WO2022039408A1 - 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2022039408A1
WO2022039408A1 PCT/KR2021/009969 KR2021009969W WO2022039408A1 WO 2022039408 A1 WO2022039408 A1 WO 2022039408A1 KR 2021009969 W KR2021009969 W KR 2021009969W WO 2022039408 A1 WO2022039408 A1 WO 2022039408A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
formula
Prior art date
Application number
PCT/KR2021/009969
Other languages
English (en)
French (fr)
Inventor
모준태
김지영
이영진
김동준
Original Assignee
엘티소재주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티소재주식회사 filed Critical 엘티소재주식회사
Priority to CN202180050526.9A priority Critical patent/CN115956076A/zh
Priority to JP2023507984A priority patent/JP2023538282A/ja
Priority to US18/019,438 priority patent/US20230292601A1/en
Priority to EP21858495.1A priority patent/EP4201931A1/en
Publication of WO2022039408A1 publication Critical patent/WO2022039408A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present specification relates to a heterocyclic compound and an organic light emitting device including the same.
  • the electroluminescent device is a type of self-luminous display device, and has advantages of a wide viewing angle, excellent contrast, and fast response speed.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When a voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes combine in the organic thin film to form a pair, and then disappear and emit light.
  • the organic thin film may be composed of a single layer or multiple layers, if necessary.
  • the material of the organic thin film may have a light emitting function if necessary.
  • a compound capable of forming the light emitting layer by itself may be used, or a compound capable of serving as a host or dopant of the host-dopant light emitting layer may be used.
  • a compound capable of performing the roles of hole injection, hole transport, electron blocking, hole blocking, electron transport, electron injection, and the like may be used.
  • An object of the present invention is to provide a heterocyclic compound and an organic light emitting device including the same.
  • An exemplary embodiment of the present application provides a heterocyclic compound represented by the following formula (1).
  • L1 to L5 are the same as or different from each other, and each independently a direct bond; a substituted or unsubstituted arylene group having 6 to 60 carbon atoms; Or a substituted or unsubstituted C 2 to C 60 heteroarylene group,
  • a, b, c, d and e are each an integer of 0 to 3, and when a, b, c, d and e are each 2 or more, the substituents in parentheses are the same or different,
  • Ar1 to Ar5 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group having 6 to 60 carbon atoms; Or a substituted or unsubstituted C 2 to C 60 heteroaryl group,
  • At least one of Ar1 to Ar5 is a substituted or unsubstituted, monocyclic or polycyclic heteroaryl group having 2 to 60 carbon atoms and containing at least one N; Or an aryl group having 6 to 60 carbon atoms substituted with one or more cyano groups,
  • Rp is hydrogen; heavy hydrogen; halogen group; It is a substituted or unsubstituted C6-C60 alkyl group, p is an integer of 0 to 4, and when p is 2 or more, the substituents in parentheses are the same or different.
  • an organic light emitting device including a first electrode, a second electrode, and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers is described above.
  • an organic light emitting device comprising a heterocyclic compound represented by Formula 1.
  • the heterocyclic compound according to an exemplary embodiment of the present application may be used as an organic material layer material of an organic light emitting device.
  • the heterocyclic compound may be used as a material for a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a charge generation layer, etc. in an organic light emitting device.
  • the heterocyclic compound represented by Formula 1 may be used as a material of the light emitting layer of the organic light emitting device.
  • 1 to 4 are views schematically showing a stacked structure of an organic light emitting device according to an exemplary embodiment of the present application, respectively.
  • An exemplary embodiment of the present application provides a heterocyclic compound represented by the following formula (1).
  • L1 to L5 are the same as or different from each other, and each independently a direct bond; a substituted or unsubstituted arylene group having 6 to 60 carbon atoms; Or a substituted or unsubstituted C 2 to C 60 heteroarylene group,
  • a, b, c, d and e are each an integer of 0 to 3, and when a, b, c, d and e are each 2 or more, the substituents in parentheses are the same or different,
  • Ar1 to Ar5 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group having 6 to 60 carbon atoms; Or a substituted or unsubstituted C 2 to C 60 heteroaryl group,
  • At least one of Ar1 to Ar5 is a substituted or unsubstituted, monocyclic or polycyclic heteroaryl group having 2 to 60 carbon atoms and containing at least one N; Or an aryl group having 6 to 60 carbon atoms substituted with one or more cyano groups,
  • Rp is hydrogen; heavy hydrogen; halogen group; It is a substituted or unsubstituted C6-C60 alkyl group, p is an integer of 0 to 4, and when p is 2 or more, the substituents in parentheses are the same or different.
  • "when a substituent is not indicated in the chemical formula or compound structure” may mean that all positions that may come as a substituent are hydrogen or deuterium. That is, in the case of deuterium, deuterium is an isotope of hydrogen, and some hydrogen atoms may be isotope deuterium, and the content of deuterium may be 0% to 100%.
  • the content of deuterium is 0%, the content of hydrogen is 100%, and all of the substituents explicitly exclude deuterium such as hydrogen If not, hydrogen and deuterium may be mixed and used in the compound.
  • deuterium is one of the isotopes of hydrogen, and as an element having a deuteron consisting of one proton and one neutron as an atomic nucleus, hydrogen- It can be expressed as 2, and the element symbol can also be written as D or 2H.
  • isotopes have the same atomic number (Z), but isotopes that have different mass numbers (A) have the same number of protons, but neutrons It can also be interpreted as an element with a different number of (neutron).
  • 20% of the content of deuterium in the phenyl group represented by means that the total number of substituents that the phenyl group can have is 5 (T1 in the formula), and among them, if the number of deuterium is 1 (T2 in the formula), it will be expressed as 20% can That is, it can be represented by the following structural formula that the content of deuterium in the phenyl group is 20%.
  • a phenyl group having a deuterium content of 0% it may mean a phenyl group that does not contain a deuterium atom, that is, has 5 hydrogen atoms.
  • the halogen may be fluorine, chlorine, bromine or iodine.
  • the alkyl group includes a straight or branched chain having 1 to 60 carbon atoms, and may be further substituted by other substituents.
  • the number of carbon atoms in the alkyl group may be 1 to 60, specifically 1 to 40, more specifically, 1 to 20.
  • Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, cyclopentylmethyl group, cyclohexylmethyl group, octyl group, n-octyl group,
  • the alkenyl group includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the carbon number of the alkenyl group may be 2 to 60, specifically 2 to 40, more specifically, 2 to 20.
  • Specific examples include a vinyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 3-methyl-1 -Butenyl group, 1,3-butadienyl group, allyl group, 1-phenylvinyl-1-yl group, 2-phenylvinyl-1-yl group, 2,2-diphenylvinyl-1-yl group, 2-phenyl-2 -(naphthyl-1-yl)vinyl-1-yl group, 2,2-bis(diphenyl-1-yl)vinyl-1-yl group, stilbenyl group, styrenyl group, etc., but are not limited thereto.
  • the alkynyl group includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the carbon number of the alkynyl group may be 2 to 60, specifically 2 to 40, more specifically, 2 to 20.
  • the alkoxy group may be a straight chain, branched chain or cyclic chain. Although carbon number of an alkoxy group is not specifically limited, It is preferable that it is C1-C20. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, isopentyloxy, n -hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy, etc. may be It is not limited.
  • the cycloalkyl group includes a monocyclic or polycyclic ring having 3 to 60 carbon atoms, and may be further substituted by other substituents.
  • polycyclic means a group in which a cycloalkyl group is directly connected to another ring group or condensed.
  • the other ring group may be a cycloalkyl group, but may be a different type of ring group, for example, a heterocycloalkyl group, an aryl group, a heteroaryl group, or the like.
  • the carbon number of the cycloalkyl group may be 3 to 60, specifically 3 to 40, more specifically 5 to 20.
  • the heterocycloalkyl group includes O, S, Se, N, or Si as a hetero atom, includes a monocyclic or polycyclic ring having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • polycyclic refers to a group in which a heterocycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a heterocycloalkyl group, but may be a different type of ring group, for example, a cycloalkyl group, an aryl group, a heteroaryl group, or the like.
  • the heterocycloalkyl group may have 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, and more specifically 3 to 20 carbon atoms.
  • the aryl group includes a monocyclic or polycyclic ring having 6 to 60 carbon atoms, and may be further substituted by other substituents.
  • polycyclic means a group in which an aryl group is directly connected or condensed with another ring group.
  • the other ring group may be an aryl group, but may be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, a heteroaryl group, and the like.
  • the aryl group includes a spiro group.
  • the carbon number of the aryl group may be 6 to 60, specifically 6 to 40, more specifically 6 to 25.
  • aryl group examples include a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, a chrysenyl group, a phenanthrenyl group, a perylenyl group, a fluoranthenyl group, a triphenylenyl group, a phenalenyl group, a pyrethyl group Nyl group, tetracenyl group, pentacenyl group, fluorenyl group, indenyl group, acenaphthylenyl group, benzofluorenyl group, spirobifluorenyl group, 2,3-dihydro-1H-indenyl group, condensed ring groups thereof and the like, but is not limited thereto.
  • the phosphine oxide group specifically includes, but is not limited to, a diphenylphosphine oxide group, a dinaphthylphosphine oxide, and the like.
  • the silyl group is a substituent including Si and the Si atom is directly connected as a radical, and is represented by -SiR104R105R106, R104 to R106 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; an alkyl group; alkenyl group; alkoxy group; cycloalkyl group; aryl group; And it may be a substituent consisting of at least one of a heterocyclic group.
  • silyl group examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. It is not limited.
  • the fluorenyl group may be substituted, and adjacent substituents may combine with each other to form a ring.
  • the spiro group is a group including a spiro structure, and may have 15 to 60 carbon atoms.
  • the spiro group may include a structure in which a 2,3-dihydro-1H-indene group or a cyclohexane group is spiro bonded to a fluorenyl group.
  • the spiro group may include any one of the groups of the following structural formula.
  • the heteroaryl group includes S, O, Se, N or Si as a hetero atom, and includes a monocyclic or polycyclic ring having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic refers to a group in which a heteroaryl group is directly connected or condensed with another ring group.
  • the other ring group may be a heteroaryl group, but may be a different type of ring group, for example, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or the like.
  • the heteroaryl group may have 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, and more specifically 3 to 25 carbon atoms.
  • heteroaryl group examples include a pyridyl group, a pyrrolyl group, a pyrimidyl group, a pyridazinyl group, a furanyl group, a thiophene group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group group, isothiazolyl group, triazolyl group, furazanyl group, oxadiazolyl group, thiadiazolyl group, dithiazolyl group, tetrazolyl group, pyranyl group, thiopyranyl group, diazinyl group, oxazinyl group , thiazinyl group, deoxynyl group, triazinyl group, tetrazinyl group, quinolyl group, isoquinolyl group, quinazolinyl group, isoquinazol
  • the amine group is a monoalkylamine group; monoarylamine group; monoheteroarylamine group; -NH 2 ; dialkylamine group; diarylamine group; diheteroarylamine group; an alkylarylamine group; an alkyl heteroarylamine group; And it may be selected from the group consisting of an aryl heteroarylamine group, the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • the amine group include a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, a dibiphenylamine group, an anthracenylamine group, 9- Methyl-anthracenylamine group, diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group, biphenylnaphthylamine group, phenylbiphenylamine group, biphenylfluorene
  • the arylene group means that the aryl group has two bonding positions, that is, a divalent group. Except that each of these is a divalent group, the description of the aryl group described above may be applied.
  • the heteroarylene group means that the heteroaryl group has two bonding positions, that is, a divalent group. Except that each of these is a divalent group, the description of the heteroaryl group described above may be applied.
  • the "adjacent" group means a substituent substituted on an atom directly connected to the atom in which the substituent is substituted, a substituent sterically closest to the substituent, or another substituent substituted on the atom in which the substituent is substituted.
  • two substituents substituted at an ortho position in a benzene ring and two substituents substituted at the same carbon in an aliphatic ring may be interpreted as "adjacent" groups.
  • the heterocyclic compound according to an exemplary embodiment of the present application is characterized in that it is represented by Formula 1 above. More specifically, the heterocyclic compound represented by Chemical Formula 1 may be used as an organic material layer material of an organic light emitting device due to the structural characteristics of the core structure and substituents as described above.
  • L1 to L5 of Formula 1 are the same as or different from each other, and each independently a direct bond; a substituted or unsubstituted arylene group having 6 to 60 carbon atoms; Or it may be a substituted or unsubstituted heteroarylene group having 2 to 60 carbon atoms.
  • L1 to L5 are the same as or different from each other, and each independently a direct bond; a substituted or unsubstituted arylene group having 6 to 40 carbon atoms; Or it may be a substituted or unsubstituted heteroarylene group having 2 to 40 carbon atoms.
  • L1 to L5 are the same as or different from each other, and each independently a direct bond; a substituted or unsubstituted arylene group having 6 to 20 carbon atoms; Or it may be a substituted or unsubstituted heteroarylene group having 2 to 20 carbon atoms.
  • L1 is a direct bond.
  • L1 is a phenylene group.
  • L1 is a naphthylene group.
  • L2 is a direct bond.
  • L2 is a phenylene group.
  • L2 is a naphthylene group.
  • L3 is a direct bond.
  • L3 is a phenylene group.
  • L3 is a naphthylene group.
  • L4 is a direct bond.
  • L4 is a phenylene group.
  • L4 is a naphthylene group.
  • L5 is a direct bond.
  • L5 is a phenylene group.
  • L5 is a naphthylene group.
  • a, b, c, d and e are each an integer of 0 to 3, and when a, b, c, d and e are each 2 or more, the substituents in parentheses are each other may be the same or different.
  • Ar1 to Ar5 in Formula 1 are the same as or different from each other, and each independently a substituted or unsubstituted C6 to C60 aryl group; or a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms, and at least one of Ar1 to Ar5 is a substituted or unsubstituted, monocyclic or polycyclic heteroaryl group having 2 to 60 carbon atoms including at least one N; Or it may be an aryl group having 6 to 60 carbon atoms substituted with one or more cyano groups.
  • Ar1 to Ar5 are the same as or different from each other, and each independently a substituted or unsubstituted C 6 to C 40 aryl group; or a substituted or unsubstituted C2 to C40 heteroaryl group, at least one of Ar1 to Ar5 is substituted or unsubstituted, and a monocyclic or polycyclic heteroaryl group having 2 to 40 C2 to C40 including at least one N; Or it may be an aryl group having 6 to 40 carbon atoms substituted with one or more cyano groups.
  • Ar1 to Ar5 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group having 6 to 20 carbon atoms; or a substituted or unsubstituted heteroaryl group having 2 to 20 carbon atoms, at least one of Ar1 to Ar5 is a substituted or unsubstituted, monocyclic or polycyclic heteroaryl group having 2 to 20 carbon atoms including at least one N; Or it may be an aryl group having 6 to 20 carbon atoms substituted with one or more cyano groups.
  • Ar1 to Ar5 are the same as or different from each other, and each independently a substituted or unsubstituted phenyl group; a substituted or unsubstituted biphenyl group; a substituted or unsubstituted naphthyl group; Or a substituted or unsubstituted, monocyclic or polycyclic heteroaryl group having 2 to 60 carbon atoms including one or more N; or an aryl group having 6 to 60 carbon atoms substituted with one or more cyano groups, at least one of Ar1 to Ar5 is substituted or unsubstituted, and a monocyclic or polycyclic heteroaryl group having 2 to 60 carbon atoms including one or more N; Or it may be an aryl group having 6 to 60 carbon atoms substituted with one or more cyano groups.
  • the monocyclic or polycyclic heteroaryl group having 2 to 60 carbon atoms including at least one N may be a group represented by the following formula (3).
  • X1 is CR1 or N
  • X2 is CR2 or N
  • X3 is CR3 or N
  • X4 is CR4 or N
  • X5 is CR5 or N, wherein X1 to X5 at least one of them is N;
  • Chemical Formula 3 may be represented by one of Chemical Formulas 3-1 to 3-4 below. here, is a site connected to Formula 1 above.
  • Z1 is O; or S;
  • Chemical Formula 3 may be represented by any one of Group 1 below.
  • R1 to R5 of group 1 and The definition of is the same as in Chemical Formula 3.
  • Rp of Formula 1 is hydrogen; heavy hydrogen; halogen group; It is a substituted or unsubstituted C6-C60 alkyl group, p is an integer of 0 to 4, and when p is 2 or more, the substituents in parentheses may be the same or different.
  • Rp is hydrogen; or deuterium.
  • Rp is hydrogen
  • Chemical Formula 1 may be represented by Chemical Formula 1-1 or 1-2 below.
  • Ar1 and Ar4 are the same as or different from each other, and each independently a substituted or unsubstituted C6-C60 aryl group; or a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms, at least one of Ar1 and Ar4 is a substituted or unsubstituted, monocyclic or polycyclic heteroaryl group having 2 to 60 carbon atoms including at least one N; or an aryl group having 6 to 60 carbon atoms substituted with one or more cyano groups, and the rest are as defined in Formula 1,
  • Ar2 and Ar4 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group having 6 to 60 carbon atoms; or a substituted or unsubstituted C2 to C60 heteroaryl group, at least one of Ar2 and Ar4 is a substituted or unsubstituted, C2 to C60 monocyclic or polycyclic heteroaryl group containing at least one N; or an aryl group having 6 to 60 carbon atoms substituted with one or more cyano groups, and the rest are as defined in Formula 1.
  • heterocyclic compound represented by Formula 1-1 Since the heterocyclic compound represented by Formula 1-1 has a linear and planar shape, overlap between the compounds increases and electron transport is faster. Therefore, when the heterocyclic compound represented by Formula 1-1 is used in a device, efficiency can be further improved.
  • the heterocyclic compound represented by Formula 1-2 has a structure that is very effective in separating HOMO and LUMO electron distribution, and this allows the compound to have an appropriate band gap, so the heterocyclic compound represented by Formula 1-2 is When used in a device, the driving effect of the device may be further improved.
  • Chemical Formula 1 may be represented by any one of Chemical Formulas 1-3 to 1-5 below.
  • Ar1 and Ar5 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group having 6 to 60 carbon atoms; or a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms, at least one of Ar1 and Ar5 is a substituted or unsubstituted, monocyclic or polycyclic heteroaryl group having 2 to 60 carbon atoms including at least one N; or an aryl group having 6 to 60 carbon atoms substituted with one or more cyano groups, and the rest are as defined in Formula 1,
  • Ar2 and Ar5 are the same as or different from each other, and each independently a substituted or unsubstituted C6-C60 aryl group; or a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms, at least one of Ar2 and Ar5 is a substituted or unsubstituted, monocyclic or polycyclic heteroaryl group having 2 to 60 carbon atoms including at least one N; or an aryl group having 6 to 60 carbon atoms substituted with one or more cyano groups, and the rest are as defined in Formula 1,
  • Ar3 and Ar5 are the same as or different from each other, and each independently a substituted or unsubstituted C6-C60 aryl group; or a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms, at least one of Ar3 and Ar5 is substituted or unsubstituted, and a monocyclic or polycyclic heteroaryl group having 2 to 60 carbon atoms including at least one N; or an aryl group having 6 to 60 carbon atoms substituted with one or more cyano groups, and the rest are as defined in Formula 1.
  • heterocyclic compound represented by Formula 1-3 has a linear and planar shape, overlap between the compounds increases and electron transport is faster. efficiency can be further improved.
  • the heterocyclic compound represented by Chemical Formula 1-4 has a relatively thermally stable structure with little structural interference due to surrounding functional groups, and moderate linearity and planarity, and a relatively thermally stable structure, the heterocyclic compound represented by Chemical Formula 1-4 When a cyclic compound is applied to a device, the lifespan of the device may be further improved.
  • the heterocyclic compound represented by Formula 1-5 has a structure that is very effective in separating HOMO and LUMO electron distribution, and this allows the compound to have an appropriate band gap, so the heterocyclic compound represented by Formula 1-5 is When used in a device, the driving effect of the device may be further improved.
  • Chemical Formula 1 may be represented by any one of the following compounds, but is not limited thereto.
  • the heterocyclic compound has a high glass transition temperature (Tg) and excellent thermal stability. This increase in thermal stability is an important factor in providing driving stability to the device.
  • the heterocyclic compound according to an exemplary embodiment of the present application may be prepared by a multi-step chemical reaction. Some intermediate compounds are prepared first, and the compound of Formula 1 can be prepared from the intermediate compounds. More specifically, the heterocyclic compound according to an exemplary embodiment of the present application may be prepared based on Preparation Examples to be described later.
  • organic light emitting device including the heterocyclic compound represented by Formula 1 above.
  • the "organic light emitting device” may be expressed in terms such as “organic light emitting diode”, “OLED (Organic Light Emitting Diodes)", “OLED device”, “organic electroluminescent device”, and the like.
  • the heterocyclic compound may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
  • the organic light emitting device includes a first electrode, a second electrode, and one or more organic material layers provided between the first and second electrodes, and at least one of the organic material layers. includes a heterocyclic compound represented by Formula 1 above.
  • the heterocyclic compound represented by Formula 1 is included in the organic material layer, the luminous efficiency and lifespan of the organic light-emitting device are excellent.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the first electrode may be a negative electrode
  • the second electrode may be an anode
  • the organic light emitting device may be a red organic light emitting device, and the heterocyclic compound according to Chemical Formula 1 may be used as a material of the red organic light emitting device.
  • the heterocyclic compound according to Formula 1 may be used as an N-type host.
  • the organic material layer includes one or more emission layers, and the emission layer includes the heterocyclic compound represented by Formula 1 above.
  • the heterocyclic compound represented by Formula 1 is included in the light emitting layer of the organic material layer, the luminous efficiency and lifespan of the organic light emitting device are more excellent.
  • the organic material layer may further include one or more of the following compounds of Group A to Group C.
  • the organic material layer includes one or more emission layers
  • the emission layer includes the heterocyclic compound represented by Formula 1 as a first compound, and further includes one of the compounds of Group A to Group C as a second compound can do.
  • the heterocyclic compound represented by Formula 1 and the compound of Group A to Group C are included in the light emitting layer of the organic material layer, the luminous efficiency and lifespan of the organic light emitting device are more excellent.
  • the heterocyclic compound according to Formulas A to C may be used as a P-type host.
  • the organic material layer includes one or more emission layers, and the emission layer further includes one of the heterocyclic compound represented by Formula 1 and the compounds of Groups A to C.
  • the heterocyclic compound represented by Formula 1 and the compound of Groups A to C is simultaneously included in the light emitting layer of the organic material layer, the luminous efficiency and lifespan of the organic light emitting device are more excellent due to the exciplex phenomenon Do.
  • the organic material layer may include a light emitting layer, and the light emitting layer may include the heterocyclic compound as a host material of the light emitting material.
  • the light emitting layer may include two or more host materials, and at least one of the host materials may include the heterocyclic compound as a host material of the light emitting material.
  • the light emitting layer may be used by pre-mixing two or more host materials, and at least one of the two or more host materials uses the heterocyclic compound as a host material of the light emitting material may include
  • the pre-mixed means that the light emitting layer is mixed with two or more host materials before depositing them on the organic material layer and put it in one park.
  • the light emitting layer may include two or more host materials, each of the two or more host materials includes one or more p-type host materials and n-type host materials, and at least one of the host materials
  • One may include the heterocyclic compound as a host material of the light emitting material. In this case, driving, efficiency, and lifespan of the organic light emitting diode may be improved.
  • the organic light emitting device of the present invention may further include one or more layers selected from the group consisting of a light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a hole auxiliary layer, and a hole blocking layer.
  • the organic light emitting device may be manufactured by a conventional method and material for manufacturing an organic light emitting device, except for forming an organic material layer using the above-described heterocyclic compound.
  • another exemplary embodiment of the present application provides a composition for an organic material layer of an organic light emitting device that simultaneously includes one of the heterocyclic compound represented by Formula 1 and the compound of Groups A to C.
  • the heterocyclic compound represented by Formula 1 in the composition the weight ratio of one of the compounds of Group A to Group C may be 1: 10 to 10: 1, and 1: 8 to 8 : may be 1, may be 1: 5 to 5: 1, may be 1: 2 to 2: 1, but is not limited thereto.
  • heterocyclic compound represented by Formula 1 and the compounds of Groups A to C included in the composition for the organic layer are the same as described above.
  • 1 to 3 illustrate the stacking order of the electrode and the organic material layer of the organic light emitting device according to an exemplary embodiment of the present application.
  • the scope of the present application be limited by these drawings, and the structure of an organic light emitting device known in the art may also be applied to the present application.
  • an organic light-emitting device in which an anode 200 , an organic material layer 300 , and a cathode 400 are sequentially stacked on a substrate 100 is illustrated.
  • an organic light emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented.
  • the organic light emitting diode according to FIG. 3 includes a hole injection layer 301 , a hole transport layer 302 , a light emitting layer 303 , a hole blocking layer 304 , an electron transport layer 305 , and an electron injection layer 306 .
  • a hole injection layer 301 a hole transport layer 302 , a light emitting layer 303 , a hole blocking layer 304 , an electron transport layer 305 , and an electron injection layer 306 .
  • the scope of the present application is not limited by such a laminated structure, and if necessary, the remaining layers except for the light emitting layer may be omitted, and other necessary functional layers may be further added.
  • an organic light emitting device includes a first electrode; a first stack provided on the first electrode and including a first light emitting layer; a charge generation layer provided on the first stack; a second stack provided on the charge generation layer and including a second light emitting layer; and a second electrode provided on the second stack.
  • the charge generating layer may include a heterocyclic compound represented by Formula 1 above.
  • the heterocyclic compound is used in the charge generating layer, driving, efficiency, and lifespan of the organic light emitting diode may be improved.
  • first stack and the second stack may each independently further include one or more of the aforementioned hole injection layer, hole transport layer, hole blocking layer, electron transport layer, electron injection layer, and the like.
  • an organic light emitting device having a two-stack tandem structure is exemplarily shown in FIG. 4 below.
  • the first electron blocking layer, the first hole blocking layer, and the second hole blocking layer described in FIG. 4 may be omitted in some cases.
  • materials other than the heterocyclic compound of Formula 1 are exemplified below, but these are for illustration only and not for limiting the scope of the present application, may be substituted with known materials.
  • anode material Materials having a relatively large work function may be used as the anode material, and transparent conductive oxides, metals, conductive polymers, or the like may be used.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO: Al or SnO 2 : Combination of metals and oxides such as Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDT), polypyrrole, and polyaniline, but are not limited thereto.
  • anode material Materials having a relatively low work function may be used as the anode material, and a metal, metal oxide, conductive polymer, or the like may be used.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • a known hole injection material may be used, for example, a phthalocyanine compound such as copper phthalocyanine disclosed in US Pat. No. 4,356,429 or Advanced Material, 6, p.677 (1994).
  • starburst-type amine derivatives such as tris(4-carbazolyl-9-ylphenyl)amine (TCTA), 4,4′,4′′-tri[phenyl(m-tolyl)amino]triphenylamine (m- MTDATA), 1,3,5-tris[4-(3-methylphenylphenylamino)phenyl]benzene (m-MTDAPB), polyaniline/Dodecylbenzenesulfonic acid or poly( 3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), polyaniline/Camphor
  • a pyrazoline derivative an arylamine derivative, a stilbene derivative, a triphenyldiamine derivative, etc.
  • a low molecular weight or high molecular material may be used.
  • Examples of the electron transport material include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, and fluorenone.
  • Derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, etc. may be used, and polymer materials as well as low molecular weight materials may be used.
  • LiF is typically used in the art, but the present application is not limited thereto.
  • a red, green, or blue light emitting material may be used as the light emitting material, and if necessary, two or more light emitting materials may be mixed and used.
  • a fluorescent material can be used as a light emitting material, it can also be used as a phosphorescent material.
  • As the light emitting material a material that emits light by combining holes and electrons respectively injected from the anode and the cathode may be used alone, but materials in which a host material and a dopant material together participate in light emission may be used.
  • the organic light emitting device may be a top emission type, a back emission type, or a double side emission type depending on a material used.
  • the heterocyclic compound according to an exemplary embodiment of the present application may act on a principle similar to that applied to an organic light emitting device in an organic electronic device including an organic solar cell, an organic photoreceptor, and an organic transistor.
  • Compound F1 of Table 1 was prepared in the same manner except that Intermediate A and Intermediate B of Table 1 were used instead of Compounds A and B during the preparation of Compound F1.
  • the target compound of Table 2 was prepared in the same manner except that Intermediate F1, Intermediate H, and Intermediate K of Table 2 below were used instead of Compounds F1, H, and K in the process of preparing the target compound 1.
  • the target compound of Table 4 was prepared in the same manner except that Intermediate F2, Intermediate H, and Intermediate K of Table 4 below were used instead of Compounds F2, H, and K in the preparation of the target compound 43. .
  • a glass substrate coated with an indium tin oxide (ITO) thin film to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonic washing was performed with a solvent such as acetone, methanol, isopropyl alcohol, etc., dried, and then UVO (Ultraviolet Ozone) treatment was performed for 5 minutes using UV in a UV (Ultraviolet) washer. After transferring the substrate to a plasma cleaner (PT), plasma treatment was performed to remove the ITO work function and residual film in a vacuum state, and then transferred to a thermal deposition equipment for organic deposition.
  • ITO indium tin oxide
  • the hole injection layer 2-TNATA (4,4',4''-Tris[2-naphthyl(phenyl)amino]triphenylamine) as a common layer on the ITO transparent electrode (anode) and the hole transport layer TAPC (4,4'-Cyclohexylidenebis) [N,N-bis(4-methylphenyl)benzenamine]) was formed.
  • a light emitting layer was deposited thereon by thermal vacuum deposition as follows.
  • the light emitting layer is a red host by using (piq) 2 (Ir) (acac) as a red phosphorescent dopant as a red host and (piq) 2 (Ir) (acac) 3 wt% based on the total weight of the light emitting layer.
  • 500 ⁇ was deposited.
  • 60 ⁇ of basocuproine (hereinafter, BCP) was deposited as a hole blocking layer, and 200 ⁇ of Alq 3 was deposited thereon as an electron transport layer.
  • lithium fluoride (LiF) was deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer, and then an aluminum (Al) cathode was deposited to a thickness of 1,200 ⁇ on the electron injection layer to form a cathode.
  • Organic light emitting devices of Examples 1 to 10 and Examples 1 to 16 were manufactured.
  • the measured characteristics of the organic light emitting device are shown in Table 7 below.
  • the compound corresponding to Formula 1 of the present application is a dibenzofuran (dibenzofuran) linker ⁇ -conjugation ( ⁇ -conjugation) by introducing an increased naphthobenzofuran (naphthobenzofuran), red (red host) It is judged that it helped to improve the efficiency and driving voltage of the device by having an appropriate T1 value and a band gap.
  • the T1 value means the energy level value of the triplet state.
  • the device can have a structure that is more thermally stable and has improved electron mobility characteristics, thereby improving device efficiency and driving voltage is considered to have helped
  • the compound corresponding to Chemical Formula 1 of the present application having a simple dibenzofuran linker or having substituents extended in both directions than the comparative compound in which a substituent is formed in one direction is more conjugated than the comparative compound When applied to a device due to (conjugation), it can have fast electron transport ability and has the advantage of being more stable to heat.
  • a compound corresponding to Formula 1 of the present invention and a P-type host having strong hole transfer (HT) properties or bipolar arylamine ( Bipolar Arylamine) compound was prepared in the same manner as in Experimental Example 1, except that the organic light emitting devices of Comparative Examples 5 and 6 and Examples 17 to 32 were prepared.
  • the measured characteristics of the organic light emitting device are shown in Table 8 below.
  • Example 17 A-1 compound 31 1:1 4.10 17.1 0.674, 0.326 101
  • Example 18 A-3 compound 102 1:1 4.60 17.0 0.673, 0.327 128
  • Example 19 A-4: compound 16 1:1 4.31 19.5 0.682, 0.318 95
  • Example 20 A-5: compound 115 1:1 4.02 18.5 0.677, 0.323 85
  • Example 22 B-1 compound 266 1:1 4.85 16.0 0.681, 0.319 75
  • Example 23 B-2 compound 228 1:1 5.00 17.2 0.675, 0.325 80
  • Example 24 B-3 compound 31 1:1 4.78 16.3 0.680, 0.320 105
  • Example 25 B-4 compound 153
  • the P-type host or Bipolar Arylamine compound of Table 8 was selected from the compounds of Groups A to C below.
  • a unipolar N-type (N-type) compound having a naphthobenzofuran linker corresponding to Chemical Formula 1 of the present application was added to the group When used as a host of the light emitting layer of an organic light emitting device by mixing with a unipolar P-type compound or a bipolar Arylamine compound corresponding to A to C, in Formula 1 of the present application Compared to the case of using a unipolar N-type (N-type) compound having a corresponding naphthobenzofuran linker as a single host, it shows excellent effects in the characteristics of lifespan, efficiency, and driving voltage could check
  • the exciplex phenomenon is a phenomenon in which energy having a size of a HOMO level of a donor (p-host) and a LUMO level of an acceptor (n-host) is emitted through electron exchange between two molecules.
  • RISC Reverse Intersystem Crossing
  • arylamine bipolar compounds have strong hole transport (HT) properties and electron transfer (ET) properties at the same time due to the low hole and electron injection barriers of the bipolar compounds, and due to this, With a narrow bandgap and low T1 energy value, it is possible to show excellent efficiency in a phosphorescent red device even with a single host.
  • HT hole transport
  • ET electron transfer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

