WO2013067845A1 - 下行控制信息的传输方法和设备 - Google Patents

下行控制信息的传输方法和设备 Download PDF

Info

Publication number
WO2013067845A1
WO2013067845A1 PCT/CN2012/081087 CN2012081087W WO2013067845A1 WO 2013067845 A1 WO2013067845 A1 WO 2013067845A1 CN 2012081087 W CN2012081087 W CN 2012081087W WO 2013067845 A1 WO2013067845 A1 WO 2013067845A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
resource
distributed
localized
terminal device
Prior art date
Application number
PCT/CN2012/081087
Other languages
English (en)
French (fr)
Inventor
赵锐
潘学明
沈祖康
张然然
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US14/357,045 priority Critical patent/US20140286297A1/en
Priority to EP12848441.7A priority patent/EP2779768A4/en
Priority to KR1020147015503A priority patent/KR20140093261A/ko
Publication of WO2013067845A1 publication Critical patent/WO2013067845A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a device for transmitting downlink control information. Background technique
  • a PDCCH Physical Downlink Control Channel
  • TDM Time Division Multiplexed
  • FIG. 1 it is a schematic diagram of a multiplexing relationship between a control area and a data area in a downlink subframe in the prior art.
  • the control region for transmitting the PDCCH in the LTE system is composed of a logically divided CCE (Control Channel Element), and the mapping of the CCE to the RE (Resource Element) is completely interleaved.
  • the transmission of DCI (downlink control information) is also based on CCE.
  • One DCI for one UE User Equipment, user equipment, ie, terminal equipment
  • N The possible values of N are 1, 2, 4, and 8 and are called CCE aggregation levels.
  • the UE performs a PDCCH blind check in the control region to search whether there is a PDCCH for the PDCCH, and the RNTK Radio Network Temporary Identity (the wireless network temporary identifier) of the UE is used to decode different DCI formats and CCE aggregation levels. If the decoding is correct, the DCI for the UE is received.
  • the LTE UE needs to perform blind detection on the control region for each downlink subframe in the non-DRX (Discontinuous Reception) state to search for the PDCCH.
  • the control area in one subframe in the LTE system is composed of two spaces, namely CSS (Common Search Space) and UESS (UE-specific Search Space).
  • the CSS is mainly used to transmit DCIs for scheduling cell-specific control information (such as system information, paging messages, multicast power control information, etc.), and the UESS is mainly used for transmitting DCIs scheduled for each UE resource.
  • the CSS in each downlink sub-frame includes the first 16 CCEs, and the CCE aggregation level in the CSS only supports 4 and 8; the starting CCE position and the subframe number of each user-specific UESS in each downlink sub-frame, and the UE Related to RNTI, etc., CCE aggregation levels 1, 2, 4, and 8 are supported in UESS.
  • blind detection of each aggregation level corresponds to one search space, that is, UE blind detection different aggregation levels are performed in different search spaces.
  • Table 1 shows the CCE space that a UE needs to blindly check in a downlink subframe.
  • Table 1 CCE space for a UE to be blindly checked in a downlink subframe
  • L indicates the size of the aggregation level
  • Size indicates the number of CCEs that need to be blindly checked for each aggregation level
  • M(L) indicates the number of blind detection attempts for each aggregation level.
  • FIG. 2 it is a schematic diagram of a blind detection process in the prior art.
  • a UE needs to perform 22 PDCCH channel resource attempts in one downlink subframe, wherein the CSS has a total of 6 PDCCH channel resources, and the UESS has a total of 16 PDCCH channel resources.
  • MU-MIMO Multiuser-Multiple Input Multiple Output
  • CoMP Coordinative Multi Point
  • CA Carrier Aggregation
  • RRH Radio
  • LTE-A Long Term Evolution Advanced
  • Rd-8/9 the physical downlink control channel of the LTE-A system was improved without benefiting from new technologies.
  • the application of the new technology enables the PDSCH to provide data transmission for more users at the same time, which will greatly increase the capacity of the PDCCH channel; on the other hand, the DM-RS applied in the PDSCH
  • New technologies such as Demodulation Reference Signal and R-PDCCH applied in Relay backhaul provide techniques and experience for PDCCH enhancement.
  • a solution proposed in the prior art is: while maintaining the original PDCCH domain, transmitting the enhanced in the PDSCH domain in the downlink subframe.
  • PDCCH while maintaining the original PDCCH domain, transmitting the enhanced in the PDSCH domain in the downlink subframe.
  • the original PDCCH domain still uses the existing transmission and reception technologies, and uses the original PDCCH resources, such as transmit diversity when transmitting, and CRS based on reception.
  • the enhanced PDCCH domain can use more advanced transmission and reception technologies, such as precoding when transmitting, detecting based on DM-RS when receiving, and occupying legacy PDCCH.
  • the time-frequency resource transmission outside the domain is multiplexed with the PDSCH by using a frequency division of the original PDSCH.
  • This part of the PDCCH domain is called an Enhanced PDCCH (E-PDCCH) field.
  • E-PDCCH Enhanced PDCCH
  • FDM E-PDCCH FDM E-PDCCH.
  • FIG. 3 it is a schematic structural diagram of an enhanced PDCCH in the prior art.
  • the E-PDCCH supports both beamforming and diversity transmission modes and is applied to different scenarios.
  • the beamforming transmission mode is mostly used for the base station to obtain more accurate channel information fed back by the terminal, and the neighbor cell interference is not very severe with the subframe change.
  • the base station selects the quality according to the CSI of the terminal feedback.
  • the continuous frequency resource transmits the E-PDCCH for the terminal, and performs beamforming processing to improve transmission performance.
  • the E-PDCCH needs to be transmitted in a frequency diversity manner, that is, the frequency resource is discontinuously transmitted.
  • FIG. 4A and FIG. 4B which is a schematic diagram of an example of an E-PDCCH transmission scheme in a frequency domain continuous and discontinuous scenario in the prior art, where one DCI transmission occupies four PRBs (Physical Resource Block). , physical resource block) The resource in the pair.
  • PRBs Physical Resource Block
  • the embodiment of the invention provides a method and a device for transmitting downlink control information, which solves the problem that the E-PDCCH lacks a specific transmission and configuration scheme in the localized and distributed transmission modes in the prior art.
  • an embodiment of the present invention provides a downlink control information transmission.
  • the method includes at least the following steps:
  • the base station configures, to the terminal device, a localized E-PDCCH resource and a distributed E-PDCCH resource for transmitting downlink control information;
  • the base station transmits downlink control information to the terminal device in the localized E-PDCCH resource and the distributed E-PDCCH resource, so that the terminal device passes the localized E-PDCCH resource and the distributed E-PDCCH resource.
  • the blind detection method detects the downlink control information transmitted;
  • the localized E-PDCCH resource is specifically a resource that transmits an E-PDCCH through a continuous resource unit in a frequency domain, where the distributed E-PDCCH resource specifically transmits an E-PDCCH through a discontinuous resource unit in a frequency domain. resource of.
  • an embodiment of the present invention further provides a base station, including at least:
  • a configuration module configured to configure, to the terminal device, a localized E-PDCCH resource and a distributed E-PDCCH resource for transmitting downlink control information
  • a transmission module configured to transmit downlink control information to the terminal device in a localized E-PDCCH resource and a distributed E-PDCCH resource configured by the configuration module, so that the terminal device is in the localized E-PDCCH resource and
  • the distributed E-PDCCH resource detects the transmitted downlink control information by using a blind detection method
  • the localized E-PDCCH resource is specifically a resource that transmits an E-PDCCH through a continuous resource unit in a frequency domain, where the distributed E-PDCCH resource specifically transmits an E-PDCCH through a discontinuous resource unit in a frequency domain. resource of.
  • an embodiment of the present invention further provides a method for transmitting downlink control information, including at least the following steps:
  • the terminal device receives the localized E-PDCCH resource and the distributed E-PDCCH resource configured by the base station for transmitting downlink control information;
  • the terminal device detects a DCI format in a search space corresponding to the localized E-PDCCH resource and a search space corresponding to the distributed E-PDCCH resource, and acquires downlink control information transmitted by the base station;
  • the localized E-PDCCH resource is specifically a resource that transmits an E-PDCCH through a continuous resource unit in a frequency domain, where the distributed E-PDCCH resource specifically transmits an E-PDCCH through a discontinuous resource unit in a frequency domain. resource of.
  • the embodiment of the present invention further provides a terminal device, including at least:
  • a receiving module configured to receive a localized E-PDCCH resource and a distributed E-PDCCH resource configured by the base station to transmit downlink control information
  • a detecting module configured to detect a DCI format in a search space corresponding to the localized E-PDCCH resource and a search space corresponding to the distributed E-PDCCH resource, and obtain downlink control information transmitted by the base station;
  • the localized E-PDCCH resource is specifically a resource that transmits an E-PDCCH through a continuous resource unit in a frequency domain, where the distributed E-PDCCH resource specifically transmits an E-PDCCH through a discontinuous resource unit in a frequency domain. resource of.
  • the technical solution proposed by the embodiment of the present invention has the following advantages:
  • a downlink control information capable of effectively supporting two transmission modes of the E-PDCCH is proposed.
  • the localized E-PDCCH resource and the distributed E-PDCCH resource are configured by the base station, and are detected by the terminal device in the search space corresponding to the localized E-PDCCH resource and the search space corresponding to the distributed E-PDCCH resource.
  • the DCI format is used to obtain the downlink control information transmitted by the base station, so as to solve the problem that the E-PDCCH lacks a specific transmission and configuration scheme in the localized and distributed transmission modes in the prior art solution, so that the E-PDCCH is obtained.
  • FIG. 1 is a schematic diagram of a multiplexing relationship between a control area and a data area in a downlink subframe in the prior art
  • FIG. 2 is a schematic diagram of a blind detection process in the prior art
  • FIG. 3 is a schematic structural diagram of an enhanced PDCCH in the prior art
  • 4A and 4B are schematic diagrams showing an example of an E-PDCCH transmission scheme in a frequency domain continuous and discontinuous scenario in the prior art
  • FIG. 5 is a schematic flowchart of a downlink control information transmission method on a base station side according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for transmitting downlink control information on a terminal device side according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a localized E-PDCCH resource according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a distributed E-PDCCH resource according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of four possible E-REGs according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of mapping of a localized E-PDCCH resource according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of mapping of a distributed E-PDCCH resource according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a search space in an E-PDCCH cluster according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another search space in an E-PDCCH cluster according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the present invention
  • FIG. 15 is a schematic structural diagram of a terminal device according to an embodiment of the present invention. detailed description
  • E-PDCCH Enhanced PDCCH
  • the present invention provides a transmission scheme and a search space configuration method of an E-PDCCH in a localized and distributed transmission mode, which can effectively support the localized and distributed transmission modes of the E-PDCCH.
  • FIG. 5 is a schematic flowchart of a method for transmitting downlink control information according to an embodiment of the present invention, where the method specifically includes the following steps:
  • Step S501 The base station configures, to the terminal device, a localized E-PDCCH resource and a distributed E-PDCCH resource for transmitting downlink control information.
  • the localized E-PDCCH resource is specifically a resource that transmits an E-PDCCH through a continuous resource unit in a frequency domain, where the distributed E-PDCCH resource specifically transmits an E-PDCCH through a discontinuous resource unit in a frequency domain. resource of.
  • the localized E-PDCCH resource is specifically a resource composed of one or more E-PDCCH clusters.
