WO2020138317A1 - 非水電解液および非水電解質二次電池 - Google Patents

非水電解液および非水電解質二次電池 Download PDF

Info

Publication number
WO2020138317A1
WO2020138317A1 PCT/JP2019/051195 JP2019051195W WO2020138317A1 WO 2020138317 A1 WO2020138317 A1 WO 2020138317A1 JP 2019051195 W JP2019051195 W JP 2019051195W WO 2020138317 A1 WO2020138317 A1 WO 2020138317A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
positive electrode
negative electrode
additive
electrolytic solution
Prior art date
Application number
PCT/JP2019/051195
Other languages
English (en)
French (fr)
Inventor
巧 日浅
本橋 一成
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201980086481.3A priority Critical patent/CN113228372B/zh
Priority to JP2020562424A priority patent/JP7099548B2/ja
Publication of WO2020138317A1 publication Critical patent/WO2020138317A1/ja
Priority to US17/356,803 priority patent/US11742522B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte solution and a non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery is widely used as a power source for electronic devices and electric vehicles because it is lightweight and has high energy density. Since the characteristics of the non-aqueous electrolyte secondary battery largely depend on the non-aqueous electrolyte used, various additives to be added to the non-aqueous electrolyte have been proposed.
  • Patent Documents 1 to 3 describe non-aqueous electrolytes containing a cyanoester compound having a cyano group at the terminal as an additive.
  • the non-aqueous electrolyte solution containing the cyanoester compound described above it is possible to suppress the decrease in capacity of the non-aqueous electrolyte secondary battery during storage, but by the reaction of the cyanoester compound described above, the non-aqueous electrolyte secondary battery Cycle characteristics deteriorate.
  • An object of the present invention is to provide a non-aqueous electrolyte solution and a non-aqueous electrolyte secondary battery that can suppress a decrease in capacity during storage and a decrease in cycle characteristics.
  • the first invention is a non-aqueous electrolyte containing a compound represented by the following formula (1) and a cyclic sulfate.
  • m is an integer of 0 or more and 10 or less
  • R 1 , R 2 , R 3 , R 4 , and R 5 are each independently a hydrocarbon group which may have a substituent, a halogen. Or a hydrogen group, provided that when m is 2 or more, 2 or more R 4's may be the same or different, and 2 or more R 5 's may be the same or different.
  • the second invention is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and the non-aqueous electrolyte solution according to the first invention.
  • FIG. 2 is a sectional view taken along line II-II of FIG. 1. It is a block diagram which shows an example of a structure of the electronic device which concerns on the 3rd Embodiment of this invention.
  • the numerical range indicated by using “to” indicates the range including the numerical values before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of the numerical range of one stage may be replaced with the upper limit value or the lower limit value of the numerical range of another stage.
  • the materials exemplified in the present specification can be used alone or in combination of two or more kinds.
  • the electrolytic solution according to the first embodiment of the present invention is a so-called non-aqueous electrolytic solution, and includes an organic solvent (non-aqueous solvent), an electrolyte salt, a first additive, and a second additive. I'm out.
  • This electrolytic solution is suitable for use in a non-aqueous electrolyte secondary battery (hereinafter simply referred to as "battery") such as a lithium ion secondary battery.
  • organic solvent cyclic carbonic acid esters such as ethylene carbonate, propylene carbonate and butylene carbonate can be used, and it is preferable to use one of ethylene carbonate and propylene carbonate, particularly both of them. This is because the cycle characteristics can be further improved.
  • a chain carbonic acid ester such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate or methylpropyl carbonate as the organic solvent. This is because high ionic conductivity can be obtained.
  • organic solvent examples include chain carboxylic acid esters such as ethyl acetate, ethyl propionate, propyl propionate, methyl butyrate, methyl isobutyrate, and methyl trimethylacetate, ⁇ -butyrolactone, ⁇ -valerolactone.
  • Ethers such as 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3 -Nitrile compounds such as methoxypropyronitrile, N,N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N,N-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, dimethyl sulfoxide and phosphoric acid At least one selected from the group consisting of trimethyl and the like can be used.
  • organic solvent examples include halogenated carbonic acid esters such as 4-fluoro-1,3-dioxolan-2-one, unsaturated cyclic carbonic acid esters such as vinylene carbonate, sulfonic acid esters such as 1,3-propenesultone, and carvone.
  • An acid anhydride such as an acid anhydride, a disulfonic acid anhydride and a carboxylic acid sulfonic acid anhydride, and a phosphoric acid ester such as trimethyl phosphate may be further included.
  • vinylene carbonate can further improve the cycle characteristics.
  • compounds in which at least a part of hydrogen in these organic solvents is replaced with fluorine may be preferable in some cases because reversibility of the electrode reaction may be improved depending on the kind of electrodes to be combined.
  • electrolyte salt examples include a lithium salt, and one kind may be used alone, or two or more kinds may be mixed and used.
  • the lithium salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF). 3 ) 3 , LiAlCl 4 , LiSiF 6 , LiCl, lithium difluoro[oxolato-O,O′]borate, lithium bisoxalate borate, or LiBr.
  • LiPF 6 is preferable because it can obtain high ionic conductivity and further improve cycle characteristics.
  • the first additive is a compound represented by the following formula (1).
  • m is an integer of 0 or more and 10 or less
  • R 1 , R 2 , R 3 , R 4 , and R 5 are each independently a hydrocarbon group which may have a substituent, a halogen. Or a hydrogen group, provided that when m is 2 or more, 2 or more R 4's may be the same or different, and 2 or more R 5 's may be the same or different.
  • M in the formula (1) is preferably an integer of 1 or more and 6 or less, more preferably an integer of 3 or more and 6 or less.
  • m in the formula (1) is 1 or more and 6 or less, it is possible to particularly suppress the decrease in capacity during storage and the deterioration in cycle characteristics.
  • the hydrocarbon group is a generic term for a group composed of carbon (C) and hydrogen (H), and may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the saturated hydrocarbon group is an aliphatic hydrocarbon group having no carbon-carbon multiple bond
  • the unsaturated hydrocarbon group is a fatty acid having a carbon-carbon multiple bond (carbon-carbon double bond or carbon-carbon triple bond). It is a group hydrocarbon group.
  • the hydrocarbon group may be linear, branched having 1 or 2 or more side chains, or cyclic having 1 or 2 or more rings, but the chemical stability of the electrolytic solution Since it is further improved, it is preferably linear.
  • Examples of the substituent that the hydrocarbon group may have include a halogen group or an alkyl group having a halogen group.
  • the number of carbon atoms contained in the hydrocarbon group is preferably 1 or more and 5 or less, more preferably 1 or more and 3 or less.
  • the halogen group is, for example, a fluorine group (—F), a chlorine group (—Cl), a bromine group (—Br) or an iodine group (—I), preferably fluorine. It is a group (-F).
  • R2, R3, R4, and R5 are hydrogen groups because the chemical stability of the electrolytic solution is further improved.
  • the content of the first additive in the electrolytic solution is preferably 0.01% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 3% by mass or less.
  • the content of the first additive is 0.01% by mass or more, the function of the first additive can be effectively exhibited. Therefore, it is possible to further suppress the decrease in capacity of the battery during storage.
  • the content of the first additive is 10% by mass or less, it is possible to suppress deterioration of battery characteristics due to excessive reaction of the first additive.
  • the content of the first additive is calculated as follows. First, the battery is disassembled in an inert atmosphere such as a glove box, and an electrolyte solution component is extracted using a solvent such as dimethyl carbonate (DMC). Next, the obtained extract is subjected to GC-MS (Gas Chromatograph-Mass Spectrometry) measurement to determine the content of the first additive in the electrolytic solution.
  • DMC dimethyl carbonate
  • the first additive include at least one selected from the group consisting of compounds represented by the following formulas (1-1) to (1-4).
  • the compounds represented by formulas (1-1) to (1-4) are referred to as compounds (1-1) to (1-4), respectively.
  • the second additive is a cyclic sulfate.
  • the electrolytic solution contains the first additive alone as an additive, the cycle characteristics tend to deteriorate due to the reaction of the first additive. Since the electrolytic solution contains the second additive together with the first additive, it is possible to prevent the cycle characteristics from being deteriorated due to the reaction of the first additive.
  • the cyclic sulfate is represented by the following formula (2), for example.
  • n is an integer of 0 or more and 2 or less
  • R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are each independently a hydrocarbon which may have a substituent.
  • n in the formula (2) is 0.
  • n is 0, it is possible to particularly suppress the decrease in capacity during storage and the deterioration in cycle characteristics.
  • ethylene sulfate ethylene sulfate is particularly preferable because the suppression effect is remarkably exhibited.
  • the hydrocarbon group is the same as the hydrocarbon group in the above formula (1).
  • R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are hydrogen groups because the chemical stability of the electrolytic solution is further improved.
  • the content of the second additive in the electrolytic solution is preferably 0.01% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 3% by mass or less.
  • the content of the second additive is 0.01% by mass or more, the function of the second additive can be effectively exhibited. Therefore, the deterioration of cycle characteristics can be further suppressed.
  • the content of the second additive is 10% by mass or less, it is possible to suppress deterioration of battery characteristics due to excessive reaction of the second additive.
  • the content of the second additive is obtained in the same manner as the content of the first additive described above.
  • the second additive include at least one selected from the group consisting of ethylene sulfate, propylene sulfate and butylene sulfate.
  • the electrolytic solution according to the first embodiment contains the compound represented by the above formula (1) as the first additive and the cyclic sulfate as the second additive.
  • the electrolytic solution contains the first additive, it is possible to suppress a decrease in capacity of the battery during storage.
  • the electrolytic solution contains the second additive, it is possible to prevent the cycle characteristics of the battery from being deteriorated due to the reaction of the first additive. Therefore, it is possible to suppress a decrease in capacity during storage of the battery and a decrease in cycle characteristics.
  • FIG. 1 shows an example of the configuration of a battery according to the second embodiment of the present invention.
  • the battery is a so-called laminated battery, and includes a wound electrode body 20 to which the positive electrode lead 11 and the negative electrode lead 12 are attached, an electrolytic solution (not shown) as an electrolyte, and the electrode body 20 and the electrolytic solution.
  • a film-like exterior material 10 for accommodating the above, and can be made smaller, lighter, and thinner.
  • the positive electrode lead 11 and the negative electrode lead 12 are led out from the inside of the exterior material 10 to the outside, for example, in the same direction.
  • the positive electrode lead 11 and the negative electrode lead 12 are each made of a metal material such as Al, Cu, Ni, or stainless steel, and have a thin plate shape or a mesh shape, respectively.
  • the exterior material 10 is made of, for example, a rectangular aluminum laminate film obtained by laminating a nylon film, an aluminum foil, and a polyethylene film in this order.
  • the exterior material 10 is disposed, for example, so that the polyethylene film side and the electrode body 20 face each other, and the outer edge portions are adhered to each other by fusion bonding or an adhesive.
  • An adhesive film 13 is inserted between the exterior material 10 and each of the positive electrode lead 11 and the negative electrode lead 12 to suppress the entry of outside air.
  • the adhesion film 13 is made of a material having adhesion to the positive electrode lead 11 and the negative electrode lead 12, for example, polyolefin resin such as polyethylene, polypropylene, modified polyethylene or modified polypropylene.
  • the exterior material 10 may be made of a laminated film having another structure, a polymer film such as polypropylene, or a metal film instead of the above-mentioned aluminum laminated film.
  • it may be composed of a laminated film in which a polymer film is laminated on one side or both sides of the aluminum film as a core material.
  • FIG. 2 is a sectional view taken along line II-II of the electrode body 20 shown in FIG.
  • the electrode body 20 includes a positive electrode 21 having a long shape, a negative electrode 22 having a long shape, and a separator 23 having a long shape provided between the positive electrode 21 and the negative electrode 22.
  • the electrode body 20 has a structure in which a positive electrode 21 and a negative electrode 22 are laminated via a separator 23 and wound in a longitudinal direction so as to have a flat shape and a spiral shape, and the outermost peripheral portion has a protective tape 24. Protected by.
