WO2020138814A1 - 화합물, 유기 광전자 소자 및 표시 장치 - Google Patents

화합물, 유기 광전자 소자 및 표시 장치 Download PDF

Info

Publication number
WO2020138814A1
WO2020138814A1 PCT/KR2019/017906 KR2019017906W WO2020138814A1 WO 2020138814 A1 WO2020138814 A1 WO 2020138814A1 KR 2019017906 W KR2019017906 W KR 2019017906W WO 2020138814 A1 WO2020138814 A1 WO 2020138814A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
formula
deuterium
Prior art date
Application number
PCT/KR2019/017906
Other languages
English (en)
French (fr)
Inventor
김미진
모준태
이종수
변지윤
이용희
김동준
Original Assignee
엘티소재주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티소재주식회사 filed Critical 엘티소재주식회사
Priority to US17/418,728 priority Critical patent/US20220069233A1/en
Priority to CN201980085952.9A priority patent/CN113227084A/zh
Publication of WO2020138814A1 publication Critical patent/WO2020138814A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • It relates to a compound, an organic optoelectronic device and a display device.
  • Organic optoelectronic devices is a device that can switch between electrical energy and light energy.
  • Organic optoelectronic devices can be roughly divided into two types according to the operating principle.
  • One is a photoelectric device that generates electrical energy as excitons formed by light energy are separated into electrons and holes, and electrons and holes are transferred to different electrodes, and the other is an electrical energy by supplying voltage or current to the electrodes.
  • It is a light emitting device that generates light energy from.
  • Examples of the organic optoelectronic device include an organic photoelectric device, an organic light emitting device, an organic solar cell, and an organic photo conductor drum.
  • organic light emitting diodes have attracted much attention in recent years due to an increase in demand for flat panel display devices.
  • the organic light emitting device is a device that converts electrical energy into light, and the performance of the organic light emitting device is greatly affected by organic materials positioned between electrodes.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When a voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from two electrodes are combined and paired in an organic thin film, and then disappear and shine.
  • the organic thin film may be composed of a single layer or multiple layers, if necessary.
  • the material of the organic thin film may have a light emitting function as needed.
  • a compound that can itself constitute a light emitting layer may be used, or a compound capable of serving as a host or a dopant of a host-dopant-based light emitting layer may be used.
  • a compound capable of performing roles such as hole injection, hole transport, electron blocking, hole blocking, electron transport, and electron injection may be used.
  • One embodiment provides a compound capable of realizing a high efficiency and long life organic optoelectronic device.
  • Another embodiment provides an organic optoelectronic device comprising the compound.
  • Another embodiment provides a display device including the organic optoelectronic device.
  • a compound represented by the following formula is provided.
  • X 1 is -O-, or -S-
  • Ar 1 is a substituent having electron characteristics or a substituent having hole characteristics
  • R 1 to R 6 are each independently hydrogen , Deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, substituted or unsubstituted C6 to C60 aryl group, substituted or unsubstituted C2 to C60 heteroaryl group, or a combination thereof
  • L 1 is a single bond
  • n1 is one of the integers of 0 to 2
  • * is a linkage of the above formulas 1-1 and 2-1 Means a part
  • FuseR 1 and FusedR 2 independently of each other mean a substituted or unsubstituted C3 to C60 fused ring.
  • an anode and a cathode facing each other and at least one organic layer positioned between the anode and the cathode, wherein the organic layer provides an organic optoelectronic device including the compound.
  • a display device including the organic optoelectronic device is provided.
  • a high-efficiency long-life organic optoelectronic device can be implemented.
  • 1 to 3 are cross-sectional views each showing an organic light emitting device according to an embodiment.
  • a substituent having two or more substituents may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are connected. The additional substituents may be further substituted.
  • R, R'and R" are the same as or different from each other, and each independently hydrogen; deuterium; -CN; substituted or unsubstituted C1 to C60 straight or branched chain alkyl group; substituted or unsubstituted C3 to C60 Monocyclic or polycyclic cycloalkyl group; substituted or unsubstituted C6 to C60 monocyclic or polycyclic aryl group; or substituted or unsubstituted C2 to C60 monocyclic or polycyclic heteroaryl group.
  • substitution means that the hydrogen atom bonded to the carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where the substituent is substitutable, and when two or more are substituted , 2 or more substituents may be the same or different from each other.
  • the halogen may be fluorine, chlorine, bromine or iodine.
  • the alkyl group includes a straight chain or branched chain of C1 to C60, and may be further substituted by other substituents.
  • the alkyl group may have 1 to 60 carbon atoms, specifically 1 to 40 carbon atoms, and more specifically 1 to 20 carbon atoms.
  • the alkenyl group includes a C2 to C60 straight or branched chain, and may be further substituted by other substituents.
  • Carbon number of the alkenyl group may be 2 to 60, specifically 2 to 40, more specifically, 2 to 20.
  • Specific examples include vinyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 3-methyl-1 -Butenyl group, 1,3-butadienyl group, allyl group, 1-phenylvinyl-1-yl group, 2-phenylvinyl-1-yl group, 2,2-diphenylvinyl-1-yl group, 2-phenyl-2 -(Naphthyl-1-yl)vinyl-1-yl group, 2,2-bis(diphenyl-1-yl)vinyl-1-yl group, stilbenyl group, styrenyl group, and the like, but are not limited to these.
  • the alkynyl group includes a C2 to C60 straight or branched chain, and may be further substituted by other substituents.
  • Carbon number of the alkynyl group may be 2 to 60, specifically 2 to 40, more specifically, 2 to 20.
  • the cycloalkyl group includes C3 to C60 monocyclic or polycyclic, and may be further substituted by other substituents.
  • polycyclic means a group in which a cycloalkyl group is directly connected or condensed with another ring group.
  • the other cyclic group may be a cycloalkyl group, but may be another kind of cyclic group, such as a heterocycloalkyl group, an aryl group, a heteroaryl group, and the like.
  • the cycloalkyl group may have 3 to 60 carbon atoms, specifically 3 to 40 carbon atoms, and more specifically 5 to 20 carbon atoms.
  • the alkoxy group may be a C1 to C10 alkoxy group, and more specifically, it may be a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, or the like.
  • the silyl group may be represented by -SiRR'R", and the definition of R is as described above. More specifically, a dimethylsilyl group, a diethylsilyl group, a -methylethylsilyl group, etc. are possible. Do.
  • the fluorenyl group means a substituent including various substituents at position 9. Specifically, it may be used as a concept including a fluorenyl group substituted with 2 hydrogens, 2 alkyl groups, 2 aryl groups, and 2 heteroaryl groups at the 9th position. More specifically, a 9-di-H-fluorenyl group, 9-di-methyl-fluorenyl group, 9-di-phenyl-fluorenyl group, and the like can be used.
  • the heterocycloalkyl group includes O, S, Se, N, or Si as a hetero atom, and includes C2 to C60 monocyclic or polycyclic, and may be further substituted by other substituents.
  • polycyclic means a group in which a heterocycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a heterocycloalkyl group, but may be another kind of ring group, for example, a cycloalkyl group, an aryl group, a heteroaryl group, or the like.
  • the heterocycloalkyl group may have 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, and more specifically 3 to 20 carbon atoms.
  • the aryl group includes C6 to C60 monocyclic or polycyclic, and may be further substituted by other substituents.
  • polycyclic means a group in which an aryl group is directly connected or condensed with another ring group.
  • the other ring group may be an aryl group, but may be another kind of ring group, such as a cycloalkyl group, a heterocycloalkyl group, a heteroaryl group, and the like.
  • the aryl group includes a spiro group.
  • the number of carbon atoms of the aryl group may be 6 to 60, specifically 6 to 40, and more specifically 6 to 25.
  • aryl group examples include a phenyl group, biphenyl group, triphenyl group, naphthyl group, anthryl group, chrysenyl group, phenanthrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, phenenyl group, pyre Neil group, tetrasenyl group, pentasenyl group, fluorenyl group, indenyl group, acenaphthylenyl group, benzofluorenyl group, spirobifluorenyl group, 2,3-dihydro-1H-indenyl group, and condensed ring groups thereof And the like, but is not limited thereto.
  • the spiro group is a group including a spiro structure, and may be C15 to C60.
  • the spiro group may include a structure in which a 2,3-dihydro-1H-indene group or a cyclohexane group is spiro bonded to a fluorenyl group.
  • the following spiro groups may include any one of the following structural formula groups.
  • the heteroaryl group includes S, O, Se, N, or Si as a hetero atom, and includes C2 to C60 monocyclic or polycyclic, and may be further substituted by other substituents.
  • the polycyclic group refers to a group in which a heteroaryl group is directly connected or condensed with another ring group.
  • the other ring group may be a heteroaryl group, but may be another type of ring group, for example, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or the like.
  • the heteroaryl group may have 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, and more specifically 3 to 25 carbon atoms.
  • heteroaryl group examples include pyridyl group, pyrrolyl group, pyrimidyl group, pyridazinyl group, furanyl group, thiophene group, imidazolyl group, pyrazolyl group, oxazolyl group, isoxazolyl group, thiazolyl Group, isothiazolyl group, triazolyl group, furazanyl group, oxadiazolyl group, thiadiazolyl group, dithiazolyl group, tetrazolyl group, pyranyl group, thiopyranyl group, diazinyl group, oxazinyl group , Thiazinyl group, deoxynyl group, triazinyl group, tetrazinyl group, quinolyl group, isoquinolyl group, quinazolinyl group, isoquinazolinyl group, quinozolinyl group, naphthyridyl group
  • the amine group is a monoalkylamine group; Monoarylamine group; Monoheteroarylamine group; -NH 2 ; Dialkylamine groups; Diarylamine group; Diheteroarylamine group; Alkylarylamine groups; Alkyl heteroarylamine groups; And may be selected from the group consisting of an aryl heteroarylamine group, the number of carbon is not particularly limited, it is preferably 1 to 30.
  • amine group examples include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, dibiphenylamine group, anthracenylamine group, 9- Methyl-anthracenylamine group, diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group, biphenylnaphthylamine group, phenylbiphenylamine group, biphenylfluore
  • an arylene group means one having two bonding positions on the aryl group, that is, a divalent group. These may be applied to the description of the aryl group described above, except that each is a divalent group.
  • a heteroarylene group means a heteroaryl group having two bonding positions, that is, a divalent group. These may be applied to the description of the heteroaryl group described above, except that each is a divalent group.
  • the hole property refers to a property that can form holes by donating electrons when an electric field is applied, and has conductivity characteristics along the HOMO level, injecting holes formed in the anode into the light emitting layer, and emitting layer It means a property that facilitates the movement of holes formed in the anode to the anode and the light emitting layer.
  • a substituent having hole characteristics a substituted or unsubstituted C6 to C60 aryl group having hole characteristics, a substituted or unsubstituted C2 to C60 heteroaryl group having hole characteristics, a substituted or unsubstituted arylamine group or substituted or And unsubstituted heteroarylamine groups.
  • the substituted or unsubstituted C6 to C60 aryl group having the hole characteristics is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted anthracenyl group.
  • Substituted or unsubstituted fluorenyl group substituted or unsubstituted triphenylenyl group, substituted or unsubstituted spiro-fluorenyl group, substituted or unsubstituted terphenyl group, substituted or unsubstituted pyrenyl group, substituted or It may be an unsubstituted perenyl group or a combination thereof.
  • a substituted or unsubstituted C2 to C60 heteroaryl group having hole characteristics is a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted dibenzofuranyl group, a substituted or unsubstituted dibenzothiophenyl group, or substituted or unsubstituted And a substituted indole carbazolyl group.
  • a substituted or unsubstituted phenyl group a substituted or unsubstituted naphthyl group, an aryl group or a heteroaryl group, which is a substituent bonded to nitrogen of the substituted or unsubstituted arylamine group and the substituted or unsubstituted heteroarylamine group.
  • the electronic property refers to a property that can receive electrons when an electric field is applied, and has conductivity characteristics along the LUMO level, injecting electrons formed from the cathode into the light emitting layer, moving electrons formed from the light emitting layer to the cathode, and in the light emitting layer. It means a property that facilitates movement.
  • Substituted or unsubstituted C2 to C60 heteroaryl group having the above electronic properties a substituted or unsubstituted imidazolyl group, a substituted or unsubstituted tetrazolyl group, a substituted or unsubstituted quinolinylene group, a substituted or unsubstituted Isoquinolinylene group, substituted or unsubstituted pyridinylene group, substituted or unsubstituted pyrimidinylene group, substituted or unsubstituted triazinylene group, substituted or unsubstituted furanyl group, substituted or unsubstituted benzofura A phenyl group, a substituted or unsubstituted isofuranyl group, a substituted or unsubstituted benzoisofuranyl group, a substituted or unsubstituted oxazoline group, a substituted or unsubstituted
  • substituted or unsubstituted C2 to C60 heteroaryl group having the above electronic properties may be any one of the following Formulas X-1 to X-5.
  • L n is a direct bond (or single bond); A substituted or unsubstituted arylene group; Or it may be a substituted or unsubstituted heteroarylene group.
  • L n is a direct bond; A substituted or unsubstituted C6 to C60 arylene group; Or it may be a substituted or unsubstituted C2 to C60 heteroarylene group.
  • L n is a direct bond; A substituted or unsubstituted C6 to C40 arylene group; Or it may be a substituted or unsubstituted C2 to C40 heteroarylene group.
  • N in L n means a number for distinguishing a substituent.
  • the compound according to one embodiment is represented by the following formula.
  • X 1 is -O-, or -S-
  • Ar 1 is a substituent having electron characteristics or a substituent having hole characteristics
  • R 1 to R 6 are each independently hydrogen , Deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, substituted or unsubstituted C6 to C60 aryl group, substituted or unsubstituted C2 to C60 heteroaryl group, or a combination thereof
  • L 1 is a single bond
  • n1 is one of the integers of 0 to 2
  • * is a linkage of the above formulas 1-1 and 2-1 Means a part