  • the distributed E-PDCCH resource is specifically a resource consisting of a non-contiguous PRB/PRB pair or a non-contiguous E-PDCCH cluster on multiple frequencies.
  • the processing of this step includes the following three situations:
  • Case 1 The base station configures the terminal device to completely overlap by using the same configuration signaling. Localized E-PDCCH resources and distributed E-PDCCH resources.
  • the base station may configure the completely overlapping localized E-PDCCH resource and the distributed E-PDCCH resource to the terminal device by using the same configuration signaling, or may send the same configuration signaling to the terminal through two
  • the device configures fully overlapping localized E-PDCCH resources and distributed E-PDCCH resources.
  • Case 2 The base station occupies a part of the PRB/PRB pair resources in the E-PDCCH cluster by using a signaling notification or a method specified by the protocol, and configures the partially overlapped localized E-PDCCH resource and the distributed E-PDCCH resource to the terminal device.
  • the base station may be configured to indicate that the distributed E-PDCCH resource occupies a fixed location PRB resource in each E-PDCCH cluster in the localized E-PDCCH resource by configuring an offset manner, to configure a partial overlap to the terminal device.
  • Localized E-PDCCH resources and distributed E-PDCCH resources may be configured to indicate that the distributed E-PDCCH resource occupies a fixed location PRB resource in each E-PDCCH cluster in the localized E-PDCCH resource by configuring an offset manner, to configure a partial overlap to the terminal device.
  • Case 3 The base station configures independent localized E-PDCCH resources and distributed E-PDCCH resources to the terminal device by using independent configuration signaling.
  • the process of configuring the corresponding resources by the base station is as follows:
  • the base station indicates to the terminal device, by using configuration signaling, a starting point PRB number position of the first cluster, where the frequency domain interval between different clusters is indicated by another signaling or by a protocol; or
  • the base station indicates to the terminal device the location of the starting PRB number of each cluster through configuration signaling.
  • the processing procedure in this step specifically includes:
  • the base station indicates, by using the configuration signaling, the starting point PRB number position of the first cluster to the terminal device, where the frequency domain interval between different clusters is indicated by another signaling or specified by a protocol; or
  • the base station indicates to the terminal device the location of the starting PRB number of each cluster through configuration signaling.
  • the processing of this step specifically includes:
  • the base station configures, by using the high layer signaling, the specific location of the PRB occupied by the distributed E-PDCCH resource to the terminal device; or
  • the base station configures, by using the configuration signaling, the starting position of the PRB occupied by the distributed E-PDCCH resource and the number of occupied PRBs to the terminal device, where the PRB resource corresponding to the distributed E-PDCCH resource is in the entire downlink system. Evenly distributed in the bandwidth.
  • the base station configures, by using the configuration signaling, the starting position of the PRB and the number of occupied PRBs that are occupied by the distributed E-PDCCH resource to the terminal device, and specifically includes:
  • the base station configures, by using RRC (Radio Resource Control) signaling, the starting position of the PRB occupied by the distributed E-PDCCH resource, and the number of PRBs occupied by the terminal device; or
  • the base station configures, by using RRC signaling, the starting position of the PRB occupied by the distributed E-PDCCH resource to the terminal device, where the number of PRBs occupied by the control information and the downlink bandwidth of the system are in an agreed relationship.
  • Step S502 The base station transmits downlink control information to the terminal device in the localized E-PDCCH resource and the distributed E-PDCCH resource, so that the terminal device is in the localized E-PDCCH resource and the distributed E-PDCCH.
  • the downlink control information transmitted is detected by a blind detection method in the resource.
  • the processing of this step specifically includes: The base station transmits downlink control information to the terminal device in an E-CCE included in the E-PDCCH resource;
  • one downlink control information can be transmitted on multiple E-CCEs.
  • One E-CCE is specifically composed of one PRB or one or more E-REGs; one E-REG is specifically composed of a plurality of consecutive REs except a legacy PDCCH and a reference signal in a certain physical resource set. .
  • detection and reception of corresponding downlink control information are required.
  • FIG. 6 is a schematic flowchart of a method for transmitting downlink control information according to an embodiment of the present invention on a terminal device side, where the method specifically includes the following steps:
  • Step S601 The terminal device receives the localized E-PDCCH resource and the distributed E-PDCCH resource configured by the base station to transmit downlink control information.
  • the localized E-PDCCH resource is specifically a resource that transmits an E-PDCCH through a continuous resource unit in a frequency domain, where the distributed E-PDCCH resource specifically transmits an E-PDCCH through a discontinuous resource unit in a frequency domain. resource of.
  • the localized E-PDCCH resource is specifically a resource composed of one or more E-PDCCH clusters.
  • the distributed E-PDCCH resource is specifically a resource consisting of a non-contiguous PRB/PRB pair or a non-contiguous E-PDCCH cluster on multiple frequencies.
  • the processing of this step includes the following three cases: Case 1: The terminal device receives the completely overlapping localized E-PDCCH resource and the distributed E-PDCCH resource configured by the base station by using the same configuration signaling.
  • the terminal device may receive the completely overlapped localized E-PDCCH resource and the distributed E-PDCCH resource configured by the base station through the same configuration signaling, or may be configured by the receiving base station by using two identical configuration signalings. Fully overlapping localized E-PDCCH resources and distributed E-PDCCH resources.
  • Case 2 The terminal device receives the partial PRB/PRB pair resource in the E-PDCCH cluster, and the partially overlapped localized E-PDCCH resource and the distributed E-PDCCH are configured by the base station by using a signaling notification or a method specified by the protocol. Resources.
  • the terminal device receives, by configuring the offset, that the distributed E-PDCCH resource occupies a fixed position of the PRB resource in each E-PDCCH cluster in the localized E-PDCCH resource, and the configured partial overlap Localized E-PDCCH resources and distributed E-PDCCH resources.
  • Case 3 The terminal device receives mutually independent localized E-PDCCH resources and distributed E-PDCCH resources that are configured by the base station by using independent configuration signaling.
  • Step S602 The terminal device detects a DCI format in a search space corresponding to the localized E-PDCCH resource and a search space corresponding to the distributed E-PDCCH resource, and acquires downlink control information transmitted by the base station.
  • the search space corresponding to the localized E-PDCCH resource and the search space corresponding to the distributed E-PDCCH resource are determined.
  • the specific determining process is as follows:
  • the terminal device determines that the search space of the localized E-PDCCH resource is allocated based on the E-PDCCH cluster, where the localized E-PDCCH resource of each aggregation level The starting position of the search space is from Starting on the starting CCE of each E-PDCCH cluster;
  • the terminal device determines that the search space of the distributed E-PDCCH resource is based on the configured distributed
  • the processing of this step specifically includes:
  • the terminal device detects a DCI format in at least one E-PDCCH candidate, and acquires downlink control information transmitted by the base station, where the E-PDCCH candidate occupies consecutive resource units in a frequency domain;
  • the terminal device detects a DCI format in at least one E-PDCCH candidate, and acquires downlink control information transmitted by the base station, where the E-PDCCH candidate occupies a discontinuous resource unit in a frequency domain.
  • the terminal device determines the maximum number of blind detections of the search space of the localized E-PDCCH resource and the search space E-PDCCH of the distributed E-PDCCH resource.
  • the process described above is performed for the case where the search space of the localized E-PDCCH resource and the search space of the distributed E-PDCCH resource can coexist.
  • the search space of the localized E-PDCCH resource is A scenario in which a search space of a distributed E-PDCCH resource cannot coexist, and the terminal device needs to determine a search space for detecting according to a specific rule.
  • the terminal device may be configured to detect a search space configured by high layer signaling, and another The search space of the category abandons detection, and such changes do not affect the scope of protection of the present invention.
  • the terminal device determines that the search space of the localized E-PDCCH resource and/or the search space of the distributed E-PDCCH resource can reach the maximum number of blind detections of the PDCCH, respectively, localized E-PDCCH
  • the number of E-PDCCH candidate resources in the search space of the resource and/or the search space of the distributed E-PDCCH resource is defined according to the maximum number of blind detections.
  • the technical solution proposed by the embodiment of the present invention has the following advantages:
  • an effective support for E- is proposed.
  • a method for transmitting downlink control information in two transmission modes of the PDCCH where the localized E-PDCCH resource and the distributed E-PDCCH resource are configured by the base station, and the terminal device respectively searches for the search space corresponding to the localized E-PDCCH resource and distributed E
  • the DCI format is detected in the search space corresponding to the PDCCH resource, and the downlink control information transmitted by the base station is obtained, thereby solving the existing technical solution that the E-PDCCH lacks specific transmission in the localized and distributed transmission modes.
  • the problem of the configuration scheme is such that the E-PDCCH obtains channel selection gain and diversity transmission gain.
  • a method for transmitting downlink control information is provided, which can effectively support two transmission modes of the E-PDCCH.
  • the base station configures the E-PDCCH resource for transmitting the downlink control information for the terminal, and then the base station transmits the downlink control information in the E-PDCCH resource, and finally, the UE is in the E-
  • the downlink control information transmitted is detected by a blind detection method in the PDCCH resource.
  • the resource of the E-PDCCH is defined as a time-frequency resource that can be used for transmitting the E-PDCCH.
  • the E-PDCCH candidate is defined as a unit that the terminal needs to perform DCI format detection on the E-PDCCH resource, that is, a search space, specifically:
  • the UE detects the DCI format in at least one E-PDCCH candidate, and the E-PDCCH candidate occupies a continuous resource unit (ie, a search space of the aforementioned localized E-PDCCH resource) in the frequency domain.
  • a continuous resource unit ie, a search space of the aforementioned localized E-PDCCH resource
  • the UE detects the DCI format at least in one E-PDCCH candidate, and the E-PDCCH candidate occupies a discontinuous resource unit in the frequency domain (ie, the foregoing search space of the distributed E-PDCCH resource).
  • the E-PDCCH resource includes a resource of an E-PDCCH for localized transmission and/or a resource of an E-PDCCH that is transported in a stream (ie, the aforementioned localized E-PDCCH resource and/or distributed E-PDCCH resource).
  • the localized E-PDCCH resource and/or the distributed E-PDCCH resource include the following possible configurations:
  • the foregoing configuration signaling may be the same configuration signaling or two identical configuration signalings. Such changes do not affect the protection scope of the present invention.
  • the llocalized E-PDCCH resource and the distributed E-PDCCH resource are partially overlapped, and some PRB/PRB pair resources in the E-PDCCH cluster are occupied by signaling or protocol-defined methods.
  • One possible way is to configure the offset mode. Indicates that the distributed E-PDCCH resource occupies a fixed location PRB resource in each E-PDCCH cluster in the localized E-PDCCH resource.
  • the localized E-PDCCH resource and the distributed E-PDCCH resource are independently configured.
  • the localized E-PDCCH resource is composed of one or more E-PDCCH clusters, as shown in FIG. 7 .
  • the configuration of the localized E-PDCCH resource is indicated by the high layer signaling.
  • the specific configuration method is as follows:
  • the specific indication manner may be a starting PRB number indicating the first cluster, and the frequency domain interval between different clusters is indicated by another signaling, or by a protocol.
