WO2021125835A1 - 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2021125835A1
WO2021125835A1 PCT/KR2020/018563 KR2020018563W WO2021125835A1 WO 2021125835 A1 WO2021125835 A1 WO 2021125835A1 KR 2020018563 W KR2020018563 W KR 2020018563W WO 2021125835 A1 WO2021125835 A1 WO 2021125835A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
formula
carbon atoms
Prior art date
Application number
PCT/KR2020/018563
Other languages
English (en)
French (fr)
Inventor
이용희
모준태
김동준
Original Assignee
엘티소재주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티소재주식회사 filed Critical 엘티소재주식회사
Priority to JP2022534454A priority Critical patent/JP2023507714A/ja
Priority to CN202080087295.4A priority patent/CN114829358A/zh
Priority to US17/782,781 priority patent/US20230013956A1/en
Publication of WO2021125835A1 publication Critical patent/WO2021125835A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present specification relates to a heterocyclic compound and an organic light emitting device including the same.
  • the electroluminescent device is a type of self-luminous display device, and has a wide viewing angle, excellent contrast, and fast response speed.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When a voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes combine in the organic thin film to form a pair, and then disappear and emit light.
  • the organic thin film may be composed of a single layer or multiple layers, if necessary.
  • the material of the organic thin film may have a light emitting function if necessary.
  • a compound capable of forming the light emitting layer by itself may be used, or a compound capable of serving as a host or dopant of the host-dopant light emitting layer may be used.
  • a compound capable of performing the roles of hole injection, hole transport, electron blocking, hole blocking, electron transport, electron injection, and the like may be used.
  • Patent Document 1 US Patent No. 4,356,429
  • An object of the present specification is to provide a heterocyclic compound and an organic light emitting device including the same.
  • An exemplary embodiment of the present application provides a heterocyclic compound represented by the following formula (1).
  • L 1 is a direct bond; a substituted or unsubstituted arylene group having 6 to 60 carbon atoms; Or a substituted or unsubstituted C 2 to C 60 heteroarylene group,
  • X 1 is O; or S;
  • R p is hydrogen; heavy hydrogen; halogen group; cyano group; a substituted or unsubstituted C 1 to C 30 alkyl group; Or a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms,
  • R 1 to R 8 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted C 6 to C 60 aryl group; and a substituted or unsubstituted C 2 to C 60 heteroaryl group, or two or more groups adjacent to each other are bonded to each other to form a substituted or unsubstituted C 6 to C 60 aromatic hydrocarbon ring or a substituted or unsubstituted C 2 to form a heterocyclic ring of 60;
  • Ar 1 is a substituted or unsubstituted C 6 to C 60 aryl group; a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms; Or a substituted or unsubstituted amine group with one or more selected from the group consisting of a substituted or unsubstituted C 6 to C 40 aryl group and a substituted or unsubstituted C 2 to C 40 heteroaryl group,
  • a is an integer from 0 to 2
  • substituents in parentheses are the same as or different from each other
  • p is an integer of 0 to 4, respectively, and when p is 2 or more, the substituents in parentheses are the same as or different from each other.
  • the first electrode a second electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one organic material layer includes the heterocyclic compound represented by Formula 1 above.
  • the heterocyclic compound described herein may be used as an organic material layer material of an organic light emitting device.
  • the heterocyclic compound may serve as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, etc. in the organic light emitting device.
  • the heterocyclic compound represented by Formula 1 when used in the organic material layer of the organic light emitting device, it is possible to lower the driving voltage of the device, improve the light efficiency, and improve the lifespan characteristics of the device.
  • FIGS. 1 to 3 are diagrams exemplarily showing a stacked structure of an organic light emitting device according to an exemplary embodiment of the present application.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, a position where the substituent is substitutable, is substituted. , two or more substituents may be the same as or different from each other.
  • substituted or unsubstituted refers to a linear or branched alkyl group having 1 to 60 carbon atoms; a linear or branched alkenyl group having 2 to 60 carbon atoms; a linear or branched alkynyl group having 2 to 60 carbon atoms; a monocyclic or polycyclic cycloalkyl group having 3 to 60 carbon atoms; a monocyclic or polycyclic heterocycloalkyl group having 2 to 60 carbon atoms; a monocyclic or polycyclic aryl group having 6 to 60 carbon atoms; a monocyclic or polycyclic heteroaryl group having 2 to 60 carbon atoms; silyl group; phosphine oxide group; And it means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of an amine group, or substituted or unsubstituted with a substituent to which two or more substituents selected from the above-de
  • substituted or unsubstituted means a monocyclic or polycyclic aryl group having 6 to 60 carbon atoms; or a monocyclic or polycyclic heteroaryl group having 2 to 60 carbon atoms; It may mean unsubstituted or substituted with one or more substituents selected from the group.
  • the halogen may be fluorine, chlorine, bromine or iodine.
  • the alkyl group includes a straight or branched chain having 1 to 60 carbon atoms, and may be further substituted by other substituents.
  • the number of carbon atoms in the alkyl group may be 1 to 60, specifically 1 to 40, more specifically, 1 to 20.
  • Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, cyclopentylmethyl group, cyclohexylmethyl group, octyl group, n-octyl group,
  • the alkenyl group includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the carbon number of the alkenyl group may be 2 to 60, specifically 2 to 40, more specifically, 2 to 20.
  • Specific examples include a vinyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 3-methyl-1 -Butenyl group, 1,3-butadienyl group, allyl group, 1-phenylvinyl-1-yl group, 2-phenylvinyl-1-yl group, 2,2-diphenylvinyl-1-yl group, 2-phenyl-2 -(naphthyl-1-yl)vinyl-1-yl group, 2,2-bis(diphenyl-1-yl)vinyl-1-yl group, etc., but are not limited thereto.
  • the alkynyl group includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the carbon number of the alkynyl group may be 2 to 60, specifically 2 to 40, more specifically, 2 to 20.
  • the alkoxy group may be a straight chain, branched chain or cyclic chain. Although carbon number of an alkoxy group is not specifically limited, It is preferable that it is C1-C20. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, isopentyloxy, n -hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy, etc. may be It is not limited.
  • the cycloalkyl group includes a monocyclic or polycyclic ring having 3 to 60 carbon atoms, and may be further substituted by other substituents.
  • polycyclic refers to a group in which a cycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a cycloalkyl group, but may be a different type of ring group, for example, a heterocycloalkyl group, an aryl group, a heteroaryl group, or the like.
  • the carbon number of the cycloalkyl group may be 3 to 60, specifically 3 to 40, more specifically 5 to 20.
  • the heterocycloalkyl group includes O, S, Se, N or Si as a hetero atom, includes a monocyclic or polycyclic ring having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • polycyclic refers to a group in which a heterocycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a heterocycloalkyl group, but may be a different type of ring group, for example, a cycloalkyl group, an aryl group, a heteroaryl group, or the like.
  • the heterocycloalkyl group may have 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, and more specifically 3 to 20 carbon atoms.
  • the aryl group includes a monocyclic or polycyclic having 6 to 60 carbon atoms, and may be further substituted by other substituents.
  • polycyclic means a group in which an aryl group is directly connected or condensed with another ring group.
  • the other ring group may be an aryl group, but may be a different type of ring group, for example, a cycloalkyl group, a heterocycloalkyl group, a heteroaryl group, or the like.
  • the aryl group includes a spiro group.
  • the carbon number of the aryl group may be 6 to 60, specifically 6 to 40, more specifically 6 to 25.
  • aryl group examples include a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, a chrysenyl group, a phenanthrenyl group, a perylenyl group, a fluoranthenyl group, a triphenylenyl group, a phenalenyl group, a pyrethyl group Nyl group, tetracenyl group, pentacenyl group, fluorenyl group, indenyl group, acenaphthylenyl group, benzofluorenyl group, spirobifluorenyl group, 2,3-dihydro-1H-indenyl group, condensed ring groups thereof and the like, but is not limited thereto.
  • the phosphine oxide group specifically includes, but is not limited to, a diphenylphosphine oxide group, a dinaphthylphosphine oxide, and the like.
  • the silyl group is a substituent including Si and the Si atom is directly connected as a radical, and is represented by -SiR104R105R106, R104 to R106 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; an alkyl group; alkenyl group; alkoxy group; cycloalkyl group; aryl group; And it may be a substituent consisting of at least one of a heterocyclic group.
  • silyl group examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. It is not limited.
  • the fluorenyl group may be substituted, and adjacent substituents may combine with each other to form a ring.
  • the spiro group is a group including a spiro structure, and may have 15 to 60 carbon atoms.
  • the spiro group may include a structure in which a 2,3-dihydro-1H-indene group or a cyclohexane group is spiro bonded to a fluorenyl group.
  • the following spiro group may include any one of the groups of the following structural formula.
  • the heteroaryl group includes S, O, Se, N or Si as a hetero atom, and includes a monocyclic or polycyclic ring having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic refers to a group in which a heteroaryl group is directly connected or condensed with another ring group.
  • the other ring group may be a heteroaryl group, but may be a different type of ring group, for example, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or the like.
  • the heteroaryl group may have 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, and more specifically 3 to 25 carbon atoms.
  • heteroaryl group examples include a pyridyl group, a pyrrolyl group, a pyrimidyl group, a pyridazinyl group, a furanyl group, a thiophene group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group group, isothiazolyl group, triazolyl group, furazanyl group, oxadiazolyl group, thiadiazolyl group, dithiazolyl group, tetrazolyl group, pyranyl group, thiopyranyl group, diazinyl group, oxazinyl group , thiazinyl group, deoxynyl group, triazinyl group, tetrazinyl group, quinolyl group, isoquinolyl group, quinazolinyl group, isoquinazol
  • the amine group is a monoalkylamine group; monoarylamine group; monoheteroarylamine group; -NH 2 ; dialkylamine group; diarylamine group; diheteroarylamine group; an alkylarylamine group; an alkyl heteroarylamine group; And it may be selected from the group consisting of an aryl heteroarylamine group, the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • the amine group include a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, a dibiphenylamine group, an anthracenylamine group, 9- Methyl-anthracenylamine group, diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group, biphenylnaphthylamine group, phenylbiphenylamine group, biphenylfluorene
  • the arylene group means that the aryl group has two bonding positions, that is, a divalent group. Except that each of these is a divalent group, the description of the aryl group described above may be applied.
  • the heteroarylene group means that the heteroaryl group has two bonding positions, that is, a divalent group. Except that each of these is a divalent group, the description of the heteroaryl group described above may be applied.
  • adjacent group means a substituent substituted on an atom directly connected to the atom in which the substituent is substituted, a substituent sterically closest to the substituent, or another substituent substituted on the atom in which the substituent is substituted.
  • two substituents substituted at an ortho position in a benzene ring and two substituents substituted at the same carbon in an aliphatic ring may be interpreted as "adjacent" to each other.
  • "when a substituent is not indicated in the chemical formula or compound structure” may mean that all positions that can come as a substituent are hydrogen or deuterium. That is, in the case of deuterium, deuterium is an isotope of hydrogen, and some hydrogen atoms may be isotope deuterium, and the content of deuterium may be 0% to 100%.
  • the content of deuterium is 0%, the content of hydrogen is 100%, and all of the substituents explicitly exclude deuterium such as hydrogen If not, hydrogen and deuterium may be mixed and used in the compound.
  • deuterium is an element having a deuteron consisting of one proton and one neutron as one of the isotopes of hydrogen as an atomic nucleus, hydrogen- It can be expressed as 2, and the element symbol can also be written as D or 2H.
  • isotopes have the same number of protons (protons), but isotopes that have the same atomic number (Z), but different mass numbers (A) have the same number of protons It can also be interpreted as elements with different numbers of (neutrons).
  • the 20% content of deuterium in the phenyl group represented by means that the total number of substituents the phenyl group can have is 5 (T1 in the formula), and if the number of deuterium is 1 (T2 in the formula), it will be expressed as 20% can That is, the 20% content of deuterium in the phenyl group may be represented by the following structural formula.
  • a phenyl group having a deuterium content of 0% it may mean a phenyl group that does not contain a deuterium atom, that is, has 5 hydrogen atoms.
  • a heterocyclic compound represented by the following Chemical Formula 1 is provided.
  • L 1 is a direct bond; a substituted or unsubstituted arylene group having 6 to 60 carbon atoms; Or a substituted or unsubstituted C 2 to C 60 heteroarylene group,
  • X 1 is O; or S;
  • R p is hydrogen; heavy hydrogen; halogen group; cyano group; a substituted or unsubstituted C 1 to C 30 alkyl group; Or a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms,
  • R 1 to R 8 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted C 6 to C 60 aryl group; and a substituted or unsubstituted C 2 to C 60 heteroaryl group, or two or more groups adjacent to each other are bonded to each other to form a substituted or unsubstituted C 6 to C 60 aromatic hydrocarbon ring or a substituted or unsubstituted C 2 to form a heterocyclic ring of 60;
  • Ar 1 is a substituted or unsubstituted C 6 to C 60 aryl group; a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms; Or a substituted or unsubstituted amine group with one or more selected from the group consisting of a substituted or unsubstituted C 6 to C 40 aryl group and a substituted or unsubstituted C 2 to C 40 heteroaryl group,
  • a is an integer from 0 to 2
  • substituents in parentheses are the same as or different from each other
  • p is an integer of 0 to 4, respectively, and when p is 2 or more, the substituents in parentheses are the same as or different from each other.
  • the heterocyclic compound represented by Formula 1 has a steric configuration by fixing a substituent at a specific position, and spatially separates Homo (Highest Occupied Molecular Orbital) and LUMO (Lowest Highest Unoccupied Molecular Orbital). Therefore, since strong charge transfer is possible, high efficiency and increased lifespan of the organic light emitting device can be expected when used as an organic material in the organic light emitting device.
  • L 1 of Formula 1 is a direct bond; a substituted or unsubstituted arylene group; Or it may be a substituted or unsubstituted heteroarylene group.
  • the L 1 Is a direct bond; a substituted or unsubstituted arylene group having 6 to 60 carbon atoms; Or it may be a substituted or unsubstituted heteroarylene group having 2 to 60 carbon atoms.
  • the L 1 Is a direct bond; a substituted or unsubstituted arylene group having 6 to 40 carbon atoms; Or it may be a substituted or unsubstituted heteroarylene group having 2 to 40 carbon atoms.
  • the L 1 Is a direct bond; a substituted or unsubstituted arylene group having 6 to 20 carbon atoms; Or it may be a substituted or unsubstituted heteroarylene group having 2 to 20 carbon atoms.
  • the L 1 Is a direct bond; Or it may be a substituted or unsubstituted phenylene group.
  • the L 1 Is a direct bond; or a phenylene group.
  • L 1 is a direct bond.
  • L 1 is a phenylene group.
  • a in Formula 1 is an integer of 0 to 2, and when a is 2, the substituents in parentheses are the same as or different from each other.
  • a is 2.
  • a is 1.
  • a 0.
  • L 1 when L 1 is not a direct bond or a heterocyclic compound represented by a case where a is not 0 is used as an organic material in an organic light emitting device, L 1 is a direct bond or a is 0 Efficiency and lifespan of the organic light emitting diode are more excellent than in the case of the organic light emitting diode. This is thought to be because stronger charge transfer is possible by spatially further separating HOMO and LUMO due to the presence of a substituent in L 1 .
  • X 1 of Formula 1 is O; or S.
  • X 1 is O.
  • X 1 is S.
  • R p of Formula 1 is hydrogen; heavy hydrogen; halogen group; cyano group; a substituted or unsubstituted C 1 to C 30 alkyl group; Or it may be a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms.
  • R p in Formula 1 is hydrogen.
  • Chemical Formula 1 may be represented by the following Chemical Formula 1-1.
  • R 1 to R 8 of Formula 1 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted C 6 to C 60 aryl group; and a substituted or unsubstituted C 2 to C 60 heteroaryl group, or two or more groups adjacent to each other are bonded to each other to form a substituted or unsubstituted C 6 to C 60 aromatic hydrocarbon ring or a substituted or unsubstituted C 2 to 60 hetero rings may be formed.
  • the R 1 To R 8 are the same as or different from each other, and each independently, hydrogen; heavy hydrogen; a substituted or unsubstituted C 6 to C 40 aryl group; and a substituted or unsubstituted C 2 to C 40 heteroaryl group, or two or more groups adjacent to each other are bonded to each other to form a substituted or unsubstituted C 6 to C 40 aromatic hydrocarbon ring or a substituted or unsubstituted C 2 to 40 hetero rings may be formed.
  • the R 1 To R 8 are the same as or different from each other, and each independently, hydrogen; heavy hydrogen; a substituted or unsubstituted aryl group having 6 to 20 carbon atoms; and a substituted or unsubstituted C2 to C20 heteroaryl group, or two or more groups adjacent to each other are bonded to each other to a substituted or unsubstituted C6 to C20 aromatic hydrocarbon ring or a substituted or unsubstituted C2 to 20 hetero rings may be formed.
  • the R 1 To R 8 are the same as or different from each other, and each independently, hydrogen; heavy hydrogen; a substituted or unsubstituted C 6 to C 10 aryl group; and a substituted or unsubstituted C2 to C10 heteroaryl group, or two or more groups adjacent to each other are bonded to each other to form a substituted or unsubstituted C6 to C10 aromatic hydrocarbon ring or a substituted or unsubstituted C2 to 10 hetero rings may be formed.
  • the R 1 To R 8 are the same as or different from each other, and each independently, hydrogen; heavy hydrogen; and a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or two or more groups adjacent to each other may combine with each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 40 carbon atoms.
  • the R 1 To R 8 are the same as or different from each other, and each independently, hydrogen; heavy hydrogen; and a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or two or more groups adjacent to each other may be bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 20 carbon atoms.
  • the R 1 To R 8 are the same as or different from each other, and each independently, hydrogen; heavy hydrogen; and a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, or two or more groups adjacent to each other may be bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 10 carbon atoms.
  • the R 1 To R 8 are the same as or different from each other, and each independently, hydrogen; heavy hydrogen; And two or more groups selected from the group consisting of a substituted or unsubstituted phenyl group or adjacent to each other may combine with each other to form a substituted or unsubstituted benzene ring.