  • the positive electrode 21, the negative electrode 22, and the separator 23 are impregnated with an electrolytic solution.
  • the positive electrode 21 includes, for example, a positive electrode current collector 21A and a positive electrode active material layer 21B provided on both surfaces of the positive electrode current collector 21A.
  • the cathode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless foil.
  • the positive electrode active material layer 21B includes one or more positive electrode active materials capable of inserting and extracting lithium.
  • the positive electrode active material layer 21B may further contain at least one of a binder and a conductive agent, if necessary.
  • a lithium-containing compound such as a lithium oxide, a lithium phosphorus oxide, a lithium sulfide, or an intercalation compound containing lithium is suitable, and two or more kinds of these may be mixed and used.
  • a lithium-containing compound containing lithium, a transition metal element, and oxygen is preferable for increasing the energy density.
  • Examples of such a lithium-containing compound include a lithium composite oxide having a layered rock salt type structure represented by formula (A), a lithium complex phosphate having an olivine type structure represented by formula (B), and the like. Can be mentioned.
  • the lithium-containing compound is more preferably a compound containing at least one selected from the group consisting of Co, Ni, Mn and Fe as a transition metal element.
  • a lithium-containing compound include, for example, a lithium composite oxide having a layered rock salt type structure represented by formula (C), formula (D) or formula (E), and a spinel type compound represented by formula (F).
  • Examples thereof include a lithium composite oxide having a structure, a lithium composite phosphate having an olivine type structure represented by the formula (G), and specifically, LiNi 0.50 Co 0.20 Mn 0.30 O 2 , LiCoO 2 , LiNiO. 2 , LiNiaCo 1-a O 2 (0 ⁇ a ⁇ 1), LiMn 2 O 4 or LiFePO 4 and the like.
  • M1 represents at least one element selected from the groups 2 to 15 excluding Ni and Mn.
  • X represents a group consisting of a group 16 element and a group 17 element other than oxygen. At least one is selected, where p, q, y, and z are 0 ⁇ p ⁇ 1.5, 0 ⁇ q ⁇ 1.0, 0 ⁇ r ⁇ 1.0, ⁇ 0.10 ⁇ y ⁇ 0. 20, a value within the range of 0 ⁇ z ⁇ 0.2.
  • M2 represents at least one element selected from the groups 2 to 15; a and b are 0 ⁇ a ⁇ 2.0 and 0.5 ⁇ b ⁇ 2.0. It is a value within the range of.
  • M3 is at least selected from the group consisting of Co, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Zr, Mo, Sn, Ca, Sr, and W.
  • F, g, h, j and k are 0.8 ⁇ f ⁇ 1.2, 0 ⁇ g ⁇ 0.5, 0 ⁇ h ⁇ 0.5, g+h ⁇ 1, ⁇ 0.1.
  • the values are in the range of ⁇ j ⁇ 0.2 and 0 ⁇ k ⁇ 0.1 (Note that the composition of lithium differs depending on the state of charge and discharge, and the value of f represents the value in the completely discharged state.)
  • M4 is at least selected from the group consisting of Co, Mn, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Mo, Sn, Ca, Sr, and W.
  • m, n, p and q are 0.8 ⁇ m ⁇ 1.2, 0.005 ⁇ n ⁇ 0.5, ⁇ 0.1 ⁇ p ⁇ 0.2, 0 ⁇ q ⁇ 0. The value is within the range of 1.
  • the lithium composition differs depending on the state of charge and discharge, and the value of m represents the value in the completely discharged state.
  • M5 is at least selected from the group consisting of Ni, Mn, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Mo, Sn, Ca, Sr, and W. Representing one type, r, s, t and u are 0.8 ⁇ r ⁇ 1.2, 0 ⁇ s ⁇ 0.5, ⁇ 0.1 ⁇ t ⁇ 0.2, 0 ⁇ u ⁇ 0.1.
  • the composition of lithium differs depending on the state of charge and discharge, and the value of r represents the value in the completely discharged state.
  • M6 is at least selected from the group consisting of Co, Ni, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Mo, Sn, Ca, Sr, and W.
  • V, w, x and y are 0.9 ⁇ v ⁇ 1.1, 0 ⁇ w ⁇ 0.6, 3.7 ⁇ x ⁇ 4.1, and 0 ⁇ y ⁇ 0.1. (The value is within the range.
  • the composition of lithium differs depending on the state of charge and discharge, and the value of v represents the value in the state of complete discharge.
  • Li z M7PO 4 (However, in the formula (G), M7 is selected from the group consisting of Co, Mg, Fe, Ni, Mg, Al, B, Ti, V, Nb, Cu, Zn, Mo, Ca, Sr, W and Zr. Z is a value within the range of 0.9 ⁇ z ⁇ 1.1 The composition of lithium differs depending on the state of charge and discharge, and the value of z is the value in the state of complete discharge. It represents.)
  • the positive electrode active material capable of inserting and extracting lithium in addition to these, inorganic compounds containing no lithium such as MnO 2 , V 2 O 5 , V 6 O 13 , NiS and MoS may be used. it can.
  • the positive electrode active material capable of inserting and extracting lithium may be other than the above. Further, the positive electrode active materials exemplified above may be mixed in two or more kinds in any combination.
  • the binder is, for example, at least one selected from the group consisting of polyvinylidene fluoride, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber, carboxymethyl cellulose, and a copolymer mainly containing one of these resin materials. Seeds can be used.
  • the conductive agent for example, at least one carbon material selected from the group consisting of graphite, carbon fiber, carbon black, acetylene black, Ketjen black, carbon nanotube, graphene, and the like can be used.
  • the conductive agent may be any material having conductivity, and is not limited to the carbon material.
  • a metal material or a conductive polymer material may be used as the conductive agent.
  • examples of the shape of the conductive agent include a granular shape, a scale shape, a hollow shape, a needle shape, and a cylindrical shape, but are not particularly limited to these shapes.
  • the negative electrode 22 includes, for example, a negative electrode current collector 22A and a negative electrode active material layer 22B provided on both surfaces of the negative electrode current collector 22A.
  • the anode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless foil.
  • the negative electrode active material layer 22B includes one or more negative electrode active materials capable of inserting and extracting lithium.
  • the negative electrode active material layer 22B may further contain at least one of a binder and a conductive agent, if necessary.
  • the electrochemical equivalent of the negative electrode 22 or the negative electrode active material is larger than the electrochemical equivalent of the positive electrode 21, and theoretically, lithium metal does not deposit on the negative electrode 22 during charging. Is preferred.
  • the negative electrode active material examples include carbon materials such as non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, carbon fibers and activated carbon.
  • the cokes include pitch coke, needle coke, petroleum coke, and the like.
  • the organic polymer compound fired body is obtained by firing a high-molecular material such as phenol resin or furan resin at an appropriate temperature to carbonize it, and part of it is non-graphitizable carbon or graphitizable carbon. Some are classified as.
  • These carbon materials are preferable because the change in the crystal structure occurring during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained.
  • graphite is preferable because it has a large electrochemical equivalent and can obtain a high energy density.
  • non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained.
  • a material having a low charge/discharge potential specifically, a material having a charge/discharge potential close to that of lithium metal is preferable because it is possible to easily realize a high energy density of the battery.
  • a material containing at least one kind of a metal element and a metalloid element as a constituent element for example, an alloy, a compound or a mixture
  • a high energy density can be obtained by using such a material.
  • the alloy includes not only an alloy composed of two or more kinds of metal elements but also an alloy containing one or more kinds of metal elements and one or more kinds of metalloid elements. It may also contain a non-metal element.
  • the texture includes a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or a coexistence of two or more kinds thereof.
  • a negative electrode active material for example, a metal element or a metalloid element capable of forming an alloy with lithium can be mentioned.
  • a metal element or a metalloid element capable of forming an alloy with lithium.
  • Specific examples include Mg, B, Al, Ti, Ga, In, Si, Ge, Sn, Pb, Bi, Cd, Ag, Zn, Hf, Zr, Y, Pd or Pt. These may be crystalline or amorphous.
  • Examples of such a negative electrode active material include those containing a metal element or metalloid element of Group 4B in the short-periodic periodic table as a constituent element, and among them, preferred is at least one of Si and Sn as a constituent element. It includes. This is because Si and Sn have a large ability to insert and extract lithium, and can obtain a high energy density.
  • Examples of such a negative electrode active material include a simple substance of Si, an alloy or a compound, a simple substance of Sn, an alloy or a compound, and a material having at least a part of one or more of them.
  • Examples of the alloy of Si include Sn, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo and Al as the second constituent element other than Si. Examples thereof include those containing at least one selected from the group consisting of P, Ga and Cr.
  • Examples thereof include those containing at least one selected from the group consisting of P, Ga and Cr.
  • Sn compound or the Si compound examples include those containing O or C as a constituent element. These compounds may contain the above-mentioned second constituent element.
  • the Sn-based negative electrode active material preferably contains Co, Sn, and C as constituent elements and has a low crystallinity or an amorphous structure.
  • negative electrode active materials include, for example, metal oxides or polymer compounds capable of inserting and extracting lithium.
  • metal oxide include lithium titanium oxide containing Li and Ti such as lithium titanate (Li 4 Ti 5 O 12 ), iron oxide, ruthenium oxide or molybdenum oxide.
  • the polymer compound include polyacetylene, polyaniline, polypyrrole and the like.
  • binder The same binder as the positive electrode active material layer 21B can be used as the binder.
  • the same material as the positive electrode active material layer 21B can be used.
  • the separator 23 separates the positive electrode 21 and the negative electrode 22, prevents current short circuit due to contact between both electrodes, and allows lithium ions to pass through.
  • the separator 23 is made of, for example, polytetrafluoroethylene, a polyolefin resin (polypropylene (PP) or polyethylene (PE), etc.), an acrylic resin, a styrene resin, a polyester resin or a nylon resin, or a porous material formed by blending these resins. It is composed of a porous membrane, and may have a structure in which two or more kinds of these porous membranes are laminated.
  • a polyolefin porous film is preferable because it has an excellent short-circuit prevention effect and can improve battery safety by a shutdown effect.
  • polyethylene is preferable as a material forming the separator 23 because it can obtain a shutdown effect in the range of 100° C. or higher and 160° C. or lower and has excellent electrochemical stability.
  • low-density polyethylene, high-density polyethylene, and linear polyethylene have suitable melting temperatures and are easily available, and thus are preferably used.
  • a material obtained by copolymerizing or blending a chemically stable resin with polyethylene or polypropylene can be used.
  • the porous membrane may have a structure of three or more layers in which a polypropylene layer, a polyethylene layer, and a polypropylene layer are sequentially laminated.
  • a single layer base material having 100 wt% PP or 100 wt% PE may be used.
  • the separator 23 may be manufactured by either a wet method or a dry method.
  • a non-woven fabric may be used as the separator 23.
  • the fibers forming the non-woven fabric aramid fibers, glass fibers, polyolefin fibers, polyethylene terephthalate (PET) fibers, nylon fibers or the like can be used. Further, two or more kinds of these fibers may be mixed to form a non-woven fabric.
  • the separator 23 may have a configuration including a base material and a surface layer provided on one or both surfaces of the base material.
  • the surface layer includes electrically insulating inorganic particles and a resin material that binds the inorganic particles to the surface of the base material and also binds the inorganic particles together.
  • This resin material may have, for example, a fibrillated structure and a three-dimensional network structure in which a plurality of fibrils are connected.
  • the inorganic particles are carried on the resin material having this three-dimensional network structure.
  • the resin material may bind the surface of the base material or the inorganic particles to each other without being fibrillated. In this case, higher binding property can be obtained.
  • the base material is a porous film that is made of an insulating film that transmits lithium ions and has a predetermined mechanical strength. Since the electrolyte solution is retained in the pores of the base material, the resistance to the electrolyte solution is high. It is preferable that the resin has a property of being high, having low reactivity, and being difficult to expand.
  • the material forming the base material the resin material or the non-woven fabric forming the separator 23 described above can be used.
  • the inorganic particles include at least one selected from the group consisting of metal oxides, metal nitrides, metal carbides, metal sulfides and the like.
  • metal oxides include aluminum oxide (alumina, Al 2 O 3 ), boehmite (hydrated aluminum oxide), magnesium oxide (magnesia, MgO), titanium oxide (titania, TiO 2 ), zirconium oxide (zirconia, ZrO 2 ). ), silicon oxide (silica, SiO 2 ) or yttrium oxide (yttria, Y 2 O 3 ) or the like can be preferably used.