  • the specific indication manner may be indicating the starting point PRB number position of each cluster.
  • the distributed E-PDCCH resource is composed of a plurality of non-contiguous PRB/PRB pairs or a non-contiguous E-PDCCH cluster.
  • the schematic diagram is shown in FIG. 8.
  • the configuration signaling can be as follows:
  • Method 1 If the PRB/PRB pair is used, there are several ways:
  • the starting position of the PRB and the number of occupied PRBs may be indicated by RRC signaling, or the starting position of the PRB may be indicated by RRC signaling, where the number of PRBs occupied by the control information and the downlink bandwidth of the system Have an agreed relationship.
  • An E-CCE here may be a PRB or may be composed of one or more E-REGs.
  • An E-REG consists of a plurality of consecutive REs in addition to the legacy PDCCH, reference signals (CRS, DMRS, CSI-RS, PRS, etc.) in a certain set of physical resources, which have various possible definitions.
  • reference signals CRS, DMRS, CSI-RS, PRS, etc.
  • the resource of the E-CCE of the localized E-PDCCH may be different from the E-CCE resource definition of the distributed E-PDCCH.
  • the E-CCE of the localized E-PDCCH may be composed of an E-REG of alt-2 shown in FIG. 10
  • the E-CCE resource of the distributed E-PDCCH may be composed of four alt-4s as shown in FIG.
  • the composition of E-REG may be composed of an E-REG of alt-2 shown in FIG. 10
  • one of the localized E-PDCCH resources includes one or more E-CCEs.
  • FIG 10 shows a four E-REGs as one E-CCE. The two need to be further pointed out that when downlink control information is transmitted in a distributed E-PDCCH resource, it can be used in multiple E-CCEs.
  • the E-REG maps to discrete physical resources on the frequency.
  • the mapping method may be an interleaving method or a fixed mapping method.
  • Figure 11 shows a resource map of a distributed E-PDCCH with four E-REGs as an E-CCE.
  • the search space of the E-PDCCH is allocated based on the E-PDCCH cluster.
  • the starting position of the search space for each of its aggregation levels starts from the starting CCE of each E-PDCCH cluster.
  • An embodiment of a search space in an E-PDCCH cluster consisting of 8 E-CCEs, specifically one E-PDCCH, is shown in FIG.
  • the number of candidate resources of different aggregation levels in the cluster is limited by the maximum number of blind detections of the terminal, and may be defined differently.
  • the system configures multiple E-PDCCH clusters for the terminal, there are multiple E-PDCCH cluster search spaces determined by the E-PDCCH cluster.
  • the search space of the E-PDCCH is determined based on all E-CCE sets in the configured distributed E-PDCCH resources (here different from the localized E-PDCCH transmission).
  • An embodiment of a search space in an E-PDCCH cluster consisting of 16 E-CCEs is shown in FIG.
  • the number of candidate resources of different aggregation levels is limited by the maximum number of blind detections of the terminal, which may be defined differently.
  • Method 1 The search space of the localized E-PDCCH resource and the search space of the distributed E-PDCCH resource cannot coexist, and the terminal detects which search space is configured by the high layer signaling.
  • Method 2 The search space of the localized E-PDCCH resource coexists with the search space of the distributed E-PDCCH resource, and the terminal needs to detect two types of search spaces at the same time.
  • the search space of the localized E-PDCCH resource or the search space of the distributed E-PDCCH resource can be divided into the maximum number of blind detections of the PDCCH, and the number of E-PDCCH candidate resources in the search space can be determined according to The maximum number of blind checks is defined.
  • the number of candidate E_PDCCH channels with an aggregation level of ⁇ 1, 2, 4, 8 ⁇ in each E-PDCCH cluster is ⁇ 2, 2, 2, 1 ⁇ , if localized E-PDCCH
  • the number of E-PDCCH clusters included in the resource is 2, then the total number of blind detections is calculated as follows:
  • the number of E-PDCCH clusters is 2.
  • the search space of the localized E-PDCCH resource shares the maximum number of blind detections of the PDCCH with the search space of the distributed E-PDCCH resource, and the shared search space of the localized E-PDCCH resource and the distributed E-PDCCH resource needs to be allocated reasonably. The number of PDCCH blind detections in the PDCCH.
  • Two E-PDCCH clusters are configured in the localized E-PDCCH resource, and the number of candidate E-PDCCH channels with an aggregation level of ⁇ 1, 2, 4, 8 ⁇ in each E-PDCCH cluster is ⁇ 2, 2, 0.
  • the number of candidate E_PDCCH channels whose aggregation level is ⁇ 1, 2, 4, 8 ⁇ is ⁇ 2, 2, 2, 2 ⁇ . Then the calculation process of the total number of blind detections is as follows.
  • the number of E-PDCCH clusters is 2.
  • the terminal when the terminal detects the search space of the E-PDCCH, it needs to be determined according to the score. Do not blindly check the search space of its localized E-PDCCH resources and/or distributed E-PDCCH resources.
  • the technical solution proposed by the embodiment of the present invention has the following advantages:
  • a downlink control information capable of effectively supporting two transmission modes of the E-PDCCH is proposed.
  • the localized E-PDCCH resource and the distributed E-PDCCH resource are configured by the base station, and are detected by the terminal device in the search space corresponding to the localized E-PDCCH resource and the search space corresponding to the distributed E-PDCCH resource.
  • the DCI format is used to obtain the downlink control information transmitted by the base station, so as to solve the problem that the E-PDCCH lacks a specific transmission and configuration scheme in the localized and distributed transmission modes in the prior art solution, so that the E-PDCCH is obtained.
  • Channel selection gain and diversity transmission gain is provided in order to implement the technical solution of the embodiment of the present invention, the embodiment of the present invention further provides a base station, and a schematic structural diagram thereof is shown in FIG. 14 , and at least includes:
  • the configuration module 141 is configured to configure, to the terminal device, a localized E-PDCCH resource and a distributed E-PDCCH resource for transmitting downlink control information;
  • the transmitting module 142 is configured to transmit downlink control information to the terminal device in the localized E-PDCCH resource and the distributed E-PDCCH resource configured by the configuration module 141, so that the terminal device is in the localized E-PDCCH Detecting the transmitted downlink control information by using a blind detection method in the resource and the distributed E-PDCCH resource;
  • the localized E-PDCCH resource is specifically a resource that transmits an E-PDCCH through a continuous resource unit in a frequency domain, where the distributed E-PDCCH resource specifically transmits an E-PDCCH through a discontinuous resource unit in a frequency domain. resource of.
  • the configuration module 141 is specifically configured to:
  • the independent localized E-PDCCH resources and the distributed E-PDCCH resources are configured to the terminal device by using independent configuration signaling.
  • configuration module 141 is specifically configured to:
  • Fully overlapping localized E-PDCCH resources and distributed E-PDCCH resources are configured to the terminal device by two identical configuration signaling.
  • configuration module 141 is specifically configured to:
  • the configured offset manner indicates that the distributed E-PDCCH resource occupies a fixed location PRB resource in each E-PDCCH cluster in the localized E-PDCCH resource, to configure the partially overlapping localized E-PDCCH resource and distributed to the terminal device.
  • E-PDCCH resource occupies a fixed location PRB resource in each E-PDCCH cluster in the localized E-PDCCH resource, to configure the partially overlapping localized E-PDCCH resource and distributed to the terminal device.
  • the configuration module 141 is specifically configured to:
  • the starting point PRB number position of each cluster is respectively indicated to the terminal device by configuration signaling.
  • the configuration module 141 is specifically configured to:
  • the distributed E-PDCCH resource is specifically a resource composed of a plurality of non-contiguous E-PDCCH clusters on a frequency
  • the frequency domain interval between different clusters is indicated by another signaling or specified by a protocol;
  • the starting point PRB number position of each cluster is respectively indicated to the terminal device by configuration signaling.
  • the configuration module 141 is specifically configured to:
  • the distributed E-PDCCH resource is specifically a resource composed of a plurality of non-contiguous PRB/PRB pairs on the frequency
  • the configuration module 141 is specifically configured to:
  • the RRC signaling is used to configure the starting location of the PRB occupied by the distributed E-PDCCH resource to the terminal device, where the number of PRBs occupied by the control information is in association with the downlink bandwidth of the system.
  • transmission module 142 is specifically configured to:
  • one downlink control information can be transmitted on multiple E-CCEs.
  • the embodiment of the present invention further provides a terminal device, which is shown in FIG. 15 and includes at least: The receiving module 151 is configured to receive a localized E-PDCCH resource and a distributed E-PDCCH resource configured by the base station to transmit downlink control information, where
  • the detecting module 152 is configured to detect a DCI format in a search space corresponding to the localized E-PDCCH resource and a search space corresponding to the distributed E-PDCCH resource, and obtain downlink control information transmitted by the base station;
  • the localized E-PDCCH resource is specifically a resource that transmits an E-PDCCH through a continuous resource unit in a frequency domain, where the distributed E-PDCCH resource specifically transmits an E-PDCCH through a discontinuous resource unit in a frequency domain. resource of.
  • the receiving module 151 is specifically configured to:
  • the terminal device receives mutually independent localized E-PDCCH resources and distributed E-PDCCH resources that are configured by the base station by using independent configuration signaling.
  • the receiving module 151 is specifically configured to:
  • the receiving module 151 is specifically configured to:
  • the receiving the base station indicates that the distributed E-PDCCH resource occupies a fixed position of the PRB resource in each E-PDCCH cluster in the localized E-PDCCH resource by configuring the offset, and the configured partially overlapped localized E-PDCCH resource and distributed E-PDCCH resources.
  • the detecting module 152 is specifically configured to:
  • the search space for determining the localized E-PDCCH resource is allocated based on the E-PDCCH cluster, where the search space of the E-PDCCH of each aggregation level starts. Start from the starting CCE of each E-PDCCH cluster;
  • the search space of the distributed E-PDCCH resource is determined by all E-CCE sets in the configured distributed E-PDCCH resource.
  • the detecting module 152 is specifically configured to:
  • the search space of the localized E-PDCCH resource is determined to share the maximum number of blind detections of the PDCCH with the search space of the distributed E-PDCCH resource.
  • the technical solution proposed by the embodiment of the present invention has the following advantages:
  • a downlink control information capable of effectively supporting two transmission modes of the E-PDCCH is proposed.
  • the localized E-PDCCH resource and the distributed E-PDCCH resource are configured by the base station, and are detected by the terminal device in the search space corresponding to the localized E-PDCCH resource and the search space corresponding to the distributed E-PDCCH resource.
  • the DCI format is used to obtain the downlink control information transmitted by the base station, so as to solve the problem that the E-PDCCH lacks a specific transmission and configuration scheme in the localized and distributed transmission modes in the prior art solution, so that the E-PDCCH is obtained.
  • the embodiments of the present invention may be implemented by hardware, or may be implemented by means of software plus a necessary general hardware platform.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.).
  • a number of instructions are included to cause a computer device (which may be a personal computer, a server, or a network side device, etc.) to perform the methods described in various implementation scenarios of embodiments of the present invention.
  • modules in the apparatus in the implementation scenario may be distributed in the apparatus for implementing the scenario according to the implementation scenario description, or may be correspondingly changed in one or more devices different from the implementation scenario.
  • the modules of the above implementation scenarios may be combined into one module, or may be further split into multiple sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种下行控制信息的传输方法和设备,通过应用本发明实施例的技术方案,提出了一种能够有效地支持E-PDCCH的两种传输模式的下行控制信息的传输方法,由基站配置localized E-PDCCH资源和distributed E-PDCCH资源,并由终端设备分别在所述localized E-PDCCH资源所对应的搜索空间和distributed E-PDCCH资源所对应的搜索空间中检测DCI format,获取所述基站所传输的下行控制信息,从而,解决现有的技术方案中E-PDCCH在localized和distributed两种传输模式下缺少具体的传输和配置方案的问题,使E-PDCCH获得信道选择增益和分集传输增益。