  • R 1 and R 8 are each independently hydrogen; or deuterium, wherein R 2 to R 7 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted C 6 to C 60 aryl group; and a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms, wherein R 2 to R 7 Two or more groups adjacent to each other may combine with each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 60 carbon atoms or a substituted or unsubstituted hetero ring having 2 to 60 carbon atoms.
  • R 1 and R 8 are each independently hydrogen; or deuterium, wherein R 2 to R 7 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted C 6 to C 40 aryl group; and a substituted or unsubstituted heteroaryl group having 2 to 40 carbon atoms, wherein R 2 to R 7 Two or more groups adjacent to each other may combine with each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 40 carbon atoms or a substituted or unsubstituted hetero ring having 2 to 40 carbon atoms.
  • R 1 and R 8 are each independently hydrogen; or deuterium, wherein R 2 to R 7 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted aryl group having 6 to 20 carbon atoms; and a substituted or unsubstituted C 2 to C 20 heteroaryl group, wherein R 2 to R 7 Two or more groups adjacent to each other may combine with each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 20 carbon atoms or a substituted or unsubstituted hetero ring having 2 to 20 carbon atoms.
  • R 1 and R 8 are each independently hydrogen; or deuterium, wherein R 2 to R 7 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; and a substituted or unsubstituted C 6 to C 60 aryl group, wherein R 2 to R 7 Two or more groups adjacent to each other may combine with each other to form a substituted or unsubstituted aromatic ring having 6 to 60 carbon atoms.
  • R 1 and R 8 are each independently hydrogen; or deuterium, wherein R 2 to R 7 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; And selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, wherein R 2 to R 7 Two or more groups adjacent to each other may combine with each other to form a substituted or unsubstituted aromatic ring having 6 to 40 carbon atoms.
  • R 1 and R 8 are each independently hydrogen; or deuterium, wherein R 2 to R 7 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; and a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, wherein among R 2 to R 7 Two or more groups adjacent to each other may combine with each other to form a substituted or unsubstituted aromatic ring having 6 to 20 carbon atoms.
  • R 1 and R 8 are each independently hydrogen; or deuterium, wherein R 2 to R 7 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; And is selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, wherein R 2 to R 7 Two or more groups adjacent to each other may combine with each other to form a substituted or unsubstituted aromatic ring having 6 to 10 carbon atoms.
  • R 1 and R 8 are each independently hydrogen; or deuterium, wherein R 2 to R 7 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; And selected from the group consisting of a substituted or unsubstituted phenyl group, wherein R 2 to R 7 Two or more groups adjacent to each other may combine with each other to form a substituted or unsubstituted benzene ring.
  • Ar 1 of Formula 1 is a substituted or unsubstituted C 6 to C 60 aryl group; a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms; Alternatively, it may be an amine group unsubstituted or substituted with one or more selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 40 carbon atoms and a substituted or unsubstituted heteroaryl group having 2 to 40 carbon atoms.
  • Ar 1 is a substituted or unsubstituted C 6 to C 40 aryl group; a substituted or unsubstituted heteroaryl group having 2 to 40 carbon atoms; Alternatively, it may be an amine group unsubstituted or substituted with one or more selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 40 carbon atoms and a substituted or unsubstituted heteroaryl group having 2 to 40 carbon atoms.
  • Ar 1 is substituted or unsubstituted with one or more selected from the group consisting of a substituted or unsubstituted C 6 to C 40 aryl group and a substituted or unsubstituted C 2 to C 40 heteroaryl group It may be an amine group.
  • each of p in Formula 1 is an integer of 0 to 4, and when p is 2 or more, the substituents in parentheses are the same as or different from each other.
  • Chemical Formula 1 may be represented by Chemical Formula 2 or Chemical Formula 3 below.
  • Chemical Formula 1 may be represented by any one of Chemical Formulas 4 to 6 below.
  • Ar 1 of Formula 1 is a substituted or unsubstituted C 6 to C 60 aryl group; a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms; Or it may be a group represented by the following formula (A).
  • L 11 and L 12 are the same as or different from each other, and each independently a direct bond; a substituted or unsubstituted arylene group having 6 to 40 carbon atoms or a substituted or unsubstituted heteroarylene group having 2 to 40 carbon atoms,
  • Ar 11 and Ar 12 are the same as or different from each other, and are each independently a substituted or unsubstituted C 6 to C 40 aryl group or a substituted or unsubstituted C 2 to C 40 heteroaryl group,
  • a and b are 0 or 1
  • L 11 and L 12 of Formula 1 are the same as or different from each other, and each independently a direct bond; It may be a substituted or unsubstituted arylene group having 6 to 40 carbon atoms or a substituted or unsubstituted heteroarylene group having 2 to 40 carbon atoms.
  • L 11 and L 12 are the same as or different from each other, and each independently a direct bond; Or it may be a substituted or unsubstituted arylene group having 6 to 40 carbon atoms.
  • L 11 and L 12 are the same as or different from each other, and each independently a direct bond; Or it may be a substituted or unsubstituted arylene group having 6 to 20 carbon atoms.
  • L 11 and L 12 are the same as or different from each other, and each independently a direct bond; Or it may be a substituted or unsubstituted phenylene group.
  • L 11 and L 12 are the same as or different from each other, and each independently a direct bond; or a phenylene group.
  • L 11 is a direct bond.
  • L 11 is a phenylene group.
  • L 12 is a direct bond.
  • L 12 is a phenylene group.
  • Ar 11 and Ar 12 of Formula 1 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or a substituted or unsubstituted C 2 to 40 carbon number It may be a heteroaryl group of
  • Ar 11 and Ar 12 are the same as or different from each other, and each independently a substituted or unsubstituted phenyl group; a substituted or unsubstituted biphenyl group; a substituted or unsubstituted naphthyl group; a fluorenyl group unsubstituted or substituted with one or more selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 10 carbon atoms; A substituted or unsubstituted dibenzofuran group; Or it may be a substituted or unsubstituted dibenzothiophene group.
  • Ar 11 and Ar 12 are the same as or different from each other, and each independently a phenyl group; biphenyl group; naphthyl group; And a fluorenyl group substituted with one or more selected from the group consisting of a methyl group; dibenzofuran group; Or it may be a dibenzothiophene group.
  • Ar 11 and Ar 12 may be the same as each other.
  • both Ar 11 and Ar 12 may be a substituted or unsubstituted aryl group having 6 to 40 carbon atoms.
  • both Ar 11 and Ar 12 may be a substituted or unsubstituted heteroaryl group having 2 to 40 carbon atoms.
  • Ar 11 and Ar 12 may be different from each other.
  • Ar 11 may be a substituted or unsubstituted aryl group having 6 to 40 carbon atoms
  • Ar 12 may be a substituted or unsubstituted heteroaryl group having 2 to 40 carbon atoms.
  • Ar 11 may be a substituted or unsubstituted heteroaryl group having 2 to 40 carbon atoms
  • Ar 12 may be a substituted or unsubstituted aryl group having 6 to 40 carbon atoms.
  • One of Ar 11 and Ar 12 of Formula A which may be represented by Ar 1 of Formula 1, is an aryl group, and the other is a heteroaryl group.
  • a heterocyclic compound represented by a heteroaryl group may be used as an organic material in the organic light emitting device.
  • the efficiency and lifespan of the organic light emitting diode are more excellent than when both Ar 11 and Ar 12 are aryl groups. This is because one of Ar 11 and Ar 12 is an aryl group and the other is a heteroaryl group, so that homo (HOMO) and LUMO (LUMO) are spatially further separated to enable stronger charge transfer. is judged as
  • Formula 1 provides a heterocyclic compound represented by any one of the following compounds.
  • the heterocyclic compound has a high glass transition temperature (Tg) and excellent thermal stability. This increase in thermal stability is an important factor in providing driving stability to the device.
  • the heterocyclic compound according to an exemplary embodiment of the present application may be prepared by a multi-step chemical reaction. Some intermediate compounds are prepared first, and the compound of Formula 1 can be prepared from the intermediate compounds. More specifically, the heterocyclic compound according to an exemplary embodiment of the present application may be prepared based on Preparation Examples to be described later.
  • organic light emitting device including the heterocyclic compound represented by Formula 1 above.
  • the "organic light emitting device” may be expressed in terms such as “organic light emitting diode”, “OLED (Organic Light Emitting Diodes)", “OLED device”, “organic electroluminescent device”, and the like.
  • the first electrode a second electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the heterocyclic compound represented by Formula 1 above.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the first electrode may be a negative electrode
  • the second electrode may be an anode
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound according to Chemical Formula 1 may be used as a material of the blue organic light emitting device.
  • the organic light emitting device may be a green organic light emitting device, and the heterocyclic compound according to Chemical Formula 1 may be used as a material of the green organic light emitting device.
  • the organic light emitting device may be a red organic light emitting device, and the heterocyclic compound according to Chemical Formula 1 may be used as a material of the red organic light emitting device.
  • heterocyclic compound represented by Formula 1 Specific details of the heterocyclic compound represented by Formula 1 are the same as described above.
  • the organic light emitting device of the present application may be manufactured by a conventional method and material for manufacturing an organic light emitting device, except for forming one or more organic material layers using the above-described heterocyclic compound.
  • the heterocyclic compound may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
  • the organic material layer of the organic light emitting device of the present application may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a hole auxiliary layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • the organic material layer may include a light emitting layer, and the light emitting layer may include the heterocyclic compound.
  • the heterocyclic compound When the heterocyclic compound is used in the emission layer, it is possible to spatially separate Homo (Highest Occupied Molecular Orbital) and LUMO (HOMO, Lowest Highest Unoccupied Molecular Orbital) to enable strong charge transfer.
  • the driving efficiency and lifespan of the device may be improved.
  • Driving, efficiency, and lifespan of the organic light emitting diode may be improved.
  • the organic light emitting device of the present invention may further include one or more layers selected from the group consisting of a light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an electron blocking layer, a hole auxiliary layer, and a hole blocking layer.
  • 1 to 3 illustrate the stacking order of the electrode and the organic material layer of the organic light emitting device according to an exemplary embodiment of the present application.
  • the scope of the present application be limited by these drawings, and the structure of an organic light emitting device known in the art may also be applied to the present application.
  • an organic light emitting device in which an anode 200 , an organic material layer 300 , and a cathode 400 are sequentially stacked on a substrate 100 is illustrated.
  • an organic light emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented.
  • the organic light emitting diode according to FIG. 3 includes a hole injection layer 301 , a hole transport layer 302 , a light emitting layer 303 , a hole blocking layer 304 , an electron transport layer 305 , and an electron injection layer 306 .
  • a hole injection layer 301 a hole transport layer 302 , a light emitting layer 303 , a hole blocking layer 304 , an electron transport layer 305 , and an electron injection layer 306 .
  • the scope of the present application is not limited by such a laminated structure, and if necessary, the remaining layers except for the light emitting layer may be omitted, and other necessary functional layers may be further added.
  • the organic material layer including the heterocyclic compound represented by Formula 1 may further include other materials if necessary.
  • materials other than the heterocyclic compound of Formula 1 are exemplified below, but these are for illustration only and not for limiting the scope of the present application, may be substituted with known materials.
  • anode material Materials having a relatively large work function may be used as the anode material, and transparent conductive oxides, metals, conductive polymers, or the like may be used.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO: Al or SnO 2 : Combination of metals and oxides such as Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material Materials having a relatively low work function may be used as the cathode material, and metal, metal oxide, conductive polymer, or the like may be used.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multilayer structure material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • a known hole injection material may be used, for example, a phthalocyanine compound such as copper phthalocyanine disclosed in U.S. Patent No. 4,356,429 or Advanced Material, 6, p.677 (1994).
  • starburst amine derivatives such as tris(4-carbazolyl-9-ylphenyl)amine (TCTA), 4,4′,4′′-tri[phenyl(m-tolyl)amino]triphenylamine (m- MTDATA), 1,3,5-tris[4-(3-methylphenylphenylamino)phenyl]benzene (m-MTDAPB), soluble conductive polymers polyaniline/dodecylbenzenesulfonic acid (Polyaniline/Dodecylbenzenesulfonic acid) or poly( 3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (Poly(3,4-ethylenedioxythiophen
  • a pyrazoline derivative an arylamine derivative, a stilbene derivative, a triphenyldiamine derivative, etc.
  • a low molecular weight or high molecular material may be used.
  • Examples of the electron transport material include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, and fluorenone.
  • Derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, etc. may be used, and polymer materials as well as low molecular weight materials may be used.
  • LiF is typically used in the art, but the present application is not limited thereto.
  • a red, green or blue light emitting material may be used as the light emitting material, and if necessary, two or more light emitting materials may be mixed and used. In this case, two or more light emitting materials may be deposited and used as separate sources, or may be premixed and deposited as a single source.
  • a fluorescent material can be used as a light emitting material, it can also be used as a phosphorescent material.
  • As the light emitting material a material that emits light by combining holes and electrons respectively injected from the anode and the cathode may be used, but materials in which the host material and the dopant material together participate in light emission may be used.
  • a host of the same series may be mixed and used, or a host of different series may be mixed and used.
  • any two or more types of n-type host material or p-type host material may be selected and used as the host material of the light emitting layer.
  • the organic material layer may include a light emitting layer, and the light emitting layer may include the heterocyclic compound as a host material of the light emitting material.
  • the light emitting layer may include two or more host materials, and at least one of the host materials may include the heterocyclic compound as a host material of the light emitting material.
  • the light emitting layer may be used by pre-mixing two or more host materials, and at least one of the two or more host materials uses the heterocyclic compound as a host material of the light emitting material.
  • the pre-mixed means that the light emitting layer is mixed with two or more host materials before depositing the organic material layer in a single park.
  • the light emitting layer may include two or more host materials, each of the two or more host materials includes one or more p-type host materials and n-type host materials, and at least one of the host materials
  • One may include the heterocyclic compound as a host material of the light emitting material. In this case, driving, efficiency, and lifespan of the organic light emitting diode may be improved.
  • the organic light emitting device may be a top emission type, a back emission type, or a double side emission type depending on a material used.
  • the heterocyclic compound according to an exemplary embodiment of the present application may act on a principle similar to that applied to an organic light emitting device in an organic electronic device including an organic solar cell, an organic photoreceptor, and an organic transistor.
  • the MC means methylene chloride (hereinafter, MC).
  • ⁇ Preparation Example 2 compounds 55 to 57, 65, 71 to 73, 77, 79, 91, 94 to 96, 98, 111 to 113, 122 to 124, 129, 131, 133, 137, 144, 146, 153 and 160 manufacturing
  • Compounds 55, 56, 64, and 71 were prepared in the same manner as in the preparation of Compound 57, except that E of Table 5 was used instead of E3 in the preparation of Compound 57, and H of Table 5 was used instead of H94. to 73, 77, 79, 91, 94 to 96, 98, 111 to 113, 122 to 124, 129, 131, 133, 137, 144, 146, 153 and 160 were synthesized.
  • Tables 6 and 7 The compounds described herein were prepared in the same manner as in Preparation Examples, and the synthesis confirmation results of the prepared compounds are shown in Tables 6 and 7 below.
  • Table 6 below is the measurement value of 1 H NMR (CDCl 3 , 400Mz)
  • Table 7 below is the measurement value of the FD-mass spectrometer (FD-MS: Field desorption mass spectrometry).
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonic washing was performed with a solvent such as acetone, methanol, isopropyl alcohol, etc., dried, and UVO-treated for 5 minutes using UV in a UV washer. After transferring the substrate to a plasma cleaner (PT), plasma treatment was performed to remove the ITO work function and residual film in a vacuum state, and the substrate was transferred to a thermal deposition equipment for organic deposition.
  • ITO indium tin oxide
  • a light emitting layer was deposited thereon by thermal vacuum deposition as follows.
  • the light-emitting layer by using a compound, a red phosphorescent dopant, the host according to Table 8 (piq) 2 (Ir) (acac) by the (piq) 2 (Ir) ( acac) was deposited to a host doped with 3wt% 500 ⁇ .
  • 60 ⁇ of BCP was deposited as a hole blocking layer, and 200 ⁇ of Alq 3 was deposited thereon as an electron transport layer.
  • 60 ⁇ of BCP was deposited as a hole blocking layer, and 200 ⁇ of Alq 3 was deposited thereon as an electron transport layer.
  • lithium fluoride (LiF) is deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer, and then an aluminum (Al) cathode is deposited to a thickness of 1,200 ⁇ on the electron injection layer to form a cathode.
  • An electroluminescent device was manufactured.
  • electroluminescence (EL) characteristics were measured with M7000 of McScience, and the reference luminance was 6,000 through the life instrumentation measuring device (M6000) manufactured by McScience with the measurement result. At cd/m 2 , T 90 was measured.
  • the characteristics of the organic electroluminescent device of the present invention are shown in Table 8 below.
  • the heterocyclic compound of Formula 1 when used as a host for the organic material layer of the organic light emitting device, particularly the light emitting layer, the driving voltage and efficiency can be improved.
  • the heterocyclic compound of Formula 1 in the case of Examples 1 to 40 using the heterocyclic compound of Formula 1 compared to Comparative Examples 1 to 6, it has a steric configuration by fixing a substituent, and has a steric configuration (HOMO, Highest Occupied Molecular Orbital) and Lumo Since strong charge transfer is possible by spatially separating (LUMO, HOMO, and the lowest unoccupied molecular orbital), it is suitable as a red host and has high efficiency when used as an organic material in an organic light emitting device. It was confirmed that it could be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

