WO2020138207A1 - Gas barrier laminate - Google Patents

Gas barrier laminate Download PDF

Info

Publication number
WO2020138207A1
WO2020138207A1 PCT/JP2019/050923 JP2019050923W WO2020138207A1 WO 2020138207 A1 WO2020138207 A1 WO 2020138207A1 JP 2019050923 W JP2019050923 W JP 2019050923W WO 2020138207 A1 WO2020138207 A1 WO 2020138207A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
layer
group
barrier laminate
underlayer
Prior art date
Application number
PCT/JP2019/050923
Other languages
French (fr)
Japanese (ja)
Inventor
博貴 木下
智史 永縄
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2020563364A priority Critical patent/JP7398394B2/en
Priority to KR1020217019728A priority patent/KR20210110592A/en
Priority to CN201980086465.4A priority patent/CN113226750B/en
Publication of WO2020138207A1 publication Critical patent/WO2020138207A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a gas barrier laminate that is preferably used as a member for electronic devices such as liquid crystal displays and electroluminescence (EL) displays.
  • electronic devices such as liquid crystal displays and electroluminescence (EL) displays.
  • a transparent plastic film for a display such as a liquid crystal display or an electroluminescence (EL) display, it has been considered to use a transparent plastic film in place of a glass plate in order to realize thinning, weight reduction, and flexibility.
  • a plastic film is more permeable to water vapor, oxygen, etc. than a glass plate, and when a transparent plastic film is used as a substrate for a display, the water vapor, oxygen, etc. that permeate the substrate act on the elements inside the display device.
  • a film having a property of suppressing permeation of water vapor and oxygen as a substrate of a display.
  • gas barrier property the property of suppressing permeation of water vapor and oxygen
  • gas barrier film the film having gas barrier property
  • gas barrier laminate the laminate having gas barrier property
  • Patent Document 1 discloses a gas barrier film having a gas barrier layer on one surface of a cured resin layer, wherein the cured resin layer comprises a thermoplastic resin having a glass transition temperature of 140° C. or higher and a curable monomer.
  • a gas barrier film which is a layer composed of a cured product of a curable resin composition contained therein, has been proposed.
  • an object of the present invention is to provide a gas barrier laminate having high bending resistance and excellent gas barrier properties, which is suitably used as a member for electronic devices.
  • the present inventors have conducted extensive studies to solve the above problems, and as a result, a gas barrier laminate having a process film, an underlayer, and a gas barrier layer in this order, wherein the underlayer is a polymer.
  • a layer formed of a cured product of a curable resin composition containing the component (A) and the curable component (B), and the absolute value of the heat shrinkage rate of the gas barrier laminate and the elongation at break of the underlayer are predetermined. It was found that the above problems can be solved by setting the value to be the value, and the present invention has been completed. That is, the present invention provides the following [1] to [6].
  • a gas barrier laminate comprising a step film, a base layer, and a gas barrier layer in this order,
  • the underlayer is a layer formed of a cured product of a curable resin composition containing a polymer component (A) and a curable component (B),
  • a gas barrier laminate wherein the gas barrier laminate satisfies the following requirements (1) and (2).
  • (1) The absolute value of the thermal shrinkage of the gas barrier laminate is 0.5% or less.
  • the breaking elongation of the gas barrier laminate is 1.9% or more.
  • the gas barrier laminate according to [1], wherein the underlayer has a thickness of 0.1 to 10 ⁇ m.
  • preferable rules can be arbitrarily selected, and combinations of preferable rules can be said to be more preferable.
  • the description “XX to YY” means “XX or more and YY or less”.
  • the lower limit value and the upper limit value described stepwise for the preferable numerical range can be independently combined.
  • the “preferable lower limit value (10)” and the “more preferable upper limit value (60)” are combined to obtain “10 to 60".
  • the gas barrier laminate according to the embodiment of the present invention will be described below.
  • a gas barrier laminate according to an embodiment of the present invention includes a process film, a base layer, and a gas barrier layer in this order.
  • the underlayer is a layer formed of a cured product of a curable resin composition containing the polymer component (A) and the curable component (B), and the gas barrier laminate has the following requirement [1] and [2] is satisfied.
  • the absolute value of the thermal shrinkage of the gas barrier laminate is 0.5% or less.
  • the breaking elongation of the gas barrier laminate is 1.9% or more.
  • the base layer is a cured product of the curable resin composition, whereby the base layer has excellent solvent resistance.
  • the coating film is a coating film obtained by applying the coating material onto a substrate or an object and subjecting it to treatment such as drying or curing by heating if necessary.
  • the gas barrier layer is used as a coating film, it is a coating film obtained by applying a coating material containing a component for forming a gas barrier layer, which will be described later, onto the undercoat layer and performing curing by drying or heating.
  • the curable resin composition is applied to an object to be coated such as a process film, and either or both of curing treatments such as drying and heating and irradiation with active energy rays are performed. It is a film obtained by performing. Further, by satisfying the above requirement [1], shrinkage of the gas barrier laminate during heating is suppressed. Therefore, for example, when the gas barrier layer is formed on the underlayer by applying the material forming the gas barrier layer and heating and drying, the gas barrier layer is contracted by the underlayer and the precursor of the gas barrier layer. It can be avoided that the gas barrier property is lowered due to the deformation.
  • the thermal contraction rate of the gas barrier laminate is determined by setting the gas barrier laminate in a thermomechanical analyzer, raising the temperature to 130° C. at 5° C./min, and then cooling to room temperature at 5° C./min.
  • it is a value obtained by measuring the rate of change of displacement in the longitudinal direction before and after heating the underlayer, and it is measured in detail by the procedure shown in the examples.
  • the breaking elongation of the underlayer is a value measured according to JIS K7127:1999, and more specifically, it is measured by the procedure shown in the examples.
  • the underlayer of the gas barrier laminate according to the embodiment of the present invention comprises a cured product of a curable resin composition containing a polymer component (A) and a curable component (B).
  • the underlayer may be a single layer or may include a plurality of laminated layers.
  • the glass transition temperature (Tg) of the polymer component (A) is preferably 250° C. or higher, more preferably 290° C. or higher, still more preferably 320° C. or higher.
  • Tg is 250° C. or higher, the heat shrinkage of the underlayer is suppressed, and as a result, it becomes easy to adjust the heat shrinkage rate of the gas barrier laminate to the range described above (that is, the above requirement [1]). Easier to meet).
  • Tg is the maximum point of tan ⁇ (loss elastic modulus/storage elastic modulus) obtained by viscoelasticity measurement (measurement in a tensile mode at a frequency of 11 Hz and a temperature rising rate of 3° C./minute in a range of 0 to 250° C.). Refers to temperature.
  • the weight average molecular weight (Mw) of the polymer component (A) is usually 100,000 to 3,000,000, preferably 200,000 to 2,000,000, and more preferably 250,000 to 2,000. 000, particularly preferably 500,000 to 1,000,000.
  • the molecular weight distribution (Mw/Mn) is preferably in the range of 1.0 to 5.0, more preferably 2.0 to 4.5.
  • the weight average molecular weight (Mw) and the molecular weight distribution (Mw/Mn) are polystyrene-converted values measured by the gel permeation chromatography (GPC) method. By setting the Mw to 100,000 or more, it becomes easy to increase the breaking elongation of the underlayer.
  • thermoplastic resin As the polymer component (A), a thermoplastic resin is preferable, and an amorphous thermoplastic resin is more preferable.
  • the amorphous thermoplastic resin By using the amorphous thermoplastic resin, it is easy to obtain a base layer having excellent optical isotropy, and it is easy to obtain a gas barrier laminate having excellent transparency. Further, since the amorphous thermoplastic resin is generally easily dissolved in an organic solvent, the underlayer can be efficiently formed by using the solution casting method as described later.
  • the amorphous thermoplastic resin refers to a thermoplastic resin whose melting point is not observed in differential scanning calorimetry.
  • the polymer component (A) is soluble in a general organic solvent having a low boiling point such as benzene and methyl ethyl ketone (MEK). If it is soluble in a general-purpose organic solvent, it becomes easy to form the underlayer by coating.
  • a general organic solvent having a low boiling point such as benzene and methyl ethyl ketone (MEK). If it is soluble in a general-purpose organic solvent, it becomes easy to form the underlayer by coating.
  • the polymer component (A) is an amorphous thermoplastic resin having a Tg of 250° C. or higher, which is soluble in a general organic solvent having a low boiling point such as benzene and MEK.
  • thermoplastic resin having a ring structure such as an aromatic ring structure or an alicyclic structure is preferable, and a thermoplastic resin having an aromatic ring structure is more preferable.
  • polymer component (A) examples include polyimide resin and polyarylate resin. These resins generally have a high Tg and excellent heat resistance, and since they are amorphous thermoplastic resins, they are capable of forming a coating film by a solution casting method. Among these, a polyimide resin is preferable because it has a high Tg and excellent heat resistance, and that it is easy to obtain a resin that is soluble in a general-purpose organic solvent while exhibiting good heat resistance.
  • the polyimide resin is not particularly limited as long as it does not impair the effects of the present invention.
  • an aromatic polyimide resin an aromatic (carboxylic acid component)-cyclic aliphatic (diamine component) polyimide resin, a cyclic fat A group (carboxylic acid component)-aromatic (diamine component) polyimide resin, a cycloaliphatic polyimide resin, a fluorinated aromatic polyimide resin, or the like can be used.
  • a polyimide resin having a fluoro group in the molecule is preferable.
  • the Tg of a polyimide resin is 250° C. or higher.
  • a polyimide resin obtained by using an aromatic diamine compound and a tetracarboxylic dianhydride to polymerize into a polyamic acid and undergo a chemical imidization reaction is preferable.
  • a polyimide having a predetermined transparency which is soluble in a common solvent (for example, N,N-dimethylacetamide (DMAC)) by a reaction with a tetracarboxylic dianhydride used together.
  • a common solvent for example, N,N-dimethylacetamide (DMAC)
  • aromatic diamine compound can be used as long as it is an aromatic diamine compound that gives Specifically, m-phenylenediamine, p-phenylenediamine, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfide, 3,4′ -Diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminobenzophenone, 3 , 3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane,
  • aromatic diamine compounds may be used alone or two or more kinds of aromatic diamine compounds may be used.
  • preferable aromatic diamine compounds are 2,2-bis(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2 -Bis(3-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2-(3-aminophenyl)-2-(4-aminophenyl)-1,1,1,3 ,3,3-Hexafluoropropane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[4- (4-Aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3,3 3,3-hexafluoropropane
  • tetracarboxylic acid dianhydride a tetracarboxylic acid which is soluble in a common solvent (for example, N,N-dimethylacetamide (DMAC)) and gives a polyimide having a predetermined transparency, like the aromatic diamine compound.
  • a common solvent for example, N,N-dimethylacetamide (DMAC)
  • DMAC N,N-dimethylacetamide
  • Any dianhydride can be used, and specifically, 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)diphthalic acid dianhydride can be used.
  • the polymerization to polyamic acid can be performed by reacting the above aromatic diamine compound and tetracarboxylic dianhydride in a solvent in which the polyamic acid to be produced is soluble.
  • Solvents used for polymerization into polyamic acid include N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, and the like. Can be used.
  • the polymerization reaction to polyamic acid is preferably carried out while stirring in a reaction vessel equipped with a stirrer.
  • a reaction is carried out by adding tetracarboxylic acid dianhydride while stirring, to obtain a polyamic acid
  • the tetracarboxylic acid dianhydride is dissolved in the solvent
  • a method of adding an aromatic diamine compound while reacting to obtain a polyamic acid a method of alternately charging an aromatic diamine compound and a tetracarboxylic acid dianhydride and reacting to obtain a polyamic acid, etc.
  • a method of adding an aromatic diamine compound while reacting to obtain a polyamic acid a method of alternately charging an aromatic diamine compound and a tetracarboxylic acid dianhydride and reacting to obtain a polyamic acid, etc.
  • the temperature of the polymerization reaction into the polyamic acid is not particularly limited, but it is preferably carried out at a temperature of 0 to 70°C, more preferably 10 to 60°C, still more preferably 20 to 50°C. By carrying out the polymerization reaction within the above range, it is possible to obtain a high-molecular-weight polyamic acid with little coloration and excellent transparency.
  • the aromatic diamine compound and the tetracarboxylic acid dianhydride used for polymerization into the polyamic acid are used in approximately equimolar amounts, but in order to control the degree of polymerization of the polyamic acid obtained, the tetracarboxylic acid dianhydride is used. It is also possible to change the molar amount of the above/the molar amount of the aromatic diamine compound (molar ratio) within the range of 0.95 to 1.05.
  • the molar ratio of the tetracarboxylic dianhydride and the aromatic diamine compound is preferably in the range of 1.001 to 1.02, more preferably 1.001 to 1.01.
  • the concentration of the polyamic acid solution to be generated is preferably adjusted to an appropriate concentration (for example, about 10 to 30% by mass) so that the viscosity of the solution can be kept appropriate and handling in subsequent steps is easy.
  • an imidizing agent to the obtained polyamic acid solution to carry out a chemical imidization reaction.
  • carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, succinic anhydride, phthalic anhydride, and benzoic anhydride can be used, and they are anhydrous from the viewpoint of cost and ease of removal after the reaction.
  • the equivalent amount of the imidizing agent used is equal to or more than the equivalent amount of the amide bond of the polyamic acid that undergoes the chemical imidization reaction, and is preferably 1.1 to 5 times the equivalent amount of the amide bond, and is 1.5 to 4 times. Is more preferable.
  • the imidization reaction can be efficiently performed even at a relatively low temperature.
  • aliphatic, aromatic or heterocyclic tertiary amines such as pyridine, picoline, quinoline, isoquinoline, trimethylamine and triethylamine can be used as imidization promoters.
  • the imidization reaction can be efficiently performed at a low temperature, and as a result, it becomes possible to suppress coloration during the imidization reaction, and it becomes easier to obtain a more transparent polyimide.
  • the chemical imidization reaction temperature is not particularly limited, but it is preferably performed at 10°C or higher and lower than 50°C, more preferably 15°C or higher and lower than 45°C.
  • a poor solvent for the polyimide is added to the polyimide solution obtained by the chemical imidization reaction to precipitate the polyimide to form a powder, and the powder is dried.
  • the polyimide resin is preferably capable of being a low boiling point organic solvent such as benzene or MEK, and more preferably soluble in MEK. When it is soluble in MEK, a layer of the curable resin composition can be easily formed by coating and drying.
  • a polyimide resin containing a fluoro group is preferable from the viewpoints of being easily dissolved in a general-purpose organic solvent having a low boiling point such as MEK and easily forming a base layer by a coating method.
  • a general-purpose organic solvent having a low boiling point such as MEK
  • the polyimide resin having a fluoro group an aromatic polyimide resin having a fluoro group in the molecule is preferable, and one having a skeleton represented by the following chemical formula in the molecule is preferable.
  • the polyimide resin having the skeleton represented by the above chemical formula has an extremely high Tg exceeding 300° C. due to the high rigidity of the skeleton. Therefore, the heat resistance of the underlayer can be greatly improved. Further, the skeleton is linear and has relatively high flexibility, and it becomes easy to increase the breaking elongation of the underlayer. Further, the polyimide resin having the above skeleton has a fluoro group, so that it can be dissolved in a low boiling point general-purpose organic solvent such as MEK. Therefore, the undercoat layer can be formed as a coating film by applying the solution using the solution casting method, and the solvent can be easily removed by drying.
  • Polyimide resins having a skeleton represented by the above chemical formula include 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl and 4,4′-(1,1,1,3,3,3 -Hexafluoropropane-2,2-diyl)diphthalic acid dianhydride, and can be obtained by the polymerization and imidization reaction of the above polyamic acid.
  • the polyarylate resin is a resin composed of a polymer compound obtained by reacting an aromatic diol with an aromatic dicarboxylic acid or its chloride.
  • the polyarylate resin also has a relatively high Tg and relatively good elongation characteristics.
  • the Tg of the polyarylate resin is in the range of about 170 to 300° C., and depending on its structure, there is Tg of 250° C. or more.
  • the polyarylate resin is not particularly limited, and known ones can be used.
  • aromatic diols include bis(4-hydroxyphenyl)methane [bisphenol F], bis(3-methyl-4-hydroxyphenyl)methane, 1,1-bis(4′-hydroxyphenyl)ethane, 1, 1-bis(3'-methyl-4'-hydroxyphenyl)ethane, 2,2-bis(4'-hydroxyphenyl)propane [bisphenol A], 2,2-bis(3'-methyl-4'-hydroxy) Bis(hydroxyphenyl)alkanes such as phenyl)propane, 2,2-bis(4′-hydroxyphenyl)butane, and 2,2-bis(4′-hydroxyphenyl)octane; 1,1-bis(4′- Bis(hydroxy) such as hydroxyphenyl)cyclopentane, 1,1-bis(4′-hydroxyphenyl)cyclohexane [bisphenol Z], 1,1-bis(4′-hydroxyphenyl)-3,3,5-trimethylcyclohexane Phenyl)cycloalkanes
  • aromatic dicarboxylic acids or chlorides thereof include phthalic acid, isophthalic acid, terephthalic acid, 4,4′-biphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenylether 4,4′-dicarboxylic acid, 4,4′- Examples thereof include diphenyl sulfone dicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and chlorides thereof.
  • the polyarylate-based resin used may be a modified polyarylate-based resin.
  • the polyarylate resin is preferably a resin made of a polymer compound obtained by the reaction of 2,2-bis(4'-hydroxyphenyl)propane and isophthalic acid.
  • the polymer component (A) may be used singly or in combination of two or more, but one using a single kind of polyimide resin, one using a plurality of different kinds of polyimide resins, and polyimide It is preferable to add at least one of a polyamide resin and a polyarylate resin to the resin from the viewpoint of adjusting the elongation property and the solvent resistance.
  • polyamide resin those soluble in an organic solvent are preferable, and rubber-modified polyamide resin is preferable.
  • rubber-modified polyamide resin for example, those described in JP-A-2004-035638 can be used.
  • the amount of the resin added is preferably 100 relative to 100 parts by weight of the polyimide resin from the viewpoint of imparting appropriate flexibility while maintaining a high Tg.
  • the amount is not more than 70 parts by mass, more preferably not more than 70 parts by mass, further preferably not more than 50 parts by mass, still more preferably not more than 30 parts by mass, and preferably not less than 1 part by mass, more preferably not less than 3 parts by mass.
  • the curable component (B) is a component that can participate in the polymerization reaction, or the polymerization reaction and the crosslinking reaction, and has, for example, a polymerizable unsaturated bond, and is involved in the polymerization reaction or the polymerization reaction and the crosslinking reaction. It is the monomer to be obtained.
  • curing means a broad concept including this "polymerization reaction of monomers” or “polymerization reaction of monomers and subsequent crosslinking reaction of polymer”.
  • the curable component (B) has a molecular weight of usually 3,000 or less, preferably 200 to 2,000, more preferably 200 to 1,000.
  • the number of polymerizable unsaturated bonds in the curable component (B) is not particularly limited.
  • the curable component (B) may be a monofunctional monomer having one polymerizable unsaturated bond or a polyfunctional monomer having a plurality of difunctional or trifunctional monomers. Good.
  • Examples of the monofunctional monomers include monofunctional (meth)acrylic acid derivatives.
  • the monofunctional (meth)acrylic acid derivative is not particularly limited, and known compounds can be used. Examples thereof include monofunctional (meth)acrylic acid derivatives having a nitrogen atom, monofunctional (meth)acrylic acid derivatives having an alicyclic structure, and monofunctional (meth)acrylic acid derivatives having a polyether structure. ..
  • the monofunctional (meth)acrylic acid derivative having a nitrogen atom includes compounds represented by the following formula.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 2 and R 3 each independently represent an organic group having a hydrogen atom or a C 1 -C 12
  • R 2 and R 3 may combine with each other to form a ring structure
  • R 4 represents a divalent organic group.
  • the alkyl group having 1 to 6 carbon atoms represented by R 1 include a methyl group, an ethyl group and a propyl group, and a methyl group is preferable.
  • Examples of the organic group having 1 to 12 carbon atoms represented by R 2 and R 3 include an alkyl group having 1 to 12 carbon atoms such as methyl group, ethyl group and propyl group; cyclopentyl group, cyclohexyl group and the like, And cycloalkyl groups having 3 to 12 carbon atoms; aromatic groups having 6 to 12 carbon atoms such as phenyl group, biphenyl group and naphthyl group. These groups may have a substituent at any position. Further, R 2 and R 3 may combine to form a ring, and the ring may further have a nitrogen atom or an oxygen atom in the skeleton. Examples of the divalent organic group represented by R 4 include groups represented by —(CH 2 ) m — and —NH—(CH 2 ) m —. Here, m is an integer of 1 to 10.
  • (meth)acryloylmorpholine represented by the following formula is preferable as the monofunctional (meth)acrylic acid derivative having a nitrogen atom.
  • the monofunctional (meth)acrylic acid derivative having an alicyclic structure includes compounds represented by the following formula.
  • R 1 has the same meaning as described above, and R 5 is a group having an alicyclic structure.
  • R 5 is a group having an alicyclic structure. Examples of the group having an alicyclic structure represented by R 5 include a cyclohexyl group, an isobornyl group, a 1-adamantyl group, a 2-adamantyl group and a tricyclodecanyl group.
  • monofunctional (meth)acrylic acid derivative having an alicyclic structure examples include isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, 1-adamantyl (meth)acrylate, and 2-adamantyl (meth)acrylate. Can be mentioned.
  • Examples of monofunctional (meth)acrylic acid derivatives having a polyether structure include compounds represented by the following formula.
  • R 1 has the same meaning as described above, and R 6 represents an organic group having 1 to 12 carbon atoms.
  • the organic group having 1 to 12 carbon atoms represented by R 6 include alkyl groups having 1 to 12 carbon atoms such as methyl group, ethyl group and propyl group; and 3 to 12 carbon atoms such as cyclohexyl group. Examples thereof include a cycloalkyl group; an aromatic group having 6 to 12 carbon atoms such as a phenyl group, a biphenyl group and a naphthyl group; j represents an integer of 2 to 20.
  • the monofunctional (meth)acrylic acid derivative having a polyether structure examples include ethoxylated o-phenylphenol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, and phenoxypolyethylene glycol (meth)acrylate. ..
  • an underlayer having excellent toughness can be formed.
  • polyfunctional monomers examples include polyfunctional (meth)acrylic acid derivatives.
  • the polyfunctional (meth)acrylic acid derivative is not particularly limited, and known compounds can be used.
  • a bifunctional to hexafunctional (meth)acrylic acid derivative may be mentioned.
  • Examples of the bifunctional (meth)acrylic acid derivative include compounds represented by the following formula.
  • R 1 has the same meaning as described above, and R 7 represents a divalent organic group.
  • R 7 represents a divalent organic group. Examples of the divalent organic group represented by R 7 include groups represented by the following formula.
  • s represents an integer of 1 to 20
  • t represents an integer of 1 to 30
  • u and v each independently represent an integer of 1 to 30, and “ ⁇ ” at both ends represents Represents a bond.
  • bifunctional (meth)acrylic acid derivative represented by the above formula examples include tricyclodecane dimethanol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propoxylated ethoxylated bisphenol A di(meth)acrylate. , Ethoxylated bisphenol A di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 9,9-bis[4-(2-acryloyloxyethoxy) Phenyl]fluorene and the like.
  • a divalent organic group represented by R 7 in the above formula has a tricyclodecane skeleton, such as tricyclodecane dimethanol di(meth)acrylate, and propoxy.
  • Ethoxylated bisphenol A di(meth)acrylate, ethoxylated bisphenol A di(meth)acrylate, etc. in which the divalent organic group represented by R 7 in the above formula has a bisphenol skeleton, 9,9-bis
  • a divalent organic group represented by R 7 has a 9,9-bisphenylfluorene skeleton, such as [4-(2-acryloyloxyethoxy)phenyl]fluorene.
  • neopentyl glycol adipate di(meth)acrylate hydroxypivalic acid neopentyl glycol di(meth)acrylate, caprolactone-modified dicyclopentenyl di(meth)acrylate
  • examples thereof include ethylene oxide-modified di(meth)acrylate phosphate, di(acryloxyethyl)isocyanurate, and allylated cyclohexyl di(meth)acrylate.
  • Trifunctional (meth)acrylic acid derivatives include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, and propylene oxide-modified trimethylolpropane tri(meth)acrylate.
  • Examples of the tetrafunctional (meth)acrylic acid derivative include pentaerythritol tetra(meth)acrylate.
  • Examples of the pentafunctional (meth)acrylic acid derivative include propionic acid-modified dipentaerythritol penta(meth)acrylate.
  • Examples of the hexafunctional (meth)acrylic acid derivative include dipentaerythritol hexa(meth)acrylate and caprolactone-modified dipentaerythritol hexa(meth)acrylate.
  • the curable component (B) can be used alone or in combination of two or more.
  • the curable component (B) is preferably a polyfunctional monomer because it provides an underlayer having excellent heat resistance and solvent resistance.
  • the polyfunctional monomer a bifunctional (meth)acrylic acid derivative is preferable from the viewpoint that it is easily mixed with the polymer component (A), curling of the polymer hardly occurs and curling of the cured product can be suppressed. .
  • the curable component (B) contains a polyfunctional monomer, its content is preferably 40% by mass or more, more preferably 50 to 100% by mass, based on the total amount of the curable component (B). More preferably, it is 100% by mass.
  • the curable component (B) preferably contains a cyclopolymerizable monomer.
  • the cyclopolymerizable monomer is a monomer having a property of radical polymerization while undergoing cyclization. Cyclic polymerizable monomers grow into linear macromolecules by forming a ring structure in the molecule by polymerization, but the solvent resistance of the underlying layer is higher than that of general monofunctional curable monomers. The heat resistance can be improved.
  • One of the reasons for this is that, in the case of a polymer of a cyclopolymerizable monomer, a ring structure is formed in the polymer chain, which makes the molecule stiffer than a general linear polymer, which results in an underlayer.
  • the heat resistance of is improved.
  • the molecular design is designed so that the intramolecular cyclization reaction occurs selectively, but some monomers undergo intermolecular reaction, and the structural units derived from that monomer do not react. Functional groups remain. When this reactive functional group reacts with another monomer, branching of the polymer chain occurs, and a crosslinked structure is formed in the polymer of the cyclopolymerizable monomer. This is considered to further improve the heat resistance of the underlayer and also improve the solvent resistance.
  • cyclopolymerizable monomer examples include non-conjugated dienes, and for example, an ⁇ -allyloxymethylacrylic acid-based monomer represented by the following formula (1) can be used.
  • R 8 represents a hydrogen atom or a monovalent organic group.
  • the organic group is composed of a hydrocarbon and may have an ether group.
  • the hydrogen atom of the hydrocarbon is halogen. Optionally substituted with atoms.
  • the organic group may have a straight chain structure, a branched chain structure, or a cyclic structure.
  • the hydrocarbon group contained in the organic group is not particularly limited.
  • the hydrocarbon group is a chain saturated hydrocarbon group having 1 or more carbon atoms, a chain unsaturated hydrocarbon group having 3 or more carbon atoms, an alicyclic hydrocarbon group having 3 or more carbon atoms, and a carbon number 6 These are aromatic hydrocarbon groups and the like.
  • the hydrocarbon group is a chain saturated hydrocarbon group having 1 to 30 carbon atoms, a chain unsaturated hydrocarbon group having 3 to 30 carbon atoms, an alicyclic hydrocarbon group having 4 to 30 carbon atoms and carbon.
  • the substituent is not particularly limited.
  • the substituent is a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, a cyano group or a trimethylsilyl group.
  • the chain saturated hydrocarbon group is not particularly limited.
  • the chain saturated hydrocarbon group includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-amyl group, sec-amyl group.
  • the chain unsaturated hydrocarbon group is not particularly limited.
  • the chain unsaturated hydrocarbon group includes a crotyl group, a 1,1-dimethyl-2-propenyl group, a 2-methyl-butenyl group, a 3-methyl-2-butenyl group and a 3-methyl-3-group. Examples thereof include butenyl group, 2-methyl-3-butenyl group, oleyl group, linole group and linolene group.
  • the alicyclic hydrocarbon group is not particularly limited.
  • the alicyclic hydrocarbon group includes a cyclopentyl group, a cyclopentylmethyl group, a cyclohexyl group, a cyclohexylmethyl group, a 4-methylcyclohexyl group, a 4-tert-butylcyclohexyl group, a tricyclodecanyl group, an isobornyl group, Examples thereof include an adamantyl group, a dicyclopentanyl group, and a dicyclopentenyl group.
  • the aromatic hydrocarbon group is not particularly limited.
  • the aromatic hydrocarbon group is a phenyl group, a methylphenyl group, a dimethylphenyl group, a trimethylphenyl group, a 4-tert-butylphenyl group, a benzyl group, a diphenylmethyl group, a diphenylethyl group, a triphenylmethyl group.
  • the hydrocarbon group having an ether bond is not particularly limited.
  • the hydrocarbon group having an ether bond is a chain ether group such as a methoxyethyl group, a methoxyethoxyethyl group, a methoxyethoxyethoxyethyl group, a 3-methoxybutyl group, an ethoxyethyl group, an ethoxyethoxyethyl group.
  • a group having both an alicyclic hydrocarbon group such as a cyclopentoxyethyl group, a cyclohexyloxyethyl group, a cyclopentoxyethoxyethyl group, a cyclohexyloxyethoxyethyl group, and a dicyclopentenyloxyethyl group and a chain ether group; phenoxyethyl Group, group having both aromatic hydrocarbon group such as phenoxyethoxyethyl group and chain ether group; glycidyl group, ⁇ -methylglycidyl group, ⁇ -ethylglycidyl group, 3,4-epoxycyclohexylmethyl group, 2-oxetanemethyl Group, 3-methyl-3-oxetanemethyl group, 3-ethyl-3-oxetanemethyl group, tetrahydrofuranyl group, tetrahydrofurfuryl group, tetrahydropyrany
  • R 8 in formula (1) is preferably a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and more preferably a methyl group.
  • an alkyl ester of 2-allyloxymethylacrylic acid having 1 to 4 carbon atoms and cyclohexyl 2-(allyloxymethyl)acrylic acid are preferable, and an alkyl ester of 2-allyloxymethylacrylic acid having 1 to 4 carbon atoms is more preferable.
  • Methyl 2-(allyloxymethyl)acrylate is more preferable.
  • cyclopolymerizable monomers include, for example, monomers represented by the following formula (2).
  • X represents an oxygen atom or a methylene group
  • a represents 0 or 1
  • b represents 1 or 2
  • c represents an integer of 1 or 2.
  • R 9 represents an alkyl group having 6 or less carbon atoms. Represents.
  • Examples of the cyclopolymerizable monomer represented by the formula (2) include dimethyl-2,2'-[oxybis(methylene)]bis-2-propenoate and diethyl-2,2'-[oxybis(methylene)].
  • the curable component (B) more preferably contains the polyfunctional (meth)acrylate compound described above and a cyclopolymerizable monomer.
  • the mass ratio of the cyclopolymerizable monomer and the polyfunctional (meth)acrylate compound is preferably 95:5 to 30:70, more preferably 90:10 to 35:65, further preferably Is 90:10 to 40:60.
  • the heat shrinkage rate of the gas barrier laminate is described above while adjusting the breaking elongation of the underlayer to the above range. It becomes easier to adjust the range.
  • the curable resin composition used for forming the underlayer according to the embodiment of the present invention comprises a polymer component (A), a curable component (B), and, if desired, a polymerization initiator and other components described below. It can be prepared by mixing and dissolving or dispersing in a suitable solvent.
  • the total content of the polymer component (A) and the curable monomer (B) in the curable resin composition is preferably 40 to 99 based on the total mass of the curable resin composition excluding the solvent.
  • the amount is 0.5% by mass, more preferably 60 to 99% by mass, and further preferably 80 to 98% by mass.
  • the mass ratio of the polymer component (A): the curable monomer (B) is within such a range, the flexibility of the obtained underlayer is more easily improved, and the underlayer Solvent resistance tends to be maintained.
  • the content of the curable component (B) in the curable resin composition is in the above range, for example, when the underlayer is obtained by a solution casting method or the like, the solvent can be efficiently removed, and thus the drying is performed.
  • the problem of deformation such as curling and waviness due to the lengthening of the process is solved.
  • the curable resin composition may contain a polymerization initiator.
  • the polymerization initiator can be used without particular limitation as long as it initiates the curing reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
  • thermal polymerization initiator examples include organic peroxides and azo compounds.
  • Organic peroxides include dialkyl peroxides such as di-t-butyl peroxide, t-butyl cumyl peroxide and dicumyl peroxide; diacyl peroxides such as acetyl peroxide, lauroyl peroxide and benzoyl peroxide.
  • Ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide and methyl cyclohexanone peroxide; peroxyketals such as 1,1-bis(t-butylperoxy)cyclohexane T-butyl hydroperoxide, cumene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethylhexane-2, Hydroperoxides such as 5-dihydroperoxide; peroxys such as t-butylperoxyacetate, t-butylperoxy-2-ethylhexanoate, t-butylperoxybenzoate, t-butylperoxyisopropyl carbonate Esters; and the like.
  • peroxyketals such as 1,
  • azo compound examples include 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis(2-cyclopropylpropionitrile), 2,2′-azobis(2 ,4-Dimethylvaleronitrile), azobisisobutyronitrile, 2,2′-azobis(2-methylbutyronitrile), 1,1′-azobis(cyclohexane-1-carbonitrile), 2-(carbamoylazo) ) Isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile and the like can be mentioned.
  • photopolymerization initiator examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one.
  • Photopolymerization initiator benzophenone, p-chlorobenzophenone, benzoylbenzoic acid, methyl o-benzoylbenzoate, 4-methylbenzophenone, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl-4'-methyl-diphenyl Benzophenones such as sulfide, 3,3'-dimethyl-4-methoxybenzophenone, 2,4,6-trimethylbenzophenone, 4-(13-acryloyl-1,4,7,10,13-pentaoxatridecyl)-benzophenone -Based photopolymerization initiators: thioxanthone, 2-chlorothioxanthone, 3-methylthioxanthone, 2,4-dime Thioxanthone-based photopolymerization initiators such as tylthioxanthone, 2,4-diisopropylthioxanthone
  • 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, ethyl(2,4,6-trimethylbenzoyl)- Phosphorus photopolymerization initiators such as phenylphosphinate and bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide are preferable.
  • the polymer component (A) is a thermoplastic resin having an aromatic ring
  • the polymer component (A) absorbs ultraviolet rays, and as a result, a curing reaction may be difficult to occur.
  • the curing reaction can be efficiently progressed by utilizing the light of the wavelength which is not absorbed by the polymer component (A).
  • the polymerization initiators may be used alone or in combination of two or more.
  • the content of the polymerization initiator is preferably 0.05 to 15% by mass, more preferably 0.05 to 10% by mass, and further preferably 0.05 to 5% by mass, based on the entire curable resin composition.
  • the curable resin composition also includes a photopolymerization initiation aid such as triisopropanolamine or 4,4′-diethylaminobenzophenone. You may contain the agent.
  • a photopolymerization initiation aid such as triisopropanolamine or 4,4′-diethylaminobenzophenone. You may contain the agent.
  • the solvent used for preparing the curable resin composition is not particularly limited, and examples thereof include aliphatic hydrocarbon solvents such as n-hexane and n-heptane; aromatic hydrocarbon solvents such as toluene and xylene; dichloromethane.
  • Halogenated hydrocarbon solvents such as ethylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, monochlorobenzene; alcohol solvents such as methanol, ethanol, propanol, butanol, propylene glycol monomethyl ether; acetone, methyl ethyl ketone, 2 -Pentanone, isophorone, cyclohexanone and other ketone solvents; ethyl acetate, butyl acetate and other ester solvents; ethyl cellosolve and other cellosolve solvents; 1,3-dioxolane and other ether solvents;
  • Halogenated hydrocarbon solvents such as ethylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, monochlorobenzene
  • alcohol solvents such as methanol, ethanol, propanol, butanol, propylene glycol monomethyl
  • the content of the solvent in the curable resin composition is not particularly limited, but is usually 0.1 to 1,000 g, preferably 1 to 100 g per 1 g of the polymer component (A). By appropriately adjusting the amount of the solvent, the viscosity of the curable resin composition can be adjusted to an appropriate value.
  • the curable resin composition may further contain known additives such as a plasticizer, an antioxidant and an ultraviolet absorber within a range that does not impair the objects and effects of the present invention.
  • the method for curing the curable resin composition can be appropriately determined according to the type of polymerization initiator or curable monomer used. Details will be described in the section of the method for producing a gas barrier laminate of the present invention described later.
  • the gas barrier laminate according to the embodiment of the present invention preferably satisfies the following requirement [2′].
  • the breaking elongation of the underlayer is 2.5% or more.
  • the upper limit of the breaking elongation of the underlayer is not particularly limited, but is usually 20% or less, preferably 15% or less.
  • the breaking elongation can be improved while maintaining the elastic modulus at a high temperature relatively high, and the requirement [2′] is easily satisfied.
  • the gas barrier properties of the gas barrier laminate will tend to deteriorate.
  • the reduction of the gas barrier property was suppressed by suppressing the absolute value of the heat shrinkage ratio within a certain range. This is because the underlayer is affected by heat, and for example, when the underlayer is deformed in the plane direction by heating when forming the gas barrier layer by coating, the heat shrinkage ratio should be within a predetermined range. It seems that the above phenomenon can be suppressed by selecting materials, etc.
  • a polyimide resin is used as the polymer component (A), a flexible skeleton is introduced by further adding a polyamide resin, or the polymer component (A) is added. It is effective to increase the molecular weight of ##STR3## or to use a cyclopolymerizable monomer as the curable component (B) to reduce the proportion of aromatic rings present and improve the elongation characteristics of the underlayer.
  • a polyfunctional (meth)acrylate compound and a cyclopolymerizable monomer in combination it is possible to increase the network structure, or as the polymerizable component (A), use a rigid resin represented by a polyimide resin. Therefore, by selecting one having a high glass transition temperature, it is possible to form an underlayer suitable for the above requirement [1].
  • the thickness of the underlayer is not particularly limited and may be determined according to the purpose of the gas barrier laminate.
  • the thickness of the underlayer is usually 0.1 to 300 ⁇ m, preferably 0.1 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, still more preferably 0.1 to 10 ⁇ m, still more preferably 0.2 to It is 10 ⁇ m.
  • the underlayer has a thickness of, for example, about 0.1 to 10 ⁇ m, it is possible to prevent the thickness of the gas barrier laminate from increasing, and it is possible to obtain a thin gas barrier laminate.
  • a thin gas-barrier laminate is preferable because it is not a factor for increasing the thickness of the entire applied device in an application such as an organic EL display where thinning is required. Further, if the gas barrier laminate is thin, the flexibility and bending resistance of the gas barrier laminate after mounting can be improved.
  • the base layer has excellent solvent resistance. Since the solvent resistance is excellent, for example, even when an organic solvent is used when forming another layer on the surface of the underlayer, the surface of the underlayer is hardly dissolved. Therefore, for example, even when the gas barrier layer is formed on the surface of the underlayer using a resin solution containing an organic solvent, the components of the underlayer are less likely to mix into the gas barrier layer, and therefore the gas barrier property is less likely to deteriorate.