Description

下行控制信息的传输方法和设备 本申请要求于 2011 年 11 月 8 日提交中国专利局, 申请号为 201110351917.2, 发明名称为 "下行控制信息的传输方法和设备" 的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 特别涉及一种下行控制信息的传输方法和设 备。 背景技术
在 LTE ( Long Term Evolution, 长期演进) 系统中, PDCCH ( Physical Downlink Control Channel, 物理下行控制信道 )在每个无线子帧中进行发送, 形成 TDM ( Time Division Multiplexed , 时分复用)的复用关系。 PDCCH通过 一个下行子中贞的前 N个 OFDM ( Orthogonal Frequency Division Multiplexing ,正 交频分复用)符号发送, 其中 N可能的取值为 1、 2、 3、 4, 而 N=4仅允许出现 在系统带宽为 1.4MHz的系统中。
如图 1所示, 为现有技术中一个下行子帧中控制区域与数据区域的复用关 系的示意图。
LTE系统中传输 PDCCH的控制区域是由逻辑划分的 CCE( Control Channel Element, 控制信道单元)构成的, 其中 CCE到 RE ( Resource Element, 资源单 元) 的映射采用了完全交织的方式。 DCI ( Downlink Control Information, 下 行控制信息) 的传输也是基于 CCE为单位的, 针对一个 UE ( User Equipment, 用户设备,即终端设备)的一个 DCI可以在 N个连续的 CCE中进行发送,在 LTE 系统中 N的可能取值为 1、 2、 4、 8 , 称为 CCE聚合等级(Aggregation Level ) 。 UE在控制区域中进行 PDCCH盲检, 搜索是否存在针对其发送的 PDCCH, 盲 检即使用该 UE的 RNTK Radio Network Temporary Identity,无线网络临时标识 ) 对不同的 DCI格式以及 CCE聚合等级进行解码尝试, 如果解码正确, 则接收到 针对该 UE的 DCI。 LTE UE在非 DRX ( Discontinuous Reception, 不连续接收) 状态中的每一个下行子帧都需要对控制区域进行盲检, 搜索 PDCCH。
LTE系统中一个子帧中的控制区域是由两个空间构成的,即 CSS( Common Search Space, 公共搜索空间)和 UESS ( UE-specific Search Space, 用户专属 搜索空间)。其中, CSS主要用于传输调度小区专属控制信息(例如系统信息、 寻呼消息、 组播功率控制信息等)的 DCI, UESS主要用于传输针对各个 UE资 源调度的 DCI。 每个下行子帧中 CSS包括前 16个 CCE, 且 CSS中 CCE聚合等级 仅支持 4、 8两种; 每个下行子帧中每个用户专属的 UESS的起始 CCE位置与子 帧编号、 UE的 RNTI等相关, UESS内支持 CCE聚合等级 1、 2、 4、 8。 在 UESS 中, 每一种聚合等级的盲检对应一个搜索空间, 也就是 UE盲检不同的聚合等 级是在不同的搜索空间内进行的。表 1给出了一个 UE在一个下行子帧中需要盲 检的 CCE空间。
表 1: 一个 UE在一个下行子帧中需要盲检的 CCE空间
Figure imgf000003_0001
其中, L表示聚合等级的大小, Size表示对应每种聚合等级大小需要盲检 的 CCE个数, M(L)则表示相应的每种聚合等级大小的盲检尝试次数。
进一步的, 如图 2所示, 为现有技术中盲检过程的示意图。
根据表 1所示, 一个 UE在一个下行子帧中需要进行 22个 PDCCH信道资源 的尝试, 其中, CSS共 6个 PDCCH信道资源, UESS共 16个 PDCCH信道资源。
由于 MU-MIMO ( MultiUser-Multiple Input Multiple Output, 多用户多输入 多输出), CoMP( Coordinative Multi Point,协同多点), CA( Carrier Aggregation, 载波聚合)等技术和同小区 ID的 RRH ( Remote Radio Head, 远端射频拉远模 块) 、 8天线等配置的引入, LTE-A ( Long Term Evolution Advanced, 高级长 期演进 ) 系统的物理下行共享信道的容量和传输效率将得到大幅度的提升; 而相对早期的 LTE版本(如 Rd-8/9 ) , LTE-A系统的物理下行控制信道却未受 益于新技术而获得提升。
一方面, 新技术的应用使 PDSCH可以同时为更多用户提供数据传输, 这 将大大提高对 PDCCH信道容量的需求; 另一方面, 在 PDSCH中应用的 DM-RS
( Demodulation Reference Signal , 解调参考信号 )和在 Relay backhaul中应用 的 R-PDCCH等新技术为 PDCCH的增强提供了可循的技术和经验。
为了解决下行控制信道容量受限, 并且提高下行控制信息的传输效率, 现有技术中所提出的一种解决方案是: 保留原有 PDCCH域的同时, 在下行子 帧中的 PDSCH域内发送增强的 PDCCH。原有 PDCCH域仍然采用现有的发送和 接收技术,使用原有的 PDCCH资源,如发送时采用发送分集,接收时基于 CRS
( Common Reference Signal , 公共参考信号)采用盲检技术在 CSS和 UESS对 DCI进行盲检, 占用前 N个 OFDM符号发送, 其中 N可能的取值为 1、 2、 3、 4, 而 N=4仅允许出现在系统带宽为 1.4MHz的系统中, 这部分 PDCCH域称为 legacy (传统) PDCCH域。 增强的 PDCCH域可以使用更先进的发送和接收技 术, 如发送时采用预编码, 接收时基于 DM-RS进行检测, 占用 legacy PDCCH 域以外的时频资源发送, 使用原有的 PDSCH的部分资源, 与 PDSCH通过频分 的方式实现复用, 这部分 PDCCH域称为 Enhanced PDCCH ( E-PDCCH, 增强 PDCCH )域。 这种 Enhanced PDCCH与 PDSCH通过频分方式实现复用的方案 称为 FDM E-PDCCH, 如图 3所示, 为现有技术中一种增强的 PDCCH的结构示 意图。
目前标准讨论已确定 E-PDCCH要支持波束赋形传输和分集传输两种模 式, 应用于不同的场景。 通常情况下, 波束赋形传输模式多用于基站能够获 得终端反馈的较为精确的信道信息, 且邻小区干扰随子帧变化不是非常剧烈 的场景, 此时基站根据终端反馈的 CSI选择质量较好的连续频率资源为该终端 传输 E-PDCCH, 并进行波束赋形处理提高传输性能。 在信道信息不能准确获 得, 或者邻小区干扰随子帧变化剧烈且不可预知的情况下, 需要采用频率分 集的方式传输 E-PDCCH, 即使用频率上不连续的频率资源进行传输。
如图 4A和图 4B所示, 为现有技术中一种频域连续和不连续场景下的 E-PDCCH传输方案示例的示意图, 该示例中一条 DCI的传输占用了四个 PRB ( Physical Resource Block , 物理资源块) pair (对) 中的资源。
在实现本发明的过程中, 发明人发现现有技术中至少存在以下问题: 虽然现有技术中已经确定 E-PDCCH要支持 localized和 distributed两种传输 模式, 应用于频域连续和不连续两种不同的场景, 但是, 这两种传输模式的 具体的传输和配置方案尚未提出。 发明内容
本发明实施例提供一种下行控制信息的传输方法和设备, 解决现有的技 术方案中 E-PDCCH在 localized和 distributed两种传输模式下缺少具体的传输 和配置方案的问题。
为达到上述目的, 本发明实施例一方面提供了一种下行控制信息的传输 方法, 至少包括以下步骤:
基站向终端设备配置用于传输下行控制信息的 localized E-PDCCH资源和 distributed E-PDCCH资源;
所述基站在所述 localized E-PDCCH资源和 distributed E-PDCCH资源中 向所述终端设备传输下行控制信息, 以使所述终端设备在所述 localized E-PDCCH资源和 distributed E-PDCCH资源中通过盲检的方法检测所传输的 下行控制信息;
其中,所述 localized E-PDCCH资源具体为在频域上通过连续的资源单元 传输 E-PDCCH的资源, 所述 distributed E-PDCCH资源具体为在频域上通过 不连续的资源单元传输 E-PDCCH的资源。 另一方面, 本发明实施例还提供了一种基站, 至少包括:
配置模块, 用于向终端设备配置用于传输下行控制信息的 localized E-PDCCH资源和 distributed E-PDCCH资源;
传输模块, 用于在所述配置模块所配置的 localized E-PDCCH 资源和 distributed E-PDCCH资源中向所述终端设备传输下行控制信息, 以使所述终 端设备在所述 localized E-PDCCH资源和 distributed E-PDCCH资源中通过盲 检的方法检测所传输的下行控制信息;
其中,所述 localized E-PDCCH资源具体为在频域上通过连续的资源单元 传输 E-PDCCH的资源, 所述 distributed E-PDCCH资源具体为在频域上通过 不连续的资源单元传输 E-PDCCH的资源。 另一方面, 本发明实施例还提供了一种下行控制信息的传输方法, 至少 包括以下步骤:
终端设备接收基站所配置的用于传输下行控制信息的 localized E-PDCCH 资源和 distributed E-PDCCH资源; 所述终端设备分别在所述 localized E-PDCCH 资源所对应的搜索空间和 distributed E-PDCCH资源所对应的搜索空间中检测 DCI format, 获取所述基 站所传输的下行控制信息;
其中,所述 localized E-PDCCH资源具体为在频域上通过连续的资源单元 传输 E-PDCCH的资源, 所述 distributed E-PDCCH资源具体为在频域上通过 不连续的资源单元传输 E-PDCCH的资源。 另一方面, 本发明实施例还提供了一种终端设备, 至少包括:
接收模块, 用于接收基站所配置的用于传输下行控制信息的 localized E-PDCCH资源和 distributed E-PDCCH资源;
检测模块,用于分别在所述 localized E-PDCCH资源所对应的搜索空间和 distributed E-PDCCH资源所对应的搜索空间中检测 DCI format, 获取所述基 站所传输的下行控制信息;
其中,所述 localized E-PDCCH资源具体为在频域上通过连续的资源单元 传输 E-PDCCH的资源, 所述 distributed E-PDCCH资源具体为在频域上通过 不连续的资源单元传输 E-PDCCH的资源。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优点: 通过应用本发明实施例的技术方案, 提出了一种能够有效地支持 E-PDCCH的两种传输模式的下行控制信息的传输方法, 由基站配置 localized E-PDCCH 资源和 distributed E-PDCCH 资源, 并由终端设备分别在所述 localized E-PDCCH资源所对应的搜索空间和 distributed E-PDCCH资源所对应 的搜索空间中检测 DCI format, 获取所述基站所传输的下行控制信息, 从而, 解决现有的技术方案中 E-PDCCH在 localized和 distributed两种传输模式下缺 少具体的传输和配置方案的问题,使 E-PDCCH获得信道选择增益和分集传输 增益。 附图说明
图 1 为现有技术中一个下行子帧中控制区域与数据区域的复用关系的示 意图;
图 2为现有技术中盲检过程的示意图;
图 3为现有技术中一种增强的 PDCCH的结构示意图;
图 4A和图 4B为现有技术中一种频域连续和不连续场景下的 E-PDCCH 传输方案示例的示意图;
图 5 为本发明实施例所提出的一种下行控制信息的传输方法在基站侧的 流程示意图;
图 6 为本发明实施例所提出的一种下行控制信息的传输方法在终端设备 侧的流程示意图;
图 7为本发明实施例所提出的一种 localized E-PDCCH资源的组成结构示 意图;
图 8为本发明实施例所提出的一种 distributed E-PDCCH资源的组成结构 示意图;
图 9为本发明实施例所提出的四种可能的 E-REG的示意图;
图 10为本发明实施例所提出的一种 localized E-PDCCH资源的映射的示 意图;
图 11为本发明实施例所提出的一种 distributed E-PDCCH资源的映射的示 意图;
图 12为本发明实施例所提出的一种 E-PDCCH cluster中的搜索空间的示 意图;
图 13为本发明实施例所提出的另一种 E-PDCCH cluster中的搜索空间的 示意图;
图 14为本发明实施例提出的一种基站的结构示意图; 图 15为本发明实施例提出的一种终端设备的结构示意图。 具体实施方式
如背景技术所述,为了提升 LTE- A系统性能,扩大 PDCCH容量,在 Rd- 11 版本中引入了 Enhanced PDCCH ( E-PDCCH )。目前标准讨论已确定 E-PDCCH 要支持 localized和 distributed两种模式,应用于频域连续和不连续两种不同的 场景。 但这两种传输模式的具体的传输和配置方案尚未提出。
为了克服这样的缺陷,本发明给出一种 E-PDCCH在 localized和 distributed 传输模式下的传输方案和搜索空间的配置方法,能够有效地支持 E-PDCCH的 localized和 distributed两种传输模式。
如图 5所示, 为本发明实施例所提出的一种下行控制信息的传输方法在 基站侧的流程示意图, 该方法具体包括以下步骤:
步骤 S501、 基站向终端设备配置用于传输下行控制信息的 localized E-PDCCH资源和 distributed E-PDCCH资源。
其中,所述 localized E-PDCCH资源具体为在频域上通过连续的资源单元 传输 E-PDCCH的资源, 所述 distributed E-PDCCH资源具体为在频域上通过 不连续的资源单元传输 E-PDCCH的资源。
在具体的处理场景中, 上述两种资源的具体形式的说明如下:
( 1 )所述 localized E-PDCCH资源, 具体为由一个或者多个 E-PDCCH cluster组成的资源。
( 2 ) 所述 distributed E-PDCCH 资源, 具体为由多个频率上非连续的 PRB/PRB pair或者非连续的 E-PDCCH cluster组成的资源。
在实际应用中, 根据两种资源的关系, 本步骤的处理过程包括以下三种 情况:
情况一、 所述基站通过相同的配置信令, 向所述终端设备配置完全重叠 的 localized E-PDCCH资源和 distributed E-PDCCH资源。
在具体的应用场景中, 基站可以通过同一条配置信令向所述终端设备配 置完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源, 也可以 通过两条相同的配置信令向所述终端设备配置完全重叠的 localized E-PDCCH 资源和 distributed E-PDCCH资源。
这样的变化并不影响本发明的保护范围。
情况二、 所述基站通过信令通知或者协议规定的方法占用 E-PDCCH cluster中的部分 PRB/PRB pair资源,向所述终端设备配置部分重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源。
具体的, 所述基站可以通过配置 offset的方式指示 distributed E-PDCCH 资源占用 localized E-PDCCH资源中每个 E-PDCCH cluster中的固定的位置的 PRB 资源, 以向所述终端设备配置部分重叠的 localized E-PDCCH 资源和 distributed E-PDCCH资源。