본 출원은 헤테로고리 화합물 및 상기 헤테로고리 화합물이 유기물층에 함유되어 있는 유기 발광 소자를 제공한다.

Description

헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
본 명세서는 2019년 12월 20일에 한국특허청에 제출된 한국 특허 출원 제 10-2019-0171467호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
전계 발광 소자는 자체 발광형 표시 소자의 일종으로서, 시야각이 넓고, 콘트라스트가 우수할 뿐만 아니라 응답속도가 빠르다는 장점을 가지고 있다.
유기 발광 소자는 2개의 전극 사이에 유기 박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기 발광 소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 정공이 유기 박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기 박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기 박막의 재료는 필요에 따라 발광 기능을 가질 수 있다. 예컨대, 유기 박막 재료로는 그 자체가 단독으로 발광층을 구성할 수 있는 화합물이 사용될 수도 있고, 또는 호스트-도펀트계 발광층의 호스트 또는 도펀트 역할을 할 수 있는 화합물이 사용될 수도 있다. 그 외에도, 유기 박막의 재료로서, 정공 주입, 정공 수송, 전자차단, 정공차단, 전자 수송, 전자 주입 등의 역할을 수행할 수 있는 화합물이 사용될 수도 있다.
유기 발광 소자의 성능, 수명 또는 효율을 향상시키기 위하여, 유기 박막의 재료의 개발이 지속적으로 요구되고 있다.
(특허문헌 1) 미국 특허 제4,356,429호
본 명세서는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자를 제공하고자 한다.
본 출원의 일 실시상태는, 하기 화학식 1로 표시되는 헤테로고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2020018563-appb-img-000001
상기 화학식 1에 있어서,
L 1은 직접결합; 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴렌기이며,
X 1은 O; 또는 S이고,
R p는 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 치환 또는 비치환된 탄소수 3 내지 30의 시클로알킬기이고,
R 1 내지 R 8은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로 고리를 형성하고,
Ar 1은 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기; 또는 치환 또는 비치환된 탄소수 6 내지 40의 아릴기 및 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기로 이루어진 군에서 선택된 1 이상으로 치환 또는 비치환된 아민기이며,
a는 0 내지 2의 정수이고, a가 2인 경우, 괄호 내의 치환기는 서로 같거나 상이하고,
p는 각각 0 내지 4의 정수이고, p가 2 이상일 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
또한, 본 출원의 일 실시상태에 있어서, 제1 전극; 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서에 기재된 헤테로고리 화합물은 유기발광소자의 유기물층 재료로서 사용할 수 있다. 상기 헤테로고리 화합물은 유기발광소자에서 정공주입재료, 정공수송재료, 발광재료, 전자수송재료, 전자주입재료 등의 역할을 할 수 있다.
구체적으로, 상기 화학식 1로 표시되는 헤테로고리 화합물을 유기 발광 소자의 유기물층에 사용하는 경우 소자의 구동전압을 낮추고, 광효율을 향상시키며, 소자의 수명 특성을 향상시킬 수 있다.
도 1 내지 도 3은 각각 본 출원의 일 실시상태에 따른 유기 발광 소자의 적층 구조를 예시적으로 나타낸 도이다.
<도면의 주요 부호의 설명>
100: 기판
200: 양극
300: 유기물층
301: 정공 주입층
302: 정공 수송층
303: 발광층
304: 정공 저지층
305: 전자 수송층
306: 전자 주입층
400: 음극
이하, 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치, 즉 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에 있어서, "치환 또는 비치환"이란 탄소수 1 내지 60의 직쇄 또는 분지쇄의 알킬기; 탄소수 2 내지 60의 직쇄 또는 분지쇄의 알케닐기; 탄소수 2 내지 60의 직쇄 또는 분지쇄의 알키닐기; 탄소수 3 내지 60의 단환 또는 다환의 시클로알킬기; 탄소수 2 내지 60의 단환 또는 다환의 헤테로시클로알킬기; 탄소수 6 내지 60의 단환 또는 다환의 아릴기; 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 실릴기; 포스핀옥사이드기; 및 아민기로 이루어진 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중에서 선택된 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미한다.
보다 구체적으로, 본 명세서에 있어서, "치환 또는 비치환"이란 탄소수 6 내지 60의 단환 또는 다환의 아릴기; 또는 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환된 것을 의미할 수 있다.
본 명세서에 있어서, 상기 할로겐은 불소, 염소, 브롬 또는 요오드일 수 있다.
본 명세서에 있어서, 상기 알킬기는 탄소수 1 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알킬기의 탄소수는 1 내지 60, 구체적으로 1 내지 40, 더욱 구체적으로, 1 내지 20일 수 있다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥실메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알케닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다. 구체적인 예로는 비닐기, 1-프로페닐기, 이소프로페닐기, 1-부테닐기, 2-부테닐기, 3-부테닐기, 1-펜테닐기, 2-펜테닐기, 3-펜테닐기, 3-메틸-1-부테닐기, 1,3-부타디에닐기, 알릴기, 1-페닐비닐-1-일기, 2-페닐비닐-1-일기, 2,2-디페닐비닐-1-일기, 2-페닐-2-(나프틸-1-일)비닐-1-일기, 2,2-비스(디페닐-1-일)비닐-1-일기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알키닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알키닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다.
본 명세서에 있어서, 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 시클로알킬기는 탄소수 3 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 헤테로시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 시클로알킬기의 탄소수는 3 내지 60, 구체적으로 3 내지 40, 더욱 구체적으로 5 내지 20일 수 있다. 구체적으로, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 3-메틸시클로펜틸기, 2,3-디메틸시클로펜틸기, 시클로헥실기, 3-메틸시클로헥실기, 4-메틸시클로헥실기, 2,3-디메틸시클로헥실기, 3,4,5-트리메틸시클로헥실기, 4-tert-부틸시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 헤테로시클로알킬기는 헤테로 원자로서 O, S, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 헤테로시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 헤테로시클로알킬기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 20일 수 있다.
본 명세서에 있어서, 상기 아릴기는 탄소수 6 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 헤테로아릴기 등일 수도 있다. 상기 아릴기는 스피로기를 포함한다. 상기 아릴기의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 25일 수 있다. 상기 아릴기의 구체적인 예로는 페닐기, 비페닐기, 터페닐기, 나프틸기, 안트릴기, 크라이세닐기, 페난트레닐기, 페릴레닐기, 플루오란테닐기, 트리페닐레닐기, 페날레닐기, 파이레닐기, 테트라세닐기, 펜타세닐기, 플루오레닐기, 인데닐기, 아세나프틸레닐기, 벤조플루오레닐기, 스피로비플루오레닐기, 2,3-디히드로-1H-인데닐기, 이들의 축합고리기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 포스핀옥사이드기는 -P(=O)R101R102로 표시되고, R101 및 R102는 서로 같거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 아릴기; 및 헤테로고리기 중 적어도 하나로 이루어진 치환기일 수 있다. 상기 포스핀옥사이드기는 구체적으로 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 실릴기는 Si를 포함하고 상기 Si 원자가 라디칼로서 직접 연결되는 치환기이며, -SiR104R105R106로 표시되고, R104 내지 R106은 서로 같거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 아릴기; 및 헤테로고리기 중 적어도 하나로 이루어진 치환기일수 있다. 실릴기의 구체적인 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
본 명세서에 있어서, 상기 스피로기는 스피로 구조를 포함하는 기로서, 탄소수 15 내지 60일 수 있다. 예컨대, 상기 스피로기는 플루오레닐기에 2,3-디히드로-1H-인덴기 또는 시클로헥산기가 스피로 결합된 구조를 포함할 수 있다. 구체적으로, 하기 스피로기는 하기 구조식의 기 중 어느 하나를 포함할 수 있다.
Figure PCTKR2020018563-appb-img-000002
본 명세서에 있어서, 상기 헤테로아릴기는 헤테로 원자로서 S, O, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60인 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 상기 다환이란 헤테로아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 아릴기 등일 수도 있다. 상기 헤테로아릴기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 25일 수 있다. 상기 헤테로아릴기의 구체적인 예로는 피리딜기, 피롤릴기, 피리미딜기, 피리다지닐기, 푸라닐기, 티오펜기, 이미다졸릴기, 피라졸릴기, 옥사졸릴기, 이속사졸릴기, 티아졸릴기, 이소티아졸릴기, 트리아졸릴기, 푸라자닐기, 옥사디아졸릴기, 티아디아졸릴기, 디티아졸릴기, 테트라졸릴기, 파이라닐기, 티오파이라닐기, 디아지닐기, 옥사지닐기, 티아지닐기, 디옥시닐기, 트리아지닐기, 테트라지닐기, 퀴놀릴기, 이소퀴놀릴기, 퀴나졸리닐기, 이소퀴나졸리닐기, 퀴노졸리릴기, 나프티리딜기, 아크리디닐기, 페난트리디닐기, 이미다조피리디닐기, 디아자나프탈레닐기, 트리아자인덴기, 인돌릴기, 인돌리지닐기, 벤조티아졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티오펜기, 벤조푸란기, 디벤조티오펜기, 디벤조푸란기, 카바졸릴기, 벤조카바졸릴기, 디벤조카바졸릴기, 페나지닐기, 디벤조실롤기, 스피로비(디벤조실롤), 디히드로페나지닐기, 페녹사지닐기, 페난트리딜기, 이미다조피리디닐기, 티에닐기, 인돌로[2,3-a]카바졸릴기, 인돌로[2,3-b]카바졸릴기, 인돌리닐기, 10,11-디히드로-디벤조[b,f]아제핀기, 9,10-디히드로아크리디닐기, 페난트라지닐기, 페노티아티아지닐기, 프탈라지닐기, 나프틸리디닐기, 페난트롤리닐기, 벤조[c][1,2,5]티아디아졸릴기, 5,10-디히드로디벤조[b,e][1,4]아자실리닐, 피라졸로[1,5-c]퀴나졸리닐기, 피리도[1,2-b]인다졸릴기, 피리도[1,2-a]이미다조[1,2-e]인돌리닐기, 5,11-디히드로인데노[1,2-b]카바졸릴기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 아민기는 모노알킬아민기; 모노아릴아민기; 모노헤테로아릴아민기; -NH 2; 디알킬아민기; 디아릴아민기; 디헤테로아릴아민기; 알킬아릴아민기; 알킬헤테로아릴아민기; 및 아릴헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 상기 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 디비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기, 비페닐나프틸아민기, 페닐비페닐아민기, 비페닐플루오레닐아민기, 페닐트리페닐레닐아민기, 비페닐트리페닐레닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴렌기는 아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 아릴기의 설명이 적용될 수 있다. 또한, 헤테로아릴렌기는 헤테로아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 헤테로아릴기의 설명이 적용될 수 있다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오쏘(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 “인접한”기로 해석될 수 있다.
본 명세서에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 탄소 원자에 수소 원자가 결합된 것을 의미한다. 다만, 중수소( 2H, Deuterium)는 수소의 동위원소이므로, 일부 수소 원자는 중수소일 수 있다.
본 출원의 일 실시상태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 치환기로 올 수 있는 위치가 모두 수소 또는 중수소인 것을 의미할 수 있다. 즉, 중수소의 경우 수소의 동위원소로, 일부의 수소 원자는 동위원소인 중수소일 수 있으며, 이 때 중수소의 함량은 0% 내지 100%일 수 있다.
본 출원의 일 실시상태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"에 있어, 중수소의 함량이 0%, 수소의 함량이 100%, 치환기는 모두 수소 등 중수소를 명시적으로 배제하지 않는 경우에는 수소와 중수소는 화합물에 있어 혼재되어 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 중수소는 수소의 동위원소(isotope)중 하나로 양성자(proton) 1개와 중성자(neutron) 1개로 이루어진 중양성자(deuteron)를 원자핵(nucleus)으로 가지는 원소로서, 수소-2로 표현될 수 있으며, 원소기호는 D 또는 2H로 쓸 수도 있다.
본 출원의 일 실시상태에 있어서, 동위원소는 원자 번호(atomic number, Z)는 같지만, 질량수(mass number, A)가 다른 원자를 의미하는 동위원소는 같은 수의 양성자(proton)를 갖지만, 중성자(neutron)의 수가 다른 원소로도 해석할 수 있다.
본 출원의 일 실시상태에 있어서, 특정 치환기의 함량 T%의 의미는 기본이 되는 화합물이 가질 수 있는 치환기의 총 개수를 T1으로 정의하고, 그 중 특정의 치환기의 개수를 T2로 정의하는 경우 T2/T1×100 = T%로 정의할 수 있다.
즉, 일 예시에 있어서,
Figure PCTKR2020018563-appb-img-000003
로 표시되는 페닐기에 있어 중수소의 함량 20%라는 것은 페닐기가 가질 수 있는 치환기의 총 개수는 5(식 중 T1)개이고, 그 중 중수소의 개수가 1(식 중 T2)인 경우 20%로 표시될 수 있다. 즉, 페닐기에 있어 중수소의 함량 20%라는 것은 하기 구조식으로 표시될 수 있다.
Figure PCTKR2020018563-appb-img-000004
또한, 본 출원의 일 실시상태에 있어서, "중수소의 함량이 0%인 페닐기"의 경우 중수소 원자가 포함되지 않은, 즉 수소 원자 5개를 갖는 페닐기를 의미할 수 있다.
본 출원의 일 실시상태에 있어서, 하기 화학식 1로 표시되는 헤테로고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2020018563-appb-img-000005
상기 화학식 1에 있어서,
L 1은 직접결합; 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴렌기이며,
X 1은 O; 또는 S이고,
R p는 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 치환 또는 비치환된 탄소수 3 내지 30의 시클로알킬기이고,
R 1 내지 R 8은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로 고리를 형성하고,
Ar 1은 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기; 또는 치환 또는 비치환된 탄소수 6 내지 40의 아릴기 및 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기로 이루어진 군에서 선택된 1 이상으로 치환 또는 비치환된 아민기이며,
a는 0 내지 2의 정수이고, a가 2인 경우, 괄호 내의 치환기는 서로 같거나 상이하고,
p는 각각 0 내지 4의 정수이고, p가 2 이상일 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
상기 화학식 1로 표시되는 헤테로고리 화합물은 특정 위치에 치환기를 고정시킴으로써, 입체적 배치(steric)를 가지게 되고 호모(HOMO, Highest Occupied Molecular Orbital) 및 루모(LUMO, Lowest ighest Unoccupied Molecular Orbital)를 공간적으로 분리하여 강한 전하 이동(charge transfer)이 가능하기 때문에 유기 발광 소자 내 유기 물질로 사용할 경우 유기 발광 소자의 높은 효율 및 수명 증가를 기대할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 L 1은 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 L 1은 직접결합; 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 L 1은 직접결합; 치환 또는 비치환된 탄소수 6 내지 40의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 L 1은 직접결합; 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 L 1은 직접결합; 또는 치환 또는 비치환된 페닐렌기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 L 1은 직접결합; 또는 페닐렌기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 L 1은 직접결합이다.
또 다른 일 실시상태에 있어서, 상기 L 1은 페닐렌기이다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 a는 0 내지 2의 정수이고, a가 2인 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
본 출원의 일 실시상태에 있어서, 상기 a는 2이다.
본 출원의 일 실시상태에 있어서, 상기 a는 1이다.
본 출원의 일 실시상태에 있어서, 상기 a는 0이다.
상기 화학식 1에서 상기 L 1이 직접결합이 아니거나, 상기 a가 0인 아닌 경우로 표시되는 헤테로고리 화합물을 유기 발광 소자 내 유기 물질로 사용할 경우, 상기 L 1이 직접결합 또는 상기 a가 0인 경우보다 유기 발광 소자의 효율 및 수명이 더욱 우수하다. 이는, 상기 L 1에 치환기가 있음으로 인하여 호모(HOMO) 및 루모(LUMO)를 공간적으로 더욱 분리하여 더욱 강한 전하 이동(charge transfer)이 가능하기 때문으로 판단된다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 X 1은 O; 또는 S일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 X 1은 O이다.
본 출원의 일 실시상태에 있어서, 상기 X 1은 S이다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 R p는 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 치환 또는 비치환된 탄소수 3 내지 30의 시클로알킬기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 R p는 수소이다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-1로 표시될 수 있다.
[화학식 1-1]
Figure PCTKR2020018563-appb-img-000006