  • FuseR 1 and FusedR 2 independently of each other mean a substituted or unsubstituted C3 to C60 fused ring. More
  • the compound has a structure in which at least one fused ring is formed on the carbazole core.
  • a dibenzofuranyl group or a dibenzothiophenyl group may be bonded to the core structure, and a substituent having electron characteristics or a substituent having hole characteristics may be further combined.
  • compounds having unique characteristics of the introduced substituents can be synthesized by introducing various substituents to the structure of the above formula. For example, by introducing a substituent mainly used for a hole injection layer material, a hole transport material, a light emitting layer material, an electron transport layer material, and a charge generating layer material used in manufacturing the organic light emitting device, the conditions required for each organic material layer are satisfied. It can be synthesized.
  • the compound has a high glass transition temperature (Tg) and excellent thermal stability. This increase in thermal stability is an important factor providing driving stability to the device.
  • Formula 1-1 may be represented by Formula 1-2 below.
  • X 1 is -O-, or -S-
  • Ar 1 is a substituent having electron characteristics or a substituent having hole characteristics
  • R 5 and R 6 are each independently hydrogen, deuterium, or cyan A no group, a substituted or unsubstituted C1 to C60 alkyl group, a substituted or unsubstituted C6 to C60 aryl group, a substituted or unsubstituted C2 to C60 heteroaryl group, or a combination thereof
  • L 1 is a single bond, a substituted or unsubstituted A substituted C6 to C60 arylene group, or a substituted or unsubstituted C2 to C60 heteroarylene group
  • n1 is one of 0 to 2
  • * means a connecting portion of Formulas 1-2 and 2-1. .
  • Formula 2-1 may be represented by Formula 2-2 below.
  • R 1 to R 4 are each independently hydrogen, deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, substituted or unsubstituted C6 to C60 aryl group, substituted or unsubstituted C2 To C60 heteroaryl group, or a combination thereof, and * means a connecting portion of Formulas 1-1 and 2-2.
  • Formula 2-1 may be Formula 2-3 below.
  • R 1 to R 4 and R 7 are each independently hydrogen, deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, substituted or unsubstituted C6 to C60 aryl group, substituted or unsubstituted A substituted C2 to C60 heteroaryl group, or a combination thereof, and * means a connecting portion of Formulas 1-1 and 2-3 above.
  • Formula 2-1 may be Formula 2-4 below.
  • R 1 to R 4 are each independently hydrogen, deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, substituted or unsubstituted C6 to C60 aryl group, substituted or unsubstituted C2 To C60 heteroaryl group, or a combination thereof, and * means a connecting portion of Formulas 1-1 and 2-4.
  • Formula 2-1 may be represented by Formula 2-5 below.
  • R 1 to R 4 are each independently hydrogen, deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, substituted or unsubstituted C6 to C60 aryl group, substituted or unsubstituted C2 To C60 heteroaryl group, or a combination thereof, and * means a connecting portion of Formulas 1-1 and 2-5.
  • Formula 2-1 may be represented by Formula 2-6 below.
  • R 1 to R 4 are each independently hydrogen, deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, substituted or unsubstituted C6 to C60 aryl group, substituted or unsubstituted C2 To C60 heteroaryl group, or a combination thereof, and * means a connecting portion of Formulas 1-1 and 2-6.
  • Formula 2-1 may be represented by Formula 2-7 below.
  • R 1 to R 4 are each independently hydrogen, deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, substituted or unsubstituted C6 to C60 aryl group, substituted or unsubstituted C2 To C60 heteroaryl group, or a combination thereof, and * means a connecting portion of Formulas 1-1 and 2-7.
  • Formula 2-1 may be Formula 2-8 below.
  • R 1 to R 4 are each independently hydrogen, deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, substituted or unsubstituted C6 to C60 aryl group, substituted or unsubstituted C2 To C60 heteroaryl group, or a combination thereof, and * means a connecting portion of Formulas 1-1 and 2-8.
  • Formula 2-1 may be represented by Formula 2-9 below.
  • R 1 to R 4 are each independently hydrogen, deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, substituted or unsubstituted C6 to C60 aryl group, substituted or unsubstituted C2 To C60 heteroaryl group, or a combination thereof, * denotes a connecting portion of Formulas 1-1 and 2-9.
  • Formula 2-1 may be represented by Formula 2-10 below.
  • R 1 to R 4 are each independently hydrogen, deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, substituted or unsubstituted C6 to C60 aryl group, substituted or unsubstituted C2 To C60 heteroaryl group, or a combination thereof, and * means a connecting portion of Formulas 1-1 and 2-10.
  • Formula 2-1 may be represented by Formula 2-11 below.
  • R 1 to R 4 are each independently hydrogen, deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, substituted or unsubstituted C6 to C60 aryl group, substituted or unsubstituted C2 To C60 heteroaryl group, or a combination thereof, and * means a connecting portion of Formulas 1-1 and 2-11.
  • the carbazole cores of 2-2 to 2-11 may be selected in consideration of substituents that are additionally bound to the compound. Through these various structures of carbazole, it is possible to satisfy the thermal stability and various energy levels of the compound.
  • Ar 1 may be a substituted or unsubstituted C6 to C60 aryl group, or a substituted or unsubstituted C2 to C60 heteroaryl group.
  • Ar 1 may be the following Chemical Formula 3-1 or 3-2.
  • X 1 to X 3 are -CR'-, or -N-, and at least one of X 1 to X 3 is -N-, Ar 2 , and Ar 3
  • R' is a hydrogen, deuterium, cyano group, or a substituted or unsubstituted C1 to C60 alkyl group.
  • At least one of Ar 2 and Ar 3 may be any one of the following Chemical Formulas 4-1 to 4-5.
  • X is -NR x -, -O-, -S-, or -CR x R y -
  • R x and R y are each independently hydrogen, deuterium, A cyano group, a substituted or unsubstituted C1 to C60 alkyl group, or a C6 to C60 aryl group
  • R b to R e are each independently hydrogen, deuterium, cyano group, substituted or unsubstituted C1 to C60 alkyl group, or C6 to It is a C60 aryl group.
  • the compound has improved properties of rigidity and heat resistance, and has a low electric field strength, so that an effect of improving hole movement speed can be expected.
  • the R 1 seismic R 6 may be any one of the substituents of Group I below independently of each other.
  • * means a binding position
  • the compound of the above-described example can be represented by any one of the compounds of Group II below.
  • the above-mentioned compound or composition may be for an organic optoelectronic device, and the compound for an organic optoelectronic device or a composition for an organic optoelectronic device may be formed by a dry film deposition method such as chemical vapor deposition.
  • the organic optoelectronic device is not particularly limited as long as it is a device capable of mutually converting electrical energy and light energy, and examples thereof include organic photoelectric devices, organic light emitting devices, organic solar cells, and organic photoconductor drums.
  • the first electrode A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes a heterocyclic compound represented by Chemical Formula 1 above.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the first electrode may be a cathode
  • the second electrode may be an anode
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound according to Formula 1 may be used as a material for the blue organic light emitting device.
  • the organic light emitting device may be a green organic light emitting device, and the heterocyclic compound according to Chemical Formula 1 may be used as a material for the green organic light emitting device.
  • the organic light emitting device may be a red organic light emitting device, and the heterocyclic compound according to Formula 1 may be used as a material for the red organic light emitting device.
  • the organic light emitting device of the present invention can be manufactured by a conventional method and a method of manufacturing an organic light emitting device, except that one or more organic material layers are formed by using the aforementioned heterocyclic compound.
  • the heterocyclic compound may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution application method means spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited to these.
  • 1 to 3 illustrate the stacking order of the electrode and the organic material layer of the organic light emitting device according to an exemplary embodiment of the present application.
  • the scope of the present application is not intended to be limited by these drawings, and the structure of the organic optoelectronic device known in the art may be applied to the present application.
  • an organic light emitting device in which an anode 200, an organic material layer 300, and a cathode 400 are sequentially stacked on a substrate 100 is illustrated.
  • the structure is not limited to this, and as illustrated in FIG. 2, an organic light emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented.
  • the organic light emitting device according to FIG. 3 includes a hole injection layer 301, a hole transport layer 302, a light emitting layer 303, a hole blocking layer 304, an electron transport layer 305 and an electron injection layer 306.
  • a hole injection layer 301 a hole transport layer 302
  • a light emitting layer 303 a hole transport layer 302
  • a hole blocking layer 304 a hole blocking layer 304
  • an electron transport layer 305 an electron injection layer 306.
  • the scope of the present application is not limited by such a stacked structure, and other layers except for the light emitting layer may be omitted or other functional layers required may be added as necessary.
  • the compound represented by Chemical Formula 1 may be used as an electron transport layer, a hole transport layer, and a material for the light emitting layer in the organic light emitting device.
  • the anode material materials having a relatively large work function may be used, and a transparent conductive oxide, metal, or conductive polymer may be used.
  • the positive electrode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); A combination of metal and oxide such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT), polypyrrole and polyaniline, but are not limited thereto.
  • the cathode material materials having a relatively low work function may be used, and a metal, metal oxide, or conductive polymer may be used.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof;
  • a multilayer structure material such as LiF/Al or LiO 2 /Al, and the like, are not limited thereto.
  • a known hole injection material may be used, for example, a phthalocyanine compound such as copper phthalocyanine disclosed in U.S. Patent No. 4,356,429, or described in Advanced Material, 6, p.677 (1994).
  • Starburst amine derivatives such as tris(4-carbazoyl-9-ylphenyl)amine (TCTA), 4,4',4"-tri[phenyl(m-tolyl)amino]triphenylamine (m -MTDATA), 1,3,5-tris[4-(3-methylphenylphenylamino)phenyl]benzene (m-MTDAPB), polyaniline/dodecylbenzenesulfonic acid (Polyaniline/Dodecylbenzenesulfonic acid) or poly (3,4-ethylenedioxythiophene)/poly(4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), polyaniline/Camphor sulfonic acid or polyaniline /Polyaniline/Poly(4-styrene-sulfonate) can be used.
  • TCTA tris(4-carbazoyl-9-ylpheny
  • a pyrazoline derivative an arylamine-based derivative, a stilbene derivative, a triphenyldiamine derivative, etc.
  • a low molecular weight or high molecular weight material may also be used.
  • Electron transport materials include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone Derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, and the like may be used, as well as low molecular weight materials and high molecular weight materials.
  • LiF is typically used in the art, but the present application is not limited thereto.
  • Red, green, or blue light-emitting materials may be used as the light-emitting material, and if necessary, two or more light-emitting materials may be mixed and used. At this time, two or more light-emitting materials can be used by depositing them as separate sources or by pre-mixing them as one source. Further, a fluorescent material may be used as the light emitting material, but it may also be used as a phosphorescent material. As the light emitting material, a material that emits light by combining holes and electrons injected from the anode and the cathode, respectively, may be used, but materials in which the host material and the dopant material are involved in light emission may also be used.
  • a host of light emitting materials When a host of light emitting materials is mixed and used, a host of the same series may be mixed or used, or a host of other series may be mixed and used. For example, two or more types of materials of n-type host material or P-type host material may be selected and used as the host material of the light emitting layer.
  • the organic light emitting device may be a front emission type, a back emission type, or a double-sided emission type, depending on the material used.
  • the main mechanisms are: A more detailed synthesis example will also be described.
  • the following compound was used as a comparative example.
  • the prepared compound was confirmed from Mass results.
  • the glass substrate coated with a thin film of ITO to a thickness of 1,500A was washed with distilled water ultrasonically. After washing with distilled water, ultrasonic cleaning was performed with a solvent such as acetone, methanol, or isopropyl alcohol, followed by drying, followed by UVO treatment for 5 minutes using UV in a UV cleaner. Subsequently, the substrate was transferred to a plasma cleaner (PT), and then plasma treated to remove the ITO work function and the residual film in a vacuum state, and then transferred to a thermal deposition equipment for organic deposition.
  • PT plasma cleaner
  • a hole injection layer 2-TNATA (4,4′,4′′-Tris[2-naphthyl(phenyl)amino] triphenylamine) which is a common layer on the ITO transparent electrode (anode) and a hole transport layer NPB(N,N′-Di (1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine).
  • the light emitting layer was thermally vacuum-deposited as follows.
  • the emission layer was deposited as a red host by using a compound (piq) 2 (Ir)(acac) as a red phosphorescent dopant (piq) 2 (Ir)(acac) 3% doped to the host to deposit 500 kPa.
  • 60 mm 2 of BCP was deposited as a hole blocking layer, and 200 mm of Alq 3 was deposited as an electron transport layer thereon.
  • 60 mm 2 of BCP was deposited as a hole blocking layer, and 200 mm of Alq 3 was deposited as an electron transport layer thereon.
  • lithium fluoride (LiF) is deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer, and then an aluminum (Al) negative electrode is deposited on the electron injection layer to a thickness of 1,200 ⁇ to form a cathode.
  • An electroluminescent device was produced.
  • the electroluminescence (EL) characteristics of the organic electroluminescent device manufactured as described above were measured with M7000 of McScience, and the reference luminance was 6,000 through the life equipment measurement equipment (M6000) manufactured by McScience with the measurement results. When cd/m 2 , T90 was measured.
  • the characteristics of the organic electroluminescent device of the present invention are shown in the following table.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Light Receiving Elements (AREA)

