WO2020143168A1 - 一种方向性电磁钢板用涂料及其制备方法 - Google Patents

一种方向性电磁钢板用涂料及其制备方法 Download PDF

Info

Publication number
WO2020143168A1
WO2020143168A1 PCT/CN2019/092196 CN2019092196W WO2020143168A1 WO 2020143168 A1 WO2020143168 A1 WO 2020143168A1 CN 2019092196 W CN2019092196 W CN 2019092196W WO 2020143168 A1 WO2020143168 A1 WO 2020143168A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
phosphate
steel sheet
silica sol
electromagnetic steel
Prior art date
Application number
PCT/CN2019/092196
Other languages
English (en)
French (fr)
Inventor
刘玥
杨纲
吴世旺
Original Assignee
南京宝淳新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京宝淳新材料科技有限公司 filed Critical 南京宝淳新材料科技有限公司
Publication of WO2020143168A1 publication Critical patent/WO2020143168A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals

Definitions

  • the invention relates to a paint and a manufacturing method thereof, in particular to a paint for a directional electromagnetic steel plate and a preparation method thereof.
  • the grain-oriented electrical steel sheet is a steel billet containing 2 to 4% Si which is hot-rolled, annealed and then cold-rolled to a final thickness, followed by decarburization and annealing, and coated with a magnesium oxide-based separator coating.
  • high-temperature annealing is performed to make the steel sheet have Gaussian-oriented macro grains.
  • magnesium oxide coated on the surface of the steel sheet and the silica on the surface of the steel sheet form a magnesium silicate glass film on the surface of the steel sheet by solid-phase diffusion reaction Bottom layer.
  • an insulating coating is applied on the surface of the steel plate, and the final product is formed after baking and hot stretching.
  • the high temperature annealing process of the steel coil due to the uneven temperature and atmosphere at different positions of the steel coil, it is difficult to form a magnesium silicate glass bottom layer with a uniform width and length throughout the surface of the directional electromagnetic steel sheet.
  • Directional electromagnetic steel plates are mainly used for transformer core materials, requiring low loss and low noise.
  • Japanese Patent Publication No. 56-52117 discloses a paint using magnesium dihydrogen phosphate, colloidal silica, and chromic acid.
  • Japanese Unexamined Patent Publication No. 53-28375 discloses a coating material using aluminum dihydrogen phosphate, colloidal silica, and chromic acid.
  • Magnesium dihydrogen phosphate and aluminum dihydrogen phosphate are film-forming substances, silica is the filler, and chromic acid is the curing agent.
  • the above-mentioned coating is applied on the surface of the grain-oriented electromagnetic steel plate, and the coating formed at a high temperature has a low thermal expansion rate and a high elastic modulus.
  • the difference in thermal expansion between the steel plate and the coating when it reaches room temperature will cause tensile stress on the steel plate.
  • the tensile stress given by the coating to the directional electromagnetic steel plate can reduce the core loss and transformer noise.
  • the directional electromagnetic steel plate When processing the transformer core, the directional electromagnetic steel plate is subjected to slitting, lamination or winding processing to make a laminated core or a wound core. In the process of processing, excellent adhesion of the coating and good sliding properties between the steel plates are required. In order to reduce the degradation of residual stress on the magnetic properties during processing, the core needs to be stress-relieved and annealed, and the coating is required to have good heat resistance and anti-sticking properties.
  • Japanese Patent Laid-Open No. 52-25296 uses at least 7 to 50 nm of SiO 2 , Al 2 O 3 and TiO 2 powders.
  • the technology disclosed in Japanese Patent Laid-Open No. 3-39484 publication is to mix colloidal silica of 20 nm or less and colloidal silica with a particle size of 80 to 2000 nm to the dihydrogen phosphate salts of Al, Mg, Ca, Zn and chromium compounds on the surface of the steel sheet A convex effect is formed, and the sliding property between the steel sheets in the winding core processing step is improved.
  • the insulating coating on the surface of the directional electromagnetic steel has good transparency and does not have a covering effect on the bottom layer of the magnesium silicate glass film. After stress relief annealing, the tension, insulation and corrosion resistance of the insulating coating on the surface of the directional electromagnetic steel will deteriorate.
  • One of the objectives of the present invention is to provide a coating for the production of a directional electromagnetic steel surface coating, while improving the sliding properties between steel plates, eliminating the anti-sticking property and heat resistance of stress annealing, and adjusting the coating Transparency and gloss improve the appearance uniformity of grain-oriented electrical steel sheets.
  • the coating has good stability and applicability, and can meet the requirements of large-scale production.
  • a coating for directional electromagnetic steel plates including: phosphate, silica sol, CrO 3 , titanium compound; the ratio is: 100 g phosphate: 60-120 g silica sol: 10-30 g CrO 3 : 1-20 g titanium compound: 1 -30 g boric acid; the phosphate is calculated as phosphate, and the silica sol is calculated as SiO 2 .