  • the gel fraction of the underlayer is preferably 90% or more, more preferably 94% or more. Since the underlayer having a gel fraction of 90% or more has excellent solvent resistance, even when an organic solvent is used for forming another layer on the underlayer surface by coating, the underlayer surface is It is possible to easily obtain a gas barrier layered product which is hardly dissolved and has excellent solvent resistance.
  • the gel fraction means that the underlayer cut into 100 mm ⁇ 100 mm is wrapped with a nylon mesh (#120) of 150 mm ⁇ 150 mm whose mass is measured in advance, dipped in toluene (100 mL) for 3 days, and taken out. After being dried at 120° C. for 1 hour and then left at 23° C. and 50% relative humidity for 3 hours to adjust the humidity, the mass is measured and obtained by the following formula.
  • the base layer has excellent interlayer adhesion with the gas barrier layer. That is, the gas barrier layer can be formed without providing the anchor coat layer on the underlayer.
  • the base layer is preferably colorless and transparent. Since the underlayer is colorless and transparent, the gas barrier laminate according to the embodiment of the present invention can be preferably used for optical applications.
  • the underlayer has a low birefringence and is excellent in optical isotropy.
  • the in-plane retardation of the underlayer is usually 20 nm or less, preferably 15 nm or less.
  • the retardation in the thickness direction is usually -500 nm or less, preferably -450 nm or less.
  • the value (birefringence) obtained by dividing the in-plane retardation by the thickness of the underlayer is usually 100 ⁇ 10 ⁇ 5 or less, preferably 20 ⁇ 10 ⁇ 5 or less. If the in-plane retardation of the underlayer, the retardation in the thickness direction, and the birefringence are within the above ranges, a gas barrier laminate having a low birefringence and excellent optical isotropy can be obtained.
  • the gas barrier laminate according to the embodiment can be preferably used for optical applications.
  • the absolute value of the heat shrinkage rate of the underlayer is 0.5% or less, preferably 0.3% or less, and more preferably 0.2% or less.
  • the breaking elongation of the underlayer is preferably 2.5% or more, more preferably 2.6% or more, still more preferably 2.7% or more, and particularly preferably 3.0% or more.
  • the breaking elongation of the underlayer is 2.5% or more, it becomes easy to adjust the breaking elongation of the gas barrier laminate to about 2% or more, and as a result, the gas barrier property is excellent in bending resistance and flexibility. A laminated body is easily obtained.
  • the tensile elastic modulus at 130° C. of the underlayer is preferably 1.0 ⁇ 10 3 MPa or more, 1.3 ⁇ 10 3 MPa or more, more preferably 1.5 ⁇ 10 3 MPa% or more, further preferably 2.0. It is ⁇ 10 3 MPa or more.
  • the tensile elastic modulus at 130° C. of the underlayer is 1.3 ⁇ 10 3 MPa or more, the heat resistance of the underlayer can be increased, and the water vapor permeability of the gas barrier layered product is low. In addition, it is easy to set it to 1 ⁇ 10 ⁇ 2 (g ⁇ m ⁇ 2 ⁇ day ⁇ 1 ) or less.
  • the underlayer has excellent heat resistance, solvent resistance, interlayer adhesion, and transparency, and also has a low birefringence rate and excellent optical isotropy. Therefore, as will be described later, by forming a gas barrier layer on the underlayer having such characteristics by, for example, a solution casting method, the gas barrier layer exhibits excellent gas barrier properties, and moreover, the gas barrier layer has excellent properties. It is also possible to prevent the gas barrier property from being impaired by at least one of heat and solvent due to at least one of heat resistance and solvent resistance. In addition, the obtained gas barrier laminate has excellent heat resistance, interlayer adhesion, and transparency. Furthermore, a gas barrier laminate having a low birefringence rate and excellent optical isotropy can be obtained.
  • gas Barrier Layer The material and the like of the gas barrier layer of the gas barrier laminate according to the embodiment of the present invention are not particularly limited as long as they have gas barrier properties. Examples thereof include a gas barrier layer made of an inorganic film, a gas barrier layer containing a gas barrier resin, and a gas barrier layer obtained by subjecting a layer containing a polymer compound to a modification treatment.
  • the gas barrier layer is a gas barrier layer obtained by subjecting a gas barrier layer made of an inorganic film and a layer containing a polymer compound to a modification treatment because a thin layer having excellent gas barrier properties and solvent resistance can be efficiently formed. Layers are preferred.
  • the inorganic film is not particularly limited, and examples thereof include an inorganic vapor deposition film.
  • the inorganic vapor deposition film include vapor deposition films of inorganic compounds and metals.
  • Inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide, tin oxide, and the like; inorganic nitrides such as silicon nitride, aluminum nitride, and titanium nitride; inorganic carbides; Inorganic sulfides; inorganic oxynitrides such as silicon oxynitride; inorganic oxycarbides; inorganic nitriding carbides; inorganic oxynitriding carbides and the like.
  • the raw material for the metal vapor deposition film examples include aluminum, magnesium, zinc, tin, and the like. These may be used alone or in combination of two or more. Among these, from the viewpoint of gas barrier properties, inorganic oxides, inorganic nitrides or inorganic vapor-deposited films using a metal as a raw material are preferable, and from the viewpoint of transparency, inorganic oxides or inorganic nitrides using a raw material as an inorganic material. Evaporated films are preferred.
  • the inorganic vapor deposition film may be a single layer or a multilayer.
  • the thickness of the inorganic vapor deposition film is preferably 10 to 2,000 nm, more preferably 20 to 1,000 nm, more preferably 30 to 500 nm, further preferably 40 to 200 nm, from the viewpoint of gas barrier properties and handleability. is there.
  • Examples of methods for forming an inorganic vapor deposition film include PVD (physical vapor deposition) methods such as vacuum vapor deposition, sputtering, and ion plating, thermal CVD (chemical vapor deposition), plasma CVD, and photo-CVD.
  • PVD physical vapor deposition
  • thermal CVD chemical vapor deposition
  • plasma CVD plasma CVD
  • photo-CVD photo-CVD
  • gas barrier resin used in the gas barrier layer containing the gas barrier resin examples include polyvinyl alcohol, partially saponified products thereof, ethylene-vinyl alcohol copolymer, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polychlorotrifluoroethylene and the like. Resins that are difficult to permeate oxygen and the like are mentioned.
  • the thickness of the gas barrier layer containing the gas barrier resin is preferably 10 to 2,000 nm, more preferably 20 to 1,000 nm, more preferably 30 to 500 nm, further preferably 40 to 200 nm. Is.
  • the gas barrier layer containing the gas barrier resin As a method for forming the gas barrier layer containing the gas barrier resin, there is a method of applying a solution containing the gas barrier resin onto the underlayer and appropriately drying the obtained coating film.
  • the polymer compound used is a silicon-containing polymer compound, polyimide, polyamide, polyamide
  • examples include imides, polyphenylene ethers, polyether ketones, polyether ether ketones, polyolefins, polyesters, polycarbonates, polysulfones, polyether sulfones, polyphenylene sulfides, polyarylates, acrylic resins, cycloolefin polymers, and aromatic polymers. .. These polymer compounds may be used alone or in combination of two or more.
  • the polymer compound is preferably a silicon-containing polymer compound.
  • the silicon-containing polymer compound include polysilazane compounds (Japanese Patent Publication No. 63-16325, Japanese Patent Laid-Open No. 62-195024, Japanese Patent Laid-Open No. 63-81122, Japanese Patent Laid-Open No. 1-138108, Japanese Patent Laid-Open No. 2-138108) No. 84437, No. 2-175726, No. 4-63833, No. 5-238827, No. 5-345826, No. 2005-36089, No. 6-122852.
  • polysilazane compounds are preferable from the viewpoint of forming a gas barrier layer having excellent gas barrier properties.
  • the polysilazane-based compound include inorganic polysilazane and organic polysilazane.
  • examples of the inorganic polysilazane include perhydropolysilazane and the like, and examples of the organic polysilazane include compounds in which a part or all of hydrogen of perhydropolysilazane is substituted with an organic group such as an alkyl group.
  • inorganic polysilazane is more preferable from the viewpoint of availability and formation of a gas barrier layer having excellent gas barrier properties.
  • the polysilazane compound a commercially available product such as a glass coating material can be used as it is.
  • the polysilazane compounds can be used alone or in combination of two or more.
  • the polymer layer may contain, in addition to the above-mentioned polymer compound, other components as long as the object of the present invention is not impaired.
  • other components include curing agents, other polymers, antioxidants, light stabilizers, flame retardants and the like.
  • the content of the polymer compound in the polymer layer is preferably 50% by mass or more, and more preferably 70% by mass or more, from the viewpoint of forming a gas barrier layer having excellent gas barrier properties.
  • a layer-forming solution containing at least one kind of polymer compound, optionally other components, and a solvent is formed on the underlayer or optionally on the underlayer by a known method.
  • a method of applying on the formed primer layer and appropriately drying the obtained coating film may be used.
  • a known device such as a spin coater, a knife coater, or a gravure coater can be used.
  • the heating and drying method conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be adopted.
  • the heating temperature is usually 80 to 150° C.
  • the heating time is usually several tens of seconds to several tens of minutes.
  • the gas barrier layer of the gas barrier layered product is formed, for example, when the polysilazane compound as described above is used, the conversion reaction of polysilazane occurs by heating after coating, and a coating film having excellent gas barrier properties is obtained.
  • an underlayer having low heat resistance when used, there is a possibility that the underlayer may be deformed by heating when forming such a coating film. The deformation of the underlayer may adversely affect the gas barrier properties of the gas barrier layer of the gas barrier laminate.
  • the underlayer according to the embodiment of the present invention has excellent heat resistance, deformation is unlikely to occur even during heating during and after coating. Therefore, it is possible to avoid deterioration of the gas barrier property of the gas barrier laminate due to the deformation of the underlayer.
  • the thickness of the polymer layer is usually 20 to 1,000 nm, preferably 30 to 800 nm, more preferably 40 to 400 nm. Even if the thickness of the polymer layer is nano-order, a gas barrier laminate having sufficient gas barrier performance can be obtained by performing a modification treatment as described below. Further, it is preferable that the polymer layer is obtained by subjecting a coating film of a composition containing a silicon compound to a modification treatment. When the polymer layer is obtained by subjecting a coating film of a composition containing a silicon compound to a modification treatment, the polymer layer can be made more flexible than an inorganic film provided by vapor deposition or sputtering, for example.
  • ion implantation As the modification treatment, ion implantation, vacuum ultraviolet light irradiation, etc. may be mentioned. Of these, ion implantation is preferable because high gas barrier performance can be obtained. In the ion implantation, the amount of ions to be implanted into the polymer layer may be appropriately determined according to the purpose of use (necessary gas barrier property, transparency, etc.) of the gas barrier laminate to be formed.
  • Ions of rare gases such as argon, helium, neon, krypton, and xenon; ions of fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, and the like; Ions of alkane gases such as methane, ethane, propane, butane, pentane, and hexane; ions of alkenes gases such as ethylene, propylene, butene, and pentene; ions of alkadiene gases such as pentadiene and butadiene; acetylene, Ions of alkyne gases such as methylacetylene; ions of aromatic hydrocarbon gases such as benzene, toluene, xylene, indene, naphthalene, phenanthrene; ions of cycloalkane gases such as cyclopropane and cyclohexane; cyclopentene, Ions of cycloalkene-based gases
  • organic silicon compound examples include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, and tetra t-butoxysilane;
  • An alkylalkoxysilane having an unsubstituted or substituted group such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, (3,3,3-trifluoropropyl)trimethoxysilane;
  • Arylalkoxysilanes such as diphenyldimethoxysilane and phenyltriethoxysilane; Hexamethyldisiloxane (HMDSO) and other disiloxanes; Am
  • at least one selected from the group consisting of hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton because it can be injected more easily and a gas barrier layer having particularly excellent gas barrier properties can be obtained. are preferred.
  • the method of implanting ions is not particularly limited, but examples include a method of irradiating ions (ion beam) accelerated by an electric field and a method of implanting ions in plasma. Among them, the latter method of injecting plasma ions is preferable because a gas barrier film can be easily obtained.
  • a plasma ion implantation method As a plasma ion implantation method, ( ⁇ ) a method of injecting ions existing in plasma generated by using an external electric field into a polymer layer, or ( ⁇ ) applying to the layer without using an external electric field A method of injecting into the polymer layer ions existing in the plasma generated only by the electric field generated by the negative high voltage pulse is preferable.
  • the pressure during ion implantation (pressure during plasma ion implantation) be 0.01 to 1 Pa.
  • the pressure at the time of plasma ion implantation is in such a range, it is possible to simply and efficiently and uniformly implant ions, and it is possible to efficiently form a desired gas barrier layer.
  • the method ( ⁇ ) does not require a high degree of decompression, the processing operation is simple, and the processing time can be greatly shortened. Further, the entire layer can be uniformly processed, and ions in the plasma can be continuously injected into the polymer layer with high energy when a negative high voltage pulse is applied. Furthermore, without applying any other special means such as radio frequency (high frequency, hereinafter abbreviated as “RF”) or high frequency power source such as microwave, simply by applying a negative high voltage pulse to the layer, Good quality ions can be uniformly injected into the polymer layer.
  • RF radio frequency
  • microwave microwave
  • the pulse width when applying a negative high voltage pulse that is, when implanting ions is preferably 1 to 15 ⁇ sec.
  • the pulse width is in such a range, it is possible to more simply and efficiently implant ions uniformly.
  • the applied voltage when generating plasma is preferably -1 to -50 kV, more preferably -1 to -30 kV, and particularly preferably -5 to -20 kV. If the applied voltage is lower than ⁇ 1 kV, the ion implantation amount (dose amount) becomes insufficient and it becomes difficult to obtain desired performance. On the other hand, if ion implantation is performed at a value higher than ⁇ 50 kV, the film is charged during ion implantation and defects such as coloring of the film are likely to occur, which is not preferable.
  • the same species as those exemplified as the above-mentioned implanted ions can be mentioned.
  • a plasma ion implanter is used to implant the ions in the plasma into the polymer layer.
  • a plasma ion implantation apparatus specifically, (i) a high-frequency power is superposed on a feedthrough for applying a negative high voltage pulse to a polymer layer (hereinafter, also referred to as “ion implantation layer”).
  • ion implantation layer a polymer layer
  • Device for uniformly encircling a layer to be ion-implanted with plasma to attract, inject, collide, and deposit ions in the plasma Japanese Patent Laid-Open No. 2001-26887
  • An antenna is provided in the chamber, and high-frequency power is supplied.
  • the positive and negative pulses are alternately applied to the layer for ion implantation to attract and collide electrons in the plasma with the positive pulse.
  • a device for heating a layer to be ion-implanted and controlling a pulse constant to control the temperature while applying a negative pulse to attract and inject ions in plasma Japanese Patent Laid-Open No. 2001-156013), (iii).
  • the plasma ion implantation apparatus of (iii) or (iv) because the treatment operation is simple, the treatment time can be greatly shortened, and the continuous use is suitable.
  • Examples of the method using the plasma ion implantation apparatus of (iii) and (iv) include those described in International Publication WO2010/021326.
  • the plasma generating means for generating plasma is also used by the high-voltage pulse power source, and therefore other special means such as a high-frequency power source such as RF or microwave is used. It is possible to generate plasma by simply applying a negative high-voltage pulse without continuously, and to continuously implant ions in the plasma into the polymer layer.
  • a gas barrier laminate having a molecular layer, that is, a gas barrier layer can be mass-produced.
  • the thickness of the portion where the ions are injected can be controlled by the injection conditions such as the type of ions, the applied voltage, and the processing time, and is determined according to the thickness of the polymer layer, the purpose of use of the gas barrier laminate, etc. However, it is usually 5 to 1,000 nm.
  • the ion implantation can be confirmed by performing elemental analysis measurement at about 10 nm from the surface of the polymer layer using X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the gas barrier layer has a gas barrier property because the water vapor permeability of the gas barrier layer is small.
  • the water vapor permeability of the gas barrier layer in an atmosphere of 40° C. and 90% relative humidity is usually 1.0 g/m 2 /day or less, preferably 0.8 g/m 2 /day or less, and more preferably 0 g/m 2 /day or less. It is 0.5 g/m 2 /day or less, and more preferably 0.1 g/m 2 /day or less.
  • the water vapor transmission rate can be measured by a known method.
  • the process film has a role of protecting the underlayer, the gas barrier layer, and the other layers described above when the gas barrier laminate is stored or transported, and is peeled off in a predetermined process. ..
  • the gas barrier laminate When the gas barrier laminate has a process film, the gas barrier laminate may have a process film on one side, or may have a process film on both sides. In the latter case, it is preferable to use two types of process films so that the process film that is peeled first can be more easily peeled.
  • the process film is provided on the underlayer side, it is possible to obtain a gas barrier laminate having high handling property while protecting the underlayer, as compared with the gas barrier laminate without the process film.
  • the process film is preferably a sheet or film.
  • the sheet-like or film-like one is not limited to a long one, but includes a short flat one.
  • Examples of the process film include paper substrates such as glassine paper, coated paper, and high-quality paper; laminated paper obtained by laminating a thermoplastic resin such as polyethylene or polypropylene on these paper substrates; cellulose, starch, polyvinyl on the above paper substrates.
  • a thermoplastic resin such as polyethylene or polypropylene
  • cellulose, starch, polyvinyl on the above paper substrates examples thereof include those subjected to sealing treatment with alcohol, acrylic-styrene resin and the like; or polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and plastic films such as polyolefin films such as polyethylene and polypropylene; glass and the like.
  • the process film may be a paper base material or a plastic film provided with a release agent layer from the viewpoint of easy handling.
  • the release layer can be formed using a conventionally known release agent such as a silicone release agent, a fluorine release agent, an alkyd release agent, and an olefin release agent.
  • the thickness of the release agent layer is not particularly limited, but is usually 0.02 to 2.0 ⁇ m, and more preferably 0.05 to 1.5 ⁇ m.
  • the thickness of the process film is preferably 1 to 500 ⁇ m, more preferably 5 to 300 ⁇ m from the viewpoint of easy handling.
  • the surface roughness Ra (arithmetic mean roughness) of the process film is preferably 10.0 nm or less, and more preferably 8.0 nm or less. Further, the surface roughness Rt (maximum cross-sectional height) is preferably 100 nm or less, more preferably 50 nm or less. When the surface roughnesses Ra and Rt exceed 10.0 nm and 100 nm, respectively, the surface roughness of the layer in contact with the process film increases, and the gas barrier properties of the gas barrier laminate may deteriorate.
  • the surface roughness Ra and Rt are values obtained by an optical interference method in a measurement area of 100 ⁇ m ⁇ 100 ⁇ m.
  • the gas barrier laminate according to the embodiment of the present invention includes a process film, a base layer, and a gas barrier layer in this order.
  • the process film is peeled from the gas barrier laminate and attached to a display or an electronic device for use.
  • the gas barrier laminate according to the embodiment of the present invention satisfies the following requirement [1].
  • the absolute value of the thermal shrinkage of the gas barrier laminate is 0.5% or less.
  • a polyfunctional (meth)acrylate compound and a cyclized compound are used as the curable component (B) contained in the curable resin composition for forming the underlayer.
  • a polymerizable monomer By using together with a polymerizable monomer, it is possible to increase the network structure, or to select, as the polymerizable component (A), one having a rigid yet flexible structure as represented by a polyimide resin. Good.
  • the gas barrier laminate according to the embodiment of the present invention satisfies the following requirement [2].
  • the breaking elongation of the gas barrier laminate is 1.9% or more.
  • the breaking elongation of the gas barrier laminate is preferably 2.0% or more.
  • the upper limit of the breaking elongation of the underlayer is not particularly limited, but is usually 17% or less, preferably 13% or less.
  • the breaking elongation of the gas barrier laminate is greatly affected by the underlayer and tends to be close to the breaking elongation of the underlayer. Therefore, if the underlayer satisfies the above-mentioned requirement [2′], even if the breaking elongation of the gas barrier layered product is slightly smaller than the breaking elongation of the underlayer due to the influence of the gas barrier layer or the like, the requirements may be satisfied. It is easy to obtain a gas barrier laminate satisfying [2].
  • the thickness of the gas barrier laminate can be appropriately determined depending on the intended use of the electronic device and the like. From the viewpoint of handleability, the substantial thickness of the gas barrier laminate according to the embodiment of the present invention is preferably 0.3 to 50 ⁇ m, more preferably 0.5 to 25 ⁇ m, and further preferably 0.7 to 12 ⁇ m. Is.
  • substantially thickness means the thickness in a use state. That is, the gas barrier laminate may have a process sheet or the like, but the thickness of the portion (process sheet or the like) removed during use is not included in the “substantial thickness”.
  • the underlayer according to the embodiment of the present invention can have excellent flexibility, and further, when the thickness of the gas barrier laminate is reduced, the bending resistance after mounting the gas barrier laminate is further improved. You can also
  • the gas barrier laminate according to the embodiment of the present invention has the above-described underlayer and gas barrier layer, it is excellent in heat resistance, solvent resistance, interlayer adhesion and gas barrier properties, and has a low birefringence and isotropic optical properties. Excellent in performance.
  • the in-plane retardation of the gas barrier laminate is usually 20 nm or less, preferably 15 nm or less.
  • the retardation in the thickness direction is usually -500 nm or less, preferably -450 nm or less.
  • the value (birefringence) obtained by dividing the in-plane retardation by the thickness of the gas barrier laminate is usually 100 ⁇ 10 ⁇ 5 or less, preferably 20 ⁇ 10 ⁇ 5 or less.
  • the gas barrier laminate according to the embodiment of the present invention is excellent in optical isotropy, It can be preferably used for applications.
  • the water vapor permeability of the gas barrier laminate according to the embodiment of the present invention at 40° C. and 90% relative humidity is usually 1.0 ⁇ 10 ⁇ 2 g/m 2 /day or less, preferably 8. It is 0 ⁇ 10 ⁇ 3 g/m 2 /day or less, and more preferably 6.0 ⁇ 10 ⁇ 3 g/m 2 /day or less.
  • the gas barrier laminate according to the embodiment of the present invention has an underlayer and a gas barrier layer on at least one surface of the underlayer.
  • the gas barrier laminate according to the embodiment of the present invention may have one underlayer and one gas barrier layer, or two or more underlayers and/or gas barrier layers. Good.
  • FIG. 1 shows a specific structural example of the gas barrier laminate according to the embodiment of the present invention.
  • the gas barrier laminate (10) shown in FIG. 1 has a gas barrier layer (3) on one surface of the underlayer (2), and is provided on the surface of the underlayer (2) opposite to the gas barrier layer (3). It has a process film (1). When the process film (1) is peeled and removed, the portion including the underlayer (2) and the gas barrier layer (3) indicated by reference numeral 10a becomes a gas barrier laminate after the process film is removed.
  • the gas barrier laminate according to the embodiment of the present invention is not limited to that shown in FIG. 1, and may have gas barrier layers on both sides of the underlayer, or a plurality of underlayers and gas barrier layers may be provided as one set.
  • the set may be laminated.
  • one or more layers may be further contained within a range not impairing the object of the present invention.
  • the other layer include a conductor layer, a shock absorbing layer, an adhesive layer, a bonding layer, and a process sheet.
  • the arrangement position of other layers is not particularly limited.
  • the material forming the conductor layer includes metals, alloys, metal oxides, electrically conductive compounds, mixtures thereof, and the like.
  • Semiconductive metal oxides such as indium zinc oxide (IZO); metals such as gold, silver, chromium, nickel; mixtures of these metals with conductive metal oxides; inorganic conductive materials such as copper iodide and copper sulfide. Substances; organic conductive materials such as polyaniline, polythiophene, polypyrrole; and the like.
  • a vapor deposition method for example, a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method and the like can be mentioned.
  • the thickness of the conductor layer may be appropriately selected according to its application. It is usually 10 nm to 50 ⁇ m, preferably 20 nm to 20 ⁇ m.
  • the shock absorbing layer is for protecting the gas barrier layer when a shock is applied to the gas barrier layer.
  • the material for forming the shock absorbing layer is not particularly limited, but examples thereof include acrylic resin, urethane resin, silicone resin, olefin resin, and rubber material.
  • the method for forming the shock absorbing layer is not particularly limited, and for example, a material for forming the shock absorbing layer, and, if desired, a shock absorbing layer forming solution containing other components such as a solvent may be provided on the layer to be laminated. Examples include a method of applying, drying the obtained coating film, and heating it as necessary to form it. Alternatively, a shock absorbing layer may be separately formed on the release substrate, and the obtained film may be transferred onto the layer to be laminated and laminated.
  • the thickness of the shock absorbing layer is usually 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the adhesive layer is a layer used when the gas barrier laminate is attached to an adherend.
  • the material for forming the adhesive layer is not particularly limited, and a known adhesive or pressure-sensitive adhesive such as acrylic, silicone, or rubber, a heat seal material, or the like can be used.
  • the bonding layer is a layer that is used when a gas barrier laminate is manufactured by combining a plurality of sets with a base layer and a gas barrier layer as one set.
  • the bonding layer is a layer for bonding a base layer included in one of the adjacent groups and a gas barrier layer included in the other pair to maintain a laminated structure.
  • the bonding layer may be a single layer or a plurality of layers. Examples of the bonding layer include a layer having a single-layer structure formed by using an adhesive and a layer having a layer formed by using an adhesive on both surfaces of a support layer.
  • the material used in forming the bonding layer is not particularly limited as long as it can bond the pair of the underlayer and the gas barrier layer to each other and can maintain the laminated structure, and a known adhesive can be used. It is preferable to use a pressure-sensitive adhesive from the viewpoint that the combination of the underlayer and the gas barrier layer can be bonded to each other.
  • the pressure-sensitive adhesive used for the bonding layer include an acrylic pressure-sensitive adhesive, a urethane pressure-sensitive adhesive, a silicone pressure-sensitive adhesive, and a rubber pressure-sensitive adhesive. Among these, acrylic adhesives and urethane adhesives are preferable from the viewpoints of adhesive strength, transparency and handleability. Further, a pressure-sensitive adhesive capable of forming a cross-linked structure as described below is preferable.
  • the pressure-sensitive adhesive may be in any form such as a solvent-type pressure-sensitive adhesive, an emulsion-type pressure-sensitive adhesive, a hot melt-type pressure-sensitive adhesive.
  • the gas barrier laminate according to the embodiment of the present invention is produced using a process film. By using the process film, the gas barrier laminate can be efficiently and easily manufactured. Particularly, a method having the following steps 1 to 3 is preferable.
  • Step 1 Step A step of forming a curable resin layer on the film using a curable resin composition containing a polymer component (A) having a Tg of 250° C. or higher and a curable component (B)
  • Step 2 Step of curing the curable resin layer obtained in Step 1 to form an underlayer made of a cured resin layer
  • Step 3 Step of forming a gas barrier layer on the underlayer obtained in Step 2.
  • FIG. 2 shows an example of a manufacturing process of the gas barrier laminate according to the embodiment of the present invention.
  • 2A corresponds to the step 1
  • FIG. 2B corresponds to the step 2
  • FIG. 2C corresponds to the step 3.
  • Examples of the process film and the curable resin composition used include the same ones as described above.
  • the method for applying the curable resin composition onto the process film is not particularly limited, and includes spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
  • a known coating method such as a method can be used.
  • the method for drying the obtained coating film is not particularly limited, and conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be used.
  • the curable resin composition used for forming the underlayer according to the embodiment of the present invention contains the polymer component (A) having a very high Tg, but the curable component By containing (B), the solvent can be efficiently removed when the coating film obtained by the solution casting method is dried.
  • the drying temperature of the coating film is usually 30 to 150°C, preferably 50 to 100°C.
  • the thickness of the dry coating film (curable resin layer) is not particularly limited, but since it has almost no difference from the thickness after curing, it may be the same as the thickness of the underlayer described above.
  • the curable resin layer obtained in step 1 is cured to form a cured resin layer.
  • This cured resin layer becomes a base layer (reference numeral 2 in FIG. 2B).
  • the method for curing the curable resin layer is not particularly limited, and a known method can be adopted.
  • the curable resin layer can be heated to cure the curable resin layer. ..
  • the heating temperature is usually 30 to 150°C, preferably 50 to 100°C.
  • the curable resin layer is formed using a curable resin composition containing a photopolymerization initiator
  • the curable resin layer is cured by irradiating the curable resin layer with active energy rays.
  • the active energy ray can be irradiated using a high pressure mercury lamp, an electrodeless lamp, a xenon lamp or the like.
  • the wavelength of the active energy ray is preferably 200 to 400 nm, more preferably 350 to 400 nm.
  • the irradiation amount is usually in the range of illuminance of 50 to 1,000 mW/cm 2 and light amount of 50 to 5,000 mJ/cm 2 , preferably 1,000 to 5,000 mJ/cm 2 .
  • the irradiation time is usually 0.1 to 1,000 seconds, preferably 1 to 500 seconds, more preferably 10 to 100 seconds. Irradiation may be performed a plurality of times in order to satisfy the above-described light amount in consideration of the heat load of the light irradiation step.
  • the active energy rays are curable through a filter that absorbs light of a wavelength unnecessary for the curing reaction.
  • the resin composition may be irradiated. According to this method, light having a wavelength that is unnecessary for the curing reaction and deteriorates the polymer component (A) is absorbed by the filter, so that the deterioration of the polymer component (A) is suppressed, and the colorless and transparent layer is formed. A stratum can be easily obtained.
  • a resin film such as a polyethylene terephthalate film can be used as the filter. When a resin film is used, it is preferable to provide a step of laminating a resin film such as a polyethylene terephthalate film on the curable resin layer between step 1 and step 2. The resin film is usually peeled off after step 2.
  • the curable resin layer can be cured by irradiating the curable resin layer with an electron beam.
  • the curable resin layer can be usually cured without using a photopolymerization initiator.
  • an electron beam accelerator or the like can be used.
  • the irradiation dose is usually in the range of 10 to 1,000 krad.
  • the irradiation time is usually 0.1 to 1,000 seconds, preferably 1 to 500 seconds, more preferably 10 to 100 seconds.
  • the curing of the curable resin layer may be carried out in an atmosphere of an inert gas such as nitrogen gas, if necessary.
  • an inert gas such as nitrogen gas
  • a gas barrier layer (reference numeral 3 in FIG. 2C) is formed on the underlayer obtained in step 2.
  • the method of forming the gas barrier layer the method described above can be appropriately adopted.
  • the gas barrier layer is a layer obtained by subjecting a layer containing a silicon-containing polymer compound to a modification treatment
  • a step of forming a layer containing a silicon-containing polymer compound on an underlayer and
  • a gas barrier layer can be formed by a step of subjecting a layer containing a molecular compound to a modification treatment.
  • the gas barrier layer included in the gas barrier laminate can be formed by various methods such as an extrusion molding method and a coating method, but the gas barrier performance of the gas barrier laminate may decrease depending on the method of forming the gas barrier layer.
  • the gas barrier layer is formed by a forming method involving heating, for example, coating/drying, there is a possibility that the underlying layer is physically or chemically affected and the characteristics such as gas barrier properties are deteriorated.
  • the underlayer according to the embodiment of the present invention is a layer formed of a cured product of a curable resin composition containing the polymer component (A) and the curable component (B), and the polymer Since the Tg of the component (A) is 250° C.
  • the underlayer is less likely to be affected by the heating when forming the gas barrier layer. Therefore, the formed gas barrier layer is less likely to be affected by the deformation of the underlayer during the manufacturing process, and the gas barrier layer is less likely to have a problem that, for example, microcracks or the like deteriorate the gas barrier property. ..
  • the method of forming the layer containing the silicon-containing polymer compound and the method of performing the modification treatment those described above can be adopted.
  • a method of performing a modification treatment a long film in which a layer containing a silicon-containing polymer compound is formed on the underlayer obtained in step 2 is conveyed in a certain direction, and the silicon film is formed. It is preferable that the layer containing the contained polymer compound is subjected to a modification treatment to produce a gas barrier laminate. According to this manufacturing method, for example, a long gas-barrier laminate can be continuously manufactured.
  • the process film is usually peeled off in a predetermined process depending on the use of the gas barrier laminate, and as shown in FIG. 2C, the gas barrier laminate after removal of the process film (3). (10a).
  • another layer or the like may be formed after step 3 and then the step film may be peeled off, or the step film may be peeled off after step 3. Further, the process film may be peeled off between the process 2 and the process 3.
  • the curable resin layer is formed by using the step film, and the gas barrier laminate obtained by this method has the step film. May or may not be included. According to the method for producing a gas barrier laminate described above, the gas barrier laminate according to the embodiment of the present invention can be efficiently, continuously, and easily produced.
  • the gas barrier laminate was cut into 5 mm x 30 mm test pieces, and the first polyethylene terephthalate (PET) film on the underlayer side corresponding to the process film was peeled off and removed, and a thermomechanical analyzer TMA4000SE (Netch Japan Co., Ltd.) After setting the distance between chucks to 20 mm, the temperature was raised to 130° C. at 5° C./min and then cooled to room temperature at 5° C./min. The rate of change in displacement in the lengthwise direction before and after heating (value in which the ratio of the amount of displacement to the chuck distance 20 mm was expressed as a percentage) was defined as the heat shrinkage rate. A negative value was given when the gas barrier laminate was contracted, and a positive value was obtained when it was extended.
  • TMA4000SE Netch Japan Co., Ltd.
  • Water vapor transmission rate (WVTR) of gas barrier laminate The gas barrier laminate was cut into a circular test piece having an area of 50 cm 2 , and a water vapor transmission rate measuring device (manufactured by MOCON, device name: AQUATRAN) was used at a gas flow rate of 20 sccm at 40° C. and 90% RH. The water vapor transmission rate (g/m 2 /day) was measured. The lower limit of detection of the measuring device is 0.0005 g/m 2 /day. Since the gas barrier laminate is inferior in self-supporting property when the PET film used for forming the underlayer is peeled off, the measurement was performed in a state where the PET film was laminated. Since the water vapor transmission rate of the gas barrier layer is much smaller than that of the PET film, the influence of the lamination of the PET film on the WVTR is negligibly small.
  • the tensile elongation at break was taken as the tensile elongation at break when the test piece had no yield point, and the tensile elongation at break was taken as the tensile elongation at break with the yield point.
  • the same test was performed on a gas barrier laminate having a gas barrier layer (without a process film).
  • the curable resin composition 1 which will be the base layer was prepared by the following procedure.
  • PI polyimide resin
  • MEK methyl ethyl ketone
  • the first PET film PET100A-4100, manufactured by Toyobo Co., Ltd., thickness 100 ⁇ m
  • the curable resin composition was applied, and the coating film was heated at 90° C. for 3 minutes and dried.
  • a second PET film Cosmo Shine A4100, manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m
  • a belt conveyor type ultraviolet irradiation device manufactured by Eye Graphics Co., Ltd., product name: ECS-401GX
  • a high pressure mercury lamp manufactured by Eye Graphics Co., Ltd., product name: H04-L41
  • a second PET film was formed.
  • a curing reaction was performed by irradiating ultraviolet rays through the layer to form a base layer having a thickness of 5 ⁇ m. Then, the second PET film is peeled off to expose the underlayer, and a polysilazane compound (a coating agent containing perhydropolysilazane (PHPS) as a main component (Amiakuka NL-110 manufactured by Merck Performance Materials, Inc.) is formed on the underlayer. -20, solvent: xylene)) was applied by a spin coating method and dried by heating at 130 ° C. for 2 minutes to form a polymer compound layer (polysilazane layer) having a thickness of 200 nm and containing perhydropolysilazane.
  • PHPS perhydropolysilazane
  • a gas flow rate of 100 sccm and a duty ratio of 0 were used. 0.5%, applied DC voltage -6 kV frequency 1,000 Hz, applied RF power 1,000 W, chamber internal pressure 0.2 Pa, DC pulse width 5 ⁇ sec, processing time 200 seconds under conditions of argon gas-derived ion polymer compound layer. It was injected onto the surface of (polysilazane layer) to form a gas barrier layer. In this way, a gas barrier layered product was prepared by laminating the gas barrier layer on the underlayer.
  • Example 2 61 parts by mass of dicyclopentadiene diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-DCP) as a curable monomer, allyl ether type acrylate which is a cyclopolymerizable monomer (manufactured by Nippon Shokubai Co., Ltd., FX-AO- (MA)
  • a gas barrier laminate was produced in the same manner as in Example 1 except that 61 parts by mass was used.
  • PSF polysulfone resin
  • Table 1 shows the measurement results of each example and comparative example.
  • the gas barrier laminate of the present invention it is possible to further enhance the gas barrier property while having a high breaking elongation, and therefore an electronic device that is required to have gas barrier properties and flexibility and bending resistance at the same time.
  • an electronic device that is required to have gas barrier properties and flexibility and bending resistance at the same time.
  • it can be applied to a member for an element that constitutes various electronic devices that are easily deteriorated in the atmosphere, such as a flexible organic EL element or the like, or a flexible thermoelectric conversion element or the like.
  • Process film 2 Base layer 2a: Base layer before curing 3: Gas barrier layer 10: Gas barrier laminate 10a: Gas barrier laminate after process film removal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