Abstract

본 발명은 특정 화학식으로 표현되는 화합물, 유기 광전자 소자 및 표시 장치에 관한 것이다.

Description

화합물, 유기 광전자 소자 및 표시 장치
화합물, 유기 광전자 소자 및 표시 장치에 관한 것이다.
유기 광전자 소자(organic optoelectronic diode)는 전기 에너지와 광 에너지를 상호 전환할 수 있는 소자이다.
유기 광전자 소자는 동작 원리에 따라 크게 두 가지로 나눌 수 있다. 하나는 광 에너지에 의해 형성된 엑시톤(exciton)이 전자와 정공으로 분리되고 전자와 정공이 각각 다른 전극으로 전달되면서 전기 에너지를 발생하는 광전 소자이고, 다른 하나는 전극에 전압 또는 전류를 공급하여 전기 에너지로부터 광 에너지를 발생하는 발광 소자이다.
유기 광전자 소자의 예로는 유기 광전 소자, 유기 발광 소자, 유기 태양 전지 및 유기 감광체 드럼(organic photo conductor drum) 등을 들 수 있다.
이 중, 유기 발광 소자(organic light emitting diode, OLED)는 근래 평판 표시 장치(flat panel display device)의 수요 증가에 따라 크게 주목 받고 있다. 유기 발광 소자는 전기 에너지를 빛으로 전환시키는 소자로서, 유기 발광 소자의 성능은 전극 사이에 위치하는 유기 재료에 의해 많은 영향을 받는다.
유기 발광 소자는 2개의 전극 사이에 유기 박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기 발광 소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 정공이 유기 박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기 박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기 박막의 재료는 필요에 따라 발광 기능을 가질 수 있다. 예컨대, 유기 박막 재료로는 그 자체가 단독으로 발광층을 구성할 수 있는 화합물이 사용될 수도 있고, 또는 호스트-도펀트계 발광층의 호스트 또는 도펀트 역할을 할 수 있는 화합물이 사용될 수도 있다.
그 외에도, 유기 박막의 재료로서, 정공 주입, 정공 수송, 전자 차단, 정공 차단, 전자 수송, 전자 주입 등의 역할을 수행할 수 있는 화합물이 사용될 수도 있다.
유기 발광 소자의 성능, 수명 또는 효율을 향상시키기 위하여, 유기 박막의 재료의 개발이 지속적으로 요구되고 있다.
일 구현예는 고효율 및 장수명 유기 광전자 소자를 구현할 수 있는 화합물을 제공한다.
다른 구현예는 상기 화합물을 포함하는 유기 광전자 소자를 제공한다.
또 다른 구현예는 상기 유기 광전자 소자를 포함하는 표시 장치를 제공한다.
일 구현예에 따르면, 하기 화학식으로 표현되는 화합물을 제공한다.
[화학식 1-1]
Figure PCTKR2019017906-appb-I000001
[화학식 2-1]
Figure PCTKR2019017906-appb-I000002
상기 화학식 1-1 및 2-1에서, X1은 -O-, 또는 -S-이고, Ar1은 전자 특성을 가지는 치환기 또는 정공 특성을 가지는 치환기이고, R1 내지 R6은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, L1은 단일결합, 치환 또는 비치환된 C6 내지 C60 아릴렌기, 또는 치환 또는 비치환된 C2 내지 C60 헤테로아릴렌기고, n1은 0 내지 2의 정수 중 하나이고, *는 상기 화학식 1-1 및 2-1의 연결 부분을 의미하고, FuseR1 및 FusedR2는 서로 독립적으로, 치환 또는 비치환된 C3 내지 C60 융합고리를 의미한다.
다른 구현예에 따르면, 서로 마주하는 양극과 음극, 상기 양극과 상기 음극 사이에 위치하는 적어도 1층의 유기층을 포함하고, 상기 유기층은 상기 화합물을 포함하는 유기 광전자 소자를 제공한다.
또 다른 구현예에 따르면, 상기 유기 광전자 소자를 포함하는 표시 장치를 제공한다.
고효율 장수명 유기 광전자 소자를 구현할 수 있다.
도 1 내지 도 3은 각각 일 구현예에 따른 유기 발광 소자를 도시한 단면도이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 명세서에 있어서, "치환 또는 비치환"이란 중수소; 할로겐기; -CN; C1 내지 C60의 직쇄 또는 분지쇄의 알킬기; C2 내지 C60의 직쇄 또는 분지쇄의 알케닐기; C2 내지 C60의 직쇄 또는 분지쇄의 알키닐기; C3 내지 C60의 단환 또는 다환의 시클로알킬기; C2 내지 C60의 단환 또는 다환의 헤테로시클로알킬기; C6 내지 C60의 단환 또는 다환의 아릴기; C2 내지 C60의 단환 또는 다환의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; C1 내지 C20의 알킬아민기; C6 내지 C60의 단환 또는 다환의 아릴아민기; C2 내지 C60의 단환 또는 다환의 헤테로아릴아민기, 및 치환 또는 비치환된 알콕시기로 이루어진 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환되거나, 상기 치환기 중 2 이상이 결합된 치환기로 치환 또는 비치환되거나, 상기 치환기 중에서 선택된 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미한다. 또한 이들은 인접한 치환기와 추가로 고리를 형성할 수 있다.
예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다. 상기 추가의 치환기들은 추가로 더 치환될 수도 있다. 상기 R, R' 및 R"는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; -CN; 치환 또는 비치환된 C1 내지 C60의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 C3 내지 C60의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 단환 또는 다환의 헤테로아릴기이다.
본 출원의 일 실시상태에 따르면, 상기 "치환 또는 비치환"이란 중수소, 할로겐기, -CN, -SiRR'R", -P(=O)RR', C1 내지 C20의 직쇄 또는 분지쇄의 알킬기, C6 내지 C60의 단환 또는 다환의 아릴기, 및 C2 내지 C60의 단환 또는 다환의 헤테로아릴기로 이루어진 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환된 것이며, 상기 R, R' 및 R"는 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; -CN; 중수소, 할로겐기, -CN, C1 내지 C20의 알킬기, C6 내지 C60의 아릴기, 및 C2 내지 C60의 헤테로아릴기로 치환 또는 비치환된 C1 내지 C60의 알킬기; 중수소, 할로겐, -CN, C1 내지 C20의 알킬기, C6 내지 C60의 아릴기, 및 C2 내지 C60의 헤테로아릴기로 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 중수소, 할로겐, -CN, C1내지 C20의 알킬기, C6 내지 C60의 아릴기, 및 C2 내지 C60의 헤테로아릴기로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 중수소, 할로겐, -CN, C1 내지 C20의 알킬기, C6 내지 C60의 아릴기, 및 C2 내지 C60의 헤테로아릴기로 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에 있어서, 상기 할로겐은 불소, 염소, 브롬 또는 요오드일 수 있다.
본 명세서에 있어서, 상기 알킬기는 C1 내지 C60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알킬기의 탄소수는 1 내지 60, 구체적으로 1 내지 40, 더욱 구체적으로, 1 내지 20일 수 있다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥실메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 C2 내지 C60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알케닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다. 구체적인 예로는 비닐기, 1-프로페닐기, 이소프로페닐기, 1-부테닐기, 2-부테닐기, 3-부테닐기, 1-펜테닐기, 2-펜테닐기, 3-펜테닐기, 3-메틸-1-부테닐기, 1,3-부타디에닐기, 알릴기, 1-페닐비닐-1-일기, 2-페닐비닐-1-일기, 2,2-디페닐비닐-1-일기, 2-페닐-2-(나프틸-1-일)비닐-1-일기, 2,2-비스(디페닐-1-일)비닐-1-일기, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알키닐기는 C2 내지 C60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알키닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다.
본 명세서에 있어서, 상기 시클로알킬기는 C3 내지 C60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 헤테로시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 시클로알킬기의 탄소수는 3 내지 60, 구체적으로 3 내지 40, 더욱 구체적으로 5 내지 20일 수 있다. 구체적으로, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 3-메틸시클로펜틸기, 2,3-디메틸시클로펜틸기, 시클로헥실기, 3-메틸시클로헥실기, 4-메틸시클로헥실기, 2,3-디메틸시클로헥실기, 3,4,5-트리메틸시클로헥실기, 4-tert-부틸시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 알콕시기는 C1 내지 C10 알콕시기일 수 있으며, 보다 구체적으로, 메톡시기, 에톡시기, 프로폭시기, 부톡시기, 펜톡시기 등일 수 있다.
본 명세서에 있어서, 상기 실릴기는 -SiRR'R"로 표시될 수 있으며, 상기 R의 정의는 전술한 바와 같다. 보다 구체적으로, 디메틸실릴기, 디에틸실릴기, -메틸에틸실릴기 등이 가능하다.
본 명세서에 있어서, 상기 포스핀옥사이드기는 -P(=O)RR'로 표시될 수 있으며, 상기 R 및 R'의 정의는 전술한 바와 같다. 보다 구체적으로, 디메틸포스핀옥사이드기, 디에틸포스핀옥사이드기, 메틸에틸포스핀옥사이드기 등이 가능하다.
본 명세서에 있어서, 플루오레닐기는 9번 위치에 다양한 치환기가 포함된 치환기를 의미한다. 구체적으로, 9번 위치에 2개의 수소, 2개의 알킬기, 2개의 아릴기, 2개의 헤테로아릴기가 치환된 플루오레닐기를 포함하는 개념으로 사용될 수 있다. 보다 구체적으로, 9-di-H-플루오레닐기, 9-디-메틸-플루오레닐기, 9-디-페닐-플루오레닐기 등이 사용될 수 있다.