본 출원은 헤테로고리 화합물, 및 상기 헤테로고리 화합물이 유기물층에 함유되어 있는 유기 발광 소자를 제공한다.

Description

헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
본 출원은 2020년 08월 18일에 한국특허청에 제출된 한국 특허 출원 제 10-2020-0103402호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
전계 발광 소자는 자체 발광형 표시 소자의 일종으로서, 시야각이 넓고, 콘트라스트가 우수할 뿐만 아니라 응답속도가 빠르다는 장점을 가지고 있다.
유기 발광 소자는 2개의 전극 사이에 유기 박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기 발광 소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 정공이 유기 박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기 박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기 박막의 재료는 필요에 따라 발광 기능을 가질 수 있다. 예컨대, 유기 박막 재료로는 그 자체가 단독으로 발광층을 구성할 수 있는 화합물이 사용될 수도 있고, 또는 호스트-도펀트계 발광층의 호스트 또는 도펀트 역할을 할 수 있는 화합물이 사용될 수도 있다. 그 외에도, 유기 박막의 재료로서, 정공 주입, 정공 수송, 전자 차단, 정공 차단, 전자 수송, 전자 주입 등의 역할을 수행할 수 있는 화합물이 사용될 수도 있다.
유기 발광 소자의 성능, 수명 또는 효율을 향상시키기 위하여, 유기 박막의 재료의 개발이 지속적으로 요구되고 있다.
미국 특허 제4,356,429호
본 발명은 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자에 제공하고자 한다.
본 출원의 일 실시상태는, 하기 화학식 1로 표시되는 헤테로고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2021009969-appb-img-000001
상기 화학식 1에 있어서,
L1 내지 L5는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴렌기이며,
a, b, c, d 및 e는 각각 0 내지 3의 정수이고, a, b, c, d 및 e가 각각 2 이상인 경우 괄호 내의 치환기는 같거나 상이하고,
Ar1 내지 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고,
Ar1 내지 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고,
Rp는 수소; 중수소; 할로겐기; 치환 또는 비치환된 탄소수 6 내지 60의 알킬기이고, p는 0 내지 4의 정수이고, p가 2 이상인 경우 괄호 내의 치환기는 치환기는 같거나 상이하다.
또한, 본 출원의 다른 실시상태는, 제1 전극, 제2 전극 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상이 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 유기 발광 소자를 제공한다.
본 출원의 일 실시상태에 따른 헤테로고리 화합물은 유기 발광 소자의 유기물층 재료로서 사용할 수 있다. 상기 헤테로고리 화합물은 유기 발광 소자에서 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층, 전하 생성층 등의 재료로서 사용될 수 있다. 특히, 상기 화학식 1로 표시되는 헤테로고리 화합물은 유기 발광 소자의 발광층의 재료로서 사용될 수 있다. 또한, 상기 화학식 1로 표시되는 헤테로고리 화합물 유기 발광 소자에 사용하는 경우 소자의 구동전압을 낮추고, 광효율을 향상시키며, 화합물의 열적 안정성에 의하여 소자의 수명 특성을 향상시킬 수 있다.
도 1 내지 도 4는 각각 본 출원의 일 실시상태에 따른 유기 발광 소자의 적층구조를 개략적으로 나타낸 도이다.
<도면의 주요 부호의 설명>
100: 기판
200: 양극
300: 유기물층
301: 정공 주입층
302: 정공 수송층
303: 발광층
304: 정공 저지층
305: 전자 수송층
306: 전자 주입층
400: 음극
이하 본 출원에 대해서 자세히 설명한다.
본 출원의 일 실시상태는, 하기 화학식 1로 표시되는 헤테로고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2021009969-appb-img-000002
상기 화학식 1에 있어서,
L1 내지 L5는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴렌기이며,
a, b, c, d 및 e는 각각 0 내지 3의 정수이고, a, b, c, d 및 e가 각각 2 이상인 경우 괄호 내의 치환기는 같거나 상이하고,
Ar1 내지 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고,
Ar1 내지 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고,
Rp는 수소; 중수소; 할로겐기; 치환 또는 비치환된 탄소수 6 내지 60의 알킬기이고, p는 0 내지 4의 정수이고, p가 2 이상인 경우 괄호 내의 치환기는 치환기는 같거나 상이하다.
본 명세서에 있어서, "치환 또는 비치환"이란 중수소; 시아노기; 할로겐기; 탄소수 1 내지 60의 직쇄 또는 분지쇄의 알킬; 탄소수 2 내지 60의 직쇄 또는 분지쇄의 알케닐; 탄소수 2 내지 60의 직쇄 또는 분지쇄의 알키닐; 탄소수 3 내지 60의 단환 또는 다환의 시클로알킬; 탄소수 2 내지 60의 단환 또는 다환의 헤테로시클로알킬; 탄소수 6 내지 60의 단환 또는 다환의 아릴; 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴; -SiRR'R"; -P(=O)RR'; 탄소수 1 내지 20의 알킬아민; 탄소수 6 내지 60의 단환 또는 다환의 아릴아민; 및 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴아민으로 이루어진 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중에서 선택된 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미하고, 상기 R, R'및 R"은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 탄소수 60의 알킬; 치환 또는 비치환된 탄소수 6 내지 60의 아릴; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴인 것을 의미한다.
본 명세서에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 탄소 원자에 수소 원자가 결합된 것을 의미한다. 다만, 중수소(2H, Deuterium)는 수소의 동위원소이므로, 일부 수소 원자는 중수소일 수 있다.
본 출원의 일 실시상태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 치환기로 올 수 있는 위치가 모두 수소 또는 중수소인 것을 의미할 수 있다. 즉, 중수소의 경우 수소의 동위원소로, 일부의 수소 원자는 동위원소인 중수소일 수 있으며, 이 때 중수소의 함량은 0% 내지 100%일 수 있다.
본 출원의 일 실시상태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"에 있어, 중수소의 함량이 0%, 수소의 함량이 100%, 치환기는 모두 수소 등 중수소를 명시적으로 배제하지 않는 경우에는 수소와 중수소는 화합물에 있어 혼재되어 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 중수소는 수소의 동위원소(isotope)중 하나로 양성자(proton) 1개와 중성자(neutron) 1개로 이루어진 중양성자(deuteron)를 원자핵(nucleus)으로 가지는 원소로서, 수소-2로 표현될 수 있으며, 원소기호는 D 또는 2H로 쓸 수도 있다.
본 출원의 일 실시상태에 있어서, 동위원소는 원자 번호(atomic number, Z)는 같지만, 질량수(mass number, A)가 다른 원자를 의미하는 동위원소는 같은 수의 양성자(proton)를 갖지만, 중성자(neutron)의 수가 다른 원소로도 해석할 수 있다.
본 출원의 일 실시상태에 있어서, 특정 치환기의 함량 T%의 의미는 기본이 되는 화합물이 가질 수 있는 치환기의 총 개수를 T1으로 정의하고, 그 중 특정의 치환기의 개수를 T2로 정의하는 경우 T2/T1×100 = T%로 정의할 수 있다.
즉, 일 예시에 있어서,
Figure PCTKR2021009969-appb-img-000003
로 표시되는 페닐기에 있어 중수소의 함량 20%라는 것은 페닐기가 가질 수 있는 치환기의 총 개수는 5(식 중 T1)개이고, 그 중 중수소의 개수가 1(식 중 T2)인 경우 20%로 표시될 수 있다. 즉, 페닐기에 있어 중수소의 함량 20%라는 것인 하기 구조식으로 표시될 수 있다.
Figure PCTKR2021009969-appb-img-000004
또한, 본 출원의 일 실시상태에 있어서, "중수소의 함량이 0%인 페닐기"의 경우 중수소 원자가 포함되지 않은, 즉 수소 원자 5개를 갖는 페닐기를 의미할 수 있다.
본 명세서에 있어서, 상기 할로겐은 불소, 염소, 브롬 또는 요오드일 수 있다.
본 명세서에 있어서, 상기 알킬기는 탄소수 1 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알킬기의 탄소수는 1 내지 60, 구체적으로 1 내지 40, 더욱 구체적으로, 1 내지 20일 수 있다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥실메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알케닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다. 구체적인 예로는 비닐기, 1-프로페닐기, 이소프로페닐기, 1-부테닐기, 2-부테닐기, 3-부테닐기, 1-펜테닐기, 2-펜테닐기, 3-펜테닐기, 3-메틸-1-부테닐기, 1,3-부타디에닐기, 알릴기, 1-페닐비닐-1-일기, 2-페닐비닐-1-일기, 2,2-디페닐비닐-1-일기, 2-페닐-2-(나프틸-1-일)비닐-1-일기, 2,2-비스(디페닐-1-일)비닐-1-일기, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알키닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알키닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다.
본 명세서에 있어서, 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 시클로알킬기는 탄소수 3 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 헤테로시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 시클로알킬기의 탄소수는 3 내지 60, 구체적으로 3 내지 40, 더욱 구체적으로 5 내지 20일 수 있다. 구체적으로, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 3-메틸시클로펜틸기, 2,3-디메틸시클로펜틸기, 시클로헥실기, 3-메틸시클로헥실기, 4-메틸시클로헥실기, 2,3-디메틸시클로헥실기, 3,4,5-트리메틸시클로헥실기, 4-tert-부틸시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 헤테로시클로알킬기는 헤테로 원자로서 O, S, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 헤테로시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 헤테로시클로알킬기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 20일 수 있다.
본 명세서에 있어서, 상기 아릴기는 탄소수 6 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 헤테로아릴기 등일 수도 있다. 상기 아릴기는 스피로기를 포함한다. 상기 아릴기의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 25일 수 있다. 상기 아릴기의 구체적인 예로는 페닐기, 비페닐기, 터페닐기, 나프틸기, 안트릴기, 크라이세닐기, 페난트레닐기, 페릴레닐기, 플루오란테닐기, 트리페닐레닐기, 페날레닐기, 파이레닐기, 테트라세닐기, 펜타세닐기, 플루오레닐기, 인데닐기, 아세나프틸레닐기, 벤조플루오레닐기, 스피로비플루오레닐기, 2,3-디히드로-1H-인데닐기, 이들의 축합고리기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 포스핀옥사이드기는 -P(=O)R101R102로 표시되고, R101 및 R102는 서로 같거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 아릴기; 및 헤테로고리기 중 적어도 하나로 이루어진 치환기일 수 있다. 상기 포스핀옥사이드기는 구체적으로 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 실릴기는 Si를 포함하고 상기 Si 원자가 라디칼로서 직접 연결되는 치환기이며, -SiR104R105R106로 표시되고, R104 내지 R106은 서로 같거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 아릴기; 및 헤테로고리기 중 적어도 하나로 이루어진 치환기일수 있다. 실릴기의 구체적인 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
본 명세서에 있어서, 상기 스피로기는 스피로 구조를 포함하는 기로서, 탄소수 15 내지 60일 수 있다. 예컨대, 상기 스피로기는 플루오레닐기에 2,3-디히드로-1H-인덴기 또는 시클로헥산기가 스피로 결합된 구조를 포함할 수 있다. 구체적으로, 하기 스피로기는 하기 구조식의 기 중 어느 하나를 포함할 수 있다.
Figure PCTKR2021009969-appb-img-000005
본 명세서에 있어서, 상기 헤테로아릴기는 헤테로 원자로서 S, O, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60인 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 상기 다환이란 헤테로아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 아릴기 등일 수도 있다. 상기 헤테로아릴기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 25일 수 있다. 상기 헤테로아릴기의 구체적인 예로는 피리딜기, 피롤릴기, 피리미딜기, 피리다지닐기, 푸라닐기, 티오펜기, 이미다졸릴기, 피라졸릴기, 옥사졸릴기, 이속사졸릴기, 티아졸릴기, 이소티아졸릴기, 트리아졸릴기, 푸라자닐기, 옥사디아졸릴기, 티아디아졸릴기, 디티아졸릴기, 테트라졸릴기, 파이라닐기, 티오파이라닐기, 디아지닐기, 옥사지닐기, 티아지닐기, 디옥시닐기, 트리아지닐기, 테트라지닐기, 퀴놀릴기, 이소퀴놀릴기, 퀴나졸리닐기, 이소퀴나졸리닐기, 퀴노졸리릴기, 나프티리딜기, 아크리디닐기, 페난트리디닐기, 이미다조피리디닐기, 디아자나프탈레닐기, 트리아자인덴기, 인돌릴기, 인돌리지닐기, 벤조티아졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티오펜기, 벤조푸란기, 디벤조티오펜기, 디벤조푸란기, 카바졸릴기, 벤조카바졸릴기, 디벤조카바졸릴기, 페나지닐기, 디벤조실롤기, 스피로비(디벤조실롤), 디히드로페나지닐기, 페녹사지닐기, 페난트리딜기, 이미다조피리디닐기, 티에닐기, 인돌로[2,3-a]카바졸릴기, 인돌로[2,3-b]카바졸릴기, 인돌리닐기, 10,11-디히드로-디벤조[b,f]아제핀기, 9,10-디히드로아크리디닐기, 페난트라지닐기, 페노티아티아지닐기, 프탈라지닐기, 나프틸리디닐기, 페난트롤리닐기, 벤조[c][1,2,5]티아디아졸릴기, 5,10-디히드로디벤조[b,e][1,4]아자실리닐, 피라졸로[1,5-c]퀴나졸리닐기, 피리도[1,2-b]인다졸릴기, 피리도[1,2-a]이미다조[1,2-e]인돌리닐기, 5,11-디히드로인데노[1,2-b]카바졸릴기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 아민기는 모노알킬아민기; 모노아릴아민기; 모노헤테로아릴아민기; -NH2; 디알킬아민기; 디아릴아민기; 디헤테로아릴아민기; 알킬아릴아민기; 알킬헤테로아릴아민기; 및 아릴헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 상기 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 디비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기, 비페닐나프틸아민기, 페닐비페닐아민기, 비페닐플루오레닐아민기, 페닐트리페닐레닐아민기, 비페닐트리페닐레닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴렌기는 아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 아릴기의 설명이 적용될 수 있다. 또한, 헤테로아릴렌기는 헤테로아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 헤테로아릴기의 설명이 적용될 수 있다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오쏘(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 “인접한”기로 해석될 수 있다.
본 출원의 일 실시상태에 따른 헤테로고리 화합물은 상기 화학식 1로 표시되는 것을 특징으로 한다. 보다 구체적으로, 상기 화학식 1로 표시되는 헤테로고리 화합물은 상기와 같은 코어 구조 및 치환기의 구조적 특징에 의하여 유기 발광 소자의 유기물층 재료로 사용될 수 있다.
본 출원의 일 실시상태에서, 상기 화학식 1의 L1 내지 L5는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴렌기일 수 있다.
본 출원의 일 실시상태에서, 상기 L1 내지 L5는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 탄소수 6 내지 40의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴렌기일 수 있다.
본 출원의 일 실시상태에서, 상기 L1 내지 L5는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴렌기일 수 있다.
또 하나의 일 실시상태에서, 상기 L1은 직접결합이다.
또 하나의 일 실시상태에서, 상기 L1은 페닐렌기이다.
또 하나의 일 실시상태에서, 상기 L1은 나프틸렌기이다.
또 하나의 일 실시상태에서, 상기 L2는 직접결합이다.
또 하나의 일 실시상태에서, 상기 L2는 페닐렌기이다.
또 하나의 일 실시상태에서, 상기 L2는 나프틸렌기이다.