This gas barrier laminate has a high fracture elongation and good gas barrier properties, and is provided with a process film, a base layer, and a gas barrier layer, in this order, wherein the base layer is a layer comprising a cured product of a curable resin composition which contains a polymer component (A) and a curable monomer (B). The gas barrier laminate satisfies the following requirements [1] and [2]. [1] The absolute value of a thermal shrinkage of the gas barrier laminate is 0.5% or less. [2] The fracture elongation of the gas barrier laminate is 1.9% or more.

Description

ガスバリア性積層体Gas barrier laminate
 本発明は、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等の電子デバイス用部材等として好ましく用いられるガスバリア性積層体に関する。 The present invention relates to a gas barrier laminate that is preferably used as a member for electronic devices such as liquid crystal displays and electroluminescence (EL) displays.
 液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のディスプレイには、薄型化、軽量化、フレキシブル化等を実現するために、ガラス板に代えて透明プラスチックフィルムを用いることが検討されている。
 しかしながら、一般にプラスチックフィルムは、ガラス板に比べて水蒸気や酸素等を透過させやすく、透明プラスチックフィルムをディスプレイの基板として使用すると、基板を透過した水蒸気や酸素等が、ディスプレイデバイス内部の素子等に作用し、デバイスの性能が低下したり、寿命が短くなったりするという問題があった。
 この問題を解決するため、水蒸気や酸素の透過を抑制する特性を有するフィルムをディスプレイの基板として用いることが提案されている。以下、水蒸気や酸素の透過を抑制する特性を「ガスバリア性」、ガスバリア性を有するフィルムを「ガスバリアフィルム」、ガスバリア性を有する積層体を「ガスバリア性積層体」という。
For a display such as a liquid crystal display or an electroluminescence (EL) display, it has been considered to use a transparent plastic film in place of a glass plate in order to realize thinning, weight reduction, and flexibility.
However, in general, a plastic film is more permeable to water vapor, oxygen, etc. than a glass plate, and when a transparent plastic film is used as a substrate for a display, the water vapor, oxygen, etc. that permeate the substrate act on the elements inside the display device. However, there is a problem that the performance of the device is deteriorated and the life is shortened.
In order to solve this problem, it has been proposed to use a film having a property of suppressing permeation of water vapor and oxygen as a substrate of a display. Hereinafter, the property of suppressing permeation of water vapor and oxygen will be referred to as “gas barrier property”, the film having gas barrier property will be referred to as “gas barrier film”, and the laminate having gas barrier property will be referred to as “gas barrier laminate”.
 近年においては、より高性能なディスプレイ等が求められており、電子デバイス用部材等として用いられるガスバリアフィルムにも、優れたガスバリア性に加えて、耐熱性、耐溶剤性、層間密着性に優れ、複屈折率が低く光学等方性に優れること等、様々な特性に優れることが要求されるようになってきている。
 例えば、特許文献1には、硬化樹脂層の片面にガスバリア層を有するガスバリアフィルムであって、上記硬化樹脂層が、ガラス転移温度が140℃以上の熱可塑性樹脂、及び、硬化性単量体を含有する硬化性樹脂組成物の硬化物からなる層であるガスバリアフィルムが提案されている。
In recent years, higher performance displays and the like have been sought, and also in gas barrier films used as members for electronic devices and the like, in addition to excellent gas barrier properties, heat resistance, solvent resistance, and interlayer adhesion are excellent, There is a growing demand for excellent various properties such as low birefringence and excellent optical isotropy.
For example, Patent Document 1 discloses a gas barrier film having a gas barrier layer on one surface of a cured resin layer, wherein the cured resin layer comprises a thermoplastic resin having a glass transition temperature of 140° C. or higher and a curable monomer. A gas barrier film, which is a layer composed of a cured product of a curable resin composition contained therein, has been proposed.
国際公開第2013/065812号International Publication No. 2013/065812
 しかしながら、従来のガスバリア性積層体にはまだ改善の余地があり、電子デバイスの進化に伴って、より高い屈曲耐性を備えること、及び、ガスバリア性をより一層高めることが求められている。 However, there is still room for improvement in conventional gas barrier laminates, and with the evolution of electronic devices, it is required to have higher bending resistance and to further enhance gas barrier properties.
 本発明は、上記問題を鑑み、高い屈曲耐性と優れたガスバリア性を備える、電子デバイス用部材として好適に用いられるガスバリア性積層体を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a gas barrier laminate having high bending resistance and excellent gas barrier properties, which is suitably used as a member for electronic devices.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、工程フィルムと、下地層と、ガスバリア層とをこの順で備えるガスバリア性積層体であって、上記下地層を、重合体成分(A)及び硬化性成分(B)を含有する硬化性樹脂組成物の硬化物からなる層とし、更に上記ガスバリア性積層体の熱収縮率の絶対値と下地層の破断伸度とを所定値とすることで、上記課題を解決し得ることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[6]を提供するものである。
[1]工程フィルムと、下地層と、ガスバリア層とをこの順で備えるガスバリア性積層体であって、
 前記下地層は、重合体成分(A)及び硬化性成分(B)を含有する硬化性樹脂組成物の硬化物からなる層であり、
 前記ガスバリア性積層体が、以下の要件(1)及び(2)を満たす、ガスバリア性積層体。
(1)ガスバリア性積層体の熱収縮率の絶対値が0.5%以下である。
(2)ガスバリア性積層体の破断伸度が1.9%以上である。
[2]前記下地層の厚さは、0.1~10μmである、上記[1]に記載のガスバリア性積層体。
[3]前記ガスバリア層は、塗膜である、上記[1]又は[2]に記載のガスバリア性積層体。
[4]前記硬化性成分(B)は、環化重合性モノマーを含有する、上記[1]~[3]のいずれか一つに記載のガスバリア性積層体。
[5]前記硬化性成分(B)成分は、更に多官能(メタ)アクリレート化合物を含有し、前記環化重合性モノマーと前記多官能(メタ)アクリレート化合物との質量比が95:5~30:70である、上記[4]に記載のガスバリア性積層体。
[6]前記重合体成分(A)のガラス転移温度は、250℃以上である、上記[1]~[5]のいずれか一つに記載のガスバリア性積層体。
The present inventors have conducted extensive studies to solve the above problems, and as a result, a gas barrier laminate having a process film, an underlayer, and a gas barrier layer in this order, wherein the underlayer is a polymer. A layer formed of a cured product of a curable resin composition containing the component (A) and the curable component (B), and the absolute value of the heat shrinkage rate of the gas barrier laminate and the elongation at break of the underlayer are predetermined. It was found that the above problems can be solved by setting the value to be the value, and the present invention has been completed.
That is, the present invention provides the following [1] to [6].
[1] A gas barrier laminate comprising a step film, a base layer, and a gas barrier layer in this order,
The underlayer is a layer formed of a cured product of a curable resin composition containing a polymer component (A) and a curable component (B),
A gas barrier laminate, wherein the gas barrier laminate satisfies the following requirements (1) and (2).
(1) The absolute value of the thermal shrinkage of the gas barrier laminate is 0.5% or less.
(2) The breaking elongation of the gas barrier laminate is 1.9% or more.
[2] The gas barrier laminate according to [1], wherein the underlayer has a thickness of 0.1 to 10 μm.
[3] The gas barrier laminate according to the above [1] or [2], wherein the gas barrier layer is a coating film.
[4] The gas barrier laminate according to any one of the above [1] to [3], wherein the curable component (B) contains a cyclopolymerizable monomer.
[5] The curable component (B) further contains a polyfunctional (meth)acrylate compound, and the mass ratio of the cyclopolymerizable monomer to the polyfunctional (meth)acrylate compound is 95:5 to 30. : 70, the gas barrier laminate according to the above [4].
[6] The gas barrier laminate according to any one of the above [1] to [5], wherein the glass transition temperature of the polymer component (A) is 250° C. or higher.
 本発明によれば、高い屈曲耐性と優れたガスバリア性とを備えるガスバリア性積層体を提供できる。 According to the present invention, it is possible to provide a gas barrier laminate having high bending resistance and excellent gas barrier properties.
本発明の実施形態に係るガスバリア性積層体の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the gas barrier laminated body which concerns on embodiment of this invention. ガスバリア性積層体の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of a gas barrier laminated body.
 本明細書において、好ましいとする規定は任意に選択でき、好ましいとする規定同士の組み合わせはより好ましいといえる。
 本明細書において、「XX~YY」との記載は、「XX以上YY以下」を意味する。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
 以下、本発明の実施形態に係るガスバリア性積層体について説明する。
In the present specification, preferable rules can be arbitrarily selected, and combinations of preferable rules can be said to be more preferable.
In the present specification, the description “XX to YY” means “XX or more and YY or less”.
In the present specification, the lower limit value and the upper limit value described stepwise for the preferable numerical range (for example, the range of the content etc.) can be independently combined. For example, from the description "preferably 10 to 90, more preferably 30 to 60", the "preferable lower limit value (10)" and the "more preferable upper limit value (60)" are combined to obtain "10 to 60". You can also
In the present specification, for example, “(meth)acrylic acid” indicates both “acrylic acid” and “methacrylic acid”, and other similar terms are also the same.
The gas barrier laminate according to the embodiment of the present invention will be described below.
1.ガスバリア性積層体
 本発明の実施形態に係るガスバリア性積層体は、工程フィルムと、下地層と、ガスバリア層とをこの順で備えている。そして、上記下地層は、重合体成分(A)及び硬化性成分(B)を含有する硬化性樹脂組成物の硬化物からなる層であり、ガスバリア性積層体は、以下の要件[1]及び[2]を満たす。
[1]ガスバリア性積層体の熱収縮率の絶対値が0.5%以下である。
[2]ガスバリア性積層体の破断伸度が、1.9%以上である。
 本発明の実施形態に係るガスバリア性積層体においては、下地層を硬化性樹脂組成物の硬化物とすることで、下地層が耐溶剤性に優れたものとなる。このため、例えば、ガスバリア層を塗膜として形成する場合、塗工時に下地層が溶媒で浸食されにくくなる。その結果、ガスバリア性積層体のガスバリア性を低下しにくくすることができる。なお、塗膜とは、塗布材料を基材や対象物上に塗布し、必要に応じて乾燥や加熱等による硬化等の処理を施して得られる被膜である。ガスバリア層を塗膜とする場合は、後述するガスバリア層を形成する成分を含む塗布材料を下地層上に塗布し、乾燥や加熱等による硬化等を行って得られる被膜である。また、下地層を塗膜とする場合は、硬化性樹脂組成物を工程フィルム等の被塗布体に塗布し、乾燥及び加熱や活性エネルギー線の照射等による硬化処理のいずれか一方のみ又は両方を行って得られる被膜である。
 また、上記要件[1]を満たすことにより、加熱時におけるガスバリア性積層体の収縮が抑制される。このため、例えば、ガスバリア層を構成する材料を塗工して加熱乾燥することでガスバリア層を下地層上に形成する場合に、下地層とガスバリア層の前駆体とが収縮することによってガスバリア層が変形して結果的にガスバリア性が低下することを回避できる。
 更に、上記要件[2]を満たすことにより、ガスバリア性積層体のフレキシブル性が高くなり、ガスバリア性積層体は屈曲耐性に優れ、フレキシブルデバイス用途に適するものとなる。
 本願明細書において、ガスバリア性積層体の熱収縮率は、ガスバリア性積層体を熱機械分析装置にセットして、5℃/minで130℃まで昇温させた後に5℃/minで常温まで冷却し、下地層の加熱前後の長尺方向の変位の変化率を測定した値であり、詳しくは実施例に示す手順で測定される。
 また、本願明細書において、下地層の破断伸度は、JIS K7127:1999に従って測定される値であり、詳しくは実施例に示す手順で測定される。
1. Gas Barrier Laminate A gas barrier laminate according to an embodiment of the present invention includes a process film, a base layer, and a gas barrier layer in this order. The underlayer is a layer formed of a cured product of a curable resin composition containing the polymer component (A) and the curable component (B), and the gas barrier laminate has the following requirement [1] and [2] is satisfied.
[1] The absolute value of the thermal shrinkage of the gas barrier laminate is 0.5% or less.
[2] The breaking elongation of the gas barrier laminate is 1.9% or more.
In the gas barrier laminate according to the embodiment of the present invention, the base layer is a cured product of the curable resin composition, whereby the base layer has excellent solvent resistance. Therefore, for example, when the gas barrier layer is formed as a coating film, the underlayer is less likely to be eroded by the solvent during coating. As a result, it is possible to make it difficult for the gas barrier laminate to have a reduced gas barrier property. The coating film is a coating film obtained by applying the coating material onto a substrate or an object and subjecting it to treatment such as drying or curing by heating if necessary. When the gas barrier layer is used as a coating film, it is a coating film obtained by applying a coating material containing a component for forming a gas barrier layer, which will be described later, onto the undercoat layer and performing curing by drying or heating. Further, when the underlying layer is a coating film, the curable resin composition is applied to an object to be coated such as a process film, and either or both of curing treatments such as drying and heating and irradiation with active energy rays are performed. It is a film obtained by performing.
Further, by satisfying the above requirement [1], shrinkage of the gas barrier laminate during heating is suppressed. Therefore, for example, when the gas barrier layer is formed on the underlayer by applying the material forming the gas barrier layer and heating and drying, the gas barrier layer is contracted by the underlayer and the precursor of the gas barrier layer. It can be avoided that the gas barrier property is lowered due to the deformation.
Further, by satisfying the above requirement [2], the flexibility of the gas barrier laminate is enhanced, and the gas barrier laminate has excellent bending resistance and is suitable for flexible device applications.
In the specification of the present application, the thermal contraction rate of the gas barrier laminate is determined by setting the gas barrier laminate in a thermomechanical analyzer, raising the temperature to 130° C. at 5° C./min, and then cooling to room temperature at 5° C./min. However, it is a value obtained by measuring the rate of change of displacement in the longitudinal direction before and after heating the underlayer, and it is measured in detail by the procedure shown in the examples.
Further, in the present specification, the breaking elongation of the underlayer is a value measured according to JIS K7127:1999, and more specifically, it is measured by the procedure shown in the examples.
1-1.下地層
 本発明の実施形態に係るガスバリア性積層体が有する下地層は、重合体成分(A)、及び硬化性成分(B)を含有する硬化性樹脂組成物の硬化物からなる。下地層は単層であってもよく、積層された複数の層を含んでいてもよい。
1-1. Underlayer The underlayer of the gas barrier laminate according to the embodiment of the present invention comprises a cured product of a curable resin composition containing a polymer component (A) and a curable component (B). The underlayer may be a single layer or may include a plurality of laminated layers.
〔重合体成分(A)〕
 重合体成分(A)のガラス転移温度(Tg)は、好ましくは250℃以上、より好ましくは290℃以上、更に好ましくは320℃以上である。Tgが250℃以上であることにより、下地層の熱収縮を抑制し、結果として、ガスバリア性積層体の熱収縮率を上述した範囲に調整することが容易となる(つまり、上記要件[1]を満たしやすくなる)。
 ここでTgは、粘弾性測定(周波数11Hz、昇温速度3℃/分で0~250℃の範囲で引張モードによる測定)により得られたtanδ(損失弾性率/貯蔵弾性率)の最大点の温度をいう。
[Polymer component (A)]
The glass transition temperature (Tg) of the polymer component (A) is preferably 250° C. or higher, more preferably 290° C. or higher, still more preferably 320° C. or higher. When Tg is 250° C. or higher, the heat shrinkage of the underlayer is suppressed, and as a result, it becomes easy to adjust the heat shrinkage rate of the gas barrier laminate to the range described above (that is, the above requirement [1]). Easier to meet).
Here, Tg is the maximum point of tan δ (loss elastic modulus/storage elastic modulus) obtained by viscoelasticity measurement (measurement in a tensile mode at a frequency of 11 Hz and a temperature rising rate of 3° C./minute in a range of 0 to 250° C.). Refers to temperature.
 重合体成分(A)の重量平均分子量(Mw)は、通常、100,000~3,000,000、好ましくは200,000~2,000,000、より好ましくは250,000~2,000,000、特に好ましくは500,000~1,000,000の範囲である。また、分子量分布(Mw/Mn)は、好ましくは、1.0~5.0、より好ましくは、2.0~4.5の範囲である。重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の値である。Mwを100,000以上とすることで、下地層の破断伸度を大きくさせやすくなる。 The weight average molecular weight (Mw) of the polymer component (A) is usually 100,000 to 3,000,000, preferably 200,000 to 2,000,000, and more preferably 250,000 to 2,000. 000, particularly preferably 500,000 to 1,000,000. The molecular weight distribution (Mw/Mn) is preferably in the range of 1.0 to 5.0, more preferably 2.0 to 4.5. The weight average molecular weight (Mw) and the molecular weight distribution (Mw/Mn) are polystyrene-converted values measured by the gel permeation chromatography (GPC) method. By setting the Mw to 100,000 or more, it becomes easy to increase the breaking elongation of the underlayer.
 重合体成分(A)としては、熱可塑性樹脂が好ましく、非晶性熱可塑性樹脂がより好ましい。非晶性熱可塑性樹脂を用いることで、光学等方性に優れた下地層を得やすくなり、また、透明性に優れるガスバリア性積層体が得られ易くなる。また、非晶性熱可塑性樹脂は概して有機溶剤に溶け易いため、後述するように、溶液キャスト法を利用して、効率よく下地層を形成することができる。
 ここで、非晶性熱可塑性樹脂とは、示差走査熱量測定において、融点が観測されない熱可塑性樹脂をいう。
As the polymer component (A), a thermoplastic resin is preferable, and an amorphous thermoplastic resin is more preferable. By using the amorphous thermoplastic resin, it is easy to obtain a base layer having excellent optical isotropy, and it is easy to obtain a gas barrier laminate having excellent transparency. Further, since the amorphous thermoplastic resin is generally easily dissolved in an organic solvent, the underlayer can be efficiently formed by using the solution casting method as described later.
Here, the amorphous thermoplastic resin refers to a thermoplastic resin whose melting point is not observed in differential scanning calorimetry.
 重合体成分(A)は、特に、ベンゼンやメチルエチルケトン(MEK)等の低沸点の汎用の有機溶剤に可溶なものが好ましい。汎用の有機溶媒に可溶であれば、塗工によって下地層を形成することが容易になる。 It is particularly preferable that the polymer component (A) is soluble in a general organic solvent having a low boiling point such as benzene and methyl ethyl ketone (MEK). If it is soluble in a general-purpose organic solvent, it becomes easy to form the underlayer by coating.
 重合体成分(A)として、特に好ましいものは、Tgが250℃以上の非晶質熱可塑性樹脂であって、ベンゼンやMEK等の低沸点の汎用の有機溶剤に可溶なものである。 Particularly preferred as the polymer component (A) is an amorphous thermoplastic resin having a Tg of 250° C. or higher, which is soluble in a general organic solvent having a low boiling point such as benzene and MEK.
 また重合体成分(A)としては、耐熱性の観点から、芳香族環構造又は脂環式構造等の環構造を有する熱可塑性樹脂が好ましく、芳香族環構造を有する熱可塑性樹脂がより好ましい。 As the polymer component (A), from the viewpoint of heat resistance, a thermoplastic resin having a ring structure such as an aromatic ring structure or an alicyclic structure is preferable, and a thermoplastic resin having an aromatic ring structure is more preferable.
 重合体成分(A)の具体例としては、ポリイミド樹脂、及び、ポリアリレート樹脂等が挙げられる。これらの樹脂は概してTgが高く耐熱性に優れており、また、非晶質熱可塑性樹脂であるため、溶液キャスト法による塗膜形成が可能である。これらの中でも、Tgが高く耐熱性に優れており、また、良好な耐熱性を示しつつも汎用の有機溶媒に可溶なものを得やすいという点からポリイミド樹脂が好ましい。 Specific examples of the polymer component (A) include polyimide resin and polyarylate resin. These resins generally have a high Tg and excellent heat resistance, and since they are amorphous thermoplastic resins, they are capable of forming a coating film by a solution casting method. Among these, a polyimide resin is preferable because it has a high Tg and excellent heat resistance, and that it is easy to obtain a resin that is soluble in a general-purpose organic solvent while exhibiting good heat resistance.
 ポリイミド樹脂としては、本発明の効果を損なわない範囲であれば特に制限されないが、例えば、芳香族ポリイミド樹脂、芳香族(カルボン酸成分)-環式脂肪族(ジアミン成分)ポリイミド樹脂、環式脂肪族(カルボン酸成分)-芳香族(ジアミン成分)ポリイミド樹脂、環式脂肪族ポリイミド樹脂、およびフッ素化芳香族ポリイミド樹脂等を使用することができる。特に、分子内にフルオロ基を有するポリイミド樹脂が好ましい。一般に、ポリイミド樹脂のTgは250℃以上である。 The polyimide resin is not particularly limited as long as it does not impair the effects of the present invention. For example, an aromatic polyimide resin, an aromatic (carboxylic acid component)-cyclic aliphatic (diamine component) polyimide resin, a cyclic fat A group (carboxylic acid component)-aromatic (diamine component) polyimide resin, a cycloaliphatic polyimide resin, a fluorinated aromatic polyimide resin, or the like can be used. In particular, a polyimide resin having a fluoro group in the molecule is preferable. Generally, the Tg of a polyimide resin is 250° C. or higher.
 具体的には、芳香族ジアミン化合物とテトラカルボン酸二無水物を用いて、ポリアミド酸への重合、化学イミド化反応を経て得られるポリイミド樹脂が好ましい。 Specifically, a polyimide resin obtained by using an aromatic diamine compound and a tetracarboxylic dianhydride to polymerize into a polyamic acid and undergo a chemical imidization reaction is preferable.
 芳香族ジアミン化合物としては、合わせて用いられるテトラカルボン酸二無水物との反応により、共通の溶媒(例えば、N,N-ジメチルアセトアミド(DMAC))に可溶で、所定の透明性を有するポリイミドを与える芳香族ジアミン化合物であれば、任意の芳香族ジアミン化合物を使用することができる。具体的には、m-フェニレンジアミン、p-フェニレンジアミン、3,4’-ジアミノジフェニルエ-テル、4,4’-ジアミノジフェニルエ-テル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、3,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェニル)〕スルホン、ビス〔3-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェニル)〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕エ-テル、ビス〔4-(4-アミノフェノキシ)フェニル〕エ-テル、ビス〔3-(3-アミノフェノキシ)フェニル〕エ-テル、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、ビス〔3-(3-アミノフェノキシ)フェニル〕メタン、ビス〔3-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス〔4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル〕ベンゼン、1,3-ビス〔4-(4-アミノ-6-フルオロメチルフェノキシ)-α,α-ジメチルベンジル〕ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルなどが挙げられる。 As the aromatic diamine compound, a polyimide having a predetermined transparency, which is soluble in a common solvent (for example, N,N-dimethylacetamide (DMAC)) by a reaction with a tetracarboxylic dianhydride used together. Any aromatic diamine compound can be used as long as it is an aromatic diamine compound that gives Specifically, m-phenylenediamine, p-phenylenediamine, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfide, 3,4′ -Diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminobenzophenone, 3 , 3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 2,2-bis(4-aminophenyl)propane, 2,2-bis(3-aminophenyl)propane, 2 -(3-Aminophenyl)-2-(4-aminophenyl)propane, 2,2-bis(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2- Bis(3-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2-(3-aminophenyl)-2-(4-aminophenyl)-1,1,1,3 3,3-hexafluoropropane, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(3-aminophenoxy)benzene, 1,4 -Bis(4-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, 3,3'-bis(4-aminophenoxy)biphenyl, 3,4'-bis(3-aminophenoxy) Biphenyl, bis[4-(4-aminophenoxy)phenyl]sulfide, bis[3-(4-aminophenoxy)phenyl]sulfide, bis[4-(3-aminophenoxy)phenyl]sulfide, bis[3-(4 -Aminophenoxy)phenyl]sulfide, bis[3-(3-aminophenoxy)phenyl]sulfide, bis[3-(4-aminophenoxy)phenyl]sulfone, bis[4-(4-aminophenyl)]sulfone, bis [3-(3-aminophenoxy)phenyl] sulfone, bis[4-(3-aminophenyl)] sulfone, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(4-amino) Phenoxy)phenyl]ether, bis[3-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(4-aminophenoxy)phenyl] ] Methane, bis[3-(3-aminophenoxy)phenyl]methane, bis[3-(4-aminophenoxy)phenyl]methane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[3-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy) Phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoro Propane, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[3-(4-aminophenoxy)phenyl ]-1,1,1,3,3,3-hexafluoropropane, 1,3-bis[4-(4-amino-6-trifluoromethylphenoxy)-α,α-dimethylbenzyl]benzene, 1, 3-bis[4-(4-amino-6-fluoromethylphenoxy)-α,α-dimethylbenzyl]benzene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethyl-4 , 4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl and the like. ..
 これらの芳香族ジアミン化合物は単独で用いてもよく、2種類以上の芳香族ジアミン化合物を使用しても良い。そして、透明性や耐熱性の観点から、好ましい芳香族ジアミン化合物としては、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス〔4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル〕ベンゼン、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルなどのフルオロ基を有する芳香族ジアミン化合物が挙げられ、使用する芳香族ジアミン化合物の少なくとも1種類はフルオロ基を有する芳香族ジアミン化合物であることが好ましく、特に好ましくは2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルである。フルオロ基を有する芳香族ジアミン化合物を用いることで、透明性、耐熱性、溶剤への可溶性を得ることが容易となる。 These aromatic diamine compounds may be used alone or two or more kinds of aromatic diamine compounds may be used. From the viewpoint of transparency and heat resistance, preferable aromatic diamine compounds are 2,2-bis(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2 -Bis(3-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2-(3-aminophenyl)-2-(4-aminophenyl)-1,1,1,3 ,3,3-Hexafluoropropane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[4- (4-Aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3,3 3,3-hexafluoropropane, 2,2-bis[3-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 1,3-bis[4-( 4-amino-6-trifluoromethylphenoxy)-α,α-dimethylbenzyl]benzene, 3,3′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 2,2′-bis(trifluoro Examples thereof include aromatic diamine compounds having a fluoro group such as methyl)-4,4′-diaminobiphenyl, and it is preferable that at least one kind of the aromatic diamine compound used is an aromatic diamine compound having a fluoro group. Preferred is 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl. By using the aromatic diamine compound having a fluoro group, it becomes easy to obtain transparency, heat resistance, and solubility in a solvent.
 テトラカルボン酸二無水物としては、上記芳香族ジアミン化合物と同様に、共通の溶媒(例えば、N,N-ジメチルアセトアミド(DMAC))に可溶で所定の透明性を有するポリイミドを与えるテトラカルボン酸二無水物であれば、任意のものを使用でき、具体的には、4,4’-(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ジフタル酸二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、1,4-ヒドロキノンジベンゾエ-ト-3, 3’,4,4’-テトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物などが例示される。これらのテトラカルボン酸二無水物は単独で用いてもよく、二種類以上のテトラカルボン酸二無水物を使用しても良い。そして、透明性、耐熱性及び溶剤への可溶性の観点から、4,4’-(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ジフタル酸二無水物など、少なくとも1種類のフルオロ基を有するテトラカルボン酸二無水物を使用することが好ましい。 As the tetracarboxylic acid dianhydride, a tetracarboxylic acid which is soluble in a common solvent (for example, N,N-dimethylacetamide (DMAC)) and gives a polyimide having a predetermined transparency, like the aromatic diamine compound. Any dianhydride can be used, and specifically, 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)diphthalic acid dianhydride can be used. Anhydride, pyromellitic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 1,4-hydroquinone dibenzoate-3,3',4,4'-tetracarboxylic Examples thereof include acid dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride and 3,3′,4,4′-diphenylethertetracarboxylic dianhydride. These tetracarboxylic acid dianhydrides may be used alone, or two or more kinds of tetracarboxylic acid dianhydrides may be used. From the viewpoint of transparency, heat resistance and solubility in a solvent, 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)diphthalic acid dianhydride, etc. It is preferable to use a tetracarboxylic dianhydride having at least one kind of fluoro group.
 ポリアミド酸への重合は、生成するポリアミド酸が可溶な溶剤への溶解下で、上記芳香族ジアミン化合物及びテトラカルボン酸二無水物を反応させることにより行うことができる。ポリアミド酸への重合に用いる溶剤としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド等の溶剤を用いることができる。 The polymerization to polyamic acid can be performed by reacting the above aromatic diamine compound and tetracarboxylic dianhydride in a solvent in which the polyamic acid to be produced is soluble. Solvents used for polymerization into polyamic acid include N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, and the like. Can be used.
 ポリアミド酸への重合反応は、撹拌装置を備えた反応容器で撹拌しながら行うことが好ましい。例えば、上記溶剤に所定量の芳香族ジアミン化合物を溶解させて、撹拌しながらテトラカルボン酸二無水物を投入して反応を行い、ポリアミド酸を得る方法、テトラカルボン酸二無水物を溶剤に溶解させて、撹拌しながら芳香族ジアミン化合物を投入して反応させてポリアミド酸を得る方法、芳香族ジアミン化合物とテトラカルボン酸二無水物を交互に投入して反応させてポリアミド酸を得る方法などが挙げられる。 The polymerization reaction to polyamic acid is preferably carried out while stirring in a reaction vessel equipped with a stirrer. For example, a predetermined amount of an aromatic diamine compound is dissolved in the solvent, a reaction is carried out by adding tetracarboxylic acid dianhydride while stirring, to obtain a polyamic acid, the tetracarboxylic acid dianhydride is dissolved in the solvent Then, while stirring, a method of adding an aromatic diamine compound while reacting to obtain a polyamic acid, a method of alternately charging an aromatic diamine compound and a tetracarboxylic acid dianhydride and reacting to obtain a polyamic acid, etc. Can be mentioned.
 ポリアミド酸への重合反応の温度については特に制約はないが、0~70℃の温度で行うことが好ましく、より好ましくは10~60℃であり、更に好ましくは20~50℃である。重合反応を上記範囲内で行うことで、着色が少なく透明性に優れた高分子量のポリアミド酸を得ることが可能となる。 The temperature of the polymerization reaction into the polyamic acid is not particularly limited, but it is preferably carried out at a temperature of 0 to 70°C, more preferably 10 to 60°C, still more preferably 20 to 50°C. By carrying out the polymerization reaction within the above range, it is possible to obtain a high-molecular-weight polyamic acid with little coloration and excellent transparency.
 また、ポリアミド酸への重合に使用する芳香族ジアミン化合物とテトラカルボン酸二無水物は概ね当モル量を使用するが、得られるポリアミド酸の重合度をコントロールするために、テトラカルボン酸二無水物のモル量/芳香族ジアミン化合物のモル量(モル比率)を0.95~1.05の範囲で変化させることも可能である。そして、テトラカルボン酸二無水物と芳香族ジアミン化合物のモル比率は、1.001~1.02の範囲であることが好ましく、1.001~1.01であることがより好ましい。このようにテトラカルボン酸二無水物を芳香族ジアミン化合物に対して僅かに過剰にすることで、得られるポリアミド酸の重合度を安定させることができるとともに、テトラカルボン酸二無水物由来のユニットをポリマーの末端に配置することができ、その結果、着色が少なく透明性に優れたポリイミドを与えることが可能となる。 Further, the aromatic diamine compound and the tetracarboxylic acid dianhydride used for polymerization into the polyamic acid are used in approximately equimolar amounts, but in order to control the degree of polymerization of the polyamic acid obtained, the tetracarboxylic acid dianhydride is used. It is also possible to change the molar amount of the above/the molar amount of the aromatic diamine compound (molar ratio) within the range of 0.95 to 1.05. The molar ratio of the tetracarboxylic dianhydride and the aromatic diamine compound is preferably in the range of 1.001 to 1.02, more preferably 1.001 to 1.01. In this way, by slightly excess tetracarboxylic dianhydride with respect to the aromatic diamine compound, it is possible to stabilize the degree of polymerization of the resulting polyamic acid, the unit derived from tetracarboxylic dianhydride It can be placed at the end of the polymer, and as a result, it becomes possible to provide a polyimide with little coloration and excellent transparency.
 生成するポリアミド酸溶液の濃度は、溶液の粘度を適正に保ち、その後の工程での取り扱いが容易になるよう、適切な濃度(例えば、10~30質量%程度)に整えることが好ましい。 The concentration of the polyamic acid solution to be generated is preferably adjusted to an appropriate concentration (for example, about 10 to 30% by mass) so that the viscosity of the solution can be kept appropriate and handling in subsequent steps is easy.
 得られたポリアミド酸溶液にイミド化剤を加えて化学イミド化反応を行う。イミド化剤としては、無水酢酸、無水プロピオン酸、無水コハク酸、無水フタル酸、無水安息香酸などのカルボン酸無水物を用いることができ、コストや反応後の除去のしやすさの観点から無水酢酸を使用することが好ましい。使用するイミド化剤の当量は化学イミド化反応を行うポリアミド酸のアミド結合の当量以上であり、アミド結合の当量の1.1~5倍であることが好ましく、1.5~4倍であることがより好ましい。このようにアミド結合に対して少し過剰のイミド化剤を使用することで、比較的低温でも効率的にイミド化反応を行うことができる。 Add an imidizing agent to the obtained polyamic acid solution to carry out a chemical imidization reaction. As the imidizing agent, carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, succinic anhydride, phthalic anhydride, and benzoic anhydride can be used, and they are anhydrous from the viewpoint of cost and ease of removal after the reaction. Preference is given to using acetic acid. The equivalent amount of the imidizing agent used is equal to or more than the equivalent amount of the amide bond of the polyamic acid that undergoes the chemical imidization reaction, and is preferably 1.1 to 5 times the equivalent amount of the amide bond, and is 1.5 to 4 times. Is more preferable. Thus, by using a slight excess of the imidizing agent with respect to the amide bond, the imidization reaction can be efficiently performed even at a relatively low temperature.
 化学イミド化反応には、イミド化促進剤として、ピリジン、ピコリン、キノリン、イソキノリン、トリメチルアミン、トリエチルアミン等の脂肪族、芳香族又は複素環式第三級アミン類を使用することができる。このようなアミン類を使用することで、低温で効率的にイミド化反応を行うことができ、その結果イミド化反応時の着色を抑えることが可能となり、より透明なポリイミドを得やすくなる。 In the chemical imidization reaction, aliphatic, aromatic or heterocyclic tertiary amines such as pyridine, picoline, quinoline, isoquinoline, trimethylamine and triethylamine can be used as imidization promoters. By using such amines, the imidization reaction can be efficiently performed at a low temperature, and as a result, it becomes possible to suppress coloration during the imidization reaction, and it becomes easier to obtain a more transparent polyimide.
 化学イミド化反応温度については特に制約はないが、10℃以上50℃未満で行うことが好ましく、15℃以上45℃未満で行うことがより好ましい。10℃以上50℃未満の温度で化学イミド化反応を行うことで、イミド化反応時の着色が抑えられ、透明性に優れたポリイミドを得やすくなる。 The chemical imidization reaction temperature is not particularly limited, but it is preferably performed at 10°C or higher and lower than 50°C, more preferably 15°C or higher and lower than 45°C. By performing the chemical imidization reaction at a temperature of 10° C. or higher and lower than 50° C., coloration during the imidization reaction is suppressed, and a polyimide having excellent transparency is easily obtained.
