WO2017090592A1 - Gas barrier film, and electronic device provided with same - Google Patents

Gas barrier film, and electronic device provided with same Download PDF

Info

Publication number
WO2017090592A1
WO2017090592A1 PCT/JP2016/084572 JP2016084572W WO2017090592A1 WO 2017090592 A1 WO2017090592 A1 WO 2017090592A1 JP 2016084572 W JP2016084572 W JP 2016084572W WO 2017090592 A1 WO2017090592 A1 WO 2017090592A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
transition metal
region
film
barrier film
Prior art date
Application number
PCT/JP2016/084572
Other languages
French (fr)
Japanese (ja)
Inventor
西尾 昌二
森 孝博
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017090592A1 publication Critical patent/WO2017090592A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Definitions

  • the present invention relates to a gas barrier film and an electronic device including the same, and more particularly to a gas barrier film having high gas barrier properties and excellent productivity, and an electronic device including the same.
  • organic electroluminescence (organic EL) elements such as organic electroluminescence (organic EL) elements, solar cells, touch panels, electronic papers, etc.
  • High moisture barrier properties are required for plastic substrates such as plastic substrates or films for sealing circuit boards.
  • the inorganic gas barrier layer has a higher gas barrier property than an organic film formed of a so-called gas barrier resin or the like, but due to the nature of the film, structural defects such as pinholes and cracks, There is a bond defect (M-OH bond) that becomes a gas passage in the MOM network (M is a metal element), and as a result, this alone is required in the field of organic EL devices. Therefore, the high gas barrier property that has been achieved cannot be satisfied, and further improvement of the gas barrier property is demanded.
  • M-OH bond bond defect
  • the conventional technology has not yet achieved a high gas barrier property although it is a thin film, which has been required in recent years.
  • a gas barrier film having a gas barrier layer on a base material causes cracks in the gas barrier layer due to the shrinkage of the base material due to heat under high temperature and high humidity storage, which lowers the gas barrier property. There was also a problem.
  • the present invention has been made in view of the above problems and situations, and a solution to the problem is to provide a gas barrier film having high gas barrier properties and excellent productivity, and an electronic device including the same. It is to be.
  • the gas barrier layer has a mixed region containing a specific material at least in the thickness direction, It has been found that by setting the glass transition temperature of the constituent material to a specific temperature or higher, it is possible to provide a gas barrier film and an electronic device that have high gas barrier properties and excellent productivity, and have reached the present invention.
  • a gas barrier film having a gas barrier layer on a substrate has a mixed region containing at least a group 5 transition metal (M2) and a group 12-14 non-transition metal (M1) in the thickness direction;
  • a gas barrier film, wherein a glass transition temperature of a constituent material of the substrate is 150 ° C. or higher.
  • the gas barrier layer includes a region containing the transition metal (M2) or a compound thereof as a main component a (hereinafter referred to as “A region”), and the non-transition metal (M1) or a compound thereof as a main component. a region contained as b (hereinafter referred to as “B region”), The mixed region is interposed between the A region and the B region, and the mixed region contains a compound derived from the main component a and the main component b.
  • the gas barrier film according to any one of items 1 to 3 above.
  • An electronic device comprising the gas barrier film according to any one of items 1 to 6.
  • the gas barrier film of the present invention is not only remarkably improved in gas barrier properties such as moisture barrier properties, but also excellent in productivity, and thus is useful as a substrate and a sealing layer for various electronic devices. Practical application to organic EL elements can be expected.
  • a gas barrier layer is formed by using an oxygen-deficient composition film containing a compound (for example, an oxide) of a non-transition metal (M1) alone, or a transition metal (M2)
  • a gas barrier layer is formed by using an oxygen-deficient composition film of a compound (for example, an oxide) alone, a tendency to improve the gas barrier property as the degree of oxygen deficiency increases is observed, but a remarkable gas barrier is observed. It did not lead to improvement of sex.
  • a mixed region containing the non-transition metal (M1) and the transition metal (M2) is interposed between the A region and the B region, and the mixed region has an oxygen deficient composition. It has been found that the gas barrier property is remarkably improved as the degree of oxygen deficiency increases.
  • Sectional drawing which shows schematic structure as an example of the gas barrier film of this invention Graph showing the ratio of the number of atoms to the depth in the thickness direction of the gas barrier layer
  • Sectional drawing which shows schematic structure as an example of the organic EL element which comprised the gas barrier film of this invention
  • the gas barrier layer has a mixed region containing at least the group 5 transition metal (M2) and the group 12-14 non-transition metal (M1) in the thickness direction.
  • the glass transition temperature of the constituent material of the substrate is 150 ° C. or higher.
  • the glass transition temperature of the constituent material of the base material is preferably 180 ° C. or higher, and the constituent material of the base material is more preferably polyimide.
  • the gas barrier layer contains an A region in which the transition metal (M2) or a compound thereof is contained as the main component a, and a non-transition metal (M1) or a compound thereof as the main component b.
  • the mixed region is interposed between the A region and the B region, and the mixed region contains a compound derived from the main component a and the main component b. preferable.
  • the composition of the mixed region is represented by the chemical composition formula (1), it is preferable that at least a part of the mixed region satisfies the relational expression (2). .
  • the non-transition metal (M1) is preferably silicon.
  • the gas barrier film of the present invention can be suitably provided for an electronic device. Moreover, it is preferable that the said electronic device has a quantum dot containing resin layer.
  • the electronic device preferably includes an organic electroluminescence element.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • FIG. 1 the schematic sectional drawing of the gas barrier film 1 of this invention is shown as an example.
  • the gas barrier film 1 has a gas barrier layer 3 on a substrate 2.
  • the gas barrier layer 3 has a mixed region containing at least a group 5 transition metal (M2) and a group 12-14 non-transition metal (M1) in at least the thickness direction.
  • M2 group 5 transition metal
  • M1 group 12-14 non-transition metal
  • the “region” is an opposing surface formed when the gas barrier layer is divided at a constant or arbitrary thickness on a plane perpendicular to the thickness direction (stacking direction) of the gas barrier layer.
  • the three-dimensional space (region) between the two surfaces is defined, and the composition of the components in the region may be constant in the thickness direction or may gradually change.
  • the gas barrier layer 3 is provided on only one surface of the base material 2 is shown.
  • the gas barrier layer 3 may be provided on both surfaces of the base material 2, or one of the base materials 2 may be provided.
  • a gas barrier layer 3 composed of a plurality of layers may be provided on the surface.
  • the gas barrier layer 3 includes a region containing the transition metal (M2) or a compound thereof as the main component a (hereinafter referred to as “A region”), a non-transition metal (M1) of group 12 to 14 or a compound thereof. Is contained as a main component b (hereinafter referred to as “B region”), and a mixed region is preferably interposed between the A region and the B region. At this time, the compound derived from the main component a and the main component b is contained in the mixed region.
  • the gas barrier layer 3 may be composed only of the mixed region without having the A region and the B region.
  • the “compound derived from the main component a and the main component b” refers to the composite compound formed by the reaction between the main component a and the main component b themselves and the main component a and the main component b.
  • a “composite oxide” will be described as a specific example of the composite compound.
  • the “composite oxide” is a compound (oxide) formed by chemically bonding the constituent components of the A region and the B region to each other. Say. For example, a compound having a chemical structure in which a niobium atom and a silicon atom form a chemical bond directly or through an oxygen atom.
  • composite compound includes a complex formed by the structural components of the A region and the B region being physically bonded to each other by an intermolecular interaction or the like.
  • main component refers to a component having the maximum content as an atomic composition ratio.
  • metal main component refers to a metal component having the maximum content as an atomic ratio among the metal components in the constituent components.
  • consistuent component refers to a compound constituting a specific region of the gas barrier layer or a simple substance of metal or nonmetal.
  • the base material according to the present invention has a glass transition temperature Tg of a constituent material of 150 ° C. or higher. Moreover, as a base material, since it can acquire flexibility and light transmittance, it is preferable that it is a resin base material, and also it is preferable that it is a resin film.
  • PEN polyethylene naphthalate
  • alicyclic polyolefin for example, ZEONOR (registered trademark) 1600: 160 ° C. manufactured by ZEON CORPORATION
  • Polyarylate PAr: 210 ° C.
  • PES polyether sulfone
  • PSF polysulfone
  • COC cycloolefin copolymer
  • Neoprim registered trademark
  • the glass transition temperature Tg of the substrate can be appropriately adjusted by using an additive or the like.
  • the thickness of the substrate is preferably in the range of 5 to 500 ⁇ m, more preferably in the range of 15 to 250 ⁇ m.
  • base material manufacturing methods for example, techniques disclosed in paragraphs 0125 to 0136 of JP2013-226758A can be appropriately employed.
  • the gas barrier layer according to the present invention has a mixed region containing a group 5 transition metal (M2) and a group 12-14 non-transition metal (M1) at least in the thickness direction. ing.
  • the mixed region is between the A region containing the transition metal (M2) or a compound thereof as the main component a and the B region containing the non-transition metal (M1) or a compound thereof as the main component b. It may be interposed.
  • the gas barrier layer has a ratio of the ratio of the number of atoms of the transition metal (M2) to the non-transition metal (M1) (number of atoms of the transition metal (M2) / number of atoms of the non-transition metal (M1). Is preferably 5 nm or more continuously in the thickness direction in the range of 0.02 to 49.
  • thickness or “layer thickness” means a depth in the thickness direction of the gas barrier layer as described later, and XPS analysis is performed. The sputter depth is expressed in terms of SiO 2 .
  • the “layer thickness” of the gas barrier layer is from the outermost surface side of the gas barrier layer to the interface with the substrate, and the “interface with the substrate” is the gas barrier layer (in the present invention, in the composition analysis by XPS).
  • B region is the position that is the intersection of the main component distribution curve and the main component distribution curve of the substrate.
  • oxygen is preferably contained in addition to the transition metal (M2) and the non-transition metal (M1).
  • the mixed region includes at least a mixture of an oxide of a transition metal (M2) and an oxide of a non-transition metal (M1) or a composite oxide of a transition metal (M2) and a non-transition metal (M1). It is a preferable form that one of them is contained, and a more preferred form is that a composite oxide of a transition metal (M2) and a non-transition metal (M1) is contained.
  • the “mixture” refers to a product in a state where the constituent components of the A region and the B region are mixed without chemically bonding to each other. For example, a state in which niobium oxide and silicon oxide are mixed without being chemically bonded to each other.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 when the gas barrier layer was formed on the substrate and calculated as a laminate was 1 ⁇ 10 ⁇ 3.
  • measured water vapor permeability by the method based on JIS K 7129-1992 (25 ⁇ 0.5 °C , 90 ⁇ 2% RH) is 1 ⁇ 10 -3 g
  • the gas barrier property is not more than / (m 2 ⁇ 24 h).
  • the A region according to the present invention is a region containing the transition metal (M2) of the Group 5 element of the long-period periodic table or a compound thereof as the main component a.
  • the compound that is, “a compound of transition metal (M2)” refers to a compound containing a transition metal (M2), and examples thereof include transition metal oxides.
  • transition metal (M2) of the Group 5 element in the long-period periodic table examples include Nb, Ta, and V.
  • the transition metal (M2) is a Group 5 element (especially Nb)
  • the non-transition metal (M1) described later is Si
  • a significant gas barrier property improvement effect can be obtained. This is presumably because the bond between Si and the Group 5 element (particularly Nb) is particularly likely to occur.
  • the transition metal (M2) is particularly preferably Nb or Ta from which a compound with good transparency can be obtained.
  • the thickness of the A region is preferably in the range of 2 to 50 nm, more preferably in the range of 4 to 25 nm, more preferably in the range of 5 to 15 nm from the viewpoint of achieving both gas barrier properties and optical characteristics. More preferably within the range.
  • the region B according to the present invention is a region containing the non-transition metal (M1) of the group 12-14 element of the long-period periodic table or a compound thereof as the main component b.
  • the “compound” here, that is, the “compound of non-transition metal (M1)” refers to a compound containing a non-transition metal (M1), for example, a non-transition metal oxide.
  • the non-transition metal (M1) is not particularly limited, and any metal of Group 12 to 14 can be used alone or in combination. Examples thereof include Si, Al, Zn, In, and Sn. . Among these, as the non-transition metal (M1), Si, Sn or Zn is preferably contained, Si is more preferably contained, and Si alone is particularly preferred.
  • the thickness of the region B is preferably in the range of 10 to 1000 nm, more preferably in the range of 20 to 500 nm, and more preferably in the range of 50 to 300 nm from the viewpoint of achieving both gas barrier properties and productivity. More preferably within the range.
  • the mixed region according to the present invention is (1)
  • the gas barrier layer is composed of a plurality of regions having chemical compositions different from each other at least in the thickness direction, and one region (A region) includes transition metal (M2) or a compound thereof (for example, Transition metal oxides (niobium oxide, etc.) are contained, and non-transition metal (M1) or a compound thereof is contained in the other region (B region) directly or indirectly facing the one region.
  • transition metal (M2) or a compound thereof for example, Transition metal oxides (niobium oxide, etc.
  • the mixed region is continuously present in a thickness of a predetermined value or more (specifically, 5 nm or more) in the thickness direction of the gas barrier layer. If the mixed region has a thickness of at least about 5 nm, high gas barrier performance can be exhibited. Therefore, even when a very thin gas barrier film is used, high gas barrier performance can be obtained. That is, the gas barrier film of the present invention can be made to be a gas barrier film having excellent bending resistance because the gas barrier layer can be made very thin while gas barrier performance is high.
  • the region other than the mixed region of the gas barrier layer may be a region such as a non-transition metal (M1) oxide, nitride, oxynitride, or oxycarbide, or a transition metal (M2) oxide or nitridation. It may be a region such as a product, an oxynitride, an oxycarbide.
  • M1 non-transition metal
  • M2 transition metal
  • the oxygen deficient composition is a condition that when the composition of the mixed region is represented by the following chemical composition formula (1), at least a part of the composition of the mixed region is defined by the following relational expression (2). It is defined as satisfying.
  • the oxygen deficiency index indicating the degree of oxygen deficiency in the mixed region, the minimum value obtained by calculating (2y + 3z) / (a + bx) in the mixed region described later is used.
  • composition represented by the chemical composition formula (1) is simply referred to as the composition of the composite region.
  • the composition of the composite region of the transition metal (M2) and the non-transition metal (M1) according to the present invention is represented by the chemical composition formula (1).
  • the composition of the composite region may partially include a nitride structure, and is preferably a composition including a nitride structure from the viewpoint of gas barrier properties.
  • the maximum valence of the non-transition metal (M1) is a
  • the maximum valence of the transition metal (M2) is b
  • the valence of O is 2
  • the valence of N is 3.
  • composition of the composite region (including a part of the nitride) is a stoichiometric composition
  • (2y + 3z) / (a + bx) 1.0.
  • This formula means that the total number of bonds of non-transition metal (M1) and transition metal (M2) is equal to the total number of bonds of O and N.
  • non-transition metal (M1) And the transition metal (M2) are bonded to either O or N.