상기 화학식 1-1에서 각 치환기의 정의는 화학식 1과 동일하다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 R 1 내지 R 8은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 내지 R 8은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 40의 방향족 탄화수소 고리 또는 치환 또는 비치환된 탄소수 2 내지 40의 헤테로 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 내지 R 8은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 20의 방향족 탄화수소 고리 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 내지 R 8은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 10의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 10의 헤테로아릴기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 10의 방향족 탄화수소 고리 또는 치환 또는 비치환된 탄소수 2 내지 10의 헤테로 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 내지 R 8은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 및 치환 또는 비치환된 탄소수 6 내지 40의 아릴기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 40의 방향족 탄화수소 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 내지 R 8은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 및 치환 또는 비치환된 탄소수 6 내지 20의 아릴기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 20의 방향족 탄화수소 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 내지 R 8은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 및 치환 또는 비치환된 탄소수 6 내지 10의 아릴기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 10의 방향족 탄화수소 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 내지 R 8은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 및 치환 또는 비치환된 페닐기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 벤젠 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 및 R 8은 각각 독립적으로, 수소; 또는 중수소이고, 상기 R 2 내지 R 7은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기로 이루어진 군으로부터 선택되며, 상기 R 2 내지 R 7 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 및 R 8은 각각 독립적으로, 수소; 또는 중수소이고, 상기 R 2 내지 R 7은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기로 이루어진 군으로부터 선택되며, 상기 R 2 내지 R 7 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 40의 방향족 탄화수소 고리 또는 치환 또는 비치환된 탄소수 2 내지 40의 헤테로 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 및 R 8은 각각 독립적으로, 수소; 또는 중수소이고, 상기 R 2 내지 R 7은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴기로 이루어진 군으로부터 선택되며, 상기 R 2 내지 R 7 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 20의 방향족 탄화수소 고리 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 및 R 8은 각각 독립적으로, 수소; 또는 중수소이고, 상기 R 2 내지 R 7은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 및 치환 또는 비치환된 탄소수 6 내지 60의 아릴기로 이루어진 군으로부터 선택되며, 상기 R 2 내지 R 7 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 60의 방향족 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 및 R 8은 각각 독립적으로, 수소; 또는 중수소이고, 상기 R 2 내지 R 7은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 및 치환 또는 비치환된 탄소수 6 내지 40의 아릴기로 이루어진 군으로부터 선택되며, 상기 R 2 내지 R 7 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 40의 방향족 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 및 R 8은 각각 독립적으로, 수소; 또는 중수소이고, 상기 R 2 내지 R 7은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 및 치환 또는 비치환된 탄소수 6 내지 20의 아릴기로 이루어진 군으로부터 선택되며, 상기 R 2 내지 R 7 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 20의 방향족 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 및 R 8은 각각 독립적으로, 수소; 또는 중수소이고, 상기 R 2 내지 R 7은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 및 치환 또는 비치환된 탄소수 6 내지 10의 아릴기로 이루어진 군으로부터 선택되며, 상기 R 2 내지 R 7 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 10의 방향족 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R 1 및 R 8은 각각 독립적으로, 수소; 또는 중수소이고, 상기 R 2 내지 R 7은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 및 치환 또는 비치환된 페닐기로 이루어진 군으로부터 선택되며, 상기 R 2 내지 R 7 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 벤젠 고리를 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 Ar 1은 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기; 또는 치환 또는 비치환된 탄소수 6 내지 40의 아릴기 및 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기로 이루어진 군에서 선택된 1 이상으로 치환 또는 비치환된 아민기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 Ar 1은 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기; 또는 치환 또는 비치환된 탄소수 6 내지 40의 아릴기 및 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기로 이루어진 군에서 선택된 1 이상으로 치환 또는 비치환된 아민기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 Ar 1은 치환 또는 비치환된 탄소수 6 내지 40의 아릴기 및 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기로 이루어진 군에서 선택된 1 이상으로 치환 또는 비치환된 아민기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 p는 각각 0 내지 4의 정수이고, p가 2 이상일 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 2 또는 화학식 3으로 표시될 수 있다.
[화학식 2]
Figure PCTKR2020018563-appb-img-000007
[화학식 3]
Figure PCTKR2020018563-appb-img-000008
상기 화학식 2 및 3에서 각 치환기의 정의는 화학식 1과 동일하다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 4 내지 6 중 어느 하나로 표시될 수 있다.
[화학식 4]
Figure PCTKR2020018563-appb-img-000009
[화학식 5]
Figure PCTKR2020018563-appb-img-000010
[화학식 6]
Figure PCTKR2020018563-appb-img-000011
상기 화학식 4 내지 6에서 각 치환기의 정의는 화학식 1과 동일하다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 Ar 1은 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기; 또는 하기 화학식 A로 표시되는 기일 수 있다.
[화학식 A]
Figure PCTKR2020018563-appb-img-000012
상기 화학식 A에서,
L 11 및 L 12는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 탄소수 6 내지 40의 아릴렌기 또는 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴렌기이고,
Ar 11 및 Ar 12는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기 또는 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이고,
a 및 b는 0 또는 1이고,
Figure PCTKR2020018563-appb-img-000013
는 상기 화학식 1의 L 1과 결합하는 위치를 의미한다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 L 11 및 L 12는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 탄소수 6 내지 40의 아릴렌기 또는 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴렌기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 L 11 및 L 12는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 탄소수 6 내지 40의 아릴렌기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 L 11 및 L 12는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 L 11 및 L 12는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 페닐렌기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 L 11 및 L 12는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 페닐렌기이다.
본 출원의 일 실시상태에 있어서, 상기 L 11은 직접결합이다.
본 출원의 일 실시상태에 있어서, 상기 L 11은 페닐렌기이다.
본 출원의 일 실시상태에 있어서, 상기 L 12는 직접결합이다.
본 출원의 일 실시상태에 있어서, 상기 L 12는 페닐렌기이다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 Ar 11 및 Ar 12는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기 또는 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 Ar 11 및 Ar 12는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 나프틸기; 탄소수 1 내지 10의 알킬기 및 탄소수 6 내지 10의 아릴기로 이루어진 군에서 선택된 1 이상으로 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 디벤조퓨란기; 또는 치환 또는 비치환된 디벤조티오펜기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 Ar 11 및 Ar 12는 서로 같거나 상이하고, 각각 독립적으로 페닐기; 비페닐기; 나프틸기; 및 메틸기로 이루어진 군에서 선택된 1 이상으로 치환된 플루오레닐기; 디벤조퓨란기; 또는 디벤조티오펜기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 Ar 11 및 Ar 12는 서로 같을 수 있다.
본 출원의 일 실시상태에 있어서, 상기 Ar 11 및 Ar 12는 모두 치환 또는 비치환된 탄소수 6 내지 40의 아릴기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 Ar 11 및 Ar 12는 모두 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 Ar 11 및 Ar 12는 서로 상이할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 Ar 11은 치환 또는 비치환된 탄소수 6 내지 40의 아릴기이고, 상기 Ar 12는 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 Ar 11은 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이고, 상기 Ar 12는 치환 또는 비치환된 탄소수 6 내지 40의 아릴기일 수 있다.
상기 화학식 1의 Ar 1으로 표시될 수 있는 상기 화학식 A의 상기 Ar 11 및 Ar 12 중 하나는 아릴기이고, 다른 하나는 헤테로아릴기인 경우로 표시되는 헤테로고리 화합물을 유기 발광 소자 내 유기 물질로 사용할 경우, 상기 Ar 11 및 Ar 12이 모두 아릴기인 경우보다 유기 발광 소자의 효율 및 수명이 더욱 우수하다. 이는 상기 상기 Ar 11 및 Ar 12 중 하나는 아릴기이고, 다른 하나는 헤테로 아릴기임으로 인하여 호모(HOMO) 및 루모(LUMO)를 공간적으로 더욱 분리하여 더욱 강한 전하 이동(charge transfer)이 가능하기 때문으로 판단된다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는 것인 헤테로고리 화합물을 제공한다.
Figure PCTKR2020018563-appb-img-000014
Figure PCTKR2020018563-appb-img-000015
Figure PCTKR2020018563-appb-img-000016
Figure PCTKR2020018563-appb-img-000017
Figure PCTKR2020018563-appb-img-000018
Figure PCTKR2020018563-appb-img-000019
Figure PCTKR2020018563-appb-img-000020
Figure PCTKR2020018563-appb-img-000021
Figure PCTKR2020018563-appb-img-000022
Figure PCTKR2020018563-appb-img-000023
Figure PCTKR2020018563-appb-img-000024
Figure PCTKR2020018563-appb-img-000025
Figure PCTKR2020018563-appb-img-000026
Figure PCTKR2020018563-appb-img-000027
Figure PCTKR2020018563-appb-img-000028
Figure PCTKR2020018563-appb-img-000029
Figure PCTKR2020018563-appb-img-000030
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 정공 수송층 물질, 발광층 물질, 전자 수송층 물질 및 전하 생성층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 에너지 밴드갭을 미세하게 조절이 가능하게 하며, 한편으로 유기물 사이에서의 계면에서의 특성을 향상되게 하며 물질의 용도를 다양하게 할 수 있다.
한편, 상기 헤테로고리 화합물은 유리 전이 온도(Tg)가 높아 열적 안정성이 우수하다. 이러한 열적 안정성의 증가는 소자에 구동 안정성을 제공하는 중요한 요인이 된다.
본 출원의 일 실시상태에 따른 헤테로고리 화합물은 다단계 화학반응으로 제조할 수 있다. 일부 중간체 화합물이 먼저 제조되고, 그 중간체 화합물들로부터 화학식 1의 화합물이 제조될 수 있다. 보다 구체적으로, 본 출원의 일 실시상태에 따른 헤테로고리 화합물은 후술하는 제조예를 기초로 제조될 수 있다.
본 출원의 다른 실시상태는, 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 유기 발광 소자를 제공한다. 상기 "유기 발광 소자"는 "유기발광다이오드", "OLED(Organic Light Emitting Diodes)", "OLED 소자", "유기 전계 발광 소자" 등의 용어로 표현될 수 있다.
본 출원의 일 실시상태에 있어서, 제1 전극; 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 출원의 일 실시상태에 있어서, 상기 제1 전극은 양극일 수 있고, 상기 제2 전극은 음극일 수 있다.
본 출원 또 하나의 실시상태에 있어서, 상기 제1 전극은 음극일 수 있고, 상기 제2 전극은 양극일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1에 따른 헤테로고리 화합물은 상기 청색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원 또 하나의 실시상태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1에 따른 헤테로고리 화합물은 상기 녹색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원 또 하나의 실시상태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1에 따른 헤테로고리 화합물은 상기 적색 유기 발광 소자의 재료로 사용될 수 있다.
상기 화학식 1로 표시되는 헤테로고리 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
본 출원 유기 발광 소자는 전술한 헤테로고리 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 헤테로고리 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 출원 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공 주입층, 정공 수송층, 정공 보조층, 발광층, 전자 수송층, 전자 주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.
본 출원 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 헤테로고리 화합물을 포함할 수 있다. 상기 헤테로고리 화합물이 발광층에 사용될 경우, 호모(HOMO, Highest Occupied Molecular Orbital) 및 루모(LUMO, HOMO, Lowest ighest Unoccupied Molecular Orbital)를 공간적으로 분리하여 강한 전하 이동(charge transfer)이 가능하기 때문에 유기 발광 소자 의 구동 효율 및 수명이 우수해질 수 있 있다. 유기 발광 소자의 구동, 효율 및 수명이 우수해질 수 있다.
본 발명의 유기 발광 소자는 발광층, 정공 주입층, 정공 수송층, 전자 주입층, 전자 수송층, 전자 저지층, 정공 보조층 및 정공 저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함할 수 있다.
도 1 내지 3에 본 출원의 일 실시상태에 따른 유기 발광 소자의 전극과 유기물층의 적층 순서를 예시하였다. 그러나, 이들 도면에 의하여 본 출원의 범위가 한정될 것을 의도한 것은 아니며, 당 기술분야에 알려져 있는 유기 발광 소자의 구조가 본 출원에도 적용될 수 있다.
도 1에 따르면, 기판(100) 상에 양극(200), 유기물층(300) 및 음극(400)이 순차적으로 적층된 유기 발광 소자가 도시된다. 그러나, 이와 같은 구조에만 한정되는 것은 아니고, 도 2와 같이, 기판 상에 음극, 유기물층 및 양극이 순차적으로 적층된 유기 발광 소자가 구현될 수도 있다.
도 3은 유기물층이 다층인 경우를 예시한 것이다. 도 3에 따른 유기 발광 소자는 정공 주입층(301), 정공 수송층(302), 발광층(303), 정공 저지층(304), 전자 수송층(305) 및 전자 주입층(306)을 포함한다. 그러나, 이와 같은 적층 구조에 의하여 본 출원의 범위가 한정되는 것은 아니며, 필요에 따라 발광층을 제외한 나머지 층은 생략될 수도 있고, 필요한 다른 기능층이 더 추가될 수 있다.
상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 유기물층은 필요에 따라 다른 물질을 추가로 포함할 수 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자에 있어서, 상기 화학식 1의 헤테로고리 화합물 이외의 재료를 하기에 예시하지만, 이들은 예시를 위한 것일 뿐 본 출원의 범위를 한정하기 위한 것은 아니며, 당 기술분야에 공지된 재료들로 대체될 수 있다.
양극 재료로는 비교적 일함수가 큰 재료들을 이용할 수 있으며, 투명 전도성 산화물, 금속 또는 전도성 고분자 등을 사용할 수 있다. 상기 양극 재료의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO 2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
음극 재료로는 비교적 일함수가 낮은 재료들을 이용할 수 있으며, 금속, 금속 산화물 또는 전도성 고분자 등을 사용할 수 있다. 상기 음극 재료의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공 주입 재료로는 공지된 정공 주입 재료를 이용할 수도 있는데, 예를 들면, 미국 특허 제4,356,429호에 개시된 구리프탈로시아닌 등의 프탈로시아닌 화합물 또는 문헌 [Advanced Material, 6, p.677 (1994)]에 기재되어 있는 스타버스트형 아민 유도체류, 예컨대 트리스(4-카바조일-9-일페닐)아민(TCTA), 4,4',4"-트리[페닐(m-톨릴)아미노]트리페닐아민(m-MTDATA), 1,3,5-트리스[4-(3-메틸페닐페닐아미노)페닐]벤젠(m-MTDAPB), 용해성이 있는 전도성 고분자인 폴리아닐린/도데실벤젠술폰산(Polyaniline/Dodecylbenzenesulfonic acid) 또는 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), 폴리아닐린/캠퍼술폰산(Polyaniline/Camphor sulfonic acid) 또는 폴리아닐린/폴리(4-스티렌술포네이트)(Polyaniline/Poly(4-styrenesulfonate)) 등을 사용할 수 있다.
정공 수송 재료로는 피라졸린 유도체, 아릴아민계 유도체, 스틸벤 유도체, 트리페닐디아민 유도체 등이 사용될 수 있으며, 저분자 또는 고분자 재료가 사용될 수도 있다.
전자 수송 재료로는 옥사디아졸 유도체, 안트라퀴노디메탄 및 이의 유도체, 벤조퀴논 및 이의 유도체, 나프토퀴논 및 이의 유도체, 안트라퀴논 및 이의 유도체, 테트라시아노안트라퀴노디메탄 및 이의 유도체, 플루오레논 유도체, 디페닐디시아노에틸렌 및 이의 유도체, 디페노퀴논 유도체, 8-히드록시퀴놀린 및 이의 유도체의 금속 착체 등이 사용될 수 있으며, 저분자 물질 뿐만 아니라 고분자 물질이 사용될 수도 있다.
전자 주입 재료로는 예를 들어, LiF가 당업계 대표적으로 사용되나, 본 출원이 이에 한정되는 것은 아니다.
발광 재료로는 적색, 녹색 또는 청색 발광재료가 사용될 수 있으며, 필요한 경우, 2 이상의 발광 재료를 혼합하여 사용할 수 있다. 이 때, 2 이상의 발광 재료를 개별적인 공급원으로 증착하여 사용하거나, 예비혼합하여 하나의 공급원으로 증착하여 사용할 수 있다. 또한, 발광 재료로서 형광 재료를 사용할 수도 있으나, 인광 재료로서 사용할 수도 있다. 발광 재료로는 단독으로서 양극과 음극으로부터 각각 주입된 정공과 전자를 결합하여 발광시키는 재료가 사용될 수도 있으나, 호스트 재료와 도펀트 재료가 함께 발광에 관여하는 재료들이 사용될 수도 있다.
발광 재료의 호스트를 혼합하여 사용하는 경우에는, 동일 계열의 호스트를 혼합하여 사용할 수도 있고, 다른 계열의 호스트를 혼합하여 사용할 수도 있다. 예를 들어, n 타입 호스트 재료 또는 p 타입 호스트 재료 중 어느 두 종류 이상의 재료를 선택하여 발광층의 호스트 재료로 사용할 수 있다.
본 출원 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 헤테로고리 화합물을 발광 재료의 호스트 물질로 포함할 수 있다.
본 출원 유기 발광 소자에서, 상기 발광층은 2개 이상의 호스트 물질을 포함할 수 있으며, 상기 호스트 물질 중 적어도 1개는 상기 헤테로고리 화합물을 발광 재료의 호스트 물질을 포함할 수 있다.
본 출원 유기 발광 소자에서, 상기 발광층은 2개 이상의 호스트 물질을 예비 혼합(pre-mixed)하여 사용할 수 있으며, 상기 2개 이상의 호스트 물질 중 적어도 1개는 상기 헤테로고리 화합물을 발광 재료의 호스트 물질로 포함할 수 있다.
상기 예비 혼합(pre-mixed)은 상기 발광층은 2개 이상의 호스트 물질을 유기물층에 증착하기 전에 먼저 재료를 섞어서 하나의 공원에 담아 혼합하는 것을 의미한다.
본 출원 유기 발광 소자에서, 상기 발광층은 2개 이상의 호스트 물질을 포함할 수 있으며, 상기 2개 이상의 호스트 물질은 각각 1개 이상의 p 타입 호스트 재료 및 n 타입 호스트 재료를 포함하고, 상기 호스트 물질 중 적어도 1개는 상기 헤테로고리 화합물을 발광 재료의 호스트 물질을 포함할 수 있다. 이 경우, 유기 발광 소자의 구동, 효율 및 수명이 우수해질 수 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 출원의 일 실시상태에 따른 헤테로고리 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명하지만, 이들은 본 출원을 예시하기 위한 것일 뿐, 본 출원 범위를 한정하기 위한 것은 아니다.
<제조예>
<제조예 1> 화합물 1, 14, 28, 198 및 201의 제조
1) 화합물 E1의 제조
Figure PCTKR2020018563-appb-img-000031