 この後、必要に応じて、化学イミド化反応により得られたポリイミド溶液に、ポリイミドの貧溶媒を加えてポリイミドを析出させて粉体を形成させる粉体化、乾燥を行う。 After that, if necessary, a poor solvent for the polyimide is added to the polyimide solution obtained by the chemical imidization reaction to precipitate the polyimide to form a powder, and the powder is dried.
 ポリイミド樹脂としては、ベンゼンやMEKなどの低沸点の有機溶剤に可能であることが好ましく、MEKに可溶であることがより好ましい。MEKに可溶であると、塗布・乾燥によって容易に硬化性樹脂組成物の層を形成することができる。 The polyimide resin is preferably capable of being a low boiling point organic solvent such as benzene or MEK, and more preferably soluble in MEK. When it is soluble in MEK, a layer of the curable resin composition can be easily formed by coating and drying.
 フルオロ基を含むポリイミド樹脂は、MEK等の沸点の低い汎用の有機溶剤に溶解しやすくなり、塗布法で下地層を形成しやすくなるという観点から、好ましい。
 フルオロ基を有するポリイミド樹脂としては、分子内にフルオロ基を有する芳香族ポリイミド樹脂が好ましく、分子内に以下の化学式で示す骨格を有するものが好ましい。
A polyimide resin containing a fluoro group is preferable from the viewpoints of being easily dissolved in a general-purpose organic solvent having a low boiling point such as MEK and easily forming a base layer by a coating method.
As the polyimide resin having a fluoro group, an aromatic polyimide resin having a fluoro group in the molecule is preferable, and one having a skeleton represented by the following chemical formula in the molecule is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記化学式で示される骨格を有するポリイミド樹脂は、上記骨格の剛直性が高いことにより、300℃を超える極めて高いTgを有している。このため、下地層の耐熱性を大きく向上させ得る。また、上記骨格は直線的であり比較的柔軟性が高く、下地層の破断伸度を高くさせやすくなる。更に、上記骨格を有するポリイミド樹脂は、フルオロ基を有することによりMEK等の低沸点の汎用有機溶剤に溶解し得る。したがって、溶液キャスト法を用いて塗工を行い、塗膜として下地層を形成することができ、また、乾燥による溶剤除去も容易である。上記化学式で示される骨格を有するポリイミド樹脂は、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルと、4,4’-(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ジフタル酸二無水物とを用いて、上述のポリアミド酸の重合及びイミド化反応により得ることができる。 The polyimide resin having the skeleton represented by the above chemical formula has an extremely high Tg exceeding 300° C. due to the high rigidity of the skeleton. Therefore, the heat resistance of the underlayer can be greatly improved. Further, the skeleton is linear and has relatively high flexibility, and it becomes easy to increase the breaking elongation of the underlayer. Further, the polyimide resin having the above skeleton has a fluoro group, so that it can be dissolved in a low boiling point general-purpose organic solvent such as MEK. Therefore, the undercoat layer can be formed as a coating film by applying the solution using the solution casting method, and the solvent can be easily removed by drying. Polyimide resins having a skeleton represented by the above chemical formula include 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl and 4,4′-(1,1,1,3,3,3 -Hexafluoropropane-2,2-diyl)diphthalic acid dianhydride, and can be obtained by the polymerization and imidization reaction of the above polyamic acid.
 ポリアリレート樹脂は、芳香族ジオールと芳香族ジカルボン酸又はそのクロライドとの反応により得られる高分子化合物からなる樹脂である。ポリアリレート樹脂も、比較的高いTgを有しており、伸び特性も比較的良好である。ポリアリレート樹脂のTgは、170~300℃程度の範囲内であり、その構造によって異なるが、Tgが250℃以上のものもある。ポリアリレート樹脂としては、特に限定されず、公知のものが使用できる。 The polyarylate resin is a resin composed of a polymer compound obtained by reacting an aromatic diol with an aromatic dicarboxylic acid or its chloride. The polyarylate resin also has a relatively high Tg and relatively good elongation characteristics. The Tg of the polyarylate resin is in the range of about 170 to 300° C., and depending on its structure, there is Tg of 250° C. or more. The polyarylate resin is not particularly limited, and known ones can be used.
 芳香族ジオールとしては、例えば、ビス(4-ヒドロキシフェニル)メタン〔ビスフェノールF〕、ビス(3-メチル-4-ヒドロキシフェニル)メタン、1,1-ビス(4’-ヒドロキシフェニル)エタン、1,1-ビス(3’-メチル-4’-ヒドロキシフェニル)エタン、2,2-ビス(4’-ヒドロキシフェニル)プロパン〔ビスフェノールA〕、2,2-ビス(3’-メチル-4’-ヒドロキシフェニル)プロパン、2,2-ビス(4’-ヒドロキシフェニル)ブタン、2,2-ビス(4’-ヒドロキシフェニル)オクタン等のビス(ヒドロキシフェニル)アルカン類;1,1-ビス(4’-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4’-ヒドロキシフェニル)シクロヘキサン〔ビスフェノールZ〕、1,1-ビス(4’-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等のビス(ヒドロキシフェニル)シクロアルカン類;ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(3-メチル-4-ヒドロキシフェニル)フェニルメタン、ビス(2,6-ジメチル-4-ヒドロキシフェニル)フェニルメタン、ビス(2,3,6-トリメチル-4-ヒドロキシフェニル)フェニルメタン、ビス(3-t-ブチル-4-ヒドロキシフェニル)フェニルメタン、ビス(3-フェニル-4-ヒドロキシフェニル)フェニルメタン、ビス(3-フルオロ-4-ヒドロキシフェニル)フェニルメタン、ビス(3-ブロモ-4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)-4-フルオロフェニルメタン、ビス(3-フルオロ-4-ヒドロキシフェニル)-4-フルオロフェニルメタン、ビス(4-ヒドロキシフェニル)-4-クロロフェニルメタン、ビス(4-ヒドロキシフェニル)-4-ブロモフェニルメタン、ビス(3,5-ジメチル-4-ヒドロキシフェニル)-4-フルオロフェニルメタン、1,1-ビス(4’-ヒドロキシフェニル)-1-フェニルエタン〔ビスフェノールP〕、1,1-ビス(3’-メチル-4’-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(3’-t-ブチル-4’-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(3’-フェニル-4’-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4’-ヒドロキシフェニル)-1-(4’-ニトロフェニル)エタン、1,1-ビス(3’-ブロモ-4’-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4’-ヒドロキシフェニル)-1-フェニルプロパン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)ジベンジルメタン等のビス(ヒドロキシフェニル)フェニルアルカン類;ビス(4-ヒドロキシフェニル)エーテル、ビス(3-メチル-4-ヒドロキシフェニル)エーテル等のビス(ヒドロキシフェニル)エーテル類;ビス(4-ヒドロキシフェニル)ケトン、ビス(3-メチル-4-ヒドロキシフェニル)ケトン等のビス(ヒドロキシフェニル)ケトン類;ビス(4-ヒドロキシフェニル)スルフィド、ビス(3-メチル-4-ヒドロキシフェニル)スルフィド等のビス(ヒドロキシフェニル)スルフィド類;ビス(4-ヒドロキシフェニル)スルホキシド、ビス(3-メチル-4-ヒドロキシフェニル)スルホキシド等のビス(ヒドロキシフェニル)スルホキシド類;ビス(4-ヒドロキシフェニル)スルホン〔ビスフェノールS〕、ビス(3-メチル-4-ヒドロキシフェニル)スルホン等のビス(ヒドロキシフェニル)スルホン類;9,9-ビス(4’-ヒドロキシフェニル)フルオレン、9,9-ビス(3’-メチル-4’-ヒドロキシフェニル)フルオレン等のビス(ヒドロキシフェニル)フルオレン類;等が挙げられる。 Examples of aromatic diols include bis(4-hydroxyphenyl)methane [bisphenol F], bis(3-methyl-4-hydroxyphenyl)methane, 1,1-bis(4′-hydroxyphenyl)ethane, 1, 1-bis(3'-methyl-4'-hydroxyphenyl)ethane, 2,2-bis(4'-hydroxyphenyl)propane [bisphenol A], 2,2-bis(3'-methyl-4'-hydroxy) Bis(hydroxyphenyl)alkanes such as phenyl)propane, 2,2-bis(4′-hydroxyphenyl)butane, and 2,2-bis(4′-hydroxyphenyl)octane; 1,1-bis(4′- Bis(hydroxy) such as hydroxyphenyl)cyclopentane, 1,1-bis(4′-hydroxyphenyl)cyclohexane [bisphenol Z], 1,1-bis(4′-hydroxyphenyl)-3,3,5-trimethylcyclohexane Phenyl)cycloalkanes; bis(4-hydroxyphenyl)phenylmethane, bis(3-methyl-4-hydroxyphenyl)phenylmethane, bis(2,6-dimethyl-4-hydroxyphenyl)phenylmethane, bis(2,2 3,6-Trimethyl-4-hydroxyphenyl)phenylmethane, bis(3-t-butyl-4-hydroxyphenyl)phenylmethane, bis(3-phenyl-4-hydroxyphenyl)phenylmethane, bis(3-fluoro-) 4-hydroxyphenyl)phenylmethane, bis(3-bromo-4-hydroxyphenyl)phenylmethane, bis(4-hydroxyphenyl)-4-fluorophenylmethane, bis(3-fluoro-4-hydroxyphenyl)-4- Fluorophenylmethane, bis(4-hydroxyphenyl)-4-chlorophenylmethane, bis(4-hydroxyphenyl)-4-bromophenylmethane, bis(3,5-dimethyl-4-hydroxyphenyl)-4-fluorophenylmethane , 1,1-bis(4′-hydroxyphenyl)-1-phenylethane [bisphenol P], 1,1-bis(3′-methyl-4′-hydroxyphenyl)-1-phenylethane, 1,1- Bis(3'-t-butyl-4'-hydroxyphenyl)-1-phenylethane, 1,1-bis(3'-phenyl-4'-hydroxyphenyl)-1-phenylethane, 1,1-bis( 4'-hydroxyphenyl)-1-(4'-nitrophenyl)ethane, 1,1-bis(3' -Bromo-4'-hydroxyphenyl)-1-phenylethane, 1,1-bis(4'-hydroxyphenyl)-1-phenylpropane, bis(4-hydroxyphenyl)diphenylmethane, bis(4-hydroxyphenyl)di Bis(hydroxyphenyl)phenylalkanes such as benzylmethane; Bis(hydroxyphenyl)ethers such as bis(4-hydroxyphenyl)ether and bis(3-methyl-4-hydroxyphenyl)ether; Bis(4-hydroxyphenyl) ) Ketone, bis(hydroxyphenyl)ketone such as bis(3-methyl-4-hydroxyphenyl)ketone; bis(bis(4-hydroxyphenyl)sulfide, bis(3-methyl-4-hydroxyphenyl)sulfide and the like Hydroxyphenyl) sulfides; bis(hydroxyphenyl) sulfoxides such as bis(4-hydroxyphenyl) sulfoxide and bis(3-methyl-4-hydroxyphenyl) sulfoxide; bis(4-hydroxyphenyl) sulfone [bisphenol S], Bis(hydroxyphenyl)sulfones such as bis(3-methyl-4-hydroxyphenyl)sulfone; 9,9-bis(4'-hydroxyphenyl)fluorene, 9,9-bis(3'-methyl-4'- Bis(hydroxyphenyl)fluorenes such as hydroxyphenyl)fluorene; and the like.
 芳香族ジカルボン酸又はそのクロライドとしては、例えば、フタル酸、イソフタル酸、テレフタル酸、4,4’-ビフェニルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエーテル4,4’-ジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、及びそれらのクロライド等が挙げられる。また、用いるポリアリレート系樹脂は、変性ポリアリレート系樹脂であってもよい。これらの中でも、ポリアリレート系樹脂としては、2,2-ビス(4’-ヒドロキシフェニル)プロパンとイソフタル酸との反応により得られる高分子化合物からなる樹脂が好ましい。 Examples of aromatic dicarboxylic acids or chlorides thereof include phthalic acid, isophthalic acid, terephthalic acid, 4,4′-biphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenylether 4,4′-dicarboxylic acid, 4,4′- Examples thereof include diphenyl sulfone dicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and chlorides thereof. The polyarylate-based resin used may be a modified polyarylate-based resin. Among these, the polyarylate resin is preferably a resin made of a polymer compound obtained by the reaction of 2,2-bis(4'-hydroxyphenyl)propane and isophthalic acid.
 重合体成分(A)は1種単独で、あるいは2種以上を組み合わせて用いることができるが、単一種類のポリイミド樹脂を用いたもの、種類の異なるポリイミド樹脂を複数用いたもの、及び、ポリイミド樹脂にポリアミド樹脂及びポリアリレート樹脂のうち少なくとも一方を添加したものが、伸び特性を調整し得る観点、及び、耐溶剤性の観点から好ましい。 The polymer component (A) may be used singly or in combination of two or more, but one using a single kind of polyimide resin, one using a plurality of different kinds of polyimide resins, and polyimide It is preferable to add at least one of a polyamide resin and a polyarylate resin to the resin from the viewpoint of adjusting the elongation property and the solvent resistance.
 ポリアミド樹脂としては、有機溶媒に可溶であるものが好ましく、ゴム変性ポリアミド樹脂が好ましい。ゴム変性ポリアミド樹脂としては、例えば、特開2004-035638号公報に記載のものを用いることができる。 As the polyamide resin, those soluble in an organic solvent are preferable, and rubber-modified polyamide resin is preferable. As the rubber-modified polyamide resin, for example, those described in JP-A-2004-035638 can be used.
 ポリイミド樹脂にポリアミド樹脂やポリアリレート樹脂を添加する場合、添加する樹脂の量は、Tgを高く維持しつつ、適度に柔軟性を付与する観点から、ポリイミド樹脂100質量部に対して、好ましくは100質量部以下、より好ましくは70質量部以下、更に好ましくは50質量部以下、より更に好ましくは30量部以下であり、また、好ましくは1質量部以上、より好ましくは3質量部以上である。 When a polyamide resin or a polyarylate resin is added to the polyimide resin, the amount of the resin added is preferably 100 relative to 100 parts by weight of the polyimide resin from the viewpoint of imparting appropriate flexibility while maintaining a high Tg. The amount is not more than 70 parts by mass, more preferably not more than 70 parts by mass, further preferably not more than 50 parts by mass, still more preferably not more than 30 parts by mass, and preferably not less than 1 part by mass, more preferably not less than 3 parts by mass.
〔硬化性成分(B)〕
 硬化性成分(B)は、重合反応、又は、重合反応及び架橋反応に関与し得る成分であり、例えば、重合性不飽和結合を有し、重合反応、又は、重合反応及び架橋反応に関与し得る単量体である。なお、本明細書において、「硬化」とは、この「単量体の重合反応」、又は、「単量体の重合反応及び引き続く重合体の架橋反応」を含めた広い概念を意味する。硬化性成分(B)を用いることで、耐溶剤性に優れるガスバリア性積層体を得ることができる。
[Curable component (B)]
The curable component (B) is a component that can participate in the polymerization reaction, or the polymerization reaction and the crosslinking reaction, and has, for example, a polymerizable unsaturated bond, and is involved in the polymerization reaction or the polymerization reaction and the crosslinking reaction. It is the monomer to be obtained. In the present specification, "curing" means a broad concept including this "polymerization reaction of monomers" or "polymerization reaction of monomers and subsequent crosslinking reaction of polymer". By using the curable component (B), a gas barrier laminate having excellent solvent resistance can be obtained.
 硬化性成分(B)の分子量は、通常、3,000以下、好ましくは200~2,000、より好ましくは200~1,000である。
 硬化性成分(B)中の重合性不飽和結合の数は特に制限されない。硬化性成分(B)は、重合性不飽和結合を1つ有する単官能型の単量体であっても、複数有する2官能型や3官能型等の多官能型の単量体であってもよい。
The curable component (B) has a molecular weight of usually 3,000 or less, preferably 200 to 2,000, more preferably 200 to 1,000.
The number of polymerizable unsaturated bonds in the curable component (B) is not particularly limited. The curable component (B) may be a monofunctional monomer having one polymerizable unsaturated bond or a polyfunctional monomer having a plurality of difunctional or trifunctional monomers. Good.
 前記単官能型の単量体としては、単官能の(メタ)アクリル酸誘導体が挙げられる。
 単官能の(メタ)アクリル酸誘導体としては、特に限定されず、公知の化合物を用いることができる。例えば、窒素原子を有する単官能の(メタ)アクリル酸誘導体、脂環式構造を有する単官能の(メタ)アクリル酸誘導体、ポリエーテル構造を有する単官能の(メタ)アクリル酸誘導体等が挙げられる。
Examples of the monofunctional monomers include monofunctional (meth)acrylic acid derivatives.
The monofunctional (meth)acrylic acid derivative is not particularly limited, and known compounds can be used. Examples thereof include monofunctional (meth)acrylic acid derivatives having a nitrogen atom, monofunctional (meth)acrylic acid derivatives having an alicyclic structure, and monofunctional (meth)acrylic acid derivatives having a polyether structure. ..
 窒素原子を有する単官能の(メタ)アクリル酸誘導体としては、下記式で示される化合物が挙げられる。 The monofunctional (meth)acrylic acid derivative having a nitrogen atom includes compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式中、Rは、水素原子又は炭素数1~6のアルキル基を表し、R及びRは、それぞれ独立に、水素原子又は炭素数1~12の有機基を表し、RとRは、結合して環構造を形成してもよく、Rは、2価の有機基を表す。
 Rで表される炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基等が挙げられ、メチル基が好ましい。
 R及びRで表される炭素数1~12の有機基としては、メチル基、エチル基、プロピル基等の、炭素数1~12のアルキル基;シクロペンチル基、シクロへキシル基等の、炭素数3~12のシクロアルキル基;フェニル基、ビフェニル基、ナフチル基等の、炭素数6~12の芳香族基;が挙げられる。これらの基は、任意の位置に置換基を有していてもよい。また、RとRが一緒になって環を形成してもよく、該環は、骨格中に更に窒素原子や酸素原子を有していてもよい。
 Rで表される2価の有機基としては、-(CH-、-NH-(CH-で表される基が挙げられる。ここで、mは、1~10の整数である。
In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R 2 and R 3 each independently represent an organic group having a hydrogen atom or a C 1 -C 12, R 2 and R 3 may combine with each other to form a ring structure, and R 4 represents a divalent organic group.
Examples of the alkyl group having 1 to 6 carbon atoms represented by R 1 include a methyl group, an ethyl group and a propyl group, and a methyl group is preferable.
Examples of the organic group having 1 to 12 carbon atoms represented by R 2 and R 3 include an alkyl group having 1 to 12 carbon atoms such as methyl group, ethyl group and propyl group; cyclopentyl group, cyclohexyl group and the like, And cycloalkyl groups having 3 to 12 carbon atoms; aromatic groups having 6 to 12 carbon atoms such as phenyl group, biphenyl group and naphthyl group. These groups may have a substituent at any position. Further, R 2 and R 3 may combine to form a ring, and the ring may further have a nitrogen atom or an oxygen atom in the skeleton.
Examples of the divalent organic group represented by R 4 include groups represented by —(CH 2 ) m — and —NH—(CH 2 ) m —. Here, m is an integer of 1 to 10.
 これらの中でも、窒素原子を有する単官能の(メタ)アクリル酸誘導体としては、下記式で表される(メタ)アクリロイルモルホリンが好ましいものとして挙げられる。 Among these, (meth)acryloylmorpholine represented by the following formula is preferable as the monofunctional (meth)acrylic acid derivative having a nitrogen atom.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 窒素原子を有する単官能の(メタ)アクリル酸誘導体を、硬化性成分(B)として用いることで、より耐熱性に優れる下地層を形成することができる。 By using a monofunctional (meth)acrylic acid derivative having a nitrogen atom as the curable component (B), it is possible to form a base layer having more excellent heat resistance.
 脂環式構造を有する単官能の(メタ)アクリル酸誘導体としては、下記式で示される化合物が挙げられる。 The monofunctional (meth)acrylic acid derivative having an alicyclic structure includes compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式中、Rは上記と同じ意味を表し、Rは脂環式構造を有する基である。
 Rで表される脂環式構造を有する基としては、シクロへキシル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデカニル基等が挙げられる。
In the formula, R 1 has the same meaning as described above, and R 5 is a group having an alicyclic structure.
Examples of the group having an alicyclic structure represented by R 5 include a cyclohexyl group, an isobornyl group, a 1-adamantyl group, a 2-adamantyl group and a tricyclodecanyl group.
 脂環式構造を有する単官能の(メタ)アクリル酸誘導体の具体例としては、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、2-アダマンチル(メタ)アクリレート等が挙げられる。 Specific examples of the monofunctional (meth)acrylic acid derivative having an alicyclic structure include isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, 1-adamantyl (meth)acrylate, and 2-adamantyl (meth)acrylate. Can be mentioned.
 脂環式構造を有する単官能の(メタ)アクリル酸誘導体を、硬化性成分(B)として用いることで、より光学特性に優れる下地層を形成することができる。 By using a monofunctional (meth)acrylic acid derivative having an alicyclic structure as the curable component (B), it is possible to form an underlayer having more excellent optical properties.
 ポリエーテル構造を有する単官能の(メタ)アクリル酸誘導体としては、下記式で示される化合物が挙げられる。 Examples of monofunctional (meth)acrylic acid derivatives having a polyether structure include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、Rは上記と同じ意味を表し、Rは炭素数1~12の有機基を表す。Rで表される炭素数1~12の有機基としては、メチル基、エチル基、プロピル基等の、炭素数1~12のアルキル基;シクロへキシル基等の、炭素数3~12のシクロアルキル基;フェニル基、ビフェニル基、ナフチル基等の、炭素数6~12の芳香族基;等が挙げられる。jは、2~20の整数を表す。 In the formula, R 1 has the same meaning as described above, and R 6 represents an organic group having 1 to 12 carbon atoms. Examples of the organic group having 1 to 12 carbon atoms represented by R 6 include alkyl groups having 1 to 12 carbon atoms such as methyl group, ethyl group and propyl group; and 3 to 12 carbon atoms such as cyclohexyl group. Examples thereof include a cycloalkyl group; an aromatic group having 6 to 12 carbon atoms such as a phenyl group, a biphenyl group and a naphthyl group; j represents an integer of 2 to 20.
 ポリエーテル構造を有する単官能の(メタ)アクリル酸誘導体の具体例としては、エトキシ化o-フェニルフェノール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート等が挙げられる。 Specific examples of the monofunctional (meth)acrylic acid derivative having a polyether structure include ethoxylated o-phenylphenol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, and phenoxypolyethylene glycol (meth)acrylate. ..
 ポリエーテル構造を有する単官能の(メタ)アクリル酸誘導体を、硬化性成分(B)として用いることで、靭性に優れる下地層を形成することができる。 By using a monofunctional (meth)acrylic acid derivative having a polyether structure as the curable component (B), an underlayer having excellent toughness can be formed.
 前記多官能型の単量体としては、多官能の(メタ)アクリル酸誘導体が挙げられる。
 多官能の(メタ)アクリル酸誘導体としては、特に限定されず、公知の化合物を用いることができる。例えば、2~6官能の(メタ)アクリル酸誘導体が挙げられる。
 2官能の(メタ)アクリル酸誘導体としては、下記式で示される化合物が挙げられる。
Examples of the polyfunctional monomers include polyfunctional (meth)acrylic acid derivatives.
The polyfunctional (meth)acrylic acid derivative is not particularly limited, and known compounds can be used. For example, a bifunctional to hexafunctional (meth)acrylic acid derivative may be mentioned.
Examples of the bifunctional (meth)acrylic acid derivative include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、Rは、上記のものと同じ意味を表し、Rは、2価の有機基を表す。Rで表される2価の有機基としては、下記式で示される基が挙げられる。 In the formula, R 1 has the same meaning as described above, and R 7 represents a divalent organic group. Examples of the divalent organic group represented by R 7 include groups represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、sは1~20の整数を表し、tは、1~30の整数を表し、uとvは、それぞれ独立に、1~30の整数を表し、両末端の「-」は、結合手を表す。) (In the formula, s represents an integer of 1 to 20, t represents an integer of 1 to 30, u and v each independently represent an integer of 1 to 30, and “−” at both ends represents Represents a bond.)
 前記式で示される2官能の(メタ)アクリル酸誘導体の具体例としては、トリシクロデカンジメタノールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン等が挙げられる。これらの中でも、耐熱性及び靭性の観点から、トリシクロデカンジメタノールジ(メタ)アクリレート等の、上記式において、Rで表される2価の有機基がトリシクロデカン骨格を有するもの、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート等の、上記式において、Rで表される2価の有機基がビスフェノール骨格を有するもの、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン等の、上記式において、Rで表される2価の有機基が9,9-ビスフェニルフルオレン骨格を有するものが好ましい。 Specific examples of the bifunctional (meth)acrylic acid derivative represented by the above formula include tricyclodecane dimethanol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propoxylated ethoxylated bisphenol A di(meth)acrylate. , Ethoxylated bisphenol A di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 9,9-bis[4-(2-acryloyloxyethoxy) Phenyl]fluorene and the like. Among these, from the viewpoint of heat resistance and toughness, those in which the divalent organic group represented by R 7 in the above formula has a tricyclodecane skeleton, such as tricyclodecane dimethanol di(meth)acrylate, and propoxy. Ethoxylated bisphenol A di(meth)acrylate, ethoxylated bisphenol A di(meth)acrylate, etc., in which the divalent organic group represented by R 7 in the above formula has a bisphenol skeleton, 9,9-bis In the above formula, a divalent organic group represented by R 7 has a 9,9-bisphenylfluorene skeleton, such as [4-(2-acryloyloxyethoxy)phenyl]fluorene.
 また、これら以外の2官能の(メタ)アクリル酸誘導体としては、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、ジ(アクリロキシエチル)イソシアヌレート、アリル化シクロヘキシルジ(メタ)アクリレート等が挙げられる。 In addition, as other bifunctional (meth)acrylic acid derivatives, neopentyl glycol adipate di(meth)acrylate, hydroxypivalic acid neopentyl glycol di(meth)acrylate, caprolactone-modified dicyclopentenyl di(meth)acrylate, Examples thereof include ethylene oxide-modified di(meth)acrylate phosphate, di(acryloxyethyl)isocyanurate, and allylated cyclohexyl di(meth)acrylate.
 3官能の(メタ)アクリル酸誘導体としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。
 4官能の(メタ)アクリル酸誘導体としては、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
 5官能の(メタ)アクリル酸誘導体としては、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 6官能の(メタ)アクリル酸誘導体としては、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
Trifunctional (meth)acrylic acid derivatives include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, and propylene oxide-modified trimethylolpropane tri(meth)acrylate. ) Acrylate, tris(acryloxyethyl) isocyanurate and the like.
Examples of the tetrafunctional (meth)acrylic acid derivative include pentaerythritol tetra(meth)acrylate.
Examples of the pentafunctional (meth)acrylic acid derivative include propionic acid-modified dipentaerythritol penta(meth)acrylate.
Examples of the hexafunctional (meth)acrylic acid derivative include dipentaerythritol hexa(meth)acrylate and caprolactone-modified dipentaerythritol hexa(meth)acrylate.
 硬化性成分(B)は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、硬化性成分(B)は、耐熱性及び耐溶剤性により優れる下地層が得られることから、多官能型の単量体が好ましい。多官能の単量体としては、重合体成分(A)と混ざりやすく、かつ、重合物の硬化収縮が起こりにくく硬化物のカールが抑制できるという観点から、2官能(メタ)アクリル酸誘導体が好ましい。硬化性成分(B)が多官能型の単量体を含む場合、その含有量は、硬化性成分(B)の全量中、40質量%以上が好ましく、50~100質量%がより好ましく、80~100質量%がさらに好ましい。
The curable component (B) can be used alone or in combination of two or more.
Among these, the curable component (B) is preferably a polyfunctional monomer because it provides an underlayer having excellent heat resistance and solvent resistance. As the polyfunctional monomer, a bifunctional (meth)acrylic acid derivative is preferable from the viewpoint that it is easily mixed with the polymer component (A), curling of the polymer hardly occurs and curling of the cured product can be suppressed. .. When the curable component (B) contains a polyfunctional monomer, its content is preferably 40% by mass or more, more preferably 50 to 100% by mass, based on the total amount of the curable component (B). More preferably, it is 100% by mass.
 硬化性成分(B)は、環化重合性モノマーを含有していることが好ましい。環化重合性モノマーとは、環化しながらラジカル重合する性質をもつモノマーである。
 環化重合性モノマーは、重合により分子内に環構造を形成しながら線形の高分子に成長していくが、一般的な単官能の硬化性単量体を用いるよりも下地層の耐溶剤性、耐熱性を向上させることができる。その理由として、一つは、環化重合性モノマーの重合体では、高分子鎖中に環構造が形成されるために、一般的な線形の高分子よりも剛直な分子となり、これにより下地層の耐熱性が向上すると考えられる。また、環化重合性モノマーでは、分子内の環化反応が選択的に起こるように分子設計されているが、一部のモノマーでは分子間反応が起こり、そのモノマーに由来する構成単位には反応性の官能基が残存する。この反応性の官能基が他のモノマーと反応することにより、高分子鎖の分岐が生じ、環化重合性モノマーの重合体に架橋構造が形成される。これによって、下地層の耐熱性がさらに向上し、また、耐溶剤性も向上するものと考えられる。一方で、環化重合性モノマーの重合体は、大部分は線形構造をとっており、また、環化重合により得られる環構造は、芳香環と比較すると柔軟であるため、下地層の柔軟性も両立でき、下地層は高い破断伸度を示す(つまり、上記要件[2]を満たしやすくなる)。
The curable component (B) preferably contains a cyclopolymerizable monomer. The cyclopolymerizable monomer is a monomer having a property of radical polymerization while undergoing cyclization.
Cyclic polymerizable monomers grow into linear macromolecules by forming a ring structure in the molecule by polymerization, but the solvent resistance of the underlying layer is higher than that of general monofunctional curable monomers. The heat resistance can be improved. One of the reasons for this is that, in the case of a polymer of a cyclopolymerizable monomer, a ring structure is formed in the polymer chain, which makes the molecule stiffer than a general linear polymer, which results in an underlayer. It is thought that the heat resistance of is improved. In addition, in the cyclizable polymerizable monomer, the molecular design is designed so that the intramolecular cyclization reaction occurs selectively, but some monomers undergo intermolecular reaction, and the structural units derived from that monomer do not react. Functional groups remain. When this reactive functional group reacts with another monomer, branching of the polymer chain occurs, and a crosslinked structure is formed in the polymer of the cyclopolymerizable monomer. This is considered to further improve the heat resistance of the underlayer and also improve the solvent resistance. On the other hand, most of the polymers of cyclopolymerizable monomers have a linear structure, and the ring structure obtained by cyclopolymerization is more flexible than an aromatic ring, so that the flexibility of the underlayer is low. Can be satisfied, and the underlayer exhibits a high elongation at break (that is, it becomes easy to meet the above requirement [2]).
 具体的な環化重合性モノマーとしては、非共役ジエン類が挙げられ、例えば、以下の式(1)で表されるα-アリルオキシメチルアクリル酸系モノマーを用いることができる。 Specific examples of the cyclopolymerizable monomer include non-conjugated dienes, and for example, an α-allyloxymethylacrylic acid-based monomer represented by the following formula (1) can be used.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式(1)において、Rは、水素原子または1価の有機基を表す。有機基は、炭化水素で構成され、エーテル基を有していてもよい。炭化水素の水素原子は、ハロゲン原子で置換されていてもよい。) (In the formula (1), R 8 represents a hydrogen atom or a monovalent organic group. The organic group is composed of a hydrocarbon and may have an ether group. The hydrogen atom of the hydrocarbon is halogen. Optionally substituted with atoms.)
 有機基は、直鎖状であってもよく、分岐鎖状であってもよく、環状構造を含んでいてもよい。有機基に含まれる炭化水素基は特に限定されない。一例を挙げると、炭化水素基は、炭素数1以上の鎖状飽和炭化水素基、炭素数3以上の鎖状不飽和炭化水素基、炭素数3以上の脂環式炭化水素基、炭素数6以上の芳香族炭化水素基等である。これらの中でも、炭化水素基は、炭素数1~30の鎖状飽和炭化水素基、炭素数3~30の鎖状不飽和炭化水素基、炭素数4~30の脂環式炭化水素基および炭素数6~30の芳香族炭化水素基であることが好ましい。置換基は特に限定されない。一例を挙げると、置換基は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、シアノ基、トリメチルシリル基等である。 The organic group may have a straight chain structure, a branched chain structure, or a cyclic structure. The hydrocarbon group contained in the organic group is not particularly limited. For example, the hydrocarbon group is a chain saturated hydrocarbon group having 1 or more carbon atoms, a chain unsaturated hydrocarbon group having 3 or more carbon atoms, an alicyclic hydrocarbon group having 3 or more carbon atoms, and a carbon number 6 These are aromatic hydrocarbon groups and the like. Among these, the hydrocarbon group is a chain saturated hydrocarbon group having 1 to 30 carbon atoms, a chain unsaturated hydrocarbon group having 3 to 30 carbon atoms, an alicyclic hydrocarbon group having 4 to 30 carbon atoms and carbon. It is preferably an aromatic hydrocarbon group having a number of 6 to 30. The substituent is not particularly limited. For example, the substituent is a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, a cyano group or a trimethylsilyl group.
 鎖状飽和炭化水素基は特に限定されない。一例を挙げると、鎖状飽和炭化水素基は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-アミル基、sec-アミル基、tert-アミル基、ネオペンチル基、n-ヘキシル基、sec-ヘキシル基、n-ヘプチル基、n-オクチル基、sec-オクチル基、tert-オクチル基、2-エチルヘキシル基、カプリル基、ノニル基、デシル基、ウンデシル基、ラウリル基、トリデシル基、ミリスチル基、ペンタデシル基、セチル基、ヘプタデシル基、ステアリル基、ノナデシル基、エイコシル基、セリル基、メリシル基等である。 The chain saturated hydrocarbon group is not particularly limited. As an example, the chain saturated hydrocarbon group includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-amyl group, sec-amyl group. Group, tert-amyl group, neopentyl group, n-hexyl group, sec-hexyl group, n-heptyl group, n-octyl group, sec-octyl group, tert-octyl group, 2-ethylhexyl group, capryl group, nonyl group , Decyl group, undecyl group, lauryl group, tridecyl group, myristyl group, pentadecyl group, cetyl group, heptadecyl group, stearyl group, nonadecyl group, eicosyl group, ceryl group, melissyl group and the like.
 鎖状不飽和炭化水素基は特に限定されない。一例を挙げると、鎖状不飽和炭化水素基は、クロチル基、1,1-ジメチル-2-プロペニル基、2-メチル-ブテニル基、3-メチル-2-ブテニル基、3-メチル-3-ブテニル基、2-メチル-3-ブテニル基、オレイル基、リノール基、リノレン基等である。 The chain unsaturated hydrocarbon group is not particularly limited. As an example, the chain unsaturated hydrocarbon group includes a crotyl group, a 1,1-dimethyl-2-propenyl group, a 2-methyl-butenyl group, a 3-methyl-2-butenyl group and a 3-methyl-3-group. Examples thereof include butenyl group, 2-methyl-3-butenyl group, oleyl group, linole group and linolene group.
 脂環式炭化水素基は特に限定されない。一例を挙げると、脂環式炭化水素基は、シクロペンチル基、シクロペンチルメチル基、シクロヘキシル基、シクロヘキシルメチル基、4-メチルシクロヘキシル基、4-tert-ブチルシクロヘキシル基、トリシクロデカニル基、イソボルニル基、アダマンチル基、ジシクロペンタニル基、ジシクロペンテニル基等である。 The alicyclic hydrocarbon group is not particularly limited. As an example, the alicyclic hydrocarbon group includes a cyclopentyl group, a cyclopentylmethyl group, a cyclohexyl group, a cyclohexylmethyl group, a 4-methylcyclohexyl group, a 4-tert-butylcyclohexyl group, a tricyclodecanyl group, an isobornyl group, Examples thereof include an adamantyl group, a dicyclopentanyl group, and a dicyclopentenyl group.
 芳香族炭化水素基は特に限定されない。一例を挙げると、芳香族炭化水素基は、フェニル基、メチルフェニル基、ジメチルフェニル基、トリメチルフェニル基、4-tert-ブチルフェニル基、ベンジル基、ジフェニルメチル基、ジフェニルエチル基、トリフェニルメチル基、シンナミル基、ナフチル基、アントラニル基等である。 The aromatic hydrocarbon group is not particularly limited. As an example, the aromatic hydrocarbon group is a phenyl group, a methylphenyl group, a dimethylphenyl group, a trimethylphenyl group, a 4-tert-butylphenyl group, a benzyl group, a diphenylmethyl group, a diphenylethyl group, a triphenylmethyl group. , Cinnamyl group, naphthyl group, anthranyl group and the like.
 エーテル結合を有する炭化水素基は特に限定されない。一例を挙げると、エーテル結合を有する炭化水素基は、メトキシエチル基、メトキシエトキシエチル基、メトキシエトシキエトキシエチル基、3-メトキシブチル基、エトキシエチル基、エトキシエトキシエチル基などの鎖状エーテル基;シクロペントキシエチル基、シクロヘキシルオキシエチル基、シクロペントキシエトキシエチル基、シクロヘキシルオキシエトキシエチル基、ジシクロペンテニルオキシエチル基などの脂環式炭化水素基と鎖状エーテル基を併せ持つ基;フェノキシエチル基、フェノキシエトキシエチル基などの芳香族炭化水素基と鎖状エーテル基を併せ持つ基;グリシジル基、β-メチルグリシジル基、β-エチルグリシジル基、3,4-エポキシシクロヘキシルメチル基、2-オキセタンメチル基、3-メチル-3-オキセタンメチル基、3-エチル-3-オキセタンメチル基、テトラヒドロフラニル基、テトラヒドロフルフリル基、テトラヒドロピラニル基、ジオキサゾラニル基、ジオキサニル基などの環状エーテル基等である。 The hydrocarbon group having an ether bond is not particularly limited. As an example, the hydrocarbon group having an ether bond is a chain ether group such as a methoxyethyl group, a methoxyethoxyethyl group, a methoxyethoxyethoxyethyl group, a 3-methoxybutyl group, an ethoxyethyl group, an ethoxyethoxyethyl group. A group having both an alicyclic hydrocarbon group such as a cyclopentoxyethyl group, a cyclohexyloxyethyl group, a cyclopentoxyethoxyethyl group, a cyclohexyloxyethoxyethyl group, and a dicyclopentenyloxyethyl group and a chain ether group; phenoxyethyl Group, group having both aromatic hydrocarbon group such as phenoxyethoxyethyl group and chain ether group; glycidyl group, β-methylglycidyl group, β-ethylglycidyl group, 3,4-epoxycyclohexylmethyl group, 2-oxetanemethyl Group, 3-methyl-3-oxetanemethyl group, 3-ethyl-3-oxetanemethyl group, tetrahydrofuranyl group, tetrahydrofurfuryl group, tetrahydropyranyl group, dioxazolanyl group, dioxanyl group, and other cyclic ether groups.
 本実施形態において、式(1)中のRは、水素原子であるか、炭素数が1~6である炭化水素基であることが好ましく、メチル基であることがより好ましい。 In the present embodiment, R 8 in formula (1) is preferably a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and more preferably a methyl group.
 中でも、2-アリロキシメチルアクリル酸の炭素数1~4のアルキルエステル、2-(アリルオキシメチル)アクリル酸シクロヘキシルが好ましく、2-アリロキシメチルアクリル酸の炭素数1~4のアルキルエステルがより好ましく、2-(アリルオキシメチル)アクリル酸メチルが更に好ましい。 Of these, an alkyl ester of 2-allyloxymethylacrylic acid having 1 to 4 carbon atoms and cyclohexyl 2-(allyloxymethyl)acrylic acid are preferable, and an alkyl ester of 2-allyloxymethylacrylic acid having 1 to 4 carbon atoms is more preferable. Methyl 2-(allyloxymethyl)acrylate is more preferable.