  • the maximum valence of each element is set to The composite valence calculated by performing the weighted average according to the existence ratio is adopted as the values of a and b of each “maximum valence”.
  • the remaining bonds of the non-transition metal (M1) and the transition metal (M2) have the possibility of bonding to each other, and the metals of the non-transition metal (M1) and the transition metal (M2) When they are directly bonded, it is considered that a denser and higher-density structure is formed than when bonded between metals via O or N, and as a result, gas barrier properties are improved.
  • the mixed region is a region where the value of x satisfies 0.02 ⁇ x ⁇ 49 (0 ⁇ y, 0 ⁇ z). This is because the value of the ratio of the number ratio of the transition metal (M2) to the non-transition metal (M1) (number of transition metal (M2) atoms / number of non-transition metal (M1) atoms) is 0. This is the same definition as defined as a region having a thickness in the range of .02 to 49 and a thickness of 5 nm or more.
  • the mixed region is a region satisfying 0.1 ⁇ x ⁇ 10.
  • a thickness of 5 nm or more more preferably include a region satisfying 0.2 ⁇ x ⁇ 5 at a thickness of 5 nm or more, and a region satisfying 0.3 ⁇ x ⁇ 4 to a thickness of 5 nm or more. It is further preferable to contain.
  • the effect of improving the gas barrier property is exhibited.
  • at least a part of the composition of the mixed region preferably satisfies (2y + 3z) / (a + bx) ⁇ 0.9, and satisfies (2y + 3z) / (a + bx) ⁇ 0.85. More preferably, it is more preferable to satisfy (2y + 3z) / (a + bx) ⁇ 0.8.
  • the thickness of the mixed region where good gas barrier properties can be obtained is 5 nm or more as the sputtering thickness in terms of SiO 2 in the XPS analysis method described later, and this thickness is 8 nm or more. Is preferably 10 nm or more, more preferably 20 nm or more.
  • the thickness of the mixed region is not particularly limited from the viewpoint of gas barrier properties, but is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less from the viewpoint of optical characteristics. preferable.
  • a gas barrier layer having a mixed region having a specific structure as described above exhibits a very high gas barrier property that can be used as a gas barrier layer for an electronic device such as an organic EL element.
  • composition analysis by XPS and measurement of the thickness of the mixed region The mixed distribution of the gas barrier layer according to the present invention, the composition distribution in the A region and the B region, the thickness of each region, and the like are measured by X-ray photoelectron spectroscopy (XPS) described in detail below. Can be obtained.
  • XPS X-ray photoelectron spectroscopy
  • the element concentration distribution curve (hereinafter referred to as “depth profile”) in the thickness direction of the gas barrier layer according to the present invention specifically includes the element concentration of the non-transition metal (M1) (for example, silicon), the transition metal. (M2) Element concentration of niobium (for example, element concentration of oxygen (O), nitrogen (N), carbon (C), etc.) is used in combination with X-ray photoelectron spectroscopy measurement and rare gas ion sputtering such as argon By doing so, it can be created by sequentially performing a surface composition analysis while exposing the inside from the surface of the gas barrier layer.
  • M1 for example, silicon
  • M2 transition metal
  • Element concentration of niobium for example, element concentration of oxygen (O), nitrogen (N), carbon (C), etc.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time is roughly correlated with the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer in the layer thickness direction.
  • the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time used in the XPS depth profile measurement is adopted. can do.
  • etching rate is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
  • ⁇ Analyzer QUANTERA SXM manufactured by ULVAC-PHI ⁇
  • X-ray source Monochromatic Al-K ⁇ ⁇ Sputtering ion: Ar (2 keV)
  • Depth profile Measurement is repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data every 1 nm is obtained in the depth direction).
  • Quantification The background is obtained by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area.
  • Data processing uses MultiPak manufactured by ULVAC-PHI.
  • the analyzed elements are non-transition metal (M1) (for example, silicon (Si)), transition metal (M2) (for example, niobium (Nb)), oxygen (O), nitrogen (N), and carbon (C). It is. From the obtained data, the composition ratio is calculated, the ratio of the atomic ratio of the transition metal (M2) and the non-transition metal (M1), and the non-transition metal (M1) and the transition metal (M2) coexist.
  • the range in which the value of (the atomic ratio of transition metal (M2) / the atomic ratio of non-transition metal (M1)) is 0.02 to 49 is determined, this is defined as a mixed region, and the thickness is determined .
  • the thickness of the mixed region represents the sputter depth in XPS analysis in terms of SiO 2 .
  • FIG. 2 is a graph for explaining an element profile and a mixed region when the composition distribution of the non-transition metal (M1) and the transition metal (M2) in the thickness direction of the gas barrier layer is analyzed by the XPS method.
  • elemental analysis of non-transition metal (M1), transition metal (M2), O, N, and C is performed in the depth direction from the surface of the gas barrier layer (surface opposite to the base material). sputtering the axial depth: the (nm SiO 2 equivalent), the content of the vertical axis with non-transition metals (M1) and transition metal (M2) (at%) is a graph showing a.
  • a B region which is an elemental composition mainly composed of a non-transition metal (M1) (for example, Si) as a metal is shown, and a transition metal (as a metal toward the gas barrier layer surface side in contact with this) M2)
  • a region which is an elemental composition mainly composed of niobium (for example, niobium) is shown.
  • the value of the ratio of the number of atoms of the transition metal (M2) and the non-transition metal (M1) is 0.
  • a method for forming the A region containing the transition metal (M2) is not particularly limited, and for example, a conventionally known vapor deposition method using an existing thin film deposition technique can be used to efficiently form the mixed region. It is preferable from the viewpoint of formation.
  • the vapor deposition method is not particularly limited.
  • a physical vapor deposition (PVD) method such as a sputtering method, a vapor deposition method, an ion plating method, or an ion assisted vapor deposition method, a plasma CVD (Chemical Vapor).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • ALD Atomic Layer Deposition
  • bipolar sputtering, magnetron sputtering, dual magnetron sputtering (DMS) using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more.
  • the target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used.
  • a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can be used.
  • a metal oxide film can be formed at a high film formation speed, which is preferable.
  • the inert gas used for the process gas He, Ne, Ar, Kr, Xe or the like can be used, and Ar is preferably used. Furthermore, by introducing oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas, thin films of non-transition metal (M1) and transition metal (M2) composite oxides, oxynitrides, oxycarbides, etc. are formed. can do. Examples of film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, and these can be appropriately selected depending on the sputtering apparatus, the material of the film, the thickness, and the like.
  • the sputtering method may be a multi-source simultaneous sputtering method using a plurality of sputtering targets including a transition metal (M2) alone or its oxide.
  • M2 transition metal
  • a method for producing these sputtering targets and a method for producing a thin film made of a composite oxide using these sputtering targets for example, JP 2000-160331 A, JP 2004-068109 A, JP
  • JP The methods and conditions described in JP 2013-047361 A can be referred to as appropriate.
  • the film forming conditions for carrying out the co-evaporation method include the ratio of the transition metal (M2) and oxygen in the film forming raw material, the ratio of the inert gas to the reactive gas during the film forming, and the gas concentration during the film forming. Examples include one or more conditions selected from the group consisting of supply amount, degree of vacuum during film formation, and power during film formation.
  • These film formation conditions preferably oxygen partial pressure
  • a mixed region made of a complex oxide having an oxygen deficient composition can be formed. That is, by forming the gas barrier layer using the co-evaporation method as described above, almost all regions in the thickness direction of the formed gas barrier layer can be mixed regions.
  • a desired gas barrier property can be realized by an extremely simple operation of controlling the thickness of the mixed region.
  • what is necessary is just to adjust the film-forming time at the time of implementing a co-evaporation method, for example, in order to control the thickness of a mixing area
  • a vapor-phase film-forming method can be used by a well-known method.
  • the vapor deposition method is not particularly limited.
  • chemical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assisted vapor deposition, chemistry such as plasma CVD, ALD, and the like.
  • a vapor deposition (CVD) method may be mentioned.
  • PVD physical vapor deposition
  • M1) can be used as a target.
  • a method of forming by a wet coating method using a polysilazane-containing coating solution containing Si as a non-transition metal (M1) is one of the preferable methods.
  • polysilazane applicable to the formation of the B region is a polymer having a silicon-nitrogen bond in the structure, and includes SiO 2 , Si 3 made of Si—N, Si—H, NH, or the like.
  • N is 4 and both of the intermediate solid solution SiO x N preceramic inorganic polymers, such as y.
  • the relatively Polysilazanes that can be modified to silicon oxide, silicon nitride or silicon oxynitride at low temperatures are preferred.
  • Examples of such polysilazane include compounds having a structure represented by the following general formula (1).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group.
  • PHPS perhydropolysilazane
  • organopolysilazanes in which hydrogen atoms bonded to Si are partially substituted with alkyl groups or the like have an alkyl group such as a methyl group, so that the adhesion to an adjacent substrate is improved, and it may be hard.
  • a ceramic film made of polysilazane can be tough, and even when the B region is made thicker, it is preferable in that the generation of cracks is suppressed.
  • perhydropolysilazane and organopolysilazane can be appropriately selected and used, or they can be used in combination.
  • Perhydropolysilazane is presumed to have a structure in which a linear structure and a ring structure centered on a 6- or 8-membered ring coexist.
  • the molecular weight of polysilazane is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn) and varies depending on the molecular weight of a liquid or solid substance.
  • Mn number average molecular weight
  • These polysilazane compounds are commercially available in a solution state dissolved in an organic solvent, and a commercially available product can be used as a polysilazane compound-containing coating solution as it is.
  • polysilazanes that are ceramicized at a low temperature include silicon alkoxide-added polysilazanes obtained by reacting the above polysilazanes with silicon alkoxides (Japanese Patent Laid-Open No. 5-238827), and glycidol-added polysilazanes obtained by reacting glycidol (specially No. 6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (Japanese Patent Laid-Open No. 6-240208), and a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (Japanese Patent Laid-Open No. 6-299118). No.
  • acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal fine particle-added polysilazane obtained by adding metal fine particles (JP-A-7- 1969 6 No.), and the like.
  • polysilazane examples include, for example, paragraphs 0024 to 0040 of JP2013-255910A, paragraphs 0037 to 0043 of JP2013-188942, and paragraphs 0014 to 0021 of JP2013-151123A.
  • paragraphs 0033 to 0045 of JP 2013-052569 A paragraphs 0062 to 0075 of JP 2013-129557 A, paragraphs 0037 to 0064 of JP 2013-226758 A, and the like. Can be applied.
  • organic solvent for preparing a coating liquid containing polysilazane, it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane.
  • Suitable organic solvents include, for example, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, or ethers such as aliphatic ethers and alicyclic ethers. Can be used.
  • organic solvents such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • organic solvents may be selected according to the purpose such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of organic solvents may be mixed.
  • the concentration of polysilazane in the coating liquid containing polysilazane varies depending on the thickness of the target gas barrier layer and the pot life of the coating liquid, but is preferably about 0.2 to 35% by mass.
  • an amine or a metal catalyst may be added to the coating liquid containing polysilazane in order to promote modification to silicon oxide, silicon nitride, or silicon oxynitride.
  • a polysilazane solution containing a catalyst such as NAX120-20, NN120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, SP140 manufactured by AZ Electronic Materials Co., Ltd. as a commercial product is used. be able to.
  • these commercial items may be used independently and may be used in mixture of 2 or more types.
  • the addition amount of the catalyst is adjusted to 2% by mass or less with respect to polysilazane in order to avoid excessive silanol formation by the catalyst, decrease in film density, increase in film defects, and the like. It is preferable to do.
  • the coating liquid containing polysilazane can contain an inorganic precursor compound in addition to polysilazane.
  • the inorganic precursor compound other than polysilazane is not particularly limited as long as a coating liquid can be prepared.
  • compounds other than polysilazane described in paragraphs 0110 to 0114 of JP2011-143577A can be appropriately employed.
  • An organometallic compound of a metal element other than Si can be added to the coating liquid containing polysilazane.
  • an organometallic compound of a metal element other than Si By adding an organometallic compound of a metal element other than Si, the replacement of N atom and O atom of polysilazane is promoted in the coating and drying process, and the coating composition can be changed to a stable composition close to SiO 2 after drying. it can.
  • metal elements other than Si include aluminum (Al), titanium (Ti), zirconium (Zr), zinc (Zn), gallium (Ga), indium (In), chromium (Cr), iron (Fe), Magnesium (Mg), tin (Sn), nickel (Ni), palladium (Pd), lead (Pb), manganese (Mn), lithium (Li), germanium (Ge), copper (Cu), sodium (Na), Examples include potassium (K), calcium (Ca), cobalt (Co), boron (B), beryllium (Be), strontium (Sr), barium (Ba), radium (Ra), thallium (Tl), and the like.
  • Al, B, Ti and Zr are preferable, and among them, an organometallic compound containing Al is preferable.
  • Examples of the aluminum compound applicable to the present invention include aluminum isopoloxide, aluminum-sec-butyrate, titanium isopropoxide, aluminum triethylate, aluminum triisopropylate, aluminum tritert-butylate, aluminum tri-n- Examples include butyrate, aluminum tri-sec-butylate, aluminum ethyl acetoacetate / diisopropylate, acetoalkoxyaluminum diisopropylate, aluminum diisopropylate monoaluminum-t-butylate, aluminum trisethylacetoacetate, aluminum oxide isopropoxide trimer, etc. be able to.
  • Specific commercial products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate / diisopropylate), ALCH-TR (aluminum trisethyl acetoate).
  • Acetate aluminum chelate M (aluminum alkyl acetoacetate / diisopropylate), aluminum chelate D (aluminum bisethylacetoacetate / monoacetylacetonate), aluminum chelate A (W) (aluminum trisacetylacetonate) Ken Fine Chemical Co., Ltd.), Preneact (registered trademark) AL-M (acetoalkoxyaluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.) It is possible.
  • the temperature is preferably raised to 30 to 100 ° C. and maintained for 1 minute to 24 hours with stirring.
  • the content of the additive metal element in the polysilazane-containing layer constituting the gas barrier layer according to the present invention is preferably in the range of 0.05 to 10 mol% with respect to the silicon (Si) content of 100 mol%, More preferably, it is in the range of 0.5 to 5 mol%.
  • Modification process In the formation of the B region using polysilazane, it is preferable to perform a modification treatment after forming the polysilazane-containing layer.
  • the modification treatment is treatment for imparting energy to polysilazane and converting part or all of it into silicon oxide or silicon oxynitride.
  • a known method based on the conversion reaction of polysilazane can be selected, and examples thereof include known plasma treatment, plasma ion implantation treatment, ultraviolet irradiation treatment, vacuum ultraviolet irradiation treatment and the like.
  • a conversion reaction using plasma, ozone or ultraviolet light that can be converted at a low temperature is preferable.
  • a conventionally known method can be used as the conversion reaction by plasma or ozone.