  • silicon nitride Si 3 N 4
  • aluminum nitride AlN
  • boron nitride BN
  • titanium nitride TiN
  • metal carbide silicon carbide (SiC) or boron carbide (B 4 C)
  • barium sulfate (BaSO 4 ) or the like can be preferably used as the metal sulfide.
  • alumina titania (in particular, one having a rutile structure), silica or magnesia, and more preferable to use alumina.
  • the inorganic particles are porous aluminosilicates such as zeolite (M 2 /n 2 O.Al 2 O 3 .xSiO 2 .yH 2 O, M is a metal element, x ⁇ 2, y ⁇ 0), layered silicic acid. Minerals such as salts and barium titanate (BaTiO 3 ) or strontium titanate (SrTiO 3 ) may be included.
  • the inorganic particles have oxidation resistance and heat resistance, and the surface layer on the side surface facing the positive electrode containing the inorganic particles has strong resistance to an oxidizing environment in the vicinity of the positive electrode during charging.
  • the shape of the inorganic particles is not particularly limited, and any of spherical, plate-like, fibrous, cubic and random shapes can be used.
  • the particle size of the inorganic particles is preferably in the range of 1 nm or more and 10 ⁇ m or less. This is because if it is less than 1 nm, it is difficult to obtain it, and if it is more than 10 ⁇ m, the distance between the electrodes becomes large, and a sufficient amount of the active material cannot be obtained in a limited space, resulting in a decrease in battery capacity.
  • Examples of the resin material forming the surface layer include polyvinylidene fluoride, polytetrafluoroethylene and other fluorine-containing resins, vinylidene fluoride-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer and other fluorine-containing rubber, and styrene.
  • resin materials may be used alone or in combination of two or more.
  • a fluorine-based resin such as polyvinylidene fluoride is preferable, and from the viewpoint of heat resistance, it is preferable to contain aramid or polyamideimide.
  • a slurry comprising a matrix resin, a solvent and inorganic particles is applied onto a substrate (porous film), and passed through a poor solvent of the matrix resin and a solvent-solvent bath of the solvent.
  • a method of causing phase separation and then drying can be used.
  • the above-mentioned inorganic particles may be contained in the porous film as the base material.
  • the surface layer may not include inorganic particles and may be composed of only a resin material.
  • the electrolytic solution As the electrolytic solution, the electrolytic solution according to the above-described first embodiment is used. As the electrolyte, instead of the electrolytic solution, an electrolytic layer containing the electrolytic solution and a polymer compound serving as a holder for holding the electrolytic solution may be used. In this case, the electrolyte layer may be in the form of gel.
  • the upper limit value of the positive electrode potential (vsLi/Li + ) in the fully charged state is preferably 5.00 V or less, and more preferably 4.70 V or less from the viewpoint of suppressing deterioration of battery characteristics.
  • the positive electrode 21 is manufactured as follows. First, for example, a positive electrode active material, a binder, and a conductive agent are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) to prepare a paste form. The positive electrode mixture slurry of is prepared. Next, the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A, the solvent is dried, and the positive electrode active material layer 21B is formed by compression molding with a roll pressing machine or the like to obtain the positive electrode 21.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode 22 is manufactured as follows. First, for example, a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and this negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to prepare a paste-like negative electrode mixture slurry. To do. Next, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A, the solvent is dried, and the negative electrode active material layer 22B is formed by compression molding with a roll pressing machine or the like to obtain the negative electrode 22.
  • a solvent such as N-methyl-2-pyrrolidone
  • the wound electrode body 20 is manufactured as follows. First, the positive electrode lead 11 is attached to one end of the positive electrode current collector 21A by welding, and the negative electrode lead 12 is attached to one end of the negative electrode current collector 22A by welding. Next, the positive electrode 21 and the negative electrode 22 are wound around a flat winding core via the separator 23 and wound many times in the longitudinal direction, and then the protective tape 24 is adhered to the outermost peripheral portion to bond the electrode body 20. To get
  • the electrode body 20 is sealed by the exterior material 10 as follows. First, the electrode body 20 is sandwiched between the exterior materials 10, and the outer peripheral edge portion except one side is heat-sealed to form a bag, which is housed inside the exterior material 10. At that time, the adhesion film 13 is inserted between the positive electrode lead 11 and the negative electrode lead 12 and the exterior material 10. The adhesive films 13 may be attached to the positive electrode lead 11 and the negative electrode lead 12 in advance. Next, after injecting the electrolytic solution into the exterior material 10 from one side of the non-fusion, the one side of the non-fusion is heat-sealed and sealed in a vacuum atmosphere. From the above, the battery shown in FIG. 1 is obtained.
  • the battery according to the second embodiment includes the electrolytic solution according to the first embodiment, it is possible to suppress a decrease in capacity during storage and a decrease in cycle characteristics.
  • FIG. 3 shows an example of the configuration of an electronic device 100 according to the third embodiment of the present invention.
  • the electronic device 100 includes an electronic circuit 110 of the electronic device main body and a battery pack 120.
  • the battery pack 120 is electrically connected to the electronic circuit 110 via the positive electrode terminal 123a and the negative electrode terminal 123b.
  • the electronic device 100 may have a configuration in which the battery pack 120 is detachable.
  • Examples of the electronic device 100 include a laptop personal computer, a tablet computer, a mobile phone (for example, a smartphone), a personal digital assistant (PDA), a display device (LCD (Liquid Crystal Display), EL (Electro Luminescence).
  • a laptop personal computer for example, a smartphone
  • a tablet computer for example, a mobile phone (for example, a smartphone), a personal digital assistant (PDA), a display device (LCD (Liquid Crystal Display), EL (Electro Luminescence).
  • PDA personal digital assistant
  • LCD Liquid Crystal Display
  • EL Electro Luminescence
  • Display electronic paper, etc.
  • imaging device eg, digital still camera, digital video camera, etc.
  • audio device eg, portable audio player
  • game device cordless phone handset, electronic book, electronic dictionary, radio, headphone, navigation System, memory card, pacemaker, hearing aid, power tool, electric shaver, refrigerator, air conditioner, TV, stereo, water heater, microwave oven, dishwasher, washing machine, dryer, lighting equipment, toys, medical equipment, robot, road conditioner
  • a traffic signal or the like may be used, but the traffic light is not limited to these.
  • the electronic circuit 110 includes, for example, a CPU (Central Processing Unit), a peripheral logic unit, an interface unit, a storage unit, and the like, and controls the entire electronic device 100.
  • a CPU Central Processing Unit
  • the battery pack 120 includes an assembled battery 121 and a charging/discharging circuit 122.
  • the battery pack 120 may further include an exterior material (not shown) that accommodates the assembled battery 121 and the charging/discharging circuit 122, if necessary.
  • the assembled battery 121 is configured by connecting a plurality of secondary batteries 121a in series and/or in parallel.
  • the plurality of secondary batteries 121a are connected in, for example, n parallel m series (n and m are positive integers).
  • FIG. 3 shows an example in which six secondary batteries 121a are connected in two parallels and three series (2P3S).
  • the battery according to the second embodiment described above is used as the secondary battery 121a.
  • the battery pack 120 includes the assembled battery 121 including a plurality of secondary batteries 121a.
  • the battery pack 120 includes one secondary battery 121a in place of the assembled battery 121. May be adopted.
  • the charge/discharge circuit 122 is a control unit that controls charge/discharge of the assembled battery 121. Specifically, during charging, the charging/discharging circuit 122 controls charging of the assembled battery 121. On the other hand, at the time of discharging (that is, when the electronic device 100 is used), the charging/discharging circuit 122 controls discharging of the electronic device 100.
  • the exterior material for example, a case made of metal, polymer resin, or a composite material thereof can be used.
  • the composite material include a laminated body in which a metal layer and a polymer resin layer are laminated.
  • Example 1 (Production process of positive electrode)
  • the positive electrode was manufactured as follows. First, by mixing 91 parts by mass of the positive electrode active material (lithium cobalt oxide (LiCoO 2 )), 3 parts by mass of the positive electrode binder (polyvinylidene fluoride), and 6 parts by mass of the positive electrode conductive material (graphite), the positive electrode mixture is mixed. And Subsequently, the positive electrode mixture was put into an organic solvent (N-methyl-2-pyrrolidone), and the organic solvent was stirred to prepare a paste-like positive electrode mixture slurry.
  • the positive electrode active material lithium cobalt oxide (LiCoO 2 )
  • 3 parts by mass of the positive electrode binder polyvinylidene fluoride
  • graphite the positive electrode conductive material
  • the positive electrode mixture slurry was applied to both surfaces of the positive electrode current collector (band-shaped aluminum foil, thickness 12 ⁇ m) using a coating device, and the positive electrode mixture slurry was dried to form a positive electrode active material layer. Formed. Finally, the positive electrode active material layer was compression-molded using a roll press.
  • the negative electrode active material layer was compression-molded using a roll press.
  • EC ethylene carbonate
  • PC propylene carbonate
  • a laminated battery was produced as follows. First, an aluminum positive electrode lead was welded to the positive electrode current collector, and a copper negative electrode lead was welded to the negative electrode current collector. Subsequently, a positive electrode and a negative electrode were laminated on each other via a separator (microporous polyethylene film, thickness 15 ⁇ m) to obtain a laminate. Next, the laminated body was wound in the longitudinal direction, and a protective tape was attached to the outermost peripheral portion of the laminated body to form a wound electrode body.
  • a separator microporous polyethylene film, thickness 15 ⁇ m
  • the intended laminate film type battery was obtained.
  • the open circuit voltage that is, battery voltage
  • Example 2 A battery was obtained in the same manner as in Example 1 except that the compound (1-4) was used as the first additive in the process of preparing the electrolytic solution.
  • Example 3 In the step of preparing the electrolytic solution, the first additive (compound (1-4)) was added so that the content of the first additive (compound (1-4)) in the electrolytic solution was 2% by mass. A battery was obtained in the same manner as in Example 2 except that the amount was adjusted.
  • Example 4 A battery was obtained in the same manner as in Example 3 except that propylene sulfate was used as the second additive in the electrolytic solution preparing step.
  • Example 1 A battery was prepared in the same manner as in Example 1 except that succinonitrile (1,2-dicyanoethane) was used as the first additive and diethyl sulfate was used as the second additive in the step of preparing the electrolytic solution. Obtained.
  • the discharge capacity of the second cycle was measured by charging and discharging the battery (1 cycle) in the same environment.
  • the battery was repeatedly charged and discharged (100 cycles) in the same environment to measure the discharge capacity at the 101st cycle.
  • the battery was charged with a constant current at a current of 1 C until the voltage reached 4.45 V, and then the battery was charged with a constant voltage at a voltage of 4.45 V until the current reached 0.02 C.
  • the battery was discharged at a constant current at a current of 1 C until the voltage reached 3.0 V.
  • “1C” is a current value with which the battery capacity (theoretical capacity) is fully charged or discharged in 1 hour.
  • Capacity retention rate after float test (%) (240 hours discharge capacity after float test/discharge capacity before float test) ⁇ 100
  • Table 1 shows the configurations and evaluation results of the batteries of Examples 1 to 4 and Comparative Examples 1 to 3.
  • EC Ethylene carbonate
  • PC Propylene carbonate
  • the battery of Example 1 using the electrolytic solution containing the compound (1-1) as the first additive.
  • the effect of suppressing the deterioration of the cycle characteristics and the float characteristics is higher than that of.
  • the laminate type battery is described as an example, but the shape of the battery is not limited to these, and a cylindrical type, a square type, a coin type or a button type. It is also possible to apply the present invention to various shapes such as. Further, the present invention can be applied to a flexible battery or the like mounted on a wearable terminal such as a smart watch or a head mounted display.
  • the present invention is also applicable to a stack type battery (stack type battery) that is laminated via a separator, a battery in which a positive electrode and a negative electrode are folded with a separator interposed therebetween, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解質二次電池は、正極と、負極と、所定のシアノエステル化合物および環状硫酸エステルを含む非水電解液とを備える。