 他の具体的な環化重合性モノマーとしては、例えば、以下の式(2)で表されるモノマーが挙げられる。 Other specific cyclopolymerizable monomers include, for example, monomers represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(2)中、Xは酸素原子もしくはメチレン基であり、aは0または1、bは1または2、cは1または2の整数を表す。Rは炭素数6以下のアルキル基を表す。) (In the formula (2), X represents an oxygen atom or a methylene group, a represents 0 or 1, b represents 1 or 2, and c represents an integer of 1 or 2. R 9 represents an alkyl group having 6 or less carbon atoms. Represents.)
 式(2)で表される環化重合性単量体としては、ジメチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジエチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-プロピル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(i-プロピル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-ブチル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-ヘキシル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジシクロヘキシル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート等が挙げられる。 Examples of the cyclopolymerizable monomer represented by the formula (2) include dimethyl-2,2'-[oxybis(methylene)]bis-2-propenoate and diethyl-2,2'-[oxybis(methylene)]. Bis-2-propenoate, di(n-propyl)-2,2'-[oxybis(methylene)]bis-2-propenoate, di(i-propyl)-2,2'-[oxybis(methylene)]bis- 2-propenoate, di(n-butyl)-2,2'-[oxybis(methylene)]bis-2-propenoate, di(n-hexyl)-2,2'-[oxybis(methylene)]bis-2- Examples thereof include propenoate and dicyclohexyl-2,2′-[oxybis(methylene)]bis-2-propenoate.
 硬化性成分(B)は、上述した多官能(メタ)アクリレート化合物と、環化重合性モノマーとが含まれることがより好ましい。これらを併用することで、下地層の破断伸度を上述の範囲に調整しつつ、下地層の熱収縮を抑制し、結果として、ガスバリア性積層体の熱収縮率を上述した範囲に調整しやすくとなる。
 硬化性成分(B)において、環化重合性モノマーと多官能(メタ)アクリレート化合物との質量比は、好ましくは95:5~30:70、より好ましくは90:10~35:65、更に好ましくは90:10~40:60である。環化重合性モノマーと多官能(メタ)アクリレート化合物の質量比が上記範囲にあることにより、下地層の破断伸度を上述の範囲に調整しつつ、ガスバリア性積層体の熱収縮率を上述した範囲に調整することが更に容易となる。
The curable component (B) more preferably contains the polyfunctional (meth)acrylate compound described above and a cyclopolymerizable monomer. By using these in combination, while controlling the elongation at break of the underlayer within the above range, the heat shrinkage of the underlayer is suppressed, and as a result, it is easy to adjust the heat shrinkage rate of the gas barrier laminate within the above range. Becomes
In the curable component (B), the mass ratio of the cyclopolymerizable monomer and the polyfunctional (meth)acrylate compound is preferably 95:5 to 30:70, more preferably 90:10 to 35:65, further preferably Is 90:10 to 40:60. Since the mass ratio of the cyclopolymerizable monomer and the polyfunctional (meth)acrylate compound is in the above range, the heat shrinkage rate of the gas barrier laminate is described above while adjusting the breaking elongation of the underlayer to the above range. It becomes easier to adjust the range.
〔硬化性樹脂組成物〕
 本発明の実施形態に係る下地層を形成するのに用いる硬化性樹脂組成物は、重合体成分(A)、硬化性成分(B)、及び所望により、後述する重合開始剤やその他の成分を混合し、適当な溶媒に溶解又は分散させることにより調製することができる。
[Curable resin composition]
The curable resin composition used for forming the underlayer according to the embodiment of the present invention comprises a polymer component (A), a curable component (B), and, if desired, a polymerization initiator and other components described below. It can be prepared by mixing and dissolving or dispersing in a suitable solvent.
 硬化性樹脂組成物中の、重合体成分(A)と硬化性単量体(B)の合計含有量は、溶媒を除いた硬化性樹脂組成物全体の質量に対して、好ましくは40~99.5質量%、より好ましくは60~99質量%、さらに好ましくは80~98質量%である。 The total content of the polymer component (A) and the curable monomer (B) in the curable resin composition is preferably 40 to 99 based on the total mass of the curable resin composition excluding the solvent. The amount is 0.5% by mass, more preferably 60 to 99% by mass, and further preferably 80 to 98% by mass.
 硬化性樹脂組成物中の、重合体成分(A)と硬化性成分(B)の含有量は、重合体成分(A)と硬化性成分(B)との質量比で、好ましくは、重合体成分(A):硬化性成分(B)=30:70~90:10、より好ましくは、35:65~80:20である。
 硬化性樹脂組成物において、重合体成分(A):硬化性単量体(B)の質量比がこのような範囲にあることで、得られる下地層の柔軟性がより向上しやすく、下地層の耐溶剤性も保たれやすい傾向がある。
The content of the polymer component (A) and the curable component (B) in the curable resin composition is the mass ratio of the polymer component (A) and the curable component (B), and preferably the polymer Component (A): Curable component (B)=30:70 to 90:10, and more preferably 35:65 to 80:20.
In the curable resin composition, when the mass ratio of the polymer component (A): the curable monomer (B) is within such a range, the flexibility of the obtained underlayer is more easily improved, and the underlayer Solvent resistance tends to be maintained.
 また、硬化性樹脂組成物中の硬化性成分(B)の含有量が上記範囲であれば、例えば、下地層を溶液キャスト法等によって得る場合、効率よく溶媒を除去することができるため、乾燥工程の長時間化によるカールやうねり等の変形の問題が解消される。 Further, when the content of the curable component (B) in the curable resin composition is in the above range, for example, when the underlayer is obtained by a solution casting method or the like, the solvent can be efficiently removed, and thus the drying is performed. The problem of deformation such as curling and waviness due to the lengthening of the process is solved.
 硬化性樹脂組成物には、所望により重合開始剤を含有させることができる。重合開始剤は、硬化反応を開始させるものであれば、特に制限なく用いることができ、例えば、熱重合開始剤や光重合開始剤が挙げられる。 If desired, the curable resin composition may contain a polymerization initiator. The polymerization initiator can be used without particular limitation as long as it initiates the curing reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
 熱重合開始剤としては、有機過酸化物やアゾ系化合物が挙げられる。
 有機過酸化物としては、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド類;アセチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド類;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド等のケトンパーオキサイド類;1,1-ビス(t-ブチルパーオキシ)シクロヘキサン等のパーオキシケタール類;t-ブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、1,1,3,3-テトラメチルブチルヒドロパーオキサイド、p-メンタンヒドロパーオキサイド、ジイソプロピルベンゼンヒドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド等のヒドロパーオキサイド類;t-ブチルパーオキシアセテート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルカーボネート等のパーオキシエステル類;等が挙げられる。
 アゾ系化合物としては、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル等が挙げられる。
Examples of the thermal polymerization initiator include organic peroxides and azo compounds.
Organic peroxides include dialkyl peroxides such as di-t-butyl peroxide, t-butyl cumyl peroxide and dicumyl peroxide; diacyl peroxides such as acetyl peroxide, lauroyl peroxide and benzoyl peroxide. Ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide and methyl cyclohexanone peroxide; peroxyketals such as 1,1-bis(t-butylperoxy)cyclohexane T-butyl hydroperoxide, cumene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethylhexane-2, Hydroperoxides such as 5-dihydroperoxide; peroxys such as t-butylperoxyacetate, t-butylperoxy-2-ethylhexanoate, t-butylperoxybenzoate, t-butylperoxyisopropyl carbonate Esters; and the like.
Examples of the azo compound include 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis(2-cyclopropylpropionitrile), 2,2′-azobis(2 ,4-Dimethylvaleronitrile), azobisisobutyronitrile, 2,2′-azobis(2-methylbutyronitrile), 1,1′-azobis(cyclohexane-1-carbonitrile), 2-(carbamoylazo) ) Isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile and the like can be mentioned.
 光重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン等のアルキルフェノン系光重合開始剤;2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)-フェニルホスフィネート、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド等のリン系光重合開始剤;ビス(η-2,4-シクロペンタジエン-1-イル)-ビス[2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル]チタニウム等のチタノセン系光重合開始剤;1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル系光重合開始剤;ベンゾフェノン、p-クロロベンゾフェノン、ベンゾイル安息香酸、o-ベンゾイル安息香酸メチル、4-メチルベンゾフェノン、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、3,3’-ジメチル-4-メトキシベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-(13-アクリロイル-1,4,7,10,13-ペンタオキサトリデシル)-ベンゾフェノン等のベンゾフェノン系光重合開始剤;チオキサントン、2-クロロチオキサントン、3-メチルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン等のチオキサントン系光重合開始剤;等が挙げられる。 Examples of the photopolymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one. , 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-[4-[4-(2-hydroxy-2 -Methyl-propionyl)-benzyl]phenyl]-2-methyl-propan-1-one, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethyl Amino-1-(4-morpholinophenyl)-butanone-1,2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone Alkylphenone-based photopolymerization initiators such as; 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, ethyl (2,4,6-trimethylbenzoyl) -Phosphorus photopolymerization initiators such as phenylphosphinate, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide; bis(η 5 -2,4-cyclopentadien-1-yl) )-Bis[2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl]titanium and other titanocene-based photopolymerization initiators; 1,2-octanedione-1-[4-(phenylthio)- 2-(O-benzoyl oxime)], ethanone-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-1-(O-acetyloxime), etc. Photopolymerization initiator; benzophenone, p-chlorobenzophenone, benzoylbenzoic acid, methyl o-benzoylbenzoate, 4-methylbenzophenone, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl-4'-methyl-diphenyl Benzophenones such as sulfide, 3,3'-dimethyl-4-methoxybenzophenone, 2,4,6-trimethylbenzophenone, 4-(13-acryloyl-1,4,7,10,13-pentaoxatridecyl)-benzophenone -Based photopolymerization initiators: thioxanthone, 2-chlorothioxanthone, 3-methylthioxanthone, 2,4-dime Thioxanthone-based photopolymerization initiators such as tylthioxanthone, 2,4-diisopropylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, and 4-isopropylthioxanthone; Are listed.
 上記の光重合開始剤の中でも、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)-フェニルホスフィネート、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド等のリン系光重合開始剤が好ましい。
 重合体成分(A)が芳香族環を有する熱可塑性樹脂である場合、重合体成分(A)が紫外線を吸収する結果、硬化反応が起こりにくいことがある。しかしながら、上記のリン系光重合開始剤を用いることで、上記重合体成分(A)に吸収されない波長の光を利用して硬化反応を効率よく進行させることができる。
 重合開始剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。
Among the above photopolymerization initiators, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, ethyl(2,4,6-trimethylbenzoyl)- Phosphorus photopolymerization initiators such as phenylphosphinate and bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide are preferable.
When the polymer component (A) is a thermoplastic resin having an aromatic ring, the polymer component (A) absorbs ultraviolet rays, and as a result, a curing reaction may be difficult to occur. However, by using the above-mentioned phosphorus-based photopolymerization initiator, the curing reaction can be efficiently progressed by utilizing the light of the wavelength which is not absorbed by the polymer component (A).
The polymerization initiators may be used alone or in combination of two or more.
 重合開始剤の含有量は、硬化性樹脂組成物全体に対して、0.05~15質量%が好ましく、0.05~10質量%がより好ましく、0.05~5質量%が更に好ましい。 The content of the polymerization initiator is preferably 0.05 to 15% by mass, more preferably 0.05 to 10% by mass, and further preferably 0.05 to 5% by mass, based on the entire curable resin composition.
 また、前記硬化性樹脂組成物は、重合体成分(A)、硬化性成分(B)、及び重合開始剤に加えて、トリイソプロパノールアミンや、4,4’-ジエチルアミノベンゾフェノン等の光重合開始助剤を含有していても良い。 In addition to the polymer component (A), the curable component (B), and the polymerization initiator, the curable resin composition also includes a photopolymerization initiation aid such as triisopropanolamine or 4,4′-diethylaminobenzophenone. You may contain the agent.
 前記硬化性樹脂組成物の調製に用いる溶媒としては、特に制限されず、例えば、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;ジクロロメタン、塩化エチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、モノクロロベンゼン等のハロゲン化炭化水素系溶媒;メタノール、エタノール、プロパノール、ブタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、2-ペンタノン、イソホロン、シクロヘキサノン等のケトン系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;エチルセロソルブ等のセロソルブ系溶剤;1,3-ジオキソラン等のエーテル系溶媒;等が挙げられる。 The solvent used for preparing the curable resin composition is not particularly limited, and examples thereof include aliphatic hydrocarbon solvents such as n-hexane and n-heptane; aromatic hydrocarbon solvents such as toluene and xylene; dichloromethane. , Halogenated hydrocarbon solvents such as ethylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, monochlorobenzene; alcohol solvents such as methanol, ethanol, propanol, butanol, propylene glycol monomethyl ether; acetone, methyl ethyl ketone, 2 -Pentanone, isophorone, cyclohexanone and other ketone solvents; ethyl acetate, butyl acetate and other ester solvents; ethyl cellosolve and other cellosolve solvents; 1,3-dioxolane and other ether solvents;
 前記硬化性樹脂組成物中の溶媒の含有量は、特に限定されないが、重合体成分(A)1gに対し、通常、0.1~1,000g、好ましくは、1~100gである。溶媒の量を適宜調節することによって、硬化性樹脂組成物の粘度を適宜なものに調節することができる。 The content of the solvent in the curable resin composition is not particularly limited, but is usually 0.1 to 1,000 g, preferably 1 to 100 g per 1 g of the polymer component (A). By appropriately adjusting the amount of the solvent, the viscosity of the curable resin composition can be adjusted to an appropriate value.
 また、前記硬化性樹脂組成物は、本発明の目的、効果を損なわない範囲内で、可塑剤、酸化防止剤、紫外線吸収剤等の、公知の添加剤を更に含有していてもよい。 Further, the curable resin composition may further contain known additives such as a plasticizer, an antioxidant and an ultraviolet absorber within a range that does not impair the objects and effects of the present invention.
 前記硬化性樹脂組成物を硬化させる方法は、用いる重合開始剤や硬化性単量体の種類に応じて適宜決定することができる。詳細は、後述する本発明のガスバリア性積層体の製造方法の項で説明する。 The method for curing the curable resin composition can be appropriately determined according to the type of polymerization initiator or curable monomer used. Details will be described in the section of the method for producing a gas barrier laminate of the present invention described later.
〔下地層の性状等〕
 本発明の実施形態に係るガスバリア性積層体は、以下の要件[2’]を満たすことが好ましい。
[2’]下地層の破断伸度が、2.5%以上である。
[Properties of underlayer, etc.]
The gas barrier laminate according to the embodiment of the present invention preferably satisfies the following requirement [2′].
[2′] The breaking elongation of the underlayer is 2.5% or more.
 要件[2’]を満たすとともに、上述した要件[1]に適する下地層とすることにより、加熱によって下地層が変形することが抑制され、結果的にガスバリア性積層体のガスバリア性を向上させることができ、ガスバリア性積層体のフレキシブル性を高くすることができる。下地層の破断伸度の上限は、特に限定されないが、通常、20%以下、好ましくは15%以下である。
 ここで、環化重合性モノマーを用いると、高温時の弾性率を比較的高く維持したまま、破断伸度を向上させることができ、要件[2’]を満たしやすくなる。その一方、硬化性成分(B)を全て環化重合性モノマーとしてしまうと、ガスバリア性積層体のガスバリア性が低下する傾向にある。本発明者らが種々検討した結果、熱収縮率の絶対値を一定範囲内に抑えることにより、ガスバリア性の低下が抑制されることが判明した。これは、熱によって下地層が影響を受けるため、例えば、ガスバリア層を塗工により形成する際の加熱によって、下地層が平面方向に変形を生じるところ、熱収縮率が所定範囲内になるように、材料等を選択することより、上の現象が抑制されるものと思われる。
When the requirement [2′] is satisfied and the underlayer is suitable for the above requirement [1], deformation of the underlayer due to heating is suppressed, and as a result, the gas barrier property of the gas barrier laminate is improved. Therefore, the flexibility of the gas barrier laminate can be enhanced. The upper limit of the breaking elongation of the underlayer is not particularly limited, but is usually 20% or less, preferably 15% or less.
Here, when the cyclopolymerizable monomer is used, the breaking elongation can be improved while maintaining the elastic modulus at a high temperature relatively high, and the requirement [2′] is easily satisfied. On the other hand, if all the curable components (B) are cyclopolymerizable monomers, the gas barrier properties of the gas barrier laminate will tend to deteriorate. As a result of various studies by the present inventors, it was found that the reduction of the gas barrier property was suppressed by suppressing the absolute value of the heat shrinkage ratio within a certain range. This is because the underlayer is affected by heat, and for example, when the underlayer is deformed in the plane direction by heating when forming the gas barrier layer by coating, the heat shrinkage ratio should be within a predetermined range. It seems that the above phenomenon can be suppressed by selecting materials, etc.
 要件[2’]を満たすためには、例えば、重合体成分(A)として、ポリイミド樹脂を用いたり、更にポリアミド樹脂等を添加することで柔軟な骨格を導入したり、重合体成分(A)の分子量を増加させたり、硬化性成分(B)として、環化重合性モノマーを用いることにより、芳香環の存在割合を減少させて、下地層の伸び特性を高めたりすることが有効である。
 また、例えば、多官能(メタ)アクリレート化合物と環化重合性モノマーとを併用することで、網目構造を増やすようにしたり、重合性成分(A)として、ポリイミド樹脂に代表されるような剛直であり、ガラス転移温度の高いものを選択したりして、上記要件[1]に適する下地層とすることができる。
In order to satisfy the requirement [2′], for example, a polyimide resin is used as the polymer component (A), a flexible skeleton is introduced by further adding a polyamide resin, or the polymer component (A) is added. It is effective to increase the molecular weight of ##STR3## or to use a cyclopolymerizable monomer as the curable component (B) to reduce the proportion of aromatic rings present and improve the elongation characteristics of the underlayer.
In addition, for example, by using a polyfunctional (meth)acrylate compound and a cyclopolymerizable monomer in combination, it is possible to increase the network structure, or as the polymerizable component (A), use a rigid resin represented by a polyimide resin. Therefore, by selecting one having a high glass transition temperature, it is possible to form an underlayer suitable for the above requirement [1].
 下地層の厚さは特に限定されず、ガスバリア性積層体の目的に合わせて決定すればよい。下地層の厚さは、通常、0.1~300μm、好ましくは0.1~100μm、より好ましくは、0.1~50μm、更に好ましくは0.1~10μm、より更に好ましくは0.2~10μmである。 The thickness of the underlayer is not particularly limited and may be determined according to the purpose of the gas barrier laminate. The thickness of the underlayer is usually 0.1 to 300 μm, preferably 0.1 to 100 μm, more preferably 0.1 to 50 μm, still more preferably 0.1 to 10 μm, still more preferably 0.2 to It is 10 μm.
 下地層を例えば、0.1~10μm程度の厚さにすると、ガスバリア性積層体の厚さが大きくなることを防止でき、薄型のガスバリア性積層体とすることができる。薄型のガスバリア性積層体であれば、薄型化が求められる有機ELディスプレイ等の用途において、ガスバリア性積層体が適用デバイス全体の厚さの増大要因とならないため好ましい。また、薄型のガスバリア性積層体であれば、ガスバリア性積層体の実装後のフレキシブル性及び屈曲耐性を向上させることができる。 When the underlayer has a thickness of, for example, about 0.1 to 10 μm, it is possible to prevent the thickness of the gas barrier laminate from increasing, and it is possible to obtain a thin gas barrier laminate. A thin gas-barrier laminate is preferable because it is not a factor for increasing the thickness of the entire applied device in an application such as an organic EL display where thinning is required. Further, if the gas barrier laminate is thin, the flexibility and bending resistance of the gas barrier laminate after mounting can be improved.
 前記下地層は、耐溶剤性に優れる。耐溶剤性に優れることから、例えば、下地層表面に他の層を形成する際に有機溶剤を用いる場合であっても、下地層表面がほとんど溶解しない。したがって、例えば、下地層表面に、有機溶剤を含む樹脂溶液を用いてガスバリア層を形成する場合であっても、下地層の成分がガスバリア層に混入しにくいため、ガスバリア性が低下しにくい。 The base layer has excellent solvent resistance. Since the solvent resistance is excellent, for example, even when an organic solvent is used when forming another layer on the surface of the underlayer, the surface of the underlayer is hardly dissolved. Therefore, for example, even when the gas barrier layer is formed on the surface of the underlayer using a resin solution containing an organic solvent, the components of the underlayer are less likely to mix into the gas barrier layer, and therefore the gas barrier property is less likely to deteriorate.
 この観点から、前記下地層のゲル分率は90%以上が好ましく、94%以上がより好ましい。ゲル分率が90%以上の下地層は、耐溶剤性に優れるものであるため、下地層表面に他の層をコーティングにより形成する際に有機溶剤を用いる場合であっても、下地層表面がほとんど溶解せず、耐溶剤性に優れるガスバリア性積層体を得やすくすることができる。 From this viewpoint, the gel fraction of the underlayer is preferably 90% or more, more preferably 94% or more. Since the underlayer having a gel fraction of 90% or more has excellent solvent resistance, even when an organic solvent is used for forming another layer on the underlayer surface by coating, the underlayer surface is It is possible to easily obtain a gas barrier layered product which is hardly dissolved and has excellent solvent resistance.
 ここで、ゲル分率とは、100mm×100mmにカットした下地層を、予め質量を測定した150mm×150mmのナイロンメッシュ(#120)で包み、トルエン(100mL)中に3日間浸漬し、取り出して120℃で1時間乾燥させ、次いで、23℃相対湿度50%の条件下に3時間放置して調湿を行った後、その質量を測定して、以下の式によって得られるものである。 Here, the gel fraction means that the underlayer cut into 100 mm×100 mm is wrapped with a nylon mesh (#120) of 150 mm×150 mm whose mass is measured in advance, dipped in toluene (100 mL) for 3 days, and taken out. After being dried at 120° C. for 1 hour and then left at 23° C. and 50% relative humidity for 3 hours to adjust the humidity, the mass is measured and obtained by the following formula.
 ゲル分率(%)=[(浸漬後の残存樹脂の質量)/(浸漬前の樹脂の質量)]×100 Gel fraction (%) = [(mass of residual resin after immersion)/(mass of resin before immersion)] x 100
 下地層は、ガスバリア層との層間密着性に優れる。すなわち、前記下地層上にアンカーコート層を設けずにガスバリア層を形成することができる。 The base layer has excellent interlayer adhesion with the gas barrier layer. That is, the gas barrier layer can be formed without providing the anchor coat layer on the underlayer.
 下地層は、無色透明であることが好ましい。下地層が無色透明であることで、本発明の実施形態に係るガスバリア性積層体を光学用途に好ましく用いることができる。 The base layer is preferably colorless and transparent. Since the underlayer is colorless and transparent, the gas barrier laminate according to the embodiment of the present invention can be preferably used for optical applications.
 下地層は、複屈折率が低く光学等方性に優れる。前記下地層の面内の位相差は、通常、20nm以下であり、15nm以下が好ましい。厚さ方向の位相差は、通常、-500nm以下であり、-450nm以下が好ましい。また、面内の位相差を下地層の厚さで割った値(複屈折率)は、通常、100×10-5以下であり、好ましくは20×10-5以下である。
 下地層の面内の位相差、厚さ方向の位相差、複屈折率が上記の範囲内であれば、複屈折率が低く光学等方性に優れるガスバリア性積層体が得られ、本発明の実施形態に係るガスバリア性積層体を光学用途に好ましく用いることができる。
The underlayer has a low birefringence and is excellent in optical isotropy. The in-plane retardation of the underlayer is usually 20 nm or less, preferably 15 nm or less. The retardation in the thickness direction is usually -500 nm or less, preferably -450 nm or less. The value (birefringence) obtained by dividing the in-plane retardation by the thickness of the underlayer is usually 100×10 −5 or less, preferably 20×10 −5 or less.
If the in-plane retardation of the underlayer, the retardation in the thickness direction, and the birefringence are within the above ranges, a gas barrier laminate having a low birefringence and excellent optical isotropy can be obtained. The gas barrier laminate according to the embodiment can be preferably used for optical applications.
 下地層の熱収縮率の絶対値は、0.5%以下であり、好ましくは0.3%以下、更に好ましくは0.2%以下である。 The absolute value of the heat shrinkage rate of the underlayer is 0.5% or less, preferably 0.3% or less, and more preferably 0.2% or less.
 下地層の破断伸度は、好ましくは2.5%以上、より好ましくは2.6%以上、更に好ましくは2.7%以上、特に好ましくは3.0%以上である。下地層の破断伸度が2.5%以上であれば、ガスバリア性積層体の破断伸度を2%以上程度に調整しやすくなり、結果的に、屈曲耐性に優れ、柔軟性に優れるガスバリア性積層体が得られ易い。 The breaking elongation of the underlayer is preferably 2.5% or more, more preferably 2.6% or more, still more preferably 2.7% or more, and particularly preferably 3.0% or more. When the breaking elongation of the underlayer is 2.5% or more, it becomes easy to adjust the breaking elongation of the gas barrier laminate to about 2% or more, and as a result, the gas barrier property is excellent in bending resistance and flexibility. A laminated body is easily obtained.
 下地層の130℃における引張弾性率は、好ましくは1.0×10MPa以上、1.3×10MPa以上、より好ましくは1.5×10MPa%以上、更に好ましくは2.0×10MPa以上である。下地層の130℃における引張弾性率が1.3×10MPa以上であれば、下地層の耐熱性を高くすることができ、ガスバリア性積層体のガスバリア性の水蒸気透過率を低く、具体的には、1×10-2(g・m-2・day-1)以下とすることが容易となる。 The tensile elastic modulus at 130° C. of the underlayer is preferably 1.0×10 3 MPa or more, 1.3×10 3 MPa or more, more preferably 1.5×10 3 MPa% or more, further preferably 2.0. It is ×10 3 MPa or more. When the tensile elastic modulus at 130° C. of the underlayer is 1.3×10 3 MPa or more, the heat resistance of the underlayer can be increased, and the water vapor permeability of the gas barrier layered product is low. In addition, it is easy to set it to 1×10 −2 (g·m −2 ·day −1 ) or less.
 下地層は、上述のように、耐熱性、耐溶剤性、層間密着性、透明性に優れ、更に、複屈性率が低く光学等方性に優れる。したがって、後述するように、このような特性を有する下地層上に、例えば、溶液キャスト法によりガスバリア層を形成することで、当該ガスバリア層は、優れたガスバリア性を発現し、しかも、下地層の耐熱性及び耐溶剤性の少なくとも一方に起因して、熱及び溶媒の少なくとも一方によりガスバリア性が損なわれることも防止される。また、得られるガスバリア性積層体の耐熱性、層間密着性、透明性に優れたものとなる。更に、複屈性率が低く光学等方性に優れるガスバリア性積層体を得ることができる。 As described above, the underlayer has excellent heat resistance, solvent resistance, interlayer adhesion, and transparency, and also has a low birefringence rate and excellent optical isotropy. Therefore, as will be described later, by forming a gas barrier layer on the underlayer having such characteristics by, for example, a solution casting method, the gas barrier layer exhibits excellent gas barrier properties, and moreover, the gas barrier layer has excellent properties. It is also possible to prevent the gas barrier property from being impaired by at least one of heat and solvent due to at least one of heat resistance and solvent resistance. In addition, the obtained gas barrier laminate has excellent heat resistance, interlayer adhesion, and transparency. Furthermore, a gas barrier laminate having a low birefringence rate and excellent optical isotropy can be obtained.
1-2.ガスバリア層
 本発明の実施形態に係るガスバリア性積層体のガスバリア層は、ガスバリア性を有する限り、材質等は特に限定されない。例えば、無機膜からなるガスバリア層、ガスバリア性樹脂を含むガスバリア層、高分子化合物を含む層に改質処理を施して得られるガスバリア層等が挙げられる。
 これらの中でも、薄く、ガスバリア性及び耐溶剤性に優れる層を効率よく形成できることから、ガスバリア層は、無機膜からなるガスバリア層、及び高分子化合物を含む層に改質処理を施して得られるガスバリア層が好ましい。
1-2. Gas Barrier Layer The material and the like of the gas barrier layer of the gas barrier laminate according to the embodiment of the present invention are not particularly limited as long as they have gas barrier properties. Examples thereof include a gas barrier layer made of an inorganic film, a gas barrier layer containing a gas barrier resin, and a gas barrier layer obtained by subjecting a layer containing a polymer compound to a modification treatment.
Among these, the gas barrier layer is a gas barrier layer obtained by subjecting a gas barrier layer made of an inorganic film and a layer containing a polymer compound to a modification treatment because a thin layer having excellent gas barrier properties and solvent resistance can be efficiently formed. Layers are preferred.
 無機膜としては、特に制限されず、例えば、無機蒸着膜が挙げられる。
 無機蒸着膜としては、無機化合物や金属の蒸着膜が挙げられる。
 無機化合物の蒸着膜の原料としては、酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化ケイ素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;無機硫化物;酸化窒化ケイ素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。
 金属の蒸着膜の原料としては、アルミニウム、マグネシウム、亜鉛、及びスズ等が挙げられる。
 これらは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中では、ガスバリア性の観点から、無機酸化物、無機窒化物又は金属を原料とする無機蒸着膜が好ましく、更に、透明性の観点から、無機酸化物又は無機窒化物を原料とする無機蒸着膜が好ましい。また、無機蒸着膜は、単層でもよく、多層でもよい。
The inorganic film is not particularly limited, and examples thereof include an inorganic vapor deposition film.
Examples of the inorganic vapor deposition film include vapor deposition films of inorganic compounds and metals.
Inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide, tin oxide, and the like; inorganic nitrides such as silicon nitride, aluminum nitride, and titanium nitride; inorganic carbides; Inorganic sulfides; inorganic oxynitrides such as silicon oxynitride; inorganic oxycarbides; inorganic nitriding carbides; inorganic oxynitriding carbides and the like.
Examples of the raw material for the metal vapor deposition film include aluminum, magnesium, zinc, tin, and the like.
These may be used alone or in combination of two or more.
Among these, from the viewpoint of gas barrier properties, inorganic oxides, inorganic nitrides or inorganic vapor-deposited films using a metal as a raw material are preferable, and from the viewpoint of transparency, inorganic oxides or inorganic nitrides using a raw material as an inorganic material. Evaporated films are preferred. The inorganic vapor deposition film may be a single layer or a multilayer.
 無機蒸着膜の厚さは、ガスバリア性と取り扱い性の観点から、好ましくは10~2,000nm、より好ましくは20~1,000nm、より好ましくは30~500nm、更に好ましくは40~200nmの範囲である。 The thickness of the inorganic vapor deposition film is preferably 10 to 2,000 nm, more preferably 20 to 1,000 nm, more preferably 30 to 500 nm, further preferably 40 to 200 nm, from the viewpoint of gas barrier properties and handleability. is there.
 無機蒸着膜を形成する方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理的蒸着)法や、熱CVD(化学的蒸着)法、プラズマCVD法、光CVD法等のCVD法が挙げられる。 Examples of methods for forming an inorganic vapor deposition film include PVD (physical vapor deposition) methods such as vacuum vapor deposition, sputtering, and ion plating, thermal CVD (chemical vapor deposition), plasma CVD, and photo-CVD. A CVD method can be used.
 ガスバリア性樹脂を含むガスバリア層において、用いるガスバリア性樹脂としては、ポリビニルアルコール、又はその部分ケン化物、エチレン-ビニルアルコール共重合体、ポリアクリロニトリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリクロロトリフルオロエチレン等の酸素等を透過しにくい樹脂が挙げられる。 Examples of the gas barrier resin used in the gas barrier layer containing the gas barrier resin include polyvinyl alcohol, partially saponified products thereof, ethylene-vinyl alcohol copolymer, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polychlorotrifluoroethylene and the like. Resins that are difficult to permeate oxygen and the like are mentioned.
 ガスバリア性樹脂を含むガスバリア層の厚さは、ガスバリア性の観点から、好ましくは10~2,000nm、より好ましくは20~1,000nm、より好ましくは30~500nm、更に好ましくは40~200nmの範囲である。 From the viewpoint of gas barrier properties, the thickness of the gas barrier layer containing the gas barrier resin is preferably 10 to 2,000 nm, more preferably 20 to 1,000 nm, more preferably 30 to 500 nm, further preferably 40 to 200 nm. Is.
 ガスバリア性樹脂を含むガスバリア層を形成する方法としては、ガスバリア性樹脂を含む溶液を、下地層上に塗布し、得られた塗膜を適宜乾燥する方法が挙げられる。 As a method for forming the gas barrier layer containing the gas barrier resin, there is a method of applying a solution containing the gas barrier resin onto the underlayer and appropriately drying the obtained coating film.
 高分子化合物を含む層(以下、「高分子層」ということがある)に改質処理を施して得られるガスバリア層において、用いる高分子化合物としては、ケイ素含有高分子化合物、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。これらの高分子化合物は1種単独で、あるいは2種以上を組合せて用いることができる。 In the gas barrier layer obtained by subjecting a layer containing a polymer compound (hereinafter, sometimes referred to as “polymer layer”) to a modification treatment, the polymer compound used is a silicon-containing polymer compound, polyimide, polyamide, polyamide Examples include imides, polyphenylene ethers, polyether ketones, polyether ether ketones, polyolefins, polyesters, polycarbonates, polysulfones, polyether sulfones, polyphenylene sulfides, polyarylates, acrylic resins, cycloolefin polymers, and aromatic polymers. .. These polymer compounds may be used alone or in combination of two or more.
 これらの中でも、高分子化合物はケイ素含有高分子化合物が好ましい。ケイ素含有高分子化合物としては、ポリシラザン系化合物(特公昭63-16325号公報、特開昭62-195024号公報、特開昭63-81122号公報、特開平1-138108号公報、特開平2-84437号公報、特開平2-175726号公報、特開平4-63833号公報、特開平5-238827号公報、特開平5-345826号公報、特開2005-36089号公報、特開平6-122852号公報、特開平6-299118号公報、特開平6-306329号公報、特開平9-31333号公報、特開平10-245436号公報、特表2003-514822号公報、国際公開WO2011/107018号等参照)、ポリカルボシラン系化合物(Journal of Materials Science,2569-2576,Vol.13,1978、Organometallics,1336-1344,Vol.10,1991、Journal of Organometallic Chemistry,1-10,Vol.521,1996、特開昭51-126300号公報、特開2001-328991号公報、特開2006-117917号公報、特開2009-286891号公報、特開2010-106100号公報等参照)、ポリシラン系化合物(R.D.Miller、J.Michl;Chemical Review、第89巻、1359頁(1989)、N.Matsumoto;Japanese Journal of Physics、第37巻、5425頁(1998)、特開2008-63586号公報、特開2009-235358号公報等参照)、及びポリオルガノシロキサン系化合物(特開2010-229445号公報、特開2010-232569号公報、特開2010-238736号公報等参照)等が挙げられる。 Among these, the polymer compound is preferably a silicon-containing polymer compound. Examples of the silicon-containing polymer compound include polysilazane compounds (Japanese Patent Publication No. 63-16325, Japanese Patent Laid-Open No. 62-195024, Japanese Patent Laid-Open No. 63-81122, Japanese Patent Laid-Open No. 1-138108, Japanese Patent Laid-Open No. 2-138108) No. 84437, No. 2-175726, No. 4-63833, No. 5-238827, No. 5-345826, No. 2005-36089, No. 6-122852. References: JP-A-6-299118, JP-A-6-306329, JP-A-9-31333, JP-A-10-245436, JP-A-2003-514822, and International Publication WO2011/107018. )), polycarbosilane compound (Journal of Materials Science, 2569-2576, Vol. 13, 1978, Organometallics, 1336-1344, Vol. JP-A-51-126300, JP-A-2001-328991, JP-A-2006-117917, JP-A-2009-286891, JP-A-2010-106100, etc.), polysilane compounds (R. D. Miller, J. Michl; Chemical Review, Vol. 89, p. 1359 (1989), N. Matsumoto; Japane Journal of Physics, vol. 37, p. 2009-235358, etc.), polyorganosiloxane compounds (see JP 2010-229445 A, JP 2010-232569 A, JP 2010-238736 A, etc.) and the like.