  • a gas barrier layer is applied by applying a vacuum ultraviolet ray irradiation treatment in which a coating film of a polysilazane-containing coating solution of a coating method is provided on a substrate, and a modification treatment is performed by irradiating a vacuum ultraviolet ray (VUV) having a wavelength of 200 nm or less.
  • VUV vacuum ultraviolet ray
  • a rare gas excimer lamp is preferably used.
  • an excimer lamp (single wavelength of 172 nm, 222 nm, 308 nm, for example, manufactured by USHIO INC., Manufactured by M.D. Can be mentioned.
  • the treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in polysilazane, and the bonding of atoms is an action of only a photon called a photon process.
  • a silicon oxide film is formed at a relatively low temperature (about 200 ° C. or less) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly.
  • Method for forming mixed region there is a method of forming the mixed region between the A region and the B region by appropriately adjusting the respective formation conditions when forming the A region and the B region as described above. preferable.
  • a mixed region is formed by adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation. can do.
  • a film forming raw material type polysilazane type or the like
  • M1 non-transition metal
  • the mixed region can be formed by adjusting one or more conditions selected from the group consisting of time, reforming method and reforming conditions.
  • the ratio of the transition metal (M2) and oxygen in the deposition material for example, the ratio of the transition metal (M2) and oxygen in the deposition material, the ratio of the inert gas and the reactive gas during the deposition, and the deposition
  • the mixed region is formed by adjusting one or more conditions selected from the group consisting of the amount of gas supplied, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation. be able to.
  • the formation conditions of the method of forming the A region and the B region can be adjusted as appropriate.
  • a desired thickness can be obtained by controlling the deposition time.
  • a method of directly forming a mixed region of the non-transition metal (M1) and the transition metal (M2) is also preferable.
  • a co-sputtering method is preferable.
  • the co-sputtering method employed in the present invention is, for example, a composite target made of an alloy containing both a non-transition metal (M1) and a transition metal (M2), or a composite of a non-transition metal (M1) and a transition metal (M2).
  • M1 non-transition metal
  • M2 transition metal
  • M2 non-transition metal
  • M2 a composite of a non-transition metal
  • M2 transition metal
  • M2 a composite of a non-transition metal
  • M2 transition metal
  • the co-sputtering method in the present invention is multi-source simultaneous sputtering using a plurality of sputtering targets including a single non-transition metal (M1) or its oxide and a single transition metal (M2) or its oxide. May be.
  • M1 non-transition metal
  • M2 single transition metal
  • the film forming conditions for performing the co-evaporation method include the ratio of transition metal (M2) and oxygen in the film forming raw material, the ratio of inert gas to reactive gas during film formation, Examples include one or more conditions selected from the group consisting of the gas supply amount, the degree of vacuum during film formation, and the power during film formation.
  • These film formation conditions preferably oxygen partial pressure
  • what is necessary is just to adjust the film-forming time at the time of implementing a co-evaporation method, for example, in order to control the thickness of a mixing area
  • An anchor coat layer may be disposed on the surface of the base material on the side where the gas barrier layer according to the present invention is formed for the purpose of improving the adhesion between the base material and the gas barrier layer.
  • polyester resin isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicone resin, alkyl titanate, etc. are used alone. Or it can use in combination of 2 or more types.
  • the above-mentioned anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
  • the anchor coat layer can also be formed by a vapor deposition method such as physical vapor deposition or chemical vapor deposition.
  • a vapor deposition method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor deposition method, a gas generated from the substrate side is reduced.
  • An anchor coat layer can also be formed for the purpose of blocking to some extent and controlling the composition of the inorganic thin film.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • a clear hard coat layer may be disposed on the surface (one side or both sides) of the substrate.
  • the material contained in the clear hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because of easy molding.
  • Such curable resins can be used singly or in combination of two or more.
  • the active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.
  • active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray.
  • a layer containing a cured product of the conductive resin, that is, a clear hard coat layer is formed.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable.
  • a commercially available base material on which a clear hard coat layer is formed in advance may be used.
  • the thickness of the clear hard coat layer is preferably in the range of 0.1 to 15 ⁇ m and more preferably in the range of 1 to 5 ⁇ m from the viewpoint of smoothness and bending resistance.
  • Examples of the active energy ray-curable resin applicable to the material for forming the clear hard coat layer include, for example, a resin composition containing an acrylate compound having a radical-reactive unsaturated compound, an acrylate compound and a mercapto compound having a thiol group And a resin composition in which a polyfunctional acrylate monomer such as epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, glycerol methacrylate or the like is dissolved.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
  • thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistance epoxy resin), various silicone resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd.
  • thermosetting urethane resin composed of a coat, an acrylic polyol and an isocyanate prepolymer, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, and a silicone resin.
  • a heat-resistant epoxy resin-based material is particularly preferable.
  • the formation method of the clear hard coat layer is not particularly limited, but it is preferably formed by a spin coating method, a spray method, a blade coating method, a wet coating method such as a dip method, or a dry coating method such as a vapor deposition method.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above active energy ray-curable resin as necessary.
  • an appropriate resin or additive may be used in any clear hard coat layer in order to improve the film formability and prevent the generation of pinholes in the film.
  • the thickness of the clear hard coat layer is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 2 to 7 ⁇ m from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. It is preferable to be inside.
  • the gas barrier film of the present invention can be preferably applied to an electronic device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air.
  • Examples of the electronic device body used in the electronic device provided with the gas barrier film of the present invention include, for example, a QD film having a quantum dot (QD) -containing resin layer, an organic electroluminescence element (organic EL element), and a liquid crystal display.
  • An element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like can be given.
  • the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
  • the gas barrier film of the present invention can be applied to a QD film containing quantum dots.
  • QD quantum dots
  • Quantum dot In general, semiconductor nanoparticles exhibiting a quantum confinement effect with a nanometer-sized semiconductor material are also referred to as “quantum dots”. Such a quantum dot is a small lump within about 10 and several nanometers in which several hundred to several thousand semiconductor atoms are gathered, but when absorbing energy from an excitation source and reaching an energy excited state, the energy of the quantum dot Releases energy corresponding to the band gap.
  • quantum dots have unique optical characteristics due to the quantum size effect. Specifically, (1) By controlling the size of the particles, various wavelengths and colors can be emitted. (2) The absorption band is wide and fine particles of various sizes can be obtained with a single wavelength of excitation light. It has the characteristics that it can emit light, (3) it has a symmetrical fluorescence spectrum, and (4) it has excellent durability and fading resistance compared to organic dyes.
  • the quantum dot contained in the QD-containing resin layer may be a known one, and can be generated using any known method.
  • suitable quantum dots and methods for forming them include US Pat. No. 6,225,198, US Patent Application Publication No. 2002/0066401, US Pat. No. 6,207,229, US Pat. No. 6,322,901, And those described in US Pat. No. 6,949,206, US Pat. No. 7,572,393, US Pat. No. 7,267,865, US Pat. No. 7,374,807, US Patent Application No. 11/299299, and US Pat. No. 6,861,155. .
  • Quantum dots are generated from any suitable material, preferably an inorganic material, more preferably an inorganic conductor or semiconductor material.
  • suitable semiconductor materials include any type of semiconductor, including II-VI, III-V, IV-VI and IV semiconductors.
  • Suitable semiconductor materials include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb. , InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe , BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , (Al,
  • the following core / shell type quantum dots for example, CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS, and the like can be preferably used.
  • Resin can be used for a QD containing resin layer as a binder holding a quantum dot.
  • a QD containing resin layer for example, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyester such as polyethylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate Cellulose esters such as pionate and cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, norbornene, polymethylpentene, polyether ketone, polyether ketone imide And acrylic resins such as polyamide resins, fluororesins, nylon resins, and polymethyl methacrylate.
  • the QD-containing resin layer preferably has a thickness in the range of 50 to 200 ⁇ m.
  • the optimum amount of quantum dots in the QD-containing resin layer varies depending on the compound used, but is generally preferably in the range of 15 to 60% by volume.
  • Organic EL element A typical example of an electronic device to which the gas barrier film of the present invention is applied is an organic EL element as shown in FIG. As shown in FIG. 3, the organic EL element 10 covers a support 11 with a pair of electrodes 12 and 14, an organic functional layer 13 positioned between the pair of electrodes 12 and 14, and the organic functional layer 13. Sealing material 15 to be provided.
  • the gas barrier film 1 of the present invention can be applied as the support 11.
  • the organic functional layer 13 includes at least a light emitting layer, and includes a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like as necessary.
  • the light-emitting layer contains a light-emitting organic compound, an organometallic complex, or the like, and is directly injected from one electrode (anode) or from the anode through a hole transport layer, and the other. Electrons directly injected from the electrode (cathode) or electrons injected through the electron transport layer or the like emit light by recombination.
  • the organic functional layer 13 and the electrodes 12 and 14 are liable to deteriorate due to the intrusion of gas such as oxygen and water in the atmosphere.
  • the organic EL element 10 includes the above-described gas barrier film 1 as the support 11 in order to suppress a decrease in light emission performance due to such deterioration of the organic functional layer 13 and the like, but a gas barrier as the sealing material 15.
  • the film 1 can also be provided.
  • a UV curable resin manufactured by Aika Industry Co., Ltd., product number: Z731L
  • Z731L the dry layer thickness
  • the formed coating film is dried at 80 ° C., and then cured in air using a high-pressure mercury lamp under the condition of an irradiation energy amount of 0.5 J / cm 2 to clear the back side.
  • Hard coat layer 1 was formed.
  • UV curable resin “OPSTAR (registered trademark) Z7527” manufactured by JSR Corporation on the surface side of the PET film (surface on which the gas barrier layer is formed), wet coating so that the dry layer thickness is 2 ⁇ m. After coating by the method, it is dried at 80 ° C., and then cured under a condition of irradiation energy of 0.5 J / cm 2 using a high-pressure mercury lamp in the air, and a clear hard coat layer having a thickness of 2 ⁇ m on the surface side. 2 was formed.
  • a film containing a non-transition metal (M1) was formed on the surface of the base material on which the clear hard coat layer 2 was formed by a vapor phase method / sputtering (a magnetron sputtering apparatus manufactured by Canon Anelva, model EB1100).
  • the sputtering apparatus used is capable of two-way simultaneous sputtering.
  • a polycrystalline Si target was used as a target, and a mixed gas of Ar and O 2 was used as a process gas to form a film having a thickness of 55 nm by DC sputtering.
  • the sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa.
  • Film formation was performed by adjusting the oxygen partial pressure so that the composition was SiO 2 .
  • film formation using a glass substrate is performed in advance, and the condition of the composition is determined by adjusting the oxygen partial pressure. The condition where the composition near the depth of 10 nm from the surface layer becomes SiO 2 is found, and the condition is applied. did.
  • the thickness data on the change in thickness with respect to the film formation time is obtained within a range of 100 to 300 nm, the film formation per unit time is calculated, and then the film is formed to have a set thickness. Set the time.
  • a film having a composition of non-transition metal oxide SiO 2 was formed with a thickness of 55 nm on one surface side of the substrate.
  • a film containing a transition metal (M2) was formed on the formed film containing a non-transition metal (M1) by a vapor phase method / sputtering (a magnetron sputtering apparatus manufactured by Canon Anelva, model EB1100).
  • a commercially available metal Nb target was used, and a mixed gas of Ar and O 2 was used as a process gas, and a film was formed to a thickness of 10 nm by DC sputtering.
  • the sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa. Further, the oxygen partial pressure was 12% under the film forming conditions. It should be noted that, after film formation using a glass substrate material in advance, the thickness change data with respect to the film formation time is taken under the film formation conditions, the thickness to be formed per unit time is calculated, The film formation time was set so that
  • composition distribution profile in the thickness direction was measured from the surface side of the gas barrier layer by XPS analysis.
  • the XPS analysis conditions are as follows.
  • the sample used for the analysis was a sample stored in an environment of 20 ° C. and 50% RH after sample preparation.
  • XPS analysis conditions ⁇ Device: QUANTERA SXM manufactured by ULVAC-PHI ⁇
  • X-ray source Monochromatic Al-K ⁇ ⁇ Sputtering ion: Ar (2 keV)
  • Depth profile Measurement was repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data every 1 nm is obtained in the depth direction).
  • Quantification The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area.
  • MultiPak manufactured by ULVAC-PHI was used.
  • the analyzed elements are non-transition metal (Si), transition metal (Nb), O, N, and C.
  • gas barrier films 102 to 104 were produced in the same manner except that the base material was changed as shown in Table 1.
  • PEN Teonex manufactured by Teijin Limited
  • PES Sumika Excel 4010GL30 manufactured by Sumitomo Chemical Co., Ltd.
  • PI Neoprim, manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • a gas barrier film 109 was produced in the same manner except that the gas barrier layer was formed as follows.
  • a polycrystalline Si target and a metal Nb target are used as targets, Ar and O 2 are used as process gases, and a co-sputtering method is performed by a DC method.
  • a gas barrier layer was formed by performing original co-sputtering.
  • the power supply power in the polycrystalline Si target and the power supply power in the metal Nb target were adjusted so that the oxygen partial pressure was 18% and the atomic ratio of Si and Nb in the film was the same.
  • the film formation time was set so that the layer thickness was 50 nm.
  • the permeated water amount (water vapor permeability) of each produced gas barrier film was measured to evaluate the water vapor barrier property.
  • the gas-barrier film of this invention although the measuring method of water vapor permeability is not specifically limited, In this Example, Ca method was employ
  • Vapor deposition device JEE-400, a vacuum vapor deposition device manufactured by JEOL Ltd.
  • Constant temperature and humidity oven Yamato Humidic Chamber IG47M
  • the obtained evaluation cell was stored under high temperature and high humidity of 60 ° C. and 90% RH, and the amount of corrosion of metallic calcium was determined based on the method described in JP-A-2005-283561. From this, the amount of water permeated into the cell (g / (m 2 ⁇ 24 h)) was calculated.
  • a sample obtained by depositing metallic calcium on a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample In the same manner, the cell was stored under high temperature and high humidity of 60 ° C. and 90% RH, and it was confirmed that corrosion of metallic calcium did not occur even after 1000 hours.
  • Deterioration resistance is 98% or more. 4: Deterioration resistance is 95% or more and less than 98%. 3: Deterioration resistance is 90% or more and less than 95%. 2: Deterioration resistance is 80% or more and less than 90%. 1: Deterioration resistance is less than 80%.
  • the gas barrier film of the present invention was superior in water vapor permeability and storage stability as compared with the gas barrier film of the comparative example.
  • the gas barrier layer has a mixed region containing at least the group 5 transition metal and the group 12 to 14 non-transition metal (M1) in the thickness direction, and the glass transition of the constituent material of the base material It can be seen that a temperature of 150 ° C. or higher is useful for providing a gas barrier film having high gas barrier properties and excellent productivity.
  • ⁇ Preparation of gas barrier film 201> (1) Preparation of base material Clear hard coat layer 1 (back side) on both sides of a 100 ⁇ m thick polyethylene terephthalate film (Lumirror (registered trademark) U48, abbreviated as PET film) manufactured by Toray Industries, Inc. ) And clear hard coat layer 2 (gas barrier layer forming surface side) were formed by the following method.
