指示,其中,所述虚拟载波指示用于指示所述服务小区在虚拟载波集中的索引;
    根据所述CIF和所述虚拟载波指示获取包含所述CIF的DCI和所述服务小区的PDSCH的对应关系。
  16. 根据权利要求15所述的方法,其中,所述虚拟载波集和/或所述虚拟载波指示从信令中获取。
  17. 根据权利要求16所述的方法,其中,根据所述CIF和所述虚拟载波指示获取包含所述CIF的DCI和所述服务小区的PDSCH之间的对应关系包括:
    在所述CIF与所述虚拟载波指示相同的情况下,确定包含所述CIF的DCI为所述服务小区的PDSCH所对应的DCI。
  18. 根据权利要求14所述的方法,其中,接收下行控制信息DCI之前还包括:
    根据时分的方式获得各个子帧/无线帧上对应的激活服务小区。
  19. 根据权利要求15所述的方法,其中,接收下行控制信息DCI之前还包括:
    根据预定的总的最大盲检测次数对激活服务小区进行盲检测。
  20. 根据权利要求13至19中任一项所述的方法,其中,所述服务小区为频分双工FDD服务小区或者时分双工TDD服务小区。
  21. 一种下行控制信息DCI的配置装置,所述装置应用于基站,包括:
    第一配置模块,设置为至多支持T个载波的载波聚合且配置跨载波调度时,采用以下之一方式为聚合的服务小区配置对应的DCI:
    方式1:将载波指示域CIF设置为N比特,其中,N=ceil(log2(T)),N为正整数;
    方式2:将所述CIF设置为X比特,其中,X为正整数,X小于N;
    其中,所述CIF用于指示与包含所述CIF的DCI对应的下行共享信道PDSCH所 在的服务小区;
    发送模块,设置为向终端发送与所述服务小区对应的所述DCI。
  22. 根据权利要求21所述的装置,其中,所述装置还包括:
    第二配置模块,设置为至多支持所述T个载波的载波聚合且配置自调度时采用以下规则至少之一为所述服务小区配置对应的DCI:
    规则1:所述DCI对应的CRC长度大于L,其中L为16;
    规则2:所述DCI中包括校验域,其中所述校验域对应的大小为F比特。
  23. 根据权利要求21所述的装置,其中,所述装置还包括:
    第三配置模块,设置为在所述CIF为X比特的情况下,通过信令配置所述服务小区对应的虚拟载波指示,其中,所述虚拟载波指示用于指示所述服务小区在虚拟载波集中的索引,其中,所述虚拟载波集根据所述信令配置得到。
  24. 根据权利要求23所述的装置,其中,所述第三配置模块包括:
    第一配置单元,设置为根据包含所述CIF的DCI和所述服务小区的PDSCH之间的对应关系配置所述虚拟载波指示;和/或,
    第二配置单元,设置为根据所述CIF配置所述虚拟载波指示。
  25. 根据权利要求21所述的装置,其中,所述装置还包括:
    分组模块,设置为对聚合的服务小区进行分组。
  26. 根据权利要求25所述的装置,其中,所述装置还包括:
    第四配置模块,设置为配置每个分组中各个服务小区所对应的DCI的大小相同;或者,
    第五配置模块,设置为配置每个分组内各个服务小区所对应的DCI格式的大小相同并且各个服务小区的专有搜索空间相同,其中,所述专有搜索空间相同是指各个服务小区的专有搜索空间的起始点和搜索空间大小相同。
  27. 根据权利要求26所述的装置,其中,所述装置还包括:
    第六配置模块,设置为配置各个分组的小组索引,其中,所述小组索引用于确定所述各个组对应的搜索空间。
  28. 根据权利要求25所述的装置,其中,所述装置还包括:
    第七配置模块,设置为配置属于相同分组内的服务小区的专有搜索空间分布于物理下行控制信道PDCCH或者增强的物理下行控制信道ePDCCH。