Description

非水電解液および非水電解質二次電池
 本発明は、非水電解液および非水電解質二次電池に関する。
 非水電解質二次電池は、軽量で高エネルギー密度を有するために、電子機器や電気自動車等の電源として広く用いられている。非水電解質二次電池の特性は、使用する非水電解液に大きく左右されるため、非水電解液に添加される種々の添加剤が提案されている。
 特許文献1~3には、末端にシアノ基を有するシアノエステル化合物を添加剤として含有する非水電解液が記載されている。
国際公開第2011/034067号パンフレット 国際公開第2015/088051号パンフレット 特開2015-69704号公報
 しかしながら、上記のシアノエステル化合物を含有する非水電解液では、非水電解質二次電池の保存時の容量低下を抑制することはできるが、上記のシアノエステル化合物の反応により非水電解質二次電池のサイクル特性が低下する。
 本発明の目的は、保存時の容量低下およびサイクル特性の低下を抑制することができる非水電解液および非水電解質二次電池を提供することにある。
 上述の課題を解決するために、第1の発明は、下記の式(1)で表される化合物と、環状硫酸エステルとを含む非水電解液である。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、mは0以上10以下の整数、R1、R2、R3、R4、R5はそれぞれ独立して、置換基を有していてもよい炭化水素基、ハロゲン基または水素基である。但し、mが2以上である場合、2以上のR4は同一でも異なっていてもよいし、2以上のR5は同一でも異なっていてもよい。)
 第2の発明は、正極と、負極と、第1の発明に係る非水電解液とを備える非水電解質二次電池である。
 本発明によれば、非水電解質二次電池の保存時の容量低下およびサイクル特性の低下を抑制することができる。
本発明の第2の実施形態に係る非水電解質二次電池の構成の一例を示す分解斜視図である。 図1のII-II線に沿った断面図である。 本発明の第3の実施形態に係る電子機器の構成の一例を示すブロック図である。
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値または下限値は、他の段階の数値範囲の上限値または下限値に置き換えてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。
 本発明の実施形態について以下の順序で説明する。
1 第1の実施形態(非水電解液の例)
2 第2の実施形態(ラミネート型電池の例)
3 第3の実施形態(電子機器の例)
<1 第1の実施形態>
[電解液の組成]
 本発明の第1の実施形態に係る電解液は、いわゆる非水電解液であり、有機溶媒(非水溶媒)と、電解質塩と、第1の添加剤と、第2の添加剤とを含んでいる。この電解液は、リチウムイオン二次電池等の非水電解質二次電池(以下単に「電池」という。)に用いて好適なものである。
(有機溶媒)
 有機溶媒としては、炭酸エチレン、炭酸プロピレン、炭酸ブチレン等の環状の炭酸エステルを用いることができ、炭酸エチレンおよび炭酸プロピレンのうちの一方、特に両方を混合して用いることが好ましい。サイクル特性をさらに向上させることができるからである。
 有機溶媒としては、また、これらの環状の炭酸エステルに加えて、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルまたは炭酸メチルプロピル等の鎖状の炭酸エステルを混合して用いることが好ましい。高いイオン伝導性を得ることができるからである。
 これらの他にも、有機溶媒としては、例えば、酢酸エチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル等の鎖状カルボン酸エステル、γ-ブチロラクトン、γ-バレロラクトン等のラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のエーテル類、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピロニトリル等のニトリル化合物、N,N-ジメチルフォルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドおよびリン酸トリメチル等からなる群より選ばれる少なくとも1種を用いることができる。
 また、有機溶媒としては、4-フルオロ-1,3-ジオキソラン-2-オン等のハロゲン化炭酸エステル、炭酸ビニレン等の不飽和環状炭酸エステル、1,3-プロペンスルトン等のスルホン酸エステル、カルボン酸無水物、ジスルホン酸無水物およびカルボン酸スルホン酸無水物等の酸無水物、リン酸トリメチル等のリン酸エステルをさらに含むことができる。例えば、炭酸ビニレンはサイクル特性をさらに向上させることができる。
 なお、これらの有機溶媒の少なくとも一部の水素をフッ素で置換した化合物は、組み合わせる電極の種類によっては、電極反応の可逆性を向上させることができる場合があるので、好ましい場合もある。
(電解質塩)
 電解質塩としては、例えば、リチウム塩が挙げられ、1種を単独で用いてもよく、2種以上を混合して用いてもよい。リチウム塩としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C654、LiCH3SO3、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、LiAlCl4、LiSiF6、LiCl、ジフルオロ[オキソラト-O,O']ホウ酸リチウム、リチウムビスオキサレートボレート、またはLiBr等が挙げられる。中でも、LiPF6は高いイオン伝導性を得ることができると共に、サイクル特性をさらに向上させることができるので好ましい。
(第1の添加剤)
 第1の添加剤は、下記の式(1)で表される化合物である。電解液が第1の添加剤を含むことで、保存時の容量低下を抑制することができる。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、mは0以上10以下の整数、R1、R2、R3、R4、R5はそれぞれ独立して、置換基を有していてもよい炭化水素基、ハロゲン基または水素基である。但し、mが2以上である場合、2以上のR4は同一でも異なっていてもよいし、2以上のR5は同一でも異なっていてもよい。)
 式(1)中のmは、好ましくは1以上6以下の整数、より好ましくは3以上6以下の整数である。式(1)中のmが1以上6以下であると、保存時の容量低下およびサイクル特性の低下を特に抑制することができる。
 式(1)において、炭化水素基は、炭素(C)および水素(H)により構成される基の総称であり、飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよい。ここで、飽和炭化水素基は、炭素間多重結合を有しない脂肪族炭化水素基であり、不飽和炭化水素基は、炭素間多重結合(炭素間二重結合または炭素間三重結合)を有する脂肪族炭化水素基である。また、炭化水素基は、直鎖状でもよいし、1または2以上の側鎖等を有する分岐状でも、1個または2個以上の環を有する環状でもよいが、電解液の化学的安定性がより向上するため、直鎖状であることが好ましい。
 炭化水素基が有しいてもよい置換基としては、例えば、ハロゲン基またはハロゲン基を有するアルキル基等が挙げられる。
 式(1)が炭化水素基を含む場合、その炭化水素基に含まれる炭素数は、好ましくは1以上5以下、より好ましくは1以上3以下である。
 式(1)がハロゲン基を含む場合、そのハロゲン基は、例えば、フッ素基(-F)、塩素基(-Cl)、臭素基(-Br)またはヨウ素基(-I)、好ましくは、フッ素基(-F)である。
 式(1)においてR2、R3、R4、R5が水素基であると、電解液の化学的安定性がより向上するため好ましい。
 電解液中における第1の添加剤の含有量は、好ましくは0.01質量%以上10質量%以下、より好ましくは1質量%以上3質量%以下である。第1の添加剤の含有量が0.01質量%以上であると、第1の添加剤の機能を効果的に発現することができる。したがって、電池の保存時の容量低下をさらに抑制することができる。一方、第1の添加剤の含有量が10質量%以下であると、第1の添加剤の過剰な反応による電池特性の低下を抑制することができる。
 第1の添加剤の含有量は、次のようにして求められる。まず、電池をグローブボックス等の不活性雰囲気下にて解体し、ジメチルカーボネート(DMC)等の溶媒を用いて電解液成分を抽出する。次に、得られた抽出液にGC-MS(Gas Chromatograph-Mass Spectrometry)測定を実施することにより、電解液中における第1の添加剤の含有量を求める。
 第1の添加剤の具体例としては、下記の式(1-1)~(1-4)で表される化合物からなる群より選ばれる少なくとも1種が挙げられる。なお、以下では、式(1-1)~(1-4)で表される化合物をそれぞれ化合物(1-1)~(1-4)という。
Figure JPOXMLDOC01-appb-C000005
(第2の添加剤)
 第2の添加剤は、環状硫酸エステルである。電解液が添加剤として第1の添加剤を単独で含む場合、第1の添加剤の反応によりサイクル特性が低下する傾向がある。電解液が第1の添加剤と共に第2の添加剤を含むことで、第1の添加剤の反応によりサイクル特性が低下することを抑制することができる。
 環状硫酸エステルは、例えば、下記の式(2)で表される。
Figure JPOXMLDOC01-appb-C000006
(式(2)中、nは0以上2以下の整数、R6、R7、R8、R9、R10、11はそれぞれ独立して、置換基を有していてもよい炭化水素基、ハロゲン基または水素基である。但し、nが2である場合、2つのR8は同一でも異なっていてもよいし、2つのR9は同一でも異なっていてもよい。)
 式(2)中のnは0であることが好ましい。nが0であると、保存時の容量低下およびサイクル特性の低下を特に抑制することができる。式(2)中のnが0である化合物のうちでも硫酸エチレン(エチレンサルフェート)が、上記抑制効果の発現が顕著であるため、特に好ましい。
 式(2)において、炭化水素基は、上述の式(1)における炭化水素基と同様である。式(2)においてR6、R7、R8、R9、R10、11が水素基であると、電解液の化学的安定性がより向上するため好ましい。
 電解液中における第2の添加剤の含有量は、好ましくは0.01質量%以上10質量%以下、より好ましくは1質量%以上3質量%以下である。第2の添加剤の含有量が0.01質量%以上であると、第2の添加剤の機能を効果的に発現することができる。したがって、サイクル特性の低下をさらに抑制することができる。一方、第2の添加剤の含有量が10質量%以下であると、第2の添加剤の過剰な反応による電池特性の低下を抑制することができる。
 第2の添加剤の含有量は、上述の第1の添加剤の含有量と同様にして求められる。
 第2の添加剤の具体例としては、硫酸エチレン、硫酸プロピレンおよび硫酸ブチレンからなる群より選ばれる少なくとも1種が挙げられる。
[効果]
 上述したように、第1の実施形態に係る電解液は、第1の添加剤として上記の式(1)で表される化合物と、第2の添加剤として環状硫酸エステルとを含む。電解液が第1の添加剤を含むことで、電池の保存時の容量低下を抑制することができる。また、電解液が第2の添加剤を含むことで、第1の添加剤の反応により電池のサイクル特性が低下することを抑制することができる。したがって、電池の保存時の容量低下およびサイクル特性の低下を抑制することができる
<2 第2の実施形態>
 第2の実施形態では、上述の第1の実施形態に係る電解液を備える電池について説明する。
[電池の構成]
 図1は、本発明の第2の実施形態に係る電池の構成の一例を示す。電池は、いわゆるラミネート型電池であり、正極リード11および負極リード12が取り付けられた巻回型の電極体20と、電解質としての電解液(図示せず)と、これらの電極体20および電解液を収容するフィルム状の外装材10とを備えたものであり、小型化、軽量化および薄型化が可能となっている。
 正極リード11および負極リード12は、それぞれ、外装材10の内部から外部に向かい、例えば同一方向に導出されている。正極リード11および負極リード12は、例えば、Al、Cu、Niまたはステンレス鋼等の金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。