  • a 100 ⁇ m thick polyethylene terephthalate film Limirror (registered trademark) U48, abbreviated as PET film) manufactured by Toray Industries, Inc.
  • clear hard coat layer 2 gas barrier layer forming surface side
  • a UV curable resin manufactured by Aika Industry Co., Ltd., product number: Z731L
  • Z731L the dry layer thickness
  • the formed coating film is dried at 80 ° C., and then cured in air using a high-pressure mercury lamp under the condition of an irradiation energy amount of 0.5 J / cm 2 to clear the back side.
  • Hard coat layer 1 was formed.
  • UV curable resin “OPSTAR (registered trademark) Z7527” manufactured by JSR Corporation on the surface side of the PET film (surface on which the gas barrier layer is formed), wet coating so that the dry layer thickness is 2 ⁇ m. After coating by the method, it is dried at 80 ° C., and then cured under a condition of irradiation energy of 0.5 J / cm 2 using a high-pressure mercury lamp in the air, and a clear hard coat layer having a thickness of 2 ⁇ m on the surface side. 2 was formed.
  • a dibutyl ether solution containing 20% by mass of perhydropolysilazane (PHPS, manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6) -Dihydrohexane (TMDAH))-containing perhydropolysilazane 20% by weight dibutyl ether solution manufactured by AZ Electronic Materials Co., Ltd., NAX120-20
  • PHPS perhydropolysilazane
  • TMDAH amine catalyst
  • the above coating solution was applied by spin coating in a nitrogen atmosphere in the glove box so that the dry film thickness was 55 nm, and dried at 80 ° C. for 10 minutes.
  • the sample on which the film containing the non-transition metal (M1) was formed was placed in the vacuum ultraviolet irradiation apparatus shown in FIG. 4 having a Xe excimer lamp with a wavelength of 172 nm, and vacuum was applied under the condition of irradiation energy of 5.0 J / cm 2.
  • An ultraviolet irradiation treatment was performed.
  • nitrogen and oxygen were supplied into the chamber, and the oxygen concentration in the irradiation atmosphere was adjusted to 0.1% by volume.
  • the stage temperature for installing the sample was set to 80 ° C.
  • reference numeral 101 denotes an apparatus chamber, which supplies an appropriate amount of nitrogen and oxygen from a gas supply port (not shown) to the inside and exhausts it from a gas discharge port (not shown). It is possible to substantially remove water vapor from the water and maintain the oxygen concentration at a predetermined concentration.
  • Reference numeral 102 denotes a Xe excimer lamp (excimer lamp light intensity: 130 mW / cm 2 ) having a double tube structure that irradiates vacuum ultraviolet light of 172 nm
  • reference numeral 103 denotes an excimer lamp holder that also serves as an external electrode.
  • Reference numeral 104 denotes a sample stage.
  • the sample stage 104 can be reciprocated horizontally at a predetermined speed in the apparatus chamber 101 by a moving means (not shown).
  • the sample stage 104 can be maintained at a predetermined temperature by a heating means (not shown).
  • Reference numeral 105 denotes a sample on which a polysilazane compound coating layer is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm.
  • Reference numeral 106 denotes a light shielding plate, which prevents the application layer of the sample from being irradiated with vacuum ultraviolet rays while the Xe excimer lamp 102 is aged.
  • the energy irradiated on the surface of the sample coating layer in the vacuum ultraviolet light irradiation step was measured using a 172 nm sensor head using a UV integrating photometer: C8026 / H8025 UV POWER METER manufactured by Hamamatsu Photonics.
  • the sensor head is installed in the center of the sample stage 104 so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 101 is vacuum ultraviolet light. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as that in the irradiation step, and measurement was performed by moving the sample stage 104 at a speed of 0.5 m / min.
  • an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement.
  • the moving speed of the sample stage was adjusted to adjust the irradiation energy amount to 5.0 J / cm 2 .
  • the vacuum ultraviolet light irradiation was performed after aging for 10 minutes.
  • a film containing a transition metal was formed on the formed film containing a non-transition metal (M1) by a vapor phase method / sputtering (a magnetron sputtering apparatus manufactured by Canon Anelva, model EB1100).
  • a commercially available metal Nb target was used, and a mixed gas of Ar and O 2 was used as a process gas, and the film was formed to a thickness of 9 nm by DC sputtering.
  • the sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa. Further, the oxygen partial pressure was 12% under the film forming conditions. It should be noted that, after film formation using a glass substrate material in advance, the thickness change data with respect to the film formation time is taken under the film formation conditions, the thickness to be formed per unit time is calculated, The film formation time was set so that
  • gas barrier films 202 to 204 were produced in the same manner except that the base material was changed as shown in Table 2.
  • PEN Teonex manufactured by Teijin Limited
  • PES Sumika Excel 4010GL30 manufactured by Sumitomo Chemical Co., Ltd.
  • PI Neoprim, manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the gas barrier film 205 was similarly formed except that the target for forming the film containing the transition metal was changed to a metal Ta target and formed to a thickness of 10 nm. Was made.
  • the present invention can be particularly suitably used for providing a gas barrier film having high gas barrier properties and excellent productivity.

Abstract

The present invention addresses the problem of providing a gas barrier film which exhibits excellent productivity, while having high gas barrier properties. This gas barrier film (1) is characterized by having a gas barrier layer (3) provided on a substrate (2). The gas barrier film is further characterized in that: the gas barrier layer (3) has, in at least the thickness direction, a mixed region which includes a group 5 transition metal (M2) and a group 12-14 non-transition metal (M1); and the glass transition temperature of a constituent material of the substrate (2) is at least 150˚C.

Description

ガスバリアー性フィルム及びこれを備えた電子デバイスGas barrier film and electronic device equipped with the same
 本発明は、ガスバリアー性フィルム及びこれを備えた電子デバイスに関し、より詳しくは、高いガスバリアー性を有しつつ、生産性にも優れたガスバリアー性フィルム及びこれを備えた電子デバイスに関する。 The present invention relates to a gas barrier film and an electronic device including the same, and more particularly to a gas barrier film having high gas barrier properties and excellent productivity, and an electronic device including the same.
 各種プラスチック基材の特性、特に、ガスバリアー性を改善するための手段として、プラスチック基材の表面に、ケイ素酸化物などからなる無機ガスバリアー層を形成することが知られている(例えば、特許文献1参照。)。 As a means for improving the properties of various plastic substrates, particularly gas barrier properties, it is known to form an inorganic gas barrier layer made of silicon oxide or the like on the surface of a plastic substrate (for example, patents) Reference 1).
 ところで、近年開発され、実用化されている各種の電子デバイス、例えば、有機エレクトロルミネッセンス(有機EL)素子、太陽電池、タッチパネル、電子ペーパーなどでは電荷のリークを嫌うため、その回路基板などを形成するプラスチック基材あるいは回路基板を封止するフィルムなどのプラスチック基材に対して、高い水分バリアー性が要求されている。上記無機ガスバリアー層は、いわゆるガスバリアー性樹脂などによって形成される有機膜に比して高いガスバリアー性を示すが、膜の性質上、どうしてもピンホールやクラック等の構造的欠陥や、膜を構成するM-O-Mネットワーク(Mは金属元素)中にガスの通り道となる結合欠陥(M-OH結合)が存在しており、この結果、これ単独では、有機EL素子等の分野で要求されている高いガスバリアー性を満足させることができず、ガスバリアー性の更なる向上が求められている。 By the way, various types of electronic devices that have been developed and put into practical use in recent years, such as organic electroluminescence (organic EL) elements, solar cells, touch panels, electronic papers, etc., dislike charge leakage, and therefore form their circuit boards. High moisture barrier properties are required for plastic substrates such as plastic substrates or films for sealing circuit boards. The inorganic gas barrier layer has a higher gas barrier property than an organic film formed of a so-called gas barrier resin or the like, but due to the nature of the film, structural defects such as pinholes and cracks, There is a bond defect (M-OH bond) that becomes a gas passage in the MOM network (M is a metal element), and as a result, this alone is required in the field of organic EL devices. Therefore, the high gas barrier property that has been achieved cannot be satisfied, and further improvement of the gas barrier property is demanded.
 以上のように、従来の技術では、近年要求されている、薄膜でありながらも高度なガスバリアー性を実現するには至っていないのが現状である。 As described above, the conventional technology has not yet achieved a high gas barrier property although it is a thin film, which has been required in recent years.
 一方で、基材上にガスバリアー層を有するガスバリアー性フィルムは、高温高湿保存下で熱による基材の収縮を原因として、ガスバリアー層にクラックが発生し、これがガスバリアー性を低下させるといった問題も有していた。 On the other hand, a gas barrier film having a gas barrier layer on a base material causes cracks in the gas barrier layer due to the shrinkage of the base material due to heat under high temperature and high humidity storage, which lowers the gas barrier property. There was also a problem.
特開2000-255579号公報JP 2000-255579 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、高いガスバリアー性を有しつつ、生産性にも優れたガスバリアー性フィルム及びこれを備えた電子デバイスを提供することである。 The present invention has been made in view of the above problems and situations, and a solution to the problem is to provide a gas barrier film having high gas barrier properties and excellent productivity, and an electronic device including the same. It is to be.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、ガスバリアー層が、少なくとも厚さ方向において、特定材料が含有されている混合領域を有し、基材の構成材料のガラス転移温度を特定の温度以上とすることにより、高いガスバリアー性を有しつつ、生産性にも優れたガスバリアー性フィルム及び電子デバイスを提供できることを見出し、本発明に至った。 In order to solve the above problems, the present inventor, in the process of examining the cause of the above problems, the gas barrier layer has a mixed region containing a specific material at least in the thickness direction, It has been found that by setting the glass transition temperature of the constituent material to a specific temperature or higher, it is possible to provide a gas barrier film and an electronic device that have high gas barrier properties and excellent productivity, and have reached the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.基材上に、ガスバリアー層を有するガスバリアー性フィルムであって、
 前記ガスバリアー層が、少なくとも厚さ方向において、5族の遷移金属(M2)及び12~14族の非遷移金属(M1)が含有されている混合領域を有し、
 前記基材の構成材料のガラス転移温度が、150℃以上であることを特徴とするガスバリアー性フィルム。
1. A gas barrier film having a gas barrier layer on a substrate,
The gas barrier layer has a mixed region containing at least a group 5 transition metal (M2) and a group 12-14 non-transition metal (M1) in the thickness direction;
A gas barrier film, wherein a glass transition temperature of a constituent material of the substrate is 150 ° C. or higher.
 2.前記基材の構成材料のガラス転移温度が、180℃以上であることを特徴とする第1項に記載のガスバリアー性フィルム。 2. 2. The gas barrier film as set forth in claim 1, wherein the constituent material of the base material has a glass transition temperature of 180 ° C. or higher.
 3.前記基材の構成材料が、ポリイミドであることを特徴とする第2項に記載のガスバリアー性フィルム。 3. The gas barrier film according to item 2, wherein the constituent material of the base material is polyimide.
 4.前記ガスバリアー層が、前記遷移金属(M2)又はその化合物が主成分aとして含有されている領域(以下、「A領域」という。)と、前記非遷移金属(M1)又はその化合物が主成分bとして含有されている領域(以下、「B領域」という。)と、を有し、
 前記混合領域が前記A領域と前記B領域との間に介在し、かつ、前記混合領域に前記主成分a及び前記主成分bに由来する化合物が含有されていることを特徴とする第1項から第3項までのいずれか一項に記載のガスバリアー性フィルム。
4). The gas barrier layer includes a region containing the transition metal (M2) or a compound thereof as a main component a (hereinafter referred to as “A region”), and the non-transition metal (M1) or a compound thereof as a main component. a region contained as b (hereinafter referred to as “B region”),
The mixed region is interposed between the A region and the B region, and the mixed region contains a compound derived from the main component a and the main component b. The gas barrier film according to any one of items 1 to 3 above.
 5.前記混合領域の組成を下記化学組成式(1)で表したとき、前記混合領域の少なくとも一部が下記関係式(2)を満たすことを特徴とする第1項から第4項までのいずれか一項に記載のガスバリアー性フィルム。 5. Any of the first to fourth items, wherein when the composition of the mixed region is represented by the following chemical composition formula (1), at least a part of the mixed region satisfies the following relational formula (2): The gas barrier film according to one item.
 化学組成式(1):(M1)(M2)
 関係式(2):(2y+3z)/(a+bx)<1.0
(ただし、式中、M1:非遷移金属、M2:遷移金属、O:酸素、N:窒素、x,y,z:化学量論係数、a:M1の最大価数、b:M2の最大価数を表す。)
Chemical composition formula (1): (M1) (M2) x O y N z
Relational expression (2): (2y + 3z) / (a + bx) <1.0
(Where, M1: non-transition metal, M2: transition metal, O: oxygen, N: nitrogen, x, y, z: stoichiometric coefficient, a: maximum valence of M1, b: maximum valence of M2 Represents a number.)
 6.前記非遷移金属(M1)が、ケイ素であることを特徴とする第1項から第5項までのいずれか一項に記載のガスバリアー性フィルム。 6. The gas barrier film according to any one of Items 1 to 5, wherein the non-transition metal (M1) is silicon.
 7.第1項から第6項までのいずれか一項に記載のガスバリアー性フィルムを具備していることを特徴とする電子デバイス。 7. An electronic device comprising the gas barrier film according to any one of items 1 to 6.
 8.量子ドット含有樹脂層を有することを特徴とする第7項に記載の電子デバイス。 8. 8. The electronic device according to item 7, which has a quantum dot-containing resin layer.
 9.有機エレクトロルミネッセンス素子を具備していることを特徴とする第7項に記載の電子デバイス。 9. 8. An electronic device according to item 7, comprising an organic electroluminescence element.
 本発明の上記手段により、高いガスバリアー性を有しつつ、生産性にも優れたガスバリアー性フィルム及びこれを備えた電子デバイスを提供することができる。 By the above means of the present invention, it is possible to provide a gas barrier film having high gas barrier properties and excellent productivity, and an electronic device including the same.
 本発明のガスバリアー性フィルムは、水分バリアー性等のガスバリアー性が著しく向上しているばかりか、生産性にも優れているため、各種電子デバイスの基板や封止層として有用であり、特に有機EL素子への実用化が期待できる。 The gas barrier film of the present invention is not only remarkably improved in gas barrier properties such as moisture barrier properties, but also excellent in productivity, and thus is useful as a substrate and a sealing layer for various electronic devices. Practical application to organic EL elements can be expected.
 本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。 The expression mechanism / action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明者らの検討によれば、非遷移金属(M1)の化合物(例えば、酸化物)を含有する酸素欠損組成膜を単独で用いてガスバリアー層を形成したり、遷移金属(M2)の化合物(例えば、酸化物)の酸素欠損組成膜を単独で用いてガスバリアー層を形成したりすると、酸素欠損の程度が大きくなるにつれてガスバリアー性が向上する傾向は観察されたものの、著しいガスバリアー性の向上にはつながらなかった。 According to studies by the present inventors, a gas barrier layer is formed by using an oxygen-deficient composition film containing a compound (for example, an oxide) of a non-transition metal (M1) alone, or a transition metal (M2) When a gas barrier layer is formed by using an oxygen-deficient composition film of a compound (for example, an oxide) alone, a tendency to improve the gas barrier property as the degree of oxygen deficiency increases is observed, but a remarkable gas barrier is observed. It did not lead to improvement of sex.