또 하나의 일 실시상태에서, 상기 L3은 직접결합이다.
또 하나의 일 실시상태에서, 상기 L3은 페닐렌기이다.
또 하나의 일 실시상태에서, 상기 L3은 나프틸렌기이다.
또 하나의 일 실시상태에서, 상기 L4는 직접결합이다.
또 하나의 일 실시상태에서, 상기 L4는 페닐렌기이다.
또 하나의 일 실시상태에서, 상기 L4는 나프틸렌기이다.
또 하나의 일 실시상태에서, 상기 L5는 직접결합이다.
또 하나의 일 실시상태에서, 상기 L5는 페닐렌기이다.
또 하나의 일 실시상태에서, 상기 L5는 나프틸렌기이다.
본 출원의 일 실시상태에서, 상기 화학식 1의 a, b, c, d 및 e는 각각 0 내지 3의 정수이고, a, b, c, d 및 e가 각각 2 이상일 경우, 괄호 내의 치환기는 서로 같거나 상이할 수 있다.
본 출원의 일 실시상태에서, 상기 화학식 1의 Ar1 내지 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고, Ar1 내지 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기일 수 있다.
본 출원의 일 실시상태에서, 상기 Ar1 내지 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이고, Ar1 내지 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 40의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 40의 아릴기일 수 있다.
본 출원의 일 실시상태에서, 상기 Ar1 내지 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴기이고, Ar1 내지 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 20의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 20의 아릴기일 수 있다.
본 출원의 일 실시상태에서, 상기 Ar1 내지 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 나프틸기; 또는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고, Ar1 내지 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기일 수 있다.
본 출원의 일 실시상태에서, 상기 N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기는 하기 화학식 3으로 표시되는 기일 수 있다.
[화학식 3]
Figure PCTKR2021009969-appb-img-000006
상기 화학식 3에 있어서,
X1은 CR1 또는 N이고, X2는 CR2 또는 N이고, X3은 CR3 또는 N이고, X4는 CR4 또는 N이고, X5는 CR5 또는 N이고, 상기 X1 내지 X5 중 적어도 1개는 N이고,
R1 내지 R5 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 치환 또는 비치환된 탄소수 2 내지 60의 알케닐기; 치환 또는 비치환된 탄소수 2 내지 60의 알키닐기; 치환 또는 비치환된 탄소수 1 내지 20의 알콕시기; 치환 또는 비치환된 탄소수 3 내지 60의 시클로알킬기; 치환 또는 비치환된 탄소수 2 내지 60의 헤테로시클로알킬기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기; -P(=O)R10R12; 및 NR13R14로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 지방족 또는 방향족 탄화수소 고리 또는 헤테로 고리를 형성하며, 상기 R10 내지 R14는 서로 같거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고,
Figure PCTKR2021009969-appb-img-000007
은 상기 화학식 1과 연결되는 부위이다.
본 출원의 일 실시상태에 있어서, 상기 화학식 3은 하기 화학식 3-1 내지 3-4 중 하나로 표시될 수 있다. 여기서,
Figure PCTKR2021009969-appb-img-000008
은 상기 화학식 1과 연결되는 부위이다.
[화학식 3-1]
Figure PCTKR2021009969-appb-img-000009
[화학식 3-2]
Figure PCTKR2021009969-appb-img-000010
[화학식 3-3]
Figure PCTKR2021009969-appb-img-000011
[화학식 3-4]
Figure PCTKR2021009969-appb-img-000012
화학식 3-1에 있어서, X1, X3 및 X5 중 하나 이상은 N이고, 나머지는 화학식 3에서 정의한 바와 같고,
화학식 3-2에 있어서, X1, X2 및 X5 중 하나 이상은 N이고, 나머지는 화학식 3에서 정의한 바와 같고,
화학식 3-3에 있어서, X1 내지 X3 중 하나 이상은 N이고, 나머지는 화학식 화학식 3에서 정의한 바와 같고,
화학식 3-4에 있어서, X1, X2 및 X5 중 하나 이상은 N이고, 나머지는 화학식 3에서 정의한 바와 같고,
Z1은 O; 또는 S이고,
R2, R4 및 R6 내지 R9는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 치환 또는 비치환된 탄소수 2 내지 60의 알케닐기; 치환 또는 비치환된 탄소수 2 내지 60의 알키닐기; 치환 또는 비치환된 탄소수 1 내지 20의 알콕시기; 치환 또는 비치환된 탄소수 3 내지 60의 시클로알킬기; 치환 또는 비치환된 탄소수 2 내지 60의 헤테로시클로알킬기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기; -P(=O)R10R12; 및 NR13R14로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 지방족 또는 방향족 탄화수소 고리 또는 헤테로 고리를 형성하며, 상기 R10 내지 R14는 서로 같거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이다.
본 출원의 일 실시상태에서, 상기 화학식 3은 하기 그룹 1 중 어느 하나로 표시되는 것일 수 있다.
[그룹 1]
Figure PCTKR2021009969-appb-img-000013
상기 그룹 1의 R1 내지 R5 및
Figure PCTKR2021009969-appb-img-000014
의 정의는 화학식 3과 같다.
또 다른 일 실시상태에서, 상기 화학식 1의 Rp는 수소; 중수소; 할로겐기; 치환 또는 비치환된 탄소수 6 내지 60의 알킬기이고, p는 0 내지 4의 정수이고, p가 2 이상인 경우 괄호 내의 치환기는 치환기는 같거나 상이할 수 있다.
또 다른 일 실시상태에서, 상기 Rp는 수소; 또는 중수소일 수 있다.
또 다른 일 실시상태에서, 상기 Rp는 수소이다.
본 출원의 일 실시상태에서, 상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2로 표시될 수 있다.
[화학식 1-1]
Figure PCTKR2021009969-appb-img-000015
[화학식 1-2]
Figure PCTKR2021009969-appb-img-000016
상기 화학식 1-1에 있어서, Ar1 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고, Ar1 및 Ar4 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고, 나머지는 화학식 1에서 정의한 바와 같고,
상기 화학식 1-2에 있어서, Ar2 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고, Ar2 및 Ar4 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고, 나머지는 화학식 1에서 정의한 바와 같다.
상기 화학식 1-1로 표시되는 헤테로고리 화합물은 선형적이고 평면적인 형태를 띠고 있어 화합물간의 겹침이 증가하여 전자 수송이 보다 빨라지므로, 상기 화학식 1-1로 표시되는 헤테로고리 화합물을 소자에 사용할 경우 소자의 효율이 더욱 우수해질 수 있다.
또한, 상기 화학식 1-2로 표시되는 헤테로고리 화합물은 HOMO와 LUMO 전자분포를 분리시키는데 매우 효과적인 구조로 이는 화합물이 적정 밴드갭을 가질 수 있게 하므로, 상기 화학식 1-2로 표시되는 헤테로고리 화합물을 소자에 사용할 경우, 소자의 구동 효과가 더욱 우수해질 수 있다.
본 출원의 일 실시상태에서, 상기 화학식 1은 하기 화학식 1-3 내지 1-5 중 어느 하나로 표시될 수 있다.
[화학식 1-3]
Figure PCTKR2021009969-appb-img-000017
[화학식 1-4]
Figure PCTKR2021009969-appb-img-000018
[화학식 1-5]
Figure PCTKR2021009969-appb-img-000019
상기 화학식 1-3에 있어서, Ar1 및 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고, Ar1 및 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고, 나머지는 화학식 1에서 정의한 바와 같고,
상기 화학식 1-4에 있어서, Ar2 및 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고, Ar2 및 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고, 나머지는 화학식 1에서 정의한 바와 같고,
상기 화학식 1-5에 있어서, Ar3 및 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고, Ar3 및 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고, 나머지는 화학식 1에서 정의한 바와 같다.
상기 화학식 1-3으로 표시되는 헤테로고리 화합물은 선형적이고 평면적인 형태를 띠고 있어 화합물간의 겹침이 증가하여 전자 수송이 보다 빨라지므로, 상기 화학식 1-3으로 표시되는 헤테로고리 화합물을 소자에 사용할 경우 소자의 효율이 더욱 우수해질 수 있다.
상기 화학식 1-4로 표시되는 헤테로고리 화합물은 주변 작용기에 따른 구조적인 방해가 적고, 적당한 선형성과 평면성으로 증착 온도가 높지 않아 비교적 열적으로 안정한 구조를 갖기 때문에, 상기 화학식 1-4로 표시되는 헤테로고리 화합물을 소자에 적용할 경우, 소자의 수명이 더욱 우수해질 수 있다.
또한, 상기 화학식 1-5로 표시되는 헤테로고리 화합물은 HOMO와 LUMO 전자분포를 분리시키는데 매우 효과적인 구조로 이는 화합물이 적정 밴드갭을 가질 수 있게 하므로, 상기 화학식 1-5로 표시되는 헤테로고리 화합물을 소자에 사용할 경우, 소자의 구동 효과가 더욱 우수해질 수 있다.
본 출원의 일 실시상태에 따르면, 상기 화학식 1은 하기 화합물 중 어느 하나로 표시될 수 있으나, 이에만 한정되는 것은 아니다.
Figure PCTKR2021009969-appb-img-000020
Figure PCTKR2021009969-appb-img-000021
Figure PCTKR2021009969-appb-img-000022
Figure PCTKR2021009969-appb-img-000023
Figure PCTKR2021009969-appb-img-000024
Figure PCTKR2021009969-appb-img-000025
Figure PCTKR2021009969-appb-img-000026
Figure PCTKR2021009969-appb-img-000027
Figure PCTKR2021009969-appb-img-000028
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 정공 수송용 물질, 발광층 물질, 전자 수송층 물질 및 전하 생성층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 에너지 밴드갭을 미세하게 조절이 가능하게 하며, 한편으로 유기물 사이에서의 계면에서의 특성을 향상되게 하며 물질의 용도를 다양하게 할 수 있다.
한편, 상기 헤테로고리 화합물은 유리 전이 온도(Tg)가 높아 열적 안정성이 우수하다. 이러한 열적 안정성의 증가는 소자에 구동 안정성을 제공하는 중요한 요인이 된다.
본 출원의 일 실시상태에 따른 헤테로고리 화합물은 다단계 화학반응으로 제조할 수 있다. 일부 중간체 화합물이 먼저 제조되고, 그 중간체 화합물들로부터 화학식 1의 화합물이 제조될 수 있다. 보다 구체적으로, 본 출원의 일 실시상태에 따른 헤테로고리 화합물은 후술하는 제조예를 기초로 제조될 수 있다.
본 출원의 다른 실시상태는, 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 유기 발광 소자를 제공한다. 상기 "유기 발광 소자"는 "유기발광다이오드", "OLED(Organic Light Emitting Diodes)", "OLED 소자", "유기 전계 발광 소자" 등의 용어로 표현될 수 있다.
상기 헤테로고리 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
구체적으로, 본 출원의 일 실시상태에 따른 유기 발광 소자는, 제1 전극, 제2 전극 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함한다. 상기 유기물층에 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함할 경우, 유기 발광 소자의 발광 효율 및 수명이 우수하다.
본 출원의 일 실시상태에 있어서, 상기 제1 전극은 양극일 수 있고, 상기 제2 전극은 음극일 수 있다.
또 다른 일 실시상태에 있어서, 상기 제1 전극은 음극일 수 있고, 상기 제2 전극은 양극일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1에 따른 헤테로고리 화합물을 적색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1에 따른 헤테로고리 화합물은 N형 호스트로 사용될 수 있다.
또한, 상기 유기물층은 1층 이상의 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함한다. 상기 유기물층 중에서 발광층에 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함할 경우, 유기 발광 소자의 발광 효율 및 수명이 더욱 우수하다.
또한, 본 출원 유기 발광 소자에서, 상기 유기물층은 하기 그룹 A 내지 그룹 C의 화합물 중 어느 하나를 1 이상 더 포함할 수 있다.
[그룹 A]
Figure PCTKR2021009969-appb-img-000029
[그룹 B]
Figure PCTKR2021009969-appb-img-000030
[그룹 C]
Figure PCTKR2021009969-appb-img-000031
Figure PCTKR2021009969-appb-img-000032
Figure PCTKR2021009969-appb-img-000033
Figure PCTKR2021009969-appb-img-000034
또한, 상기 유기물층은 1층 이상의 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 헤테로고리 화합물을 제1 화합물로 포함하고, 상기 그룹 A 내지 그룹 C의 화합물 중 하나를 제2 화합물로 더 포함할 수 있다. 상기 유기물층 중에서 발광층에 상기 화학식 1로 표시되는 헤테로고리 화합물 및 상기 그룹 A 내지 그룹 C의 화합물을 포함할 경우, 유기 발광 소자의 발광 효율 및 수명이 더욱 우수하다.
본 출원의 일 실시상태에 있어서, 상기 화학식 A 내지 C에 따른 헤테로고리 화합물은 P형 호스트로 사용될 수 있다.
또한, 상기 유기물층은 1층 이상의 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 헤테로고리 화합물 및 상기 그룹 A 내지 그룹 C의 화합물 중 하나를 더 포함한다. 상기 유기물층 중에서 발광층에 상기 화학식 1로 표시되는 헤테로고리 화합물 및 상기 그룹 A 내지 그룹 C의 화합물 중 하나를 동시에 포함할 경우, 엑시플렉스(Exciplex)현상에 의하여 유기 발광 소자의 발광 효율 및 수명이 더욱 우수하다.
본 출원 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 헤테로고리 화합물을 발광 재료의 호스트 물질로 포함할 수 있다.
본 출원 유기 발광 소자에서, 상기 발광층은 2개 이상의 호스트 물질을 포함할 수 있으며, 상기 호스트 물질 중 적어도 1개는 상기 헤테로고리 화합물을 발광 재료의 호스트 물질로 포함할 수 있다.
본 출원 유기 발광 소자에서, 상기 발광층은 2개 이상의 호스트 물질을 예비 혼합(pre-mixed)하여 사용할 수 있으며, 상기 2개 이상의 호스트 물질 중 적어도 1개는 상기 헤테로고리 화합물을 발광 재료의 호스트 물질로 포함할 수 있다.
상기 예비 혼합(pre-mixed)은 상기 발광층은 2개 이상의 호스트 물질을 유기물층에 증착하기 전에 먼저 재료를 섞어서 하나의 공원에 담아 혼합하는 것을 의미한다.
본 출원 유기 발광 소자에서, 상기 발광층은 2개 이상의 호스트 물질을 포함할 수 있으며, 상기 2개 이상의 호스트 물질은 각각 1개 이상의 p 타입 호스트 재료 및 n 타입 호스트 재료를 포함하고, 상기 호스트 물질 중 적어도 1개는 상기 헤테로고리 화합물을 발광 재료의 호스트 물질로 포함할 수 있다. 이 경우, 유기 발광 소자의 구동, 효율 및 수명이 우수해질 수 있다.
본 발명의 유기 발광 소자는 발광층, 정공 주입층, 정공 수송층, 전자 주입층, 전자 수송층, 정공 보조층 및 정공 저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함할 수 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자는 전술한 헤테로고리 화합물을 이용하여 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
또한, 본 출원의 다른 실시상태는, 상기 화학식 1로 표시되는 헤테로고리 화합물 및 상기 그룹 A 내지 그룹 C의 화합물 중 하나를 동시에 포함하는 것인 유기 발광 소자의 유기물층용 조성물을 제공한다.
본 출원의 다른 실시상태는, 상기 조성물 내 상기 화학식 1로 표시되는 헤테로고리 화합물 : 상기 그룹 A 내지 그룹 C의 화합물 중 하나의 중량비는 1 : 10 내지 10 : 1일 수 있고, 1 : 8 내지 8 : 1일 수 있고, 1 : 5 내지 5 : 1 일 수 있으며, 1 : 2 내지 2 : 1일 수 있으나, 이에만 한정되는 것은 아니다.
상기 유기물층용 조성물이 포함하는 화학식 1로 표시되는 헤테로고리 화합물 및 상기 그룹 A 내지 그룹 C의 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
도 1 내지 3에 본 출원의 일 실시상태에 따른 유기 발광 소자의 전극과 유기물층의 적층 순서를 예시하였다. 그러나, 이들 도면에 의하여 본 출원의 범위가 한정될 것을 의도한 것은 아니며, 당 기술분야에 알려져 있는 유기 발광 소자의 구조가 본 출원에도 적용될 수 있다.