본 명세서에 있어서, 상기 헤테로시클로알킬기는 헤테로 원자로서 O, S, Se, N 또는 Si를 포함하고, C2 내지 C60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 헤테로시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 헤테로시클로알킬기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 20일 수 있다.
본 명세서에 있어서, 상기 아릴기는 C6 내지 C60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 헤테로아릴기 등일 수도 있다. 상기 아릴기는 스피로기를 포함한다. 상기 아릴기의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 25일 수 있다. 상기 아릴기의 구체적인 예로는 페닐기, 비페닐기, 트리페닐기, 나프틸기, 안트릴기, 크라이세닐기, 페난트레닐기, 페릴레닐기, 플루오란테닐기, 트리페닐레닐기, 페날레닐기, 파이레닐기, 테트라세닐기, 펜타세닐기, 플루오레닐기, 인데닐기, 아세나프틸레닐기, 벤조플루오레닐기, 스피로비플루오레닐기, 2,3-디히드로-1H-인데닐기, 이들의 축합고리기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 스피로기는 스피로 구조를 포함하는 기로서, C15 내지 C60일 수 있다. 예컨대, 상기 스피로기는 플루오레닐기에 2,3-디히드로-1H-인덴기 또는 시클로헥산기가 스피로 결합된 구조를 포함할 수 있다. 구체적으로, 하기 스피로기는 하기 구조식의 기 중 어느 하나를 포함할 수 있다.
Figure PCTKR2019017906-appb-I000003
본 명세서에 있어서, 상기 헤테로아릴기는 헤테로 원자로서 S, O, Se, N 또는 Si를 포함하고, C2 내지 C60인 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 상기 다환이란 헤테로아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 아릴기 등일 수도 있다. 상기 헤테로아릴기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 25일 수 있다. 상기 헤테로아릴기의 구체적인 예로는 피리딜기, 피롤릴기, 피리미딜기, 피리다지닐기, 푸라닐기, 티오펜기, 이미다졸릴기, 피라졸릴기, 옥사졸릴기, 이속사졸릴기, 티아졸릴기, 이소티아졸릴기, 트리아졸릴기, 푸라자닐기, 옥사디아졸릴기, 티아디아졸릴기, 디티아졸릴기, 테트라졸릴기, 파이라닐기, 티오파이라닐기, 디아지닐기, 옥사지닐기, 티아지닐기, 디옥시닐기, 트리아지닐기, 테트라지닐기, 퀴놀릴기, 이소퀴놀릴기, 퀴나졸리닐기, 이소퀴나졸리닐기, 퀴노졸리릴기, 나프티리딜기, 아크리디닐기, 페난트리디닐기, 이미다조피리디닐기, 디아자나프탈레닐기, 트리아자인덴기, 인돌릴기, 인돌리지닐기, 벤조티아졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티오펜기, 벤조푸란기, 디벤조티오펜기, 디벤조푸란기, 카바졸릴기, 벤조카바졸릴기, 디벤조카바졸릴기, 페나지닐기, 디벤조실롤기, 스피로비(디벤조실롤), 디히드로페나지닐기, 페녹사지닐기, 페난트리딜기, 이미다조피리디닐기, 티에닐기, 인돌로[2,3-a]카바졸릴기, 인돌로[2,3-b]카바졸릴기, 인돌리닐기, 10,11-디히드로-디벤조[b,f]아제핀기, 9,10-디히드로아크리디닐기, 페난트라지닐기, 페노티아티아지닐기, 프탈라지닐기, 나프틸리디닐기, 페난트롤리닐기, 벤조[c][1,2,5]티아디아졸릴기, 5,10-디히드로디벤조[b,e][1,4]아자실리닐, 피라졸로[1,5-c]퀴나졸리닐기, 피리도[1,2-b]인다졸릴기, 피리도[1,2-a]이미다조[1,2-e]인돌리닐기, 5,11-디히드로인데노[1,2-b]카바졸릴기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 아민기는 모노알킬아민기; 모노아릴아민기; 모노헤테로아릴아민기; -NH2; 디알킬아민기; 디아릴아민기; 디헤테로아릴아민기; 알킬아릴아민기; 알킬헤테로아릴아민기; 및 아릴헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 상기 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 디비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기, 비페닐나프틸아민기, 페닐비페닐아민기, 비페닐플루오레닐아민기, 페닐트리페닐레닐아민기, 비페닐트리페닐레닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴렌기는 아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 아릴기의 설명이 적용될 수 있다. 또한, 헤테로아릴렌기는 헤테로아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 헤테로아릴기의 설명이 적용될 수 있다.
본 명세서에서, 정공 특성이란, 전기장(electric field)을 가했을 때 전자를 공여하여 정공을 형성할 수 있는 특성을 말하는 것으로, HOMO 준위를 따라 전도 특성을 가져 양극에서 형성된 정공의 발광층으로의 주입, 발광층에서 형성된 정공의 양극으로의 이동 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다.
정공 특성을 가지는 치환기로는, 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C60 아릴기, 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 치환 또는 비치환된 아릴아민기 또는 치환 또는 비치환된 헤테로아릴아민기 등이 있다.
보다 구체적으로 상기 정공 특성을 가지는 치환 또는 비치환된 C6 내지 C60 아릴기는 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 페난트레닐기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 플루오레닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 스피로-플루오레닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 파이레닐기, 치환 또는 비치환된 페릴레닐기 또는 이들의 조합일 수 있다.
보다 구체적으로 정공 특성을 가지는 치환 또는 비치환된 C2 내지 C60 헤테로아릴기는 치환 또는 비치환된 카바졸릴기, 치환 또는 비치환된 디벤조퓨라닐기, 치환 또는 비치환된 디벤조티오페닐기, 치환 또는 비치환된 인돌카바졸릴기 등이다.
상기 치환 또는 비치환된 아릴아민기 및 치환 또는 비치환된 헤테로아릴아민기의 질소에 결합된 치환기인 아릴기 또는 헤테로아릴기는 보다 구체적으로, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기, 치환 또는 비치환된 바이페닐일기, 치환 또는 비치환된 p-터페닐기, 치환 또는 비치환된 m-터페닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기, 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치환 또는 비치환된 페녹사진일기 또는 이들의 조합일 수 있다.
또한 전자 특성이란, 전기장을 가했을 때 전자를 받을 수 있는 특성을 말하는 것으로, LUMO 준위를 따라 전도 특성을 가져 음극에서 형성된 전자의 발광층으로의 주입, 발광층에서 형성된 전자의 음극으로의 이동 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다.
상기 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C60 헤테로아릴기는, 치환 또는 비치환된 이미다졸릴기, 치환 또는 비치환된 테트라졸릴기, 치환 또는 비치환된 퀴놀리닐렌기, 치환 또는 비치환된 이소퀴놀리닐렌기, 치환 또는 비치환된 피리디닐렌기, 치환 또는 비치환된 피리미디닐렌기, 치환 또는 비치환된 트리아지닐렌기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 이소퓨라닐기, 치환 또는 비치환된 벤조이소퓨라닐기, 치환 또는 비치환된 옥사졸린기, 치환 또는 비치환된 벤조옥사졸린기, 치환 또는 비치환된 옥사다이아졸린기, 치환 또는 비치환된 벤조옥사다이아졸린기, 치환 또는 비치환된 옥사트리아졸릴기, 치환 또는 비치환된 싸이오페닐기, 치환 또는 비치환된 벤조싸이오페닐기, 치환 또는 비치환된 이소싸이아졸린기, 치환 또는 비치환된 벤조이소싸이아졸린기, 치환 또는 비치환된 싸이아졸린기, 치환 또는 비치환된 벤조싸이아졸린기, 치환 또는 비치환된 피리다진닐기, 치환 또는 비치환된 벤조피리다진닐기, 치환 또는 비치환된 피라지닐기 치환 또는 비치환된 벤조피라지닐기, 치환 또는 비치환된 프탈라지닐기, 치환 또는 비치환된 벤조퀴놀리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페난트롤리닐기, 치환 또는 비치환된 페나지닐기 또는 이들의 조합일 수 있다.
보다 구체적으로, 상기 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C60 헤테로아릴기는 하기 화학식 X-1 내지 X-5 중 어느 하나일 수 있다.
[화학식 X-1] [화학식 X-2]
Figure PCTKR2019017906-appb-I000004
[화학식 X-3] [화학식 X-4]
Figure PCTKR2019017906-appb-I000005
[화학식 X-5]
Figure PCTKR2019017906-appb-I000006
본 출원의 일 실시상태에 있어서, Ln은 직접결합(또는 단일 결합); 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, Ln은 직접결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, Ln은 직접결합; 치환 또는 비치환된 C6 내지 C40의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴렌기일 수 있다.
상기 Ln에서의 n은 치환기를 구분하기 위한 숫자를 의미한다.
이하 일 구현예에 따른 화합물을 설명한다.
일 구현예에 따른 화합물은 하기 화학식으로 표현된다.
[화학식 1-1]
Figure PCTKR2019017906-appb-I000007
[화학식 2-1]
Figure PCTKR2019017906-appb-I000008
상기 화학식 1-1 및 2-1에서, X1은 -O-, 또는 -S-이고, Ar1은 전자 특성을 가지는 치환기 또는 정공 특성을 가지는 치환기이고, R1 내지 R6은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, L1은 단일결합, 치환 또는 비치환된 C6 내지 C60 아릴렌기, 또는 치환 또는 비치환된 C2 내지 C60 헤테로아릴렌기고, n1은 0 내지 2의 정수 중 하나이고, *는 상기 화학식 1-1 및 2-1의 연결 부분을 의미하고, FuseR1 및 FusedR2는 서로 독립적으로, 치환 또는 비치환된 C3 내지 C60 융합고리를 의미한다. 보다 구체적으로 FuseR1 및 FusedR2는 서로 독립적으로, 치환 또는 비치환된 C3 내지 C20의 융합고리일 수 있다.