 外装材10は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムをこの順に貼り合わせた矩形状のアルミラミネートフィルムにより構成されている。外装材10は、例えば、ポリエチレンフィルム側と電極体20とが対向するように配設されており、各外縁部が融着または接着剤により互いに密着されている。外装材10と正極リード11および負極リード12との間には、外気の侵入を抑制するための密着フィルム13が挿入されている。密着フィルム13は、正極リード11および負極リード12に対して密着性を有する材料、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレン等のポリオレフィン樹脂により構成されている。
 なお、外装材10は、上述したアルミラミネートフィルムに代えて、他の構造を有するラミネートフィルム、ポリプロピレン等の高分子フィルムまたは金属フィルムにより構成されていてもよい。あるいは、アルミニウム製フィルムを心材として、その片面または両面に高分子フィルムを積層したラミネートフィルムにより構成されていてもよい。
 図2は、図1に示した電極体20のII-II線に沿った断面図である。電極体20は、長尺状を有する正極21と、長尺状を有する負極22と、正極21および負極22の間に設けられ、長尺状を有するセパレータ23とを備える。電極体20は、正極21と負極22とをセパレータ23を介して積層し、扁平状かつ渦巻状になるように長手方向に巻回された構成を有しており、最外周部は保護テープ24により保護されている。正極21、負極22およびセパレータ23には、電解液が含浸されている。
 以下、電池を構成する正極21、負極22、セパレータ23および電解液について順次説明する。
(正極)
 正極21は、例えば、正極集電体21Aと、正極集電体21Aの両面に設けられた正極活物質層21Bとを備える。正極集電体21Aは、例えば、アルミニウム箔、ニッケル箔またはステンレス箔等の金属箔により構成されている。正極活物質層21Bは、リチウムを吸蔵および放出することが可能な1種または2種以上の正極活物質を含む。正極活物質層21Bは、必要に応じてバインダーおよび導電剤のうちの少なくとも1種をさらに含んでいてもよい。
(正極活物質)
 正極活物質としては、例えば、リチウム酸化物、リチウムリン酸化物、リチウム硫化物またはリチウムを含む層間化合物等のリチウム含有化合物が適当であり、これらの2種以上を混合して用いてもよい。エネルギー密度を高くするには、リチウムと遷移金属元素と酸素とを含むリチウム含有化合物が好ましい。このようなリチウム含有化合物としては、例えば、式(A)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(B)に示したオリビン型の構造を有するリチウム複合リン酸塩等が挙げられる。リチウム含有化合物としては、遷移金属元素として、Co、Ni、MnおよびFeからなる群より選ばれる少なくとも1種を含むものであればより好ましい。このようなリチウム含有化合物としては、例えば、式(C)、式(D)もしくは式(E)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(F)に示したスピネル型の構造を有するリチウム複合酸化物、または式(G)に示したオリビン型の構造を有するリチウム複合リン酸塩等が挙げられ、具体的には、LiNi0.50Co0.20Mn0.302、LiCoO2、LiNiO2、LiNiaCo1-a2(0<a<1)、LiMn24またはLiFePO4等がある。
 LipNi(1-q-r)MnqM1r(2-y)z ・・・(A)
(但し、式(A)中、M1は、Ni、Mnを除く2族~15族から選ばれる元素のうち少なくとも一種を示す。Xは、酸素以外の16族元素および17族元素からなる群より選ばれる少なくとも1種を示す。p、q、y、zは、0≦p≦1.5、0≦q≦1.0、0≦r≦1.0、-0.10≦y≦0.20、0≦z≦0.2の範囲内の値である。)
 LiaM2bPO4 ・・・(B)
(但し、式(B)中、M2は、2族~15族から選ばれる元素のうち少なくとも一種を示す。a、bは、0≦a≦2.0、0.5≦b≦2.0の範囲内の値である。)
 LifMn(1-g-h)NigM3h(2-j)k ・・・(C)
(但し、式(C)中、M3は、Co、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Zr、Mo、Sn、Ca、SrおよびWからなる群より選ばれる少なくとも1種を表す。f、g、h、jおよびkは、0.8≦f≦1.2、0<g<0.5、0≦h≦0.5、g+h<1、-0.1≦j≦0.2、0≦k≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、fの値は完全放電状態における値を表している。)
 LimNi(1-n)M4n(2-p)q ・・・(D)
(但し、式(D)中、M4は、Co、Mn、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Mo、Sn、Ca、SrおよびWからなる群より選ばれる少なくとも1種を表す。m、n、pおよびqは、0.8≦m≦1.2、0.005≦n≦0.5、-0.1≦p≦0.2、0≦q≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、mの値は完全放電状態における値を表している。)
 LirCo(1-s)M5s(2-t)u ・・・(E)
(但し、式(E)中、M5は、Ni、Mn、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Mo、Sn、Ca、SrおよびWからなる群より選ばれる少なくとも1種を表す。r、s、tおよびuは、0.8≦r≦1.2、0≦s<0.5、-0.1≦t≦0.2、0≦u≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、rの値は完全放電状態における値を表している。)
 LivMn2-wM6wxy ・・・(F)
(但し、式(F)中、M6は、Co、Ni、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Mo、Sn、Ca、SrおよびWからなる群より選ばれる少なくとも1種を表す。v、w、xおよびyは、0.9≦v≦1.1、0≦w≦0.6、3.7≦x≦4.1、0≦y≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、vの値は完全放電状態における値を表している。)
 LizM7PO4 ・・・(G)
(但し、式(G)中、M7は、Co、Mg、Fe、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、WおよびZrからなる群より選ばれる少なくとも1種を表す。zは、0.9≦z≦1.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、zの値は完全放電状態における値を表している。)
 リチウムを吸蔵および放出することが可能な正極活物質としては、これらの他にも、MnO2、V25、V613、NiS、MoS等のリチウムを含まない無機化合物を用いることもできる。
 リチウムを吸蔵および放出することが可能な正極活物質は、上記以外のものであってもよい。また、上記で例示した正極活物質は、任意の組み合わせで2種以上混合されてもよい。
(バインダー)
 バインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリロニトリル、スチレンブタジエンゴム、カルボキシメチルセルロース、およびこれら樹脂材料のうちの1種を主体とする共重合体等からなる群より選ばれる少なくとも1種を用いることができる。
(導電剤)
 導電剤としては、例えば、黒鉛、炭素繊維、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブおよびグラフェン等からなる群より選ばれる少なくとも1種の炭素材料を用いることができる。なお、導電剤は導電性を有する材料であればよく、炭素材料に限定されるものではない。例えば、導電剤として金属材料または導電性高分子材料等を用いるようにしてもよい。また、導電剤の形状としては、例えば、粒状、鱗片状、中空状、針状または筒状等が挙げられるが、特にこれらの形状に限定されるものではない。
(負極)
 負極22は、例えば、負極集電体22Aと、負極集電体22Aの両面に設けられた負極活物質層22Bとを備える。負極集電体22Aは、例えば、銅箔、ニッケル箔またはステンレス箔等の金属箔により構成されている。負極活物質層22Bは、リチウムを吸蔵および放出することが可能な1種または2種以上の負極活物質を含む。負極活物質層22Bは、必要に応じてバインダーおよび導電剤のうちの少なくとも1種をさらに含んでいてもよい。
 なお、この電池では、負極22または負極活物質の電気化学当量が、正極21の電気化学当量よりも大きくなっており、理論上、充電の途中において負極22にリチウム金属が析出しないようになっていることが好ましい。
(負極活物質)
 負極活物質としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維または活性炭等の炭素材料が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスまたは石油コークス等がある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂等の高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。また、難黒鉛化性炭素は、優れたサイクル特性が得られるので好ましい。さらにまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。
 また、高容量化が可能な他の負極活物質としては、金属元素および半金属元素のうちの少なくとも1種を構成元素(例えば、合金、化合物または混合物)として含む材料も挙げられる。このような材料を用いれば、高いエネルギー密度を得ることができるからである。特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。なお、本発明において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物またはそれらのうちの2種以上が共存するものがある。
 このような負極活物質としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、Mg、B、Al、Ti、Ga、In、Si、Ge、Sn、Pb、Bi、Cd、Ag、Zn、Hf、Zr、Y、PdまたはPtが挙げられる。これらは結晶質のものでもアモルファスのものでもよい。
 このような負極活物質としては、短周期型周期表における4B族の金属元素または半金属元素を構成元素として含むものが挙げられ、その中で好ましいのはSiおよびSnの少なくとも一方を構成元素として含むものである。SiおよびSnは、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。このような負極活物質としては、例えば、Siの単体、合金または化合物や、Snの単体、合金または化合物や、それらの1種または2種以上を少なくとも一部に有する材料が挙げられる。
 Siの合金としては、例えば、Si以外の第2の構成元素として、Sn、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、Sb、Nb、Mo、Al、P、GaおよびCrからなる群より選ばれる少なくとも1種を含むものが挙げられる。Snの合金としては、例えば、Sn以外の第2の構成元素として、Si、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、Sb、Nb、Mo、Al、P、GaおよびCrからなる群より選ばれる少なくとも1種を含むものが挙げられる。
 Snの化合物またはSiの化合物としては、例えば、OまたはCを構成元素として含むものが挙げられる。これらの化合物は、上述した第2の構成元素を含んでいてもよい。