도 1에 따르면, 기판(100) 상에 양극(200), 유기물층(300) 및 음극(400)이 순차적으로 적층된 유기 발광 소자가 도시된다. 그러나, 이와 같은 구조에만 한정되는 것은 아니고, 도 2와 같이, 기판 상에 음극, 유기물층 및 양극이 순차적으로 적층된 유기 발광 소자가 구현될 수도 있다.
도 3은 유기물층이 다층인 경우를 예시한 것이다. 도 3에 따른 유기 발광 소자는 정공 주입층(301), 정공 수송층(302), 발광층(303), 정공 저지층(304), 전자 수송층(305) 및 전자 주입층(306)을 포함한다. 그러나, 이와 같은 적층 구조에 의하여 본 출원의 범위가 한정되는 것은 아니며, 필요에 따라 발광층을 제외한 나머지 층은 생략될 수도 있고, 필요한 다른 기능층이 더 추가될 수 있다.
또한, 본 출원의 일 실시상태에 따른 유기 발광 소자는, 제1 전극; 상기 제1 전극 상에 구비되고 제1 발광층을 포함하는 제1 스택; 상기 제1 스택 상에 구비되는 전하 생성층; 상기 전하 생성층 상에 구비되고 제2 발광층을 포함하는 제2 스택; 및 상기 제2 스택 상에 구비되는 제2 전극을 포함한다.
이 때, 상기 전하 생성층은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함할 수 있다. 상기 헤테로고리 화합물이 전하 생성층에 사용될 경우, 유기 발광 소자의 구동, 효율 및 수명이 우수해질 수 있다.
또한, 상기 제1 스택 및 제2 스택은 각각 독립적으로 전술한 정공 주입층, 정공 수송층, 정공 저지층, 전자 수송층, 전자 주입층 등을 1종 이상 추가로 포함할 수 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자로서, 2-스택 텐덤 구조의 유기 발광 소자를 하기 도 4에 예시적으로 나타내었다.
이 때, 하기 도 4에 기재된 제1 전자 저지층, 제1 정공 저지층 및 제2 정공 저지층 등은 경우에 따라 생략될 수 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자에 있어서, 상기 화학식 1의 헤테로고리 화합물 이외의 재료를 하기에 예시하지만, 이들은 예시를 위한 것일 뿐 본 출원의 범위를 한정하기 위한 것은 아니며, 당 기술분야에 공지된 재료들로 대체될 수 있다.
양극 재료로는 비교적 일함수가 큰 재료들을 이용할 수 있으며, 투명 전도성 산화물, 금속 또는 전도성 고분자 등을 사용할 수 있다. 상기 양극 재료의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
음극 재료로는 비교적 일함수가 낮은 재료들을 이용할 수 있으며, 금속, 금속 산화물 또는 전도성 고분자 등을 사용할 수 있다. 상기 음극 재료의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공 주입 재료로는 공지된 정공 주입 재료를 이용할 수도 있는데, 예를 들면, 미국 특허 제4,356,429호에 개시된 구리프탈로시아닌 등의 프탈로시아닌 화합물 또는 문헌 [Advanced Material, 6, p.677 (1994)]에 기재되어 있는 스타버스트형 아민 유도체류, 예컨대 트리스(4-카바조일-9-일페닐)아민(TCTA), 4,4',4"-트리[페닐(m-톨릴)아미노]트리페닐아민(m-MTDATA), 1,3,5-트리스[4-(3-메틸페닐페닐아미노)페닐]벤젠(m-MTDAPB), 용해성이 있는 전도성 고분자인 폴리아닐린/도데실벤젠술폰산(Polyaniline/Dodecylbenzenesulfonic acid) 또는 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), 폴리아닐린/캠퍼술폰산(Polyaniline/Camphor sulfonic acid) 또는 폴리아닐린/폴리(4-스티렌술포네이트)(Polyaniline/Poly(4-styrene-sulfonate))등을 사용할 수 있다.
정공 수송 재료로는 피라졸린 유도체, 아릴아민계 유도체, 스틸벤 유도체, 트리페닐디아민 유도체 등이 사용될 수 있으며, 저분자 또는 고분자 재료가 사용될 수도 있다.
전자 수송 재료로는 옥사디아졸 유도체, 안트라퀴노디메탄 및 이의 유도체, 벤조퀴논 및 이의 유도체, 나프토퀴논 및 이의 유도체, 안트라퀴논 및 이의 유도체, 테트라시아노안트라퀴노디메탄 및 이의 유도체, 플루오레논 유도체, 디페닐디시아노에틸렌 및 이의 유도체, 디페노퀴논 유도체, 8-히드록시퀴놀린 및 이의 유도체의 금속 착체 등이 사용될 수 있으며, 저분자 물질 뿐만 아니라 고분자 물질이 사용될 수도 있다.
전자 주입 재료로는 예를 들어, LiF가 당업계 대표적으로 사용되나, 본 출원이 이에 한정되는 것은 아니다.
발광 재료로는 적색, 녹색 또는 청색 발광재료가 사용될 수 있으며, 필요한 경우, 2 이상의 발광 재료를 혼합하여 사용할 수 있다. 또한, 발광 재료로서 형광 재료를 사용할 수도 있으나, 인광 재료로서 사용할 수도 있다. 발광 재료로는 단독으로서 양극과 음극으로부터 각각 주입된 정공과 전자를 결합하여 발광시키는 재료가 사용될 수도 있으나, 호스트 재료와 도펀트 재료가 함께 발광에 관여하는 재료들이 사용될 수도 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 출원의 일 실시상태에 따른 헤테로고리 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명하지만, 이들은 본 출원을 예시하기 위한 것일 뿐, 본 출원 범위를 한정하기 위한 것은 아니다.
<제조예 1> 목적 화합물 1의 제조
(1) 화합물 F1의 제조
Figure PCTKR2021009969-appb-img-000035
1) 화합물 D의 제조
화합물 A (20g, 89.68mmol), 화합물 B (15.6g, 89.68mmol), Pd(PPh3)4 (5.1g, 4.48mmol), 및 NaOH (7.2g, 179.36mmol)을 1,4-디옥산/물(1,4-Dioxane/H2O) (200mL/50mL)에 녹인 후 100℃에서 8시간 동안 교반하였다. 반응 완료된 혼합액을 메틸렌 클로라이드(Methylene chloride, MC)로 용해시켜 물로 추출하고 유기층을 무수 MgSO4로 건조 후 실리카겔 필터하였다. 필터된 여액을 회전증발기로 용매를 제거하여 노랑색 오일인 화합물 D 11.7g을 48% 수율로 얻었다.
2) 화합물 E의 제조
화합물 D (11.7g, 44.05mmol)을 CHCl3 (150mL)에 녹인 후 0℃에서 Br2 (1.2mL, 44.05mmol)를 한방울씩 적가(dropwise)하고 상온에서 2시간 동안 교반하였다. 반응 완료된 혼합액에 메탄올(MeOH)를 넣고 30분동안 교반 후 필터하여 하얀색 고체인 화합물 E 14.3g을 93% 수율로 얻었다.
3) 화합물 F1의 제조
화합물 E (14.3g, 40.89mmol)를 디메틸아세트아미드(Dimethylacetamide, DMA) (150mL)에 녹인 후 Cs2CO3 (26.5g, 81.79mmol)를 넣고 3시간 동안 160°C에서 교반하였다. 반응 완료된 혼합액을 필터하고 여액을 회전증발기로 용매를 제거하여 하얀색 고체인 화합물 F1 11.5g을 85% 수율로 얻었다.
(2) 목적 화합물 1의 제조
Figure PCTKR2021009969-appb-img-000036
1) 화합물 G의 제조
화합물 F1 (20g, 60.31mmol), 비스(피나콜라토)디보론(Bis(pinacolato)diboron) (30.6g, 120.63mmol), PdCl2dppf (2.2g, 3.02mmol), KOAc (18g, 180.93mmol)을 1,4-디옥산(1,4-Dioxane) (250mL)에 녹인 후, 100℃에서 4시간 동안 교반하였다. 반응 완료된 혼합액을 농축 후 MC로 용해시켜 물로 추출하고 유기층을 무수 MgSO4로 건조 후 실리카겔 필터하였다. 필터된 여액을 회전증발기로 용매를 제거하고 별도의 정제없이 갈색고체인 화합물 G 20g을 크루드(Crude) 상태로 얻었다.
2) 화합물 I의 제조
화합물 G (20g, 52.83mmol), 화합물 H (14g, 52.83mmol), Pd(PPh3)4 (3g, 2.64mmol), 및 K2CO3 (14.5g, 105.66mmol)을 1,4-디옥산/물(1,4-Dioxane/H2O) (250mL/50mL)에 녹인 후 100°C에서 6시간 동안 교반하였다. 반응 완료 후 석출된 고체를 여과하여 물(H2O), 메탄올(MeOH), 및 아세톤(Acetone)으로 씻어 하얀색 고체인 화합물 I 13.8g을 54% 수율로 얻었다.
3) 화합물 J의 제조
화합물 I (13.8g, 28.53mmol), 비스(피나콜라토)디보론(Bis(pinacolato)diboron) (14.5g, 57.06mmol), Pd(dba)2 (1.6g, 2.85mmol), XPhos (2.7g, 5.71mmol), 및 KOAc (8.4g, 85.59mmol)을 1,4-Dioxane (150mL)에 녹인 후, 100°C에서 14시간동안 교반하였다. 반응 완료된 혼합액을 농축 후 메틸렌 클로라이드(Methylene chloride, MC)로 용해시켜 물로 추출하고 유기층을 무수 MgSO4로 건조 후 실리카겔 필터하였다. 필터된 여액을 회전증발기로 용매를 제거하고 별도의 정제없이 갈색고체인 화합물 J 14g을 크루드(Crude) 상태로 얻었다.
4) 목적 화합물 1의 제조
화합물 J (14g, 24.35mmol), 화합물 K (6.9g, 24.35mmol), Pd(PPh3)4 (1.4g, 1.22mmol), 및 K2CO3 (6.7g, 48.69mmol)을 1,4-디옥산/물(1,4-Dioxane/H2O) (200mL/40mL)에 녹인 후 100°C에서 5시간 동안 교반하였다. 반응 완료 후 석출된 고체를 여과하여 H2O, MeOH, 아세톤(Acetone)으로 씻어 하얀색 고체인 목적 화합물 1(K) 11.7g을 74% 수율로 얻었다.
상기 화합물 F1의 제조 과정에서 화합물 A 및 B 대신 각각 하기 표 1의 중간체 A 및 중간체 B를 사용한 것을 제외하고 동일한 방법으로 하기 표 1의 화합물 F1을 제조하였다.
Figure PCTKR2021009969-appb-img-000037
또한, 상기 목적 화합물 1의 제조 과정에서 화합물 F1, H, 및 K 대신 각각 하기 표 2의 중간체 F1, 중간체 H 및 중간체 K를 사용한 것을 제외하고 동일한 방법으로 하기 표 2의 목적 화합물을 제조하였다.
Figure PCTKR2021009969-appb-img-000038
Figure PCTKR2021009969-appb-img-000039
<제조예 2> 목적 화합물 43의 제조
(1) 화합물 F2의 제조
Figure PCTKR2021009969-appb-img-000040
화합물 C (10g, 39.57mmol)를 CHCl3 (100mL)에 녹인 후 0°C에서 Br2 (2.04mL, 39.57mmol)를 한방울씩 적가(dropwise)하고 상온에서 2시간 동안 교반하였다. 반응 완료된 혼합액에 메탄올(MeOH)를 넣고 30분동안 교반 후 필터하여 하얀색 고체인 화합물 F2 11.8g을 90% 수율로 얻었다.
상기 화합물 F2의 제조 과정에서 화합물 C 대신 하기 표 2의 중간체 C를 사용한 것을 제외하고 동일한 방법으로 하기 표 3의 화합물 F2를 제조하였다.
Figure PCTKR2021009969-appb-img-000041
(2) 목적 화합물 43의 제조
제조예 1의 목적 화합물 1의 제조 과정에서 화합물 F1 대신 화합물 F2를 사용한 것을 제외하고 동일한 방법으로 제조하여 목적 화합물 43을 13.7g을 59% 수율로 얻었다.
또한, 상기 목적 화합물 43의 제조 과정에서 화합물 F2, H, 및 K 대신 각각 하기 표 4의 중간체 F2, 중간체 H 및 중간체 K를 사용한 것을 제외하고 동일한 방법으로 제조하여 하기 표 4의 목적 화합물을 제조하였다.
Figure PCTKR2021009969-appb-img-000042
Figure PCTKR2021009969-appb-img-000043
Figure PCTKR2021009969-appb-img-000044
Figure PCTKR2021009969-appb-img-000045
Figure PCTKR2021009969-appb-img-000046
상기 제조예 1 및 2와 같은 방법으로 화합물을 제조하여, 상기 제조예 이외의 화합물도 모두 합성하였고, 그 합성확인결과를 하기 표 5 및 표 6에 나타내었다. 하기 표 5는 FD-질량분석계(FD-MS: Field desorption mass spectrometry)의 측정값이고, 하기 표 6은 1H NMR(CDCl3, 200Mz)의 측정값이다.
화합물 FD-Mass 화합물 FD-Mass
1 m/z= 651.75 (C47H29N3O=651.23) 2 m/z= 651.75 (C47H29N3O=651.23)
3 m/z= 651.75 (C47H29N3O=651.23) 4 m/z= 651.75 (C47H29N3O=651.23)
5 m/z= 651.75 (C47H29N3O=651.23) 6 m/z= 651.75 (C47H29N3O=651.23)
7 m/z= 625.72 (C45H27N3O=625.22) 8 m/z= 651.75 (C47H29N3O=651.23)
9 m/z= 651.75 (C47H29N3O=651.23) 10 m/z= 651.75 (C47H29N3O=651.23)
11 m/z= 651.75 (C47H29N3O=651.23) 12 m/z= 601.69 (C43H27N3O=601.22)
13 m/z= 691.77 (C49H29N3O2=691.23) 14 m/z= 631.73 (C43H23N3OS=631.27)
15 m/z= 615.68 (C43H25N3O2=615.19) 16 m/z= 651.75 (C47H29N3O=651.23)
17 m/z= 727.85 (C53H33N3O=727.26) 18 m/z= 665.75 (C47H27N3O2=665.21)
19 m/z= 651.75 (C47H29N3O=651.23) 20 m/z= 623.73 (C46H28N2O=623.22)
21 m/z= 638.70 (C46H26N2O2=638.20) 22 m/z= 680.81 (C48H28N2OS=680.19)
23 m/z= 726.86 (C54H34N2O=726.27) 24 m/z= 664.75 (C48H28N2O2=664.22)
25 m/z= 651.75 (C47H29N3O=651.23) 26 m/z= 651.75 (C47H29N3O=651.23)
27 m/z= 727.85 (C53H33N3O=727.26) 28 m/z= 701.81 (C51H31N3O=701.25)
29 m/z= 651.75 (C47H29N3O=651.23) 30 m/z= 631.73 (C43H23N3OS=631.27)
31 m/z= 601.69 (C43H27N3O=601.22) 32 m/z= 615.68 (C43H25N3O2=615.19)
33 m/z= 651.75 (C47H29N3O=651.23) 34 m/z= 651.75 (C47H29N3O=651.23)
35 m/z= 651.75 (C47H29N3O=651.23) 36 m/z= 651.75 (C47H29N3O=651.23)
37 m/z= 727.85 (C53H33N3O=727.26) 38 m/z= 651.75 (C47H29N3O=651.23)
39 m/z= 638.70 (C46H26N2O2=638.20) 40 m/z= 634.73 (C46H28N2O=624.22)
41 m/z= 680.81 (C48H28N2OS=680.19) 42 m/z= 726.86 (C54H34N2O=726.27)
43 m/z= 651.75 (C47H29N3O=651.23) 44 m/z= 651.75 (C47H29N3O=651.23)
45 m/z= 651.75 (C47H29N3O=651.23) 46 m/z= 651.75 (C47H29N3O=651.23)
47 m/z= 651.75 (C47H29N3O=651.23) 48 m/z= 615.68 (C43H25N3O2=615.19)
49 m/z= 615.68 (C43H25N3O2=615.19) 50 m/z= 651.75 (C47H29N3O=651.23)
51 m/z= 691.77 (C49H29N3O2=691.23) 52 m/z= 651.75 (C47H29N3O=651.23)
53 m/z= 727.85 (C53H33N3O=727.26) 54 m/z= 625.72 (C45H27N3O=625.22)
55 m/z= 651.75 (C47H29N3O=651.23) 56 m/z= 651.75 (C47H29N3O=651.23)
57 m/z= 638.70 (C46H26N2O2=638.20) 58 m/z= 624.73 (C46H28N2O=624.22)
59 m/z= 638.70 (C46H26N2O2=638.20) 60 m/z= 624.73 (C46H28N2O=624.22)
61 m/z= 680.81 (C48H28N2OS=680.19) 62 m/z= 720.83 (C50H28N2OS=720.19)
63 m/z= 664.75 (C78H28N2O2=664.22) 64 m/z= 716.87 (C53H36N2O=716.18)
65 m/z= 664.75 (C48H28N2O2=664.22) 66 m/z= 680.81 (C48H28N2OS=680.19)
67 m/z= 624.73 (C46H28N2O=624.22) 68 m/z= 624.73 (C46H28N2O=624.22)
69 m/z= 651.75 (C47H29N3O=651.23) 70 m/z= 651.75 (C47H29N3O=651.23)
71 m/z= 651.75 (C47H29N3O=651.23) 72 m/z= 651.75 (C47H29N3O=651.23)
73 m/z= 615.68 (C43H25N3O2=615.19) 74 m/z= 665.75 (C47H27N3O2=665.21)
75 m/z= 615.68 (C43H25N3O2=615.19) 76 m/z= 665.75 (C47H27N3O2=665.21)
77 m/z= 631.73 (C43H23N3OS=631.27) 78 m/z= 615.68 (C43H25N3O2=615.19)
79 m/z= 651.75 (C47H29N3O=651.23) 80 m/z= 651.75 (C47H29N3O=651.23)
81 m/z= 650.76 (C48H30N2O=650.24) 82 m/z= 650.76 (C48H30N2O=650.24)
83 m/z= 650.76 (C48H30N2O=650.24) 84 m/z= 650.76 (C48H30N2O=650.24)
85 m/z= 614.69 (C44H26N2O2=614.20) 86 m/z= 614.69 (C44H26N2O2=614.20)
87 m/z= 624.73 (C46H28N2O=624.22) 88 m/z= 624.73 (C46H28N2O=624.22)
89 m/z= 624.73 (C46H28N2O=624.22) 90 m/z= 624.73 (C46H28N2O=624.22)
91 m/z= 638.70 (C46H26N2O2=638.20) 92 m/z= 638.70 (C46H26N2O2=638.20)
93 m/z= 701.81 (C51H31N3O=701.25) 94 m/z= 651.75 (C47H29N3O=651.23)
95 m/z= 701.81 (C51H31N3O=701.25) 96 m/z= 641.76 (C46H31N3O=641.25)
97 m/z= 601.69 (C43H27N3=601.22) 98 m/z= 651.75 (C47H29N3O=651.23)
99 m/z= 701.81 (C51H31N3O=701.25) 100 m/z= 651.75 (C47H29N3O=651.23)
101 m/z= 651.75 (C47H29N3O=651.23) 102 m/z= 625.72 (C45H27N3O=625.22)
