WO2020142935A1 - 连接线、光学测量装置及移动平台 - Google Patents

连接线、光学测量装置及移动平台 Download PDF

Info

Publication number
WO2020142935A1
WO2020142935A1 PCT/CN2019/071002 CN2019071002W WO2020142935A1 WO 2020142935 A1 WO2020142935 A1 WO 2020142935A1 CN 2019071002 W CN2019071002 W CN 2019071002W WO 2020142935 A1 WO2020142935 A1 WO 2020142935A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
core
wires
wire
mobile platform
Prior art date
Application number
PCT/CN2019/071002
Other languages
English (en)
French (fr)
Inventor
陆龙
周立奎
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980005384.7A priority Critical patent/CN111742452A/zh
Priority to PCT/CN2019/071002 priority patent/WO2020142935A1/zh
Publication of WO2020142935A1 publication Critical patent/WO2020142935A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather

Definitions

  • the invention relates to the field of electrical connection, in particular to a connection line, an optical measurement device and a mobile platform.
  • equipment such as unmanned vehicles can be realized through devices such as laser radar.
  • a laser element is installed in the lidar, which can detect surrounding obstacles and control unmanned vehicles to make avoidance and other actions.
  • the external cable of the lidar needs to have a good seal to prevent outside moisture from entering the lidar and affecting the normal operation of the laser element.
  • waterproof connectors on external cables to ensure the tightness of the cables.
  • the invention provides a connecting line, an optical measuring device and a mobile platform, which have good sealing and waterproof performance and low cost.
  • the present invention provides a connecting cable, characterized in that it includes a cable body, the cable body includes an external end and an internal end, the internal end is used to connect inside the device, and the external end
  • the inscribed end of the cable body is provided with a first sealant layer
  • the cable body includes a first protective layer and a plurality of wrapped in the first protective layer
  • the first sealant layer is filled in the gap between the wire and the first protective layer and the gap between the multiple wires.
  • the present invention provides an optical measurement device including a housing, a measurement unit, and the connection line as described above.
  • the measurement unit is hermetically disposed in the casing, and the measurement unit includes an electrical interface and an optical element. The end extends into the housing and is connected to the electrical interface.
  • the present invention provides a mobile platform, including a platform body, a power device, and the optical measurement device described above.
  • the optical measurement device is disposed on the platform body.
  • the connecting wire specifically includes a cable body and a connector, the external end of the cable body and the connector are connected, the internal end of the cable body is used to connect inside the device, the cable body Is provided with a first sealant layer at the inner connection end, the cable body includes a first protective layer and a plurality of wires wrapped in the first protective layer, the first sealant layer is filled between the wire and the first protective layer In the gap and in the gap between multiple wires. In this way, the gap inside the connection line can be filled and closed by the sealant layer, so as to prevent external moisture from entering the device from the connection line, has good air tightness and waterproof performance, and has a low cost.
  • FIG. 1 is a schematic structural diagram of a connecting line provided in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a cable body in a connection cable provided by Embodiment 1 of the present invention
  • FIG. 3 is a schematic cross-sectional view of the cable body in FIG. 2;
  • FIG. 4 is a schematic structural diagram of another cable body in the connecting cable provided in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic cross-sectional view of the cable body in FIG. 4;
  • FIG. 6 is a schematic structural diagram of a third type of cable body in the connection cable provided by Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural diagram of a fourth type of cable body in the connection cable provided by Embodiment 1 of the present invention.
  • FIG. 8 is a schematic structural diagram of an optical measurement device according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic structural diagram of a mobile platform according to Embodiment 3 of the present invention.
  • 1 cable body
  • 2 connector
  • 3 first sealant layer
  • 4- second sealant layer
  • 11 first protective layer
  • 12 conductor
  • 121 core body
  • 122 second protective layer
  • 123 Tin layer
  • 1a external terminal
  • 1b internal terminal
  • 100 connecting wire
  • 101 housing
  • 102 measurement unit
  • 200 optical measurement device
  • 201 body
  • 300 mobile platform
  • 1021 electric interface
  • 1022 Optical components.
  • lidar or laser range finder usually work in outdoor environment, and if water vapor in the external environment enters the device, it may condense on the laser element or optical element in the device, causing a fog phenomenon and affecting the laser.
  • devices such as lidar or laser range finder will have a housing with good sealing, and use the housing to isolate the outside from the inside of the device.
  • the connection line of the laser radar and other devices There is also a need for better sealing measures.
  • FIG. 1 is a schematic structural diagram of a connection line provided by Embodiment 1 of the present invention.
  • 2 is a schematic structural diagram of a cable body in a connecting cable provided by Embodiment 1 of the present invention.
  • 3 is a schematic cross-sectional view of the cable body in FIG. 2.
  • the connecting cable provided in this embodiment includes a cable body 1, the cable body 1 includes an external end 1a and an internal end 1b, and the internal end 1b of the cable body 1
  • the external end 1a is the other end away from the internal end 1b.
  • the external end 1a of the cable body 1 can be connected to external components such as connectors 2.
  • the internal end 1a of the cable body 1 is provided with a first sealant layer 3.
  • the cable body 1 includes a first protective layer 11 and is wrapped in For a plurality of wires 12 in a protective layer 11, the first sealant layer 3 fills the gap between the wires 12 and the first protective layer 11 and the gap between the plurality of wires 12.
  • connection cable in this embodiment can be applied to devices such as a laser radar or a laser rangefinder.
  • the connection cable generally includes components such as a connector 2 and a cable body 1, wherein the external end of the cable body 1 is used to connect with the connector 2, and the connector 2 can be used to interface with devices other than the device,
  • the cable body 1 will extend into the housing of the device and maintain electrical connection with the signal ports and circuits inside the device. In this way, the electrical connection and signal transmission between the device and external equipment can be achieved through the connection of the connection line.
  • a sealing structure may be provided between the casing of the device and the connecting wire, so as to avoid the infiltration of external moisture through the gap between the connecting wire and the casing.
  • external moisture may enter the interior of the connection line through the connector 2 of the connection line, and then enter the interior of the device.
  • the cable body 1 is provided with a first sealant layer 3, which is located at the inner end of the cable body 1, that is, the end of the cable body 1 extending into the device .
  • the connector 2 in the connection cable may be a non-waterproof connector to simplify the structure of the connection cable and reduce the manufacturing cost of the connection cable.
  • the connector 2 in the connecting wire may also be a waterproof connector to improve the reliability of the waterproof sealing of the connecting wire.
  • the cable body 1 includes a first protective layer 11 and a plurality of wires 12 wrapped in the first protective layer 11.
  • the first protective layer 11 is an insulating layer, and can isolate the external water vapor, thereby avoiding the short circuit and the like caused by the influence of the external environment on the wire 12.
  • There will be a certain gap between different wires in addition, there will be a certain gap between the wires 12 and the inside of the first protective layer 11.
  • the connector 2 of the connecting cable is a connector that does not have a waterproof sealing function, these gaps will form a passage through the entire length of the cable body 1, and external moisture will enter the cable body of the connecting wire through the channel formed by the gap 1 inside, and then into the inside of the device through the cable body 1.
  • the first sealant layer 3 is filled in the gap between the first protective layer 11 and the wires 12, and the gap between the respective wires 12, at this time, the first sealant layer 3 is filled in the first protective layer
  • the gap between 11 and the wire 12 and between each wire 12 allows the outer end of the cable body 1 to form a closed end, thereby blocking water vapor.
  • the connection line itself waterproof and sealed, and will not allow external moisture to enter the device along the connection line, and the laser and optical components inside the device can It is always in a dry and sealed working environment, so that the device can work normally; compared with the waterproof sealing method in the prior art, the sealant layer made of sealant seals the gap inside the connection line ,
  • the structure is relatively simple, the cost is low, and the manufacturing process is relatively simple. Among them, due to the arrangement of the first sealant layer 3, the waterproof performance of the connection line can reach the waterproof level of IPX7.
  • the first sealant layer 3 can usually be made of adhesive such as waterproof sealant.
  • adhesive such as waterproof sealant is fluid before setting, it can be easily entered into the gap between the first protective layer 11 and the wire 12 by pouring, or between the wires 12 The gaps are filled between these gaps with their own fluidity. After the adhesive has set, the gap between the first protective layer 11 and the wires 12 and the gap between the wires 12 can be closed. Therefore, a closed end capable of blocking the passage of impurities such as external water vapor is formed at the internal connection end of the cable body 1 to prevent the water vapor from passing through the gap.