  • silica sol is a filler, and silica sol is a dispersion of nano-scale silica particles in water, where the silica content is 20-30%, which can improve the coating performance of the coating, improve the heat resistance of the coating and Increase tension effect.
  • a titanium compound is added, and the titanium compound forms granular protrusions on the coating surface to adjust and improve the sliding property of the steel sheet.
  • the coating slip resistance, anti-sticking property and heat resistance cannot be improved, and the covering property is not ideal; when it is higher than 20g, the coating structure becomes loose and the tension decreases.
  • Boric acid added to the coating can promote the sintering of the coating, improve the compactness of the coating, and improve the problems of poor sintering and tension reduction caused by the addition of titanium compound powder.
  • Boric acid less than 1g coating has low density and cracked tension; more than 30g coating is unstable and the coating has poor heat resistance.
  • CrO 3 is less than 10g, the effect of effectively fixing free phosphate is not achieved, and the moisture resistance of the coating is reduced; when it is higher than 30g, holes are easily produced in the coating, and the coating tension is reduced.
  • the phosphate is one or more of phosphates of Mg, Ca, Zn, Al and Mn.
  • the particle size of silica in the silica sol is 4-20 nm. In order to achieve better tension effect and surface characteristics.
  • the titanium compound is one of Ti n O 2n-1 and TiO x N y , wherein 1 ⁇ n ⁇ 20 , and 0.3 ⁇ x+y ⁇ 1-7.
  • Ti n O 2n-1 , TiO x N y blackness is pure, adjust the gloss and transparency of the coating, so that the directional electromagnetic steel products have the characteristics of uniform color and excellent appearance.
  • Ti n O 2n-1 and TiO x N y in the coating release and absorb a certain amount of oxygen, inhibit the decomposition of phosphate in the coating or oxidation of the steel plate, improve the heat resistance and anti-sticking of the coating Sex.
  • the particle size of the titanium compound is 5-100 nm. In order to achieve the purpose of improving the surface slip properties, heat resistance and anti-sticking properties.
  • a method for preparing a coating for a directional electromagnetic steel plate includes the following steps:
  • the invention also provides the application of the coating for the directional electromagnetic steel plate.
  • the coating is applied on the surface of the steel plate, and the coating is dried and then heat treated at 800-950°C for 10 to 100 seconds.
  • the dry film weight after further heat treatment is 2-10 g/m 2 .
  • the coating and manufacturing method of the directional electromagnetic steel plate according to the present invention have the following beneficial effects:
  • the coating prepared by the coating for the grain-oriented electrical steel sheet according to the present invention has excellent slip properties, heat resistance and anti-sticking properties
  • the coating prepared by the coating for the grain-oriented electrical steel sheet according to the present invention has good hiding power, and the grain-oriented electrical steel sheet produced has good appearance characteristics with uniform color.
  • the coating of the invention is applied on the surface of the directional electromagnetic steel plate, and after being dried, it is heat-treated at 800-950°C for 10-100 s, and the dry film amount on one side is 2-10 g/m 2 .
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • silica sol (calculated as SiO 2 ), the particle size is 4-20nm;
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • the particle size is 10nm
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed liquid is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed liquid and phosphate are mixed and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanate powder were added to the silica sol at the above ratio to form a stable mixed solution by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution was mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • a coating for directional electromagnetic steel plates the ratio of which is:
  • Boric acid and titanium compound powder are added to the silica sol according to the above ratio, and a stable mixed solution is formed by mechanical dispersion or ultrasonic dispersion.
  • the mixed solution is mixed with phosphate and stirred to obtain a coating for a grain-oriented electrical steel sheet.
  • the titanium compound powder in the coating can improve the sliding property, heat resistance and anti-sticking property of the coating and has a covering effect to improve the appearance uniformity of the product.
  • Boric acid in the coating can significantly improve the corrosion resistance and tensile effect of the coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种方向性电磁钢板用涂料,包括:磷酸盐,硅溶胶,CrO 3,钛化物;其配比为:100g磷酸盐:60~120g硅溶胶:10~30gCrO 3:1-20g钛化物:1-30g硼酸;磷酸盐以磷酸根计,硅溶胶以SiO 2计。将涂料涂覆在钢板表面,涂层干燥后在800-950℃进行10~100s的热处理。与现有技术相比,具有如下有益效果:(1)所述的用于方向性电磁钢板的涂料制备的涂层具有优良的滑动性、耐热性和抗粘片性;(2)所述的用于方向性电磁钢板的涂料制备的涂层具有良好的遮盖性,生产的方向性电磁钢板具有色泽均匀的良好外观特性。