103 m/z= 624.73 (C46H28N2O=624.22) 104 m/z= 624.73 (C46H28N2O=624.22)
105 m/z= 638.70 (C46H26N2O2=638.20) 106 m/z= 638.70 (C46H26N2O2=638.20)
107 m/z= 680.81 (C48H28N2OS=680.19) 108 m/z= 680.81 (C48H28N2OS=680.19)
109 m/z= 664.75 (C48H28N2O2=664.22) 110 m/z= 664.75 (C48H28N2O2=664.22)
111 m/z= 604.72 (C42H24N2OS=604.16) 112 m/z= 680.81 (C48H28N2OS=680.19)
113 m/z= 680.81 (C48H28N2OS=680.19) 114 m/z= 644.74 (C44H48N2O2S=644.16)
115 m/z= 651.75 (C47H29N3O=651.23) 116 m/z= 651.75 (C47H29N3O=651.23)
117 m/z= 651.75 (C47H29N3O=651.23) 118 m/z= 651.75 (C47H29N3O=651.23)
119 m/z= 651.75 (C47H29N3O=651.23) 120 m/z= 701.81 (C51H31N3O=701.25)
121 m/z= 651.75 (C47H29N3O=651.23) 122 m/z= 651.75 (C47H29N3O=651.23)
123 m/z= 651.75 (C47H29N3O=651.23) 124 m/z= 701.81 (C51H31N3O=701.25)
125 m/z= 651.75 (C47H29N3O=651.23) 126 m/z= 575.66 (C41H25N3O=575.20)
127 m/z= 650.76 (C48H30N2O=650.24) 128 m/z= 525.60 (C37H23N3O=525.18)
129 m/z= 615.68 (C43H25N3O2=615.19) 130 m/z= 650.76 (C48H30N2O=650.24)
131 m/z= 650.76 (C48H30N2O=650.24) 132 m/z= 650.76 (C48H30N2O=650.24)
133 m/z= 701.81 (C51H31N3O=701.25) 134 m/z= 651.75 (C47H29N3O=651.23)
135 m/z= 701.81 (C51H31N3O=701.25) 136 m/z= 641.76 (C46H31N3O=641.25)
137 m/z= 651.75 (C47H29N3O=651.23) 138 m/z= 651.75 (C47H29N3O=651.23)
139 m/z= 651.75 (C47H29N3O=651.23) 140 m/z= 625.72 (C45H27N3O=625.22)
141 m/z= 638.70 (C46H26N2O2=638.20) 142 m/z= 638.70 (C46H26N2O2=638.20)
143 m/z= 638.70 (C46H26N2O2=638.20) 144 m/z= 638.70 (C46H26N2O2=638.20)
145 m/z= 665.75 (C47H27N3O2=665.21) 146 m/z= 665.75 (C47H27N3O2=665.21)
147 m/z= 665.75 (C47H27N3O2=665.21) 148 m/z= 624.73 (C46H28N2O=624.22)
149 m/z= 624.73 (C46H28N2O=624.22) 150 m/z= 638.70 (C46H26N2O2=638.20)
151 m/z= 638.70 (C46H26N2O2=638.20) 152 m/z= 680.81 (C48H28N2OS=680.19)
153 m/z= 680.81 (C48H28N2OS=680.19) 154 m/z= 664.75 (C48H28N2O2=664.22)
155 m/z= 604.72 (C42H24N2OS=604.16) 156 m/z= 680.81 (C48H28N2OS=680.19)
157 m/z= 680.81 (C48H28N2OS=680.19) 158 m/z= 644.74 (C44H48N2O2S=644.16)
159 m/z= 624.73 (C46H28N2O=624.22) 160 m/z= 624.73 (C46H28N2O=624.22)
161 m/z= 624.73 (C46H28N2O=624.22) 162 m/z= 624.73 (C46H28N2O=624.22)
163 m/z= 651.75 (C47H29N3O=651.23) 164 m/z= 651.75 (C47H29N3O=651.23)
165 m/z= 651.75 (C47H29N3O=651.23) 166 m/z= 651.75 (C47H29N3O=651.23)
167 m/z= 615.68 (C43H25N3O2=615.19) 168 m/z= 615.68 (C43H25N3O2=615.19)
169 m/z= 651.75 (C47H29N3O=651.23) 170 m/z= 651.75 (C47H29N3O=651.23)
171 m/z= 651.75 (C47H29N3O=651.23) 172 m/z= 615.68 (C43H25N3O2=615.19)
173 m/z= 615.68 (C43H25N3O2=615.19) 174 m/z= 665.75 (C47H27N3O2=665.21)
175 m/z= 615.68 (C43H25N3O2=615.19) 176 m/z= 650.76 (C48H30N2O=650.24)
177 m/z= 650.76 (C48H30N2O=650.24) 178 m/z= 525.60 (C37H23N3O=525.18)
179 m/z= 575.66 (C41H25N3O=575.20) 180 m/z= 575.66 (C41H25N3O=575.20)
181 m/z= 624.73 (C46H28N2O=624.22) 182 m/z= 624.73 (C46H28N2O=624.22)
183 m/z= 624.73 (C46H28N2O=624.22) 184 m/z= 624.73 (C46H28N2O=624.22)
185 m/z= 664.75 (C48H28N2O2=664.22) 186 m/z= 680.81 (C48H28N2OS=680.19)
187 m/z= 651.75 (C47H29N3O=651.23) 188 m/z= 651.75 (C47H29N3O=651.23)
189 m/z= 651.75 (C47H29N3O=651.23) 190 m/z= 651.75 (C47H29N3O=651.23)
191 m/z= 651.75 (C47H29N3O=651.23) 192 m/z= 651.75 (C47H29N3O=651.23)
193 m/z= 615.68 (C43H25N3O2=615.19) 194 m/z= 615.68 (C43H25N3O2=615.19)
195 m/z= 615.68 (C43H25N3O2=615.19) 196 m/z= 615.68 (C43H25N3O2=615.19)
197 m/z= 650.76 (C48H30N2O=650.24) 198 m/z= 650.76 (C48H30N2O=650.24)
199 m/z= 601.69 (C43H27N3=601.22) 200 m/z= 525.60 (C37H23N3O=525.18)
201 m/z= 575.66 (C41H25N3O=575.20) 202 m/z= 624.73 (C46H28N2O=624.22)
203 m/z= 624.73 (C46H28N2O=624.22) 204 m/z= 624.73 (C46H28N2O=624.22)
205 m/z= 624.73 (C46H28N2O=624.22) 206 m/z= 680.81 (C48H28N2OS=680.19)
207 m/z= 631.73 (C43H23N3OS=631.27) 208 m/z= 638.70 (C46H26N2O2=638.20)
209 m/z= 624.73 (C46H28N2O=624.22) 210 m/z= 651.75 (C47H29N3O=651.23)
211 m/z= 651.75 (C47H29N3O=651.23) 212 m/z= 651.75 (C47H29N3O=651.23)
213 m/z= 651.75 (C47H29N3O=651.23) 214 m/z= 651.75 (C47H29N3O=651.23)
215 m/z= 651.75 (C47H29N3O=651.23) 216 m/z= 651.75 (C47H29N3O=651.23)
217 m/z= 615.68 (C43H25N3O2=615.19) 218 m/z= 615.68 (C43H25N3O2=615.19)
219 m/z= 615.68 (C43H25N3O2=615.19) 220 m/z= 615.68 (C43H25N3O2=615.19)
221 m/z= 650.76 (C48H30N2O=650.24) 222 m/z= 650.76 (C48H30N2O=650.24)
223 m/z= 525.60 (C37H23N3O=525.18) 224 m/z= 601.69 (C43H27N3=601.22)
225 m/z= 575.66 (C41H25N3O=575.20) 226 m/z= 624.73 (C46H28N2O=624.22)
227 m/z= 624.73 (C46H28N2O=624.22) 228 m/z= 624.73 (C46H28N2O=624.22)
229 m/z= 624.73 (C46H28N2O=624.22) 230 m/z= 680.81 (C48H28N2OS=680.19)
231 m/z= 680.81 (C48H28N2OS=680.19) 232 m/z= 651.75 (C47H29N3O=651.23)
233 m/z= 651.75 (C47H29N3O=651.23) 234 m/z= 651.75 (C47H29N3O=651.23)
235 m/z= 651.75 (C47H29N3O=651.23) 236 m/z= 651.75 (C47H29N3O=651.23)
237 m/z= 651.75 (C47H29N3O=651.23) 238 m/z= 651.75 (C47H29N3O=651.23)
239 m/z= 615.68 (C43H25N3O2=615.19) 240 m/z= 615.68 (C43H25N3O2=615.19)
241 m/z= 615.68 (C43H25N3O2=615.19) 242 m/z= 615.68 (C43H25N3O2=615.19)
243 m/z= 650.76 (C48H30N2O=650.24) 244 m/z= 650.76 (C48H30N2O=650.24)
245 m/z= 601.69 (C43H27N3=601.22) 246 m/z= 575.66 (C41H25N3O=575.20)
247 m/z= 575.66 (C41H25N3O=575.20) 248 m/z= 624.73 (C46H28N2O=624.22)
249 m/z= 624.73 (C46H28N2O=624.22) 250 m/z= 624.73 (C46H28N2O=624.22)
251 m/z= 624.73 (C46H28N2O=624.22) 252 m/z= 680.81 (C48H28N2OS=680.19)
253 m/z= 680.81 (C48H28N2OS=680.19) 254 m/z= 651.75 (C47H29N3O=651.23)
255 m/z= 651.75 (C47H29N3O=651.23) 256 m/z= 651.75 (C47H29N3O=651.23)
257 m/z= 651.75 (C47H29N3O=651.23) 258 m/z= 651.75 (C47H29N3O=651.23)
259 m/z= 651.75 (C47H29N3O=651.23) 260 m/z= 615.68 (C43H25N3O2=615.19)
261 m/z= 615.68 (C43H25N3O2=615.19) 262 m/z= 615.68 (C43H25N3O2=615.19)
263 m/z= 615.68 (C43H25N3O2=615.19) 264 m/z= 665.75 (C47H27N3O2=665.21)
265 m/z= 665.75 (C47H27N3O2=665.21) 266 m/z= 525.60 (C37H23N3O=525.18)
267 m/z= 601.69 (C43H27N3=601.22) 268 m/z= 575.66 (C41H25N3O=575.20)
269 m/z= 575.66 (C41H25N3O=575.20) 270 m/z= 650.76 (C48H30N2O=650.24)
271 m/z= 650.76 (C48H30N2O=650.24) 272 m/z= 650.76 (C48H30N2O=650.24)
273 m/z= 650.76 (C48H30N2O=650.24) 274 m/z= 624.73 (C46H28N2O=624.22)
275 m/z= 624.73 (C46H28N2O=624.22) 276 m/z= 624.73 (C46H28N2O=624.22)
277 m/z= 624.73 (C46H28N2O=624.22) 278 m/z= 588.65 (C42H24N2O2=588.18)
279 m/z= 638.70 (C46H26N2O2=638.20) 280 m/z= 588.65 (C42H24N2O2=588.18)
281 m/z= 638.70 (C46H26N2O2=638.20) 282 m/z= 624.73 (C46H28N2O=624.22)
283 m/z= 624.73 (C46H28N2O=624.22) 284 m/z= 624.73 (C46H28N2O=624.22)
285 m/z= 680.81 (C48H28N2OS=680.19) 286 m/z= 680.81 (C48H28N2OS=680.19)
287 m/z= 680.81 (C48H28N2OS=680.19) 288 m/z= 664.75 (C48H28N2O2=664.22)
289 m/z= 604.72 (C42H24N2OS=604.16) 290 m/z= 727.85 (C53H33N3O=727.26)
291 m/z= 601.69 (C43H27N3=601.22) 292 m/z= 651.75 (C47H29N3O=651.23)
293 m/z= 727.85 (C53H33N3O=727.26) 294 m/z= 727.85 (C53H33N3O=727.26)
295 m/z= 726.86 (C54H34N2O=726.27) 296 m/z= 727.85 (C53H33N3O=727.26)
297 m/z= 727.85 (C53H33N3O=727.26) 298 m/z= 677.79 (C49H31N3O=677.25)
299 m/z= 727.85 (C53H33N3O=727.26) 300 m/z= 561.58 (C37H21F2N3O=561.17)
301 m/z= 593.65 (C41H24FN3O=593.16) 302 m/z= 542.60 (C38H3FN2O=542.18)
303 m/z= 687.73 (C47H27F2N3O=687.21) 304 m/z= 669.74 (C47H28FN3O=669.22)
305 m/z= 550.61 (C38H22N4O=550.18) 306 m/z= 546.62 (C40H22N2O=546.17)
307 m/z= 549.62 (C39H23N3O=549.18) 308 m/z= 546.62 (C40H22N2O=546.17)
309 m/z= 701.77 (C49H27N5O=701.22) 310 m/z= 546.58 (C38H27N4O=546.15)
311 m/z= 546.58 (C38H27N4O=546.15) 312 m/z= 727.85 (C53H33N3O=727.26)
313 m/z= 727.85 (C53H33N3O=727.26) 314 m/z= 727.85 (C53H33N3O=727.26)
315 m/z= 727.85 (C53H33N3O=727.26) 316 m/z= 727.85 (C53H33N3O=727.26)
317 m/z= 561.58 (C37H21F2N3O=561.17) 318 m/z= 687.73 (C47H27F2N3O=687.21)
319 m/z= 686.75 (C48H28F2N2O=686.22) 320 m/z= 675.77 (C49H29N3O=675.23)
321 m/z= 546.62 (C40H22N2O=546.17) 322 m/z= 600.67 (C42H24N4O=600.20)
323 m/z= 783.95 (C55H33N3OS=78317) 324 m/z= 707.85 (C49H29N3OS=707.20)
325 m/z= 750.90 (C56H34N2O=750.27) 326 m/z= 767.89 (C55H33N3O2=767.26)
327 m/z= 753.90 (C55H35N3O=753.28) 328 m/z= 767.89 (C55H33N3O2=767.26)
실시예 1H NMR(CDCl3, 200Mz)
1 δ = 9.25(d, 2H), 9.05(d, 4H), 8.68(d, 1H), 8.46(d, 1H), 8.26(d, 1H), 8.03(d, 1H), 7.95(s, 1H), 7.81~7.69(m, 6H), 7.62~7.53(m, 6H), 7.49~7.33(m, 7H)
16 δ = 8.75(d, 2H), 8.68~8.46(m, 5H), 8.40(t, 1H), 8.26(d, 1H), 8.11~8.03(m, 4H), 7.95(s, 1H), 7.81~7.69(m, 6H), 7.59~7.53(m, 7H), 7.25(d, 2H)
25 δ = 8.28(d, 4H), 8.00~7.95(m, 5H), 7.81(d, 1H), 7.75~7.72(m, 6H), 7.66(d, 1H), 7.51~7.40(m, 7H), 7.33~7.30(m, 5H)
31 δ = 8.28(d, 4H), 8.00(d, 2H), 7.85~7.81(m, 5H), 7.75~7.72(m, 5H), 7.71(s, 1H), 7.66(d, 1H), 7.51~7.40(m, 7H), 7.25(d, 2H)
43 δ = 8.35(d, 2H), 8.15(d, 4H), 7.68(d, 1H), 7.56-7.50(m, 3H), 7.35(s, 1H), 7.32~7.29(m, 6H), 7.22~7.18(m, 6H), 7.09~6.97(m, 5H)
48 δ = 8.55(d, 2H), 8.25(m, 2H), 8.18(d, 1H), 7.98(d, 1H), 7.86-7.75(m, 6H), 7.71(s, 1H), 7.65(s, 1H), 7.52~7.49(m, 6H), 7.22~7.18(m, 5H)
68 δ = 8.85(d, 2H), 8.45(d, 2H), 8.18~8.16(m, 2H), 7.98(d, 1H), 7.88-7.75(m, 10H), 7.71(s, 1H), 7.65(s, 1H), 7.52~7.49(m, 7H), 7.25(d, 2H)
69 δ = 8.65(d, 2H), 8.28~8.26(m, 4H), 8.18(d, 1H), 8.06-7.92(m, 4H), 7.81(s, 1H), 7.71~7.69(m, 6H), 7.59~7.53(m, 7H), 7.25(m, 4H)
81 δ = 8.57(d, 2H), 8.28~8.26(m, 4H), 8.23(s, 1H), 8.00-7.92(m, 4H), 7.81(s, 1H), 7.79~7.71(m, 6H), 7.59~7.53(m, 7H), 7.25(m, 4H)
102 δ = 8.28(d, 4H), 8.18(d, 2H), 8.08~7.99(m, 5H), 7.75~7.72(m, 5H), 7.71(s, 1H), 7.66(d, 1H), 7.51~7.40(m, 7H), 7.25(d, 2H)
115 δ = 8.57(d, 1H), 8.25(m, 4H), 8.18(d, 1H), 8.06~8.03(m, 5H), 7.95(s, 1H), 7.75~7.71(m, 4H), 7.62~7.53(m, 6H), 7.49~7.43(m, 7H)
117 δ = 8.57(d, 1H), 8.27(m, 4H), 8.15(d, 1H), 8.06~7.92(m, 5H), 7.95(s, 1H), 7.75~7.73(m, 4H), 7.71(s, 1H), 7.70(s, 1H), 7.62~7.53(m, 6H), 7.50~7.48(m, 5H)