  29. 根据权利要求25所述的装置,其中,所述装置还包括:
    第八配置模块,设置为配置任一分组内的服务小区的专有搜索空间位于ePDCCH的同一资源块对集合;
    第九配置模块,设置为配置属于不同分组中的服务小区的专有搜索空间位于所述ePDCCH的不同的资源块对集合;
    其中,所述ePDCCH的资源块对集合的个数与分组的个数有关。
  30. 根据权利要求22所述的装置,其中,所述装置还包括:
    激活模块,设置为采用时分的方式激活所述服务小区。
  31. 根据权利要求22所述的装置,其中,所述装置还包括:
    配置模块,配置所有激活服务小区对应的总的最大盲检测次数。
  32. 根据权利要求21至31中任一项所述的装置,其中,所述服务小区为频分双工FDD服务小区或者时分双工TDD服务小区。
  33. 一种下行数据的接收装置,所述装置应用于终端,所述装置包括:
    第一接收模块,设置为接收下行控制信息DCI;其中,至多配置T个载波的载波聚合且配置跨载波调度时,所述DCI为按照以下之一方式进行配置后的DCI:
    方式1:将所述CIF扩展为N比特,其中,N=ceil(log2(T)),其中,N为正整数;
    方式2:所述CIF为X比特,其中,X为正整数,X小于N;
    确定模块,设置为根据所述DCI中包括的载波指示域CIF确定与包含所述CIF的DCI对应的下行共享信道PDSCH所在的服务小区;
    第二接收模块,设置为从与确定的所述服务小区的PDSCH中接收下行数据。
  34. 根据权利要求33所述的装置,其中,至多支持所述T个载波的载波聚合且配置自调度时所述DCI为采用以下规则至少之一进行配置后的DCI:
    规则1:所述DCI对应的CRC长度大于L,其中L为16;
    规则2:所述DCI中包括校验域。
  35. 根据权利要求33所述的装置,其中,所述确定模块包括:
    接收单元,设置为所述CIF为X比特的情况下,接收虚拟载波指示,其中,所述虚拟载波指示用于指示所述服务小区在虚拟载波集中的索引;
    确定单元,设置为根据所述CIF和所述虚拟载波指示获取包含所述CIF的DCI和所述服务小区的PDSCH的对应关系。
  36. 根据权利要求35所述的装置,其中,所述接收单元还设置为从信令中接收所述虚拟载波集和/或所述虚拟载波指示。
  37. 根据权利要求36所述的装置,其中,所述确定模块还设置为在所述CIF与所述虚拟载波指示相同的情况下,确定包含所述CIF的DCI为所述服务小区的PDSCH所对应的DCI。
  38. 根据权利要求34所述的装置,其中,所述装置还包括:
    获取模块,设置为根据时分的方式获得各个子帧/无线帧上对应的激活服务小区。
  39. 根据权利要求35所述的装置,其中,所述装置还包括:
    检测模块,设置为根据预定的总的最大盲检测次数对激活服务小区进行盲检测。
  40. 根据权利要求33至39中任一项所述的装置,其中,所述服务小区为频分双工FDD服务小区或者时分双工TDD服务小区。
PCT/CN2015/088303 2015-01-30 2015-08-27 下行控制信息dci的配置、下行数据的接收方法及装置 WO2016119455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510052459.0A CN105991263B (zh) 2015-01-30 2015-01-30 下行控制信息dci的配置、下行数据的接收方法及装置
CN201510052459.0 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016119455A1 true WO2016119455A1 (zh) 2016-08-04