Description

一种方向性电磁钢板用涂料及其制备方法 技术领域
本发明涉及一种涂料及其制造方法,尤其涉及一种方向性电磁钢板用涂料及其制备方法。
背景技术
方向性电磁钢板,是将含有2~4%Si的钢坯进行热轧、退火后进行冷轧成最终板厚,接着进行脱碳退火后,涂覆以氧化镁为主要成分的隔离剂涂层,卷取成钢卷后再进行高温退火,使钢板具有高斯取向的宏观晶粒,同时涂覆在钢板表面的氧化镁与钢板表面二氧化硅通过固相扩散反应在钢板表面形成硅酸镁玻璃膜底层。接着在钢板表面涂覆绝缘涂层,经过烘烤和热拉伸平整后形成最终产品。钢卷在高温退火过程中,由于钢卷不同位置温度和气氛的不均匀导致方向性电磁钢板表面难以形成全板宽和全卷长均匀一致的硅酸镁玻璃膜底层。
方向性电磁钢板主要用于变压器铁心材料,要求低损耗、低噪声。日本特公昭56-52117号公报文献公开了以磷酸二氢镁、胶体二氧化硅和铬酸的涂料。日本特公昭53-28375号公报文献公开了以磷酸二氢铝、胶体二氧化硅和铬酸的涂料。磷酸二氢镁和磷酸二氢铝为成膜物质,二氧化硅为填料,铬酸为固化剂。在方向性电磁钢板表面涂覆上述涂料,在高温下形成的涂层具有低热膨胀率和高弹性模量。降至室温时的钢板与涂层的热膨胀差会对钢板产生张应力。涂层对钢板张力应力(σ)表达式为:σ=E(α Fe涂层)ΔT(2d/D),E为涂层弹性模量,α Fe为钢板的热膨胀系数,α 涂层为涂层的热膨胀系数,ΔT成膜温度与室温的差,d为涂层厚度,D为钢板厚度。涂层对方向性电磁钢板赋予的张应力可以降低铁心损耗和变压器噪声。
在加工变压器铁心时,方向性电磁钢板要进行分条、叠片或卷绕加工,制成叠片铁心或卷绕铁心。在加工的过程中要求涂层优良的附着性、钢板间良好的滑动性。为了降低加工过程中残余应力对磁性能的劣化,需要对铁心进行消除应力退火处理,要求涂层具有良好的耐热性和抗粘片性。
为了改善涂层的滑动性和消除应力后的抗粘片性,特开昭52-25296号公报 文献公开的技术采用添加7~50nm的SiO 2、Al 2O 3和TiO 2粉体中的至少一种。特开平3-39484公报文献公开的技术通过对Al、Mg、Ca、Zn的磷酸二氢盐和铬化合物混合20nm以下的胶体二氧化硅和粒径80~2000nm的胶体二氧化硅,在钢板表面形成凸起效果,提高卷绕铁心加工工序中的钢板间的滑动性。
方向性电磁钢表面的绝缘涂层具有良好的透明性,对硅酸镁玻璃膜底层不具备遮盖效果。经消除应力退火后方向性电磁钢表面的绝缘涂层张力、绝缘性和耐蚀性能会劣化。
因此,希望获得一种用于方向性电磁钢表面涂层生产的涂料,能更进一步解决绝缘涂层的滑动性、耐热性和遮盖效果。
发明内容
本发明的目的之一在于提供一种用于方向性电磁钢表面涂层生产的涂料,在改善钢板板间滑动性、消除应力退火的抗粘片性和耐热性的同时通过调整涂层的透明性和光泽度提高方向性电磁钢板的外观均匀性。该涂料具有良好稳定性和涂敷性,能够满足规模化生产要求。
为了实现上述目的,本发明是通过以下的技术方案来实现的。
一种方向性电磁钢板用涂料,包括:磷酸盐,硅溶胶,CrO 3,钛化物;其配比为:100g磷酸盐:60~120g硅溶胶:10~30gCrO 3:1-20g钛化物:1-30g硼酸;所述磷酸盐以磷酸根计,硅溶胶以SiO 2计。
磷酸盐为主要成膜物质。硅溶胶为填料,硅溶胶为纳米级的二氧化硅颗粒在水中中的分散液,其中二氧化硅含量为20~30%,可以改善涂料的涂覆性能,提高耐涂层的耐热性和增加张力效果。硅溶胶用量以SiO 2计低于60g时涂料的涂覆性能下降,涂层张力降低;高于120g时涂层生产裂纹。为了调整涂层的滑片性、抗粘片性和耐热性,加入了钛化物,钛化物在涂层表面形成颗粒状凸起可以调整和改善钢板的滑片性。钛化物低于1g时涂层滑片性、抗粘片性和耐热性达不到改善效果,遮盖性也不理想;高于20g时涂层结构会变得疏松,张力下降。涂料中添加的硼酸可以促进涂层烧结,提高涂层致密性,改善因添加钛化物粉体而造成的烧结不良和张力下降问题。硼酸低于1g涂层的致密低、张力裂化;高于30g涂料不稳定、涂层耐热性差。CrO 3低于10g时达不到有效固定游离磷 酸根的作用,涂层耐湿性降低;高于30g时涂层中容易生产孔洞,涂层张力下降。
进一步地所述磷酸盐为Mg、Ca、Zn、Al及Mn的磷酸盐中的一种或一种以上。
进一步地所述硅溶胶中二氧化硅的粒径为4-20nm。为了达到更好的张力效果和表面特性。
进一步地所述钛化物为Ti nO 2n-1、TiO xN y中一种,其中1≤n≤20,0.3<x+y<1~7。Ti nO 2n-1、TiO xN y黑度纯正,调节涂层的光泽度和透明度,使方向性电磁钢产品具有色泽均匀、外观优良的特性。在消除应力退火时,涂层中的Ti nO 2n-1,TiO xN y释放和吸收一定的氧,抑制涂层中磷酸盐分解或钢板氧化,提高涂层的耐热性和抗粘片性。
进一步地所述钛化物粒径为5-100nm。为了达到改善表面滑片性、耐热性和抗粘片性的目的。
进一步地还提供了一种方向性电磁钢板用涂料的制备方法,包括以下步骤:
(1)在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液;
(2)将混合液与磷酸盐混合并搅拌后即得。
进一步地还提供了一种方向性电磁钢板用涂料的应用,将涂料涂覆在钢板表面,涂层干燥后在800-950℃进行10~100s的热处理。
进一步地热处理后的干膜重量为2-10g/m 2
本发明所述的用于方向性电磁钢板的涂料及其制造方法与现有技术相比,具有如下有益效果:
(1)本发明所述的用于方向性电磁钢板的涂料制备的涂层具有优良的滑化性、耐热性和抗粘片性;
(2)本发明所述的用于方向性电磁钢板的涂料制备的涂层具有良好的遮盖性,生产的方向性电磁钢板具有色泽均匀的良好外观特性。
具体实施方式
下面将结合具体的实施例对本发明所述的一种方向性电磁钢板用涂料及其制备方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构 成不当限定。
本发明的涂料涂覆在方向性电磁钢板表面,烘干后在800-950℃条件在热处理10~100s,单面干膜量为2-10g/m 2
实施例1
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
1g Ti 4O 7,粒径为10nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在80℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行30s的烧结热处理,烧结后的涂层单面量为5g/m 2
实施例2
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