상기 화합물은 카바졸 코어에 융합고리가 적어도 어느 하나 형성된 구조이다. 상기 코어 구조에 디벤조퓨라닐기 또는 디벤조티오페닐기가 결합될 수 있으며, 추가적으로 전자 특성을 가지는 치환기 또는 정공 특성을 가지는 치환기가 더 결합될 수 있다.
또한, 상기 화학식의 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 정공 수송용 물질, 발광층 물질, 전자 수송층 물질 및 전하 생성층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
또한, 상기 화학식의 구조에 다양한 치환기를 도입함으로써 에너지 밴드갭을 미세하게 조절이 가능하게 하며, 한편으로 유기물 사이에서의 계면에서의 특성을 향상되게 하며 물질의 용도를 다양하게 할 수 있다.
한편, 상기 화합물은 유리 전이 온도(Tg)가 높아 열적 안정성이 우수하다. 이러한 열적 안정성의 증가는 소자에 구동 안정성을 제공하는 중요한 요인이 된다.
상기 화학식 1-1은 하기 화학식 1-2로 표시될 수 있다.
[화학식 1-2]
Figure PCTKR2019017906-appb-I000009
상기 화학식 1-2에서, X1은 -O-, 또는 -S-이고, Ar1은 전자 특성을 가지는 치환기 또는 정공 특성을 가지는 치환기이고, R5 및 R6은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, L1은 단일결합, 치환 또는 비치환된 C6 내지 C60 아릴렌기, 또는 치환 또는 비치환된 C2 내지 C60 헤테로아릴렌기고, n1은 0 내지 2의 정수 중 하나이고, *는 상기 화학식 1-2 및 2-1의 연결 부분을 의미한다.
상기 화학식 1-2는 결합 위치를 보다 구체적으로 기재한 것으로 합성의 용이성 및 전자 구름의 확장에 효율성을 고려한 것이다.
이하, 융합 고리를 포함하는 카바졸 코어 구조에 대해 보다 구체적인 예를 들어 설명하도록 한다.
상기 화학식 2-1은 하기 화학식 2-2일 수 있다.
[화학식 2-2]
Figure PCTKR2019017906-appb-I000010
상기 화학식 2-2에서, R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, *는 상기 화학식 1-1 및 2-2의 연결 부분을 의미한다.
또는, 상기 화학식 2-1은 하기 화학식 2-3일 수 있다.
[화학식 2-3]
Figure PCTKR2019017906-appb-I000011
상기 화학식 2-3에서, R1 내지 R4 및 R7은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, *는 상기 화학식 1-1 및 2-3의 연결 부분을 의미한다.
또는, 상기 화학식 2-1은 하기 화학식 2-4일 수 있다.
[화학식 2-4]
Figure PCTKR2019017906-appb-I000012
상기 화학식 2-4에서, R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, *는 상기 화학식 1-1 및 2-4의 연결 부분을 의미한다.
상기 화학식 2-1은 하기 화학식 2-5일 수 있다.
[화학식 2-5]
Figure PCTKR2019017906-appb-I000013
상기 화학식 2-5에서, R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, *는 상기 화학식 1-1 및 2-5의 연결 부분을 의미한다.
상기 화학식 2-1은 하기 화학식 2-6일 수 있다.
[화학식 2-6]
Figure PCTKR2019017906-appb-I000014
상기 화학식 2-6에서, R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, *는 상기 화학식 1-1 및 2-6의 연결 부분을 의미한다.
상기 화학식 2-1은 하기 화학식 2-7일 수 있다.
[화학식 2-7]
Figure PCTKR2019017906-appb-I000015
상기 화학식 2-7에서, R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, *는 상기 화학식 1-1 및 2-7의 연결 부분을 의미한다.
또는, 상기 화학식 2-1은 하기 화학식 2-8일 수 있다.
[화학식 2-8]
Figure PCTKR2019017906-appb-I000016
상기 화학식 2-8에서, R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, *는 상기 화학식 1-1 및 2-8의 연결 부분을 의미한다.
상기 화학식 2-1은 하기 화학식 2-9일 수 있다.
[화학식 2-9]
Figure PCTKR2019017906-appb-I000017
상기 화학식 2-9에서, R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, *는 상기 화학식 1-1 및 2-9의 연결 부분을 의미한다.
상기 화학식 2-1은 하기 화학식 2-10일 수 있다.
[화학식 2-10]
Figure PCTKR2019017906-appb-I000018
상기 화학식 2-10에서, R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, *는 상기 화학식 1-1 및 2-10의 연결 부분을 의미한다.
상기 화학식 2-1은 하기 화학식 2-11일 수 있다.
[화학식 2-11]
Figure PCTKR2019017906-appb-I000019
상기 화학식 2-11에서, R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, *는 상기 화학식 1-1 및 2-11의 연결 부분을 의미한다.
상기 2-2 내지 2-11의 카바졸 코어는 화합물에 추가적으로 결합되는 치환기를 고려하여 선택될 수 있다. 이러한 카바졸의 다양한 구조를 통해 화합물의 열적 안정성 및 다양한 에너지 준위를 만족시킬 수 있다.
보다 구체적으로, 상기 Ar1은 치환 또는 비치환된 C6 내지 C60 아릴기, 또는 치환 또는 비치환된 C2 내지 C60 헤테로아릴기일 수 있다.
보다 구체적인 예를 들어, 이때 상기 Ar1은 하기 화학식 3-1 또는 3-2 일 수 있다.
[화학식 3-1]
Figure PCTKR2019017906-appb-I000020
[화학식 3-2]
Figure PCTKR2019017906-appb-I000021
상기 화학식 3-1 및 3-2에서, 상기 X1 내지 X3는 -CR'-, 또는 -N-이고, X1 내지 X3 중 적어도 어느 하나는 -N-이고, Ar2, 및 Ar3 및 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고, R'는 수소, 중수소, 시아노기, 또는 치환 또는 비치환된 C1 내지 C60 알킬기다.
상기 3-1 또는 3-2와 같으 전자 특성이 강화된 치환기를 도입하면 카바졸 코어와의 HOMO-LUMO 분포가 보다 명확해져 bi-polar 형태의 화합물을 구현할 수 있다.
상기 화학식 3-1 및 3-2에서, 상기 Ar2 및 Ar3 중 적어도 어느 하나는 하기 화학식 4-1 내지 4-5 중 어느 하나일 수 있다.
[화학식 4-1][화학식 4-2] [화학식 4-3] [화학식 4-4] [화학식 4-5]
Figure PCTKR2019017906-appb-I000022
상기 화학식 4-1 내지 화학식 4-5에서, X는 -NRx-, -O-, -S-, 또는 -CRxRy-이고, Rx 및 Ry는 각각 독립적으로, 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 또는 C6 내지 C60 아릴기고, Rb 내지 Re는 각각 독립적으로, 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 또는 C6 내지 C60 아릴기다.
상기 화학식 4-1 내지 4-5로부터 화합물의 강직성, 내열성이 향상된 특성을 가지며 낮은 전계 강도를 가져 정공 이동속도가 개선되는 효과를 기대할 수 있다.
상기 R1 내진 R6는 서로 독립적으로 하기 그룹 I의 치환기 중 어느 하나일 수 있다.
[그룹 I]
Figure PCTKR2019017906-appb-I000023
상기 그룹 I에서, *는 결합 위치를 의미한다.
전술한 일예의 화합물은, 하기 그룹 II의 화합물 중 어느 하나로 표시될 수 있다.
[그룹 II]
Figure PCTKR2019017906-appb-I000024
Figure PCTKR2019017906-appb-I000025
Figure PCTKR2019017906-appb-I000026
Figure PCTKR2019017906-appb-I000027
Figure PCTKR2019017906-appb-I000028
Figure PCTKR2019017906-appb-I000029
전술한 화합물 또는 조성물은 유기 광전자 소자용일 수 있으며, 유기 광전자 소자용 화합물 또는 유기 광전자 소자용 조성물은 화학기상증착과 같은 건식 성막법에 의해 형성될 수 있다.
이하 상술한 유기 광전자 소자용 화합물 또는 유기 광전자 소자용 조성물을 적용한 유기 광전자 소자를 설명한다.
유기 광전자 소자는 전기 에너지와 광 에너지를 상호 전환할 수 있는 소자이면 특별히 한정되지 않으며, 예컨대 유기 광전 소자, 유기 발광 소자, 유기 태양 전지 및 유기 감광체 드럼 등을 들 수 있다.
또한, 본 출원의 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 출원의 일 실시상태에 있어서, 상기 제1 전극은 양극일 수 있고, 상기 제2 전극은 음극일 수 있다.
또 다른 일 실시상태에 있어서, 상기 제1 전극은 음극일 수 있고, 상기 제2 전극은 양극일 수 있다.
상기 화학식 1로 표시되는 헤테로고리 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1에 따른 헤테로고리 화합물은 상기 청색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1에 따른 헤테로고리 화합물은 상기 녹색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1에 따른 헤테로고리 화합물은 상기 적색 유기 발광 소자의 재료로 사용될 수 있다.
본 발명의 유기 발광 소자는 전술한 헤테로고리 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 헤테로고리 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
여기서는 유기 광전자 소자의 일 예인 유기 발광 소자의 또 다른 일예를 도면을 참고하여 설명한다.
도 1 내지 3에 본 출원의 일 실시상태에 따른 유기 발광 소자의 전극과 유기물층의 적층 순서를 예시하였다. 그러나, 이들 도면에 의하여 본 출원의 범위가 한정될 것을 의도한 것은 아니며, 당 기술분야에 알려져 있는 유기 광전자 소자의 구조가 본 출원에도 적용될 수 있다.
도 1에 따르면, 기판(100) 상에 양극(200), 유기물층(300) 및 음극(400)이 순차적으로 적층된 유기 발광 소자가 도시된다. 그러나, 이와 같은 구조에만 한정되는 것은 아니고, 도 2와 같이, 기판 상에 음극, 유기물층 및 양극이 순차적으로 적층된 유기 발광 소자가 구현될 수도 있다.