  • the waterproof sealant constituting the first sealant layer 3 and the first protective layer 11 and the wire 12 in the cable body 1 should have good adhesion Connection performance, so that the first sealant layer 3 and the first protective layer 11 and the wire 12 are in good contact, to avoid the insufficient sealing performance of the first sealant layer 3 and other parts of the cable body 1 and affect the line The airtight and waterproof voids and holes of the cable body 1.
  • connection line can have certain insulation and waterproof performance, so even if a small amount of external moisture penetrates into the connection line, it will not cause normal electrical signal transmission in the connection line. influences.
  • the wire 12 wrapped in the first protective layer 11 may be either a wire core directly used to transmit electrical signals or an independent core body wrapped with an insulating protective material on the outside. The details are described in detail below.
  • each wire 12 wrapped in the first protective layer 11 may directly be a wire core for transmitting electrical signals.
  • the wire core may be one piece, or a plurality of wires may be wound into a wire harness shape, and each wire core may be independently or wound into a wire harness with a larger diameter to complete different signal transmission functions.
  • FIG. 4 is a schematic structural diagram of another cable body in the connecting cable provided in Embodiment 1 of the present invention.
  • 5 is a schematic cross-sectional view of the cable body in FIG. 4.
  • the wire 12 in the cable body 1 may specifically include a core 121 and a second protective layer 122 wrapped outside the core 121, the second shield The gap between the layer 122 and the core 121 is filled with the second sealant layer 4.
  • each wire 12 in the cable body 1 can be an independent core 121, so when the multiple wires 12 included in the cable body 1 can be used to transmit different signals respectively, to complete a more complex Signal transmission function.
  • the second protection layer 122 is wrapped on the outer side of the core 121 of each wire 12, similar to the first protection layer 11, the second protection layer 122 is also composed of an insulating material And can isolate the outside water vapor, so it can play an insulating protection role between the core 121 and the outside, to avoid the core 121 and the outside conduction, and signal interference or even short circuit and other phenomena.
  • each wire 12 can be used to transmit different electrical signals from other wires 12.
  • the first protective layer 11 and the second protective layer 122 may be made of polyvinyl chloride (Polyvinyl chloride, PVC) or other common insulating plastics and other materials.
  • each wire 12 includes a core 121 and a second protective layer 122 wrapped on the outside of the core 121, similar to the first protective layer 11, there will also be a certain amount between the second protective layer 122 and the core 121 Gaps, and these gaps also form a passage through which water vapor can pass. If the external water vapor enters the cable body 1 from the connector 2 of the connecting wire, it may proceed along the gap between the second protective layer 122 and the core 121, and enter the inside of the device from the inward end of the cable body 1.
  • a second sealant layer 4 may be provided between the second protective layer 122 and the core 121, and the second sealant layer 4 is filled in the second protective layer 122 and The gap between the cores 121 can thus fill the gap and close the gap.
  • water vapor enters the gap between the second protective layer 122 and the core 121 and reaches the position where the second sealant layer 4 is located, it can be blocked by the second sealant layer 4 and cannot continue Advance, so that the water vapor can not enter the inside of the device, which plays a waterproof and sealing role.
  • the wire 12 when the wire 12 is an independent wire 12 including the core 121 and the second protective layer 122, by filling the second sealant layer 4 in the gap between the core 121 and the second protective layer 122, the wire 12 can be closed
  • the internal gap further improves the protective sealing effect of the connection line against external water vapor.
  • the second sealant layer 4 may also be provided at the inward end of the cable body 1, so that the inward end of the cable body 1 forms a closed end, hindering the entry of moisture.
  • both the first sealant layer 3 and the second sealant layer 4 are provided at the end positions of the cable body 1, which facilitates the filling of the first sealant layer 3 and the second sealant layer 4 and can reduce the production of the connecting wire Difficult, and help to improve the sealing and waterproof effect of the sealant layer.
  • the second sealant layer 4 can also be made of adhesive such as waterproof sealant. Specifically, it is possible to infuse a waterproof sealant that is fluid before coagulation between the core 121 and the second protective layer 122, and use the fluidity of the waterproof sealant to fill these gaps. After the adhesive has set, The gap between the core 121 and the second protective layer 122 can be closed.
  • each wire 12 may include a plurality of cores 121.
  • multiple cores 121 can transmit signals together, thereby reducing the impedance of the connection line, improving the signal transmission quality and signal strength, and avoiding the situation that the single core 121 is broken and the signal cannot be transmitted.
  • each core 121 in each wire 12 may be a single wire.
  • the core body 121 may be formed of a metal wire, for example, the core body 121 of the wire 12 may be formed of copper wire.
  • the core body 121 in the wire 12 may be a copper strand.
  • each wire 12 when a plurality of cores 121 are included in each wire 12, there will also be a certain gap between different cores 121. In this way, when water enters the connector 2 of the connection line, external water vapor may enter the gap between the cores 121 in the single wire 12 and pass through the entire connection line along the channel formed by these gaps. Eventually entered the device. In order to prevent external moisture from entering the device through the gaps between the cores 121 in the single wire 12, it is necessary to seal the cores 121 of the single wire 12 to eliminate the gaps between the cores 121.
  • FIGS. 1 and 6 are schematic structural diagram of a third type of cable body in the connecting cable provided in Embodiment 1 of the present invention.
  • the plurality of cores 121 in each wire 12 may be sealed by a conductive melt.
  • the melt can extend into the gap between the cores 121 in a molten state and form a good contact with the surface of the core 121, so that the gap between the cores 121 can be filled with the melt.
  • the melt and the core 121 are connected together, and a closed end capable of sealing and waterproofing is formed.
  • the melt is formed of a conductive material, so the melt itself will not affect the normal conductive performance of the core 121, thereby ensuring good signal transmission.
  • the melt can be a metal with a lower melting point, so that the metal can be flowed by heating the inlet. The metal flows into the gap between the cores 121 of the wire 12, and after filling these gaps, the metal is allowed to cool After solidification, the metal can connect the cores 121 together, so that the cores 121 in the wire 12 form a unified whole at the position where the metal is melted, so as to prevent the external moisture from passing through the metal fusion and condensation parts.
  • multiple cores 121 in each wire 12 may be sealed by tin plating.
  • tin has a lower melting point and good conductivity, so that the cores 121 are connected and sealed together by tin plating, which can better fill and eliminate the gaps between the cores 121, The inside of the wire 12 is sealed.
  • the wire 12 can have good airtightness and waterproof sealing performance, so when tin plating each core 121 in the wire 12, the plating of the core 121
  • the tin portion may be the end of the core 121.
  • a layer of tin 123 is commonly plated on the end of each core 121 in each wire 12.
  • a tin plating operation is performed on the end of the core 121, and the end of each core 121 in the wire 12 is plated with a tin layer 123, and the end of the core 121 can be sealed under the effect of tin plating.
  • the ends of the second protective layer 122 of each wire 12 in the connecting wire may be peeled off to expose the end portions of the core 121.
  • the tin plating operation can be completed more conveniently by removing the end of the core 121 of the second protective layer 122 on the outside. In this way, it is easy to operate when tin plating, which can reduce the difficulty of making the connecting wire and reduce the production cost.
  • the length of the tin plating at the end of the core 121 may be 4-6 mm, and generally Around 5mm.
  • the tin plating length on the core body 121 is relatively moderate, on the one hand, it can be ensured that the tin plating can fill the gap between the core bodies 121, so as to achieve a good waterproof sealing performance; on the other hand, the tin plating length is 4 Between -6mm, it is convenient to complete the operation of the tin plating process, reduce the amount of tin plating, and effectively reduce the production cost of the connecting line.
  • first sealant layer 3 and the second sealant layer 4 are used to complete the waterproof sealing of the connecting line
  • first sealant layer 3 and the second sealant layer 4 can also be provided in different specific The location will be described in detail below.
  • the inner end of the wire 12 may extend beyond the inner end of the first protective layer 11.
  • the wire 12 is exposed from the end of the inscribed end of the first protective layer 11 and extends outward a certain distance, so that the first sealant layer 3 can be conveniently provided between the wire 12 and the first protective layer 11 .
  • the portion of the inner end of the first protective layer 11 can be removed to expose the wire 12 therefrom.
  • the first sealant layer 3 may be disposed in the gap between the end of the inward end of the first protective layer 11 and the wire 12. At this time, there is an annular gap between the inner end of the first protective layer 11 and the outer surface of the wire 12, and the first sealant layer 3 can seal between the end of the first protective layer 11 and the wire 12 Thus, the annular gap is closed, and the end of the inward end of the first protective layer 11 forms a sealed end to prevent moisture from seeping out of the gap between the first protective layer 11 and the wire 12.
  • the first sealant layer 3 is provided there, on the one hand, it is beneficial to the positioning of the first sealant layer 3, so that the first sealant layer 3 can form a good sealing effect, on the other hand, it can also reduce the first sealant
  • the amount of sealant in layer 3 reduces production costs.