5g Ti 4O 7,粒径为10nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在80℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂 覆在钢板表面,涂层干燥后在850℃进行30s的烧结热处理,烧结后的涂层单面量为5g/m 2
实施例3
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
10g Ti 4O 7,粒径为100nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在80℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行30s的烧结热处理,烧结后的涂层单面量为5g/m 2
实施例4
一种方向性电磁钢板用涂料,其配比为:
60g磷酸二氢铝、40g磷酸二氢镁(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
10g Ti 4O 7,粒径为10nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在80℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行30s的烧结热处理,烧结后的涂层单面 量为5g/m 2
实施例5
一种方向性电磁钢板用涂料,其配比为:
70g磷酸二氢铝、30g磷酸二氢锌(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
10g Ti 4O 7,粒径为100nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在80℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行30s的烧结热处理,烧结后的涂层单面量为5g/m 2
实施例6
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢镁(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
15g Ti 4O 7,粒径为10nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在80℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行30s的烧结热处理,烧结后的涂层单面量为5g/m 2
实施例7
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢镁(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为4-20nm;
20gCrO 3
20g Ti 4O 7,粒径为10nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在80℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行30s的烧结热处理,烧结后的涂层单面量为5g/m 2
实施例8
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢钙(以磷酸根计);
9g硅溶胶(以SiO 2计),粒径为4nm;
20gCrO 3
10g Ti 4O 7,粒径为10nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在85℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在800℃进行100s的烧结热处理,烧结后的涂层单面量为10g/m 2
实施例9
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢镁(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为20nm;
10gCrO 3
10g TiO,粒径为10nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在85℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在800℃进行80s的烧结热处理,烧结后的涂层单面量为10g/m 2
实施例10
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
10g Ti 6O 11,粒径为10nm;
1g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在80℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在950℃进行10s的烧结热处理,烧结后的涂层单面量为2g/m 2
实施例11
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢镁(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
10g Ti 7O 13,粒径为10nm;
30g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在85℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在800℃进行50s的烧结热处理,烧结后的涂层单面量为8g/m 2
实施例12
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
60g硅溶胶(以SiO 2计),粒径为10nm;
30gCrO 3
10g Ti 20O 39,粒径为10nm;
30g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在85℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在900℃进行20s的烧结热处理,烧结后的涂层单面量为3g/m 2
实施例13
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
120g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