Family

ID=56542321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088303 WO2016119455A1 (zh) 2015-01-30 2015-08-27 下行控制信息dci的配置、下行数据的接收方法及装置

Country Status (2)

Country Link
CN (1) CN105991263B (zh)
WO (1) WO2016119455A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259074A (zh) * 2020-02-08 2021-08-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113973320A (zh) * 2020-07-23 2022-01-25 维沃移动通信有限公司 信息传输方法、装置及通信设备
CN114070516A (zh) * 2020-08-06 2022-02-18 北京紫光展锐通信技术有限公司 下行控制信息的处理方法及设备

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126429A1 (en) * 2017-01-06 2018-07-12 Panasonic Intellectual Property Corporation Of America Terminal, base station, and communication method
US20180227888A1 (en) * 2017-02-06 2018-08-09 Mediatek Inc. Techniques of decoding aggregated dci messages
CN110475356B (zh) * 2018-05-11 2021-12-28 维沃移动通信有限公司 确定下行控制信息的方法和设备
CN113316258B (zh) * 2018-07-20 2023-11-07 维沃移动通信有限公司 一种用于监听pdcch的方法、终端及网络设备
WO2020019351A1 (zh) * 2018-07-27 2020-01-30 北京小米移动软件有限公司 传输配置指示的配置方法及装置
CN110958094B (zh) * 2018-09-27 2023-03-28 中国移动通信有限公司研究院 一种物理下行控制信道的配置方法、检测方法和设备
CN113273240A (zh) * 2019-01-11 2021-08-17 Oppo广东移动通信有限公司 跨载波调度的dci的确定方法、终端设备及网络设备
MX2022003800A (es) * 2019-09-30 2022-07-11 Huawei Tech Co Ltd Metodo y aparato de comunicacion.
WO2021138796A1 (en) * 2020-01-07 2021-07-15 Qualcomm Incorporated Downlink control information size and buffering limits for combination dci
WO2021151224A1 (en) * 2020-01-29 2021-08-05 Qualcomm Incorporated Techniques for cross-carrier scheduling from a secondary cell to a primary cell
US20230069308A1 (en) * 2020-02-10 2023-03-02 Beijing Xiaomi Mobile Software Co.,Lid. Transmission scheduling method and apparatus, communication device, and storage medium
CN111901869A (zh) * 2020-02-12 2020-11-06 中兴通讯股份有限公司 一种调度主小区的配置方法、装置、设备及储存介质
CN111294960B (zh) * 2020-02-12 2023-04-21 北京紫光展锐通信技术有限公司 识别下行控制信息的方法及设备
CN113630872A (zh) * 2020-05-07 2021-11-09 维沃移动通信有限公司 控制信息配置方法、内容确定方法、装置及电子设备
CN116456285A (zh) * 2020-12-07 2023-07-18 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
CN114765499A (zh) * 2021-01-15 2022-07-19 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115134916A (zh) * 2021-03-25 2022-09-30 维沃移动通信有限公司 传输处理方法及相关设备
CN115150953A (zh) * 2021-03-31 2022-10-04 维沃移动通信有限公司 控制信道检测、指示方法、装置、终端及网络侧设备
WO2023184111A1 (zh) * 2022-03-28 2023-10-05 北京小米移动软件有限公司 信息域确定、指示方法和装置、通信装置和存储介质
CN117527174A (zh) * 2022-04-24 2024-02-06 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
WO2024031676A1 (zh) * 2022-08-12 2024-02-15 北京小米移动软件有限公司 集合确定方法、装置、通信装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867953A (zh) * 2010-06-13 2010-10-20 中兴通讯股份有限公司 载波聚合场景下下行控制信息的检测方法和用户设备
CN102201885A (zh) * 2010-03-25 2011-09-28 电信科学技术研究院 一种载波调度信息传输方法及其装置
US20120039180A1 (en) * 2009-04-16 2012-02-16 Lg Electronics Inc. Apparatus and method for monitoring control channel in multi-carrier system
EP2453598A2 (en) * 2009-07-07 2012-05-16 LG Electronics Inc. Method and apparatus for carrier scheduling in a multi-carrier system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9350581B2 (en) * 2009-06-02 2016-05-24 Qualcomm Incorporated Downlink assignment indicator design for multi-carrier wireless communication
CN102781107B (zh) * 2009-08-14 2016-07-06 联想创新有限公司(香港) 用于检测用于载波聚合的下行链路控制结构的方法
CN102083229B (zh) * 2010-02-11 2013-11-20 电信科学技术研究院 非竞争随机接入的调度及前导码发送方法、系统和设备
EP2360866A1 (en) * 2010-02-12 2011-08-24 Panasonic Corporation Component carrier activation and deactivation using resource assignments
EP2547016A4 (en) * 2010-03-10 2017-05-17 LG Electronics Inc. Method and device for signaling control information in carrier aggregation system
CN101908951B (zh) * 2010-08-16 2016-05-11 中兴通讯股份有限公司 一种信道状态信息的报告方法及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120039180A1 (en) * 2009-04-16 2012-02-16 Lg Electronics Inc. Apparatus and method for monitoring control channel in multi-carrier system
EP2453598A2 (en) * 2009-07-07 2012-05-16 LG Electronics Inc. Method and apparatus for carrier scheduling in a multi-carrier system
CN102201885A (zh) * 2010-03-25 2011-09-28 电信科学技术研究院 一种载波调度信息传输方法及其装置
CN101867953A (zh) * 2010-06-13 2010-10-20 中兴通讯股份有限公司 载波聚合场景下下行控制信息的检测方法和用户设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259074A (zh) * 2020-02-08 2021-08-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113259074B (zh) * 2020-02-08 2022-11-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113973320A (zh) * 2020-07-23 2022-01-25 维沃移动通信有限公司 信息传输方法、装置及通信设备
CN113973320B (zh) * 2020-07-23 2024-03-26 维沃移动通信有限公司 信息传输方法、装置及通信设备
CN114070516A (zh) * 2020-08-06 2022-02-18 北京紫光展锐通信技术有限公司 下行控制信息的处理方法及设备