122 δ = 8.55(d, 1H), 8.27(m, 2H), 8.17(d, 1H), 7.92~7.85(m, 8H), 7.71(s, 1H), 7.70(s, 1H), 7.62~7.59(m, 7H), 7.43~7.39(m, 6H), 7.25(d, 2H)
143 δ = 8.55(d, 2H), 8.25(m, 2H), 8.15(d, 1H), 7.80-7.73(m, 8H), 7.71(s, 1H), 7.52~7.49(m, 6H), 7.242~7.32(m, 5H)
153 δ = 8.60(d, 1H), 8.42(d, 1H), 8.17(d, 1H), 8.06~7.85(m, 4H), 7.79~7.75(m, 3H), 7.72(s, 1H), 7.62~7.59(m, 17H)
162 δ = 9.09(s, 1H), 8.47~8.41(m, 2H), 8.17~8.15(m, 2H), 8.00~7.92(m, 4H), 7.72~7.69(m, 7H), 7.53~7.44(m, 12H)
163 δ = 8.26(m, 4H), 8.03~7.89(m, 6H), 7.71~7.59(m, 6H), 7.52~7.49(m, 6H), 7.40~7.37(m, 6H), 7.35(s, 1H)
187 δ = 8.27(m, 4H), 8.00~7.89(m, 5H), 7.81(d, 1H), 7.71~7.68(m, 6H), 7.60~7.52(m, 6H), 7.49~7.40(m, 6H), 7.37(s, 1H)
205 δ = 8.17(d, 1H), 8.02~7.88(m, 6H), 7.85~7.78(m, 6H), 7.60~7.59(m, 3H), 7.58(s, 1H), 7.50~7.45(m, 8H), 7.37(s, 1H), 7.25(d, 2H)
211 δ = 8.58(d, 1H), 8.29(m, 4H), 8.18(d, 1H), 8.01~7.92(m, 6H), 7.75~7.73(m, 2H), 7.70(s, 1H), 7.60~7.59(m, 3H), 7.50~7.45(m, 6H), 7.37(s, 1H), 7.25(m, 4H)
223 δ = 8.57(d, 1H), 8.38(m, 4H), 8.19(d, 1H), 7.95(d, 1H), 7.85~7.78(m, 6H), 7.70(s, 1H), 7.64(s, 1H), 7.60~7.59(m, 3H), 7.58(s, 1H), 7.50~7.45(m, 4H)
228 δ = 8.56(d, 2H), 8.42(d, 1H), 8.29(m, 2H), 8.18~8.15(m, 2H), 7.95~7.88(m, 7H), 7.80~7.79(m, 3H), 7.70(s, 1H), 7.65~7.59(m, 8H), 7.50~7.45(m, 2H)
232 δ = 8.59(d, 1H), 8.26(m, 4H), 8.19(d, 1H), 8.03~7.89(m, 3H), 7.81(d, 1H), 7.75(s, 1H), 7.71(s, 1H), 7.66~7.59(m, 9H), 7.52~7.49(m, 3H), 7.25(m, 4H)
243 δ = 8.55(d, 1H), 8.26(s, 1H), 8.19(d, 1H), 8.03~7.89(m, 8H), 7.78(s, 1H), 7.72(s, 1H), 7.69~7.55(m, 9H), 7.52~7.49(m, 6H), 7.35(m, 2H)
246 δ = 9.05(s, 1H), 8.56(d, 1H), 8.46(d, 1H), 8.29(d, 2H), 8.03~7.96(m, 5H), 7.80~7.79(m, 4H), 7.74(s, 1H), 7.70(s, 1H), 7.66~7.51(m, 9H)
253 δ = 8.59(d, 1H), 8.26(m, 4H), 8.20(d, 1H), 8.03~7.89(m, 3H), 7.84(d, 1H), 7.75(s, 1H), 7.71(s, 1H), 7.66~7.59(m, 9H), 7.50~7.40(m, 4H), 7.30(m, 4H)
255 δ = 8.55(d, 1H), 8.42(d, 1H), 8.26(m, 4H), 8.20(d, 1H), 8.03~8.00(m, 3H), 7.85(d, 1H), 7.75(s, 1H), 7.71(s, 1H), 7.66~7.59(m, 12H), 7.30(m, 4H)
263 δ = 8.58(d, 1H), 8.28(m, 2H), 8.19(d, 1H), 8.03~7.89(m, 5H), 7.75(s, 1H), 7.64(s, 1H), 7.66~7.59(m, 9H), 7.56(s, 1H), 7.50~7.46(m, 6H)
266 δ = 8.60(d, 1H), 8.26(m, 2H), 8.17(d, 1H), 8.01~7.86(m, 5H), 7.73(s, 1H), 7.66~7.59(m, 9H), 7.52~7.49(m, 6H), 7.25(d, 2H)
295 δ = 8.60(d, 1H), 8.55(d, 1H), 8.40(d, 1H), 8.26(m, 2H), 8.17(d, 1H), 8.08~8.00(m, 3H), 7.93~7.80(m, 5H), 7.73(s, 1H), 7.66~7.59(m, 9H), 7.52~7.49(m, 5H), 7.30(d, 2H), 7.25(d, 2H)
306 δ = 8.53-8.50(m, 2H), 8.20(d, 1H), 8.01-7.99(m, 4H), 7.90~7.86(m, 8H), 7.73(s, 1H), 7.68~7.58(m, 5H), 7.52~7.49(m, 8H), 7.47-7.40(m, 2H)
319 δ = 8.26(s, 1H), 8.17~8.15(m, 4H), 8.08~8.00(m, 3H), 7.93(d, 1H), 7.81(d, 1H), 7.73(s, 1H), 7.60~7.55(m, 6H), 7.52~7.49(m, 6H), 7.35(s, 1H), 7.25(m, 4H)
<실험예 1>1) 유기 발광 소자의 제작 - 적색 단일 호스트(Red single host)
1,500Å의 두께로 인듐틴옥사이드(ITO, Indium Tinoxide)가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV(Ultraviolet) 세정기에서 UV를 이용하여 5분간 UVO(Ultraviolet Ozone)처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
상기 ITO 투명 전극(양극)위에 공통층인 정공 주입층 2-TNATA(4,4',4''-Tris[2-naphthyl(phenyl)amino] triphenylamine) 및 정공 수송층 TAPC(4,4'-Cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine])을 형성시켰다.
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 적색 호스트로 하기 표 7에 기재된 화합물, 적색 인광 도펀트로 (piq)2(Ir)(acac)을 사용하여 호스트에 (piq)2(Ir)(acac)를 발광층 전체 중량 기준 3wt% 도핑하여 500Å 증착하였다. 이후 정공 저지층으로 바소쿠프로인(Bathocuproine, 이하, BCP)를 60Å 증착하였으며, 그 위에 전자 수송층으로 Alq3 를 200Å 증착하였다. 마지막으로 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al) 음극을 1,200Å의 두께로 증착하여 음극을 형성함으로써 비교예 1 내지 10 및 실시예 1 내지 16의 유기 발광 소자를 제조하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-6~10-8torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
비교예 1 내지 10에 사용된 화합물 A 내지 J는 하기와 같았다.
Figure PCTKR2021009969-appb-img-000047
2) 유기 발광 소자의 구동 전압 및 발광 효율
상기와 같이 제작된 비교예 1 내지 4 및 실시예 1 내지 16의 유기 발광 소자에 대하여 맥사이어스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명장비측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, T90을 측정하였다. . 상기 T90는 초기 휘도 대비 90%가 되는 시간인 수명(단위: h, 시간)을 의미한다.
측정된 유기 발광 소자의 특성은 하기 표 7과 같았다.
화합물 구동전압 (V) 효율 (cd/A) 색좌표 (x, y) 수명 (T90)
비교예 1 비교화합물 A 10.35 8.5 0.672, 0.328 -
비교예 2 비교화합물 B 9.74 8.0 0.676, 0.324 8
비교예 3 비교화합물 C 9.50 6.7 0.680, 0.320 12
비교예 4 비교화합물 D 9.70 6.2 0.677, 0.322 17
비교예 5 비교화합물 E 9.81 7.0 0.681, 0.319 10
비교예 6 비교화합물 F 10.04 7.5 0.678, 0.321 9
비교예 7 비교화합물 G 10.21 6.0 0.685, 0.315 21
비교예 8 비교화합물 H 9.91 6.5 0.692, 0.308 22
비교예 9 비교화합물 I 10.01 5.8 0.689, 0.311 17
비교예 10 비교화합물 J 12.34 5.5 0.678, 0.321 16
실시예 1 1 8.90 10.2 0.679, 0.321 20
실시예 2 16 8.88 13.5 0.684, 0.316 12
실시예 3 31 8.13 12.5 0.685, 0.314 12
실시예 4 48 8.90 11.6 0.679, 0.321 25
실시예 5 69 8.74 10.5 0.681, 0.319 11
실시예 6 81 9.01 11.4 0.692, 0.308 14
실시예 7 102 8.90 10.9 0.689, 0.311 19
실시예 8 115 8.03 12.0 0.681, 0.319 25
실시예 9 122 8.11 12.4 0.678, 0.321 22
실시예 10 153 8.28 12.5 0.685, 0.315 16
실시예 11 163 8.50 11.6 0.692, 0.308 10
실시예 12 187 8.90 12.3 0.689, 0.311 28
실시예 13 223 8.78 13.2 0.678, 0.321 25
실시예 14 228 9.00 11.0 0.679, 0.321 22
실시예 15 253 8.00 12.2 0.689, 0.311 31
실시예 16 266 7.95 12.0 0.678, 0.321 28
상기 표 7에서 알 수 있듯, 실시예 1 내지 16과 같이 본 출원의 화학식 1에 해당하는 화합물을 유기 발광 소자의 발광층에 단일 호스트로 사용하는 경우, 본 출원의 화학식 1에 해당하지 않는 비교 화합물 A 내지 D를 유기 발광 소자의 발광층에 단일 호스트에 사용한 비교예 1 내지 4보다 소자의 구동과 효율면에서 향상된 결과값을 보여주었다.
이는 비교 화합물 A 내지 J와 같은 유니폴라(Unipolar) N-형(N-type) 화합물을 유기 발광 소자의 발광층에 단일 호스트로 사용하는 경우, 디벤조푸란(dibenzofuran) 링커(linker)를 가지고 있어서, 정공(hole) 주입 능력이 거의 없어 높은 구동전압과 전반적으로 저조한 수명 및 효율 특성을 보여준 것으로 판단된다.
반면에 본 출원의 화학식 1에 해당하는 화합물은 디벤조푸란(dibenzofuran) 링커(linker)에 π -컨쥬게이션(π-conjugation)을 늘린 나프토벤조푸란(naphthobenzofuran)을 도입함으로써, 적색(red host)로의 적합한 T1 값과 밴드갭을 가져 소자의 효율 및 구동전압 향상에 도움을 준 것으로 판단된다. 여기서 T1값은 삼중항 상태(Triple state)의 에너지 준위값을 의미한다.
또한, 치환기들이 나프토벤조푸란(Naphtobenzofuran) 링커(linker)의 특정 위치에 치환됨으로써 열적으로 보다 안정하며 전자 이동도(electron mobility) 특성이 향상된 구조를 가질 수 있기 떄문에 소자의 효율 및 구동 전압 향상에 도움을 준 것으로 판단된다.
또한, 단순한 디벤조푸란(dibenzofuran) 링커(linker)를 갖거나 한 쪽 방향으로 치환기가 형성된 비교 화합물보다 양 방향으로 치환기가 뻗어나가는 본 출원의 화학식 1에 해당하는 화합물은 비교 화합물보다 확장된 컨쥬게이션(conjugation)으로 인하여 소자에 적용할 경우, 빠른 전자수송 능력을 가질 수 있고, 열에 보다 안정한 장점을 가지고 있다.
비교 화합물 B와 같은 위치에 치환기가 위치한 화합물의 경우, 강한 입체적 장애와 산소 원자의 가리움으로 분자간 상호작용에 방해를 받게 된다. 이는 상기 비교 화합물 B와 같은 화합물을 소자에 적용할 경우, 화합물의 패킹 스트럭쳐(packing structure) 결함의 한 원인으로 작용하며 소자의 효율과 수명 감소 결과를 가져올 수 있다.
또한, 비교 화합물 A 및 C 내지 J와 같은 위치에 치환기가 위치할 경우, 본 출원의 화학식 1에 해당하는 화합물보다 HOMO/LUMO 전자 분포 구름 겹침이 크게 발생하여 S1, T1 에너지 갭(energy gap) 차이가 커져 엑시톤의 ISC (intersystem crossing)에 의한 효율 상승효과를 기대하기 어렵다.
<실험예 2>
1) 유기 발광 소자의 제작 - 적색 N+P 혼합 호스트(Red N+P mixed host)
발광층 형성시 적색 호스트로 하기 표 8에 기재한 바와 같이 본 발명의 화학식 1에 해당하는 화합물과 정공 전달(Hole Transfer, HT) 특성이 강한 P-형 호스트(P-type host) 또는 바이폴라 아릴아민(Bipolar Arylamine) 화합물과 혼합한 것을 제외하고 상기 실험예 1과 동일한 방법으로 수행하여 비교예 5, 6 및 실시예 17 내지 32의 유기 발광 소자를 제작하였다.
상기 N+P 혼합은 N-형 호스트(N-type host)와 P-형 호스트(P-type host)를 혼합하였음 의미한다.
2) 유기 발광 소자의 구동 전압 및 발광 효율
상기와 같이 제작된 비교예 11, 12 및 실시예 17 내지 32의 유기 발광 소자에 대하여 맥사이어스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명장비측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, T90을 측정하였다.
측정된 유기 발광 소자의 특성은 하기 표 8과 같았다.
발광층 화합물 비율
(N:P)
구동전압
(V)
효율
(cd/A)
색좌표
(x, y)
수명
(T90)
비교예 11 C-4 - 4.52 19.5 0.681, 0.319 55
비교예 12 C-21 - 4.72 19.0 0.675, 0.325 38
실시예 17 A-1 : 화합물 31 1:1 4.10 17.1 0.674, 0.326 101
실시예 18 A-3 : 화합물 102 1:1 4.60 17.0 0.673, 0.327 128
실시예 19 A-4 : 화합물 16 1:1 4.31 19.5 0.682, 0.318 95
실시예 20 A-5 : 화합물 115 1:1 4.02 18.5 0.677, 0.323 85
실시예 21 A-6 : 화합물 81 1:1 4.72 16.4 0.675, 0.325 131
실시예 22 B-1 : 화합물 266 1:1 4.85 16.0 0.681, 0.319 75
실시예 23 B-2 : 화합물 228 1:1 5.00 17.2 0.675, 0.325 80
실시예 24 B-3 : 화합물 31 1:1 4.78 16.3 0.680, 0.320 105
실시예 25 B-4 : 화합물 153 1:1 5.08 17.1 0.684, 0.316 82
실시예 26 C-4 : 화합물 43 1:1 4.00 20.0 0.685, 0.315 118
실시예 27 C-21 : 화합물 102 1:1 4.50 19.3 0.676, 0.324 130
실시예 28 C-29 : 화합물 223 1:1 4.05 21.1 0.682, 0.318 108
실시예 29 C-31 : 화합물 81 1:1 4.45 19.0 0.673, 0.327 126
실시예 30 C-40 : 화합물 228 1:1 4.43 21.0 0.679, 0.321 95
실시예 31 C-50 : 화합물 48 1:1 4.42 21.1 0.677, 0.323 106
실시예 32 C-54 : 화합물 115 1:1 4.00 19.7 0.684, 0.316 111
상기 표 8의 P-형 호스트(P-type host) 또는 바이폴라아릴아민(Bipolar Arylamine) 화합물은 하기 그룹 A 내지 C의 화합물 중에서 선택하여 사용하였다.
[그룹 A]
Figure PCTKR2021009969-appb-img-000048
[그룹 B]
Figure PCTKR2021009969-appb-img-000049
[그룹 C]
Figure PCTKR2021009969-appb-img-000050
Figure PCTKR2021009969-appb-img-000051
Figure PCTKR2021009969-appb-img-000052
Figure PCTKR2021009969-appb-img-000053
상기 표 8에서 알 수 있듯, 실시예 17 내지 32와 같이 본 출원의 화학식 1에 해당하는 나프토벤조푸란(naphthobenzofuran) 링커를 가지는 유니폴라(Unipolar) N-형(N-type) 화합물을 상기 그룹 A 내지 C에 해당하는 유니폴라(Unipolar) P-형(P-type) 화합물 또는 바이폴라 아릴아민(Bipolar Arylamine) 화합물과 혼합하여 유기 발광 소자의 발광층의 호스트로 사용하는 경우, 본 출원의 화학식 1에 해당하는 나프토벤조푸란(naphthobenzofuran) 링커를 가지는 유니폴라(Unipolar) N-형(N-type) 화합물을 단일 호스트로 사용하는 경우에 비하여 수명, 효율, 및 구동전압의 특성에서 우수한 효과를 나타냄을 확인할 수 있었다.
이는 본 출원의 화학식 1에 해당하는 유니폴라(Unipolar) N-형(N-type) 화합물과 유니폴라(Unipolar) P-형(P-type) 화합물 또는 바이폴라 아릴아민(Bipolar Arylamine) 화합물과 혼합할 경우, 아릴아민의 강한 정공 전달(HT) 특성으로 인해 엑시플렉스 현상이 일어났기 때문인 것으로 판단된다. 또한, 낮은 정공 주입장벽으로 인해 구동전압 또한 우수한 결과를 보여준 것으로 판단된다.
상기 엑시플렉스(exciplex) 현상은 두 분자간 전자 교환으로 donor(p-host)의 HOMO level, acceptor(n-host) LUMO level 크기의 에너지를 방출하는 현상이다. 두 분자간 엑시플렉스(exciplex) 현상이 일어나면 Reverse Intersystem Crossing(RISC)이 일어나게 되고 이로 인해 형광의 내부양자 효율이 100%까지 올라갈 수 있다.
일반적으로, 아릴아민 바이폴라(Arylamine bipolar) 화합물은 바이폴라(bipolar) 화합물의 낮은 정공, 전자 주입장벽으로 인해 강한 정공 전달(HT)특성과 전자 전달(Electron Transfer, ET) 특성을 동시에 갖게 되고, 이로 인하여 좁은 밴드갭과 낮은 T1 에너지 값을 가져 단일 호스트로도 인광 레드 소자에서 우수한 효율을 보여줄 수 있다. 그러나, 빠른 정공 이동도(Hole mobility)로 인해 소자 내 열화로 수명이 다소 감소하는 경향을 보이게 된다.
그러나, 본 출원의 화학식 1과 같은 나프토벤조푸란(naphthobenzofuran) 링커를 가지는 유니폴라(Unipolar) N-형(N-type) 화합물을 혼합함으로써 이를 해소할 수 있었다. 이는 발광층 내 두 화합물의 혼합으로 적정한 전하 속도 균형이 이루어지고 이로 인해 열화가 감소하고 재결합 영역(recombination zone)이 확장되어 아릴아민 바이폴라(Arylamine bipolar) 화합물의 장점인 우수한 효율을 감소시키지 않고 수명을 증가시키는 효과를 가져올 수 있음을 의미한다.