10g Ti 4O 7,粒径为10nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在80℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在900℃进行30s的烧结热处理,烧结后的涂层单面量为6g/m 2
实施例14
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢锌(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
10g TiO 2N 4,粒径为10nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在85℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行20s的烧结热处理,烧结后的涂层单面量为5g/m 2
实施例15
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢锰(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
10g TiO 3N 3,粒径为20nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在85℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行20s的烧结热处理,烧结后的涂层单面量为5g/m 2
实施例16
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
10g TiON,粒径为10nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在85℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在800℃进行70s的烧结热处理,烧结后的涂层单面量为8g/m 2
实施例17
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
10g TiON,粒径为50nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在80℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在950℃进行10s的烧结热处理,烧结后的涂层单面量为2g/m 2
对比例1
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
10g Ti 4O 7,粒径为10nm;
0.5g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在85℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行30s的烧结热处理,烧结后的涂层单面量为5g/m 2
对比例2
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
0.5g Ti 4O 7,粒径为10nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在85℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行30s的烧结热处理,烧结后的涂层单面量为5g/m 2
对比例3
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
25g Ti 4O 7,粒径为10nm;
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在85℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行30s的烧结热处理,烧结后的涂层单面量为5g/m 2
对比例4
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
20g硼酸;
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分 散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在85℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行30s的烧结热处理,烧结后的涂层单面量为5g/m 2
对比例5
一种方向性电磁钢板用涂料,其配比为:
100g磷酸二氢铝(以磷酸根计);
90g硅溶胶(以SiO 2计),粒径为10nm;
20gCrO 3
按上述配比在硅溶胶中加入硼酸和钛化物粉末,通过机械分散或者超声分散的方式形成稳定的混合液,将混合液与磷酸盐混合并搅拌后得到方向性电磁钢板用涂料。
使用厚度为0.23mm带玻璃膜底层的高磁感方向性电磁钢板,剪切后在3%H 2SO 4水溶液中在85℃进行10s的轻酸洗后烘干,采用辊涂的方式将涂料涂覆在钢板表面,涂层干燥后在850℃进行30s的烧结热处理,烧结后的涂层单面量为5g/m 2
涂层的性能检测结果见表1。
表1
Figure PCTCN2019092196-appb-000001
Figure PCTCN2019092196-appb-000002
注:涂层性能评估◎:优;○:良;◇:一般;╳:差。
(*1)滑片性评价:通过钢板间的滑动摩擦系数进行评估。
(*2)抗粘片性评价:叠片钢板加一定压力下进行
Figure PCTCN2019092196-appb-000003
力退火处理后,通过比较钢板间剥离力的大小评价抗粘片性,剥离力越小表明抗粘片性越好。
(*3)耐热性评价:测试涂层的方向性电磁钢板经
Figure PCTCN2019092196-appb-000004
力退火处理后绝缘涂层的张力劣化程度和绝缘性劣化程度。
(*4)遮盖效果评价:钢板在涂层前用不同颜色笔在钢板表面做记号,通过肉眼对比涂层后记号的清晰程度评价涂层的遮盖效果,越不清晰表明遮盖力越好。
可以看出涂料中的钛化物粉体能够改善涂层的滑片性、耐热性和抗粘片性并具有遮盖效果提高产品的外观均匀性。涂料中的硼酸可以显著改善涂层的耐蚀 性和张力效果。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (8)