情况三、 所述基站通过独立的配置信令, 向所述终端设备配置相互独立 的 localized E-PDCCH资源和 distributed E-PDCCH资源。
无论是上述的哪种情况, 基站具体配置相应资源的过程说明如下:
A、 localized E-PDCCH资源。
所述基站通过配置信令向所述终端设备指示第一个 cluster的起点 PRB编 号位置, 其中, 不同 cluster之间的频域间隔通过另一个信令进行指示或者通 过协议规定; 或,
所述基站通过配置信令向所述终端设备分别指示各 cluster的起点 PRB编 号位置。
B、 distributed E-PDCCH资源。
当所述 distributed E-PDCCH 资源, 具体为由多个频率上非连续的 E-PDCCH cluster组成的资源时, 本步骤的处理过程, 具体包括: 所述基站通过配置信令向所述终端设备指示所述第一个 cluster 的起点 PRB编号位置, 其中, 不同 cluster之间的频域间隔通过另一个信令进行指示 或者通过协议规定; 或,
所述基站通过配置信令向所述终端设备分别指示各 cluster的起点 PRB编 号位置。
当所述 distributed E-PDCCH 资源, 具体为由多个频率上非连续的 PRB/PRB pair组成的资源时, 本步骤的处理过程, 具体包括:
所述基站通过高层信令向所述终端设备配置 distributed E-PDCCH资源占 用的 PRB的具体位置; 或,
所述基站通过配置信令向所述终端设备配置 distributed E-PDCCH资源占 用的 PRB的起点位置和占用的 PRB的个数,其中,所述 distributed E-PDCCH 资源所对应的 PRB资源在整个下行系统带宽中均匀分布。
其中, 所述基站通过配置信令向所述终端设备配置 distributed E-PDCCH 资源占用的 PRB的起点位置和占用的 PRB的个数, 具体包括:
所述基站通过 RRC ( Radio Resource Control, 无线资源控制协议)信令 向所述终端设备配置 distributed E-PDCCH资源占用的 PRB的起始位置,以及 占用的 PRB个数; 或,
所述基站通过 RRC信令向所述终端设备配置 distributed E-PDCCH资源占 用的 PRB的起始位置, 其中,控制信息占用的 PRB个数与系统的下行带宽存 在约定的关联关系。
步骤 S502、 所述基站在所述 localized E-PDCCH 资源和 distributed E-PDCCH资源中向所述终端设备传输下行控制信息, 以使所述终端设备在所 述 localized E-PDCCH资源和 distributed E-PDCCH资源中通过盲检的方法检 测所传输的下行控制信息。
在具体的处理场景中, 本步骤的处理过程具体包括: 所述基站在所述 E-PDCCH资源所包括的 E-CCE中向所述终端设备传输 下行控制信息;
其中, 根据所需的编码速率, 一个下行控制信息可在多个 E-CCE上进行 传输。
进一步的, 在具体的处理场景中, 需要说明如下:
一个所述 E-CCE具体为一个 PRB或由一个或者多个 E-REG构成的; 一个 E-REG具体为由一定物理资源集合内除了 legacy PDCCH,参考信号 之外的连续的多个可用 RE组成。 相对应的, 在终端设备侧, 需要进行相应的下行控制信息的检测和接收。 如图 6所示, 为本发明实施例所提出的一种下行控制信息的传输方法在 终端设备侧的流程示意图, 该方法具体包括以下步骤:
步骤 S601、 终端设备接收基站所配置的用于传输下行控制信息的 localized E-PDCCH资源和 distributed E-PDCCH资源。
其中,所述 localized E-PDCCH资源具体为在频域上通过连续的资源单元 传输 E-PDCCH的资源, 所述 distributed E-PDCCH资源具体为在频域上通过 不连续的资源单元传输 E-PDCCH的资源。
与步骤 S501中的说明相类似, 在实际的应用场景中, 上述两种资源的具 体形式的说明如下:
( 1 )所述 localized E-PDCCH资源, 具体为由一个或者多个 E-PDCCH cluster组成的资源。
( 2 ) 所述 distributed E-PDCCH 资源, 具体为由多个频率上非连续的 PRB/PRB pair或者非连续的 E-PDCCH cluster组成的资源。
在实际应用中, 根据两种资源的关系, 本步骤的处理过程包括以下三种 情况: 情况一、 所述终端设备接收所述基站通过相同的配置信令所配置的完全 重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源。
在具体的应用场景中, 终端设备可以接收基站通过同一条配置信令所配 置的完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源, 也可 以接收基站通过两条相同的配置信令所配置的完全重叠的 localized E-PDCCH 资源和 distributed E-PDCCH资源。
这样的变化并不影响本发明的保护范围。
情况二、 所述终端设备接收所述基站通过信令通知或者协议规定的方法 占用 E-PDCCH cluster 中的部分 PRB/PRB pair资源, 所配置的部分重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源。
具体的, 所述终端设备接收所述基站通过配置 offset 的方式指示 distributed E-PDCCH 资源占用 localized E-PDCCH 资源中每个 E-PDCCH cluster中的固定的位置的 PRB资源,所配置的部分重叠的 localized E-PDCCH 资源和 distributed E-PDCCH资源。
情况三、 所述终端设备接收所述基站通过独立的配置信令所配置的相互 独立的 localized E-PDCCH资源和 distributed E-PDCCH资源。
步骤 S602、 所述终端设备分别在所述 localized E-PDCCH资源所对应的 搜索空间和 distributed E-PDCCH资源所对应的搜索空间中检测 DCI format, 获取所述基站所传输的下行控制信息。
在实际的应用场景中,本步骤执行之前,首先需要确定 localized E-PDCCH 资源所对应的搜索空间和 distributed E-PDCCH资源所对应的搜索空间, 具体 的确定过程为:
对于通过 localized E-PDCCH资源来传输的下行控制信息,所述终端设备 确定 localized E-PDCCH资源的搜索空间是基于 E-PDCCH cluster来分配的, 其中,每种聚合等级的 localized E-PDCCH资源的搜索空间的起始位置都是从 每个 E-PDCCH cluster的起始 CCE上开始的;
对于通过 distributed E-PDCCH资源来传输的下行控制信息, 所述终端设 备确定 Distributed E-PDCCH 资源的搜索空间是基于配置的 distributed
E-PDCCH资源中的所有 E-CCE集合来确定的。
在搜索空间确定完成之后, 本步骤的处理过程具体包括:
所述终端设备至少在一个 E-PDCCH candidate中检测 DCI format,获取所 述基站所传输的下行控制信息,所述 E-PDCCH candidate在频域上占用连续的 资源单元;
所述终端设备至少在一个 E-PDCCH candidate中检测 DCI format,获取所 述基站所传输的下行控制信息,所述 E-PDCCH candidate在频域上占用不连续 的资源单元。
需要说明的是,所述终端设备确定 localized E-PDCCH资源的搜索空间与 distributed E-PDCCH资源的搜索空间 E-PDCCH的最大盲检次数。
其中, 需要说明的是, 对于终端设备所收到的用于传输下行控制信息的 E-PDCCH资源的配置信息, 具体的形式参照前述的步骤 S501 中的说明, 相 应的下行控制信息的传输形式参照前述的步骤 S502中的说明, 在此, 不再重 复说明。
进一步的,上述说明的处理过程是针对 localized E-PDCCH资源的搜索空 间与 distributed E-PDCCH资源的搜索空间可以共存的情况来进行的, 在实际 应用中, 对于 localized E-PDCCH资源的搜索空间与 distributed E-PDCCH资 源的搜索空间不能共存的场景, 所述终端设备需要根据具体的规则确定进行 检测的搜索空间, 例如, 可以规定终端设备检测其中通过高层信令配置的搜 索空间, 而对另一类别的搜索空间放弃检测, 这样的变化并不影响本发明的 保护范围。
在此基础上, 当 localized E-PDCCH 资源的搜索空间与 distributed E-PDCCH资源的搜索空间不能共存时,所述终端设备确定 localized E-PDCCH 资源的搜索空间和 /或 distributed E-PDCCH 资源的搜索空间都可以分别达到 PDCCH的最大盲检次数, localized E-PDCCH资源的搜索空间和 /或 distributed E-PDCCH资源的搜索空间中的 E-PDCCH候选资源的个数依据最大盲检次数 进行定义。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优点: 通过应用本发明实施例的技术方案, 通过应用本发明实施例的技术方案, 提出了一种能够有效地支持 E-PDCCH 的两种传输模式的下行控制信息的传 输方法, 由基站配置 localized E-PDCCH资源和 distributed E-PDCCH资源, 并由终端设备分别在所述 localized E-PDCCH 资源所对应的搜索空间和 distributed E-PDCCH资源所对应的搜索空间中检测 DCI format, 获取所述基 站所传输的下行控制信息,从而,解决现有的技术方案中 E-PDCCH在 localized 和 distributed 两种传输模式下缺少具体的传输和配置方案的问题, 使 E-PDCCH获得信道选择增益和分集传输增益。 下面, 结合具体的应用场景, 对本发明实施例所提出的技术方案进行说 明。
本发明实施例所提出的技术方案中, 提供了一种下行控制信息的传输方 法, 能够有效地支持 E-PDCCH的两种传输模式。
其主要的技术思路在于: 基站为终端配置其用于传输下行控制信息的 E-PDCCH资源, 然后, 基站在所述的 E-PDCCH资源中传输下行控制信息, 最后, UE在所述的 E-PDCCH资源中通过盲检的方法检测所传输的下行控制 信息。
在相应的技术方案中, E-PDCCH的资源定义为可以用于传输 E-PDCCH 的时频资源。 另一方面, E-PDCCH candidate定义为终端需要在 E-PDCCH资源上进行 DCI format检测的单元, 即搜索空间, 具体的:
UE至少在一个 E-PDCCH candidate检测 DCI format, 所述 E-PDCCH candidate在频域上占用连续的资源单元(即前述的 localized E-PDCCH资源的 搜索空间) 。
UE至少在一个 E-PDCCH candidate检测 DCI format, 所述 E-PDCCH candidate在频域上占用不连续的资源单元(即前述的 distributed E-PDCCH资 源的搜索空间) 。
进一步的,所述 E-PDCCH资源包括用于 localized传输的 E-PDCCH的资 源和 /或 Distributed传输的 E-PDCCH的资源(即前述的 localized E-PDCCH资 源和 /或 distributed E-PDCCH资源) 。
在实际的应用场景中, 所述 localized E-PDCCH 资源和 /或 distributed E-PDCCH资源包含如下几种可能的配置:
1 ) localized E-PDCCH资源和 distributed E-PDCCH资源完全重叠, 其资 源的配置信令是相同的。
在具体的应用场景中, 上述的配置信令可以是同一条配置信令, 也可以 是两条相同的配置信令, 这样的变化并不影响本发明的保护范围。
2 ) llocalized E-PDCCH资源和 distributed E-PDCCH资源部分重叠, 通过 信令通知或者协议规定的方法占用 E-PDCCH cluster中的部分 PRB/PRB pair 资源, 一种可能的方式是通过配置 offset的方式指示 distributed E-PDCCH资 源占用 localized E-PDCCH资源中每个 E-PDCCH cluster中的固定的位置的 PRB资源。
3 ) localized E-PDCCH资源和 distributed E-PDCCH资源独立配置。
下面, 分别针对两种资源进行具体的说明:
(一 ) localized E-PDCCH资源。 在实际应用中, localized E-PDCCH资源由一个或者多个 E-PDCCH cluster 组成, 具体如图 7所示。
localized E-PDCCH资源的配置是通过高层信令进行指示的, 其中, 具体 的配置方法如下:
方法 A、 具体的指示方式可以是指示第一个 cluster的起点 PRB编号, 同 时不同 cluster之间的频域间隔通过另一信令指示, 或者通过协议规定。
方法 B、 具体的指示方式可以是分别指示各个 cluster的起点 PRB编号位 置。
(二) distributed E-PDCCH资源
distributed E-PDCCH资源是由多个频率上非连续的 PRB/PRB pair或者非 连续的 E-PDCCH cluster组成, 其示意图如图 8所示。
在具体的处理场景中, 其配置信令可以有如下两种方式:
方式一、 如果采用 PRB/PRB pair, 有如下几种方式:
( 1 )指示 Distributed传输的 E-PDCCH占用的 PRB的具体位置, 其可以 通过高层信令通知给终端。
( 2 )指示 Distributed传输的 E-PDCCH占用的 PRB的起点位置和占用的 PRB的个数, Distributed传输的 E-PDCCH的 PRB资源在整个下行系统带宽 中均匀的分散开。
具体的, 可以通过 RRC信令指示其 PRB的起始位置, 以及占用的 PRB 个数, 或者, 通过 RRC信令指示其 PRB的起始位置, 其中控制信息占用的 PRB个数与系统的下行带宽有着约定的关联关系。
方式二、 如果采用 E-PDCCH cluster, 其与上述的 localized E-PDCCH资 源的配置方法相类似, 在此不再重复说明。 需要进一步指出的是, 下行控制信息(DCI )在控制信道单元 E-CCE上 进行传输, 根据所需的编码速率, 一个 DCI可在 N个 E-CCE上进行传输, 例 如 N={ 1,2,4,8}。 这里的一个 E-CCE可以是一个 PRB, 也可以是由一个或者多 个 E-REG构成。
一个 E-REG由一定物理资源集合内除了 legacy PDCCH, 参考信号 (CRS、 DMRS、 CSI-RS、 PRS等)之外的连续的可用多个 RE组成, 其有多种可能的 定义方式, 在图 9中给出了四种可能的 E-REG的示意图。
其中, localized E-PDCCH的 E-CCE的资源可以与 distributed E-PDCCH 的 E-CCE资源定义不同。
例如: localized E-PDCCH的 E-CCE可以由一个图 10中所示的 alt-2的 E-REG组成, distributed E-PDCCH的 E-CCE资源可以由 4个图 10中所示的 alt-4的 E-REG组成。
在实际应用中,所述的 localized E-PDCCH资源中,一个 E-PDCCH cluster 包含一个或者多个 E-CCE。