2-bromo-4-chlorodibenzo[b,d]thiophene (20g, 67.2 mmol), 9H-carbazole (11.2g, 67.2 mmol), CuI (15.8g, 80.6 mmol), cyclohexane-1,2-diamine (9.2g, 80.6 mmol), K 3PO 4 (28.4g, 134.4 mmol)을 500ml 둥근바닥 플라스크에 넣고, 1,4-Dioxane (200ml)를 넣어 준 다음 140 oC에서 교반시켰다. 반응이 완결된 다음 온도를 실온으로 낮추고, celite fliter 후 농축하였다. 농축시킨 반응물을 MC:Hexane=1:3(v/v) column으로 정제하여, 화합물 E1(23.7g, 61.7 mmol, Yield : 91.8%)을 얻었다. 상기 MC는 메틸렌 클로라이드(Methylene chloride, 이하, MC)를 의미한다.
2) 화합물 E2의 제조
상기 화합물 E1의 제조에서 2-bromo-4-chlorodibenzo[b,d]thiophene(A1) 대신 하기 표 1의 A2를 사용하는 사용한 것을 제외하고, 상기 화합물 E1의 제조와 동일한 방법으로 제조하여 화합물 E2(Yield : 85.1%)을 합성하였다.
Figure PCTKR2020018563-appb-img-000032
3) 화합물 1의 제조
Figure PCTKR2020018563-appb-img-000033
하기 표 2의 E1 (10.0g, 26.0 mmol), H1 (6.4g, 26.0 mmol), Pd 2dba 3(1.2g, 1.3 mmol), Xphos(1.2g, 2.6 mmol), NaO tBu(7.5g, 78.0 mmol) 을 500mL 둥근바닥 플라스크에 넣고, xylene (110 mL) 를 넣어 준 다음 160 oC에서 교반시켰다. 반응이 완결된 다음 온도를 실온으로 낮추고, celite filter 후 농축하였다. 농축시킨 반응물을 MC:Hexane=1:1 column으로 정제하여, 화합물 1(14.0g, 23.6 mmol, Yield : 90.8%)을 얻었다.
4) 화합물 14, 28, 198 및 201의 제조
상기 화합물 1의 제조에서 E1 대신 하기 표 2의 E를 사용하고, H1 대신 하기 표 2의 H를 사용한 것을 제외하고, 상기 화합물 1의 제조와 동일한 방법으로 제조하여 화합물 14, 28, 198 및 201을 합성하였다.
Figure PCTKR2020018563-appb-img-000034
<제조예 2> 화합물 55 내지 57, 65, 71 내지 73, 77, 79, 91, 94 내지 96, 98, 111 내지 113, 122 내지 124, 129, 131, 133, 137, 144, 146, 153 및 160의 제조
1) 화합물 C3의 제조
Figure PCTKR2020018563-appb-img-000035
2-bromodibenzo[b,d]thiophene (20g, 76.0 mmol), 9H-carbazole (12.7g, 76.0 mmol), CuI (17.8g, 91.2 mmol), cyclohexane-1,2-diamine (10.4g, 91.2 mmol), K 3PO 4 (32.2g, 152.0 mmol)을 500ml 둥근바닥 플라스크에 넣고, 1,4-Dioxane (200ml)를 넣어 준 다음 140 oC에서 교반시켰다. 반응이 완결된 다음 온도를 실온으로 낮추고, celite fliter 후 농축하였다. 농축시킨 반응물을 MC:Hexane=1:3(v/v) column column으로 정제하여, 화합물 C3(24.2g, 69.3 mmol, Yield : 91.2%)를 얻었다.
2) 화합물 C4 내지 C8의 제조
상기 화합물 C3의 제조에서 2-bromodibenzo[b,d]thiophene(A3) 대신 하기 표 3의 A를 사용하고, 9H-carbazole(B1)대신 하기 표 3의 B를 사용한 것을 제외하고, 상기 화합물 C3의 제조와 동일한 방법으로 제조하여 화합물 C4 내지 C8을 합성하였다.
Figure PCTKR2020018563-appb-img-000036
3) 화합물 E3의 제조
질소 분위기에서, C3 (20g, 57.2 mmol)을 500ml 둥근바닥 플라스크에 넣고, Tetrahydrofuran(이하 THF) (200ml)를 넣어 준 다음 -78 oC에서 교반하였다. 그 후, 2.5M n-butyllithium solution(23ml, 57.2mmol)을 천천히 드랍(drop)하고, 30 분(min) 교반하였다. 이 후, trimethyl borate(9.6ml, 85.8 mmol) 천천히 드랍(drop)하고, 교반하였다. 반응이 완결된 다음 EA/H 2O 추출 후 농축하였다. 상기 농축시킨 반응물을 MgSO 4 처리 후 다시 농축하여 화합물 E3(19.1g, 48.6 mmol, Yield : 85.0%))를 얻었다.
4) 화합물 E4 내지 E8의 제조
상기 화합물 E3의 제조에서 C3 대신 하기 표 4의 C를 사용한 것을 제외하고, 상기 화합물 E3의 제조와 동일한 방법으로 제조하여 화합물 E4 내지 E8을 합성하였다.
Figure PCTKR2020018563-appb-img-000037
5) 화합물 57의 제조
Figure PCTKR2020018563-appb-img-000038
E3 (15g, 38.1 mmol), H94 (18.1g, 38.1 mmol), Pd(PPh 3) 4 (2.2g, 1.9 mmol), K 2CO 3 (13.1g, 95.3 mmol)을 500ml 둥근바닥 플라스크에 넣고, 1,4-Dioxane/H 2O (200ml/40ml)를 넣어 준 다음 160 oC에서 교반시켰다. 반응이 완결된 다음 온도를 실온으로 낮추고, MC/H 2O extraction 후 농축하였다. 농축시킨 반응물을 MC:Hexane=1:1(v/v) column으로 정제하여, 화합물 57(26.3g, 35.3 mmol, Yield : 92.7%)을 얻었다.
6) 화합물 55, 56, 65, 71 내지 73, 77, 79, 91, 94 내지 96, 98, 111 내지 113, 122 내지 124, 129, 131, 133, 137, 144, 146, 153 및 160의 제조
상기 화합물 57의 제조에서 E3 대신 하기 표 5의 E를 사용하고, H94 대신 하기 표 5의 H를 사용한 것을 제외하고, 상기 화합물 57의 제조와 동일한 방법으로 제조하여 화합물 화합물 55, 56, 64, 71 내지 73, 77, 79, 91, 94 내지 96, 98, 111 내지 113, 122 내지 124, 129, 131, 133, 137, 144, 146, 153 및 160을 합성하였다.
Figure PCTKR2020018563-appb-img-000039
Figure PCTKR2020018563-appb-img-000040
Figure PCTKR2020018563-appb-img-000041
Figure PCTKR2020018563-appb-img-000042
Figure PCTKR2020018563-appb-img-000043
Figure PCTKR2020018563-appb-img-000044
Figure PCTKR2020018563-appb-img-000045
상기 제조예와 같은 방법으로 본 명세서에 기재된 화합물을 제조하고, 그 제조된 화합물의 합성확인결과를 하기 표 6 및 표 7에 나타내었다. 하기 표 6은 1H NMR(CDCl 3, 400Mz)의 측정값이고, 하기 표 7은 FD-질량분석계(FD-MS: Field desorption mass spectrometry)의 측정값이다.
화합물 1H NMR(CDCl 3, 400Mz)
1 δ = 8.28(s, 1H), 8.17~8.15(d, 2H), 8.12~8.10(d, 1H), 7.85~7.70(m, 3H), 7.56~7.54(m, 4H), 7.52~7.44(m, 6H), 7.41~7.37(m, 5H), 7.28~7.21(m, 6H)
14 δ = 8.29(s, 1H), 8.18~8.16(d, 2H), 8.12~8.10(d, 1H), 7.84~7.71 (m, 3H), 7.55~7.53(m, 4H), 7.52~7.44(m, 6H), 7.41~7.37(m, 5H), 7.27~7.19(m, 8H)
28 δ = 8.31(s, 1H), 8.20~8.18(d, 2H), 8.15~8.14(d, 1H), 7.90~7.85 (m, 3H), 7.69~7.65(m, 4H), 7.52~7.44(m, 6H), 7.41~7.37(m, 5H), 7.27~7.19(m, 8H)
55 δ = 8.25(s, 1H), 8.15~8.14(d, 2H), 8.12~8.10(d, 1H), 7.88~7.86(d, 1H), 7.70~7.66(m, 3H), 7.55~7.53(d, 4H), 7.52~7.44(m, 6H), 7.41~7.37(m, 6H), 7.28~7.20(m, 8H)
56 δ = 8.25(s, 1H), 8.16~8.15(d, 2H), 8.12~8.10(d, 1H), 7.88~7.86(d, 1H), 7.70~7.66(m, 3H), 7.55~7.53(d, 4H), 7.52~7.44(m, 6H), 7.41~7.37(m, 6H), 7.28~7.20(m, 8H)
57 δ = 8.26(s, 1H), 8.16~8.14(d, 2H), 8.12~8.10(d, 1H), 7.88~7.86(d, 1H), 7.70~7.66(m, 3H), 7.56~7.54(d, 4H), 7.52~7.44(m, 8H), 7.41~7.37(m, 6H), 7.29~7.20(m, 10H)
65 δ = 8.26(s, 1H), 8.16~8.14(d, 2H), 8.12~8.10(d, 1H), 7.88~7.86(d, 1H), 7.70~7.66(m, 3H), 7.56~7.54(d, 4H), 7.52~7.44(m, 8H), 7.41~7.37(m, 6H), 7.29~7.20(m, 8H)
71 δ = 8.26(s, 1H), 8.16~8.14(d, 2H), 8.12~8.10(d, 1H), 7.88~7.86(d, 1H), 7.69~7.65(m, 3H), 7.54~7.44(m, 12H), 7.41~7.37(m, 6H), 7.29~7.20(m, 8H), 1.49(s, 6H)
72 δ = 8.25(s, 1H), 8.16~8.14(d, 2H), 8.12~8.10(d, 1H), 7.88~7.70(m, 5H), 7.56~7.54(m, 4H), 7.52~7.43(m, 13H), 7.29~7.20(m, 8H)
73 δ = 8.25(s, 1H), 8.16~8.14(d, 2H), 8.12~8.10(d, 1H), 7.87~7.71(m, 5H), 7.56~7.54(m, 4H), 7.52~7.43(m, 13H), 7.29~7.20(m, 8H)
77 δ = 8.31(s, 1H), 8.20~8.18(d, 2H), 8.15~8.14(d, 1H), 7.90~7.85 (m, 3H), 7.69~7.65(m, 4H), 7.52~7.44(m, 6H), 7.41~7.37(m, 5H), 7.27~7.19(m, 8H)
79 δ = 8.29(s, 1H), 8.17~8.15(d, 2H), 8.13~8.11(d, 1H), 7.88~7.81 (m, 3H), 7.65~7.60(m, 4H), 7.49~7.37(m, 13H), 7.27~7.19(m, 10H)
91 δ = 8.29(s, 1H), 8.19~8.18(d, 2H), 8.14~8.13(d, 1H), 7.90~7.86 (m, 3H), 7.67~7.60(m, 4H), 7.49~7.37(m, 13H), 7.27~7.19(m, 10H)
94 δ = 8.29(s, 1H), 8.17~8.15(d, 2H), 8.13~8.11(d, 1H), 7.88~7.81 (m, 3H), 7.65~7.60(m, 4H), 7.49~7.37(m, 13H), 7.27~7.19(m, 10H)
95 δ = 8.27(s, 1H), 8.16~8.13(m, 3H), 7.90~7.86 (m, 3H), 7.67~7.50(m, 6H), 7.45~7.37(m, 13H), 7.23~7.19(m, 8H)
96 δ = 8.30(s, 1H), 8.20~8.19(d, 2H), 8.15~8.14(d, 1H), 7.90~7.86 (m, 3H), 7.67~7.60(m, 4H), 7.49~7.37(m, 13H), 7.27~7.19(m, 10H)
98 δ = 8.31(s, 1H), 8.22~8.20(d, 2H), 8.16~8.14(d, 1H), 7.93~7.86 (m, 3H), 7.72~7.63(m, 4H), 7.55~7.37(m, 13H), 7.27~7.19(m, 10H)
111 δ = 8.35(s, 1H), 8.27~8.24(m, 2H), 8.18~8.16(d, 1H), 7.99~7.92 (m, 3H), 7.79~7.66(m, 4H), 7.59~7.42(m, 15H), 7.35~7.29(m, 10H)
112 δ = 8.34(s, 1H), 8.26~8.23(m, 2H), 8.18~8.16(d, 1H), 7.99~7.92 (m, 3H), 7.75~7.65(m, 4H), 7.58~7.42(m, 15H), 7.35~7.29(m, 10H)
113 δ = 8.35(s, 1H), 8.27~8.24(m, 2H), 8.18~8.16(d, 1H), 7.99~7.92 (m, 3H), 7.79~7.66(m, 4H), 7.59~7.42(m, 13H), 7.35~7.29(m, 10H)
122 δ = 8.35(s, 1H), 8.27~8.24(m, 2H), 8.18~8.16(d, 1H), 7.98~7.91 (m, 3H), 7.78~7.67(m, 4H), 7.60~7.41(m, 13H), 7.34~7.28(m, 10H), 1.49(s, 6H)
123 δ = 8.34(s, 1H), 8.26~8.23(m, 2H), 8.17~8.16(d, 1H), 7.97~7.90 (m, 3H), 7.75~7.65(m, 4H), 7.58~7.42(m, 15H), 7.35~7.29(m, 12H)
124 δ = 8.34(s, 1H), 8.26~8.23(m, 2H), 8.17~8.16(d, 1H), 7.98~7.93 (m, 3H), 7.76~7.66(m, 4H), 7.59~7.43(m, 15H), 7.35~7.29(m, 12H)
129 δ = 8.40(s, 1H), 8.30~8.26(m, 2H), 8.20~8.19(d, 1H), 7.99~7.92 (m, 3H), 7.79~7.66(m, 4H), 7.59~7.42(m, 13H), 7.35~7.29(m, 10H)
131 δ = 8.41(s, 1H), 8.31~8.27(m, 2H), 8.20~8.19(d, 1H), 7.99~7.92 (m, 3H), 7.79~7.66(m, 4H), 7.59~7.42(m, 13H), 7.35~7.29(m, 10H)
133 δ = 8.33~8.30(m, 2H), 8.25~8.24(d, 1H), 8.17~8.15(d, 1H), 7.98~7.93 (m, 3H), 7.76~7.66(m, 4H), 7.56~7.42(m, 15H), 7.33~7.29(m, 10H)
137 δ = 8.33~8.30(m, 2H), 8.26~8.24(d, 1H), 8.16~8.15(d, 1H), 7.99~7.93 (m, 3H), 7.76~7.66(m, 4H), 7.56~7.42(m, 15H), 7.33~7.29(m, 12H)
144 δ = 8.35~8.33(m, 2H), 8.26~8.25(d, 1H), 8.18~8.16(d, 1H), 7.99~7.94 (m, 3H), 7.79~7.70(m, 4H), 7.56~7.42(m, 15H), 7.33~7.29(m, 8H), 1.51(s, 6H)
146 δ = 8.33~8.30(m, 2H), 8.25~8.24(d, 1H), 8.17~8.15(d, 1H), 7.98~7.93 (m, 3H), 7.76~7.66(m, 4H), 7.56~7.42(m, 17H), 7.33~7.29(m, 10H)
153 δ = 8.36~8.34(m, 2H), 8.28~8.26(d, 1H), 8.19~8.18(d, 1H), 8.00~7.93 (m, 3H), 7.75~7.66(m, 4H), 7.56~7.42(m, 15H), 7.33~7.29(m, 8H)
160 δ = 8.31(s, 1H), 8.20~8.17(m, 2H), 8.09~8.08(d, 1H), 7.96~7.92 (m, 3H), 7.75~7.65(m, 4H), 7.58~7.42(m, 11H), 7.30~7.25(m, 10H)
198 δ = 8.32(s, 1H), 8.20~8.19(d, 2H), 8.15~8.14(d, 1H), 7.97~7.93(m, 3H), 7.79~7.69(m, 4H), 7.55~7.39(m, 13H), 7.25~7.21(m, 8H)
201 δ = 8.33(s, 1H), 8.21~8.20(d, 2H), 8.16~8.14(d, 1H), 7.99~7.95(m, 3H), 7.79~7.69(m, 4H), 7.55~7.39(m, 13H), 7.24~7.20(m, 6H), 1.51(s, 6H)
214 δ = 8.31(s, 1H), 8.20~8.18(d, 2H), 8.15~8.14(d, 1H), 7.94~7.93(d, 1H), 7.72~7.67(m, 3H), 7.55~7.44(m, 10H), 7.41~7.37(m, 6H), 7.24~7.20(m, 8H)
228 δ = 8.32(s, 1H), 8.22~8.21(d, 2H), 8.17~8.15(d, 1H), 7.95~7.94(d, 1H), 7.72~7.68(m, 3H), 7.54~7.44(m, 8H), 7.41~7.37(m, 6H), 7.25~7.20(m, 8H), 1.50(s, 6H)
231 δ = 8.30(s, 1H), 8.19~8.18(d, 2H), 8.15~8.14(d, 1H), 7.94~7.93(d, 1H), 7.72~7.67(m, 3H), 7.55~7.44(m, 12H), 7.41~7.37(m, 6H), 7.25~7.21(m, 8H)
234 δ = 8.30(s, 1H), 8.18~8.14(m, 3H), 7.95~7.93(d, 1H), 7.72~7.67(m, 3H), 7.55~7.46(m, 12H), 7.41~7.35(m, 10H), 7.25~7.20(m, 8H)
244 δ = 8.35(s, 1H), 8.22~8.20(d, 2H), 8.17~8.15(d, 1H), 7.99~7.97(d, 1H), 7.79~7.70(m, 3H), 7.60~7.47(m, 8H), 7.43~7.37(m, 6H), 7.24~7.20(m, 8H)
246 δ = 8.34(s, 1H), 8.19~8.18(d, 2H), 8.15~8.14(d, 1H), 7.94~7.93(d, 1H), 7.72~7.67(m, 3H), 7.55~7.44(m, 10H), 7.41~7.20(m, 16H)
257 δ = 8.40(s, 1H), 8.30~8.27(m, 2H), 8.20~8.19(d, 1H), 8.00~7.95 (m, 3H), 7.79~7.70(m, 4H), 7.58~7.42(m, 15H), 7.35~7.29(m, 10H)
화합물 FD-Mass 화합물 FD-Mass
1 m/z= 592.7600 (C42H28N2S, 592.1973) 2 m/z= 592.7600 (C42H28N2S, 592.1973)
3 m/z= 668.8580 (C48H32N2S, 668.2286) 4 m/z= 668.8580 (C48H32N2S, 668.2286)
5 m/z= 668.8580 (C48H32N2S, 668.2286) 6 m/z= 566.7220 (C40H26N2S, 566.1817)
7 m/z= 642.8200 (C46H30N2S, 642.2130) 8 m/z= 642.8200 (C46H30N2S, 642.2130)
9 m/z= 642.8200 (C46H30N2S, 642.2130) 10 m/z= 642.8200 (C46H30N2S, 642.2130)
11 m/z= 632.2286 (C45H32N2S, 632.2286) 12 m/z= 708.9230 (C51H36N2S, 708.2599)
13 m/z= 642.8200 (C46H30N2S, 642.2130) 14 m/z= 642.8200 (C46H30N2S, 642.2130)
15 m/z= 692.8800 (C50H32N2S, 692.2286) 16 m/z= 692.8800 (C50H32N2S, 692.2286)
17 m/z= 718.9180 (C52H34N2S, 718.2443) 18 m/z= 718.9180 (C52H34N2S, 718.2443)
19 m/z= 672.8640 (C46H28N2S2, 672.1694) 20 m/z= 698.9020 (C48H30N2S2, 698.1850)
21 m/z= 698.9020 (C48H30N2S2, 698.1850) 22 m/z= 698.9020 (C48H30N2S2, 698.1850)
23 m/z= 672.8640 (C46H28N2S2, 672.1694) 24 m/z= 698.9020 (C48H30N2S2, 698.1850)
25 m/z= 698.9020 (C48H30N2S2, 698.1850) 26 m/z= 698.9020 (C48H30N2S2, 698.1850)
27 m/z= 656.8030 (C46H28N2OS, 656.1922) 28 m/z= 682.8410 (C48H30N2OS, 682.2079)
29 m/z= 682.8410 (C48H30N2OS, 682.2079) 30 m/z= 656.8030 (C46H28N2OS, 656.1922)
31 m/z= 682.8410 (C48H30N2OS, 682.2079) 32 m/z= 682.8410 (C48H30N2OS, 682.2079)
33 m/z= 656.8030 (C46H28N2OS, 656.1922) 34 m/z= 682.8410 (C48H30N2OS, 682.2079)
35 m/z= 682.8410 (C48H30N2OS, 682.2079) 36 m/z= 682.8410 (C48H30N2OS, 682.2079)
37 m/z= 682.8410 (C48H30N2OS, 682.2079) 38 m/z= 682.8410 (C48H30N2OS, 682.2079)
39 m/z= 682.8410 (C48H30N2OS, 682.2079) 40 m/z= 744.9560 (C54H36N2S, 744.2599)
41 m/z= 718.9180 (C52H34N2S, 718.2443) 42 m/z= 785.9210 (C57H40N2S, 784.2912)
43 m/z= 718.9180 (C52H34N2S, 718.2443) 44 m/z= 795.0160 (C58H38N2S, 794.2756)
45 m/z= 758.9390 (C54H34N2OS, 758.2392) 46 m/z= 758.9390 (C54H34N2OS, 758.2392)
47 m/z= 744.9560 (C54H36N2S, 744.2599) 48 m/z= 718.9180 (C52H34N2S, 718.2443)
49 m/z= 768.9780 (C56H36N2S, 768.2599) 50 m/z= 795.0160 (C58H38N2S, 794.2756)
51 m/z= 758.9390 (C54H34N2OS, 758.2392) 52 m/z= 732.9010 (C52H32N2OS, 732.2235)
53 m/z= 758.9390 (C54H34N2OS, 758.2392) 54 m/z= 758.9390 (C54H34N2OS, 758.2392)
55 m/z= 668.8580 (C48H32N2S, 668.2286) 56 m/z= 668.8580 (C48H32N2S, 668.2286)
57 m/z= 744.9560 (C54H36N2S, 744.2599) 58 m/z= 744.9560 (C54H36N2S, 744.2599)
59 m/z= 744.9560 (C54H36N2S, 744.2599) 60 m/z= 642.8200 (C46H30N2S, 642.2130)
61 m/z= 642.8200 (C46H30N2S, 642.2130) 62 m/z= 718.9180 (C52H34N2S, 718.2443)
63 m/z= 718.9180 (C52H34N2S, 718.2443) 64 m/z= 718.9180 (C52H34N2S, 718.2443)
65 m/z= 718.9180 (C52H34N2S, 718.2443) 66 m/z= 692.8800 (C50H32N2S, 692.2286)
67 m/z= 692.8800 (C50H32N2S, 692.2286) 68 m/z= 692.8800 (C50H32N2S, 692.2286)
69 m/z= 708.9230 (C51H36N2S, 708.2599) 70 m/z= 785.0210 (C57H40N2S, 784.2912)
71 m/z= 785.0210 (C57H40N2S, 784.2912) 72 m/z= 718.9180 (C52H34N2S, 718.2443)
73 m/z= 718.9180 (C52H34N2S, 718.2443) 74 m/z= 768.9780 (C56H36N2S, 768.2599)
75 m/z= 795.0160 (C58H38N2S, 794.2756) 76 m/z= 795.0160 (C58H38N2S, 794.2756)
77 m/z= 698.9020 (C48H30N2S2, 698.1850) 78 m/z= 748.9620 (C52H32N2S2, 748.2007)
79 m/z= 775.0000 (C54H34N2S2, 774.2163) 80 m/z= 775.0000 (C54H34N2S2, 774.2163)