  • the inner end of the core 121 may be located outside the inner end of the second protective layer 122.
  • the core 121 may be exposed from the end of the inscribed end of the second protective layer 122 and extend outward a certain distance, so that it is convenient to set a second seal between the second protective layer 122 and the core 121 ⁇ 4 ⁇ Glue layer 4.
  • the inner portion of the inner end of the second protective layer 122 can be removed to remove the core 121 of the wire 12 Exposed.
  • the second sealant layer 4 is disposed in the gap between the inner end of the second protective layer 122 and the core 121.
  • the second sealant layer 4 can be sealed in the annular gap between the end of the second protective layer 122 and the core 121, thereby closing the annular gap and forming the end of the inscribed end of the second protective layer 122 A sealed end to prevent water vapor from seeping out of it.
  • the advantage of setting the second sealant layer 4 in this way is similar to that of the first protective layer 11, on the one hand, it is advantageous for the positioning of the second sealant layer 4, so that the second sealant layer 4 can form a good sealing effect, on the other hand
  • the amount of sealant in the second sealant layer 4 can be reduced, and the production cost can be reduced.
  • FIG. 7 is a schematic structural diagram of a fourth type of cable body in the connecting cable provided in Embodiment 1 of the present invention.
  • the first sealant layer 3 and the second sealant layer 4 may also be extended and present One.
  • the first sealant layer 3 is disposed between the first protective layer 11 and the lead 12, and the second sealant layer 4 is disposed between the second protective layer 122 and the core 121, and the first sealant layer 3 and the first
  • the two sealant layers 4 are connected to each other to form an integrated structure, so that the waterproof sealant can be poured into each corresponding part of the connecting line at the same time or in batches, and the first sealant layer 3 and the second seal for sealing different gaps can be made
  • the glue layers 4 are connected into an integrated structure, thereby improving the sealing performance and simplifying the process of setting the first sealant layer 3 and the second sealant layer 4.
  • the connecting wire specifically includes a cable body and a connector.
  • the external end of the cable body is used to connect with the connector.
  • the internal end of the cable body is used to connect inside the device.
  • the internal end of the cable body is provided with A first sealant layer, the cable body includes a first protective layer and a plurality of wires wrapped in the first protective layer, the first sealant layer fills the gap between the wire and the first protective layer and a plurality of wires In the gap between.
  • the gap inside the connection line can be filled and closed by the sealant layer, so as to prevent external moisture from entering the device from the connection line, has good air tightness and waterproof performance, and has a low cost.
  • the optical measurement device 200 in this embodiment specifically includes a casing 101, a measurement unit 102, and the connection line 100 described in the first embodiment.
  • the measurement unit 102 is sealed in the casing 101, and the measurement unit 102 includes an electrical interface 1021 and an optical element 1022, and the inner end of the connecting wire 100 extends into the housing 101 and is connected to the electrical interface 1021.
  • the connection cable 100 includes a connector 2 and a cable body 1. The external end of the cable body 1 is connected to the connector 2. The internal end of the cable body 1 is used to connect inside the optical measurement device 200.
  • the inner end is provided with a first sealant layer.
  • the cable body 1 includes a first protective layer and a plurality of wires wrapped in the first protective layer.
  • the first sealant layer is filled between the wire and the first protective layer In the gap and in the gap between multiple wires.
  • the optical measurement device 200 includes a housing 101, which can protect the internal measurement unit 102 and other components therein, so that the optical measurement device 200 can be used in a harsh outdoor environment to avoid external moisture, etc. This affects the normal operation of the optical measurement device 200.
  • the optical measurement device 200 further includes a measurement unit 102, and the measurement unit 102 may include an optical element 1022 for performing optical measurement, and an electrical interface 1021 for control and electrical signal transmission.
  • the optical element 1022 may include various types of optical lenses, and complete optical measurement tasks through the refraction or reflection of light.
  • the measurement unit 102 may further include an electrical interface 1021.
  • the electrical interface 1021 may be used to generate or transmit electrical signals, so that the measurement unit 102 can complete normal measurement work.
  • the connecting line 100 can be connected to the electrical interface 1021 of the optical measuring device 200 and other external devices or equipment to transmit the signals measured by the optical measuring device 200 or control the optical measuring device 200.
  • the optical measurement device 200 may be a laser radar or a laser rangefinder, etc., which includes both optical components and electrical components.
  • a sealing structure is usually provided between the housing 101 of the optical measuring device 200 and the connecting line 100, so as to achieve a sealed connection, so as to avoid external moisture from the connecting line 100 and the shell The gap between the bodies 101 penetrates.
  • the connecting wire 100 may be provided with 12 wires, and the 12 wires are used to achieve different functions or perform different functions. Signal transmission.
  • the optical measuring device 200 in this embodiment since the inside of the connecting line 100 is closed by the sealant layer, the outside water vapor cannot enter the inside of the optical measuring device 200 through the gap inside the connecting line 100, so that the optical inside the optical measuring device 200 The element 1022 will not be affected by water vapor to produce fogging and other phenomena, effectively ensuring the normal operation of the optical measurement device 200.
  • the optical measuring device specifically includes a housing, a measuring unit and a connecting wire.
  • the measuring unit is sealed in the housing, and the measuring unit includes an electrical interface and an optical element.
  • the inner end of the connecting wire extends into the housing and connects with the electric Interface connection; wherein, the connection line includes a connector and a cable body, the external end of the cable body is connected to the connector, the internal end of the cable body is used to connect to the inside of the optical measurement device, and the internal end of the cable body is provided with A first sealant layer, the cable body includes a first protective layer and a plurality of wires wrapped in the first protective layer, the first sealant layer fills the gap between the wire and the first protective layer and a plurality of wires In the gap between.
  • connection line can be filled and closed by the sealant layer, so as to prevent external moisture from entering the optical measurement device from the connection line. It has good airtightness and waterproof performance, allowing the optical measurement device to be used in outdoor environments. Can work normally, and the cost is relatively low.
  • the mobile platform includes a platform body, a power device, and the optical measurement device in the foregoing embodiment, and the optical measurement device is provided on the platform body.
  • the mobile platform 300 may be an unmanned vehicle, including a body 201 and an optical measurement device 200 provided on the body 201, wherein the body 201 serves as a platform body of the mobile platform for carrying power devices and other equipment, and the optical measurement device
  • the specific structure, function and working principle of 200 have been described in detail in the foregoing embodiments, and will not be repeated here.
  • the mobile platform 300 in this embodiment can be moved or turned on the ground by remote control or automatic control.
  • the optical measurement device 200 is provided on the body 201 of the mobile platform 300 and performs optical measurement tasks.
  • the optical measuring device 200 may specifically include a housing, a measuring unit, and a connecting wire.
  • the measuring unit is sealed in the housing, and the measuring unit includes an electrical interface and an optical element.
  • the inner end of the connecting wire extends into the housing and connects to the electrical interface.
  • the connecting wire includes a connector and a cable body, the external end of the cable body is connected to the connector, the internal end of the cable body is used to connect inside the device, and the internal end of the cable body is provided with a first sealant layer,
  • the cable body includes a first protective layer and a plurality of wires wrapped in the first protective layer.
  • the first sealant layer fills the gap between the wire and the first protective layer and the gap between the multiple wires.
  • the unmanned vehicle specifically includes a body and an optical measurement device.
  • the connection line of the optical measurement device includes a connector and a cable body, the external end of the cable body is connected to the connector, the internal end of the cable body is used to connect inside the optical measurement device, and the internal end of the cable body is provided
  • the cable body includes a first protective layer and a plurality of wires wrapped in the first protective layer, the first sealant layer fills the gap between the wire and the first protective layer and a plurality of wires In the gap between the wires.
  • the gap inside the connection line can be filled and closed by the sealant layer, so as to prevent external moisture from entering the optical measurement device from the connection line. It has good air tightness and waterproof performance, and can work normally in outdoor environments. And the cost is relatively low.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the platform body is the fuselage of the unmanned aerial vehicle.
  • the platform body is the body of the automobile.
  • the car may be a self-driving car or a semi-automatic car, and no restriction is made here.
  • the distance measuring device is applied to a remote control car, the platform body is the body of the remote control car.
  • the platform body is a robot.
  • the platform body is the camera itself.