Claims (11)

  1. 하기 화학식 1로 표시되는 헤테로고리 화합물:
    [화학식 1]
    Figure PCTKR2021009969-appb-img-000054
    상기 화학식 1에 있어서,
    L1 내지 L5는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴렌기이며,
    a, b, c, d 및 e는 각각 0 내지 3의 정수이고, a, b, c, d 및 e가 각각 2 이상인 경우 괄호 내의 치환기는 같거나 상이하고,
    Ar1 내지 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고,
    Ar1 내지 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고,
    Rp는 수소; 중수소; 할로겐기; 치환 또는 비치환된 탄소수 6 내지 60의 알킬기이고, p는 0 내지 4의 정수이고, p가 2 이상인 경우 괄호 내의 치환기는 치환기는 같거나 상이하다.
  2. 청구항 1에 있어서, 상기 치환 또는 비치환이란 중수소; 시아노기; 할로겐기; 탄소수 1 내지 60의 직쇄 또는 분지쇄의 알킬; 탄소수 2 내지 60의 직쇄 또는 분지쇄의 알케닐; 탄소수 2 내지 60의 직쇄 또는 분지쇄의 알키닐; 탄소수 3 내지 60의 단환 또는 다환의 시클로알킬; 탄소수 2 내지 60의 단환 또는 다환의 헤테로시클로알킬; 탄소수 6 내지 60의 단환 또는 다환의 아릴; 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴; -SiRR'R"; -P(=O)RR'; 탄소수 1 내지 20의 알킬아민; 탄소수 6 내지 60의 단환 또는 다환의 아릴아민; 및 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴아민으로 이루어진 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중에서 선택된 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미하고, 상기 R, R'및 R"은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 탄소수 60의 알킬; 치환 또는 비치환된 탄소수 6 내지 60의 아릴; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴인 것을 의미하는 것인 헤테로고리 화합물.
  3. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 1-1 또는 1-2로 표시되는 것인 헤테로고리 화합물:
    [화학식 1-1]
    Figure PCTKR2021009969-appb-img-000055
    [화학식 1-2]
    Figure PCTKR2021009969-appb-img-000056
    상기 화학식 1-1에 있어서, Ar1 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고, Ar1 및 Ar4 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고, 나머지는 화학식 1에서 정의한 바와 같고,
    상기 화학식 1-2에 있어서, Ar2 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고, Ar2 및 Ar4 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고, 나머지는 화학식 1에서 정의한 바와 같다.
  4. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 1-3 내지 1-5 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    [화학식 1-3]
    Figure PCTKR2021009969-appb-img-000057
    [화학식 1-4]
    Figure PCTKR2021009969-appb-img-000058
    [화학식 1-5]
    Figure PCTKR2021009969-appb-img-000059
    상기 화학식 1-3에 있어서, Ar1 및 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고, Ar1 및 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고, 나머지는 화학식 1에서 정의한 바와 같고,
    상기 화학식 1-4에 있어서, Ar2 및 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고, Ar2 및 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고, 나머지는 화학식 1에서 정의한 바와 같고,
    상기 화학식 1-5에 있어서, Ar3 및 Ar5는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고, Ar3 및 Ar5 중 적어도 하나는 치환 또는 비치환되고, N을 1개 이상 포함하는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 또는 1 이상의 시아노기로 치환된 탄소수 6 내지 60의 아릴기이고, 나머지는 화학식 1에서 정의한 바와 같다.
  5. 청구항 1에 있어서, 상기 N을 1개 이상 포함하는 단환 또는 다환의 헤테로고리기는 하기 화학식 3으로 표시되는 기인 것인 헤테로고리 화합물:
    [화학식 3]
    Figure PCTKR2021009969-appb-img-000060
    상기 화학식 3에 있어서,
    X1은 CR1 또는 N이고, X2는 CR2 또는 N이고, X3은 CR3 또는 N이고, X4는 CR4 또는 N이고, X5는 CR5 또는 N이고, 상기 X1 내지 X5 중 적어도 1개는 N이고,
    R1 내지 R5 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 치환 또는 비치환된 탄소수 2 내지 60의 알케닐기; 치환 또는 비치환된 탄소수 2 내지 60의 알키닐기; 치환 또는 비치환된 탄소수 1 내지 20의 알콕시기; 치환 또는 비치환된 탄소수 3 내지 60의 시클로알킬기; 치환 또는 비치환된 탄소수 2 내지 60의 헤테로시클로알킬기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기; -P(=O)R10R12; 및 NR13R14로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 지방족 또는 방향족 탄화수소 고리 또는 헤테로 고리를 형성하며, 상기 R10 내지 R14는 서로 같거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이고,
    Figure PCTKR2021009969-appb-img-000061
    은 상기 화학식 1과 연결되는 부위이다.
  6. 청구항 1에 있어서, 상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    Figure PCTKR2021009969-appb-img-000062
    Figure PCTKR2021009969-appb-img-000063
    Figure PCTKR2021009969-appb-img-000064
    Figure PCTKR2021009969-appb-img-000065
    Figure PCTKR2021009969-appb-img-000066
    Figure PCTKR2021009969-appb-img-000067
    Figure PCTKR2021009969-appb-img-000068
    Figure PCTKR2021009969-appb-img-000069
    Figure PCTKR2021009969-appb-img-000070
  7. 제1 전극, 제2 전극 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 청구항 1 내지 6 중 어느 하나의 항에 따른 헤테로고리 화합물을 포함하는 유기 발광 소자.
  8. 청구항 7에 있어서, 상기 유기물층은 1층 이상의 발광층을 포함하고, 상기 발광층은 상기 헤테로고리 화합물을 포함하는 유기 발광 소자.
  9. 청구항 8에 있어서, 상기 발광층은 2개 이상의 호스트 물질을 포함할 수 있으며, 상기 호스트 물질 중 적어도 1개는 상기 헤테로고리 화합물을 발광 재료의 호스트 물질로 포함하는 유기 발광 소자.
  10. 청구항 7에 있어서, 상기 유기 발광 소자는 발광층, 정공 주입층, 정공 수송층, 전자 주입층, 전자 수송층, 정공 보조층 및 정공 저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함하는 것인 유기 발광 소자.
  11. 청구항 7에 있어서, 상기 화학식 1에 따른 헤테로고리 화합물을 제1 화합물로 포함하고, 하기 그룹 A 내지 그룹 C의 화합물 중 하나를 제2 화합물로 더 포함하는 것인 유기 발광 소자:
    [그룹 A]
    Figure PCTKR2021009969-appb-img-000071
    [그룹 B]
    Figure PCTKR2021009969-appb-img-000072
    [그룹 C]
    Figure PCTKR2021009969-appb-img-000073
    Figure PCTKR2021009969-appb-img-000074
    Figure PCTKR2021009969-appb-img-000075
    Figure PCTKR2021009969-appb-img-000076
PCT/KR2021/009969 2020-08-18 2021-07-30 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 WO2022039408A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180050526.9A CN115956076A (zh) 2020-08-18 2021-07-30 杂环化合物以及包括其的有机发光元件
JP2023507984A JP2023538282A (ja) 2020-08-18 2021-07-30 ヘテロ環化合物およびこれを含む有機発光素子
US18/019,438 US20230292601A1 (en) 2020-08-18 2021-07-30 Heterocyclic compound and organic light-emitting device comprising same
EP21858495.1A EP4201931A1 (en) 2020-08-18 2021-07-30 Heterocyclic compound and organic light-emitting device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200103402A KR102541983B1 (ko) 2020-08-18 2020-08-18 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR10-2020-0103402 2020-08-18