81 m/z= 698.9020 (C48H30N2S2, 698.1850) 82 m/z= 748.9620 (C52H32N2S2, 748.2007)
83 m/z= 775.0000 (C54H34N2S2, 774.2163) 84 m/z= 775.0000 (C54H34N2S2, 774.2163)
85 m/z= 698.9020 (C48H30N2S2, 698.1850) 86 m/z= 748.9620 (C52H32N2S2, 748.2007)
87 m/z= 775.0000 (C54H34N2S2, 774.2163) 88 m/z= 775.0000 (C54H34N2S2, 774.2163)
89 m/z= 698.9020 (C48H30N2S2, 698.1850) 90 m/z= 748.9620 (C52H32N2S2, 748.2007)
91 m/z= 682.8410 (C48H30N2OS, 682.2079) 92 m/z= 732.9010 (C52H32N2OS, 732.2235)
93 m/z= 758.9390 (C54H34N2OS, 758.2392) 94 m/z= 758.9390 (C54H34N2OS, 758.2392)
95 m/z= 758.9390 (C54H34N2OS, 758.2392) 96 m/z= 682.8410 (C48H30N2OS, 682.2079)
97 m/z= 732.9010 (C52H32N2OS, 732.2235) 98 m/z= 758.9390 (C54H34N2OS, 758.2392)
99 m/z= 758.9390 (C54H34N2OS, 758.2392) 100 m/z= 758.9390 (C54H34N2OS, 758.2392)
101 m/z= 682.8410 (C48H30N2OS, 682.2079) 102 m/z= 732.9010 (C52H32N2OS, 732.2235)
103 m/z= 732.9010 (C52H32N2OS, 732.2235) 104 m/z= 758.9390 (C54H34N2OS, 758.2392)
105 m/z= 758.9390 (C54H34N2OS, 758.2392) 106 m/z= 682.8410 (C48H30N2OS, 682.2079)
107 m/z= 732.9010 (C52H32N2OS, 732.2235) 108 m/z= 758.9390 (C54H34N2OS, 758.2392)
109 m/z= 758.9390 (C54H34N2OS, 758.2392) 110 m/z= 758.9390 (C54H34N2OS, 758.2392)
111 m/z= 744.9560 (C54H36N2S, 744.2599) 112 m/z= 744.9560 (C54H36N2S, 744.2599)
113 m/z= 718.9180 (C52H34N2S, 718.2443) 114 m/z= 718.9180 (C52H34N2S, 718.2443)
115 m/z= 795.0160 (C58H38N2S, 794.2756) 116 m/z= 795.0160 (C58H38N2S, 794.2756)
117 m/z= 795.0160 (C58H38N2S, 794.2756) 118 m/z= 795.0160 (C58H38N2S, 794.2756)
119 m/z= 768.9780 (C56H36N2S, 768.2599) 120 m/z= 768.9780 (C56H36N2S, 768.2599)
121 m/z= 768.9780 (C56H36N2S, 768.2599) 122 m/z= 785.0210 (C57H40N2S, 784.2912)
123 m/z= 795.0160 (C58H38N2S, 794.2756) 124 m/z= 795.0160 (C58H38N2S, 794.2756)
125 m/z= 775.0000 (C54H34N2S2, 774.2163) 126 m/z= 775.0000 (C54H34N2S2, 774.2163)
127 m/z= 775.0000 (C54H34N2S2, 774.2163) 128 m/z= 775.0000 (C54H34N2S2, 774.2163)
129 m/z= 758.9390 (C54H34N2OS, 758.2392) 130 m/z= 758.9390 (C54H34N2OS, 758.2392)
131 m/z= 758.9390 (C54H34N2OS, 758.2392) 132 m/z= 758.9390 (C54H34N2OS, 758.2392)
133 m/z= 744.9560 (C54H36N2S, 744.2599) 134 m/z= 744.9560 (C54H36N2S, 744.2599)
135 m/z= 718.9180 (C52H34N2S, 718.2443) 136 m/z= 718.9180 (C52H34N2S, 718.2443)
137 m/z= 795.0160 (C58H38N2S, 794.2756) 138 m/z= 795.0160 (C58H38N2S, 794.2756)
139 m/z= 795.0160 (C58H38N2S, 794.2756) 140 m/z= 795.0160 (C58H38N2S, 794.2756)
141 m/z= 768.9780 (C56H36N2S, 768.2599) 142 m/z= 768.9780 (C56H36N2S, 768.2599)
143 m/z= 768.9780 (C56H36N2S, 768.2599) 144 m/z= 785.0210 (C57H40N2S, 784.2912)
145 m/z= 795.0160 (C58H38N2S, 794.2756) 146 m/z= 795.0160 (C58H38N2S, 794.2756)
147 m/z= 775.0000 (C54H34N2S2, 774.2163) 148 m/z= 775.0000 (C54H34N2S2, 774.2163)
149 m/z= 775.0000 (C54H34N2S2, 774.2163) 150 m/z= 775.0000 (C54H34N2S2, 774.2163)
151 m/z= 758.9390 (C54H34N2OS, 758.2392) 152 m/z= 758.9390 (C54H34N2OS, 758.2392)
153 m/z= 758.9390 (C54H34N2OS, 758.2392) 154 m/z= 758.9390 (C54H34N2OS, 758.2392)
155 m/z= 718.9180 (C52H34N2S, 718.2443) 156 m/z= 718.9180 (C52H34N2S, 718.2443)
157 m/z= 795.0160 (C58H38N2S, 794.2756) 158 m/z= 795.0160 (C58H38N2S, 794.2756)
159 m/z= 795.0160 (C58H38N2S, 794.2756) 160 m/z= 692.8800 (C50H32N2S, 692.2286)
161 m/z= 692.8800 (C50H32N2S, 692.2286) 162 m/z= 768.9780 (C56H36N2S, 768.2599)
163 m/z= 768.9780 (C56H36N2S, 768.2599) 164 m/z= 768.9780 (C56H36N2S, 768.2599)
165 m/z= 768.9780 (C56H36N2S, 768.2599) 166 m/z= 742.9400 (C54H34N2S, 742.2443)
167 m/z= 742.9400 (C54H34N2S, 742.2443) 168 m/z= 742.9400 (C54H34N2S, 742.2443)
169 m/z= 758.9830 (C55H38N2S, 758.2756) 170 m/z= 768.9780 (C56H36N2S, 768.2599)
171 m/z= 768.9780 (C56H36N2S, 768.2599) 172 m/z= 748.9620 (C52H32N2S2, 748.2007)
173 m/z= 799.0220 (C56H34N2S2, 798.2163) 174 m/z= 799.0220 (C56H34N2S2, 798.2163)
175 m/z= 748.9620 (C52H32N2S2, 748.2007) 176 m/z= 799.0220 (C56H34N2S2, 798.2163)
177 m/z= 799.0220 (C56H34N2S2, 798.2163) 178 m/z= 748.9620 (C52H32N2S2, 748.2007)
179 m/z= 799.0220 (C56H34N2S2, 798.2163) 180 m/z= 799.0220 (C56H34N2S2, 798.2163)
181 m/z= 748.9620 (C52H32N2S2, 748.2007) 182 m/z= 799.0220 (C56H34N2S2, 798.2163)
183 m/z= 799.0220 (C56H34N2S2, 798.2163) 184 m/z= 732.9010 (C52H32N2OS, 732.2235)
185 m/z= 782.9610 (C56H34N2OS, 782.2392) 186 m/z= 782.9610 (C56H34N2OS, 782.2392)
187 m/z= 732.9010 (C52H32N2OS, 732.2235) 188 m/z= 782.9610 (C56H34N2OS, 782.2392)
189 m/z= 782.9610 (C56H34N2OS, 782.2392) 190 m/z= 732.9010 (C52H32N2OS, 732.2235)
191 m/z= 782.9610 (C56H34N2OS, 782.2392) 192 m/z= 782.9610 (C56H34N2OS, 782.2392)
193 m/z= 732.9010 (C52H32N2OS, 732.2235) 194 m/z= 782.9610 (C56H34N2OS, 782.2392)
195 m/z= 782.9610 (C56H34N2OS, 782.2392) 196 m/z= 576.6990 (C42H28N2O, 576.2202)
197 m/z= 576.6990 (C42H28N2O, 576.2202) 198 m/z= 652.7970 (C48H32N2O, 652.2515)
199 m/z= 652.7970 (C48H32N2O, 652.2515) 200 m/z= 550.6610 (C40H26N2O, 550.2045)
201 m/z= 692.8620 (C51H36N2O, 692.2828) 202 m/z= 626.7590 (C46H30N2O, 626.2358)
203 m/z= 676.8190 (C50H32N2O, 676.2515) 204 m/z= 682.8410 (C48H30N2OS, 682.2079)
205 m/z= 606.7430 (C42H26N2OS, 606.1766) 206 m/z= 640.7420 (C46H28N2O2, 640.2151)
207 m/z= 666.7800 (C48H30N2O2, 666.2307) 208 m/z= 666.7800 (C48H30N2O2, 666.2307)
209 m/z= 728.8950 (C54H36N2O, 728.2828) 210 m/z= 768.9600 (C57H40N2O, 768.3141)
211 m/z= 742.8780 (C54H34N2O2, 742.2620) 212 m/z= 728.8950 (C54H36N2O, 728.2828)
213 m/z= 742.8780 (C54H34N2O2, 742.2620) 214 m/z= 652.7970 (C48H32N2O, 652.2515)
215 m/z= 652.7970 (C48H32N2O, 652.2515) 216 m/z= 728.8950 (C54H36N2O, 728.2828)
217 m/z= 728.8950 (C54H36N2O, 728.2828) 218 m/z= 728.8950 (C54H36N2O, 728.2828)
219 m/z= 626.7590 (C46H30N2O, 626.2358) 220 m/z= 626.7590 (C46H30N2O, 626.2358)
221 m/z= 702.8570 (C52H34N2O, 702.2671) 222 m/z= 702.8570 (C52H34N2O, 702.2671)
223 m/z= 702.8570 (C52H34N2O, 702.2671) 224 m/z= 702.8570 (C52H34N2O, 702.2671)
225 m/z= 676.8190 (C50H32N2O, 676.2515) 226 m/z= 676.8190 (C50H32N2O, 676.2515)
227 m/z= 676.8190 (C50H32N2O, 676.2515) 228 m/z= 692.8620 (C51H36N2O, 692.2828)
229 m/z= 768.9600 (C57H40N2O, 768.3141) 230 m/z= 768.9600 (C57H40N2O, 768.3141)
231 m/z= 702.8570 (C52H34N2O, 702.2671) 232 m/z= 702.8570 (C52H34N2O, 702.2671)
233 m/z= 752.9170 (C56H36N2O, 752.2828) 234 m/z= 778.9550 (C58H38N2O, 778.2984)
235 m/z= 778.9550 (C58H38N2O, 778.2984) 236 m/z= 682.8410 (C48H30N2OS, 682.2079)
237 m/z= 758.9390 (C54H34N2OS, 758.2392) 238 m/z= 758.9390 (C54H34N2OS, 758.2392)
239 m/z= 682.8410 (C48H30N2OS, 682.2079) 240 m/z= 758.9390 (C54H34N2OS, 758.2392)
241 m/z= 682.8410 (C48H30N2OS, 682.2079) 242 m/z= 758.9390 (C54H34N2OS, 758.2392)
243 m/z= 758.9390 (C54H34N2OS, 758.2392) 244 m/z= 666.7800 (C48H30N2O2, 666.2307)
245 m/z= 742.8780 (C54H34N2O2, 742.2620) 246 m/z= 742.8780 (C54H34N2O2, 742.2620)
247 m/z= 716.8400 (C52H32N2O2, 716.2464) 248 m/z= 716.8400 (C52H32N2O2, 716.2464)
249 m/z= 742.8780 (C54H34N2O2, 742.2620) 250 m/z= 666.7800 (C48H30N2O2, 666.2307)
251 m/z= 716.8400 (C52H32N2O2, 716.2464) 252 m/z= 716.8400 (C52H32N2O2, 716.2464)
253 m/z= 742.8780 (C54H34N2O2, 742.2620) 254 m/z= 666.7800 (C48H30N2O2, 666.2307)
255 m/z= 742.8780 (C54H34N2O2, 742.2620) 256 m/z= 728.8950 (C54H36N2O, 728.2828)
257 m/z= 728.8950 (C54H36N2O, 728.2828) 258 m/z= 702.8570 (C52H34N2O, 702.2671)
259 m/z= 702.8570 (C52H34N2O, 702.2671) 260 m/z= 778.9550 (C58H38N2O, 778.2984)
261 m/z= 778.9550 (C58H38N2O, 778.2984) 262 m/z= 778.9550 (C58H38N2O, 778.2984)
263 m/z= 752.9170 (C56H36N2O, 752.2828) 264 m/z= 768.9600 (C57H40N2O, 768.3141)
265 m/z= 778.9550 (C58H38N2O, 778.2984) 266 m/z= 778.9550 (C58H38N2O, 778.2984)
267 m/z= 758.9390 (C54H34N2OS, 758.2392) 268 m/z= 758.9390 (C54H34N2OS, 758.2392)
269 m/z= 758.9390 (C54H34N2OS, 758.2392) 270 m/z= 742.8780 (C54H34N2O2, 742.2620)
271 m/z= 742.8780 (C54H34N2O2, 742.2620) 272 m/z= 742.8780 (C54H34N2O2, 742.2620)
273 m/z= 728.8950 (C54H36N2O, 728.2828) 274 m/z= 728.8950 (C54H36N2O, 728.2828)
275 m/z= 702.8570 (C52H34N2O, 702.2671) 276 m/z= 702.8570 (C52H34N2O, 702.2671)
277 m/z= 778.9550 (C58H38N2O, 778.2984) 278 m/z= 778.9550 (C58H38N2O, 778.2984)
279 m/z= 778.9550 (C58H38N2O, 778.2984) 280 m/z= 768.9600 (C57H40N2O, 768.3141)
281 m/z= 778.9550 (C58H38N2O, 778.2984) 282 m/z= 778.9550 (C58H38N2O, 778.2984)
283 m/z= 758.9390 (C54H34N2OS, 758.2392) 284 m/z= 758.9390 (C54H34N2OS, 758.2392)
285 m/z= 758.9390 (C54H34N2OS, 758.2392) 286 m/z= 742.8780 (C54H34N2O2, 742.2620)
287 m/z= 742.8780 (C54H34N2O2, 742.2620) 288 m/z= 702.8570 (C52H34N2O, 702.2671)
289 m/z= 702.8570 (C52H34N2O, 702.2671) 290 m/z= 778.9550 (C58H38N2O, 778.2984)
291 m/z= 676.8190 (C50H32N2O, 676.2515) 292 m/z= 752.9170 (C56H36N2O, 752.2828)
293 m/z= 752.9170 (C56H36N2O, 752.2828) 294 m/z= 742.9220 (C55H38N2O, 742.2984)
295 m/z= 752.9170 (C56H36N2O, 752.2828) 296 m/z= 752.9170 (C56H36N2O, 752.2828)
297 m/z= 732.9010 (C52H32N2OS, 732.2235) 298 m/z= 782.9610 (C56H34N2OS, 782.2392)
299 m/z= 716.8400 (C52H32N2O2, 716.2464) 300 m/z= 716.8400 (C52H32N2O2, 716.2464)
[실험예]
1) 유기 발광 소자의 제작 (적색 Host)
1,500Å의 두께로 인듐틴옥사이드(ITO)가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
상기 ITO 투명 전극(양극)위에 공통층인 정공 주입층 2-TNATA(4,4',4''-Tris[2-naphthyl(phenyl)amino] triphenylamine) 및 정공 수송층 NPB(N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine)을 형성시켰다.
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 호스트로 하기 표 8에 기재된 화합물, 적색 인광 도펀트로 (piq) 2(Ir) (acac)을 사용하여 호스트에 (piq) 2(Ir) (acac)를 3wt% 도핑하여 500Å 증착하였다. 이후 정공 저지층으로 BCP를 60Å 증착하였으며, 그 위에 전자 수송층으로 Alq 3 를 200Å 증착하였다. 이후 정공 저지층으로 BCP를 60Å 증착하였으며, 그 위에 전자 수송층으로 Alq 3 를 200Å 증착하였다. 마지막으로 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al) 음극을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10 -6~10 -8torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
2) 유기 전계 발광 소자의 구동 전압 및 발광 효율
상기와 같이 제작된 유기 전계 발광 소자에 대하여 맥사이어스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명장비측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m 2 일 때, T 90을 측정하였다. 본 발명의 유기 전계 발광 소자의 특성은 하기 표 8과 같았다.
화합물 구동전압
(V)
효율
(cd/A)
색좌표
(x, y)
수명
(T 90)
비교예 1 A 5.36 20.8 (0.681, 0.319) 30
비교예 2 B 5.43 19.9 (0.682, 0.316) 25
비교예 3 C 5.29 18.1 (0.683, 0.315) 36
비교예 4 D 5.10 22.0 (0.681, 0.318) 40
비교예 5 E 5.11 26.9 (0.680, 0.319) 60
비교예 6 F 5.25 22.5 (0.679, 0.321) 35
실시예 1 1 4.84 31.2 (0.688, 0.311) 75
실시예 2 14 4.87 30.2 (0.687, 0.312) 78
실시예 3 28 4.87 33.5 (0.686, 0.312) 73
실시예 4 55 4.79 34.8 (0.686, 0.312) 130
실시예 5 56 4.80 32.8 (0.686, 0.313) 129
실시예 6 57 4.80 33.1 (0.680, 0.319) 133
실시예 7 65 4.79 32.1 (0.679, 0.321) 128
실시예 8 71 4.29 27.0 (0.688, 0.311) 81
실시예 9 72 4.77 32.2 (0.687, 0.312) 131
실시예 10 73 4.81 32.9 (0.686, 0.312) 155
실시예 11 77 4.81 34.9 (0.686, 0.312) 190
실시예 12 79 4.71 35.1 (0.686, 0.313) 200
실시예 13 91 4.98 36.5 (0.680, 0.319) 230
실시예 14 94 4.89 36.6 (0.679, 0.321) 250
실시예 15 95 4.78 34.1 (0.688, 0.311) 159
실시예 16 96 4.99 36.2 (0.687, 0.312) 235
실시예 17 98 4.87 36.5 (0.686, 0.312) 254
실시예 18 111 4.80 35.5 (0.686, 0.312) 150
실시예 19 112 4.75 34.0 (0.686, 0.313) 135
실시예 20 113 4.85 33.9 (0.686, 0.312) 120
실시예 21 122 4.25 27.8 (0.686, 0.313) 85
실시예 22 123 4.80 33.1 (0.688, 0.311) 142
실시예 23 124 4.83 33.5 (0.687, 0.312) 160
실시예 24 129 4.89 38.3 (0.686, 0.312) 278
실시예 25 131 4.95 39.7 (0.686, 0.312) 290
실시예 26 133 4.81 34.5 (0.686, 0.313) 130
실시예 27 137 4.88 33.2 (0.688, 0.311) 120
실시예 28 144 4.22 27.3 (0.679, 0.321) 80
실시예 29 146 4.85 33.5 (0.688, 0.311) 125
실시예 30 153 4.94 37.9 (0.687, 0.312) 243
실시예 31 160 4.81 33.9 (0.688, 0.311) 123
실시예 32 198 4.90 29.8 (0.687, 0.312) 90
실시예 33 201 4.30 25.9 (0.685, 0.313) 65
실시예 34 214 4.72 31.5 (0.684, 0.313) 115
실시예 35 228 4.21 27.1 (0.685, 0.313) 73
실시예 36 231 4.70 30.2 (0.687, 0.313) 110
실시예 37 234 4.71 30.5 (0.687, 0.311) 115
실시예 38 244 4.80 35.3 (0.686, 0.312) 180
실시예 39 246 4.79 32.5 (0.686, 0.311) 155
실시예 40 257 4.75 32.0 (0.687, 0.311) 125
Figure PCTKR2020018563-appb-img-000046
상기 실험예로부터 상기 화학식 1의 헤테로고리 화합물을 유기 발광 소자의 유기물층 특히 발광층의 호스트로 사용하는 경우, 구동전압, 효율을 개선 시킬 수 있음을 확인할 수 있었다. 구체적으로, 비교예 1 내지 6에 비해 상기 화학식 1의 헤테로고리 화합물을 사용한 실시예 1 내지 40의 경우, 치환기를 고정시킴으로써 입체적 배치(steric)를 가지게 되고 호모(HOMO, Highest Occupied Molecular Orbital) 및 루모(LUMO, HOMO, Lowest ighest Unoccupied Molecular Orbital)를 공간적으로 분리하여 강한 전하 이동(charge transfer)이 가능하기 때문에 레드 호스트(red host)로서 적합함하고, 유기 발광 소자 내 유기 물질로 사용할 경우 높은 효율을 기대할 수 있음을 확인할 수 있었다.
이는, 본 출원의 화합물이 가지는 C-N 결합으로 인하여, 구동, 효율 향상되고, 특정 위치에 치환기를 고정시킴으로써 입체적 배치(steric)를 가지게 되고 호모(HOMO, Highest Occupied Molecular Orbital) 및 루모(LUMO, HOMO, Lowest ighest Unoccupied Molecular Orbital)를 공간적으로 분리하여 강한 전하 이동(charge transfer)이 가능하기 때문인 것으로 판단된다.