Landscapes

  • Insulated Conductors (AREA)

Abstract

一种连接线(100)、光学测量装置(200)及移动平台(300)。连接线(100)包括线缆本体(1),线缆本体(1)包括外接端(1a)和内接端(1b),线缆本体(1)的内接端(1b)用于连接在装置内部,外接端(1a)为远离内接端(1b)的另一端,线缆本体(1)的内接端(1b)设置有第一密封胶层(3),线缆本体(1)包括第一防护层(11)和被包裹在第一防护层(11)内的多根导线(12),第一密封胶层(3)填充在导线(12)和第一防护层(11)之间的间隙中以及多根导线(12)之间的间隙中。本连接线(100)具有较好的密封性和防水性能,且成本较低。

Description

连接线、光学测量装置及移动平台 技术领域
本发明涉及电连接领域,尤其涉及一种连接线、光学测量装置及移动平台。
背景技术
随着科技的不断发展,无人车、无人飞行器等自控设备得到了越来越广泛的应用。
目前,无人车等设备在实现对周围环境的感知时,可以通过激光雷达等装置实现。激光雷达中设置有激光元件,可以检测周围障碍物,并控制无人车做出回避等动作。其中,由于无人车等设备的作业环境较为恶劣,所以激光雷达的外接电缆需要具有良好的密封性,以避免外界水汽进入激光雷达内部,影响激光元件的正常工作。目前,通常均采用在外接电缆上设置防水接头来保证电缆的密封性。
然而,现有的防水接头结构较为复杂,使得外接电缆的制作成本较高。
发明内容
本发明提供一种连接线、光学测量装置及移动平台,具有较好的密封性和防水性能,且成本较低。
第一方面,本发明提供一种连接线,其特征在于,包括线缆本体,所述线缆本体包括外接端和内接端,所述内接端用于连接在装置内部,所述外接端为远离所述内接端的另一端,所述线缆本体的内接端设置有第一密封胶层,所述线缆本体包括第一防护层和被包裹在所述第一防护层内的多根导线,所述第一密封胶层填充在所述导线和所述第一防护层之间的间隙中以及所述多根导线之间的间隙中。
第二方面,本发明提供一种光学测量装置,包括壳体、测量单元和如上所述的连接线,测量单元密封设置在壳体内,且测量单元包括电接口和 光学元件,连接线的内接端伸入壳体内并与电接口连接。
第三方面,本发明提供一种移动平台,包括平台本体、动力装置和如上所述的光学测量装置,光学测量装置设置在平台本体上。
本发明的连接线、光学测量装置及移动平台,连接线具体包括线缆本体和接头,线缆本体的外接端和接头连接,线缆本体的内接端用于连接在装置内部,线缆本体的内接端设置有第一密封胶层,线缆本体包括第一防护层和被包裹在第一防护层内的多根导线,第一密封胶层填充在导线和第一防护层之间的间隙中以及多根导线之间的间隙中。这样连接线内部的间隙能够被密封胶层所填满和封闭,从而避免外界水汽由连接线进入装置内部,具有较好的气密性和防水性能,且成本较低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的一种连接线的结构示意图;
图2是本发明实施例一提供的连接线中线缆本体的结构示意图;
图3是图2中的线缆本体的截面示意图;
图4是本发明实施例一提供的连接线中另一种线缆本体的结构示意图;
图5是图4中的线缆本体的截面示意图;
图6是本发明实施例一提供的连接线中第三种线缆本体的结构示意图;
图7是本发明实施例一提供的连接线中第四种线缆本体的结构示意图;
图8是本发明实施例二提供的一种光学测量装置的结构示意图;
图9是本发明实施例三提供的一种移动平台的结构示意图。
附图标记说明:
1—线缆本体;2—接头;3—第一密封胶层;4—第二密封胶层;11—第一防护层;12—导线;121—芯体;122—第二防护层;123—锡层;1a—外接端;1b—内接端;100—连接线;101—壳体;102—测量单元;200—光学测量装置;201—车身;300—移动平台;1021—电接口;1022—光学 元件。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
由于激光雷达或者激光测距仪等装置通常会在户外环境工作,而外界环境中的水汽如果进入装置内部,则可能在装置内的激光元件或者光学元件上凝结,造成雾面现象,影响到激光雷达等装置的正常工作。为了避免外界水汽的影响,激光雷达或者激光测距仪等装置会具有密封性较好的壳体,并利用壳体隔绝外界与装置内部。然而,激光雷达等装置在工作时需要依靠电连接线和外界之间传输电信号时,为了避免外界环境中的水汽通过电连接线进入激光雷达等装置的装置内部,激光雷达等装置的连接线也需要有较好的密封措施。
图1是本发明实施例一提供的一种连接线的结构示意图。图2是本发明实施例一提供的连接线中线缆本体的结构示意图。图3是图2中的线缆本体的截面示意图。如图1至图3所示,本实施例提供的连接线,所述连接线包括线缆本体1,线缆本体1包括外接端1a和内接端1b,线缆本体1的内接端1b用于连接在装置内部,外接端1a为远离内接端1b的另一端。线缆本体1的外接端1a可连接如接头2等外部元件,线缆本体1的内接端1a设置有第一密封胶层3,线缆本体1包括第一防护层11和被包裹在第一防护层11内的多根导线12,第一密封胶层3填充在导线12和第一防护层11之间的间隙中以及多根导线12之间的间隙中。
具体的,本实施例中的连接线,可以应用在激光雷达或者激光测距仪等装置。连接线一般包括有接头2和线缆本体1等组成部分,其中,线缆本体1的外接端用于和接头2连接,且接头2可以用于和该装置之外的其它装置的接口连接,而线缆本体1会伸入该装置的壳体内部,并与装置内部的信号端口以及电路保持电性连接。这样通过连接线的连接,即可实现 装置与外部设备的电性连接和信号传输。
而为了保证装置的密封性,一般在装置的壳体和连接线之间通常可以设置有密封结构,以避免外界水汽由连接线与壳体之间的间隙渗入。然而,接头2在与外界的设备连接时,外界水汽可能会由连接线的接头2进入连接线内部,进而进入装置内部。为了避免外界水汽的渗入,线缆本体1上设置有第一密封胶层3,第一密封胶层3位于线缆本体1的内接端,也就是线缆本体1的伸入装置内部的一端。
其中,连接线中的接头2可以为非防水接头,以简化连接线的结构以及降低连接线的制造成本。或者,连接线中的接头2也可以为防水接头,以提高连接线防水密封的可靠性。
具体的,线缆本体1包括有第一防护层11以及包裹在第一防护层11内的多根导线12。第一防护层11为绝缘层,且能够隔绝外界水汽,从而避免导线12受到外界环境的影响而产生短路等现象。不同导线之间会具有一定的间隙,此外,导线12和第一防护层11的内侧之间也会存在一定的间隙。当连接线的接头2为不具有防水密封功能的接头时,这些间隙会形成贯通整个线缆本体1长度方向的通道,外界的水汽就会通过上述间隙所形成的通道进入连接线的线缆本体1内部,并进而通过线缆本体1进入装置的内部。而将第一密封胶层3填充在第一防护层11和导线12之间的间隙,以及各个导线12之间的间隙中,此时,第一密封胶层3填满了位于第一防护层11和导线12之间以及各个导线12之间的间隙,让线缆本体1的外接端形成一个封闭端,从而起到阻隔水汽的作用。外界的水汽即使通过线缆本体1中各导线12以及导线12和第一防护层11之间的间隙流入,并抵达线缆本体1的内接端一侧,也会在线缆本体1的外接端受到第一密封胶层3的阻碍,无法通过并进入装置内部,因而使得连接线自身具有防水密封性,不会让外界水汽沿连接线进入装置内部,而装置内部的激光元件和光学元件可以始终处于干燥、密封的工作环境下,让装置能够正常进行工作;而和现有技术中采用防水接头进行防水密封的方式相比,采用密封胶构成的密封胶层对连接线内部的间隙进行密封,结构较为简单,成本较低,且制作工艺较为简易。其中,由于第一密封胶层3的设置,连接线的防水性能可以达到IPX7的防水等级。
其中,第一密封胶层3通常可以采用防水密封胶等粘接剂制成。具体的,由于防水密封胶等粘接剂在凝结前呈流动态,因而可以较为容易的通过灌注等方式进入第一防护层11和导线12之间的间隙,或者是各根导线12之间的间隙,并利用自身的流动性填充在这些间隙之间,待粘接剂凝结后,就可以将第一防护层11和导线12之间的间隙,以及各根导线12之间的间隙封闭起来,从而在线缆本体1的内接端形成能够阻隔外界水汽等杂质通过的封闭端,以避免水汽从上述间隙穿过。