Also Published As

Publication number Publication date
CN105991263A (zh) 2016-10-05
CN105991263B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2016119455A1 (zh) 下行控制信息dci的配置、下行数据的接收方法及装置
US11190318B2 (en) Uplink channel transmitting method and user device, and uplink channel receiving method and base station
JP7142148B2 (ja) ニューラジオ(nr)における物理サイドリンク制御チャネル(pscch)設計に対する方法および装置
US11006419B2 (en) Signalling of frequency-domain resource assignment
CN110474737B (zh) 参数确定的方法、监控方法、通信装置
US11057914B2 (en) Downlink control information receiving method and user equipment, and downlink control information transmission method and base station
US20220210697A1 (en) Transmit format for multi-segment pusch
TW202408279A (zh) 超可靠低延遲通信新無線電實體下鏈控制通道方法
US20180376497A1 (en) Control information reception method and user equipment, and control information transmission method and base station
US20230019024A1 (en) Hybrid Automatic Repeat Request (HARQ) Mechanism for Multicast in NR
CN115765947A (zh) 无线通信系统的数据发送方法和接收方法及其设备
EP3704821B1 (en) Slot format indication to a ue group in a cell of a base station
CN114424661A (zh) 在无线通信系统中发送和接收物理上行链路共享信道(pusch)的方法、装置和系统
US11653336B2 (en) Method and apparatus for transmitting and receiving downlink control information in wireless communication system
WO2011157038A1 (zh) 载波聚合场景下下行控制信息的检测方法和用户设备
CN113316913A (zh) 在无线通信系统中发送上行链路共享信道的方法以及使用该方法的装置
WO2014169694A1 (zh) 授权信令发送、获取方法及装置
WO2016095354A1 (zh) 下行数据的传输方法及装置、下行数据的获取装置
CN111373708B (zh) 用于子prb上行链路传输的资源分配方法
CN114731691A (zh) 用于发送下行链路控制信息的方法和基站及用于接收下行链路控制信息的用户设备、设备和存储介质
TW202402084A (zh) 無線通訊系統中的使用者設備、供無線通訊系統中的使用者設備使用的方法、無線通訊系統中的基地台及供無線通訊系統中的基地台使用的方法
WO2017133340A1 (zh) 下行控制信道的确定方法及装置、终端、基站
JPWO2016121850A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
WO2022056835A1 (en) Super-slot based data transmission in wireless communication
WO2022056826A1 (en) Network based operations for super-slot based data transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879653

Country of ref document: EP

Kind code of ref document: A1