Claims (10)

  1. 하기 화학식 1로 표시되는 헤테로고리 화합물:
    [화학식 1]
    Figure PCTKR2020018563-appb-img-000047
    상기 화학식 1에 있어서,
    L 1은 직접결합; 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴렌기이며,
    X 1은 O; 또는 S이고,
    R p는 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 치환 또는 비치환된 탄소수 3 내지 30의 시클로알킬기이고,
    R 1 내지 R 8은 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 탄소수 6 내지 60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로 고리를 형성하고,
    Ar 1은 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기; 또는 치환 또는 비치환된 탄소수 6 내지 40의 아릴기 및 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기로 이루어진 군에서 선택된 1 이상으로 치환 또는 비치환된 아민기이며,
    a는 0 내지 2의 정수이고, a가 2인 경우, 괄호 내의 치환기는 서로 같거나 상이하고,
    p는 각각 0 내지 4의 정수이고, p가 2 이상일 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
  2. 청구항 1에 있어서, 상기 "치환 또는 비치환"이란 탄소수 1 내지 60의 직쇄 또는 분지쇄의 알킬기; 탄소수 2 내지 60의 직쇄 또는 분지쇄의 알케닐기; 탄소수 2 내지 60의 직쇄 또는 분지쇄의 알키닐기; 탄소수 3 내지 60의 단환 또는 다환의 시클로알킬기; 탄소수 2 내지 60의 단환 또는 다환의 헤테로시클로알킬기; 탄소수 6 내지 60의 단환 또는 다환의 아릴기; 탄소수 2 내지 60의 단환 또는 다환의 헤테로아릴기; 실릴기; 포스핀옥사이드기; 및 아민기로 이루어진 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중에서 선택된 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 의미하는 것인 헤테로고리 화합물.
  3. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 2 또는 화학식 3으로 표시되는 것인 헤테로고리 화합물:
    [화학식 2]
    Figure PCTKR2020018563-appb-img-000048
    [화학식 3]
    Figure PCTKR2020018563-appb-img-000049
    상기 화학식 2 및 3에서 각 치환기의 정의는 화학식 1과 동일하다.
  4. 청구항 1에 있어서, 상기 화학식 1은 하기 하기 화학식 4 내지 6 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    [화학식 4]
    Figure PCTKR2020018563-appb-img-000050
    [화학식 5]
    Figure PCTKR2020018563-appb-img-000051
    [화학식 6]
    Figure PCTKR2020018563-appb-img-000052
    상기 화학식 4 내지 6에서 각 치환기의 정의는 화학식 1과 동일하다.
  5. 청구항 1에 있어서,
    상기 화학식 1의 Ar 1은 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기; 또는 하기 화학식 A로 표시되는 기인 것인 헤테로고리 화합물:
    [화학식 A]
    Figure PCTKR2020018563-appb-img-000053
    상기 화학식 A에서,
    L 11 및 L 12는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 탄소수 6 내지 40의 아릴렌기 또는 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴렌기이고,
    Ar 11 및 Ar 12는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기 또는 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이고,
    a 및 b는 0 또는 1이고,
    Figure PCTKR2020018563-appb-img-000054
    는 상기 화학식 1의 L 1과 결합하는 위치를 의미한다.
  6. 청구항 1에 있어서, 상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    Figure PCTKR2020018563-appb-img-000055
    Figure PCTKR2020018563-appb-img-000056
    Figure PCTKR2020018563-appb-img-000057
    Figure PCTKR2020018563-appb-img-000058
    Figure PCTKR2020018563-appb-img-000059
    Figure PCTKR2020018563-appb-img-000060
    Figure PCTKR2020018563-appb-img-000061
    Figure PCTKR2020018563-appb-img-000062
    Figure PCTKR2020018563-appb-img-000063
    Figure PCTKR2020018563-appb-img-000064
    Figure PCTKR2020018563-appb-img-000065
    Figure PCTKR2020018563-appb-img-000066
    Figure PCTKR2020018563-appb-img-000067
    Figure PCTKR2020018563-appb-img-000068
    Figure PCTKR2020018563-appb-img-000069
    Figure PCTKR2020018563-appb-img-000070
    Figure PCTKR2020018563-appb-img-000071
  7. 제1 전극; 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 청구항 1 내지 6 중 어느 하나의 항에 따른 헤테로고리 화합물을 포함하는 유기 발광 소자.
  8. 청구항 7에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 헤테로고리 화합물을 포함하는 유기 발광 소자.
  9. 청구항 7에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 헤테로고리 화합물을 발광 재료의 호스트 물질로 포함하는 유기 발광 소자.
  10. 청구항 7에 있어서, 상기 유기 발광 소자는 발광층, 정공주입층, 정공수송층. 전자주입층, 전자수송층, 전자저지층 및 정공저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함하는 것인 유기 발광 소자.
PCT/KR2020/018563 2019-12-20 2020-12-17 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 WO2021125835A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022534454A JP2023507714A (ja) 2019-12-20 2020-12-17 ヘテロ環化合物およびこれを含む有機発光素子
CN202080087295.4A CN114829358A (zh) 2019-12-20 2020-12-17 杂环化合物以及包括其的有机发光元件
US17/782,781 US20230013956A1 (en) 2019-12-20 2020-12-17 Heterocyclic compound and organic light-emitting device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190171467A KR20210079553A (ko) 2019-12-20 2019-12-20 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR10-2019-0171467 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021125835A1 true WO2021125835A1 (ko) 2021-06-24