 中でも、Sn系の負極活物質としては、Coと、Snと、Cとを構成元素として含み、結晶性の低いまたは非晶質な構造を有していることが好ましい。
 その他の負極活物質としては、例えば、リチウムを吸蔵および放出することが可能な金属酸化物または高分子化合物等も挙げられる。金属酸化物としては、例えば、チタン酸リチウム(Li4Ti512)等のLiとTiとを含むリチウムチタン酸化物、酸化鉄、酸化ルテニウムまたは酸化モリブデン等が挙げられる。高分子化合物としては、例えば、ポリアセチレン、ポリアニリンまたはポリピロール等が挙げられる。
(バインダー)
 バインダーとしては、正極活物質層21Bと同様のものを用いることができる。
(導電剤)
 導電剤としては、正極活物質層21Bと同様のものを用いることができる。
(セパレータ)
 セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ23は、例えば、ポリテトラフルオロエチレン、ポリオレフィン樹脂(ポリプロピレン(PP)またはポリエチレン(PE)等)、アクリル樹脂、スチレン樹脂、ポリエステル樹脂またはナイロン樹脂、または、これらの樹脂をブレンドした樹脂からなる多孔質膜によって構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。
 中でも、ポリオレフィン製の多孔質膜は短絡防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特にポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、かつ電気化学的安定性にも優れているので、セパレータ23を構成する材料として好ましい。その中でも、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレンは溶融温度が適当であり、入手が容易なので好適に用いられる。他にも、化学的安定性を備えた樹脂を、ポリエチレンまたはポリプロピレンと共重合またはブレンド化した材料を用いることができる。あるいは、多孔質膜は、ポリプロピレン層と、ポリエチレン層と、ポリプロピレン層を順次に積層した3層以上の構造を有していてもよい。例えば、PP/PE/PPの三層構造とし、PPとPEの質量比[wt%]が、PP:PE=60:40~75:25とすることが望ましい。あるいは、コストの観点から、PPが100wt%またはPEが100wt%の単層基材とすることもできる。セパレータ23の作製方法としては、湿式、乾式を問わない。
 セパレータ23としては、不織布を用いてもよい。不織布を構成する繊維としては、アラミド繊維、ガラス繊維、ポリオレフィン繊維、ポリエチレンテレフタレート(PET)繊維、またはナイロン繊維等を用いることができる。また、これら2種以上の繊維を混合して不織布としてもよい。
 セパレータ23は、基材と、基材の片面または両面に設けられた表面層を備える構成を有していてもよい。表面層は、電気的な絶縁性を有する無機粒子と、無機粒子を基材の表面に結着すると共に、無機粒子同士を結着する樹脂材料とを含む。この樹脂材料は、例えば、フィブリル化し、複数のフィブリルが繋がった三次元的なネットワーク構造を有していてもよい。無機粒子は、この三次元的なネットワーク構造を有する樹脂材料に担持されている。また、樹脂材料はフィブリル化せずに基材の表面や無機粒子同士を結着してもよい。この場合、より高い結着性を得ることができる。上述のように基材の片面または両面に表面層を設けることで、セパレータ23の耐酸化性、耐熱性および機械強度を高めることができる。
 基材は、リチウムイオンを透過し、所定の機械的強度を有する絶縁性の膜から構成される多孔質膜であり、基材の空孔には電解液が保持されるため、電解液に対する耐性が高く、反応性が低く、膨張しにくいという特性を有することが好ましい。
 基材を構成する材料としては、上述したセパレータ23を構成する樹脂材料や不織布を用いることができる。
 無機粒子は、金属酸化物、金属窒化物、金属炭化物および金属硫化物等からなる群より選ばれる少なくとも1種を含む。金属酸化物としては、酸化アルミニウム(アルミナ、Al23)、ベーマイト(水和アルミニウム酸化物)、酸化マグネシウム(マグネシア、MgO)、酸化チタン(チタニア、TiO2)、酸化ジルコニウム(ジルコニア、ZrO2)、酸化ケイ素(シリカ、SiO2)または酸化イットリウム(イットリア、Y23)等を好適に用いることができる。金属窒化物としては、窒化ケイ素(Si34)、窒化アルミニウム(AlN)、窒化硼素(BN)または窒化チタン(TiN)等を好適に用いることができる。金属炭化物としては、炭化ケイ素(SiC)または炭化ホウ素(B4C)等を好適に用いることができる。金属硫化物としては、硫酸バリウム(BaSO4)等を好適に用いることができる。上述の金属酸化物の中でも、アルミナ、チタニア(特にルチル型構造を有するもの)、シリカまたはマグネシアを用いることが好ましく、アルミナを用いることがより好ましい。
 また、無機粒子が、ゼオライト(M2/nO・Al23・xSiO2・yH2O、Mは金属元素、x≧2、y≧0)等の多孔質アルミノケイ酸塩、層状ケイ酸塩、チタン酸バリウム(BaTiO3)またはチタン酸ストロンチウム(SrTiO3)等の鉱物を含むようにしてもよい。無機粒子は耐酸化性および耐熱性を備えており、無機粒子を含有する正極対向側面の表面層は、充電時の正極近傍における酸化環境に対しても強い耐性を有する。無機粒子の形状は特に限定されるものではなく、球状、板状、繊維状、キュービック状およびランダム形状等のいずれも用いることができる。
 無機粒子の粒径は、1nm以上10μm以下の範囲内であることが好ましい。1nmより小さいと入手が困難であり、10μmより大きいと電極間距離が大きくなり、限られたスペースで活物質充填量が十分得られず電池容量が低下してしまうからである。
 表面層を構成する樹脂材料としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の含フッ素樹脂、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体等の含フッ素ゴム、スチレン-ブタジエン共重合体またはその水素化物、アクリロニトリル-ブタジエン共重合体またはその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体またはその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類、エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、全芳香族ポリアミド(アラミド)等のポリアミド、ポリアミドイミド、ポリアクリロニトリル、ポリビニルアルコール、ポリエーテル、アクリル酸樹脂またはポリエステル等の融点およびガラス転移温度の少なくとも一方が180℃以上の高い耐熱性を有する樹脂等が挙げられる。これら樹脂材料は、単独で用いてもよいし、2種以上を混合して用いてもよい。中でも、耐酸化性および柔軟性の観点からは、ポリフッ化ビニリデン等のフッ素系樹脂が好ましく、耐熱性の観点からは、アラミドまたはポリアミドイミドを含むことが好ましい。
 表面層の形成方法としては、例えば、マトリックス樹脂、溶媒および無機粒子からなるスラリーを基材(多孔質膜)上に塗布し、マトリックス樹脂の貧溶媒且つ上記溶媒の親溶媒浴中を通過させて相分離させ、その後、乾燥させる方法を用いることができる。
 なお、上述した無機粒子は、基材としての多孔質膜に含有されていてもよい。また、表面層が無機粒子を含まず、樹脂材料のみにより構成されていてもよい。
(電解液)
 電解液としては、上述の第1の実施形態に係る電解液が用いられる。なお、電解質として、電解液に代えて、電解液と、この電解液を保持する保持体となる高分子化合物とを含む電解質層を用いるようにしてもよい。この場合、電解質層は、ゲル状となっていてもよい。
[正極電位]
 満充電状態における正極電位(vsLi/Li+)が4.40V以上である電池において、電解液に第1の添加剤および第2の添加剤を添加した効果(すなわち保存時の容量低下およびサイクル特性の低下を抑制する効果)が顕著に発現する。満充電状態における正極電位(vsLi/Li+)の上限値は、電池特性の低下を抑制する観点から、好ましくは5.00V以下、より好ましくは4.70V以下である。
[電池の動作]
 上述の構成を有する電池では、充電を行うと、例えば、正極活物質層21Bからリチウムイオンが放出され、電解液を介して負極活物質層22Bに吸蔵される。また、放電を行うと、例えば、負極活物質層22Bからリチウムイオンが放出され、電解液を介して正極活物質層21Bに吸蔵される。
[電池の製造方法]
 次に、本発明の第2の実施形態に係る電池の製造方法の一例について説明する。
(正極の作製工程)
 正極21は次のようにして作製される。まず、例えば、正極活物質と、バインダーと、導電剤とを混合して正極合剤を調製し、この正極合剤をN-メチル-2-ピロリドン(NMP)等の溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体21Aの両面に塗布し溶剤を乾燥させ、ロールプレス機等により圧縮成型することにより正極活物質層21Bを形成し、正極21を得る。
(負極の作製工程)
 負極22は次のようにして作製される。まず、例えば、負極活物質と、バインダーとを混合して負極合剤を調製し、この負極合剤をN-メチル-2-ピロリドン等の溶剤に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体22Aの両面に塗布し溶剤を乾燥させ、ロールプレス機等により圧縮成型することにより負極活物質層22Bを形成し、負極22を得る。
(電極体の作製工程)
 巻回型の電極体20を次のようにして作製する。まず、正極集電体21Aの一方の端部に正極リード11を溶接により取り付けると共に、負極集電体22Aの一方の端部に負極リード12を溶接により取り付ける。次に、正極21と負極22とをセパレータ23を介して扁平状の巻芯の周囲に巻き付けて、長手方向に多数回巻回したのち、最外周部に保護テープ24を接着して電極体20を得る。
(封止工程)
 外装材10により電極体20を次のようにして封止する。まず、電極体20を外装材10に挟み、一辺を除く外周縁部を熱融着して袋状とし、外装材10の内部に収納する。その際、正極リード11および負極リード12と外装材10との間に密着フィルム13を挿入する。なお、正極リード11、負極リード12にそれぞれ密着フィルム13を予め取り付けておいてもよい。次に、未融着の一辺から電解液を外装材10の内部に注入したのち、未融着の一辺を真空雰囲気下で熱融着して密封する。以上により、図1に示した電池が得られる。
[効果]
 上述したように、第2の実施形態に係る電池は、第1の実施形態に係る電解液を備えるので、保存時の容量低下およびサイクル特性の低下を抑制することができる
<3 第3の実施形態>
 第3の実施形態では、上述の第2の実施形態に係る電池を備える電子機器について説明する。
 図3は、本発明の第3の実施形態に係る電子機器100の構成の一例を示す。電子機器100は、電子機器本体の電子回路110と、電池パック120とを備える。電池パック120は、正極端子123aおよび負極端子123bを介して電子回路110に対して電気的に接続されている。電子機器100は、電池パック120を着脱自在な構成を有していてもよい。
 電子機器100としては、例えば、ノート型パーソナルコンピュータ、タブレット型コンピュータ、携帯電話(例えばスマートフォン等)、携帯情報端末(Personal Digital Assistants:PDA)、表示装置(LCD(Liquid Crystal Display)、EL(Electro Luminescence)ディスプレイ、電子ペーパ等)、撮像装置(例えばデジタルスチルカメラ、デジタルビデオカメラ等)、オーディオ機器(例えばポータブルオーディオプレイヤー)、ゲーム機器、コードレスフォン子機、電子書籍、電子辞書、ラジオ、ヘッドホン、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器、ロボット、ロードコンディショナーまたは信号機等が挙げられるが、これらに限定されるものでなない。