所述下行控制信息在 localized E-PDCCH资源中传输时,其调制符号直接 映射到物理资源上。 图 10中给出了一个 4个 E-REG作为一个 E-CCE, 两个 需要进一步指出的是, 下行控制信息在 distributed E-PDCCH资源中传输 时, 其可以将一个 E-CCE中的多个 E-REG映射到频率上离散的物理资源上。 其映射的方式可以是采用交织的方法, 也可以采用固定映射的方法。 图 11中 给出了一个 4个 E-REG作为一个 E-CCE情况下的 distributed E-PDCCH的资 源映射的示意图。
对于 localized E-PDCCH传输的下行控制信息, 其 E-PDCCH的搜索空间 是基于 E-PDCCH cluster来分配的。其每种聚合等级的搜索空间的起始位置都 是从每个 E-PDCCH cluster的起始 CCE上开始的。 图 12中给出了一种由 8个 E-CCE组成的 E-PDCCH cluster中的搜索空间的实施例,具体的一个 E-PDCCH cluster 中不同聚合等级的候选资源个数是有终端的最大盲检次数限制的, 其 可以有不同的定义方式。
同时, 如果系统为终端配置了多个 E-PDCCH cluster , 则存在多个 E-PDCCH cluster确定的 E-PDCCH的搜索空间。
对于 distributed E-PDCCH传输的下行控制信息, 其 E-PDCCH的搜索空 间是基于配置的 distributed E-PDCCH资源中的所有 E-CCE集合来确定的(这 里与 localized E-PDCCH传输是不同的)。 图 13中给出了一种由 16个 E-CCE 组成的 E-PDCCH cluster中的搜索空间的实施例。不同聚合等级的候选资源个 数是由终端的最大盲检次数限制的, 其可以有不同的定义方式。
对于一个终端来说, localized E-PDCCH 资源的搜索空间与 distributed E-PDCCH资源的搜索空间是否共存有如下几种可能:
方法 1、 localized E-PDCCH资源的搜索空间与 distributed E-PDCCH资源 的搜索空间不能共存, 终端检测哪个搜索空间是高层信令配置的。
方法 2、 localized E-PDCCH资源的搜索空间与 distributed E-PDCCH资源 的搜索空间共存, 终端需要同时检测两类搜索空间。
对于方法 1 来说, localized E-PDCCH 资源的搜索空间 /或者 distributed E-PDCCH资源的搜索空间都可以分达到 PDCCH的最大盲检次数, 其搜索空 间中的 E-PDCCH候选资源的个数可以依据最大盲检次数进行定义。
实施例一
对于 localized E-PDCCH资源中, 每个 E-PDCCH cluster中的聚合等级为 { 1,2,4,8}的候选 E_PDCCH信道个数为 {2,2,2,1 } , 如果 localized E-PDCCH资 源中包含的 E-PDCCH cluster个数为 2, 那么其总的盲检次数计算如下:
每个 E-PDCCH cluster中需要盲检的次数为 (2+2+2+1 ) *2=14, 其中最 后一个 2表示一个 E-PDCCH候选信道中需要盲检两种 DCI格式。
E-PDCCH cluster的个数为 2。 总的盲检次数为 14*2=28。
实施例二
对于 distributed E-PDCCH资源中,聚合等级为 { 1,2,4,8 }的候选 E_PDCCH 信道个数为 {6,6,2,2} , 那么其总的盲检次数为 ( 6+6+2+2 ) *2=32, 其中最后 一个 2表示一个 E-PDCCH候选信道中需要盲检两种 DCI格式。 对于方法 2 来说, localized E-PDCCH 资源的搜索空间与 distributed E-PDCCH资源的搜索空间共享 PDCCH的最大盲检次数, 其需要合理的分配 localized E-PDCCH 资源和 distributed E-PDCCH 资源各自搜索空间中的 PDCCH盲检次数。
实施例三
localized E-PDCCH资源中配置了 2个 E-PDCCH cluster, 每个 E-PDCCH cluster 中的聚合等级为 { 1,2,4,8}的候选 E—PDCCH 信道个数为 {2,2,0,0} , distributed E-PDCCH资源中,聚合等级为 { 1,2,4,8 }的候选 E_PDCCH信道个数 为 {2,2,2,2}。 那么其总的盲检次数的计算过程如下。
Localized E-PDCCH资源中的盲检次数:
每个 E-PDCCH cluster中需要盲检的次数为 ( 2+2+0+0 ) *2=8 , 其中最后 一个 2表示一个 E-PDCCH候选信道中需要盲检两种 DCI格式。
E-PDCCH cluster的个数为 2。
所以, Localized E-PDCCH资源中的盲检次数 8*2=16。
Distributed E-PDCCH资源中的盲检次数:
为 (2+2+2+2 ) *2=16, 其中最后一个 2表示一个 E-PDCCH候选信道中 需要盲检两种 DCI格式。
总的盲检次数为 16+16=32。
在具体的处理场景中, 终端在检测 E-PDCCH的搜索空间时, 需要根据分 别对其 localized E-PDCCH资源和 /或 distributed E-PDCCH资源的搜索空间进 行盲检。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优点: 通过应用本发明实施例的技术方案, 提出了一种能够有效地支持 E-PDCCH的两种传输模式的下行控制信息的传输方法, 由基站配置 localized E-PDCCH 资源和 distributed E-PDCCH 资源, 并由终端设备分别在所述 localized E-PDCCH资源所对应的搜索空间和 distributed E-PDCCH资源所对应 的搜索空间中检测 DCI format, 获取所述基站所传输的下行控制信息, 从而, 解决现有的技术方案中 E-PDCCH在 localized和 distributed两种传输模式下缺 少具体的传输和配置方案的问题,使 E-PDCCH获得信道选择增益和分集传输 增益。 为了实现本发明实施例的技术方案, 本发明实施例还提供了一种基站, 其结构示意图如图 14所示, 至少包括:
配置模块 141 , 用于向终端设备配置用于传输下行控制信息的 localized E-PDCCH资源和 distributed E-PDCCH资源;
传输模块 142, 用于在所述配置模块 141所配置的 localized E-PDCCH资 源和 distributed E-PDCCH资源中向所述终端设备传输下行控制信息, 以使所 述终端设备在所述 localized E-PDCCH资源和 distributed E-PDCCH资源中通 过盲检的方法检测所传输的下行控制信息;
其中,所述 localized E-PDCCH资源具体为在频域上通过连续的资源单元 传输 E-PDCCH的资源, 所述 distributed E-PDCCH资源具体为在频域上通过 不连续的资源单元传输 E-PDCCH的资源。
具体的, 所述配置模块 141 , 具体用于:
通过相同的配置信令, 向所述终端设备配置完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源; 或,
通过信令通知或者协议规定的方法占用 E-PDCCH cluster 中的部分 PRB/PRB pair资源,向所述终端设备配置部分重叠的 localized E-PDCCH资源 和 distributed E-PDCCH资源; 或,
通过独立的配置信令, 向所述终端设备配置相互独立的 localized E-PDCCH资源和 distributed E-PDCCH资源。
进一步的, 所述配置模块 141 , 具体用于:
通过同一条配置信令向所述终端设备配置完全重叠的 localized E-PDCCH 资源和 distributed E-PDCCH资源; 或,
通过两条相同的配置信令向所述终端设备配置完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源。
进一步的, 所述配置模块 141 , 具体用于:
通过配置 offset 的方式指示 distributed E-PDCCH 资源占用 localized E-PDCCH资源中每个 E-PDCCH cluster中的固定的位置的 PRB资源, 以向所 述终端设备配置部分重叠的 localized E-PDCCH资源和 distributed E-PDCCH 资源。
另一方面, 所述配置模块 141 , 具体用于:
通过配置信令向所述终端设备指示第一个 cluster的起点 PRB编号位置, 其中, 不同 cluster之间的频域间隔通过另一个信令进行指示或者通过协议规 定; 或,
通过配置信令向所述终端设备分别指示各 cluster的起点 PRB编号位置。 另一种情况下, 所述配置模块 141 , 具体用于:
当所述 distributed E-PDCCH 资源, 具体为由多个频率上非连续的 E-PDCCH cluster组成的资源时,
通过配置信令向所述终端设备指示所述第一个 cluster的起点 PRB编号位 置, 其中, 不同 cluster之间的频域间隔通过另一个信令进行指示或者通过协 议规定; 或,
通过配置信令向所述终端设备分别指示各 cluster的起点 PRB编号位置。 另一种情况下, 所述配置模块 141 , 具体用于:
当所述 distributed E-PDCCH 资源, 具体为由多个频率上非连续的 PRB/PRB pair组成的资源时,
通过高层信令向所述终端设备配置 distributed E-PDCCH资源占用的 PRB 的具体位置; 或,
通过配置信令向所述终端设备配置 distributed E-PDCCH资源占用的 PRB 的起点位置和占用的 PRB的个数, 其中, 所述 distributed E-PDCCH资源所对 应的 PRB资源在整个下行系统带宽中均匀分布。
其中, 所述配置模块 141 , 具体用于:
通过 RRC信令向所述终端设备配置 distributed E-PDCCH资源占用的 PRB 的起始位置, 以及占用的 PRB个数; 或,
通过 RRC信令向所述终端设备配置 distributed E-PDCCH资源占用的 PRB 的起始位置, 其中, 控制信息占用的 PRB个数与系统的下行带宽存在约定的 关联关系。
需要进一步指出的是, 所述传输模块 142, 具体用于:
在所述 E-PDCCH资源所包括的 E-CCE中向所述终端设备传输下行控制 信息;
其中, 根据所需的编码速率, 一个下行控制信息可在多个 E-CCE上进行 传输。 进一步的, 本发明实施例还提出了一种终端设备, 其结构示意图如图 15 所示, 至少包括: 接收模块 151 ,用于接收基站所配置的用于传输下行控制信息的 localized E-PDCCH资源和 distributed E-PDCCH资源;
检测模块 152, 用于分别在所述 localized E-PDCCH资源所对应的搜索空 间和 distributed E-PDCCH资源所对应的搜索空间中检测 DCI format , 获取所 述基站所传输的下行控制信息;
其中,所述 localized E-PDCCH资源具体为在频域上通过连续的资源单元 传输 E-PDCCH的资源, 所述 distributed E-PDCCH资源具体为在频域上通过 不连续的资源单元传输 E-PDCCH的资源。
进一步的, 所述接收模块 151 , 具体用于:
接收所述基站通过相同的配置信令所配置的完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源; 或,
接收所述基站通过信令通知或者协议规定的方法占用 E-PDCCH cluster 中的部分 PRB/PRB pair资源, 所配置的部分重叠的 localized E-PDCCH资源 和 distributed E-PDCCH资源; 或,
所述终端设备接收所述基站通过独立的配置信令所配置的相互独立的 localized E-PDCCH资源和 distributed E-PDCCH资源。
具体的, 所述接收模块 151 , 具体用于:
接收所述基站通过同一条配置信令所配置的完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源; 或,
接收所述基站通过两条相同的配置信令所配置的完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源。
具体的, 所述接收模块 151 , 具体用于:
接收所述基站通过配置 offset的方式指示 distributed E-PDCCH资源占用 localized E-PDCCH资源中每个 E-PDCCH cluster中的固定的位置的 PRB资源, 所配置的部分重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源。 另一方面, 所述检测模块 152, 具体用于:
对于通过 localized E-PDCCH资源来传输的下行控制信息, 确定 localized E-PDCCH资源的搜索空间是基于 E-PDCCH cluster来分配的, 其中, 每种聚 合等级的 E-PDCCH的搜索空间的起始位置都是从每个 E-PDCCH cluster的起 始 CCE上开始的;
对于通过 distributed E-PDCCH 资源来传输的下行控制信息, 确定 Distributed E-PDCCH资源的搜索空间^^于配置的 distributed E-PDCCH资源 中的所有 E-CCE集合来确定的。
进一步的, 所述检测模块 152, 具体用于:
至少在一个 E-PDCCH candidate中检测 DCI format,获取所述基站所传输 至少在一个 E-PDCCH candidate中检测 DCI format,获取所述基站所传输 需要指出的是, 所述检测模块 152, 还用于确定 localized E-PDCCH资源 的搜索空间与 distributed E-PDCCH资源的搜索空间共享 PDCCH的最大盲检 次数。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优点: 通过应用本发明实施例的技术方案, 提出了一种能够有效地支持 E-PDCCH的两种传输模式的下行控制信息的传输方法, 由基站配置 localized E-PDCCH 资源和 distributed E-PDCCH 资源, 并由终端设备分别在所述 localized E-PDCCH资源所对应的搜索空间和 distributed E-PDCCH资源所对应 的搜索空间中检测 DCI format, 获取所述基站所传输的下行控制信息, 从而, 解决现有的技术方案中 E-PDCCH在 localized和 distributed两种传输模式下缺 少具体的传输和配置方案的问题,使 E-PDCCH获得信道选择增益和分集传输 增益。 通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发 明实施例可以通过硬件实现, 也可以借助软件加必要的通用硬件平台的方式 来实现。 基于这样的理解, 本发明实施例的技术方案可以以软件产品的形式 体现出来, 该软件产品可以存储在一个非易失性存储介质(可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使得一台计算机设备(可以是个 人计算机, 服务器, 或网络侧设备等)执行本发明实施例各个实施场景所述 的方法。
本领域技术人员可以理解附图只是一个优选实施场景的示意图, 附图中 的模块或流程并不一定是实施本发明实施例所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照实施场景 描述进行分布于实施场景的装置中, 也可以进行相应变化位于不同于本实施 场景的一个或多个装置中。 上述实施场景的模块可以合并为一个模块, 也可 以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施场景的优劣。 例并非局限于此, 任何本领域的技术人员能思之的变化都应落入本发明实施 例的业务限制范围。