  1. 一种方向性电磁钢板用涂料,其特征在于,包括:磷酸盐,硅溶胶,CrO 3,钛化物;
    其配比为:100g磷酸盐:60~120g硅溶胶:10~30gCrO 3:1-20g钛化物:1-30g硼酸;所述磷酸盐以磷酸根计,硅溶胶以SiO 2计。
  2. 根据权利要求1所述的一种方向性电磁钢板用涂料,其特征在于,所述磷酸盐为Mg、Ca、Zn、Al及Mn的磷酸盐中的一种或一种以上。
  3. 根据权利要求1所述的一种方向性电磁钢板用涂料,其特征在于,所述硅溶胶中二氧化硅的粒径为4-20nm。
  4. 根据权利要求1所述的一种方向性电磁钢板用涂料,其特征在于,所述钛化物为Ti nO 2n-1、TiO xN y中的一种,其中1≤n≤20,0.3<x+y<1~7。
  5. 根据权利要求1所述的一种方向性电磁钢板用涂料,其特征在于,所述钛化物粒径为5-100nm。
  6. 基于权利要求1所述的一种方向性电磁钢板用涂料的制备方法,其特征在于,包括以下步骤:
    (1)在硅溶胶中加入硼酸和钛化物粉末,分散形成稳定的混合液;
    (2)将混合液与磷酸盐混合并搅拌后即得。
  7. 基于权利要求1所述的一种方向性电磁钢板用涂料的应用,其特征在于,将涂料涂覆在钢板表面,涂层干燥后在800-950℃进行10~100s的热处理。
  8. 根据权利要求7所述的一种方向性电磁钢板用涂料的应用,其特征在于,热处理后的干膜重量为2-10g/m 2
PCT/CN2019/092196 2019-01-08 2019-06-21 一种方向性电磁钢板用涂料及其制备方法 WO2020143168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910014626.0A CN109777160B (zh) 2019-01-08 2019-01-08 一种方向性电磁钢板用涂料及其制备方法
CN201910014626.0 2019-01-08