(電子回路)
 電子回路110は、例えば、CPU(Central Processing Unit)、周辺ロジック部、インターフェース部および記憶部等を備え、電子機器100の全体を制御する。
(電池パック)
 電池パック120は、組電池121と、充放電回路122とを備える。電池パック120が、必用に応じて組電池121および充放電回路122を収容する外装材(図示せず)をさらに備えるようにしてもよい。
 組電池121は、複数の二次電池121aを直列および/または並列に接続して構成されている。複数の二次電池121aは、例えばn並列m直列(n、mは正の整数)に接続される。なお、図3では、6つの二次電池121aが2並列3直列(2P3S)に接続された例が示されている。二次電池121aとしては、上述の第2の実施形態に係る電池が用いられる。
 ここでは、電池パック120が、複数の二次電池121aにより構成される組電池121を備える場合について説明するが、電池パック120が、組電池121に代えて1つの二次電池121aを備える構成を採用してもよい。
 充放電回路122は、組電池121の充放電を制御する制御部である。具体的には、充電時には、充放電回路122は、組電池121に対する充電を制御する。一方、放電時(すなわち電子機器100の使用時)には、充放電回路122は、電子機器100に対する放電を制御する。
 外装材としては、例えば、金属、高分子樹脂またはこれらの複合材料等より構成されるケースを用いることができる。複合材料としては、例えば、金属層と高分子樹脂層とが積層された積層体が挙げられる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
[実施例1]
(正極の作製工程)
 正極を次のようにして作製した。まず、正極活物質(コバルト酸リチウム(LiCoO2))91質量部と、正極バインダー(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを混合することにより、正極合剤とした。続いて、正極合剤を有機溶剤(N-メチル-2-ピロリドン)に投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。次に、コーティング装置を用いて正極集電体(帯状のアルミニウム箔、厚さ12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層を形成した。最後に、ロールプレス機を用いて正極活物質層を圧縮成型した。
(負極の作製工程)
 負極を次のようにして作製した。まず、負極活物質(黒鉛、メジアン径D50=20μm)95質量部と、負極バインダー(ポリフッ化ビニリデン)5質量部とを混合することにより、負極合剤とした。続いて、負極合剤を有機溶剤(N-メチル-2-ピロリドン)に投入したのち、その有機溶剤を撹拌することにより、ペースト状の負極合剤スラリーとした。次に、コーティング装置を用いて負極集電体(帯状の銅箔、厚さ15μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層を形成した。最後に、ロールプレス機を用いて負極活物質層を圧縮成型した。
(電解液の調製工程)
 電解液を次のようにして調製した。まず、炭酸エチレン(EC)と炭酸プロピレン(PC)とを、質量比でEC:PC=50:50となるように混合して混合溶媒を調製した。続いて、この混合溶媒に電解質塩(六フッ化リン酸リチウム(LiPF6))を1mol/kgとなるように溶解させて電解液を調製した。次に、電解液に第1の添加剤(化合物(1-1))および第2の添加剤(硫酸エチレン)を加え、電解液を撹拌した。この際、電解液中における第1の添加剤および第2の添加剤の濃度が共に1質量%となるように、それらの添加量を調整した。
(ラミネート型電池の作製工程)
 ラミネート型電池を次のようにして作製した。まず、正極集電体にアルミニウム製の正極リードを溶接すると共に、負極集電体に銅製の負極リードを溶接した。続いて、セパレータ(微多孔性ポリエチレンフィルム、厚さ15μm)を介して正極と負極とを互いに積層させることにより、積層体を得た。次に、積層体を長手方向に巻回させたのち、その積層体の最外周部に保護テープを貼り付けることにより、巻回型の電極体を形成した。次に、電極体を挟むように外装材(外側:厚さ25μmのナイロンフィルム/厚さ40μmアルミニウム箔/厚さ30μmのポリプロピレンフィルム:内側)を折り畳んだのち、その外装材のうちの3辺の外周縁部同士を互いに熱融着した。この際、正極リードと外装材との間に密着フィルムを挿入すると共に、負極リードと外装材との間に密着フィルムを挿入した。最後に、外装材の内部に電解液を注入することにより、その電解液を電極体に含浸させたのち、減圧環境中において外装材の残りの1辺の外周縁部同士を熱融着した。これにより、目的とするラミネートフィルム型の電池が得られた。なお、この電池は、上記の正極および負極の作製工程において正極活物質量と負極活物質量とを調整することにより、完全充電時における開回路電圧(すなわち電池電圧)が4.45Vになるように設計された。
[実施例2]
 電解液の調製工程において、第1の添加剤として化合物(1-4)を用いたこと以外は実施例1と同様にして電池を得た。
[実施例3]
 電解液の調製工程において、電解液中における第1の添加剤(化合物(1-4))の含有量が2質量%となるように、第1の添加剤(化合物(1-4)の添加量を調整したこと以外は実施例2と同様にして電池を得た。
[実施例4]
 電解液の調製工程において、第2の添加剤として硫酸プロピレンを用いたこと以外は実施例3と同様にして電池を得た。
[比較例1]
 電解液の調製工程において、第1の添加剤としてスクシノニトリル(1,2-ジシアノエタン)を用い、第2の添加剤として硫酸ジエチルを用いたこと以外は実施例1と同様にして電池を得た。
[比較例2]
 電解液の調製工程において、第2の添加剤として1,3-プロパンスルトン(1,2-オキサチオラン2,2-ジオキシド)を用いたこと以外は実施例3と同様にして電池を得た。
[比較例3]
 電解液の調製工程において、第1の添加剤としてスクシノニトリル(1,2-ジシアノエタン)を用いたこと以外は実施例1と同様にして電池を得た。
(電池特性の評価)
 上述のようにして得られた電池に対して、以下の100サイクル後の容量維持率およびフロート試験後の容量維持率の評価を行った。
(100サイクル後の容量維持率)
 まず、電池の状態を安定化させるために、常温環境中(温度23℃)において電池を充放電(1サイクル)させた。なお、充電時には、0.1Cの電流で電圧が4.45Vに到達するまで定電流充電したのち、4.45Vの電圧で電流が0.02Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電圧が3.0Vに到達するまで放電した。なお、“0.1C”とは、電池容量(理論容量)を10時間で充電または放電しきる電流値である。また、“0.02C”とは、電池容量(理論容量)を50時間で充電または放電しきる電流値である。
 続いて、同環境中において電池を充放電(1サイクル)させることにより、2サイクル目の放電容量を測定した。次に、同環境中において電池を繰り返して充放電(100サイクル)させることにより、101サイクル目の放電容量を測定した。なお、充電時には、1Cの電流で電圧が4.45Vに到達するまで電池を定電流充電させたのち、4.45Vの電圧で電流が0.02Cに到達するまで電池を定電圧充電させた。放電時には、1Cの電流で電圧が3.0Vに到達するまで電池を定電流放電させた。なお、“1C”とは、電池容量(理論容量)を1時間で充填または放電しきる電流値である。最後に、下記の式により、100サイクル後の容量維持率を算出した。
 100サイクル後の容量維持率(%)=(101サイクル目の放電容量/2サイクル目の放電容量)×100
(フロート試験後の容量維持率)
 まず、上述の100サイクル後の容量維持率の評価と同様の手順により、電池の状態を安定化させた。続いて、常温環境中(温度23℃)において電池を充放電(1サイクル)させることにより、2サイクル目の放電容量を測定した(フロート試験前の放電容量)。次に、常温環境中(温度23℃)において電池を充電させた。そして、高温環境中(温度60℃)において電池を4.45Vの電圧で定電圧充電を240時間行った。その後、常温環境中(温度23℃)において電池を放電させ、さらに同環境中において電池を充放電(1サイクル)させることにより、その電池の240時間フロート試験後の放電容量を測定した。最後に、以下の式により、フロート試験後の容量維持率を算出した。なお、充放電条件は、上述の100サイクル後の容量維持率の評価と同様にした。
 フロート試験後の容量維持率(%)=(240時間フロート試験後の放電容量/フロート試験前の放電容量)×100
 表1は、実施例1~4、比較例1~3の電池の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000007
EC:炭酸エチレン
PC:炭酸プロピレン
 表1から以下のことがわかる。
 第1の添加剤(添加剤)として化合物(1-1)または化合物(1-4)を含み、かつ、第2の添加剤(添加剤)として硫酸エチレンまたは硫酸プロピレンを含む電解液を用いた実施例1~4の電池では、サイクル特性およびフロート特性の低下を抑制することができる。
 第1の添加剤としてスクシノニトリルを含み、かつ、第2の添加剤として硫酸ジエチルを含む電解液を用いた比較例1の電池では、サイクル特性およびフロート特性の両方が低下する。
 第1の添加剤として化合物(1-4)を含み、かつ、第2の添加剤としてプロパンスルトンを含む電解液を用いた比較例2の電池、および第1の添加剤としてスクシノニトリルを含み、かつ、第2の添加剤として硫酸エチレンを含む電解液を用いた比較例3の電池では、比較例1の電池に比べるとサイクル特性およびフロート特性の低下を抑制することはできるが、実施例1~4の電池ほどの抑制効果は得られない。
 第1の添加剤として化合物(1-4)を含む電解液を用いた実施例2の電池では、第1の添加剤として化合物(1-1)を含む電解液を用いた実施例1の電池に比べて、サイクル特性およびフロート特性の低下を抑制する効果が高い。
 第2の添加剤として硫酸エチレンを含む電解液を用いた実施例3の電池では、第2の添加剤として硫酸プロピレンを含む電解液を用いた実施例4の電池に比べて、サイクル特性およびフロート特性の低下を抑制する効果が高い。
 以上、本発明の実施形態および実施例について具体的に説明したが、本発明は、上述の実施形態および実施例に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態および実施例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。
 また、上述の実施形態および実施例の構成、方法、工程、形状、材料および数値等は、本発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、上述の実施形態にて例示した化合物等の化学式は代表的なものであって、同じ化合物の一般名称であれば、記載された価数等に限定されない。
 また、例えば、上述の実施形態および実施例では、ラミネート型の電池を例に挙げて説明したが、電池の形状はこれらに限定されるものではなく、円筒型、角型、コイン型またはボタン型等の種々の形状に本発明を適用することも可能である。また、スマートウオッチおよびヘッドマウントディスプレイ等のウェアラブル端末に搭載されるフレキシブル電池等に本発明を適用することも可能である。
 また、上述の実施形態および実施例では、巻回型の電池に対して本発明を適用した例について説明したが、電池の構造はこれに限定されるものではなく、例えば、正極および負極をセパレータを介して積層した積層型の電池(スタック型の電池)、またはセパレータを間に挟んだ正極および負極を折り畳んだ電池等に対しても本発明は適用可能である。
 10  外装材
 11  正極リード
 12  負極リード
 13  密着フィルム
 20  電極体
 21  正極
 21A  正極集電体
 21B  正極活物質層
 22  負極
 22A  負極集電体
 22B  負極活物質層
 23  セパレータ
 24  保護テープ
 100  電子機器
 120  電池パック