Claims

权利要求
1、 一种下行控制信息的传输方法, 其特征在于, 至少包括以下步骤: 基站向终端设备配置用于传输下行控制信息的 localized E-PDCCH资源和 distributed E-PDCCH资源;
所述基站在所述 localized E-PDCCH资源和 distributed E-PDCCH资源中 向所述终端设备传输下行控制信息, 以使所述终端设备在所述 localized E-PDCCH资源和 distributed E-PDCCH资源中通过盲检的方法检测所传输的 下行控制信息;
其中,所述 localized E-PDCCH资源具体为在频域上通过连续的资源单元 传输 E-PDCCH的资源, 所述 distributed E-PDCCH资源具体为在频域上通过 不连续的资源单元传输 E-PDCCH的资源。
2、 如权利要求 1所述的方法, 其特征在于,
所述 localized E-PDCCH资源, 具体为由一个或者多个 E-PDCCH cluster 组成的资源;
所述 distributed E-PDCCH资源,具体为由多个频率上非连续的 PRB/PRB pair或者非连续的 E-PDCCH cluster组成的资源。
3、 如权利要求 2所述的方法, 其特征在于, 所述基站向终端设备配置用 于传输下行控制信息的 E-PDCCH资源的方式, 具体包括:
所述基站通过相同的配置信令,向所述终端设备配置完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源; 或,
所述基站通过信令通知或者协议规定的方法占用 E-PDCCH cluster 中的 部分 PRB/PRB pair资源,向所述终端设备配置部分重叠的 localized E-PDCCH 资源和 distributed E-PDCCH资源; 或,
所述基站通过独立的配置信令,向所述终端设备配置相互独立的 localized E-PDCCH资源和 distributed E-PDCCH资源。
4、 如权利要求 3所述的方法, 其特征在于, 所述基站通过相同的配置信 令, 向所述终端设备配置完全重叠的 localized E-PDCCH 资源和 distributed E-PDCCH资源, 具体包括:
所述基站通过同一条配置信令向所述终端设备配置完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源; 或,
所述基站通过两条相同的配置信令向所述终端设备配置完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源。
5、 如权利要求 3所述的方法, 其特征在于, 所述基站通过信令通知或者 协议规定的方法占用 E-PDCCH cluster中的部分 PRB/PRB pair资源, 向所述 终端设备配置部分重叠的 localized E-PDCCH资源和 distributed E-PDCCH资 源, 具体包括:
所述基站通过配置 offset 的方式指示 distributed E-PDCCH 资源占用 localized E-PDCCH资源中每个 E-PDCCH cluster中的固定的位置的 PRB资源, 以向所述终端设备配置部分重叠的 localized E-PDCCH 资源和 distributed E-PDCCH资源。
6、 如权利要求 2或 3所述的方法, 其特征在于, 所述基站通过配置信令 向所述终端设备配置 localized E-PDCCH资源, 具体包括:
所述基站通过配置信令向所述终端设备指示第一个 cluster的起点 PRB编 号位置, 其中, 不同 cluster之间的频域间隔通过另一个信令进行指示或者通 过协议规定; 或,
所述基站通过配置信令向所述终端设备分别指示各 cluster的起点 PRB编 号位置。
7、 如权利要求 2 或 3 所述的方法, 其特征在于, 当所述 distributed E-PDCCH资源, 具体为由多个频率上非连续的 E-PDCCH cluster组成的资源 时, 所述基站通过配置信令向所述终端设备配置 distributed E-PDCCH资源, 具体包括:
所述基站通过配置信令向所述终端设备指示所述第一个 cluster 的起点 PRB编号位置, 其中, 不同 cluster之间的频域间隔通过另一个信令进行指示 或者通过协议规定; 或,
所述基站通过配置信令向所述终端设备分别指示各 cluster的起点 PRB编 号位置。
8、 如权利要求 2 或 3 所述的方法, 其特征在于, 当所述 distributed E-PDCCH资源, 具体为由多个频率上非连续的 PRB/PRB pair组成的资源时, 所述基站通过配置信令向所述终端设备配置 distributed E-PDCCH资源, 具体 包括:
所述基站通过高层信令向所述终端设备配置 distributed E-PDCCH资源占 用的 PRB的具体位置; 或,
所述基站通过配置信令向所述终端设备配置 distributed E-PDCCH资源占 用的 PRB的起点位置和占用的 PRB的个数,其中,所述 distributed E-PDCCH 资源所对应的 PRB资源在整个下行系统带宽中均匀分布。
9、 如权利要求 8所述的方法, 其特征在于, 所述基站通过配置信令向所 述终端设备配置 distributed E-PDCCH资源占用的 PRB的起点位置和占用的 PRB的个数, 具体包括:
所述基站通过 RRC信令向所述终端设备配置 distributed E-PDCCH资源占 用的 PRB的起始位置, 以及占用的 PRB个数; 或,
所述基站通过 RRC信令向所述终端设备配置 distributed E-PDCCH资源占 用的 PRB的起始位置, 其中,控制信息占用的 PRB个数与系统的下行带宽存 在约定的关联关系。
10、 如权利要求 1 所述的方法, 其特征在于, 所述基站在所述 localized E-PDCCH资源和 distributed E-PDCCH资源中向所述终端设备传输下行控制 信息, 具体包括:
所述基站在所述 localized E-PDCCH资源和 distributed E-PDCCH资源所 包括的 E-CCE中向所述终端设备传输下行控制信息;
其中, 根据所需的编码速率, 一个下行控制信息可在多个 E-CCE上进行 传输。
11、 如权利要求 10所述的方法, 其特征在于,
一个所述 E-CCE具体为一个 PRB或由一个或者多个 E-REG构成的; 一个 E-REG具体为由一定物理资源集合内除了 legacy PDCCH,参考信号 之外的连续的多个可用 RE组成。
12、 一种基站, 其特征在于, 至少包括:
配置模块, 用于向终端设备配置用于传输下行控制信息的 localized E-PDCCH资源和 distributed E-PDCCH资源;
传输模块, 用于在所述配置模块所配置的 localized E-PDCCH 资源和 distributed E-PDCCH资源中向所述终端设备传输下行控制信息, 以使所述终 端设备在所述 localized E-PDCCH资源和 distributed E-PDCCH资源中通过盲 检的方法检测所传输的下行控制信息;
其中,所述 localized E-PDCCH资源具体为在频域上通过连续的资源单元 传输 E-PDCCH的资源, 所述 distributed E-PDCCH资源具体为在频域上通过 不连续的资源单元传输 E-PDCCH的资源。
13、 如权利要求 12所述的基站, 其特征在于, 所述配置模块, 具体用于: 通过相同的配置信令, 向所述终端设备配置完全重叠的 localized
E-PDCCH资源和 distributed E-PDCCH资源; 或,
通过信令通知或者协议规定的方法占用 E-PDCCH cluster 中的部分 PRB/PRB pair资源,向所述终端设备配置部分重叠的 localized E-PDCCH资源 和 distributed E-PDCCH资源; 或,
通过独立的配置信令, 向所述终端设备配置相互独立的 localized E-PDCCH资源和 distributed E-PDCCH资源。
14、 如权利要求 13所述的基站, 其特征在于, 所述配置模块, 具体用于: 通过同一条配置信令向所述终端设备配置完全重叠的 localized E-PDCCH 资源和 distributed E-PDCCH资源; 或,
通过两条相同的配置信令向所述终端设备配置完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源。
15、 如权利要求 13所述的基站, 其特征在于, 所述配置模块, 具体用于: 通过配置 offset 的方式指示 distributed E-PDCCH 资源占用 localized
E-PDCCH资源中每个 E-PDCCH cluster中的固定的位置的 PRB资源, 以向所 述终端设备配置部分重叠的 localized E-PDCCH资源和 distributed E-PDCCH 资源。
16、 如权利要求 13所述的基站, 其特征在于, 所述配置模块, 具体用于: 通过配置信令向所述终端设备指示第一个 cluster的起点 PRB编号位置, 其中, 不同 cluster之间的频域间隔通过另一个信令进行指示或者通过协议规 定; 或,
通过配置信令向所述终端设备分别指示各 cluster的起点 PRB编号位置。
17、 如权利要求 13所述的基站, 其特征在于, 所述配置模块, 具体用于: 当所述 distributed E-PDCCH 资源, 具体为由多个频率上非连续的
E-PDCCH cluster组成的资源时,
通过配置信令向所述终端设备指示所述第一个 cluster的起点 PRB编号位 置, 其中, 不同 cluster之间的频域间隔通过另一个信令进行指示或者通过协 议规定; 或, 通过配置信令向所述终端设备分别指示各 cluster的起点 PRB编号位置。
18、 如权利要求 13所述的基站, 其特征在于, 所述配置模块, 具体用于: 当所述 distributed E-PDCCH 资源, 具体为由多个频率上非连续的
PRB/PRB pair组成的资源时,
通过高层信令向所述终端设备配置 distributed E-PDCCH资源占用的 PRB 的具体位置; 或,
通过配置信令向所述终端设备配置 distributed E-PDCCH资源占用的 PRB 的起点位置和占用的 PRB的个数, 其中, 所述 distributed E-PDCCH资源所对 应的 PRB资源在整个下行系统带宽中均匀分布。
19、 如权利要求 18所述的基站, 其特征在于, 所述配置模块, 具体用于: 通过 RRC信令向所述终端设备配置 distributed E-PDCCH资源占用的 PRB 的起始位置, 以及占用的 PRB个数; 或,
通过 RRC信令向所述终端设备配置 distributed E-PDCCH资源占用的 PRB 的起始位置, 其中, 控制信息占用的 PRB个数与系统的下行带宽存在约定的 关联关系。
20、 如权利要求 12所述的基站, 其特征在于, 所述传输模块, 具体用于: 在所述 E-PDCCH资源所包括的 E-CCE中向所述终端设备传输下行控制 信息;
其中, 根据所需的编码速率, 一个下行控制信息可在多个 E-CCE上进行 传输。
21、 一种下行控制信息的传输方法, 其特征在于, 至少包括以下步骤: 终端设备接收基站所配置的用于传输下行控制信息的 localized E-PDCCH 资源和 distributed E-PDCCH资源;
所述终端设备分别在所述 localized E-PDCCH 资源所对应的搜索空间和 distributed E-PDCCH资源所对应的搜索空间中检测 DCI format, 获取所述基 站所传输的下行控制信息;
其中,所述 localized E-PDCCH资源具体为在频域上通过连续的资源单元 传输 E-PDCCH的资源, 所述 distributed E-PDCCH资源具体为在频域上通过 不连续的资源单元传输 E-PDCCH的资源。
22、 如权利要求 21所述的方法, 其特征在于,
所述 localized E-PDCCH资源, 具体为由一个或者多个 E-PDCCH cluster 组成的资源;
所述 distributed E-PDCCH资源,具体为由多个频率上非连续的 PRB/PRB pair或者非连续的 E-PDCCH cluster组成的资源。
23、 如权利要求 22所述的方法, 其特征在于, 所述终端设备接收基站所 配置的用于传输下行控制信息的 E-PDCCH资源的方式, 具体包括:
所述终端设备接收所述基站通过相同的配置信令所配置的完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源; 或,
所述终端设备接收所述基站通过信令通知或者协议规定的方法占用 E-PDCCH cluster中的部分 PRB/PRB pair资源,所配置的部分重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源; 或,
所述终端设备接收所述基站通过独立的配置信令所配置的相互独立的 localized E-PDCCH资源和 distributed E-PDCCH资源。
24、 如权利要求 23所述的方法, 其特征在于, 所述终端设备接收所述基 站通过相同的配置信令所配置的完全重叠的 localized E-PDCCH 资源和 distributed E-PDCCH资源, 具体包括:
所述终端设备接收所述基站通过同一条配置信令所配置的完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源; 或,
所述终端设备接收所述基站通过两条相同的配置信令所配置的完全重叠 的 localized E-PDCCH资源和 distributed E-PDCCH资源。
25、 如权利要求 23所述的方法, 其特征在于, 所述终端设备接收所述基 站通过信令通知或者协议规定的方法占用 E-PDCCH cluster 中的部分 PRB/PRB pair资源,所配置的部分重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源, 具体包括:
所述终端设备接收所述基站通过配置 offset 的方式指示 distributed E-PDCCH资源占用 localized E-PDCCH资源中每个 E-PDCCH cluster中的固定 的位置的 PRB 资源, 所配置的部分重叠的 localized E-PDCCH 资源和 distributed E-PDCCH资源。
26、 如权利要求 21所述的方法, 其特征在于, 所述终端设备分别在所述 localized E-PDCCH资源所对应的搜索空间和 distributed E-PDCCH资源所对应 的搜索空间中检测 DCI format,获取所述基站所传输的下行控制信息之前,还 包括:
对于通过 localized E-PDCCH资源来传输的下行控制信息,所述终端设备 确定 localized E-PDCCH资源的搜索空间是基于 E-PDCCH cluster来分配的, 其中,每种聚合等级的 localized E-PDCCH资源的搜索空间的起始位置都是从 每个 E-PDCCH cluster的起始 CCE上开始的;
对于通过 distributed E-PDCCH资源来传输的下行控制信息, 所述终端设 备确定 Distributed E-PDCCH 资源的搜索空间是基于配置的 distributed E-PDCCH资源中的所有 E-CCE集合来确定的。
27、 如权利要求 26所述的方法, 其特征在于, 所述终端设备分别在所述 localized E-PDCCH资源所对应的搜索空间和 distributed E-PDCCH资源所对应 的搜索空间中检测 DCI format,获取所述基站所传输的下行控制信息,具体包 括:
所述终端设备至少在一个 E-PDCCH candidate中检测 DCI format,获取所 述基站所传输的下行控制信息,所述 E-PDCCH candidate在频域上占用连续的 资源单元;
所述终端设备至少在一个 E-PDCCH candidate中检测 DCI format,获取所 述基站所传输的下行控制信息,所述 E-PDCCH candidate在频域上占用不连续 的资源单元。
28、 如权利要求 27所述的方法, 其特征在于,
所述终端设备确定 localized E-PDCCH 资源的搜索空间与 distributed E-PDCCH资源的搜索空间 E-PDCCH的最大盲检次数。
29、 一种终端设备, 其特征在于, 至少包括:
接收模块, 用于接收基站所配置的用于传输下行控制信息的 localized E-PDCCH资源和 distributed E-PDCCH资源;
检测模块,用于分别在所述 localized E-PDCCH资源所对应的搜索空间和 distributed E-PDCCH资源所对应的搜索空间中检测 DCI format, 获取所述基 站所传输的下行控制信息;
其中,所述 localized E-PDCCH资源具体为在频域上通过连续的资源单元 传输 E-PDCCH的资源, 所述 distributed E-PDCCH资源具体为在频域上通过 不连续的资源单元传输 E-PDCCH的资源。
30、 如权利要求 29所述的终端设备, 其特征在于, 所述接收模块, 具体 用于:
接收所述基站通过相同的配置信令所配置的完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源; 或,
接收所述基站通过信令通知或者协议规定的方法占用 E-PDCCH cluster 中的部分 PRB/PRB pair资源, 所配置的部分重叠的 localized E-PDCCH资源 和 distributed E-PDCCH资源; 或, 所述终端设备接收所述基站通过独立的配置信令所配置的相互独立的 localized E-PDCCH资源和 distributed E-PDCCH资源。
31、 如权利要求 30所述的终端设备, 其特征在于, 所述接收模块, 具体 用于:
接收所述基站通过同一条配置信令所配置的完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源; 或,
接收所述基站通过两条相同的配置信令所配置的完全重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源。
32、 如权利要求 30所述的终端设备, 其特征在于, 所述接收模块, 具体 用于:
接收所述基站通过配置 offset的方式指示 distributed E-PDCCH资源占用 localized E-PDCCH资源中每个 E-PDCCH cluster中的固定的位置的 PRB资源, 所配置的部分重叠的 localized E-PDCCH资源和 distributed E-PDCCH资源。
33、 如权利要求 29所述的终端设备, 其特征在于, 所述检测模块, 具体 用于:
对于通过 localized E-PDCCH资源来传输的下行控制信息, 确定 localized E-PDCCH资源的搜索空间是基于 E-PDCCH cluster来分配的, 其中, 每种聚 合等级的 localized E-PDCCH 资源的搜索空间的起始位置都是从每个 E-PDCCH cluster的起始 CCE上开始的;
对于通过 distributed E-PDCCH 资源来传输的下行控制信息, 确定 Distributed E-PDCCH资源的搜索空间^^于配置的 distributed E-PDCCH资源 中的所有 E-CCE集合来确定的。
34、 如权利要求 33所述的终端设备, 其特征在于, 所述检测模块, 具体 用于:
至少在一个 E-PDCCH candidate中检测 DCI format,获取所述基站所传输 至少在一个 E-PDCCH candidate中检测 DCI format,获取所述基站所传输
35、 如权利要求 34所述的终端设备, 其特征在于, 所述检测模块, 还用 于:
确定 localized E-PDCCH资源的搜索空间与 distributed E-PDCCH资源的 搜索空间共享 PDCCH的最大盲检次数。
PCT/CN2012/081087 2011-11-08 2012-09-06 下行控制信息的传输方法和设备 WO2013067845A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/357,045 US20140286297A1 (en) 2011-11-08 2012-09-06 Method and apparatus for transmitting downlink control information
EP12848441.7A EP2779768A4 (en) 2011-11-08 2012-09-06 METHOD AND DEVICE FOR TRANSMITTING DOWNLINK CONTROL INFORMATION
KR1020147015503A KR20140093261A (ko) 2011-11-08 2012-09-06 다운링크 제어 정보 전송 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110351917.2A CN102395206B (zh) 2011-11-08 2011-11-08 下行控制信息的传输方法和设备
CN201110351917.2 2011-11-08

Publications (1)

Publication Number Publication Date
WO2013067845A1 true WO2013067845A1 (zh) 2013-05-16

Family

ID=45862386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081087 WO2013067845A1 (zh) 2011-11-08 2012-09-06 下行控制信息的传输方法和设备

Country Status (5)

Country Link
US (1) US20140286297A1 (zh)
EP (1) EP2779768A4 (zh)
KR (1) KR20140093261A (zh)
CN (1) CN102395206B (zh)
WO (1) WO2013067845A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9451603B2 (en) 2012-10-19 2016-09-20 Ntt Docomo, Inc. Information transmission method, information transmission apparatus, and base station
CN109804656A (zh) * 2016-10-11 2019-05-24 T移动美国公司 对电信设备数据交换模式的动态选择