Publications (1)

Publication Number Publication Date
WO2020143168A1 true WO2020143168A1 (zh) 2020-07-16

Family

ID=66500002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092196 WO2020143168A1 (zh) 2019-01-08 2019-06-21 一种方向性电磁钢板用涂料及其制备方法

Country Status (2)

Country Link
CN (1) CN109777160B (zh)
WO (1) WO2020143168A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777160B (zh) * 2019-01-08 2020-02-14 南京宝淳新材料科技有限公司 一种方向性电磁钢板用涂料及其制备方法
CN112831200A (zh) * 2020-12-30 2021-05-25 南京宝淳新材料科技有限公司 一种不含铬取向电磁钢板用涂料、其制备方法及带涂层的不含铬取向电磁钢板的制备方法
CN113174150B (zh) * 2021-04-27 2022-11-01 东南大学 一种铝锌磷酸盐涂料及使用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124282A (ja) * 1990-09-14 1992-04-24 Babcock Hitachi Kk 方向性珪素鋼板への絶縁被膜の形成方法
JP4500005B2 (ja) * 2003-05-20 2010-07-14 新日本製鐵株式会社 張力付与特性に優れた絶縁被膜を有する方向性電磁鋼板の製造方法及びその方法によって製造された方向性電磁鋼板
CN106243791A (zh) * 2016-09-13 2016-12-21 福州大学 一种用于取向硅钢的高遮盖性绝缘涂料
CN106752130A (zh) * 2016-12-01 2017-05-31 上海迪升防腐新材料科技有限公司 一种取向硅钢用环保绝缘涂层溶液的制备及应用
CN108026644A (zh) * 2015-09-25 2018-05-11 杰富意钢铁株式会社 方向性电磁钢板及其制造方法
CN108473800A (zh) * 2015-12-18 2018-08-31 Posco公司 定向电工钢板用绝缘薄膜组成物、定向电工钢板的绝缘薄膜形成方法以及形成有绝缘薄膜的定向电工钢板
CN108659584A (zh) * 2018-05-08 2018-10-16 全球能源互联网研究院有限公司 一种超薄硅钢表面绝缘涂层及其制备方法
CN109777160A (zh) * 2019-01-08 2019-05-21 南京宝淳新材料科技有限公司 一种方向性电磁钢板用涂料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101596446B1 (ko) * 2014-08-07 2016-03-07 주식회사 포스코 포스테라이트 피막이 제거된 방향성 전기강판용 예비 코팅제 조성물, 이를 이용하여 제조된 방향성 전기강판 및 상기 방향성 전기강판의 제조방법
JP6547835B2 (ja) * 2015-09-29 2019-07-24 日本製鉄株式会社 方向性電磁鋼板、及び方向性電磁鋼板の製造方法
JP7040888B2 (ja) * 2016-10-12 2022-03-23 日本製鉄株式会社 方向性電磁鋼板及び方向性電磁鋼板の張力絶縁被膜形成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124282A (ja) * 1990-09-14 1992-04-24 Babcock Hitachi Kk 方向性珪素鋼板への絶縁被膜の形成方法
JP4500005B2 (ja) * 2003-05-20 2010-07-14 新日本製鐵株式会社 張力付与特性に優れた絶縁被膜を有する方向性電磁鋼板の製造方法及びその方法によって製造された方向性電磁鋼板
CN108026644A (zh) * 2015-09-25 2018-05-11 杰富意钢铁株式会社 方向性电磁钢板及其制造方法
CN108473800A (zh) * 2015-12-18 2018-08-31 Posco公司 定向电工钢板用绝缘薄膜组成物、定向电工钢板的绝缘薄膜形成方法以及形成有绝缘薄膜的定向电工钢板
CN106243791A (zh) * 2016-09-13 2016-12-21 福州大学 一种用于取向硅钢的高遮盖性绝缘涂料
CN106752130A (zh) * 2016-12-01 2017-05-31 上海迪升防腐新材料科技有限公司 一种取向硅钢用环保绝缘涂层溶液的制备及应用
CN108659584A (zh) * 2018-05-08 2018-10-16 全球能源互联网研究院有限公司 一种超薄硅钢表面绝缘涂层及其制备方法
CN109777160A (zh) * 2019-01-08 2019-05-21 南京宝淳新材料科技有限公司 一种方向性电磁钢板用涂料及其制备方法