도 3은 유기물층이 다층인 경우를 예시한 것이다. 도 3에 따른 유기 발광 소자는 정공 주입층(301), 정공 수송층(302), 발광층(303), 정공 저지층(304), 전자 수송층(305) 및 전자 주입층(306)을 포함한다. 그러나, 이와 같은 적층 구조에 의하여 본 출원의 범위가 한정되는 것은 아니며, 필요에 따라 발광층을 제외한 나머지 층은 생략될 수도 있고, 필요한 다른 기능층이 더 추가될 수 있다
상기 화학식 1로 표시되는 화합물은 유기 발광 소자에서 전자 수송층, 정공 수송층, 발광층의 재료 등으로 사용될 수 있다.
양극 재료로는 비교적 일함수가 큰 재료들을 이용할 수 있으며, 투명 전도성 산화물, 금속 또는 전도성 고분자 등을 사용할 수 있다. 상기 양극 재료의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들 의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오 펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
음극 재료로는 비교적 일함수가 낮은 재료들을 이용할 수 있으며, 금속, 금속 산화물 또는 전도성 고분자 등을 사용할 수 있다. 상기 음극 재료의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구 조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공 주입 재료로는 공지된 정공 주입 재료를 이용할 수도 있는데, 예를 들면, 미국 특허 제4,356,429호에 개시된 구리프탈로시아닌 등의 프탈로시아닌 화합물 또는 문헌 [Advanced Material, 6, p.677 (1994)]에 기재되어 있는 스타버스트형 아민 유도체류, 예컨대 트리스(4-카바조일-9-일페닐)아민(TCTA), 4,4',4"-트리[페닐(m-톨 릴)아미노]트리페닐아민(m-MTDATA), 1,3,5-트리스[4-(3-메틸페닐페닐아미노)페닐]벤젠(m-MTDAPB), 용해성이 있는 전도성 고분자인 폴리아닐린/도데실벤젠술폰산(Polyaniline/Dodecylbenzenesulfonic acid) 또는 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), 폴리아닐린/캠퍼술폰산(Polyaniline/Camphor sulfonic acid) 또는 폴리아닐린/폴리(4-스티렌술포네이트)(Polyaniline/Poly(4-styrene-sulfonate))등을 사용할 수 있다.
정공 수송 재료로는 피라졸린 유도체, 아릴아민계 유도체, 스틸벤 유도체, 트리페닐디아민 유도체 등이 사용될 수 있으며, 저분자 또는 고분자 재료가 사용될 수도 있다.
전자 수송 재료로는 옥사디아졸 유도체, 안트라퀴노디메탄 및 이의 유도체, 벤조퀴논 및 이의 유도체, 나프토퀴논 및 이의 유도체, 안트라퀴논 및 이의 유도체, 테트라시아노안트라퀴노디메탄 및 이의 유도체, 플루오레논 유도체, 디페닐디시아노에틸렌 및 이의 유도체, 디페노퀴논 유도체, 8-히드록시퀴놀린 및 이의 유도체의 금속 착 체 등이 사용될 수 있으며, 저분자 물질 뿐만 아니라 고분자 물질이 사용될 수도 있다.
전자 주입 재료로는 예를 들어, LiF가 당업계 대표적으로 사용되나, 본 출원이 이에 한정되는 것은 아니다.
발광 재료로는 적색, 녹색 또는 청색 발광재료가 사용될 수 있으며, 필요한 경우, 2 이상의 발광 재료를 혼합하 여 사용할 수 있다. 이 때, 2 이상의 발광 재료를 개별적인 공급원으로 증착하여 사용하거나, 예비 혼합하여 하나의 공급원으로 증착하여 사용할 수 있다. 또한, 발광 재료로서 형광 재료를 사용할 수도 있으나, 인광 재료로서 사용할 수도 있다. 발광 재료로는 단독으로서 양극과 음극으로부터 각각 주입된 정공과 전자를 결합하여 발광시키는 재료가 사용될 수도 있으나, 호스트 재료와 도펀트 재료가 함께 발광에 관여하는 재료들이 사용될 수도 있다.
발광 재료의 호스트를 혼합하여 사용하는 경우에는, 동일 계열의 호스트를 혼합하여 사용할 수도 있고, 다른 계열의 호스트를 혼합하여 사용할 수도 있다. 예를 들어, n 타입 호스트 재료 또는 P 타입 호스트 재료 중 어느 두 종류 이상의 재료를 선택하여 발광층의 호스트 재료로 사용할 수 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하 실시예를 통하여 상술한 구현예를 보다 상세하게 설명한다.  다만 하기의 실시예는 단지 설명의 목적을 위한 것이며 권리범위를 제한하는 것은 아니다.
이하, 실시예 및 합성예에서 사용된 출발물질 및 반응물질은 특별한 언급이 없는 한, Sigma-Aldrich 社, TCI 社, tokyo chemical industry 또는 P&H tech에서 구입하였거나, 공지된 방법을 통해 합성하였다.
(유기 광전자 소자용 화합물의 제조)
주요 메커니즘은 다음과 같다. 이에 대한 보다 상세한 합성예에 대해서도 기술하기로 한다.
Figure PCTKR2019017906-appb-I000030
[제조예] Product(P)의 제조
a) 화합물 P2 의 제조
One neck r.b.f 에 Sub A(1eq), 2-bromodibenzo[b,d]thiophene(1.5eq),CuI(1eq), trans-1,2-diaminocyclohexane(1eq), K3PO4 (3eq),1,4-dioxane (10T) 혼합물을 12시간 환류교반 하였다. MC와 물을 사용하여 추출하고 MgSO4로 건조하여, 실리카겔 컬럼크로마토그래피 정제법으로 목적화합물 P2를 얻었다.
b) 화합물 P1 의 제조
One neck r.b.f 에 P2 (1eq), THF (10T)를 넣은 뒤 질소치환 하고 -78°C로 냉각한다. 2.5M n-BuLi in Hexane(1.05eq) 을 천천히 적가한 후 실온에서 1시간 교반하고, 그 후 B(OMe)3(3eq)를 적가하여 3시간 상온교반 하였다. MC와 물을 사용하여 추출하고 MgSO4로 건조하여, 실리카겔 컬럼크로마토그래피 정제법으로 목적화합물 P1을 얻었다.
c) 화합물 P 의 제조
One neck r.b.f 에 P1(1eq), Sub B (1.5eq), Pd(PPh3)4 (0.05eq), K2CO3(3eq), 1,4-dioxane/H2O(10T)를 넣고 12시간 환류교반 하였다. 반응이 완결된 후 석출된 고체를 여과하고, 이 고체를 MC에 녹여 실리카겔 컬럼크로마토그래피 정제법으로 목적화합물 P를 얻었다.
상기 Sub A 및 Sub B에 대한 구체적인 화합물은 다음과 같다. 이들의 조합으로 합성한 구체적인 화합물은 하기 표 1에 나타내었다.
[Sub A]
Figure PCTKR2019017906-appb-I000031
[Sub B]
Figure PCTKR2019017906-appb-I000032
Figure PCTKR2019017906-appb-I000033
[표 1]
Figure PCTKR2019017906-appb-I000034
Figure PCTKR2019017906-appb-I000035
Figure PCTKR2019017906-appb-I000036
Figure PCTKR2019017906-appb-I000037
Figure PCTKR2019017906-appb-I000038
Figure PCTKR2019017906-appb-I000039
Figure PCTKR2019017906-appb-I000040
Figure PCTKR2019017906-appb-I000041
Figure PCTKR2019017906-appb-I000042
Figure PCTKR2019017906-appb-I000043
비교예로는 다음 화합물을 사용하였다.
Figure PCTKR2019017906-appb-I000044
상기 제조된 화합물은 Mass 결과로부터 확인하였다.
[표 2]
Figure PCTKR2019017906-appb-I000045
Figure PCTKR2019017906-appb-I000046
Figure PCTKR2019017906-appb-I000047
Figure PCTKR2019017906-appb-I000048
Figure PCTKR2019017906-appb-I000049
(유기 발광 소자의 제작 - 적색 host)
1,500A의 두께로 ITO가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
상기 ITO 투명 전극(양극)위에 공통층인 정공 주입층 2-TNATA(4,4′,4′′-Tris[2-naphthyl(phenyl)amino] triphenylamine) 및 정공 수송층 NPB(N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine)을 형성시켰다.
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 적색 호스트로 하기 표에 기재된 화합물, 적색 인광 도펀트로 (piq)2(Ir)(acac)을 사용하여 호스트에 (piq)2(Ir)(acac)를 3% 도핑하여 500Å 증착하였다. 이후 정공 저지층으로 BCP를 60Å 증착하였으며, 그 위에 전자 수송층으로 Alq3 를 200Å 증착하였다. 이후 정공 저지층으로 BCP를 60Å 증착하였으며, 그 위에 전자 수송층으로 Alq3 를 200Å 증착하였다. 마지막으로 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al) 음극을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-6~10-8torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
유기 전계 발광 소자의 구동 전압 및 발광 효율
상기와 같이 제작된 유기 전계 발광 소자에 대하여 맥사이어스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명장비측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, T90을 측정하였다. 본 발명의 유기 전계 발광 소자의 특성은 하기 표와 같다.
[표 3]
Figure PCTKR2019017906-appb-I000050
Figure PCTKR2019017906-appb-I000051
Figure PCTKR2019017906-appb-I000052
상기 표의 결과로부터 알 수 있듯이, 본 발명의 화합물의 링커인 dibenzofurane을 사용한 물질을 적색 발광층 호스트로 사용했을 경우, 유기 발광 소자에서 비교예 A 내지 G에 비해 구동 전압이 낮고, 발광효율 및 수명이 현저히 개선되었음을 확인할 수 있었다.
상기 표의 결과를 살펴보면 화합물의 Sub A와 Sub B 사이에 dibenzofurane 링커를 도입함으로써 적색 호스트로서 적절한 밴드갭을 갖는 화합물을 만들어 발광층에서 요구하는 조건을 충족시킬 수 있다.
이는 전자 전달능력이 향상되어 구동 및 효율면에서 우수한 효과를 가져옴과 동시에 열적인 안정성 및 수명적인 특성을 함께 향상시킨다. 또한 상기 화합물은 링커 없이 카바졸의 N(Sub A)에 Sub B가 직접 연결된 구조 (비교예 A, 비교예 B) 에 비하여 구동 및 효율, 수명이 향상됨을 알 수 있었다.
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
100: 기판
200: 양극
300: 유기물층
301: 정공 주입층
302: 정공 수송층
303: 발광층
304: 정공 저지층
305: 전자 수송층
306: 전자 주입층
400: 음극