 これらの中でも、優れたガスバリア性を有するガスバリア層を形成できる観点から、ポリシラザン系化合物が好ましい。ポリシラザン系化合物としては、無機ポリシラザンや有機ポリシラザンが挙げられる。無機ポリシラザンとしてはペルヒドロポリシラザン等が挙げられ、有機ポリシラザンとしてはペルヒドロポリシラザンの水素の一部又は全部がアルキル基等の有機基で置換された化合物等が挙げられる。これらの中でも、入手容易性、及び優れたガスバリア性を有するガスバリア層を形成できる観点から、無機ポリシラザンがより好ましい。
 また、ポリシラザン系化合物は、ガラスコーティング材等として市販されている市販品をそのまま使用することもできる。
 ポリシラザン系化合物は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
Among these, polysilazane compounds are preferable from the viewpoint of forming a gas barrier layer having excellent gas barrier properties. Examples of the polysilazane-based compound include inorganic polysilazane and organic polysilazane. Examples of the inorganic polysilazane include perhydropolysilazane and the like, and examples of the organic polysilazane include compounds in which a part or all of hydrogen of perhydropolysilazane is substituted with an organic group such as an alkyl group. Among these, inorganic polysilazane is more preferable from the viewpoint of availability and formation of a gas barrier layer having excellent gas barrier properties.
Further, as the polysilazane compound, a commercially available product such as a glass coating material can be used as it is.
The polysilazane compounds can be used alone or in combination of two or more.
 前記高分子層は、上述した高分子化合物の他に、本発明の目的を阻害しない範囲で他の成分を含んでいてもよい。他の成分としては、硬化剤、他の高分子、老化防止剤、光安定剤、難燃剤等が挙げられる。 The polymer layer may contain, in addition to the above-mentioned polymer compound, other components as long as the object of the present invention is not impaired. Examples of other components include curing agents, other polymers, antioxidants, light stabilizers, flame retardants and the like.
 高分子層中の、高分子化合物の含有量は、優れたガスバリア性を有するガスバリア層を形成できる観点から、50質量%以上であるのが好ましく、70質量%以上であるのがより好ましい。 The content of the polymer compound in the polymer layer is preferably 50% by mass or more, and more preferably 70% by mass or more, from the viewpoint of forming a gas barrier layer having excellent gas barrier properties.
 高分子層を形成する方法としては、例えば、高分子化合物の少なくとも一種、所望により他の成分、及び溶剤等を含有する層形成用溶液を、公知の方法によって下地層または所望により下地層上に形成されたプライマー層上に塗布し、得られた塗膜を適度に乾燥して形成する方法が挙げられる。 As the method for forming the polymer layer, for example, a layer-forming solution containing at least one kind of polymer compound, optionally other components, and a solvent is formed on the underlayer or optionally on the underlayer by a known method. A method of applying on the formed primer layer and appropriately drying the obtained coating film may be used.
 層形成用溶液を塗布する際は、スピンコーター、ナイフコーター、グラビアコーター等の公知の装置を使用することができる。 When applying the layer forming solution, a known device such as a spin coater, a knife coater, or a gravure coater can be used.
 得られた塗膜を乾燥させたり、ガスバリア性積層体のガスバリア性を向上させるため、塗膜を加熱したりすることが好ましい。加熱、乾燥方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80~150℃であり、加熱時間は、通常、数十秒から数十分である。 It is preferable to dry the obtained coating film or to heat the coating film in order to improve the gas barrier properties of the gas barrier laminate. As the heating and drying method, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be adopted. The heating temperature is usually 80 to 150° C., and the heating time is usually several tens of seconds to several tens of minutes.
 ガスバリア性積層体のガスバリア層を形成する際に、例えば、上述したようなポリシラザン系化合物を用いる場合は、塗工後の加熱によってポリシラザンの転化反応が生じ、ガスバリア性に優れた塗膜となる。
 その一方、このような塗膜を形成する際の加熱によって、耐熱性の低い下地層を用いている場合は、下地層に変形を生じる恐れがある。下地層の変形は、ガスバリア性積層体のガスバリア層のガスバリア性に悪影響を与える可能性がある。しかしながら、本発明の実施形態に係る下地層は、耐熱性に優れているため、塗工時及び塗工後の加熱によっても変形を生じ難い。したがって、下地層の変形に起因するガスバリア性積層体のガスバリア性の低下も回避することができる。
When the gas barrier layer of the gas barrier layered product is formed, for example, when the polysilazane compound as described above is used, the conversion reaction of polysilazane occurs by heating after coating, and a coating film having excellent gas barrier properties is obtained.
On the other hand, when an underlayer having low heat resistance is used, there is a possibility that the underlayer may be deformed by heating when forming such a coating film. The deformation of the underlayer may adversely affect the gas barrier properties of the gas barrier layer of the gas barrier laminate. However, since the underlayer according to the embodiment of the present invention has excellent heat resistance, deformation is unlikely to occur even during heating during and after coating. Therefore, it is possible to avoid deterioration of the gas barrier property of the gas barrier laminate due to the deformation of the underlayer.
 高分子層の厚さは、通常、20~1,000nm、好ましくは30~800nm、より好ましくは40~400nmである。
 高分子層の厚さがナノオーダーであっても、後述するように改質処理を施すことで、充分なガスバリア性能を有するガスバリア性積層体を得ることができる。
 また、上記高分子層は、ケイ素化合物を含む組成物の塗膜に改質処理を施したものであることが好ましい。高分子層が、ケイ素化合物を含む組成物の塗膜に改質処理を施したものであると、例えば、蒸着やスパッタリングにより設けた無機膜よりも柔軟性に富むものとすることができる。
The thickness of the polymer layer is usually 20 to 1,000 nm, preferably 30 to 800 nm, more preferably 40 to 400 nm.
Even if the thickness of the polymer layer is nano-order, a gas barrier laminate having sufficient gas barrier performance can be obtained by performing a modification treatment as described below.
Further, it is preferable that the polymer layer is obtained by subjecting a coating film of a composition containing a silicon compound to a modification treatment. When the polymer layer is obtained by subjecting a coating film of a composition containing a silicon compound to a modification treatment, the polymer layer can be made more flexible than an inorganic film provided by vapor deposition or sputtering, for example.
 改質処理としては、イオン注入、真空紫外光照射等が挙げられる。これらの中でも、高いガスバリア性能が得られる点から、イオン注入が好ましい。イオン注入において、高分子層に注入されるイオンの注入量は、形成するガスバリア性積層体の使用目的(必要なガスバリア性、透明性等)等に合わせて適宜決定すればよい。 As the modification treatment, ion implantation, vacuum ultraviolet light irradiation, etc. may be mentioned. Of these, ion implantation is preferable because high gas barrier performance can be obtained. In the ion implantation, the amount of ions to be implanted into the polymer layer may be appropriately determined according to the purpose of use (necessary gas barrier property, transparency, etc.) of the gas barrier laminate to be formed.
 注入されるイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;
メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等のアルカン系ガス類のイオン;エチレン、プロピレン、ブテン、ペンテン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン、メチルアセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン、キシレン、インデン、ナフタレン、フェナントレン等の芳香族炭化水素系ガス類のイオン;シクロプロパン、シクロヘキサン等のシクロアルカン系ガス類のイオン;シクロペンテン、シクロヘキセン等のシクロアルケン系ガス類のイオン;
金、銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、ニオブ、タンタル、タングステン、アルミニウム等の導電性の金属のイオン;
シラン(SiH)又は有機ケイ素化合物のイオン;等が挙げられる。
Ions of rare gases such as argon, helium, neon, krypton, and xenon; ions of fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, and the like;
Ions of alkane gases such as methane, ethane, propane, butane, pentane, and hexane; ions of alkenes gases such as ethylene, propylene, butene, and pentene; ions of alkadiene gases such as pentadiene and butadiene; acetylene, Ions of alkyne gases such as methylacetylene; ions of aromatic hydrocarbon gases such as benzene, toluene, xylene, indene, naphthalene, phenanthrene; ions of cycloalkane gases such as cyclopropane and cyclohexane; cyclopentene, Ions of cycloalkene-based gases such as cyclohexene;
Ions of conductive metals such as gold, silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten and aluminum;
Silane (SiH 4 ) or an ion of an organic silicon compound; and the like.
 有機ケイ素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン等のテトラアルコキシシラン;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン等の無置換若しくは置換基を有するアルキルアルコキシシラン;
ジフェニルジメトキシシラン、フェニルトリエトキシシラン等のアリールアルコキシシラン;
ヘキサメチルジシロキサン(HMDSO)等のジシロキサン;
ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、テトラキスジメチルアミノシラン、トリス(ジメチルアミノ)シラン等のアミノシラン;
ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラメチルジシラザン等のシラザン;
テトライソシアナートシラン等のシアナートシラン;
トリエトキシフルオロシラン等のハロゲノシラン;
ジアリルジメチルシラン、アリルトリメチルシラン等のアルケニルシラン;
ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、テトラメチルシラン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ベンジルトリメチルシラン等の無置換若しくは置換基を有するアルキルシラン;
ビス(トリメチルシリル)アセチレン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン等のシリルアルキン;
1,4-ビストリメチルシリル-1,3-ブタジイン、シクロペンタジエニルトリメチルシラン等のシリルアルケン;
フェニルジメチルシラン、フェニルトリメチルシラン等のアリールアルキルシラン;
プロパルギルトリメチルシラン等のアルキニルアルキルシラン;
ビニルトリメチルシラン等のアルケニルアルキルシラン;
ヘキサメチルジシラン等のジシラン;
オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン等のシロキサン;
N,O-ビス(トリメチルシリル)アセトアミド;
ビス(トリメチルシリル)カルボジイミド;
等が挙げられる。
 これらのイオンは、一種単独で、あるいは二種以上を組み合わせて用いてもよい。
Examples of the organic silicon compound include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, and tetra t-butoxysilane;
An alkylalkoxysilane having an unsubstituted or substituted group such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, (3,3,3-trifluoropropyl)trimethoxysilane;
Arylalkoxysilanes such as diphenyldimethoxysilane and phenyltriethoxysilane;
Hexamethyldisiloxane (HMDSO) and other disiloxanes;
Aminosilanes such as bis(dimethylamino)dimethylsilane, bis(dimethylamino)methylvinylsilane, bis(ethylamino)dimethylsilane, diethylaminotrimethylsilane, dimethylaminodimethylsilane, tetrakisdimethylaminosilane, and tris(dimethylamino)silane;
Silazanes such as hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane, tetramethyldisilazane and the like;
Cyanate silane such as tetraisocyanate silane;
Halogenosilanes such as triethoxyfluorosilane;
Alkenylsilanes such as diallyldimethylsilane and allyltrimethylsilane;
An unsubstituted or substituted alkylsilane such as di-t-butylsilane, 1,3-disilabutane, bis(trimethylsilyl)methane, tetramethylsilane, tris(trimethylsilyl)methane, tris(trimethylsilyl)silane, benzyltrimethylsilane;
Silylalkynes such as bis(trimethylsilyl)acetylene, trimethylsilylacetylene, 1-(trimethylsilyl)-1-propyne;
Silylalkenes such as 1,4-bistrimethylsilyl-1,3-butadiyne and cyclopentadienyltrimethylsilane;
Arylalkylsilanes such as phenyldimethylsilane and phenyltrimethylsilane;
Alkynylalkylsilanes such as propargyltrimethylsilane;
Alkenylalkylsilanes such as vinyltrimethylsilane;
Disilane such as hexamethyldisilane;
Siloxane such as octamethylcyclotetrasiloxane, tetramethylcyclotetrasiloxane, hexamethylcyclotetrasiloxane;
N,O-bis(trimethylsilyl)acetamide;
Bis(trimethylsilyl)carbodiimide;
Etc.
These ions may be used alone or in combination of two or more.
 中でも、より簡便に注入することができ、特に優れたガスバリア性を有するガスバリア層が得られることから、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、及びクリプトンからなる群から選ばれる少なくとも一種のイオンが好ましい。 Of these, at least one selected from the group consisting of hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton, because it can be injected more easily and a gas barrier layer having particularly excellent gas barrier properties can be obtained. Are preferred.
 イオンを注入する方法としては、特に限定されないが、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法等が挙げられる。中でも、簡便にガスバリア性のフィルムが得られることから、後者のプラズマイオンを注入する方法が好ましい。 The method of implanting ions is not particularly limited, but examples include a method of irradiating ions (ion beam) accelerated by an electric field and a method of implanting ions in plasma. Among them, the latter method of injecting plasma ions is preferable because a gas barrier film can be easily obtained.
 プラズマイオン注入法としては、(α)外部電界を用いて発生させたプラズマ中に存在するイオンを、高分子層に注入する方法、又は(β)外部電界を用いることなく、前記層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、高分子層に注入する方法が好ましい。 As a plasma ion implantation method, (α) a method of injecting ions existing in plasma generated by using an external electric field into a polymer layer, or (β) applying to the layer without using an external electric field A method of injecting into the polymer layer ions existing in the plasma generated only by the electric field generated by the negative high voltage pulse is preferable.
 前記(α)の方法においては、イオン注入する際の圧力(プラズマイオン注入時の圧力)を0.01~1Paとすることが好ましい。プラズマイオン注入時の圧力がこのような範囲にあるときに、簡便にかつ効率よく均一にイオンを注入することができ、目的のガスバリア層を効率よく形成することができる。 In the above method (α), it is preferable that the pressure during ion implantation (pressure during plasma ion implantation) be 0.01 to 1 Pa. When the pressure at the time of plasma ion implantation is in such a range, it is possible to simply and efficiently and uniformly implant ions, and it is possible to efficiently form a desired gas barrier layer.
 前記(β)の方法は、減圧度を高くする必要がなく、処理操作が簡便であり、処理時間も大幅に短縮することができる。また、前記層全体にわたって均一に処理することができ、負の高電圧パルス印加時にプラズマ中のイオンを高エネルギーで高分子層に連続的に注入することができる。更に、radio frequency(高周波、以下、「RF」と略す。)や、マイクロ波等の高周波電力源等の特別の他の手段を要することなく、層に負の高電圧パルスを印加するだけで、高分子層に良質のイオンを均一に注入することができる。 The method (β) does not require a high degree of decompression, the processing operation is simple, and the processing time can be greatly shortened. Further, the entire layer can be uniformly processed, and ions in the plasma can be continuously injected into the polymer layer with high energy when a negative high voltage pulse is applied. Furthermore, without applying any other special means such as radio frequency (high frequency, hereinafter abbreviated as “RF”) or high frequency power source such as microwave, simply by applying a negative high voltage pulse to the layer, Good quality ions can be uniformly injected into the polymer layer.
 前記(α)及び(β)のいずれの方法においても、負の高電圧パルスを印加するとき、すなわちイオン注入するときのパルス幅は、1~15μsecであるのが好ましい。パルス幅がこのような範囲にあるときに、より簡便にかつ効率よく、均一にイオンを注入することができる。 In any of the above methods (α) and (β), the pulse width when applying a negative high voltage pulse, that is, when implanting ions is preferably 1 to 15 μsec. When the pulse width is in such a range, it is possible to more simply and efficiently implant ions uniformly.
 また、プラズマを発生させるときの印加電圧は、好ましくは-1~-50kV、より好ましくは-1~-30kV、特に好ましくは-5~-20kVである。印加電圧が-1kVより小さい値でイオン注入を行うと、イオン注入量(ドーズ量)が不十分となり、所望の性能が得られにくくなる。一方、-50kVより大きい値でイオン注入を行うと、イオン注入時にフィルムが帯電し、またフィルムへの着色等の不具合が生じやすくなり、好ましくない。 The applied voltage when generating plasma is preferably -1 to -50 kV, more preferably -1 to -30 kV, and particularly preferably -5 to -20 kV. If the applied voltage is lower than −1 kV, the ion implantation amount (dose amount) becomes insufficient and it becomes difficult to obtain desired performance. On the other hand, if ion implantation is performed at a value higher than −50 kV, the film is charged during ion implantation and defects such as coloring of the film are likely to occur, which is not preferable.
 プラズマイオン注入するイオン種としては、前記注入されるイオンとして例示したのと同様のものが挙げられる。 As the ion species for plasma ion implantation, the same species as those exemplified as the above-mentioned implanted ions can be mentioned.
 高分子層にプラズマ中のイオンを注入する際には、プラズマイオン注入装置を用いる。
 プラズマイオン注入装置としては、具体的には、(i)高分子層(以下、「イオン注入する層」ということがある。)に負の高電圧パルスを印加するフィードスルーに高周波電力を重畳してイオン注入する層の周囲を均等にプラズマで囲み、プラズマ中のイオンを誘引、注入、衝突、堆積させる装置(特開2001-26887号公報)、(ii)チャンバー内にアンテナを設け、高周波電力を与えてプラズマを発生させてイオン注入する層周囲にプラズマが到達後、イオン注入する層に正と負のパルスを交互に印加することで、正のパルスでプラズマ中の電子を誘引衝突させてイオン注入する層を加熱し、パルス定数を制御して温度制御を行いつつ、負のパルスを印加してプラズマ中のイオンを誘引、注入させる装置(特開2001-156013号公報)、(iii)マイクロ波等の高周波電力源等の外部電界を用いてプラズマを発生させ、高電圧パルスを印加してプラズマ中のイオンを誘引、注入させるプラズマイオン注入装置、(iv)外部電界を用いることなく高電圧パルスの印加により発生する電界のみで発生するプラズマ中のイオンを注入するプラズマイオン注入装置等が挙げられる。
A plasma ion implanter is used to implant the ions in the plasma into the polymer layer.
As a plasma ion implantation apparatus, specifically, (i) a high-frequency power is superposed on a feedthrough for applying a negative high voltage pulse to a polymer layer (hereinafter, also referred to as “ion implantation layer”). Device for uniformly encircling a layer to be ion-implanted with plasma to attract, inject, collide, and deposit ions in the plasma (Japanese Patent Laid-Open No. 2001-26887), (ii) An antenna is provided in the chamber, and high-frequency power is supplied. After the plasma reaches the periphery of the layer for ion implantation, the positive and negative pulses are alternately applied to the layer for ion implantation to attract and collide electrons in the plasma with the positive pulse. A device for heating a layer to be ion-implanted and controlling a pulse constant to control the temperature while applying a negative pulse to attract and inject ions in plasma (Japanese Patent Laid-Open No. 2001-156013), (iii). A plasma ion implanter for inducing and injecting ions in the plasma by generating a plasma using an external electric field such as a high frequency power source such as a microwave and applying a high voltage pulse, and (iv) a high voltage without using an external electric field. Examples thereof include a plasma ion implantation device that implants ions in plasma generated only by an electric field generated by applying a voltage pulse.
 これらの中でも、処理操作が簡便であり、処理時間も大幅に短縮でき、連続使用に適していることから、(iii)又は(iv)のプラズマイオン注入装置を用いるのが好ましい。
 前記(iii)及び(iv)のプラズマイオン注入装置を用いる方法については、国際公開WO2010/021326号公報に記載のものが挙げられる。
Among these, it is preferable to use the plasma ion implantation apparatus of (iii) or (iv) because the treatment operation is simple, the treatment time can be greatly shortened, and the continuous use is suitable.
Examples of the method using the plasma ion implantation apparatus of (iii) and (iv) include those described in International Publication WO2010/021326.
 前記(iii)及び(iv)のプラズマイオン注入装置では、プラズマを発生させるプラズマ発生手段を高電圧パルス電源によって兼用しているため、RFやマイクロ波等の高周波電力源等の特別の他の手段を要することなく、負の高電圧パルスを印加するだけで、プラズマを発生させ、高分子層に連続的にプラズマ中のイオンを注入し、表面部にイオン注入により改質された部分を有する高分子層、すなわちガスバリア層が形成されたガスバリア性積層体を量産することができる。 In the plasma ion implantation apparatus of (iii) and (iv), the plasma generating means for generating plasma is also used by the high-voltage pulse power source, and therefore other special means such as a high-frequency power source such as RF or microwave is used. It is possible to generate plasma by simply applying a negative high-voltage pulse without continuously, and to continuously implant ions in the plasma into the polymer layer. A gas barrier laminate having a molecular layer, that is, a gas barrier layer can be mass-produced.
 イオンが注入される部分の厚さは、イオンの種類や印加電圧、処理時間等の注入条件により制御することができ、高分子層の厚さ、ガスバリア性積層体の使用目的等に応じて決定すればよいが、通常、5~1,000nmである。 The thickness of the portion where the ions are injected can be controlled by the injection conditions such as the type of ions, the applied voltage, and the processing time, and is determined according to the thickness of the polymer layer, the purpose of use of the gas barrier laminate, etc. However, it is usually 5 to 1,000 nm.
 イオンが注入されたことは、X線光電子分光分析(XPS)を用いて高分子層の表面から10nm付近の元素分析測定を行うことによって確認することができる。 The ion implantation can be confirmed by performing elemental analysis measurement at about 10 nm from the surface of the polymer layer using X-ray photoelectron spectroscopy (XPS).
 ガスバリア層がガスバリア性を有していることは、ガスバリア層の水蒸気透過率が小さいことから確認することができる。
 ガスバリア層の、40℃、相対湿度90%雰囲気下における水蒸気透過率は、通常1.0g/m/day以下であり、好ましくは0.8g/m/day以下であり、より好ましくは0.5g/m/day以下であり、更に好ましくは0.1g/m/day以下である。水蒸気透過率は、公知の方法で測定することができる。
It can be confirmed that the gas barrier layer has a gas barrier property because the water vapor permeability of the gas barrier layer is small.
The water vapor permeability of the gas barrier layer in an atmosphere of 40° C. and 90% relative humidity is usually 1.0 g/m 2 /day or less, preferably 0.8 g/m 2 /day or less, and more preferably 0 g/m 2 /day or less. It is 0.5 g/m 2 /day or less, and more preferably 0.1 g/m 2 /day or less. The water vapor transmission rate can be measured by a known method.
1-3.工程フィルム
 工程フィルムは、ガスバリア性積層体を保存、運搬等する際に、下地層や、ガスバリア層、また上述したその他の層を保護する役割を有し、所定の工程において剥離されるものである。
1-3. Process film The process film has a role of protecting the underlayer, the gas barrier layer, and the other layers described above when the gas barrier laminate is stored or transported, and is peeled off in a predetermined process. ..
 ガスバリア性積層体が工程フィルムを有する場合、ガスバリア性積層体は片面に工程フィルムを有していてもよく、両面に工程フィルムを有していてもよい。後者の場合は、2種類の工程フィルムを用いて、先に剥離する工程フィルムをより剥離しやすいものにするのが好ましい。下地層側に工程フィルムを有する場合、工程フィルムを有していないガスバリア性積層体に比べて、下地層を保護しつつハンドリング性の高いガスバリア性積層体とすることができる。 When the gas barrier laminate has a process film, the gas barrier laminate may have a process film on one side, or may have a process film on both sides. In the latter case, it is preferable to use two types of process films so that the process film that is peeled first can be more easily peeled. When the process film is provided on the underlayer side, it is possible to obtain a gas barrier laminate having high handling property while protecting the underlayer, as compared with the gas barrier laminate without the process film.
 工程フィルムは、シート状またはフィルム状のものが好ましい。シート状またはフィルム状とは、長尺のものに限らず、短尺の平板状のものも含まれる。 The process film is preferably a sheet or film. The sheet-like or film-like one is not limited to a long one, but includes a short flat one.
 工程フィルムとしては、グラシン紙、コート紙、上質紙等の紙基材;これらの紙基材にポリエチレンやポリプロピレン等の熱可塑性樹脂をラミネートしたラミネート紙;上記紙基材に、セルロース、デンプン、ポリビニルアルコール、アクリル-スチレン樹脂等で目止め処理を行ったもの;あるいはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルムやポリエチレンやポリプロピレン等のポリオレフィンフィルム等のプラスチックフィルム;ガラス等が挙げられる。 Examples of the process film include paper substrates such as glassine paper, coated paper, and high-quality paper; laminated paper obtained by laminating a thermoplastic resin such as polyethylene or polypropylene on these paper substrates; cellulose, starch, polyvinyl on the above paper substrates. Examples thereof include those subjected to sealing treatment with alcohol, acrylic-styrene resin and the like; or polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and plastic films such as polyolefin films such as polyethylene and polypropylene; glass and the like.
 また、工程フィルムは、取り扱い易さの点から、紙基材や、プラスチックフィルム上に剥離剤層を設けたものであってもよい。剥離層は、シリコーン系剥離剤、フッ素系剥離剤、アルキッド系剥離剤、オレフィン系剥離剤等、従来公知の剥離剤を用いて形成することができる。
 剥離剤層の厚さは、特に制限されないが、通常、0.02~2.0μm、より好ましくは0.05~1.5μmである。
The process film may be a paper base material or a plastic film provided with a release agent layer from the viewpoint of easy handling. The release layer can be formed using a conventionally known release agent such as a silicone release agent, a fluorine release agent, an alkyd release agent, and an olefin release agent.
The thickness of the release agent layer is not particularly limited, but is usually 0.02 to 2.0 μm, and more preferably 0.05 to 1.5 μm.
 工程フィルムの厚さは、取り扱い易さの点から、1~500μmが好ましく、5~300μmがより好ましい。 The thickness of the process film is preferably 1 to 500 μm, more preferably 5 to 300 μm from the viewpoint of easy handling.
 工程フィルムの表面粗さRa(算術平均粗さ)は、10.0nm以下が好ましく、8.0nm以下がより好ましい。また、表面粗さRt(最大断面高さ)は、100nm以下が好ましく、50nm以下がより好ましい。
 表面粗さRa及びRtが、それぞれ、10.0nm、100nmを超えると、工程フィルムと接する層の表面粗さが大きくなり、ガスバリア性積層体のガスバリア性が低下するおそれがある。
 なお、表面粗さRa及びRtは、100μm×100μmの測定面積で、光干渉法により得られた値である。
The surface roughness Ra (arithmetic mean roughness) of the process film is preferably 10.0 nm or less, and more preferably 8.0 nm or less. Further, the surface roughness Rt (maximum cross-sectional height) is preferably 100 nm or less, more preferably 50 nm or less.
When the surface roughnesses Ra and Rt exceed 10.0 nm and 100 nm, respectively, the surface roughness of the layer in contact with the process film increases, and the gas barrier properties of the gas barrier laminate may deteriorate.
The surface roughness Ra and Rt are values obtained by an optical interference method in a measurement area of 100 μm×100 μm.
1-4.ガスバリア性積層体
 上述したように、本発明の実施形態に係るガスバリア性積層体は、工程フィルムと、下地層と、ガスバリア層とをこの順で備えている。ガスバリア性積層体を実際に用いる際、ガスバリア性積層体から工程フィルムを剥離し、ディスプレイや電子デバイスに貼り付けて使用する。
1-4. Gas Barrier Laminate As described above, the gas barrier laminate according to the embodiment of the present invention includes a process film, a base layer, and a gas barrier layer in this order. When the gas barrier laminate is actually used, the process film is peeled from the gas barrier laminate and attached to a display or an electronic device for use.
 上述のとおり、本発明の実施形態に係るガスバリア性積層体は、以下の要件[1]を満たす。
[1]ガスバリア性積層体の熱収縮率の絶対値が0.5%以下である。
As described above, the gas barrier laminate according to the embodiment of the present invention satisfies the following requirement [1].
[1] The absolute value of the thermal shrinkage of the gas barrier laminate is 0.5% or less.
 要件[1]を満たすためには、例えば、上述したように、下地層を形成するための硬化性樹脂組成物に含まれる硬化性成分(B)として、多官能(メタ)アクリレート化合物と環化重合性モノマーとを併用することで、網目構造を増やすようにしたり、重合性成分(A)として、ポリイミド樹脂に代表されるような剛直でありながらも柔軟な構造を備えるものを選択したりすればよい。 In order to satisfy the requirement [1], for example, as described above, a polyfunctional (meth)acrylate compound and a cyclized compound are used as the curable component (B) contained in the curable resin composition for forming the underlayer. By using together with a polymerizable monomer, it is possible to increase the network structure, or to select, as the polymerizable component (A), one having a rigid yet flexible structure as represented by a polyimide resin. Good.
 また、上述のとおり、本発明の実施形態に係るガスバリア性積層体は、以下の要件[2]を満たす。
[2]ガスバリア性積層体の破断伸度が、1.9%以上である。
 ガスバリア性積層体の破断伸度は、2.0%以上であることが好ましい。ガスバリア性積層体の破断伸度がこのような範囲にあることで、ガスバリア性積層体のフレキシブル性を高くすることができる。下地層の破断伸度の上限は、特に限定されないが、通常、17%以下、好ましくは13%以下である。
Further, as described above, the gas barrier laminate according to the embodiment of the present invention satisfies the following requirement [2].
[2] The breaking elongation of the gas barrier laminate is 1.9% or more.
The breaking elongation of the gas barrier laminate is preferably 2.0% or more. When the elongation at break of the gas barrier laminate is in such a range, the flexibility of the gas barrier laminate can be enhanced. The upper limit of the breaking elongation of the underlayer is not particularly limited, but is usually 17% or less, preferably 13% or less.
 ガスバリア層の厚さは、通常、下地層と比べて著しく薄いため、ガスバリア性積層体の破断伸度は下地層の影響を大きく受け、下地層の破断伸度と近い値となる傾向がある。そのため、下地層が上述した要件[2’]を満たしていれば、ガスバリア層等の影響によってガスバリア性積層体の破断伸度が下地層の破断伸度よりも僅かに小さくなったとしても、要件[2]を満たすガスバリア性積層体を得ることが容易である。 Since the thickness of the gas barrier layer is usually significantly smaller than that of the underlayer, the breaking elongation of the gas barrier laminate is greatly affected by the underlayer and tends to be close to the breaking elongation of the underlayer. Therefore, if the underlayer satisfies the above-mentioned requirement [2′], even if the breaking elongation of the gas barrier layered product is slightly smaller than the breaking elongation of the underlayer due to the influence of the gas barrier layer or the like, the requirements may be satisfied. It is easy to obtain a gas barrier laminate satisfying [2].
 ガスバリア性積層体の厚さは、目的とする電子デバイスの用途等によって適宜決定することができる。本発明の実施形態に係るガスバリア性積層体の実質的な厚さは、取り扱い性の観点から、好ましくは0.3~50μm、より好ましくは0.5~25μm、より好ましくは0.7~12μmである。
 なお、「実質的な厚さ」とは、使用状態における厚さをいう。すなわち、上記ガスバリア性積層体は、工程シート等を有していてもよいが、使用時に除去される部分(工程シート等)の厚さは、「実質的な厚さ」には含まれない。
The thickness of the gas barrier laminate can be appropriately determined depending on the intended use of the electronic device and the like. From the viewpoint of handleability, the substantial thickness of the gas barrier laminate according to the embodiment of the present invention is preferably 0.3 to 50 μm, more preferably 0.5 to 25 μm, and further preferably 0.7 to 12 μm. Is.
In addition, "substantial thickness" means the thickness in a use state. That is, the gas barrier laminate may have a process sheet or the like, but the thickness of the portion (process sheet or the like) removed during use is not included in the “substantial thickness”.
 本発明の実施形態に係る下地層は、柔軟性に優れたものとすることができ、さらに、ガスバリア性積層体の厚さを小さくすると、ガスバリア性積層体の実装後の屈曲耐性をより向上させることもできる。 The underlayer according to the embodiment of the present invention can have excellent flexibility, and further, when the thickness of the gas barrier laminate is reduced, the bending resistance after mounting the gas barrier laminate is further improved. You can also
 本発明の実施形態に係るガスバリア性積層体は、上述した下地層及びガスバリア層を有するため、耐熱性、耐溶剤性、層間密着性及びガスバリア性に優れ、しかも、複屈折率が低く光学等方性に優れる。ガスバリア性積層体の面内の位相差は、通常、20nm以下であり、15nm以下が好ましい。厚さ方向の位相差は、通常、-500nm以下であり、-450nm以下が好ましい。また、面内の位相差をガスバリア性積層体の厚さで割った値(複屈折率)は、通常、100×10-5以下であり、好ましくは20×10-5以下である。
 ガスバリア性積層体の面内の位相差、厚さ方向の位相差、複屈折率が上記の範囲内であれば、本発明の実施形態に係るガスバリア性積層体は光学等方性に優れ、光学用途に好ましく用いることができる。
Since the gas barrier laminate according to the embodiment of the present invention has the above-described underlayer and gas barrier layer, it is excellent in heat resistance, solvent resistance, interlayer adhesion and gas barrier properties, and has a low birefringence and isotropic optical properties. Excellent in performance. The in-plane retardation of the gas barrier laminate is usually 20 nm or less, preferably 15 nm or less. The retardation in the thickness direction is usually -500 nm or less, preferably -450 nm or less. The value (birefringence) obtained by dividing the in-plane retardation by the thickness of the gas barrier laminate is usually 100×10 −5 or less, preferably 20×10 −5 or less.
If the in-plane retardation of the gas barrier laminate, the retardation in the thickness direction, and the birefringence are within the above ranges, the gas barrier laminate according to the embodiment of the present invention is excellent in optical isotropy, It can be preferably used for applications.
 本発明の実施形態に係るガスバリア性積層体の、40℃、相対湿度90%雰囲気下での水蒸気透過率は、通常、1.0×10-2g/m/day以下、好ましくは8.0×10-3g/m/day以下、より好ましくは6.0×10-3g/m/day以下である。 The water vapor permeability of the gas barrier laminate according to the embodiment of the present invention at 40° C. and 90% relative humidity is usually 1.0×10 −2 g/m 2 /day or less, preferably 8. It is 0×10 −3 g/m 2 /day or less, and more preferably 6.0×10 −3 g/m 2 /day or less.
 本発明の実施形態に係るガスバリア性積層体は、下地層と、該下地層の少なくとも片面にガスバリア層とを有する。本発明の実施形態に係るガスバリア性積層体は、下地層とガスバリア層とを、それぞれ1層ずつ有するものであってもよいし、下地層及び/又はガスバリア層を2層以上有するものであってもよい。 The gas barrier laminate according to the embodiment of the present invention has an underlayer and a gas barrier layer on at least one surface of the underlayer. The gas barrier laminate according to the embodiment of the present invention may have one underlayer and one gas barrier layer, or two or more underlayers and/or gas barrier layers. Good.
 本発明の実施形態に係るガスバリア性積層体の具体的な構成例を、図1に示す。
 図1に示すガスバリア性積層体(10)は、下地層(2)の片面に、ガスバリア層(3)を有し、下地層(2)の、ガスバリア層(3)とは反対側の面に工程フィルム(1)を有するものである。工程フィルム(1)を剥離除去すると、下地層(2)とガスバリア層(3)を含む符号10aで表す部分が、工程フィルム除去後のガスバリア性積層体となる。
FIG. 1 shows a specific structural example of the gas barrier laminate according to the embodiment of the present invention.
The gas barrier laminate (10) shown in FIG. 1 has a gas barrier layer (3) on one surface of the underlayer (2), and is provided on the surface of the underlayer (2) opposite to the gas barrier layer (3). It has a process film (1). When the process film (1) is peeled and removed, the portion including the underlayer (2) and the gas barrier layer (3) indicated by reference numeral 10a becomes a gas barrier laminate after the process film is removed.
 本発明の実施形態に係るガスバリア性積層体は、図1に示すものに限定されず、下地層の両面にガスバリア層を有していてもよいし、下地層及びガスバリア層を一組として、複数組が積層されたものであってもよい。また、本発明の目的を損ねない範囲で、更に他の層を1層又は2層以上含有するものであってもよい。
 他の層としては、例えば、導電体層、衝撃吸収層、接着剤層、接合層、工程シート等が挙げられる。また、他の層の配置位置は特に限定されない。