 この結果を受けて、非遷移金属(M1)を主成分とする化合物(例えば、酸化物)を含むB領域と、遷移金属(M2)を主成分とする化合物(例えば、酸化物)を含むA領域とを積層し、当該A領域とB領域との間に、非遷移金属(M1)と遷移金属(M2)とを含有する混合領域を介在させ、更に、当該混合領域を酸素欠損組成とすると、酸素欠損の程度が大きくなるにつれてガスバリアー性が著しく向上することを見出した。 In response to this result, a B region containing a compound (eg, oxide) containing a non-transition metal (M1) as a main component and an A containing a compound (eg, oxide) containing a transition metal (M2) as a main component. When the mixed region containing the non-transition metal (M1) and the transition metal (M2) is interposed between the A region and the B region, and the mixed region has an oxygen deficient composition. It has been found that the gas barrier property is remarkably improved as the degree of oxygen deficiency increases.
 これは、上述したように、非遷移金属(M1)同士の結合や遷移金属(M2)同士の結合よりも、非遷移金属(M1)と遷移金属(M2)との結合が生じやすいことに起因して、混合領域を酸素欠損組成とすることで、金属化合物の高密度な構造が混合領域において形成されたためであると考えられる。 As described above, this is because the bond between the non-transition metal (M1) and the transition metal (M2) is more likely to occur than the bond between the non-transition metals (M1) or the transition metal (M2). Thus, it is considered that a high-density structure of the metal compound was formed in the mixed region by setting the mixed region to an oxygen deficient composition.
本発明のガスバリアー性フィルムの一例としての概略構成を示す断面図Sectional drawing which shows schematic structure as an example of the gas barrier film of this invention ガスバリアー層の厚さ方向の深さに対する原子数比率を示すグラフGraph showing the ratio of the number of atoms to the depth in the thickness direction of the gas barrier layer 本発明のガスバリアー性フィルムを具備した有機EL素子の一例としての概略構成を示す断面図Sectional drawing which shows schematic structure as an example of the organic EL element which comprised the gas barrier film of this invention 真空紫外線照射装置の一例としての模式図Schematic diagram as an example of vacuum ultraviolet irradiation equipment
 本発明のガスバリアー性フィルムは、ガスバリアー層が、少なくとも厚さ方向において、5族の遷移金属(M2)及び12~14族の非遷移金属(M1)が含有されている混合領域を有し、基材の構成材料のガラス転移温度が150℃以上であることを特徴とする。この特徴は、各請求項に係る発明に共通する技術的特徴である。 In the gas barrier film of the present invention, the gas barrier layer has a mixed region containing at least the group 5 transition metal (M2) and the group 12-14 non-transition metal (M1) in the thickness direction. The glass transition temperature of the constituent material of the substrate is 150 ° C. or higher. This feature is a technical feature common to the claimed invention.
 本発明の実施態様としては、高温での保存性の観点から、基材の構成材料のガラス転移温度が180℃以上であることが好ましく、基材の構成材料がポリイミドであることがより好ましい。 As an embodiment of the present invention, from the viewpoint of storage stability at high temperatures, the glass transition temperature of the constituent material of the base material is preferably 180 ° C. or higher, and the constituent material of the base material is more preferably polyimide.
 また、ガスバリアー性能の観点から、ガスバリアー層が、遷移金属(M2)又はその化合物が主成分aとして含有されているA領域と、非遷移金属(M1)又はその化合物が主成分bとして含有されているB領域と、を有し、混合領域がA領域とB領域との間に介在し、かつ、当該混合領域に主成分a及び主成分bに由来する化合物が含有されていることが好ましい。 Further, from the viewpoint of gas barrier performance, the gas barrier layer contains an A region in which the transition metal (M2) or a compound thereof is contained as the main component a, and a non-transition metal (M1) or a compound thereof as the main component b. The mixed region is interposed between the A region and the B region, and the mixed region contains a compound derived from the main component a and the main component b. preferable.
 また、ガス(水、酸素等)分子の侵入遮断の観点から、混合領域の組成を化学組成式(1)で表したとき、混合領域の少なくとも一部が関係式(2)を満たすことが好ましい。 From the viewpoint of blocking the entry of gas (water, oxygen, etc.) molecules, when the composition of the mixed region is represented by the chemical composition formula (1), it is preferable that at least a part of the mixed region satisfies the relational expression (2). .
 また、上記の同様の観点から、非遷移金属(M1)が、ケイ素であることが好ましい。 Further, from the same viewpoint as described above, the non-transition metal (M1) is preferably silicon.
 本発明のガスバリアー性フィルムは、電子デバイスに好適に具備され得る。また、当該電子デバイスは、量子ドット含有樹脂層を有することが好ましい。また、当該電子デバイスは、有機エレクトロルミネッセンス素子を具備していることが好ましい。 The gas barrier film of the present invention can be suitably provided for an electronic device. Moreover, it is preferable that the said electronic device has a quantum dot containing resin layer. The electronic device preferably includes an organic electroluminescence element.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
《ガスバリアー性フィルム》
 図1には、一例として、本発明のガスバリアー性フィルム1の概略断面図を示している。
 ガスバリアー性フィルム1は、基材2上に、ガスバリアー層3を有している。
 ガスバリアー層3は、少なくとも厚さ方向において、5族の遷移金属(M2)及び12~14族の非遷移金属(M1)が含有された混合領域を有している。
<Gas barrier film>
In FIG. 1, the schematic sectional drawing of the gas barrier film 1 of this invention is shown as an example.
The gas barrier film 1 has a gas barrier layer 3 on a substrate 2.
The gas barrier layer 3 has a mixed region containing at least a group 5 transition metal (M2) and a group 12-14 non-transition metal (M1) in at least the thickness direction.
 なお、本発明において、「領域」とは、ガスバリアー層の厚さ方向(積層方向)に対して垂直な面で当該ガスバリアー層を一定又は任意の厚さで分割したときに形成される対向する二つの面の間の三次元的空間(領域)をいい、当該領域内の構成成分の組成は厚さ方向において一定であっても、徐々に変化するものであってもよい。 In the present invention, the “region” is an opposing surface formed when the gas barrier layer is divided at a constant or arbitrary thickness on a plane perpendicular to the thickness direction (stacking direction) of the gas barrier layer. The three-dimensional space (region) between the two surfaces is defined, and the composition of the components in the region may be constant in the thickness direction or may gradually change.
 図1では、基材2の一方の面のみにガスバリアー層3を有する例を示したが、基材2の両面にそれぞれガスバリアー層3を有していてもよいし、基材2の一方の面上に複数層からなるガスバリアー層3を有していてもよい。 In FIG. 1, an example in which the gas barrier layer 3 is provided on only one surface of the base material 2 is shown. However, the gas barrier layer 3 may be provided on both surfaces of the base material 2, or one of the base materials 2 may be provided. A gas barrier layer 3 composed of a plurality of layers may be provided on the surface.
 ガスバリアー層3は、遷移金属(M2)又はその化合物が主成分aとして含有されている領域(以下、「A領域」という。)と、12~14族の非遷移金属(M1)又はその化合物が主成分bとして含有されている領域(以下、「B領域」という。)と、を有し、当該A領域とB領域との間に、混合領域が介在していることが好ましい。このとき、混合領域には、主成分a及び主成分bに由来する化合物が含有されている。
 ガスバリアー層3は、A領域とB領域とを有さずに、混合領域のみから構成されていてもよい。
The gas barrier layer 3 includes a region containing the transition metal (M2) or a compound thereof as the main component a (hereinafter referred to as “A region”), a non-transition metal (M1) of group 12 to 14 or a compound thereof. Is contained as a main component b (hereinafter referred to as “B region”), and a mixed region is preferably interposed between the A region and the B region. At this time, the compound derived from the main component a and the main component b is contained in the mixed region.
The gas barrier layer 3 may be composed only of the mixed region without having the A region and the B region.
 ここで、「主成分a及び主成分bに由来する化合物」とは、主成分a及び主成分bそれら自体、並びに主成分aと主成分bとが反応して形成された複合化合物をいう。
 複合化合物の具体例として「複合酸化物」を挙げて説明すると、「複合酸化物」とは、A領域及びB領域の構成成分が相互に化学結合をして形成された化合物(酸化物)をいう。例えば、ニオブ原子とケイ素原子が直接的に、又は酸素原子を介して化学結合を形成している化学構造を有する化合物をいう。
 なお、本発明においては、A領域及びB領域の構成成分が相互に分子間相互作用などにより物理的結合をして形成された複合体も「複合化合物」に含まれるものとする。
 また、「主成分」とは、原子組成比として含有量が最大である構成成分をいう。例えば、「金属の主成分」といえば、構成成分の中の金属成分の中で、原子数比率として含有量が最大である金属成分をいう。
 また、「構成成分」とは、ガスバリアー層の特定領域を構成する化合物又は金属若しくは非金属の単体をいう。
Here, the “compound derived from the main component a and the main component b” refers to the composite compound formed by the reaction between the main component a and the main component b themselves and the main component a and the main component b.
A “composite oxide” will be described as a specific example of the composite compound. The “composite oxide” is a compound (oxide) formed by chemically bonding the constituent components of the A region and the B region to each other. Say. For example, a compound having a chemical structure in which a niobium atom and a silicon atom form a chemical bond directly or through an oxygen atom.
In the present invention, “composite compound” includes a complex formed by the structural components of the A region and the B region being physically bonded to each other by an intermolecular interaction or the like.
Further, the “main component” refers to a component having the maximum content as an atomic composition ratio. For example, “metal main component” refers to a metal component having the maximum content as an atomic ratio among the metal components in the constituent components.
The “constituent component” refers to a compound constituting a specific region of the gas barrier layer or a simple substance of metal or nonmetal.
 以下、本発明のガスバリアー性フィルムを構成する各部材について詳細に説明する。 Hereinafter, each member constituting the gas barrier film of the present invention will be described in detail.
〈基材〉
 本発明に係る基材は、その構成材料のガラス転移温度Tgが150℃以上である。
 また、基材としては、フレキシブル性及び光透過性を得ることができることから樹脂基材であることが好ましく、更には、樹脂フィルムであることが好ましい。
<Base material>
The base material according to the present invention has a glass transition temperature Tg of a constituent material of 150 ° C. or higher.
Moreover, as a base material, since it can acquire flexibility and light transmittance, it is preferable that it is a resin base material, and also it is preferable that it is a resin film.
 本発明に適用可能な基材の構成材料としては、例えば、ポリエチレンナフタレート(PEN:155℃)、脂環式ポリオレフィン(例えば、日本ゼオン株式会社製のゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば、三菱ガス化学株式会社製のネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:例えば特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:例えば、特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(例えば、特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる。なお、括弧内の温度は、ガラス転移温度Tgを示している。
 中でも、構成材料としては、ガラス転移温度が180℃以上のものが好ましく、ポリイミドであることがより好ましい。
As a constituent material of the substrate applicable to the present invention, for example, polyethylene naphthalate (PEN: 155 ° C.), alicyclic polyolefin (for example, ZEONOR (registered trademark) 1600: 160 ° C. manufactured by ZEON CORPORATION), Polyarylate (PAr: 210 ° C.), polyether sulfone (PES: 220 ° C.), polysulfone (PSF: 190 ° C.), cycloolefin copolymer (COC: compound described in JP 2001-150584 A: 162 ° C.), polyimide (For example, Neoprim (registered trademark): 260 ° C. manufactured by Mitsubishi Gas Chemical Co., Inc.), fluorene ring-modified polycarbonate (BCF-PC: for example, compound described in JP 2000-227603 A: 225 ° C.), alicyclic modified polycarbonate (IP-PC: For example, Japanese Patent Laid-Open No. 2000-227603 A compound according to broadcast: 205 ° C.), acryloyl compound (e.g., compounds described in JP-A-2002-80616: 300 ° C. or higher), and the like. The temperature in parentheses indicates the glass transition temperature Tg.
Especially, as a constituent material, a thing with a glass transition temperature of 180 degreeC or more is preferable, and it is more preferable that it is a polyimide.
 基材のガラス転移温度Tgは、添加剤等を使用することにより、適宜調整することができる。 The glass transition temperature Tg of the substrate can be appropriately adjusted by using an additive or the like.
 基材の厚さは、5~500μmの範囲内であることが好ましく、更に好ましくは15~250μmの範囲内である。 The thickness of the substrate is preferably in the range of 5 to 500 μm, more preferably in the range of 15 to 250 μm.
 本発明に適用可能な基材のその他の種類、基材の製造方法等については、例えば、特開2013-226758号公報の段落0125~0136に開示されている技術を適宜採用することができる。 For other types of base materials applicable to the present invention, base material manufacturing methods, and the like, for example, techniques disclosed in paragraphs 0125 to 0136 of JP2013-226758A can be appropriately employed.
〈ガスバリアー層〉
 本発明に係るガスバリアー層は、上述したように、少なくとも厚さ方向において、5族の遷移金属(M2)及び12~14族の非遷移金属(M1)が含有されている混合領域を有している。当該混合領域は、遷移金属(M2)又はその化合物が主成分aとして含有されているA領域と、非遷移金属(M1)又はその化合物が主成分bとして含有されているB領域との間に介在していてもよい。
<Gas barrier layer>
As described above, the gas barrier layer according to the present invention has a mixed region containing a group 5 transition metal (M2) and a group 12-14 non-transition metal (M1) at least in the thickness direction. ing. The mixed region is between the A region containing the transition metal (M2) or a compound thereof as the main component a and the B region containing the non-transition metal (M1) or a compound thereof as the main component b. It may be interposed.
 また、ガスバリアー層は、混合領域において、非遷移金属(M1)に対する遷移金属(M2)の原子数比率の比の値(遷移金属(M2)の原子数/非遷移金属(M1)の原子数)が、0.02~49の範囲内にある領域を、厚さ方向に連続して5nm以上有していることが好ましい態様である。
 なお、A領域、B領域及び混合領域、並びにガスバリアー層について、「厚さ」あるいは「層厚」とは、後述するようにガスバリアー層の厚さ方向への深さを意味し、XPS分析におけるスパッタ深さをSiO換算で表したものである。ガスバリアー層の「層厚」は、ガスバリアー層の最表面側から基材との界面までであり、「基材との界面」は、XPSによる組成分析において、ガスバリアー層(本発明では、B領域)の主成分の元素の分布曲線と、基材の主成分の元素の分布曲線の交差点となる位置とする。
In the mixed region, the gas barrier layer has a ratio of the ratio of the number of atoms of the transition metal (M2) to the non-transition metal (M1) (number of atoms of the transition metal (M2) / number of atoms of the non-transition metal (M1). Is preferably 5 nm or more continuously in the thickness direction in the range of 0.02 to 49.