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2919545B1 (en) * 2011-02-11 2016-09-28 Interdigital Patent Holdings, Inc. Device and method for an enhanced control channel (e-pdcch)
CN105391517B (zh) * 2011-07-28 2018-05-04 华为技术有限公司 控制信道的接收和发送方法和装置
CN102395206B (zh) * 2011-11-08 2015-07-15 电信科学技术研究院 下行控制信息的传输方法和设备
CN102611524B (zh) 2011-12-19 2015-02-04 电信科学技术研究院 一种传输信息的方法、系统及设备
CN108183773A (zh) 2012-03-16 2018-06-19 联发科技股份有限公司 解码下行链路控制信息的方法和用户设备
CN103327619B (zh) * 2012-03-19 2017-12-08 中兴通讯股份有限公司 一种控制信令的发送、解调方法与系统及终端
US9445409B2 (en) * 2012-03-21 2016-09-13 Mediatek, Inc. Method for search space configuration of enhanced physical downlink control channel
KR102114606B1 (ko) 2012-04-02 2020-05-25 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널의 검색 영역을 위하여 자원 블록을 구성하는 방법 및 이를 위한 장치
EP2837123B1 (en) 2012-04-12 2017-02-22 Nokia Technologies Oy Transmit diversity on a control channel without additional reference signals
CN103391617B (zh) * 2012-05-08 2015-10-28 普天信息技术研究院有限公司 Ue的e-pdcch搜索空间确定方法
JP5809103B2 (ja) * 2012-05-09 2015-11-10 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信システム及び無線通信方法
US20130301562A1 (en) * 2012-05-09 2013-11-14 Mediatek, Inc. Methods for Resource Multiplexing of Distributed and Localized transmission in Enhanced Physical Downlink Control Channel
CN103391151B (zh) * 2012-05-10 2016-09-28 华为终端有限公司 在增强型物理下行控制信道上传输信息的方法及设备
CN103391626B (zh) * 2012-05-10 2016-03-23 电信科学技术研究院 E-pdcch的传输方法、时频资源确定方法及装置
JP5726819B2 (ja) * 2012-05-11 2015-06-03 株式会社Nttドコモ 復号方法、無線基地局、ユーザ端末及び無線通信システム
CN104272639B (zh) * 2012-05-11 2017-12-05 华为技术有限公司 用于传输控制信道信号的方法
JP2013243460A (ja) * 2012-05-18 2013-12-05 Sharp Corp 端末、基地局、通信システムおよび通信方法
CN103428860B (zh) * 2012-05-18 2019-07-09 索尼公司 无线通信系统中的通信方法和设备
CN103457710B (zh) * 2012-06-01 2017-02-08 华为技术有限公司 一种增强型物理下行控制信道的使能方法、设备及系统
US9055569B2 (en) * 2012-06-29 2015-06-09 Samsung Electronics Co., Ltd. Uplink hybrid acknowledgement signaling in wireless communications systems
RU2604875C2 (ru) * 2012-07-02 2016-12-20 Интел Корпорейшн Индексирование элементов расширенного канала управления для пространства поиска физического нисходящего канала управления
CN103532688B (zh) 2012-07-04 2016-11-02 电信科学技术研究院 一种跨频带载波聚合下的dci传输方法及装置
US9444608B2 (en) 2012-07-26 2016-09-13 Huawei Device Co., Ltd. Control channel transmission method and apparatus to implement transmission of ePDCCHs through an eREG in a unit physical resource block
WO2014015501A1 (zh) * 2012-07-26 2014-01-30 华为终端有限公司 控制信道传输方法及设备
CA2911048C (en) 2012-07-27 2018-01-23 Huawei Device Co., Ltd. Method and apparatus for transmitting control channel
CN103748849B (zh) * 2012-07-31 2017-06-06 华为技术有限公司 控制信道传输方法及基站、终端
CN103580834B (zh) * 2012-07-31 2018-06-22 中兴通讯股份有限公司 ePDCCH发送、接收方法及装置、基站、用户设备
JP6143153B2 (ja) * 2012-08-01 2017-06-07 シャープ株式会社 基地局、端末、通信方法および集積回路
JP6068860B2 (ja) * 2012-08-01 2017-01-25 株式会社Nttドコモ 無線通信方法、無線基地局、ユーザ端末及び無線通信システム
WO2014019208A1 (zh) 2012-08-02 2014-02-06 华为技术有限公司 传输控制信息的方法、装置及系统
CN103718630A (zh) * 2012-08-02 2014-04-09 华为技术有限公司 增强型物理下行控制信道传输方法及设备
CN103580837B (zh) 2012-08-03 2019-01-22 中兴通讯股份有限公司 控制信令发送、检测方法及基站及终端
CN103580838B (zh) * 2012-08-03 2016-09-14 电信科学技术研究院 增强的物理下行控制信道的发送及检测方法和设备
CN103580801B (zh) * 2012-08-06 2017-12-22 中国移动通信集团公司 一种增强控制信道单元e‑cce资源映射方法及设备
CN103686772A (zh) * 2012-09-20 2014-03-26 中兴通讯股份有限公司 增强型下行控制信道的配置、检测方法及装置、基站、终端
WO2014043890A1 (zh) * 2012-09-21 2014-03-27 富士通株式会社 控制信息的传输方法、用户设备以及基站
CN103828463B (zh) * 2012-09-21 2018-12-14 华为技术有限公司 下行控制信息传输的方法、网络侧设备及用户设备
CN103684674B (zh) 2012-09-24 2018-05-15 中兴通讯股份有限公司 一种检测控制信令以及实现控制信令检测的方法和装置
KR101752820B1 (ko) * 2012-09-26 2017-07-11 후아웨이 테크놀러지 컴퍼니 리미티드 채널 검출 방법 및 사용자 장비
EP3713144B1 (en) * 2012-09-27 2021-11-03 Huawei Technologies Co., Ltd. Method and apparatus for allocating control channel candidates
CN103716144B (zh) * 2012-09-28 2017-04-05 上海贝尔股份有限公司 一种进行ePDCCH相关配置和获取该配置的方法、装置和系统
US8923880B2 (en) 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
EP2890196B1 (en) * 2012-10-31 2017-07-19 Huawei Technologies Co., Ltd. Scrambling sequence configuration method, device, user equipment and base station
CN103796313B (zh) * 2012-11-01 2018-02-09 中兴通讯股份有限公司 配置增强物理下行控制信道资源集合的方法和装置
EP2906005B1 (en) * 2012-11-01 2020-03-11 Huawei Technologies Co., Ltd. Control channel detection method, user equipment and base station
CN109152059B (zh) * 2012-11-02 2021-08-13 中兴通讯股份有限公司 用户设备及其搜索空间的资源的配置方法、系统侧
JP5793131B2 (ja) * 2012-11-02 2015-10-14 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信システム及び無線通信方法
CN103931254B (zh) * 2012-11-02 2018-05-18 华为技术有限公司 控制信道的检测方法及设备
US9521664B2 (en) 2012-11-02 2016-12-13 Qualcomm Incorporated EPDCCH resource and quasi-co-location management in LTE
US9185716B2 (en) * 2013-01-03 2015-11-10 Samsung Electronics Co., Ltd. Obtaining control channel elements of physical downlink control channels for cross-carrier scheduling
US9936485B2 (en) 2013-01-11 2018-04-03 Mediatek Singapore Pte. Ltd. Method and apparatus of obtaining scheduling information of a data channel
EP3509240B1 (en) * 2013-04-03 2022-03-23 InterDigital Patent Holdings, Inc. Epdcch common search space design for one or more carrier types
CN104144502B (zh) * 2013-05-10 2017-08-08 中国电信股份有限公司 物理下行控制信息获取方法、装置、终端和系统
CN104185197A (zh) * 2013-05-27 2014-12-03 华为技术有限公司 用于传输下行控制信息dci的方法及其装置
CN109039568B (zh) 2013-07-16 2020-01-03 华为技术有限公司 控制信息的传输方法、用户设备和基站
CN104717633B (zh) * 2013-12-11 2018-03-30 普天信息技术研究院有限公司 直通模式的传输方法
CN104683069B (zh) * 2015-02-13 2018-04-27 大唐联仪科技有限公司 一种物理下行控制信道pdcch盲检测方法和系统
WO2017062050A1 (en) * 2015-10-07 2017-04-13 Intel IP Corporation Dynamically beamformed control channel for beamformed cells
CN107437981B (zh) * 2016-05-25 2021-05-04 中兴通讯股份有限公司 增强型物理下行控制信道的传输方法、网络侧设备和终端设备
DE112016007007T5 (de) 2016-06-22 2019-03-07 Intel Corporation Kommunikationsvorrichtung und verfahren für vollduplex-disposition
CN108282291B (zh) * 2017-01-06 2020-09-22 电信科学技术研究院 一种dci传输方法、ue和网络侧设备
CN108289004B (zh) * 2017-01-09 2021-11-26 华为技术有限公司 一种信道状态信息测量上报的配置方法及相关设备
CN108419293B (zh) 2017-02-10 2021-05-18 华为技术有限公司 传输下行控制信息的方法和装置
WO2018157719A1 (en) * 2017-03-02 2018-09-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Network node, user device, and method for wireless communication system
CN108633052B (zh) * 2017-03-24 2023-09-26 中兴通讯股份有限公司 一种资源配置方法、装置和设备
EP3488651B1 (en) 2017-05-02 2020-07-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and apparatuses for detecting control channels in wireless communication systems
WO2018204282A1 (en) 2017-05-03 2018-11-08 Idac Holdings, Inc. Beam-based pdcch transmission in nr
CN109150484B (zh) 2017-05-04 2020-01-21 华为技术有限公司 一种控制信息传输方法、相关装置及计算机存储介质
CN108809505B (zh) 2017-05-05 2019-12-24 维沃移动通信有限公司 下行控制信息的传输方法、终端及网络侧设备
WO2019051778A1 (zh) * 2017-09-15 2019-03-21 Oppo广东移动通信有限公司 资源配置的方法、终端设备和网络设备
JP7478161B2 (ja) 2018-10-31 2024-05-02 オッポ広東移動通信有限公司 Pdcchのモニタリング方法及び装置
EP3944691B1 (en) * 2019-04-19 2023-02-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, terminal device and network device
US20230199781A1 (en) * 2020-05-07 2023-06-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and Apparatus for Configuring Downlink Resource of Search Space
CN112425241B (zh) * 2020-10-12 2023-10-10 北京小米移动软件有限公司 信息的接收、发送方法、装置、设备及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801093A (zh) * 2010-02-03 2010-08-11 中兴通讯股份有限公司 资源分配方式指示方法、装置和系统
CN101883434A (zh) * 2010-06-18 2010-11-10 中兴通讯股份有限公司 一种信道资源分配方法及基站
CN102170703A (zh) * 2011-05-11 2011-08-31 电信科学技术研究院 一种物理下行控制信道上的信息收发方法及设备
CN102202324A (zh) * 2011-05-19 2011-09-28 电信科学技术研究院 资源位置指示及信道盲检的方法、系统和装置
US20110249640A1 (en) * 2010-04-09 2011-10-13 Futurewei Technologies, Inc. System and Method for Transmitting Control Information
CN102395206A (zh) * 2011-11-08 2012-03-28 电信科学技术研究院 下行控制信息的传输方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5108035B2 (ja) * 2010-01-06 2012-12-26 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動局装置及び制御情報送信方法
KR101673906B1 (ko) * 2010-04-29 2016-11-22 삼성전자주식회사 Ofdm 시스템에서 공간 다중화 제어 채널 지원을 위한 상향 링크 ack/nack 채널의 맵핑 방법 및 장치
WO2011137383A1 (en) * 2010-04-30 2011-11-03 Interdigital Patent Holdings, Inc. Downlink control in heterogeneous networks
CN102036297B (zh) * 2010-12-24 2013-08-14 大唐移动通信设备有限公司 物理下行控制信道发送及检测方法、系统和设备
US8879667B2 (en) * 2011-07-01 2014-11-04 Intel Corporation Layer shifting in open loop multiple-input, multiple-output communications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801093A (zh) * 2010-02-03 2010-08-11 中兴通讯股份有限公司 资源分配方式指示方法、装置和系统
US20110249640A1 (en) * 2010-04-09 2011-10-13 Futurewei Technologies, Inc. System and Method for Transmitting Control Information
CN101883434A (zh) * 2010-06-18 2010-11-10 中兴通讯股份有限公司 一种信道资源分配方法及基站
CN102170703A (zh) * 2011-05-11 2011-08-31 电信科学技术研究院 一种物理下行控制信道上的信息收发方法及设备
CN102202324A (zh) * 2011-05-19 2011-09-28 电信科学技术研究院 资源位置指示及信道盲检的方法、系统和装置
CN102395206A (zh) * 2011-11-08 2012-03-28 电信科学技术研究院 下行控制信息的传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2779768A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9451603B2 (en) 2012-10-19 2016-09-20 Ntt Docomo, Inc. Information transmission method, information transmission apparatus, and base station
CN109804656A (zh) * 2016-10-11 2019-05-24 T移动美国公司 对电信设备数据交换模式的动态选择

Also Published As

Publication number Publication date
EP2779768A4 (en) 2014-11-12
CN102395206B (zh) 2015-07-15
US20140286297A1 (en) 2014-09-25
CN102395206A (zh) 2012-03-28
EP2779768A1 (en) 2014-09-17
KR20140093261A (ko) 2014-07-25

Similar Documents

Publication Publication Date Title
WO2013067845A1 (zh) 下行控制信息的传输方法和设备
JP6778794B2 (ja) ePDCCHサーチ空間のデザイン
CN111183608B (zh) 无线通信系统的数据发送方法和接收方法及使用该方法的设备
EP3611972B1 (en) Monitoring a narrowband control channel for a wideband system to reduce power consumption
KR102033442B1 (ko) 공통 검색 공간 및 ue 특정 검색 공간을 블라인드 검출하기 위한 방법 및 장치
JP6163554B2 (ja) 端末装置、基地局装置、および通信方法
JP6105716B2 (ja) E−pdcch伝送、ブラインド検出の方法および装置
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
JP5898874B2 (ja) ユーザ端末、無線基地局装置、無線通信システム及び無線通信方法
WO2013067828A1 (zh) 信息发送及盲检方法和设备
WO2013091414A1 (zh) 一种传输信息的方法、系统及设备
WO2013067823A1 (zh) 一种传输控制信息的方法及装置
WO2013135179A1 (zh) 控制信息发送和接收方法、基站和用户设备
WO2012152149A1 (zh) 一种物理下行控制信道上的信息收发方法及设备
WO2013023541A1 (zh) 一种下行控制信息传输方法及装置
WO2013097120A1 (zh) 下行控制信道的搜索空间的映射方法和装置
CN108633047A (zh) 一种信道传输方法及网络设备
WO2018103558A1 (zh) 下行控制信息的发送、检测方法及装置、基站及终端
WO2013013643A1 (zh) 控制信道的接收和发送方法和装置
WO2012171395A1 (zh) 一种分配和确定pdcch的方法、系统及设备
TW201824908A (zh) 傳輸信息的方法、網絡設備和終端設備
WO2013139211A1 (zh) ePDCCH资源确定方法及装置
WO2014067451A1 (zh) 控制信息的传输方法、基站及用户设备
WO2013091234A1 (zh) 下行控制信道的资源映射方法和装置
TWI652914B (zh) 用於通訊的方法和設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012848441

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14357045

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147015503

Country of ref document: KR

Kind code of ref document: A