Publications (1)

Publication Number Publication Date
WO2022039408A1 true WO2022039408A1 (ko) 2022-02-24

Family

ID=80323610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009969 WO2022039408A1 (ko) 2020-08-18 2021-07-30 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Country Status (7)

Country Link
US (1) US20230292601A1 (ko)
EP (1) EP4201931A1 (ko)
JP (1) JP2023538282A (ko)
KR (1) KR102541983B1 (ko)
CN (1) CN115956076A (ko)
TW (1) TW202212333A (ko)
WO (1) WO2022039408A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853701A (zh) * 2022-05-25 2022-08-05 吉林奥来德光电材料股份有限公司 一种发光辅助材料及其制备方法和应用
EP4140990A1 (en) * 2021-08-25 2023-03-01 LT Materials Co., Ltd. Benzo[b]naphtho[2,1-d]furan compound and organic light emitting device using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240015487A (ko) * 2022-07-27 2024-02-05 엘티소재주식회사 헤테로고리 화합물, 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물
KR102656473B1 (ko) * 2022-11-29 2024-04-12 엘티소재주식회사 유기 발광 소자용 조성물 및 이를 포함하는 유기 발광 소자

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
CN104650029A (zh) * 2014-12-26 2015-05-27 北京鼎材科技有限公司 一种稠杂环芳烃衍生物及其应用
CN106565705A (zh) * 2016-10-26 2017-04-19 北京绿人科技有限责任公司 一种有机化合物及其在电致发光器件中的应用
KR20190038246A (ko) * 2017-09-29 2019-04-08 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200069449A (ko) * 2018-12-06 2020-06-17 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200074723A (ko) * 2018-12-17 2020-06-25 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200103402A (ko) 2019-02-25 2020-09-02 한서대학교 산학협력단 내리막길에서의 자전거 감속장치
KR102228768B1 (ko) * 2019-09-27 2021-03-19 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102500849B1 (ko) * 2019-08-22 2023-02-16 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102441471B1 (ko) * 2019-08-22 2022-09-07 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
CN104650029A (zh) * 2014-12-26 2015-05-27 北京鼎材科技有限公司 一种稠杂环芳烃衍生物及其应用
CN106565705A (zh) * 2016-10-26 2017-04-19 北京绿人科技有限责任公司 一种有机化合物及其在电致发光器件中的应用
KR20190038246A (ko) * 2017-09-29 2019-04-08 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200069449A (ko) * 2018-12-06 2020-06-17 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200074723A (ko) * 2018-12-17 2020-06-25 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200103402A (ko) 2019-02-25 2020-09-02 한서대학교 산학협력단 내리막길에서의 자전거 감속장치
KR102228768B1 (ko) * 2019-09-27 2021-03-19 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4140990A1 (en) * 2021-08-25 2023-03-01 LT Materials Co., Ltd. Benzo[b]naphtho[2,1-d]furan compound and organic light emitting device using same
CN114853701A (zh) * 2022-05-25 2022-08-05 吉林奥来德光电材料股份有限公司 一种发光辅助材料及其制备方法和应用

Also Published As

Publication number Publication date
JP2023538282A (ja) 2023-09-07
CN115956076A (zh) 2023-04-11
KR20220022339A (ko) 2022-02-25
EP4201931A1 (en) 2023-06-28
TW202212333A (zh) 2022-04-01
US20230292601A1 (en) 2023-09-14
KR102541983B1 (ko) 2023-06-12

Similar Documents

Publication Publication Date Title
WO2022039408A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021060865A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021112496A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2018174678A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021261946A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2021101117A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021133016A2 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2022050592A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022045606A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2021132984A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2021118159A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2023075134A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2021080282A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022108141A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022055155A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022035224A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2021256836A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021261849A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022124499A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022039340A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021125835A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021080280A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021107474A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021091247A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021045460A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023507984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021858495

Country of ref document: EP

Effective date: 20230320