Claims (19)

  1. 하기 화학식으로 표현되는 화합물:
    [화학식 1-1]
    Figure PCTKR2019017906-appb-I000053
    [화학식 2-1]
    Figure PCTKR2019017906-appb-I000054
    상기 화학식 1-1 및 2-1에서,
    X1은 -O-, 또는 -S-이고,
    Ar1은 전자 특성을 가지는 치환기 또는 정공 특성을 가지는 치환기이고,
    R1 내지 R6은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    L1은 단일결합, 치환 또는 비치환된 C6 내지 C60 아릴렌기, 또는 치환 또는 비치환된 C2 내지 C60 헤테로아릴렌기고,
    n1은 0 내지 2의 정수 중 하나이고,
    *는 상기 화학식 1-1 및 2-1의 연결 부분을 의미하고,
    FuseR1 및 FusedR2는 서로 독립적으로, 치환 또는 비치환된 C3 내지 C60 융합고리를 의미한다.
  2. 제1항에 있어서,
    상기 화학식 1-1은 하기 화학식 1-2인 것인 화합물:
    [화학식 1-2]
    Figure PCTKR2019017906-appb-I000055
    상기 화학식 1-2에서,
    X1은 -O-, 또는 -S-이고,
    Ar1은 전자 특성을 가지는 치환기 또는 정공 특성을 가지는 치환기이고,
    R5 및 R6은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    L1은 단일결합, 치환 또는 비치환된 C6 내지 C60 아릴렌기, 또는 치환 또는 비치환된 C2 내지 C60 헤테로아릴렌기고,
    n1은 0 내지 2의 정수 중 하나이고,
    *는 상기 화학식 1-2 및 2-1의 연결 부분을 의미한다.
  3. 제1항에 있어서,
    상기 화학식 2-1은 하기 화학식 2-2인 것인 화합물:
    [화학식 2-2]
    Figure PCTKR2019017906-appb-I000056
    상기 화학식 2-2에서,
    R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    *는 상기 화학식 1-1 및 2-2의 연결 부분을 의미한다.
  4. 제1항에 있어서,
    상기 화학식 2-1은 하기 화학식 2-3인 것인 화합물:
    [화학식 2-3]
    Figure PCTKR2019017906-appb-I000057
    상기 화학식 2-3에서,
    R1 내지 R4 및 R7은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    *는 상기 화학식 1-1 및 2-3의 연결 부분을 의미한다.
  5. 제1항에 있어서,
    상기 화학식 2-1은 하기 화학식 2-4인 것인 화합물:
    [화학식 2-4]
    Figure PCTKR2019017906-appb-I000058
    상기 화학식 2-4에서,
    R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    *는 상기 화학식 1-1 및 2-4의 연결 부분을 의미한다.
  6. 제1항에 있어서,
    상기 화학식 2-1은 하기 화학식 2-5인 것인 화합물:
    [화학식 2-5]
    Figure PCTKR2019017906-appb-I000059
    상기 화학식 2-5에서,
    R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    *는 상기 화학식 1-1 및 2-5의 연결 부분을 의미한다.
  7. 제1항에 있어서,
    상기 화학식 2-1은 하기 화학식 2-6인 것인 화합물:
    [화학식 2-6]
    Figure PCTKR2019017906-appb-I000060
    상기 화학식 2-6에서,
    R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    *는 상기 화학식 1-1 및 2-6의 연결 부분을 의미한다.
  8. 제1항에 있어서,
    상기 화학식 2-1은 하기 화학식 2-7인 것인 화합물:
    [화학식 2-7]
    Figure PCTKR2019017906-appb-I000061
    상기 화학식 2-7에서,
    R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    *는 상기 화학식 1-1 및 2-7의 연결 부분을 의미한다.
  9. 제1항에 있어서,
    상기 화학식 2-1은 하기 화학식 2-8인 것인 화합물:
    [화학식 2-8]
    Figure PCTKR2019017906-appb-I000062
    상기 화학식 2-8에서,
    R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    *는 상기 화학식 1-1 및 2-8의 연결 부분을 의미한다.
  10. 제1항에 있어서,
    상기 화학식 2-1은 하기 화학식 2-9인 것인 화합물:
    [화학식 2-9]
    Figure PCTKR2019017906-appb-I000063
    상기 화학식 2-9에서,
    R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    *는 상기 화학식 1-1 및 2-9의 연결 부분을 의미한다.
  11. 제1항에 있어서,
    상기 화학식 2-1은 하기 화학식 2-10인 것인 화합물:
    [화학식 2-10]
    Figure PCTKR2019017906-appb-I000064
    상기 화학식 2-10에서,
    R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    *는 상기 화학식 1-1 및 2-10의 연결 부분을 의미한다.
  12. 제1항에 있어서,
    상기 화학식 2-1은 하기 화학식 2-11인 것인 화합물:
    [화학식 2-11]
    Figure PCTKR2019017906-appb-I000065
    상기 화학식 2-11에서,
    R1 내지 R4은 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    *는 상기 화학식 1-1 및 2-11의 연결 부분을 의미한다.
  13. 제1항에 있어서,
    상기 Ar1은 치환 또는 비치환된 C6 내지 C60 아릴기, 또는 치환 또는 비치환된 C2 내지 C60 헤테로아릴기인 것인 화합물.
  14. 제1항에 있어서,
    상기 Ar1은 하기 화학식 3-1 또는 3-2인 것인 화합물:
    [화학식 3-1]
    Figure PCTKR2019017906-appb-I000066
    [화학식 3-2]
    Figure PCTKR2019017906-appb-I000067
    상기 화학식 3-1 및 3-2에서,
    상기 X1 내지 X3는 -CR'-, 또는 -N-이고, X1 내지 X3 중 적어도 어느 하나는 -N-이고,
    Ar2, 및 Ar3 및 각각 독립적으로 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 치환 또는 비치환된 C6 내지 C60 아릴기, 치환 또는 비치환된 C2 내지 C60 헤테로아릴기, 또는 이들의 조합이고,
    R'는 수소, 중수소, 시아노기, 또는 치환 또는 비치환된 C1 내지 C60 알킬기다.
  15. 제14항에 있어서,
    상기 Ar2 및 Ar3 중 적어도 어느 하나는 하기 화학식 4-1 내지 4-5 중 어느 하나인 것인 화합물:
    [화학식 4-1][화학식 4-2] [화학식 4-3] [화학식 4-4] [화학식 4-5]
    Figure PCTKR2019017906-appb-I000068
    상기 화학식 4-1 내지 화학식 4-5에서,
    X는 -NRx-, -O-, -S-, 또는 -CRxRy-이고,
    Rx 및 Ry는 각각 독립적으로, 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 또는 C6 내지 C60 아릴기고,
    Rb 내지 Re는 각각 독립적으로, 수소, 중수소, 시아노기, 치환 또는 비치환된 C1 내지 C60 알킬기, 또는 C6 내지 C60 아릴기다.
  16. 제1항에 있어서,
    상기 화합물은 하기 그룹 II의 화합물 중 어느 하나인 것인 화합물.
    [그룹 II]
    Figure PCTKR2019017906-appb-I000069
    Figure PCTKR2019017906-appb-I000070
    Figure PCTKR2019017906-appb-I000071
    Figure PCTKR2019017906-appb-I000072
    Figure PCTKR2019017906-appb-I000073
    Figure PCTKR2019017906-appb-I000074
  17. 서로 마주하는 양극과 음극,
    상기 양극과 상기 음극 사이에 위치하는 적어도 1층의 유기층을 포함하고,
    상기 유기층은 제1항 내지 제16항 중 어느 한 항에 따른 화합물을 포함하는 유기 광전자 소자.
  18. 제17항에 있어서,
    상기 유기층은 발광층을 포함하고,
    상기 발광층은 상기 화합물을 포함하는 유기 광전자 소자.
  19. 제17항에 따른 유기 광전자 소자를 포함하는 표시 장치.
PCT/KR2019/017906 2018-12-26 2019-12-17 화합물, 유기 광전자 소자 및 표시 장치 WO2020138814A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/418,728 US20220069233A1 (en) 2018-12-26 2019-12-17 Compound, organic optoelectronic diode, and display device
CN201980085952.9A CN113227084A (zh) 2018-12-26 2019-12-17 化合物、组成物、有机光电装置以及显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180169376A KR102312963B1 (ko) 2018-12-26 2018-12-26 화합물, 유기 광전자 소자 및 표시 장치
KR10-2018-0169376 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020138814A1 true WO2020138814A1 (ko) 2020-07-02