Claims (6)

  1.  下記の式(1)で表される化合物と、
     環状硫酸エステルと
     を含む非水電解液。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、mは0以上10以下の整数、R1、R2、R3、R4、R5はそれぞれ独立して、置換基を有していてもよい炭化水素基、ハロゲン基または水素基である。但し、mが2以上である場合、2以上のR4は同一でも異なっていてもよいし、2以上のR5は同一でも異なっていてもよい。)
  2.  前記式(1)中、mは1以上6以下の整数である請求項1に記載の非水電解液。
  3.  前記環状硫酸エステルは、下記の式(2)で表される請求項1または2に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、nは0以上2以下の整数、R6、R7、R8、R9、R10、11はそれぞれ独立して、置換基を有していてもよい炭化水素基、ハロゲン基または水素基である。但し、nが2である場合、2つのR8は同一でも異なっていてもよいし、2つのR9は同一でも異なっていてもよい。)
  4.  前記式(2)中、nは0である請求項3に記載の非水電解液。
  5.  前記環状硫酸エステルは、硫酸エチレンである請求項1から4のいずれかに記載の非水電解液。
  6.  正極と、
     負極と、
     請求項1から5のいずれかに記載された前記非水電解液と
     を備える非水電解質二次電池。
PCT/JP2019/051195 2018-12-27 2019-12-26 非水電解液および非水電解質二次電池 WO2020138317A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980086481.3A CN113228372B (zh) 2018-12-27 2019-12-26 非水电解液以及非水电解质二次电池
JP2020562424A JP7099548B2 (ja) 2018-12-27 2019-12-26 非水電解液および非水電解質二次電池
US17/356,803 US11742522B2 (en) 2018-12-27 2021-06-24 Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-245800 2018-12-27
JP2018245800 2018-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/356,803 Continuation US11742522B2 (en) 2018-12-27 2021-06-24 Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2020138317A1 true WO2020138317A1 (ja) 2020-07-02

Family

ID=71129517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051195 WO2020138317A1 (ja) 2018-12-27 2019-12-26 非水電解液および非水電解質二次電池

Country Status (4)

Country Link
US (1) US11742522B2 (ja)
JP (1) JP7099548B2 (ja)
CN (1) CN113228372B (ja)
WO (1) WO2020138317A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189042A (ja) * 1996-12-25 1998-07-21 Mitsubishi Chem Corp リチウム二次電池用電解液
JP2004022523A (ja) * 2002-06-20 2004-01-22 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2011154783A (ja) * 2010-01-26 2011-08-11 Equos Research Co Ltd 電気化学デバイス用電解液の製造方法
KR20170058707A (ko) * 2015-11-19 2017-05-29 솔브레인 주식회사 리튬 이차 전지용 전해액 첨가제, 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2774071A1 (en) 2009-09-15 2011-03-24 Ube Industries, Ltd. Nonaqueous electrolyte solution and electrochemical element using same
JP5978787B2 (ja) * 2012-06-11 2016-08-24 ソニー株式会社 非水二次電池用電解液、非水二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2015088051A1 (ko) 2013-12-09 2015-06-18 에스케이이노베이션 주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015111676A1 (ja) * 2014-01-22 2015-07-30 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP6098684B2 (ja) * 2015-08-12 2017-03-22 セントラル硝子株式会社 非水電解液二次電池用電解液及びそれを用いた非水電解液二次電池
KR101937898B1 (ko) * 2015-10-29 2019-01-14 주식회사 엘지화학 비수 전해액 첨가제, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189042A (ja) * 1996-12-25 1998-07-21 Mitsubishi Chem Corp リチウム二次電池用電解液
JP2004022523A (ja) * 2002-06-20 2004-01-22 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2011154783A (ja) * 2010-01-26 2011-08-11 Equos Research Co Ltd 電気化学デバイス用電解液の製造方法
KR20170058707A (ko) * 2015-11-19 2017-05-29 솔브레인 주식회사 리튬 이차 전지용 전해액 첨가제, 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Also Published As

Publication number Publication date
JP7099548B2 (ja) 2022-07-12
CN113228372B (zh) 2023-09-19
US11742522B2 (en) 2023-08-29
JPWO2020138317A1 (ja) 2021-09-27
US20210320333A1 (en) 2021-10-14
CN113228372A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN113892201B (zh) 负极活性物质、负极以及二次电池
KR20160052382A (ko) 리튬 이차 전지
US20210210789A1 (en) Secondary battery
US20220085411A1 (en) Secondary battery
JP7143943B2 (ja) 負極活物質、負極および二次電池
JP7107382B2 (ja) 二次電池
US11742522B2 (en) Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery
WO2020059874A1 (ja) 二次電池
CN112805849A (zh) 锂离子二次电池用负极及锂离子二次电池
WO2020241838A1 (ja) 電解液および二次電池
WO2022071317A1 (ja) 非水電解質二次電池
WO2020218019A1 (ja) 負極活物質、負極および二次電池
US20210159540A1 (en) Nonaqueous electrolyte secondary battery
WO2020218021A1 (ja) 負極活物質、負極および二次電池
CN112956053B (zh) 二次电池
WO2023112576A1 (ja) 二次電池用正極および二次電池
US20210066753A1 (en) Non-aqueous electrolyte secondary battery
US20210143435A1 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562424

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905788

Country of ref document: EP

Kind code of ref document: A1