Also Published As

Publication number Publication date
CN109777160A (zh) 2019-05-21
CN109777160B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2020143168A1 (zh) 一种方向性电磁钢板用涂料及其制备方法
EP2800103B1 (en) Insulation coating composition for non-oriented electrical steel sheet, method for manufacturing same, and non-oriented electrical steel sheet upon which the insulation coating composition is applied
EP2752503B1 (en) Electromagnetic steel sheet having insulating coating
CN108475553B (zh) 取向电工钢板用绝缘皮膜组合物、取向电工钢板的绝缘皮膜形成方法及取向电工钢板
KR20160114577A (ko) 절연 피막을 포함하는 방향성 전기 강 판상 제품
JP4461861B2 (ja) クロムフリー絶縁被膜付き電磁鋼板
WO2017057513A1 (ja) 方向性電磁鋼板、及び方向性電磁鋼板の製造方法
CN110396683B (zh) 用于方向性电工钢板的绝缘涂液及方向性电工钢板及其制造方法
JP5780379B1 (ja) 絶縁被膜付き電磁鋼板
KR101286248B1 (ko) 방향성 전기강판의 절연피막 조성물 및 그 제조방법, 절연피막 조성물을 이용한 방향성 전기강판의 절연피막 형성방법 및 이에 의해 절연피막이 형성된 방향성 전기강판
KR20140060717A (ko) 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
JPS61257483A (ja) 結晶粒配向せるけい素鋼及びこれに対する応力被膜
JP5422937B2 (ja) 方向性電磁鋼板に用いる絶縁皮膜塗布液及び絶縁皮膜形成方法
JP2654862B2 (ja) 鉄心加工性および耐粉塵化性が優れた方向性電磁鋼板の絶縁皮膜形成方法
JPH101779A (ja) 高張力絶縁皮膜形成剤及びその形成方法ならびに高張力絶縁皮膜を有する方向性電磁鋼板
CN112831200A (zh) 一种不含铬取向电磁钢板用涂料、其制备方法及带涂层的不含铬取向电磁钢板的制备方法
JP7018169B2 (ja) 方向性電磁鋼板の製造方法、および方向性電磁鋼板
JP2014025139A (ja) 絶縁被膜付き電磁鋼板
JP2667098B2 (ja) 低鉄損方向性電磁鋼板の製造方法
KR101439503B1 (ko) 전기강판의 절연피막 조성물, 이를 이용한 절연피막 형성방법 및 이에 의해 제조되는 방향성 전기강판
JP3451000B2 (ja) 方向性珪素鋼板の絶縁皮膜形成方法
JP4500005B2 (ja) 張力付与特性に優れた絶縁被膜を有する方向性電磁鋼板の製造方法及びその方法によって製造された方向性電磁鋼板
JP7465380B2 (ja) 電磁鋼板、電磁鋼板用絶縁被膜組成物および電磁鋼板の製造方法
KR101507941B1 (ko) 전기강판의 절연피막 조성물, 이를 이용한 절연피막 형성방법 및 이에 의해 제조되는 방향성 전기강판
JP2009194314A (ja) 絶縁被膜を有する電磁鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908140

Country of ref document: EP

Kind code of ref document: A1