The gas barrier laminate according to the embodiment of the present invention is not limited to that shown in FIG. 1, and may have gas barrier layers on both sides of the underlayer, or a plurality of underlayers and gas barrier layers may be provided as one set. The set may be laminated. Further, one or more layers may be further contained within a range not impairing the object of the present invention.
Examples of the other layer include a conductor layer, a shock absorbing layer, an adhesive layer, a bonding layer, and a process sheet. Further, the arrangement position of other layers is not particularly limited.
 導電体層を構成する材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等が挙げられる。具体的には、アンチモンをドープした酸化スズ(ATO);フッ素をドープした酸化スズ(FTO);酸化スズ、ゲルマニウムをドープした酸化亜鉛(GZO)、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化亜鉛インジウム(IZO)等の半導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これら金属と導電性金属酸化物との混合物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料;等が挙げられる。 The material forming the conductor layer includes metals, alloys, metal oxides, electrically conductive compounds, mixtures thereof, and the like. Specifically, antimony-doped tin oxide (ATO); fluorine-doped tin oxide (FTO); tin oxide, germanium-doped zinc oxide (GZO), zinc oxide, indium oxide, indium tin oxide (ITO). , Semiconductive metal oxides such as indium zinc oxide (IZO); metals such as gold, silver, chromium, nickel; mixtures of these metals with conductive metal oxides; inorganic conductive materials such as copper iodide and copper sulfide. Substances; organic conductive materials such as polyaniline, polythiophene, polypyrrole; and the like.
 導電体層の形成方法には特に制限はない。例えば、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等が挙げられる。 There is no particular limitation on the method of forming the conductor layer. For example, a vapor deposition method, a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method and the like can be mentioned.
 導電体層の厚さはその用途等に応じて適宜選択すればよい。通常10nmから50μm、好ましくは20nmから20μmである。 The thickness of the conductor layer may be appropriately selected according to its application. It is usually 10 nm to 50 μm, preferably 20 nm to 20 μm.
 衝撃吸収層は、ガスバリア層に衝撃が加わった時に、ガスバリア層を保護するためのものである。衝撃吸収層を形成する素材としては、特に限定されないが、例えば、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、オレフィン系樹脂、ゴム系材料等が挙げられる。 The shock absorbing layer is for protecting the gas barrier layer when a shock is applied to the gas barrier layer. The material for forming the shock absorbing layer is not particularly limited, but examples thereof include acrylic resin, urethane resin, silicone resin, olefin resin, and rubber material.
 衝撃吸収層の形成方法としては特に制限はなく、例えば、前記衝撃吸収層を形成する素材、及び、所望により、溶剤等の他の成分を含む衝撃吸収層形成溶液を、積層すべき層上に塗布し、得られた塗膜を乾燥し、必要に応じて加熱等して形成する方法が挙げられる。
 また、別途、剥離基材上に衝撃吸収層を成膜し、得られた膜を、積層すべき層上に転写して積層してもよい。
 衝撃吸収層の厚さは、通常1~100μm、好ましくは5~50μmである。
The method for forming the shock absorbing layer is not particularly limited, and for example, a material for forming the shock absorbing layer, and, if desired, a shock absorbing layer forming solution containing other components such as a solvent may be provided on the layer to be laminated. Examples include a method of applying, drying the obtained coating film, and heating it as necessary to form it.
Alternatively, a shock absorbing layer may be separately formed on the release substrate, and the obtained film may be transferred onto the layer to be laminated and laminated.
The thickness of the shock absorbing layer is usually 1 to 100 μm, preferably 5 to 50 μm.
 接着剤層は、ガスバリア性積層体を被着体に貼付する場合に用いられる層である。接着剤層を形成する材料としては、特に限定されず、アクリル系、シリコーン系、ゴム系等の公知の接着剤または粘着剤、ヒートシール材等を使用することもできる。 The adhesive layer is a layer used when the gas barrier laminate is attached to an adherend. The material for forming the adhesive layer is not particularly limited, and a known adhesive or pressure-sensitive adhesive such as acrylic, silicone, or rubber, a heat seal material, or the like can be used.
 接合層は、下地層及びガスバリア層を一組として、複数の組を貼り合せてガスバリア性積層体を製造する場合等に用いられる層である。接合層は、隣り合う各組のうち一方に含まれる下地層と他方に含まれるガスバリア層とを接合して積層構造を保持するための層である。接合層は、単層であっても、複数層であってもよい。接合層としては、接着剤を用いて形成された単層構造の層からなるものや、支持層の両面に接着剤を用いて形成された層が形成されてなるものが挙げられる。 The bonding layer is a layer that is used when a gas barrier laminate is manufactured by combining a plurality of sets with a base layer and a gas barrier layer as one set. The bonding layer is a layer for bonding a base layer included in one of the adjacent groups and a gas barrier layer included in the other pair to maintain a laminated structure. The bonding layer may be a single layer or a plurality of layers. Examples of the bonding layer include a layer having a single-layer structure formed by using an adhesive and a layer having a layer formed by using an adhesive on both surfaces of a support layer.
 接合層を形成する際に用いる材料は、下地層及びガスバリア層の組同士を接合し、積層構造を保持できるものである限り、特に制限されず、公知の接着剤を用いることができるが、常温で下地層及びガスバリア層の組同士を接合することができるという点から、粘着剤であることが好ましい。
 接合層に用いる粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系
粘着剤、ゴム系粘着剤等が挙げられる。これらの中でも、粘着力、透明性および取り扱い
性の点から、アクリル系粘着剤、ウレタン系粘着剤が好ましい。また、後述するような架
橋構造を形成し得る粘着剤が好ましい。
 また、粘着剤は、溶剤型粘着剤、エマルジョン型粘着剤、ホットメルト型粘着剤等のい
ずれの形態のものであってもよい。
The material used in forming the bonding layer is not particularly limited as long as it can bond the pair of the underlayer and the gas barrier layer to each other and can maintain the laminated structure, and a known adhesive can be used. It is preferable to use a pressure-sensitive adhesive from the viewpoint that the combination of the underlayer and the gas barrier layer can be bonded to each other.
Examples of the pressure-sensitive adhesive used for the bonding layer include an acrylic pressure-sensitive adhesive, a urethane pressure-sensitive adhesive, a silicone pressure-sensitive adhesive, and a rubber pressure-sensitive adhesive. Among these, acrylic adhesives and urethane adhesives are preferable from the viewpoints of adhesive strength, transparency and handleability. Further, a pressure-sensitive adhesive capable of forming a cross-linked structure as described below is preferable.
The pressure-sensitive adhesive may be in any form such as a solvent-type pressure-sensitive adhesive, an emulsion-type pressure-sensitive adhesive, a hot melt-type pressure-sensitive adhesive.
2.ガスバリア性積層体の製造方法
 本発明の実施形態に係るガスバリア性積層体は工程フィルムを用いて製造される。工程フィルムを用いることで、ガスバリア性積層体を効率よく、かつ、容易に製造することができる。特に、以下の工程1~3を有する方法が好ましい。
2. Method for producing gas barrier laminate The gas barrier laminate according to the embodiment of the present invention is produced using a process film. By using the process film, the gas barrier laminate can be efficiently and easily manufactured. Particularly, a method having the following steps 1 to 3 is preferable.
工程1:工程フィルム上に、Tgが250℃以上の重合体成分(A)、及び硬化性成分(B)を含有する硬化性樹脂組成物を用いて硬化性樹脂層を形成する工程
工程2:工程1で得られた硬化性樹脂層を硬化させて、硬化樹脂層からなる下地層を形成する工程
工程3:工程2で得られた下地層上に、ガスバリア層を形成する工程
Step 1: Step A step of forming a curable resin layer on the film using a curable resin composition containing a polymer component (A) having a Tg of 250° C. or higher and a curable component (B) Step 2: Step of curing the curable resin layer obtained in Step 1 to form an underlayer made of a cured resin layer Step 3: Step of forming a gas barrier layer on the underlayer obtained in Step 2.
 図2に、本発明の実施形態に係るガスバリア性積層体の製造工程の一例を示す。図2(a)が上記工程1に、図2(b)が上記工程2に、図2(c)が上記工程3に、それぞれ対応する。 FIG. 2 shows an example of a manufacturing process of the gas barrier laminate according to the embodiment of the present invention. 2A corresponds to the step 1, FIG. 2B corresponds to the step 2, and FIG. 2C corresponds to the step 3.
(工程1)
 先ず、工程フィルム上に、Tgが250℃以上の重合体成分(A)、及び硬化性成分(B)を含有する硬化性樹脂組成物を用いて硬化性樹脂層(図2(a)の符号2a)を形成する。
(Process 1)
First, using a curable resin composition containing a polymer component (A) having a Tg of 250° C. or higher and a curable component (B) on a process film, a curable resin layer (reference numeral of FIG. 2A) is used. 2a) is formed.
 用いる工程フィルム、硬化性樹脂組成物としては、上述したものと同様のものが挙げられる。
 硬化性樹脂組成物を工程フィルム上に塗工する方法は、特に制限されず、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等の公知の塗布方法を利用することができる。
Examples of the process film and the curable resin composition used include the same ones as described above.
The method for applying the curable resin composition onto the process film is not particularly limited, and includes spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating. A known coating method such as a method can be used.
 得られた塗膜を乾燥する方法は特に制限されず、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法を利用することができる。上記のように、本発明の実施形態に係る下地層を形成するために用いる硬化性樹脂組成物は、非常に高いTgを有する重合体成分(A)を含有するものであるが、硬化性成分(B)を含有することで、溶液キャスト法を用いて得られた塗膜を乾燥する場合、溶剤を効率よく除去することができる。 The method for drying the obtained coating film is not particularly limited, and conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be used. As described above, the curable resin composition used for forming the underlayer according to the embodiment of the present invention contains the polymer component (A) having a very high Tg, but the curable component By containing (B), the solvent can be efficiently removed when the coating film obtained by the solution casting method is dried.
 塗膜の乾燥温度は、通常、30~150℃、好ましくは、50~100℃である。
 乾燥塗膜(硬化性樹脂層)の厚さは、特に制限されないが、硬化させた後の厚さと殆ど差はないことから、上述した下地層の厚さと同様にすればよい。
The drying temperature of the coating film is usually 30 to 150°C, preferably 50 to 100°C.
The thickness of the dry coating film (curable resin layer) is not particularly limited, but since it has almost no difference from the thickness after curing, it may be the same as the thickness of the underlayer described above.
(工程2)
 次いで、工程1で得られた硬化性樹脂層を硬化させて硬化樹脂層を形成する。この硬化樹脂層が下地層(図2(b)の符合2)となる。
 硬化性樹脂層を硬化する方法としては、特に限定されず、公知の方法が採用できる。例えば、硬化性樹脂層が、熱重合開始剤を含有する硬化性樹脂組成物を用いて形成されたものである場合、硬化性樹脂層を加熱することで硬化性樹脂層を硬化させることができる。加熱温度は、通常、30~150℃、好ましくは、50~100℃である。
(Process 2)
Next, the curable resin layer obtained in step 1 is cured to form a cured resin layer. This cured resin layer becomes a base layer (reference numeral 2 in FIG. 2B).
The method for curing the curable resin layer is not particularly limited, and a known method can be adopted. For example, when the curable resin layer is formed using a curable resin composition containing a thermal polymerization initiator, the curable resin layer can be heated to cure the curable resin layer. .. The heating temperature is usually 30 to 150°C, preferably 50 to 100°C.
 また、硬化性樹脂層が、光重合開始剤を含有する硬化性樹脂組成物を用いて形成されたものである場合、硬化性樹脂層に活性エネルギー線を照射することで硬化性樹脂層を硬化させることができる。活性エネルギー線は、高圧水銀ランプ、無電極ランプ、キセノンランプ等を用いて照射することができる。 When the curable resin layer is formed using a curable resin composition containing a photopolymerization initiator, the curable resin layer is cured by irradiating the curable resin layer with active energy rays. Can be made. The active energy ray can be irradiated using a high pressure mercury lamp, an electrodeless lamp, a xenon lamp or the like.
 活性エネルギー線の波長は、200~400nmが好ましく、350~400nmがより好ましい。照射量は、通常、照度50~1,000mW/cm、光量50~5,000mJ/cm、好ましくは1,000~5,000mJ/cmの範囲である。照射時間は、通常、0.1~1,000秒、好ましくは1~500秒、更に好ましくは10~100秒である。光照射工程の熱負荷を考慮して前述の光量を満たすために、複数回照射しても構わない。 The wavelength of the active energy ray is preferably 200 to 400 nm, more preferably 350 to 400 nm. The irradiation amount is usually in the range of illuminance of 50 to 1,000 mW/cm 2 and light amount of 50 to 5,000 mJ/cm 2 , preferably 1,000 to 5,000 mJ/cm 2 . The irradiation time is usually 0.1 to 1,000 seconds, preferably 1 to 500 seconds, more preferably 10 to 100 seconds. Irradiation may be performed a plurality of times in order to satisfy the above-described light amount in consideration of the heat load of the light irradiation step.
 この場合、活性エネルギー線照射による重合体成分(A)の劣化や、下地層の着色を防止するために、硬化反応に不要な波長の光を吸収するフィルタを介して、活性エネルギー線を硬化性樹脂組成物に照射してもよい。この方法によれば、硬化反応に不要で、かつ、重合体成分(A)を劣化させる波長の光がフィルタに吸収されるため、重合体成分(A)の劣化が抑制され、無色透明の下地層が得られやすくなる。
 フィルタとしては、ポリエチレンテレフタレートフィルム等の樹脂フィルムを利用することができる。樹脂フィルムを用いる場合、工程1と工程2の間に、硬化性樹脂層上にポリエチレンテレフタレートフィルム等の樹脂フィルムを積層させる工程を設けることが好ましい。なお、樹脂フィルムは、通常は、工程2の後に剥離される。
In this case, in order to prevent deterioration of the polymer component (A) due to irradiation with active energy rays and coloring of the underlayer, the active energy rays are curable through a filter that absorbs light of a wavelength unnecessary for the curing reaction. The resin composition may be irradiated. According to this method, light having a wavelength that is unnecessary for the curing reaction and deteriorates the polymer component (A) is absorbed by the filter, so that the deterioration of the polymer component (A) is suppressed, and the colorless and transparent layer is formed. A stratum can be easily obtained.
A resin film such as a polyethylene terephthalate film can be used as the filter. When a resin film is used, it is preferable to provide a step of laminating a resin film such as a polyethylene terephthalate film on the curable resin layer between step 1 and step 2. The resin film is usually peeled off after step 2.
 また、硬化性樹脂層に電子線を照射することで、硬化性樹脂層を硬化させることもできる。電子線を照射する場合は、通常、光重合開始剤を利用しなくても、硬化性樹脂層を硬化させることができる。電子線を照射する場合は、電子線加速器等を用いることができる。照射量は、通常10~1,000kradの範囲である。照射時間は、通常、0.1~1,000秒、好ましくは1~500秒、更に好ましくは10~100秒である。 Also, the curable resin layer can be cured by irradiating the curable resin layer with an electron beam. When irradiated with an electron beam, the curable resin layer can be usually cured without using a photopolymerization initiator. When irradiating with an electron beam, an electron beam accelerator or the like can be used. The irradiation dose is usually in the range of 10 to 1,000 krad. The irradiation time is usually 0.1 to 1,000 seconds, preferably 1 to 500 seconds, more preferably 10 to 100 seconds.
 硬化性樹脂層の硬化は、必要に応じて窒素ガスなどの不活性ガス雰囲気下で行ってもよい。不活性ガス雰囲気下で硬化を行うことにより、酸素や水分等が硬化を妨げることを回避しやすくなる。 The curing of the curable resin layer may be carried out in an atmosphere of an inert gas such as nitrogen gas, if necessary. By performing the curing in an inert gas atmosphere, it becomes easy to avoid the oxygen, water, etc. from interfering with the curing.
(工程3)
 その後、工程2で得られた下地層上に、ガスバリア層(図2(c)の符号3)を形成する。
 ガスバリア層を形成する方法としては、先に説明した方法を適宜採用することができる。
 例えば、ガスバリア層が、ケイ素含有高分子化合物を含む層に改質処理を施して得られる層である場合、ケイ素含有高分子化合物を含む層を下地層上に形成する工程と、該ケイ素含有高分子化合物を含む層に、改質処理を施す工程によってガスバリア層を形成することができる。
(Process 3)
Then, a gas barrier layer (reference numeral 3 in FIG. 2C) is formed on the underlayer obtained in step 2.
As the method of forming the gas barrier layer, the method described above can be appropriately adopted.
For example, when the gas barrier layer is a layer obtained by subjecting a layer containing a silicon-containing polymer compound to a modification treatment, a step of forming a layer containing a silicon-containing polymer compound on an underlayer, and A gas barrier layer can be formed by a step of subjecting a layer containing a molecular compound to a modification treatment.
 ガスバリア性積層体に含まれるガスバリア層は、押出成形法や塗布法など様々な方法で形成され得るが、ガスバリア層の形成方法によっては、ガスバリア性積層体のガスバリア性能が低下する場合がある。特に、加熱を伴う形成方法、例えば、塗布・乾燥によってガスバリア層を形成する場合、下地層が物理的又は化学的に影響を受けて、ガスバリア性などの特性が低下してしまう恐れがあった。
 しかし、本発明の実施形態に係る下地層は、上述したように、重合体成分(A)及び硬化性成分(B)を含有する硬化性樹脂組成物の硬化物からなる層であり、重合体成分(A)のTgが250℃以上であるため、ガスバリア層を形成する際の加熱によって、下地層が影響を受けにくい。このため、形成されるガスバリア層が、製造工程中に下地層の変形等による影響を受けにくくなり、ガスバリア層に、例えば、マイクロクラック等が発生してガスバリア性を低下させるといった問題を生じにくくなる。
The gas barrier layer included in the gas barrier laminate can be formed by various methods such as an extrusion molding method and a coating method, but the gas barrier performance of the gas barrier laminate may decrease depending on the method of forming the gas barrier layer. In particular, when the gas barrier layer is formed by a forming method involving heating, for example, coating/drying, there is a possibility that the underlying layer is physically or chemically affected and the characteristics such as gas barrier properties are deteriorated.
However, as described above, the underlayer according to the embodiment of the present invention is a layer formed of a cured product of a curable resin composition containing the polymer component (A) and the curable component (B), and the polymer Since the Tg of the component (A) is 250° C. or higher, the underlayer is less likely to be affected by the heating when forming the gas barrier layer. Therefore, the formed gas barrier layer is less likely to be affected by the deformation of the underlayer during the manufacturing process, and the gas barrier layer is less likely to have a problem that, for example, microcracks or the like deteriorate the gas barrier property. ..
 ケイ素含有高分子化合物を含む層を形成する方法や改質処理を施す方法としては、先に説明したものを採用することができる。
 また、改質処理を施す方法としては、工程2で得られた下地層上に、ケイ素含有高分子化合物を含む層が形成された長尺状のフィルムを、一定方向に搬送しながら、前記ケイ素含有高分子化合物を含む層に、改質処理を施してガスバリア性積層体を製造するのが好ましい。
 この製造方法によれば、例えば、長尺状のガスバリア性積層体を連続的に製造することができる。
As the method of forming the layer containing the silicon-containing polymer compound and the method of performing the modification treatment, those described above can be adopted.
In addition, as a method of performing a modification treatment, a long film in which a layer containing a silicon-containing polymer compound is formed on the underlayer obtained in step 2 is conveyed in a certain direction, and the silicon film is formed. It is preferable that the layer containing the contained polymer compound is subjected to a modification treatment to produce a gas barrier laminate.
According to this manufacturing method, for example, a long gas-barrier laminate can be continuously manufactured.
 なお、工程フィルムは、通常は、ガスバリア性積層体の用途等に応じて、所定の工程において剥離され、図2(c)に示されるように、工程フィルム(3)除去後のガスバリア性積層体(10a)となる。例えば、工程3の後に他の層等を形成し、その後、工程フィルムを剥離してもよいし、工程3の後に工程フィルムを剥離してもよい。また、工程2と工程3の間に工程フィルムを剥離してもよい。 The process film is usually peeled off in a predetermined process depending on the use of the gas barrier laminate, and as shown in FIG. 2C, the gas barrier laminate after removal of the process film (3). (10a). For example, another layer or the like may be formed after step 3 and then the step film may be peeled off, or the step film may be peeled off after step 3. Further, the process film may be peeled off between the process 2 and the process 3.
 このように、前記工程1~3を有する製造方法は、工程フィルムを利用して硬化性樹脂層を形成するものであるが、この方法によって得られるガスバリア性積層体は、工程フィルムを有していてもよいし、有していなくてもよい。
 上述したガスバリア性積層体の製造方法によれば、本発明の実施形態に係るガスバリア性積層体を効率よく、連続的に、かつ容易に製造することができる。
As described above, in the manufacturing method having the steps 1 to 3, the curable resin layer is formed by using the step film, and the gas barrier laminate obtained by this method has the step film. May or may not be included.
According to the method for producing a gas barrier laminate described above, the gas barrier laminate according to the embodiment of the present invention can be efficiently, continuously, and easily produced.
 次に、本発明を実施例により更に詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 各実施例及び比較例の、下地層及びガスバリア性積層体の物性値の測定と評価は以下の手順で行った。 The physical properties of the underlayer and the gas barrier laminate of each of the examples and comparative examples were measured and evaluated in the following procedure.
<下地層の耐溶剤性>
 下地層を25mm×25mmの試験片に裁断し、試験片をキシレン溶媒中に2分間浸漬し、浸漬前後の試験片の変化を目視により観察し、下記の基準に従い耐溶剤性を評価した。
A:変化なし。
B:わずかな外形変化が見受けられるが、実用上問題ない。
C:白化や、膨潤・カール・うねり等の外形変化を生じ、実用に支障がある。
<Solvent resistance of base layer>
The underlayer was cut into a 25 mm×25 mm test piece, the test piece was dipped in a xylene solvent for 2 minutes, the change in the test piece before and after the immersion was visually observed, and the solvent resistance was evaluated according to the following criteria.
A: No change.
B: A slight change in outer shape can be seen, but there is no problem in practical use.
C: Whitening and external shape changes such as swelling, curling, and waviness occur, which impedes practical use.
<ガスバリア性積層体の熱収縮率>
 ガスバリア性積層体を5mm×30mmの試験片に裁断し、工程フィルムに相当する下地層側の第1のポリエチレンテレフタレート(PET)フィルムを剥離除去し、熱機械分析装置TMA4000SE(ネッチ・ジャパン株式会社)を用いて、チャック間距離20mmに設定した後、5℃/minで130℃まで昇温させた後に5℃/minで常温まで冷却した。なお、加熱前後の長尺方向の変位の変化率(チャック間距離20mmに対する変位量の割合を百分率で示した値)を熱収縮率とした。なお、ガスバリア性積層体が収縮した場合を負の値、伸長した場合を正の値とした。
<Heat Shrinkage of Gas Barrier Laminate>
The gas barrier laminate was cut into 5 mm x 30 mm test pieces, and the first polyethylene terephthalate (PET) film on the underlayer side corresponding to the process film was peeled off and removed, and a thermomechanical analyzer TMA4000SE (Netch Japan Co., Ltd.) After setting the distance between chucks to 20 mm, the temperature was raised to 130° C. at 5° C./min and then cooled to room temperature at 5° C./min. The rate of change in displacement in the lengthwise direction before and after heating (value in which the ratio of the amount of displacement to the chuck distance 20 mm was expressed as a percentage) was defined as the heat shrinkage rate. A negative value was given when the gas barrier laminate was contracted, and a positive value was obtained when it was extended.
<ガスバリア性積層体の水蒸気透過率(WVTR)>
 ガスバリア性積層体を50cmの面積の円形状の試験片に裁断し、水蒸気透過率測定装置(MOCON社製、装置名:AQUATRAN)を用い、40℃90%RH条件下にてガス流量20sccmで水蒸気透過率(g/m/day)を測定した。なお、測定装置の検出下限は0.0005g/m/dayである。ガスバリア性積層体は、下地層を形成するのに用いたPETフィルムを剥がすと自立性に劣るため、当該PETフィルムが積層された状態で測定を行った。ガスバリア層の水蒸気透過率はPETフィルムよりもはるかに小さいため、PETフィルムの積層によるWVTRへの影響は無視できるほどに小さい。
<Water vapor transmission rate (WVTR) of gas barrier laminate>
The gas barrier laminate was cut into a circular test piece having an area of 50 cm 2 , and a water vapor transmission rate measuring device (manufactured by MOCON, device name: AQUATRAN) was used at a gas flow rate of 20 sccm at 40° C. and 90% RH. The water vapor transmission rate (g/m 2 /day) was measured. The lower limit of detection of the measuring device is 0.0005 g/m 2 /day. Since the gas barrier laminate is inferior in self-supporting property when the PET film used for forming the underlayer is peeled off, the measurement was performed in a state where the PET film was laminated. Since the water vapor transmission rate of the gas barrier layer is much smaller than that of the PET film, the influence of the lamination of the PET film on the WVTR is negligibly small.
<下地層及びガスバリア性積層体の破断伸度>
 下地層を15mm×150mmの試験片に裁断し、JIS K7127:1999に従い、破断伸度を測定した。具体的には、上記試験片を、引張試験機(島津製作所社製,オートグラフ)にて、チャック間距離100mmに設定した後、200mm/minの速度で引張試験を行い、破断伸度[%]を測定した。なお、試験片が降伏点を持たない場合には引張り破断ひずみを、降伏点を持つ場合には引張り破断呼びひずみを破断伸度とした。また、ガスバリア層を設けたガスバリア性積層体(工程フィルムなし)についても同様の試験を行った。
<Elongation at Break of Underlayer and Gas Barrier Laminate>
The underlayer was cut into 15 mm×150 mm test pieces, and the breaking elongation was measured according to JIS K7127:1999. Specifically, after setting the distance between chucks to 100 mm by a tensile tester (manufactured by Shimadzu Corporation, Autograph), the above-mentioned test piece was subjected to a tensile test at a speed of 200 mm/min, and the breaking elongation [% ] Was measured. The tensile elongation at break was taken as the tensile elongation at break when the test piece had no yield point, and the tensile elongation at break was taken as the tensile elongation at break with the yield point. In addition, the same test was performed on a gas barrier laminate having a gas barrier layer (without a process film).
[実施例1]
 下地層となる硬化性樹脂組成物1を以下の手順で調製した。
<硬化性樹脂組成物1>
 重合体成分として、ポリイミド樹脂(PI)のペレット(河村産業株式会社製、製品名KPI-MX300F、Tg=354℃、重量平均分子量28万)100質量部をメチルエチルケトン(MEK)に溶解して、PIの15質量%溶液を調製した。次いで、この溶液に、硬化性単量体として、トリシクロデカンジメタノールジアクリレート(新中村化学工業社製、A-DCP)122質量部、及び重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(BASF社製、Irgacure819)5質量部を添加、混合して、硬化性樹脂組成物1を調製した。なお、本実施例及び他の実験例において使用した硬化性単量体および重合開始剤は溶媒を含まず、全て固形分100%の原料である。
 次に、工程フィルムとして、片面に易接着層を有する第1のPETフィルム(東洋紡社製、PET100A-4100、厚さ100μm)を使用し、このPETフィルムの易接着層面とは反対の面に、硬化性樹脂組成物を塗布し、塗膜を90℃で3分間加熱して乾燥した。
 更に、この乾燥した塗膜上に、片面に易接着層を有する第2のPETフィルム(東洋紡社製、コスモシャインA4100、厚さ50μm)を、易接着面とは反対の面が対向するように積層し、ベルトコンベア式紫外線照射装置(アイグラフィクス社製、製品名:ECS-401GX)を使用して、高圧水銀ランプ(アイグラフィクス社製、製品名:H04-L41)にて、紫外線ランプ高さ100mm、紫外線ランプ出力3kw、光線波長365nmの照度が400mW/cm、光量が800mJ/cm(オーク製作所社製、紫外線光量計UV-351にて測定)の条件で、第2のPETフィルムを介して紫外線照射して硬化反応を行い、厚さ5μmの下地層を形成した。
 次いで、第2のPETフィルムを剥離して下地層を露出させ、この下地層上にポリシラザン化合物(ペルヒドロポリシラザン(PHPS)を主成分とするコーティング剤(メルクパフォーマンスマテリアルズ社製、アミアクカNL-110-20、溶媒:キシレン))をスピンコート法により塗布し、130Cで2分間加熱乾燥させることで、ペルヒドロポリシラザンを含む、厚さ200nmの高分子化合物層(ポリシラザン層)を形成した。
 次に、プラズマイオン注入装置(日本電子社製、RF電源:「RF」56000;栗田製作所社製、高電圧パルス電源:PV-3-HSHV-0835)を用いて、ガス流量100sccm、Duty比0.5%、印加DC電圧-6kV周波数1,000Hz、印加RF電力1,000W、チャンバー内圧0.2Pa、DCパルス幅5μsec、処理時間200秒の条件で、アルゴンガス由来のイオンを高分子化合物層(ポリシラザン層)の表面に注入し、ガスバリア層を形成した。このように、下地層上にガスバリア層を積層することにより、ガスバリア性積層体を作製した。
[Example 1]
The curable resin composition 1 which will be the base layer was prepared by the following procedure.
<Curable resin composition 1>
As a polymer component, 100 parts by mass of a pellet of polyimide resin (PI) (Kawamura Sangyo Co., Ltd., product name KPI-MX300F, Tg=354° C., weight average molecular weight 280,000) was dissolved in methyl ethyl ketone (MEK) to prepare PI. Was prepared as a 15% by mass solution. Next, 122 parts by mass of tricyclodecane dimethanol diacrylate (A-DCP manufactured by Shin-Nakamura Chemical Co., Ltd.) as a curable monomer, and bis(2,4,6- Curable resin composition 1 was prepared by adding and mixing 5 parts by mass of trimethylbenzoyl)-phenylphosphine oxide (manufactured by BASF, Irgacure 819). The curable monomer and the polymerization initiator used in this example and other experimental examples do not contain a solvent and are all raw materials having a solid content of 100%.
Next, as the process film, the first PET film (PET100A-4100, manufactured by Toyobo Co., Ltd., thickness 100 μm) having an easy-adhesion layer on one surface was used, and on the surface opposite to the easy-adhesion layer surface of this PET film, The curable resin composition was applied, and the coating film was heated at 90° C. for 3 minutes and dried.
Further, a second PET film (Cosmo Shine A4100, manufactured by Toyobo Co., Ltd., thickness 50 μm) having an easy-adhesion layer on one surface was placed on the dried coating film so that the surface opposite to the easy-adhesion surface faced. Using a belt conveyor type ultraviolet irradiation device (manufactured by Eye Graphics Co., Ltd., product name: ECS-401GX), a high pressure mercury lamp (manufactured by Eye Graphics Co., Ltd., product name: H04-L41) was used to stack and stack the ultraviolet lamps. Under the conditions of 100 mm, ultraviolet lamp output 3 kw, illuminance of light having wavelength of 365 nm of 400 mW/cm 2 , and light quantity of 800 mJ/cm 2 (measured by UV light meter UV-351 manufactured by Oak Manufacturing Co., Ltd.), a second PET film was formed. A curing reaction was performed by irradiating ultraviolet rays through the layer to form a base layer having a thickness of 5 μm.
Then, the second PET film is peeled off to expose the underlayer, and a polysilazane compound (a coating agent containing perhydropolysilazane (PHPS) as a main component (Amiakuka NL-110 manufactured by Merck Performance Materials, Inc.) is formed on the underlayer. -20, solvent: xylene)) was applied by a spin coating method and dried by heating at 130 ° C. for 2 minutes to form a polymer compound layer (polysilazane layer) having a thickness of 200 nm and containing perhydropolysilazane.
Next, using a plasma ion implanter (manufactured by JEOL Ltd., RF power source: “RF” 56000; Kurita Manufacturing Co., Ltd., high voltage pulse power source: PV-3-HSHV-0835), a gas flow rate of 100 sccm and a duty ratio of 0 were used. 0.5%, applied DC voltage -6 kV frequency 1,000 Hz, applied RF power 1,000 W, chamber internal pressure 0.2 Pa, DC pulse width 5 μsec, processing time 200 seconds under conditions of argon gas-derived ion polymer compound layer. It was injected onto the surface of (polysilazane layer) to form a gas barrier layer. In this way, a gas barrier layered product was prepared by laminating the gas barrier layer on the underlayer.
[実施例2]
 硬化性単量体として、ジシクロペンタジエンジアクリレート(新中村化学工業社製、A-DCP)61質量部、環化重合性モノマーであるアリルエーテル型アクリレート(株式会社日本触媒製、FX-AO-MA)61質量部を用いた以外は実施例1と同様にしてガスバリア性積層体を作製した。
[Example 2]
61 parts by mass of dicyclopentadiene diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-DCP) as a curable monomer, allyl ether type acrylate which is a cyclopolymerizable monomer (manufactured by Nippon Shokubai Co., Ltd., FX-AO- (MA) A gas barrier laminate was produced in the same manner as in Example 1 except that 61 parts by mass was used.
[比較例1]
 硬化性単量体として、環化重合性モノマーであるアリルエーテル型アクリレート(株式会社日本触媒製、FX-AO-MA)122質量部のみを用いた以外は実施例1と同様にしてガスバリア性積層体を作製した。
[Comparative Example 1]
Gas barrier laminate in the same manner as in Example 1 except that only 122 parts by mass of allyl ether type acrylate (FX-AO-MA manufactured by Nippon Shokubai Co., Ltd.), which is a cyclopolymerizable monomer, was used as the curable monomer. The body was made.
[比較例2]
 重合体成分として、ポリイミド樹脂の代わりに、ポリスルホン樹脂(PSF)のペレット(BASF社製、ULTRASON S6010、Tg=187℃、重量平均分子量6万)100質量部を用いた以外は、比較例1と同様にしてガスバリア性積層体を作製した。
[Comparative example 2]
As Comparative Example 1, except that 100 parts by mass of pellets of polysulfone resin (PSF) (manufactured by BASF, ULTRASON S6010, Tg=187° C., weight average molecular weight 60,000) were used as the polymer component instead of the polyimide resin. A gas barrier laminate was prepared in the same manner.
[比較例3]
 ペレットの溶解溶媒としてMEKの代わりにトルエン、重合体成分として、ポリイミド樹脂の代わりに、ポリカーボネート樹脂(PC)のペレット(Tg≦190℃、重量平均分子量10万未満)100質量部を用いた以外は、実施例1と同様にしてガスバリア性積層体を作製した。
[Comparative Example 3]
Except for using 100 parts by mass of toluene (Tg≦190° C., weight average molecular weight less than 100,000) of a polycarbonate resin (PC) as a polymer component instead of a polyimide resin as a solvent for dissolving pellets, and a polyimide resin as a polymer component. A gas barrier laminate was prepared in the same manner as in Example 1.
 各実施例及び比較例の測定結果を表1に示す。 Table 1 shows the measurement results of each example and comparative example.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1から明らかなように、実施例1、2については、下地層が耐溶剤性及び破断伸度に優れており、また、工程フィルム除去後のガスバリア性積層体が破断伸度及び熱収縮率に優れており、ガスバリア性積層体の水蒸気透過率も優れている。
 一方、比較例1~3については、下地層の耐溶剤性は良好であるが、工程フィルム除去後のガスバリア性積層体の熱収縮率の絶対値が実施例1よりも大きく、ガスバリア性積層体の水蒸気透過率も実施例1に比べて1桁以上低下している。また、下地層及びガスバリア積層体のいずれの破断伸度も、実施例よりも劣る結果となっている。
As is clear from Table 1, in Examples 1 and 2, the underlayer is excellent in solvent resistance and elongation at break, and the gas barrier laminate after removal of the process film has elongation at break and heat shrinkage. And the water vapor permeability of the gas barrier laminate is also excellent.
On the other hand, in Comparative Examples 1 to 3, the solvent resistance of the underlayer was good, but the absolute value of the heat shrinkage rate of the gas barrier laminate after removing the process film was larger than that of Example 1, and the gas barrier laminate was The water vapor transmission rate of No. 1 is lower than that of Example 1 by one digit or more. Further, the breaking elongations of both the underlayer and the gas barrier laminate are inferior to those of the examples.
 本発明のガスバリア性積層体によれば、高い破断伸度を有しつつ、しかもガスバリア性をより一層高めることができることから、ガスバリア性と、フレキシブル性や耐屈曲性とを同時に要求される電子デバイス、例えば、フレキシブル有機EL素子等、また、フレキシブル熱電変換素子等、大気劣化し易い各種電子デバイスを構成する素子用の部材に適用され得る。 According to the gas barrier laminate of the present invention, it is possible to further enhance the gas barrier property while having a high breaking elongation, and therefore an electronic device that is required to have gas barrier properties and flexibility and bending resistance at the same time. For example, it can be applied to a member for an element that constitutes various electronic devices that are easily deteriorated in the atmosphere, such as a flexible organic EL element or the like, or a flexible thermoelectric conversion element or the like.
1:工程フィルム
2:下地層
2a:硬化前の下地層
3:ガスバリア層
10:ガスバリア性積層体
10a:工程フィルム除去後のガスバリア性積層体