Family

ID=76477879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018563 WO2021125835A1 (ko) 2019-12-20 2020-12-17 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Country Status (6)

Country Link
US (1) US20230013956A1 (ko)
JP (1) JP2023507714A (ko)
KR (1) KR20210079553A (ko)
CN (1) CN114829358A (ko)
TW (1) TW202132537A (ko)
WO (1) WO2021125835A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896720A (zh) * 2021-09-27 2022-01-07 陕西莱特迈思光电材料有限公司 有机化合物、电子元件及电子装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102610155B1 (ko) * 2021-08-23 2023-12-06 엘티소재주식회사 헤테로고리 화합물 및 이를 이용한 유기 발광 소자

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535606B1 (ko) * 2015-01-29 2015-07-09 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20160045507A (ko) * 2014-10-17 2016-04-27 삼성전자주식회사 카바졸계 화합물 및 이를 포함한 유기 발광 소자
KR20160054855A (ko) * 2014-11-07 2016-05-17 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
KR20160079415A (ko) * 2014-12-26 2016-07-06 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20170057660A (ko) * 2015-11-17 2017-05-25 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 전자 소자
KR20170102000A (ko) * 2015-02-13 2017-09-06 코니카 미놀타 가부시키가이샤 방향족 복소환 유도체, 그것을 사용한 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치
KR20170127353A (ko) * 2016-05-11 2017-11-21 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR20180023707A (ko) * 2016-08-26 2018-03-07 에스케이케미칼 주식회사 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR20180096444A (ko) * 2017-02-21 2018-08-29 희성소재 (주) 유기 발광 소자
KR20190091699A (ko) * 2018-01-29 2019-08-07 주식회사 엘지화학 유기발광소자

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160045507A (ko) * 2014-10-17 2016-04-27 삼성전자주식회사 카바졸계 화합물 및 이를 포함한 유기 발광 소자
KR20160054855A (ko) * 2014-11-07 2016-05-17 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
KR20160079415A (ko) * 2014-12-26 2016-07-06 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101535606B1 (ko) * 2015-01-29 2015-07-09 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20170102000A (ko) * 2015-02-13 2017-09-06 코니카 미놀타 가부시키가이샤 방향족 복소환 유도체, 그것을 사용한 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치
KR20170057660A (ko) * 2015-11-17 2017-05-25 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 전자 소자
KR20170127353A (ko) * 2016-05-11 2017-11-21 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR20180023707A (ko) * 2016-08-26 2018-03-07 에스케이케미칼 주식회사 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR20180096444A (ko) * 2017-02-21 2018-08-29 희성소재 (주) 유기 발광 소자
KR20190091699A (ko) * 2018-01-29 2019-08-07 주식회사 엘지화학 유기발광소자

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896720A (zh) * 2021-09-27 2022-01-07 陕西莱特迈思光电材料有限公司 有机化合物、电子元件及电子装置
CN113896720B (zh) * 2021-09-27 2023-06-09 陕西莱特迈思光电材料有限公司 有机化合物、电子元件及电子装置

Also Published As

Publication number Publication date
JP2023507714A (ja) 2023-02-27
US20230013956A1 (en) 2023-01-19
CN114829358A (zh) 2022-07-29
TW202132537A (zh) 2021-09-01
KR20210079553A (ko) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2021060865A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021112496A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022039408A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021101117A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021261946A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2019066607A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022045606A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2023075134A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2021118159A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022050592A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021132984A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2021080282A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021125835A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022108141A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022055155A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021256836A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022035224A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2022039340A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021107474A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021080280A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021091247A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021045460A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020138814A1 (ko) 화합물, 유기 광전자 소자 및 표시 장치
WO2022186645A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
WO2018174682A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902052

Country of ref document: EP

Kind code of ref document: A1