具体的,为了让第一密封胶层3起到良好的密封性,构成第一密封胶层3的防水密封胶与第一防护层11以及线缆本体1中的导线12均应具有良好的粘接性能,从而让第一密封胶层3与第一防护层11和导线12均形成良好的接触,避免因第一密封胶层3和线缆本体1的其它部分粘接性能不足而产生影响线缆本体1气密性和防水性的空隙以及孔洞。
此时,需要说明的是,连接线中各根导线12之间可以具有一定的绝缘和防水性能,因而即使外界的微量水汽渗入连接线内部,也不会对连接线中正常的电信号传输造成影响。
具体的,线缆本体1中,被包裹在第一防护层11内的导线12,既可以是直接用于传输电信号的线芯,也可以是外部包裹有绝缘保护材料的独立芯体。以下分别具体进行详细说明。
在一种可选的方式中,被包裹在第一防护层11内的各导线12可以直接为用于传输电信号的线芯。此时,线芯可以是一根,也可以由多根线材缠绕成线束状,而各个线芯可以独立或者缠绕成直径较大的线束,从而完成不同的信号传输功能。
图4是本发明实施例一提供的连接线中另一种线缆本体的结构示意图。图5是图4中的线缆本体的截面示意图。如图4和图5所示,在另一种可选的方式中,线缆本体1中的导线12具体可以包括芯体121和包裹在芯体121外侧的第二防护层122,第二防护层122和芯体121之间的间隙中填充有第二密封胶层4。
具体的,线缆本体1中的每根导线12均可以为独立的芯体121,因而当线缆本体1中所包括的多根导线12可以分别用于传输不同的信号,以完成较为复杂的信号传输功能。为了避免不同导线12上的信号之间发生 相互干扰,每根导线12的芯体121外侧均包裹有第二防护层122,和第一防护层11类似,第二防护层122也由绝缘材料构成,并能够隔绝外界水汽,因而可以在芯体121与外界之间起到绝缘保护作用,避免芯体121与外界导通,而发生信号干扰甚至是短路等现象。这样每根导线12即可用于传输和其它导线12不同的电信号。具体的,第一防护层11和第二防护层122可以由聚氯乙烯(Polyvinyl chloride,PVC)或者其它常见的绝缘塑料等材料制成。
由于每根导线12均包括芯体121以及包裹在芯体121外侧的第二防护层122,因而和第一防护层11类似,在第二防护层122和芯体121之间也会具有一定的间隙,而这些间隙也会形成可容水汽通过的通道。如果外界水汽从连接线的接头2进入线缆本体1,则可能会沿着第二防护层122和芯体121之间的间隙一直前进,并由线缆本体1的内接端进入装置内部。
因而,为了避免水汽对装置内部的元件工作造成影响,在第二防护层122和芯体121之间可以设有第二密封胶层4,第二密封胶层4填充在第二防护层122和芯体121之间的间隙中,因而可以填满该间隙,并将该间隙封闭起来。此时,如果有水汽进入第二防护层122与芯体121之间的间隙中,并抵达第二密封胶层4所处的位置时,即可被第二密封胶层4所阻挡而无法继续前进,这样水汽也就无法进入装置的内部,起到了防水密封作用。
这样当导线12为包括有芯体121及第二防护层122的独立导线12时,通过在芯体121和第二防护层122之间的间隙中填充第二密封胶层4,可以封闭导线12内部的间隙,进一步提高连接线对于外界水汽的防护密封效果。
其中,和第一密封胶层3类似,第二密封胶层4也可以设置在线缆本体1的内接端,使得线缆本体1的内接端形成封闭端,阻碍水汽的进入。这样将第一密封胶层3和第二密封胶层4均设置在线缆本体1的端部位置,便于第一密封胶层3以及第二密封胶层4的填充,可以降低连接线的制作难度,并有利于提高密封胶层的密封防水效果。
同样的,和第一密封胶层3类似,第二密封胶层4也可以采用防水密封胶等粘接剂制成。具体可以将在凝结前呈流动态的防水密封胶灌注在芯 体121和第二防护层122之间,并利用防水密封胶的流动性,使其填充满这些间隙,待粘接剂凝结后,就可以将芯体121和第二防护层122之间的间隙封闭完成。
为了保证信号的传输质量,作为一种可选的结构,在连接线的线缆本体1中,每根导线12中可以包括多根芯体121。这样多根芯体121可以共同传输信号,从而减低连接线的阻抗,提高信号的传输质量和信号强度,并避免单根芯体121断裂而造成信号无法传输的情况发生。
具体的,每根导线12中的各根芯体121均可以为单根线材。一般的,芯体121可以为金属线材构成,例如可以是利用铜线构成导线12的芯体121,此时,导线12中的芯体121可以为铜绞线。
然而,当每根导线12中包括有多根芯体121时,不同芯体121之间同样会存在有一定的间隙。这样当连接线的接头2处进水时,外界的水汽可能会进入单根导线12中各根芯体121之间的间隙内,并沿着这些间隙所形成的通道穿过整根连接线,最终进入装置内部。为了避免外界水汽经由单根导线12内各芯体121之间的间隙进入装置内部,需要对单根导线12的各芯体121之间进行密封处理,以消除各个芯体121之间的间隙。
图6是本发明实施例一提供的连接线中第三种线缆本体的结构示意图。如图1和图6所示,作为一种可选的实施方式,可以让每根导线12中的多根芯体121之间通过可导电的熔融物密封。此时,熔融物可以在熔融态下伸入各芯体121之间的间隙,并与芯体121表面形成良好的接触,这样各芯体121之间的间隙就能够被熔融物所填满,从而让熔融物和芯体121共同连结在一起,并构成一个能够密封防水的封闭端。
其中,熔融物为可导电的材料形成,因而熔融物自身不会影响到芯体121的正常导电性能,从而可保证信号的良好传输。一般的,熔融物可以为熔点较低的金属,这样可以通过对进入加温让金属呈流动态,金属流入导线12各芯体121之间的间隙,并填满这些间隙之后,再让金属冷却凝固,金属即可将各芯体121连结在一起,从而让导线12内各芯体121在金属熔融的位置构成统一的整体,从而避免外界水汽从金属熔融凝结的部位通过。
具体的,作为其中一种可选的方式,每根导线12中的多根芯体121 之间可以通过镀锡密封。其中,锡具有较低的熔点和良好的导电性,因而让各根芯体121之间通过镀锡而连接并密封在一起,能够较好的填充并消除各根芯体121之间的间隙,完成导线12内部的密封。
进一步的,由于只要让导线12的端部进行密封,即可让导线12具有良好的气密性和防水密封性能,因而在对导线12中各芯体121进行镀锡时,芯体121的镀锡部位可以为芯体121的端部。此时,每根导线12中各个芯体121的端部上共同镀有一层锡层123。这样在芯体121的端部进行镀锡操作,让导线12中各芯体121的端部镀上锡层123,芯体121的端部就可以在镀锡作用下完成密封。
此时,为了让熔融态的锡填充芯体121之间的间隙,可以将连接线中各导线12的第二防护层122端部剥开,以将芯体121的端部部位裸露在外,此时,外侧去除了第二防护层122的芯体121端部即可较为方便的完成镀锡操作。这样在镀锡时便于进行操作,能够降低连接线的制作难度,减少生产成本。
其中,在利用镀锡的方式完成导线12中多根芯体121之间的密封时,为了保证密封性能,可选的,芯体121端部的镀锡长度可以为4-6mm,且一般在5mm左右。此时,芯体121上的镀锡长度较为适中,一方面能够保证镀锡能够填充在各芯体121之间的间隙中,以实现良好的防水密封性能;另一方面,镀锡长度在4-6mm之间,便于完成镀锡工序的操作,并减少镀锡量,有效的降低连接线的生产成本。
而同样的,在利用第一密封胶层3以及第二密封胶层4完成连接线的防水密封时,也可以将第一密封胶层3和第二密封胶层4设置在连接线的不同特定位置,以下进行具体说明。
可选的,为了便于设置第一密封层,导线12的内接端端部可以延伸至第一防护层11的内接端端部之外。此时,导线12从第一防护层11的内接端端部中露出,并向外伸出一定距离,这样即可方便在导线12和第一防护层11之间设置第一密封胶层3。具体的,可以通过去除第一防护层11内接端端部的部分,以使导线12从中露出。
此时,作为一种可选的方式,可以将第一密封胶层3设置在第一防护层11的内接端端部与导线12之间的间隙中。此时,第一防护层11的内 接端端部与导线12的外表面之间具有环形的间隙,而第一密封胶层3即可密封在第一防护层11的端部与导线12之间,从而封闭该环形的间隙,使第一防护层11的内接端端部形成一个密封端,防止水汽从第一防护层11与导线12之间的间隙中渗出。这样将第一密封胶层3设置在该处,一方面有利于第一密封胶层3的定位,使第一密封胶层3能够形成良好的密封效果,另一方面也可以减少第一密封胶层3中密封胶的用量,减少生产成本。