 
1: Process film 2: Base layer 2a: Base layer before curing 3: Gas barrier layer 10: Gas barrier laminate 10a: Gas barrier laminate after process film removal

Claims (6)

  1.  工程フィルムと、下地層と、ガスバリア層とをこの順で備えるガスバリア性積層体であって、
     前記下地層は、重合体成分(A)及び硬化性成分(B)を含有する硬化性樹脂組成物の硬化物からなる層であり、
     前記ガスバリア性積層体が、以下の要件[1]及び[2]を満たす、ガスバリア性積層体。
    [1]ガスバリア性積層体の熱収縮率の絶対値が0.5%以下である。
    [2]ガスバリア性積層体の破断伸度が1.9%以上である。
    A gas barrier laminate comprising a process film, a base layer, and a gas barrier layer in this order,
    The underlayer is a layer formed of a cured product of a curable resin composition containing a polymer component (A) and a curable component (B),
    A gas barrier laminate, wherein the gas barrier laminate satisfies the following requirements [1] and [2].
    [1] The absolute value of the thermal shrinkage of the gas barrier laminate is 0.5% or less.
    [2] The breaking elongation of the gas barrier laminate is 1.9% or more.
  2.  前記下地層の厚さは、0.1~10μmである、請求項1に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1, wherein the underlayer has a thickness of 0.1 to 10 μm.
  3.  前記ガスバリア層は、塗膜である、請求項1又は2に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1 or 2, wherein the gas barrier layer is a coating film.
  4.  前記硬化性成分(B)は、環化重合性モノマーを含有する、請求項1~3のいずれか1項に記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 3, wherein the curable component (B) contains a cyclopolymerizable monomer.
  5.  前記硬化性成分(B)成分は、更に多官能(メタ)アクリレート化合物を含有し、前記環化重合性モノマーと前記多官能(メタ)アクリレート化合物との質量比が95:5~30:70である、請求項4に記載のガスバリア性積層体。 The curable component (B) further contains a polyfunctional (meth)acrylate compound, and the mass ratio of the cyclopolymerizable monomer to the polyfunctional (meth)acrylate compound is 95:5 to 30:70. The gas barrier laminate according to claim 4, which is present.
  6.  前記重合体成分(A)のガラス転移温度は、250℃以上である、請求項1~5のいずれか1項に記載のガスバリア性積層体。

     
    The gas barrier laminate according to any one of claims 1 to 5, wherein the glass transition temperature of the polymer component (A) is 250°C or higher.

PCT/JP2019/050923 2018-12-27 2019-12-25 Gas barrier laminate WO2020138207A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020563364A JP7398394B2 (en) 2018-12-27 2019-12-25 Gas barrier laminate
KR1020217019728A KR20210110592A (en) 2018-12-27 2019-12-25 gas barrier laminate
CN201980086465.4A CN113226750B (en) 2018-12-27 2019-12-25 Gas barrier laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-244719 2018-12-27
JP2018244719 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138207A1 true WO2020138207A1 (en) 2020-07-02

Family

ID=71127240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050923 WO2020138207A1 (en) 2018-12-27 2019-12-25 Gas barrier laminate

Country Status (5)

Country Link
JP (1) JP7398394B2 (en)
KR (1) KR20210110592A (en)
CN (1) CN113226750B (en)
TW (1) TW202031479A (en)
WO (1) WO2020138207A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022203067A1 (en) * 2021-03-26 2022-09-29 リンテック株式会社 Curable resin composition and cured resin layer using same
WO2022203086A1 (en) * 2021-03-26 2022-09-29 リンテック株式会社 Multilayer body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004299230A (en) * 2003-03-31 2004-10-28 Dainippon Printing Co Ltd Gas-barrier substrate
WO2013065812A1 (en) * 2011-11-04 2013-05-10 リンテック株式会社 Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
JP2014166722A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumikin Chemical Co Ltd Method of producing laminate member
WO2017090592A1 (en) * 2015-11-24 2017-06-01 コニカミノルタ株式会社 Gas barrier film, and electronic device provided with same
WO2018016346A1 (en) * 2016-07-20 2018-01-25 東レフィルム加工株式会社 Film for transfer of gas barrier multilayer film and organic el device
JP2018027660A (en) * 2016-08-19 2018-02-22 コニカミノルタ株式会社 Functional laminate and method for production thereof
WO2018180962A1 (en) * 2017-03-30 2018-10-04 リンテック株式会社 Gas-barrier film and sealed object
WO2019182119A1 (en) * 2018-03-23 2019-09-26 リンテック株式会社 Gas barrier laminate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554724B2 (en) * 2011-01-05 2014-07-23 新日鉄住金化学株式会社 Gas barrier laminate film and method for producing the same
US20130302627A1 (en) * 2011-01-31 2013-11-14 3M Innovative Properties Company Vapor-deposited coating for barrier films and methods of making and using the same
KR20140102657A (en) * 2011-11-30 2014-08-22 린텍 가부시키가이샤 Manufacturing method for gas barrier film, and electronic member or optical member provided with gas barrier film
CN104969305B (en) * 2013-02-06 2017-03-22 三菱树脂株式会社 Transparent stacked film, transparent conductive film, and gas barrier stacked film
KR20190012174A (en) * 2016-05-31 2019-02-08 린텍 가부시키가이샤 A laminate, a member for an electronic device, and an electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004299230A (en) * 2003-03-31 2004-10-28 Dainippon Printing Co Ltd Gas-barrier substrate
WO2013065812A1 (en) * 2011-11-04 2013-05-10 リンテック株式会社 Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
JP2014166722A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumikin Chemical Co Ltd Method of producing laminate member
WO2017090592A1 (en) * 2015-11-24 2017-06-01 コニカミノルタ株式会社 Gas barrier film, and electronic device provided with same
WO2018016346A1 (en) * 2016-07-20 2018-01-25 東レフィルム加工株式会社 Film for transfer of gas barrier multilayer film and organic el device
JP2018027660A (en) * 2016-08-19 2018-02-22 コニカミノルタ株式会社 Functional laminate and method for production thereof
WO2018180962A1 (en) * 2017-03-30 2018-10-04 リンテック株式会社 Gas-barrier film and sealed object
WO2019182119A1 (en) * 2018-03-23 2019-09-26 リンテック株式会社 Gas barrier laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022203067A1 (en) * 2021-03-26 2022-09-29 リンテック株式会社 Curable resin composition and cured resin layer using same
WO2022203086A1 (en) * 2021-03-26 2022-09-29 リンテック株式会社 Multilayer body

Also Published As

Publication number Publication date
CN113226750B (en) 2023-05-19
CN113226750A (en) 2021-08-06
JP7398394B2 (en) 2023-12-14
JPWO2020138207A1 (en) 2021-11-18
TW202031479A (en) 2020-09-01
KR20210110592A (en) 2021-09-08

Similar Documents

Publication Publication Date Title
KR102168722B1 (en) Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
WO2020138206A1 (en) Gas barrier laminate
US10967618B2 (en) Curable composition for forming primer layer, gas barrier laminated film, and gas barrier laminate
JP7398394B2 (en) Gas barrier laminate
WO2019182119A1 (en) Gas barrier laminate
WO2013175910A1 (en) Gas barrier layered product, and production method for gas barrier layered product
WO2021261195A1 (en) Optical film, optical film manufacturing method, transparent conductive film, and gas barrier film
WO2013125351A1 (en) Gas barrier structure and method for forming gas barrier structure
JP6544832B2 (en) Gas barrier laminate, member for electronic device and electronic device
JP2014189585A (en) Curable resin composition, resin film, gas barrier film and electronic device
WO2021132030A1 (en) Optical layered body
WO2021193889A1 (en) Laminate for transparent conductive film, transparent conductive film, and transparent conductive film manufacturing method
WO2022203071A1 (en) Curable resin composition and cured resin layer using same
WO2022203067A1 (en) Curable resin composition and cured resin layer using same
WO2023054528A1 (en) Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902324

Country of ref document: EP

Kind code of ref document: A1