As for the A region, the B region, the mixed region, and the gas barrier layer, “thickness” or “layer thickness” means a depth in the thickness direction of the gas barrier layer as described later, and XPS analysis is performed. The sputter depth is expressed in terms of SiO 2 . The “layer thickness” of the gas barrier layer is from the outermost surface side of the gas barrier layer to the interface with the substrate, and the “interface with the substrate” is the gas barrier layer (in the present invention, in the composition analysis by XPS). B region) is the position that is the intersection of the main component distribution curve and the main component distribution curve of the substrate.
 混合領域では、遷移金属(M2)及び非遷移金属(M1)に加えて、酸素が含有されていることが好ましい。また、この混合領域は、遷移金属(M2)の酸化物と非遷移金属(M1)の酸化物との混合物、又は、遷移金属(M2)と非遷移金属(M1)との複合酸化物の少なくとも一方が含有されていることが好ましい形態であり、遷移金属(M2)と非遷移金属(M1)との複合酸化物が含有されていることがより好ましい形態である。
 ここで、「混合物」とは、A領域及びB領域の構成成分が相互に化学結合することなく混じり合っている状態の物をいう。例えば、酸化ニオブと酸化ケイ素がお互いに化学結合することなく混じり合っている状態をいう。
In the mixed region, oxygen is preferably contained in addition to the transition metal (M2) and the non-transition metal (M1). The mixed region includes at least a mixture of an oxide of a transition metal (M2) and an oxide of a non-transition metal (M1) or a composite oxide of a transition metal (M2) and a non-transition metal (M1). It is a preferable form that one of them is contained, and a more preferred form is that a composite oxide of a transition metal (M2) and a non-transition metal (M1) is contained.
Here, the “mixture” refers to a product in a state where the constituent components of the A region and the B region are mixed without chemically bonding to each other. For example, a state in which niobium oxide and silicon oxide are mixed without being chemically bonded to each other.
 ガスバリアー層のガスバリアー性としては、基材上にガスバリアー層を形成させて積層体として算出した際、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3cm/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、90±2%RH)が1×10-3g/(m・24h)以下の高ガスバリアー性であることが好ましい。 As the gas barrier property of the gas barrier layer, the oxygen permeability measured by a method according to JIS K 7126-1987 when the gas barrier layer was formed on the substrate and calculated as a laminate was 1 × 10 −3. cm 3 / (m 2 · 24h · atm) or less, measured water vapor permeability by the method based on JIS K 7129-1992 (25 ± 0.5 ℃ , 90 ± 2% RH) is 1 × 10 -3 g It is preferable that the gas barrier property is not more than / (m 2 · 24 h).
(A領域)
 本発明に係るA領域とは、長周期型周期表の第5族元素の遷移金属(M2)又はその化合物が主成分aとして含有されている領域である。ここで、「その化合物」、すなわち「遷移金属(M2)の化合物」とは、遷移金属(M2)を含む化合物をいい、例えば、遷移金属酸化物が挙げられる。
(A area)
The A region according to the present invention is a region containing the transition metal (M2) of the Group 5 element of the long-period periodic table or a compound thereof as the main component a. Here, “the compound”, that is, “a compound of transition metal (M2)” refers to a compound containing a transition metal (M2), and examples thereof include transition metal oxides.
 長周期型周期表の第5族元素の遷移金属(M2)としては、Nb、Ta、V等が挙げられる。
 遷移金属(M2)が第5族元素(特に、Nb)であるとき、後述する非遷移金属(M1)がSiであると、著しいガスバリアー性の向上効果が得られる。これは、Siと第5族元素(特に、Nb)との結合が特に生じやすいためであると考えられる。さらに、光学特性の観点から、遷移金属(M2)は、透明性が良好な化合物が得られるNb又はTaであることが特に好ましい。
Examples of the transition metal (M2) of the Group 5 element in the long-period periodic table include Nb, Ta, and V.
When the transition metal (M2) is a Group 5 element (especially Nb), if the non-transition metal (M1) described later is Si, a significant gas barrier property improvement effect can be obtained. This is presumably because the bond between Si and the Group 5 element (particularly Nb) is particularly likely to occur. Furthermore, from the viewpoint of optical properties, the transition metal (M2) is particularly preferably Nb or Ta from which a compound with good transparency can be obtained.
 A領域の厚さとしては、ガスバリアー性と光学特性との両立の観点から、2~50nmの範囲内であることが好ましく、4~25nmの範囲内であることがより好ましく、5~15nmの範囲内であることが更に好ましい。 The thickness of the A region is preferably in the range of 2 to 50 nm, more preferably in the range of 4 to 25 nm, more preferably in the range of 5 to 15 nm from the viewpoint of achieving both gas barrier properties and optical characteristics. More preferably within the range.
(B領域)
 本発明に係るB領域とは、長周期型周期表の第12~14族元素の非遷移金属(M1)又はその化合物が主成分bとして含有されている領域である。ここでいう「その化合物」すなわち「非遷移金属(M1)の化合物」とは、非遷移金属(M1)を含む化合物をいい、例えば、非遷移金属酸化物をいう。
(B area)
The region B according to the present invention is a region containing the non-transition metal (M1) of the group 12-14 element of the long-period periodic table or a compound thereof as the main component b. The “compound” here, that is, the “compound of non-transition metal (M1)” refers to a compound containing a non-transition metal (M1), for example, a non-transition metal oxide.
 非遷移金属(M1)としては、特に制限されず、第12~14族の任意の金属が単独で又は組み合わせて用いることができるが、例えば、Si、Al、Zn、In、Snなどが挙げられる。中でも、非遷移金属(M1)として、Si、Sn又はZnを含むことが好ましく、Siを含むことがより好ましく、Si単独であることが特に好ましい。 The non-transition metal (M1) is not particularly limited, and any metal of Group 12 to 14 can be used alone or in combination. Examples thereof include Si, Al, Zn, In, and Sn. . Among these, as the non-transition metal (M1), Si, Sn or Zn is preferably contained, Si is more preferably contained, and Si alone is particularly preferred.
 B領域の厚さとしては、ガスバリアー性と生産性との両立の観点から、10~1000nmの範囲内であることが好ましく、20~500nmの範囲内であることがより好ましく、50~300nmの範囲内であることが更に好ましい。 The thickness of the region B is preferably in the range of 10 to 1000 nm, more preferably in the range of 20 to 500 nm, and more preferably in the range of 50 to 300 nm from the viewpoint of achieving both gas barrier properties and productivity. More preferably within the range.
(混合領域)
 本発明に係る混合領域とは、
(1)ガスバリアー層の少なくとも厚さ方向において構成成分の化学組成が相互に異なる複数の領域からなり、その中の一つの領域(A領域)には、遷移金属(M2)又はその化合物(例えば、遷移金属酸化物(酸化ニオブ)等)が含有されており、当該一つの領域に直接的又は間接的に対向する他の領域(B領域)に非遷移金属(M1)又はその化合物が含有されている場合、A領域の遷移金属(M2)及びB領域の非遷移金属(M1)に由来する化合物を含有する領域、
又は、
(2)ガスバリアー層内の全域にわたって遷移金属(M2)及び非遷移金属(M1)に由来する化合物が含有されている場合、当該全域、
をいう。
(Mixed area)
The mixed region according to the present invention is
(1) The gas barrier layer is composed of a plurality of regions having chemical compositions different from each other at least in the thickness direction, and one region (A region) includes transition metal (M2) or a compound thereof (for example, Transition metal oxides (niobium oxide, etc.) are contained, and non-transition metal (M1) or a compound thereof is contained in the other region (B region) directly or indirectly facing the one region. A region containing a compound derived from a transition metal (M2) in the A region and a non-transition metal (M1) in the B region,
Or
(2) When a compound derived from a transition metal (M2) and a non-transition metal (M1) is contained over the entire region in the gas barrier layer, the entire region,
Say.
 混合領域は、ガスバリアー層の厚さ方向に、連続して所定値以上(具体的には、5nm以上)の厚さで存在することが好ましい態様である。
 混合領域が少なくとも5nm程度の厚さを有していれば、高いガスバリアー性能を発揮できるため、非常に薄いガスバリアー性フィルムとした場合であっても、高いガスバリアー性能を得ることができる。すなわち、本発明のガスバリアー性フィルムは、ガスバリアー性能が高い状態で、ガスバリアー層を非常に薄くできるため、耐屈曲性に優れたガスバリアー性フィルムとすることができる。
It is a preferable aspect that the mixed region is continuously present in a thickness of a predetermined value or more (specifically, 5 nm or more) in the thickness direction of the gas barrier layer.
If the mixed region has a thickness of at least about 5 nm, high gas barrier performance can be exhibited. Therefore, even when a very thin gas barrier film is used, high gas barrier performance can be obtained. That is, the gas barrier film of the present invention can be made to be a gas barrier film having excellent bending resistance because the gas barrier layer can be made very thin while gas barrier performance is high.
 ガスバリアー層の混合領域以外の領域は、非遷移金属(M1)の酸化物、窒化物、酸窒化物、酸炭化物等の領域であってもよいし、遷移金属(M2)の酸化物、窒化物、酸窒化物、酸炭化物等の領域であってもよい。 The region other than the mixed region of the gas barrier layer may be a region such as a non-transition metal (M1) oxide, nitride, oxynitride, or oxycarbide, or a transition metal (M2) oxide or nitridation. It may be a region such as a product, an oxynitride, an oxycarbide.
(酸素欠損組成)
 本発明において、混合領域に含有される一部の組成が、酸素が欠損した非化学量論的組成(酸素欠損組成)であることが好ましい。
 本発明において、酸素欠損組成とは、当該混合領域の組成を、下記化学組成式(1)で表したとき、当該混合領域の少なくとも一部の組成が、下記関係式(2)で規定する条件を満たすことと定義する。また、当該混合領域における酸素欠損程度を表す酸素欠損度指標としては、後述する混合領域における(2y+3z)/(a+bx)を算出して得られる値の最小値を用いるものとする。
(Oxygen deficient composition)
In the present invention, it is preferable that a part of the composition contained in the mixed region has a non-stoichiometric composition (oxygen deficient composition) in which oxygen is lost.
In the present invention, the oxygen deficient composition is a condition that when the composition of the mixed region is represented by the following chemical composition formula (1), at least a part of the composition of the mixed region is defined by the following relational expression (2). It is defined as satisfying. In addition, as the oxygen deficiency index indicating the degree of oxygen deficiency in the mixed region, the minimum value obtained by calculating (2y + 3z) / (a + bx) in the mixed region described later is used.
 化学組成式(1):(M1)(M2)
 関係式(2):(2y+3z)/(a+bx)<1.0
(ただし、式中、M1:非遷移金属、M2:遷移金属、O:酸素、N:窒素、x,y,z:化学量論係数、a:M1の最大価数、b:M2の最大価数を表す。)
Chemical composition formula (1): (M1) (M2) x O y N z
Relational expression (2): (2y + 3z) / (a + bx) <1.0
(Where, M1: non-transition metal, M2: transition metal, O: oxygen, N: nitrogen, x, y, z: stoichiometric coefficient, a: maximum valence of M1, b: maximum valence of M2 Represents a number.)
 以下、特別の区別が必要ない場合、上記化学組成式(1)で表す組成を、単に複合領域の組成という。 Hereinafter, when no special distinction is necessary, the composition represented by the chemical composition formula (1) is simply referred to as the composition of the composite region.
 上述したように、本発明に係る遷移金属(M2)と非遷移金属(M1)との複合領域の組成は、化学組成式(1)で示される。この組成からも明らかなように、上記複合領域の組成は、一部窒化物の構造を含んでいてもよく、窒化物の構造を含む組成であることがガスバリアー性の観点から好ましい。
 ここでは、非遷移金属(M1)の最大価数をa、遷移金属(M2)の最大価数をb、Oの価数を2、Nの価数を3とする。そして、上記複合領域の組成(一部窒化物となっているものを含む。)が化学量論的組成になっている場合は、(2y+3z)/(a+bx)=1.0となる。この式は、非遷移金属(M1)及び遷移金属(M2)の結合手の合計と、O及びNの結合手の合計とが同数であることを意味し、この場合、非遷移金属(M1)及び遷移金属(M2)ともに、O及びNのいずれか一方と結合していることになる。なお、本発明において、非遷移金属(M1)として2種以上が併用される場合や、遷移金属(M2)として2種以上が併用される場合には、各元素の最大価数を各元素の存在比率によって加重平均することにより算出される複合価数を、それぞれの「最大価数」のa及びbの値として採用するものとする。
As described above, the composition of the composite region of the transition metal (M2) and the non-transition metal (M1) according to the present invention is represented by the chemical composition formula (1). As is apparent from this composition, the composition of the composite region may partially include a nitride structure, and is preferably a composition including a nitride structure from the viewpoint of gas barrier properties.
Here, the maximum valence of the non-transition metal (M1) is a, the maximum valence of the transition metal (M2) is b, the valence of O is 2, and the valence of N is 3. When the composition of the composite region (including a part of the nitride) is a stoichiometric composition, (2y + 3z) / (a + bx) = 1.0. This formula means that the total number of bonds of non-transition metal (M1) and transition metal (M2) is equal to the total number of bonds of O and N. In this case, non-transition metal (M1) And the transition metal (M2) are bonded to either O or N. In the present invention, when two or more kinds are used together as the non-transition metal (M1), or when two or more kinds are used together as the transition metal (M2), the maximum valence of each element is set to The composite valence calculated by performing the weighted average according to the existence ratio is adopted as the values of a and b of each “maximum valence”.
 一方、本発明に係る混合領域において、関係式(2)で示す(2y+3z)/(a+bx)<1.0となる場合には、非遷移金属(M1)及び遷移金属(M2)の結合手の合計に対して、O及びNの結合手の合計が不足していることを意味し、このような状態が上記の「酸素欠損」である。 On the other hand, in the mixed region according to the present invention, when (2y + 3z) / (a + bx) <1.0 shown by the relational expression (2), a bond between the non-transition metal (M1) and the transition metal (M2) This means that the total number of O and N bonds is insufficient with respect to the total, and such a state is the above-mentioned “oxygen deficiency”.
 酸素欠損状態においては、非遷移金属(M1)及び遷移金属(M2)の余った結合手は互いに結合する可能性を有しており、非遷移金属(M1)や遷移金属(M2)の金属同士が直接結合すると、金属の間にOやNを介して結合した場合よりも緻密で高密度な構造が形成され、その結果として、ガスバリアー性が向上すると考えられる。 In the oxygen deficient state, the remaining bonds of the non-transition metal (M1) and the transition metal (M2) have the possibility of bonding to each other, and the metals of the non-transition metal (M1) and the transition metal (M2) When they are directly bonded, it is considered that a denser and higher-density structure is formed than when bonded between metals via O or N, and as a result, gas barrier properties are improved.