而类似的,作为一种可选的实施方式,每根导线12中,芯体121的内接端端部可以位于第二防护层122的内接端端部之外。具体的,芯体121可以从第二防护层122的内接端端部中露出,并向外伸出一定距离,这样即可方便在第二防护层122与芯体121之间设置第二密封胶层4。
其中,和第一防护层11类似,让芯体121从第二防护层122中露出时,具体可以通过去除第二防护层122内接端端部的部分,以使导线12的芯体121从中露出。
相应的,在可选的方式中,第二密封胶层4设置在第二防护层122的内接端端部和芯体121之间的间隙中。这样第二密封胶层4即可密封在第二防护层122的端部与芯体121之间的环形间隙中,从而封闭该环形的间隙,使第二防护层122的内接端端部形成一个密封端,防止水汽从中渗出。这样设置第二密封胶层4,其好处和第一防护层11类似,一方面有利于第二密封胶层4的定位,使第二密封胶层4能够形成良好的密封效果,另一方面也可以减少第二密封胶层4中密封胶的用量,减少生产成本。
此外,图7是本发明实施例一提供的连接线中第四种线缆本体的结构示意图。如图1和图7所示,为了简化密封胶的设置工序,作为一种可选的方式,在线缆本体中,也可以让第一密封胶层3与第二密封胶层4延伸并呈一体。这样第一密封胶层3设置在第一防护层11和导线12之间,而第二密封胶层4设置在第二防护层122和芯体121之间,且第一密封胶层3和第二密封胶层4相互连接以形成一体结构,从而可以将防水密封胶同时或者分批灌注至连接线上的各个相应部位,并让用于密封不同间隙的第一密封胶层3和第二密封胶层4之间连接成一体式结构,从而提升密封性能,并简化设置第一密封胶层3和第二密封胶层4的工序。
本实施例中,连接线具体包括线缆本体和接头,线缆本体的外接端用于和接头连接,线缆本体的内接端用于连接在装置内部,线缆本体的内接端设置有第一密封胶层,线缆本体包括第一防护层和被包裹在第一防护层内的多根导线,第一密封胶层填充在导线和第一防护层之间的间隙中以及多根导线之间的间隙中。这样连接线内部的间隙能够被密封胶层所填满和封闭,从而避免外界水汽由连接线进入装置内部,具有较好的气密性和防水性能,且成本较低。
图8是本发明实施例二提供的一种光学测量装置的结构示意图。如图8所示,本实施例中的光学测量装置200,具体包括壳体101、测量单元102和前述实施例一述的连接线100,测量单元102密封设置在壳体101内,且测量单元102包括电接口1021和光学元件1022,连接线100的内接端伸入壳体101内并与电接口1021连接。其中,连接线100包括接头2和线缆本体1,线缆本体1的外接端和接头2连接,线缆本体1的内接端用于连接在光学测量装置200的内部,线缆本体1的内接端设置有第一密封胶层,线缆本体1包括第一防护层和被包裹在第一防护层内的多根导线,第一密封胶层填充在导线和第一防护层之间的间隙中以及多根导线之间的间隙中。连接线100的具体结构、功能以及工作原理均已在前述实施例一中进行了详细说明,此处不再赘述。
具体的,光学测量装置200包括壳体101,壳体101可以将内部的测量单元102等部件保护在其中,从而让光学测量装置200能够在较为恶劣的户外环境中使用,以避免外界的水汽等影响到光学测量装置200的正常工作。
此外,光学测量装置200中还具有测量单元102,测量单元102可以包括用于进行光学测量的光学元件1022,以及用于控制和电信号传输的电接口1021等。光学元件1022可以包括有各类不同的光学镜片,并通过光线的折射或反射完成光学测量任务。而测量单元102中还可以包括有电接口1021,电接口1021可以用于产生或传输电信号,让测量单元102完成正常的测量工作。而连接线100即可连接光学测量装置200的电接口1021以及外部的其它装置或设备,以传输光学测量装置200所测量的信号或者对光学测量装置200进行控制。其中可选的,光学测量装置200可以为激 光雷达或者激光测距仪等既包括光学元件,也包括电气元件的测量装置。
而为了保证光学测量装置200的密封性,可选的,光学测量装置200的壳体101和连接线100之间通常设置有密封结构,从而实现密封连接,以避免外界水汽由连接线100与壳体101之间的间隙渗入。
具体的,当光学测量装置200为激光雷达或者激光测距仪等时,可选的,连接线100内部可以设置有12根导线,并利用这12根导线分别实现不同的功能或者是进行不同的信号传输。
本实施例中的光学测量装置200中,由于连接线100内部被密封胶层所封闭,所以外界的水汽无法通过连接线100内部的间隙进入光学测量装置200内部,让光学测量装置200内部的光学元件1022不会受到水汽影响而产生起雾等现象,有效的保证了光学测量装置200的正常工作。
本实施例中,光学测量装置具体包括壳体、测量单元和连接线,测量单元密封设置在壳体内,且测量单元包括电接口和光学元件,连接线的内接端伸入壳体内并与电接口连接;其中,连接线包括接头和线缆本体,线缆本体的外接端和接头连接,线缆本体的内接端用于连接在光学测量装置的内部,线缆本体的内接端设置有第一密封胶层,线缆本体包括第一防护层和被包裹在第一防护层内的多根导线,第一密封胶层填充在导线和第一防护层之间的间隙中以及多根导线之间的间隙中。这样连接线内部的间隙能够被密封胶层所填满和封闭,从而避免外界水汽由连接线进入光学测量装置内部,具有较好的气密性和防水性能,让光学测量装置在户外环境中也能够正常工作,且成本较为低廉。
图9是本发明实施例三提供的一种移动平台的结构示意图。如图9所示,移动平台包括平台本体、动力装置和前述实施例中的光学测量装置,光学测量装置设置在所述平台本体上。具体的,移动平台300可以为无人车,包括车身201以及设置在车身201上的光学测量装置200,其中车身201作为移动平台的平台本体,用于承载动力装置和其它设备,而光学测量装置200的具体结构、功能以及工作原理均已在前述实施例中进行了详细说明,此处不再赘述。
本实施例中的移动平台300,可以通过遥控或者自动控制等方式完成在地面上的移动或转向等操作。光学测量装置200设置在移动平台300的 车身201上,并执行光学测量任务。光学测量装置200具体可以包括壳体、测量单元和连接线,测量单元密封设置在壳体内,且测量单元包括电接口和光学元件,连接线的内接端伸入壳体内并与电接口连接。其中,连接线包括接头和线缆本体,线缆本体的外接端和接头连接,线缆本体的内接端用于连接在装置内部,线缆本体的内接端设置有第一密封胶层,线缆本体包括第一防护层和被包裹在第一防护层内的多根导线,第一密封胶层填充在导线和第一防护层之间的间隙中以及多根导线之间的间隙中。而连接线的具体结构、功能以及工作原理均已在前述实施例一中进行了详细说明,此处不再赘述。
本实施例中,无人车具体包括车身和光学测量装置。其中,光学测量装置的连接线包括接头和线缆本体,线缆本体的外接端和接头连接,线缆本体的内接端用于连接在光学测量装置的内部,线缆本体的内接端设置有第一密封胶层,线缆本体包括第一防护层和被包裹在第一防护层内的多根导线,第一密封胶层填充在导线和第一防护层之间的间隙中以及多根导线之间的间隙中。这样连接线内部的间隙能够被密封胶层所填满和封闭,从而避免外界水汽由连接线进入光学测量装置内部,具有较好的气密性和防水性能,在户外环境中也能够正常工作,且成本较为低廉。
在某些实施方式中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当测距装置应用于无人飞行器时,平台本体为无人飞行器的机身。当测距装置应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置应用于遥控车时,平台本体为遥控车的车身。当测距装置应用于机器人时,平台本体为机器人。当测距装置应用于相机时,平台本体为相机本身。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (55)