Family

ID=71129100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017906 WO2020138814A1 (ko) 2018-12-26 2019-12-17 화합물, 유기 광전자 소자 및 표시 장치

Country Status (5)

Country Link
US (1) US20220069233A1 (ko)
KR (1) KR102312963B1 (ko)
CN (1) CN113227084A (ko)
TW (1) TWI804701B (ko)
WO (1) WO2020138814A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114560858A (zh) * 2020-10-30 2022-05-31 武汉天马微电子有限公司 化合物、电子传输材料、显示面板和显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102290359B1 (ko) * 2018-12-11 2021-08-19 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120030009A (ko) * 2010-09-17 2012-03-27 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
WO2017018795A2 (ko) * 2015-07-27 2017-02-02 희성소재(주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
KR20170057660A (ko) * 2015-11-17 2017-05-25 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 전자 소자
KR101830709B1 (ko) * 2015-11-06 2018-02-21 희성소재(주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
KR20180022608A (ko) * 2016-08-23 2018-03-06 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI282708B (en) * 2005-08-03 2007-06-11 Ind Tech Res Inst Vertical pixel structure for emi-flective display and method for making the same
KR101805686B1 (ko) * 2015-07-27 2017-12-07 희성소재(주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120030009A (ko) * 2010-09-17 2012-03-27 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
WO2017018795A2 (ko) * 2015-07-27 2017-02-02 희성소재(주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
KR101830709B1 (ko) * 2015-11-06 2018-02-21 희성소재(주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
KR20170057660A (ko) * 2015-11-17 2017-05-25 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 전자 소자
KR20180022608A (ko) * 2016-08-23 2018-03-06 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114560858A (zh) * 2020-10-30 2022-05-31 武汉天马微电子有限公司 化合物、电子传输材料、显示面板和显示装置
CN114560858B (zh) * 2020-10-30 2023-04-07 武汉天马微电子有限公司 化合物、电子传输材料、显示面板和显示装置

Also Published As

Publication number Publication date
TW202031648A (zh) 2020-09-01
KR20200079804A (ko) 2020-07-06
TWI804701B (zh) 2023-06-11
US20220069233A1 (en) 2022-03-03
KR102312963B1 (ko) 2021-10-14
CN113227084A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2017043887A1 (ko) 유기전계발광소자
WO2013154378A1 (ko) 새로운 함질소 헤테로환 화합물 및 이를 이용한 유기 전자 소자
WO2018009009A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2018174678A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2018124750A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021101117A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020111733A1 (ko) 유기 발광 소자
WO2017043908A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2019066607A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2018174682A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020040514A1 (ko) 유기 발광 소자
WO2022039408A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022035224A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2019240532A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2023075134A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2018101764A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2020149596A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020101397A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021256836A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019177393A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020138814A1 (ko) 화합물, 유기 광전자 소자 및 표시 장치
WO2021125835A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021080280A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021091247A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020153745A1 (ko) 화합물, 유기 광전자 소자 및 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903451

Country of ref document: EP

Kind code of ref document: A1