 また、本発明において、混合領域は、xの値が、0.02≦x≦49(0<y、0≦z)を満たす領域である。これは、先に、遷移金属(M2)と非遷移金属(M1)との原子数比率の比の値(遷移金属(M2)の原子数/非遷移金属(M1)の原子数)が、0.02~49の範囲内にあり、厚さが5nm以上である領域と定義する、としたことと同一の定義である。
 この領域では、非遷移金属(M1)及び遷移金属(M2)の双方が金属同士の直接結合に関与することから、この条件を満たす混合領域が所定値以上(5nm)の厚さで存在することで、ガスバリアー性の向上に寄与すると考えられる。なお、非遷移金属(M1)及び遷移金属(M2)の存在比率が近いほどガスバリアー性の向上に寄与しうると考えられることから、混合領域は、0.1≦x≦10を満たす領域を5nm以上の厚さで含むことが好ましく、0.2≦x≦5を満たす領域を5nm以上の厚さで含むことがより好ましく、0.3≦x≦4を満たす領域を5nm以上の厚さで含むことが更に好ましい。
In the present invention, the mixed region is a region where the value of x satisfies 0.02 ≦ x ≦ 49 (0 <y, 0 ≦ z). This is because the value of the ratio of the number ratio of the transition metal (M2) to the non-transition metal (M1) (number of transition metal (M2) atoms / number of non-transition metal (M1) atoms) is 0. This is the same definition as defined as a region having a thickness in the range of .02 to 49 and a thickness of 5 nm or more.
In this region, since both the non-transition metal (M1) and the transition metal (M2) are involved in the direct bonding between the metals, a mixed region that satisfies this condition exists in a thickness of a predetermined value or more (5 nm). Therefore, it is thought that it contributes to the improvement of gas barrier properties. In addition, since it is considered that the closer the abundance ratio of the non-transition metal (M1) and the transition metal (M2), the more the gas barrier property can be improved, the mixed region is a region satisfying 0.1 ≦ x ≦ 10. It is preferable to include a thickness of 5 nm or more, more preferably include a region satisfying 0.2 ≦ x ≦ 5 at a thickness of 5 nm or more, and a region satisfying 0.3 ≦ x ≦ 4 to a thickness of 5 nm or more. It is further preferable to contain.
 上述したように、混合領域の範囲内に、関係式(2)で示す(2y+3z)/(a+bx)<1.0の関係を満たす領域が存在すれば、ガスバリアー性の向上効果が発揮されることが確認されたが、混合領域は、その組成の少なくとも一部が(2y+3z)/(a+bx)≦0.9を満たすことが好ましく、(2y+3z)/(a+bx)≦0.85を満たすことがより好ましく、(2y+3z)/(a+bx)≦0.8を満たすことが更に好ましい。ここで、混合領域における(2y+3z)/(a+bx)の値が小さくなるほど、ガスバリアー性の向上効果は高くなるものの可視光での吸収も大きくなる。したがって、透明性が望まれる用途に使用するガスバリアー層の場合には、0.2≦(2y+3z)/(a+bx)であることが好ましく、0.3≦(2y+3z)/(a+bx)であることがより好ましく、0.4≦(2y+3z)/(a+bx)であることが更に好ましい。 As described above, if there is a region satisfying the relationship of (2y + 3z) / (a + bx) <1.0 shown by the relational expression (2) within the range of the mixed region, the effect of improving the gas barrier property is exhibited. However, at least a part of the composition of the mixed region preferably satisfies (2y + 3z) / (a + bx) ≦ 0.9, and satisfies (2y + 3z) / (a + bx) ≦ 0.85. More preferably, it is more preferable to satisfy (2y + 3z) / (a + bx) ≦ 0.8. Here, the smaller the value of (2y + 3z) / (a + bx) in the mixed region, the higher the gas barrier property, but the greater the absorption in visible light. Therefore, in the case of a gas barrier layer used for applications where transparency is desired, 0.2 ≦ (2y + 3z) / (a + bx) is preferable, and 0.3 ≦ (2y + 3z) / (a + bx). Is more preferable, and 0.4 ≦ (2y + 3z) / (a + bx) is still more preferable.
 なお、本発明において良好なガスバリアー性が得られる混合領域の厚さは、後述するXPS分析法におけるSiO換算のスパッタ厚さとして、5nm以上であり、この厚さは、8nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることが更に好ましい。混合領域の厚さは、ガスバリアー性の観点からは特に上限はないが、光学特性の観点から、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることが更に好ましい。 In the present invention, the thickness of the mixed region where good gas barrier properties can be obtained is 5 nm or more as the sputtering thickness in terms of SiO 2 in the XPS analysis method described later, and this thickness is 8 nm or more. Is preferably 10 nm or more, more preferably 20 nm or more. The thickness of the mixed region is not particularly limited from the viewpoint of gas barrier properties, but is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less from the viewpoint of optical characteristics. preferable.
 上述したような特定構成の混合領域を有するガスバリアー層は、例えば、有機EL素子等の電子デバイス用のガスバリアー層として使用可能なレベルの非常に高いガスバリアー性を示す。 A gas barrier layer having a mixed region having a specific structure as described above exhibits a very high gas barrier property that can be used as a gas barrier layer for an electronic device such as an organic EL element.
(XPSによる組成分析と混合領域の厚さの測定)
 本発明に係るガスバリアー層の混合領域やA領域及びB領域における組成分布や各領域の厚さ等については、以下に詳述するX線光電分光法(X-ray Photoelectron Spectroscopy:XPS)により測定することにより求めることができる。
 以下、XPS分析法による混合領域及びA領域、B領域の測定方法について説明する。
(Composition analysis by XPS and measurement of the thickness of the mixed region)
The mixed distribution of the gas barrier layer according to the present invention, the composition distribution in the A region and the B region, the thickness of each region, and the like are measured by X-ray photoelectron spectroscopy (XPS) described in detail below. Can be obtained.
Hereinafter, a method for measuring the mixed region, the A region, and the B region by XPS analysis will be described.
 本発明に係るガスバリアー層の厚さ方向における元素濃度分布曲線(以下、「デプスプロファイル」という。)は、具体的には、非遷移金属(M1)(例えば、ケイ素)の元素濃度、遷移金属(M2)(例えば、ニオブ)の元素濃度、酸素(O)、窒素(N)、炭素(C)の元素濃度等を、X線光電子分光法の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、ガスバリアー層の表面より内部を露出させつつ順次表面組成分析を行うことにより作成することができる。
 このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子数比率(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は層厚方向におけるガスバリアー層の厚さ方向におけるガスバリアー層の表面からの距離におおむね相関することから、「ガスバリアー層の厚さ方向におけるガスバリアー層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリアー層の表面からの距離を採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。
The element concentration distribution curve (hereinafter referred to as “depth profile”) in the thickness direction of the gas barrier layer according to the present invention specifically includes the element concentration of the non-transition metal (M1) (for example, silicon), the transition metal. (M2) Element concentration of niobium (for example, element concentration of oxygen (O), nitrogen (N), carbon (C), etc.) is used in combination with X-ray photoelectron spectroscopy measurement and rare gas ion sputtering such as argon By doing so, it can be created by sequentially performing a surface composition analysis while exposing the inside from the surface of the gas barrier layer.
A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time). In the element distribution curve with the horizontal axis as the etching time in this way, the etching time is roughly correlated with the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer in the layer thickness direction. As the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer, the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time used in the XPS depth profile measurement is adopted. can do. In addition, as a sputtering method employed for such XPS depth profile measurement, a rare gas ion sputtering method using argon (Ar + ) as an etching ion species is employed, and the etching rate (etching rate) is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
 以下に、本発明に係るガスバリアー層の組成分析に適用可能なXPS分析の具体的な条件の一例を示す。 Hereinafter, an example of specific conditions of XPS analysis applicable to the composition analysis of the gas barrier layer according to the present invention will be shown.
・分析装置:アルバック・ファイ社製QUANTERA SXM
・X線源:単色化Al-Kα
・スパッタイオン:Ar(2keV)
・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを求める。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)。
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量する。データ処理は、アルバック・ファイ社製のMultiPakを用いる。なお、分析した元素は、非遷移金属(M1)(例えば、ケイ素(Si))、遷移金属(M2)(例えば、ニオブ(Nb))、酸素(O)、窒素(N)、炭素(C)である。
 得られたデータから、組成比を計算し、非遷移金属(M1)と遷移金属(M2)とが共存し、かつ、遷移金属(M2)と非遷移金属(M1)との原子数比率の比の値(遷移金属(M2)の原子数比率/非遷移金属(M1)の原子数比率)が、0.02~49になる範囲を求め、これを混合領域と定義し、その厚さを求める。混合領域の厚さは、XPS分析におけるスパッタ深さをSiO換算で表したものである。
・ Analyzer: QUANTERA SXM manufactured by ULVAC-PHI
・ X-ray source: Monochromatic Al-Kα
・ Sputtering ion: Ar (2 keV)
Depth profile: Measurement is repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data every 1 nm is obtained in the depth direction).
Quantification: The background is obtained by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. Data processing uses MultiPak manufactured by ULVAC-PHI. The analyzed elements are non-transition metal (M1) (for example, silicon (Si)), transition metal (M2) (for example, niobium (Nb)), oxygen (O), nitrogen (N), and carbon (C). It is.
From the obtained data, the composition ratio is calculated, the ratio of the atomic ratio of the transition metal (M2) and the non-transition metal (M1), and the non-transition metal (M1) and the transition metal (M2) coexist. The range in which the value of (the atomic ratio of transition metal (M2) / the atomic ratio of non-transition metal (M1)) is 0.02 to 49 is determined, this is defined as a mixed region, and the thickness is determined . The thickness of the mixed region represents the sputter depth in XPS analysis in terms of SiO 2 .
 以下に、本発明に係るガスバリアー層における混合領域の具体例について、図を用いて説明する。
 図2は、ガスバリアー層の厚さ方向における非遷移金属(M1)及び遷移金属(M2)の組成分布をXPS法により分析したときの元素プロファイルと混合領域を説明するためのグラフである。
 図2において、ガスバリアー層の表面(基材とは反対側の面)より深さ方向に、非遷移金属(M1)、遷移金属(M2)、O、N、Cの元素分析を行い、横軸にスパッタの深さ(nm:SiO換算)を、縦軸に非遷移金属(M1)と遷移金属(M2)との含有率(at%)を示したグラフである。
 基材側より、金属として非遷移金属(M1)(例えば、Si)を主成分とする元素組成であるB領域が示され、これに接してガスバリアー層表面側に向かって金属として遷移金属(M2)(例えば、ニオブ)を主成分とする元素組成であるA領域が示されている。混合領域は、遷移金属(M2)と非遷移金属(M1)との原子数比率の比の値(遷移金属(M2)の原子数比率/非遷移金属(M1)の原子数比率)が、0.02~49の範囲内の元素組成で示される領域であり、A領域の一部とB領域の一部とに重なって示される領域であって、かつ、厚さ5nm以上の領域である。
Below, the specific example of the mixing area | region in the gas barrier layer which concerns on this invention is demonstrated using figures.
FIG. 2 is a graph for explaining an element profile and a mixed region when the composition distribution of the non-transition metal (M1) and the transition metal (M2) in the thickness direction of the gas barrier layer is analyzed by the XPS method.
In FIG. 2, elemental analysis of non-transition metal (M1), transition metal (M2), O, N, and C is performed in the depth direction from the surface of the gas barrier layer (surface opposite to the base material). sputtering the axial depth: the (nm SiO 2 equivalent), the content of the vertical axis with non-transition metals (M1) and transition metal (M2) (at%) is a graph showing a.
From the base material side, a B region which is an elemental composition mainly composed of a non-transition metal (M1) (for example, Si) as a metal is shown, and a transition metal (as a metal toward the gas barrier layer surface side in contact with this) M2) A region which is an elemental composition mainly composed of niobium (for example, niobium) is shown. In the mixed region, the value of the ratio of the number of atoms of the transition metal (M2) and the non-transition metal (M1) (the ratio of the number of atoms of the transition metal (M2) / the number of atoms of the non-transition metal (M1)) is 0. A region having an elemental composition within a range of 0.02 to 49, a region that overlaps a part of the A region and a part of the B region, and has a thickness of 5 nm or more.
〈各領域の形成方法〉
(A領域の形成方法)
 遷移金属(M2)を含有するA領域の形成方法としては、特に限定されず、例えば、既存の薄膜堆積技術を利用した従来公知の気相成膜法を用いることが、混合領域を効率的に形成する観点から好ましい。
<Method for forming each region>
(Method for forming region A)
A method for forming the A region containing the transition metal (M2) is not particularly limited, and for example, a conventionally known vapor deposition method using an existing thin film deposition technique can be used to efficiently form the mixed region. It is preferable from the viewpoint of formation.
 これらの気相成膜法は公知の方法で用いることができる。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法、イオンアシスト蒸着法等の物理気相成長(Physical Vapor Deposition:PVD)法、プラズマCVD(Chemical Vapor Deposition)法、ALD(Atomic Layer Deposition)法などの化学気相成長(CVD)法が挙げられる。中でも、機能性素子へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、物理気相成長(PVD)法により形成することが好ましく、スパッタ法により形成することがより好ましい。 These vapor deposition methods can be used by known methods. The vapor deposition method is not particularly limited. For example, a physical vapor deposition (PVD) method such as a sputtering method, a vapor deposition method, an ion plating method, or an ion assisted vapor deposition method, a plasma CVD (Chemical Vapor). Examples thereof include a chemical vapor deposition (CVD) method such as a deposition method and an ALD (Atomic Layer Deposition) method. Among these, it is possible to form a film without damaging the functional element, and since it has high productivity, it is preferably formed by a physical vapor deposition (PVD) method, and more preferably formed by a sputtering method. .
 スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロンスパッタリング(DMS)、イオンビームスパッタリング、ECRスパッタリングなどを単独で又は2種以上組み合わせて用いることができる。また、ターゲットの印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング又はRF(高周波)スパッタリングのいずれを用いてもよい。 For the film formation by sputtering, bipolar sputtering, magnetron sputtering, dual magnetron sputtering (DMS) using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more. The target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used.
 また、金属モードと酸化物モードとの中間である遷移モードを利用した反応性スパッタ法も用いることができる。遷移領域となるようにスパッタ現象を制御することにより、高い成膜スピードで金属酸化物を成膜することが可能となるため好ましい。 Also, a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can be used. By controlling the sputtering phenomenon so as to be in the transition region, a metal oxide film can be formed at a high film formation speed, which is preferable.
 プロセスガスに用いられる不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、非遷移金属(M1)及び遷移金属(M2)の複合酸化物、酸窒化物、酸炭化物等の薄膜を形成することができる。スパッタ法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、厚さ等に応じて適宜選択することができる。 As the inert gas used for the process gas, He, Ne, Ar, Kr, Xe or the like can be used, and Ar is preferably used. Furthermore, by introducing oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas, thin films of non-transition metal (M1) and transition metal (M2) composite oxides, oxynitrides, oxycarbides, etc. are formed. can do. Examples of film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, and these can be appropriately selected depending on the sputtering apparatus, the material of the film, the thickness, and the like.