  1. 一种连接线,其特征在于,包括线缆本体,所述线缆本体包括外接端和内接端,所述内接端用于连接在装置内部,所述外接端为远离所述内接端的另一端,所述线缆本体的内接端设置有第一密封胶层,所述线缆本体包括第一防护层和被包裹在所述第一防护层内的多根导线,所述第一密封胶层填充在所述导线和所述第一防护层之间的间隙中以及所述多根导线之间的间隙中。
  2. 根据权利要求1所述的连接线,其特征在于,所述导线包括芯体和包裹在所述芯体外侧的第二防护层,所述第二防护层和所述芯体之间的间隙中填充有第二密封胶层。
  3. 根据权利要求2所述的连接线,其特征在于,每根所述导线中包括多根所述芯体。
  4. 根据权利要求3所述的连接线,其特征在于,每根所述导线中的多根所述芯体之间通过可导电的熔融物密封。
  5. 根据权利要求4所述的连接线,其特征在于,每根所述导线中的多根所述芯体之间通过镀锡密封。
  6. 根据权利要求5所述的连接线,其特征在于,所述芯体的镀锡部位为所述芯体的端部。
  7. 根据权利要求6所述的连接线,其特征在于,所述芯体的端部的镀锡长度为4-6mm。
  8. 根据权利要求2-7任一项所述的连接线,其特征在于,所述导线的内接端端部延伸至所述第一防护层的内接端端部之外。
  9. 根据权利要求8所述的连接线,其特征在于,所述第一密封胶层设置在所述第一防护层的内接端端部与所述导线之间的间隙中。
  10. 根据权利要求8所述的连接线,其特征在于,每根所述导线中,所述芯体的内接端端部位于所述第二防护层的内接端端部之外。
  11. 根据权利要求10所述的连接线,其特征在于,所述第二密封胶层设置在所述第二防护层的内接端端部和所述芯体之间的间隙中。
  12. 根据权利要求2-7任一项所述的连接线,其特征在于,所述第一防护层和所述第二防护层均为绝缘层。
  13. 根据权利要求2-7任一项所述的连接线,其特征在于,所述芯体为铜绞线。
  14. 根据权利要求1-7任一项所述的连接线,其特征在于,所述密封胶层为防水密封胶构成的胶层。
  15. 根据权利要求1-7任一项所述的连接线,其特征在于,所述接头为非防水接头。
  16. 根据权利要求2-7任一项所述的连接线,其特征在于,所述第一密封胶层与所述第二密封胶层延伸并呈一体。
  17. 一种光学测量装置,其特征在于,包括壳体、测量单元和连接线,所述测量单元密封设置在所述壳体内,且所述测量单元包括电接口和光学元件,所述连接线的内接端伸入所述壳体内并与所述电接口连接;
    其中,所述连接线包括线缆本体,所述线缆本体的外接端用于和接头连接,所述线缆本体的内接端用于连接在装置内部,所述线缆本体的内接端设置有第一密封胶层,所述线缆本体包括第一防护层和被包裹在所述第一防护层内的多根导线,所述第一密封胶层填充在所述导线和所述第一防护层之间的间隙中以及所述多根导线之间的间隙中。
  18. 根据权利要求17所述的光学测量装置,其特征在于,所述导线包括芯体和包裹在所述芯体外侧的第二防护层,所述第二防护层和所述芯体之间的间隙中填充有第二密封胶层。
  19. 根据权利要求18所述的光学测量装置,其特征在于,每根所述导线中包括多根所述芯体。
  20. 根据权利要求19所述的光学测量装置,其特征在于,每根所述导线中的多根所述芯体之间通过可导电的熔融物密封。
  21. 根据权利要求20所述的光学测量装置,其特征在于,每根所述导线中的多根所述芯体之间通过镀锡密封。
  22. 根据权利要求21所述的光学测量装置,其特征在于,所述芯体的镀锡部位为所述芯体的端部。
  23. 根据权利要求22所述的光学测量装置,其特征在于,所述芯体的端部的镀锡长度为4-6mm。
  24. 根据权利要求18-23任一项所述的光学测量装置,其特征在于, 所述导线的内接端端部延伸至所述第一防护层的内接端端部之外。
  25. 根据权利要求24所述的光学测量装置,其特征在于,所述第一密封胶层设置在所述第一防护层的内接端端部与所述导线之间的间隙中。
  26. 根据权利要求24所述的光学测量装置,其特征在于,每根所述导线中,所述芯体的内接端端部位于所述第二防护层的内接端端部之外。
  27. 根据权利要求26所述的光学测量装置,其特征在于,所述第二密封胶层设置在所述第二防护层的内接端端部和所述芯体之间的间隙中。
  28. 根据权利要求18-23任一项所述的光学测量装置,其特征在于,所述第一防护层和所述第二防护层均为绝缘层。
  29. 根据权利要求18-23任一项所述的光学测量装置,其特征在于,所述芯体为铜绞线。
  30. 根据权利要求17-23任一项所述的光学测量装置,其特征在于,所述密封胶层为防水密封胶构成的胶层。
  31. 根据权利要求17-23任一项所述的光学测量装置,其特征在于,所述接头为非防水接头。
  32. 根据权利要求18-23任一项所述的光学测量装置,其特征在于,所述第一密封胶层与所述第二密封胶层延伸并呈一体。
  33. 根据权利要求17-23任一项所述的光学测量装置,其特征在于,所述连接线和所述壳体之间密封连接。
  34. 根据权利要求17-23任一项所述的光学测量装置,其特征在于,所述光学测量装置为激光雷达或者激光测距仪。
  35. 根据权利要求34所述的光学测量装置,其特征在于,所述连接线内包括有12根导线。
  36. 一种移动平台,其特征在于,包括平台本体、动力装置和光学测量装置,所述光学测量装置设置在所述平台本体上;
    所述光学测量装置包括壳体、测量单元和连接线,所述测量单元密封设置在所述壳体内,且所述测量单元包括电接口和光学元件,所述连接线的内接端伸入所述壳体内并与所述电接口连接;
    其中,所述连接线包括线缆本体,所述线缆本体的外接端用于和接头连接,所述线缆本体的内接端用于连接在装置内部,所述线缆本体的内接 端设置有第一密封胶层,所述线缆本体包括第一防护层和被包裹在所述第一防护层内的多根导线,所述第一密封胶层填充在所述导线和所述第一防护层之间的间隙中以及所述多根导线之间的间隙中。
  37. 根据权利要求36所述的移动平台,其特征在于,所述导线包括芯体和包裹在所述芯体外侧的第二防护层,所述第二防护层和所述芯体之间的间隙中填充有第二密封胶层。
  38. 根据权利要求37所述的移动平台,其特征在于,每根所述导线中包括多根所述芯体。
  39. 根据权利要求38所述的移动平台,其特征在于,每根所述导线中的多根所述芯体之间通过可导电的熔融物密封。
  40. 根据权利要求39所述的移动平台,其特征在于,每根所述导线中的多根所述芯体之间通过镀锡密封。
  41. 根据权利要求40所述的移动平台,其特征在于,所述芯体的镀锡部位为所述芯体的端部。
  42. 根据权利要求41所述的移动平台,其特征在于,所述芯体的端部的镀锡长度为4-6mm。
  43. 根据权利要求37-42任一项所述的移动平台,其特征在于,所述导线的内接端端部延伸至所述第一防护层的内接端端部之外。
  44. 根据权利要求43所述的移动平台,其特征在于,所述第一密封胶层设置在所述第一防护层的内接端端部与所述导线之间的间隙中。
  45. 根据权利要求43所述的移动平台,其特征在于,每根所述导线中,所述芯体的内接端端部位于所述第二防护层的内接端端部之外。
  46. 根据权利要求45所述的移动平台,其特征在于,所述第二密封胶层设置在所述第二防护层的内接端端部和所述芯体之间的间隙中。
  47. 根据权利要求37-42任一项所述的移动平台,其特征在于,所述第一防护层和所述第二防护层均为绝缘层。
  48. 根据权利要求37-42任一项所述的移动平台,其特征在于,所述芯体为铜绞线。
  49. 根据权利要求36-42任一项所述的移动平台,其特征在于,所述密封胶层为防水密封胶构成的胶层。
  50. 根据权利要求36-42任一项所述的移动平台,其特征在于,所述接头为非防水接头。
  51. 根据权利要求37-42任一项所述的移动平台,其特征在于,所述第一密封胶层与所述第二密封胶层延伸并呈一体。
  52. 根据权利要求36-42任一项所述的移动平台,其特征在于,所述连接线和所述壳体之间密封连接。
  53. 根据权利要求36-42任一项所述的移动平台,其特征在于,所述光学测量装置为激光雷达或者激光测距仪。
  54. 根据权利要求53所述的移动平台,其特征在于,所述连接线内包括有12根导线。
  55. 根据权利要求36-42任一项所述的移动平台,其特征在于,所述移动平台为无人车。
PCT/CN2019/071002 2019-01-09 2019-01-09 连接线、光学测量装置及移动平台 WO2020142935A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980005384.7A CN111742452A (zh) 2019-01-09 2019-01-09 连接线、光学测量装置及移动平台
PCT/CN2019/071002 WO2020142935A1 (zh) 2019-01-09 2019-01-09 连接线、光学测量装置及移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071002 WO2020142935A1 (zh) 2019-01-09 2019-01-09 连接线、光学测量装置及移动平台

Publications (1)

Publication Number Publication Date
WO2020142935A1 true WO2020142935A1 (zh) 2020-07-16

Family

ID=71521948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071002 WO2020142935A1 (zh) 2019-01-09 2019-01-09 连接线、光学测量装置及移动平台

Country Status (2)

Country Link
CN (1) CN111742452A (zh)
WO (1) WO2020142935A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661731A (zh) * 2005-01-26 2005-08-31 上海电缆研究所 纵向水密封电缆/电线
CN204066833U (zh) * 2014-07-30 2014-12-31 上海飞航电线电缆有限公司 全密封防水电缆
CN205211475U (zh) * 2015-12-14 2016-05-04 广东南洋电缆集团股份有限公司 一种多重阻水电缆
CN207352999U (zh) * 2017-10-18 2018-05-11 浙江高盛输变电设备股份有限公司 一种防潮抗氧化专用电力电缆
JP2018088364A (ja) * 2016-11-29 2018-06-07 タツタ電線株式会社 耐水性難燃ノンハロゲンシース高圧ケーブル
CN208157127U (zh) * 2018-05-09 2018-11-27 江苏宝安电缆有限公司 一种防水橡套软电缆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009320A (ja) * 2010-06-25 2012-01-12 Sumitomo Wiring Syst Ltd ワイヤハーネス及びその製造方法
CN202872312U (zh) * 2012-09-08 2013-04-10 江苏中兴水务有限公司 潜水电泵电缆线外接头密封结构
CN207895869U (zh) * 2018-02-07 2018-09-21 东莞市微应变传感科技有限公司 一种新型导线
CN208190228U (zh) * 2018-04-24 2018-12-04 长园电力技术有限公司 一种交联电缆热熔接头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661731A (zh) * 2005-01-26 2005-08-31 上海电缆研究所 纵向水密封电缆/电线
CN204066833U (zh) * 2014-07-30 2014-12-31 上海飞航电线电缆有限公司 全密封防水电缆
CN205211475U (zh) * 2015-12-14 2016-05-04 广东南洋电缆集团股份有限公司 一种多重阻水电缆
JP2018088364A (ja) * 2016-11-29 2018-06-07 タツタ電線株式会社 耐水性難燃ノンハロゲンシース高圧ケーブル
CN207352999U (zh) * 2017-10-18 2018-05-11 浙江高盛输变电设备股份有限公司 一种防潮抗氧化专用电力电缆
CN208157127U (zh) * 2018-05-09 2018-11-27 江苏宝安电缆有限公司 一种防水橡套软电缆

Also Published As

Publication number Publication date
CN111742452A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
CN102570141A (zh) 连接器及其制造方法
JP2001357903A (ja) 電線間接続用の圧着端子
CN102763296A (zh) 用于线束的防液结构
CN208241030U (zh) 一种用于车载摄像头的线束连接器
TW201401670A (zh) 直連電纜接口器件及其製造方法和直連電纜接口裝置
CN110676798A (zh) 一种导电锥、电缆终端和电缆中间接头
CN210351328U (zh) 一种安防监控摄像头
JP2016119821A (ja) 止水構造、ワイヤハーネス、及び止水方法
WO2020142935A1 (zh) 连接线、光学测量装置及移动平台
CN209374846U (zh) 连接线、光学测量装置及移动平台
CN104218356B (zh) 光电混装连接器
JPH0684416A (ja) 防水電線の製造方法
EP3713024B1 (en) Wire joint and manufacturing method thereof
CN108028879B (zh) 摄像模块的连接装置、摄像模块及摄像模块的接触方法
CN109638486A (zh) 电插接器
US10587072B2 (en) Isolated wire rod waterproof structure and electric device provided with same
KR101806320B1 (ko) 전선케이블의 방수 장치
JP4380939B2 (ja) 電線接続構造および機器ケース体内の空気抜き方法
US20170214233A1 (en) Housing with a sealing body, a sealing body for the housing and a method for producing the sealing body
CN210981418U (zh) 传感器的接线结构、传感器及液位计
CN217691870U (zh) 一种线缆连接件及电子设备
JP2585488Y2 (ja) 防水構造を備えた受信器
JPH1069939A (ja) コネクタ及び該コネクタを使用した防水用コネクタ装置
CN208351063U (zh) 有源光缆滤波结构及防串扰有源光缆
CN209948061U (zh) 地灾监测设备的电线接头防水结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908342

Country of ref document: EP

Kind code of ref document: A1