 スパッタ法は、遷移金属(M2)の単体又はその酸化物を含む複数のスパッタリングターゲットを用いた多元同時スパッタ方式であってもよい。これらのスパッタリングターゲットを作製する方法や、これらのスパッタリングターゲットを用いて複合酸化物からなる薄膜を作製する方法については、例えば、特開2000-160331号公報、特開2004-068109号公報、特開2013-047361号公報などに記載の方法や条件を適宜参照することができる。 The sputtering method may be a multi-source simultaneous sputtering method using a plurality of sputtering targets including a transition metal (M2) alone or its oxide. With respect to a method for producing these sputtering targets and a method for producing a thin film made of a composite oxide using these sputtering targets, for example, JP 2000-160331 A, JP 2004-068109 A, JP The methods and conditions described in JP 2013-047361 A can be referred to as appropriate.
 共蒸着法を実施する際の成膜条件としては、成膜原料における遷移金属(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、及び、成膜時の電力からなる群から選択される1種又は2種以上の条件が例示され、これらの成膜条件(好ましくは、酸素分圧)を調節することによって、酸素欠損組成を有する複合酸化物からなる混合領域を形成することができる。すなわち、上述したような共蒸着法を用いてガスバリアー層を形成することで、形成されるガスバリアー層の厚さ方向のほとんどの領域を混合領域とすることができる。このような方法によれば、混合領域の厚さを制御するという極めて簡便な操作により、所望のガスバリアー性を実現することができる。なお、混合領域の厚さを制御するには、例えば、共蒸着法を実施する際の成膜時間を調節すればよい。 The film forming conditions for carrying out the co-evaporation method include the ratio of the transition metal (M2) and oxygen in the film forming raw material, the ratio of the inert gas to the reactive gas during the film forming, and the gas concentration during the film forming. Examples include one or more conditions selected from the group consisting of supply amount, degree of vacuum during film formation, and power during film formation. These film formation conditions (preferably oxygen partial pressure) are By adjusting, a mixed region made of a complex oxide having an oxygen deficient composition can be formed. That is, by forming the gas barrier layer using the co-evaporation method as described above, almost all regions in the thickness direction of the formed gas barrier layer can be mixed regions. According to such a method, a desired gas barrier property can be realized by an extremely simple operation of controlling the thickness of the mixed region. In addition, what is necessary is just to adjust the film-forming time at the time of implementing a co-evaporation method, for example, in order to control the thickness of a mixing area | region.
(B領域の形成方法)
 非遷移金属(M1)を含有するB領域の形成方法としては、特に制限はなく、例えば、気相成膜法は公知の方法で用いることができる。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法、イオンアシスト蒸着法等の物理気相成長(PVD)法、プラズマCVD法、ALD法などの化学気相成長(CVD)法が挙げられる。なかでも、機能性素子へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、物理気相成長(PVD)法により形成することが好ましく、スパッタ法により、非遷移金属(M1)をターゲットとして用いて形成することができる。
(Method for forming region B)
There is no restriction | limiting in particular as a formation method of B area | region containing a non-transition metal (M1), For example, a vapor-phase film-forming method can be used by a well-known method. The vapor deposition method is not particularly limited. For example, chemical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assisted vapor deposition, chemistry such as plasma CVD, ALD, and the like. A vapor deposition (CVD) method may be mentioned. Among these, it is possible to form a film without damaging the functional element, and since it has high productivity, it is preferably formed by a physical vapor deposition (PVD) method. M1) can be used as a target.
 また、他の方法としては、非遷移金属(M1)としてSiを含むポリシラザン含有塗布液を用いて、湿式塗布法により形成する方法も、好ましい方法の一つである。 Further, as another method, a method of forming by a wet coating method using a polysilazane-containing coating solution containing Si as a non-transition metal (M1) is one of the preferable methods.
 本発明において、B領域の形成に適用可能な「ポリシラザン」とは、構造内にケイ素-窒素結合を持つポリマーであり、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。 In the present invention, “polysilazane” applicable to the formation of the B region is a polymer having a silicon-nitrogen bond in the structure, and includes SiO 2 , Si 3 made of Si—N, Si—H, NH, or the like. N is 4 and both of the intermediate solid solution SiO x N preceramic inorganic polymers, such as y.
 上述した基材の平面性等を損なわないように、ポリシラザンを用いてガスバリアー層を構成するB領域を形成するためには、特開平8-112879号公報に記載されているような、比較的低温で酸化ケイ素、窒化ケイ素又は酸窒化ケイ素に変性することが可能なポリシラザンが好ましい。
 このようなポリシラザンとしては、下記一般式(1)で表される構造を有する化合物が挙げられる。
In order to form the B region constituting the gas barrier layer using polysilazane so as not to impair the planarity of the above-described base material, the relatively Polysilazanes that can be modified to silicon oxide, silicon nitride or silicon oxynitride at low temperatures are preferred.
Examples of such polysilazane include compounds having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基又はアルコキシ基を表す。 In general formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group.
 本発明においては、B領域の薄膜としての緻密性の観点から、R、R及びRのすべてが水素原子であるパーヒドロポリシラザン(PHPS)が特に好ましい。 In the present invention, perhydropolysilazane (PHPS), in which all of R 1 , R 2, and R 3 are hydrogen atoms, is particularly preferred from the viewpoint of denseness as a thin film in the B region.
 一方、そのSiと結合する水素原子が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより、隣接する基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、よりB領域を厚くした場合でもクラックの発生が抑えられる点で好ましい。 On the other hand, organopolysilazanes in which hydrogen atoms bonded to Si are partially substituted with alkyl groups or the like have an alkyl group such as a methyl group, so that the adhesion to an adjacent substrate is improved, and it may be hard. A ceramic film made of polysilazane can be tough, and even when the B region is made thicker, it is preferable in that the generation of cracks is suppressed.
 用途に応じて、適宜、これらパーヒドロポリシラザンとオルガノポリシラザンとを選択して用いることができ、混合して使用することもできる。
 なお、パーヒドロポリシラザンは、直鎖構造と6又は8員環を中心とする環構造とが共存した構造を有していると推定されている。
Depending on the application, these perhydropolysilazane and organopolysilazane can be appropriately selected and used, or they can be used in combination.
Perhydropolysilazane is presumed to have a structure in which a linear structure and a ring structure centered on a 6- or 8-membered ring coexist.
 ポリシラザンの分子量は、数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体又は固体の物質で分子量により異なる。
 これらのポリシラザン化合物は、有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン化合物含有塗布液として使用することができる。
The molecular weight of polysilazane is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn) and varies depending on the molecular weight of a liquid or solid substance.
These polysilazane compounds are commercially available in a solution state dissolved in an organic solvent, and a commercially available product can be used as a polysilazane compound-containing coating solution as it is.
 低温でセラミック化するポリシラザンの他の例としては、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等が挙げられる。 Other examples of polysilazanes that are ceramicized at a low temperature include silicon alkoxide-added polysilazanes obtained by reacting the above polysilazanes with silicon alkoxides (Japanese Patent Laid-Open No. 5-238827), and glycidol-added polysilazanes obtained by reacting glycidol (specially No. 6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (Japanese Patent Laid-Open No. 6-240208), and a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (Japanese Patent Laid-Open No. 6-299118). No. 1), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal fine particle-added polysilazane obtained by adding metal fine particles (JP-A-7- 1969 6 No.), and the like.
 また、その他、ポリシラザンの詳細については、例えば、特開2013-255910号公報の段落0024~0040、特開2013-188942号公報の段落0037~0043、特開2013-151123号公報の段落0014~0021、特開2013-052569号公報の段落0033~0045、特開2013-129557号公報の段落0062~0075、特開2013-226758号公報の段落0037~0064等に記載されている内容を参照して適用することができる。 Other details of polysilazane include, for example, paragraphs 0024 to 0040 of JP2013-255910A, paragraphs 0037 to 0043 of JP2013-188942, and paragraphs 0014 to 0021 of JP2013-151123A. Refer to the contents described in paragraphs 0033 to 0045 of JP 2013-052569 A, paragraphs 0062 to 0075 of JP 2013-129557 A, paragraphs 0037 to 0064 of JP 2013-226758 A, and the like. Can be applied.
 ポリシラザンを含有する塗布液を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは避けることが好ましい。好適な有機溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、あるいは脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられる。
 これらの有機溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等、目的にあわせて選択し、複数の有機溶剤を混合してもよい。
As an organic solvent for preparing a coating liquid containing polysilazane, it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane. Suitable organic solvents include, for example, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, or ethers such as aliphatic ethers and alicyclic ethers. Can be used. Specific examples include hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
These organic solvents may be selected according to the purpose such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of organic solvents may be mixed.
 ポリシラザンを含有する塗布液におけるポリシラザンの濃度は、目的とするガスバリアー層の層厚や塗布液のポットライフによっても異なるが、0.2~35質量%程度であることが好ましい。 The concentration of polysilazane in the coating liquid containing polysilazane varies depending on the thickness of the target gas barrier layer and the pot life of the coating liquid, but is preferably about 0.2 to 35% by mass.
 また、ポリシラザンを含有する塗布液には、酸化ケイ素、窒化ケイ素又は酸窒化ケイ素への変性を促進するために、アミンや金属の触媒を添加することもできる。例えば、市販品としてのAZエレクトロニックマテリアルズ株式会社製のNAX120-20、NN120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140のような触媒が含まれるポリシラザン溶液を用いることができる。また、これらの市販品は、単独で使用されてもよく、2種以上混合して使用されてもよい。 In addition, an amine or a metal catalyst may be added to the coating liquid containing polysilazane in order to promote modification to silicon oxide, silicon nitride, or silicon oxynitride. For example, a polysilazane solution containing a catalyst such as NAX120-20, NN120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, SP140 manufactured by AZ Electronic Materials Co., Ltd. as a commercial product is used. be able to. Moreover, these commercial items may be used independently and may be used in mixture of 2 or more types.
 なお、ポリシラザンを含有する塗布液中において、触媒の添加量は、触媒による過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大などを避けるため、ポリシラザンに対して、2質量%以下に調整することが好ましい。 In addition, in the coating liquid containing polysilazane, the addition amount of the catalyst is adjusted to 2% by mass or less with respect to polysilazane in order to avoid excessive silanol formation by the catalyst, decrease in film density, increase in film defects, and the like. It is preferable to do.
 ポリシラザンを含有する塗布液には、ポリシラザン以外にも無機前駆体化合物を含有させることができる。ポリシラザン以外の無機前駆体化合物としては、塗布液の調製が可能であれば特に限定はされない。例えば、特開2011-143577号公報の段落0110~0114に記載のポリシラザン以外の化合物を適宜採用することができる。 The coating liquid containing polysilazane can contain an inorganic precursor compound in addition to polysilazane. The inorganic precursor compound other than polysilazane is not particularly limited as long as a coating liquid can be prepared. For example, compounds other than polysilazane described in paragraphs 0110 to 0114 of JP2011-143577A can be appropriately employed.
(添加元素)
 ポリシラザンを含有する塗布液には、Si以外の金属元素の有機金属化合物を添加することができる。Si以外の金属元素の有機金属化合物を添加することで、塗布乾燥過程において、ポリシラザンのN原子とO原子との置き換わりが促進され、塗布乾燥後にSiOに近い安定した組成へと変化させることができる。
(Additive elements)
An organometallic compound of a metal element other than Si can be added to the coating liquid containing polysilazane. By adding an organometallic compound of a metal element other than Si, the replacement of N atom and O atom of polysilazane is promoted in the coating and drying process, and the coating composition can be changed to a stable composition close to SiO 2 after drying. it can.
 Si以外の金属元素の例としては、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、クロム(Cr)、鉄(Fe)、マグネシウム(Mg)、スズ(Sn)、ニッケル(Ni)、パラジウム(Pd)、鉛(Pb)、マンガン(Mn)、リチウム(Li)、ゲルマニウム(Ge)、銅(Cu)、ナトリウム(Na)、カリウム(K)、カルシウム(Ca)、コバルト(Co)、ホウ素(B)、ベリリウム(Be)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、タリウム(Tl)等が挙げられる。
 特に、Al、B、Ti及びZrが好ましく、中でもAlを含む有機金属化合物が好ましい。
Examples of metal elements other than Si include aluminum (Al), titanium (Ti), zirconium (Zr), zinc (Zn), gallium (Ga), indium (In), chromium (Cr), iron (Fe), Magnesium (Mg), tin (Sn), nickel (Ni), palladium (Pd), lead (Pb), manganese (Mn), lithium (Li), germanium (Ge), copper (Cu), sodium (Na), Examples include potassium (K), calcium (Ca), cobalt (Co), boron (B), beryllium (Be), strontium (Sr), barium (Ba), radium (Ra), thallium (Tl), and the like.
In particular, Al, B, Ti and Zr are preferable, and among them, an organometallic compound containing Al is preferable.
 本発明に適用可能なアルミニウム化合物としては、例えば、アルミニウムイソポロポキシド、アルミニウム-sec-ブチレート、チタンイソプロポキシド、アルミニウムトリエチレート、アルミニウムトリイソプロピレート、アルミニウムトリtert-ブチレート、アルミニウムトリn-ブチレート、アルミニウムトリsec-ブチレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロピレートモノアルミニウム-t-ブチレート、アルミニウムトリスエチルアセトアセテート、アルミニウムオキシドイソプロポキシドトリマー等を挙げることができる。
 具体的な市販品としては、例えば、AMD(アルミニウムジイソプロピレートモノsec-ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH-TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL-M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)等を挙げることができる。
Examples of the aluminum compound applicable to the present invention include aluminum isopoloxide, aluminum-sec-butyrate, titanium isopropoxide, aluminum triethylate, aluminum triisopropylate, aluminum tritert-butylate, aluminum tri-n- Examples include butyrate, aluminum tri-sec-butylate, aluminum ethyl acetoacetate / diisopropylate, acetoalkoxyaluminum diisopropylate, aluminum diisopropylate monoaluminum-t-butylate, aluminum trisethylacetoacetate, aluminum oxide isopropoxide trimer, etc. be able to.
Specific commercial products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate / diisopropylate), ALCH-TR (aluminum trisethyl acetoate). Acetate), aluminum chelate M (aluminum alkyl acetoacetate / diisopropylate), aluminum chelate D (aluminum bisethylacetoacetate / monoacetylacetonate), aluminum chelate A (W) (aluminum trisacetylacetonate) Ken Fine Chemical Co., Ltd.), Preneact (registered trademark) AL-M (acetoalkoxyaluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.) It is possible.
 なお、これらの化合物を用いる場合は、ポリシラザンを含む塗布液と不活性ガス雰囲気下で混合することが好ましい。これらの化合物が大気中の水分や酸素と反応し、激しく酸化が進むことを抑制するためである。
 また、これらの化合物とポリシラザンとを混合する場合は、30~100℃に昇温し、撹拌しながら1分~24時間保持することが好ましい。
 本発明に係るガスバリアー層を構成するポリシラザン含有層における上記添加金属元素の含有量は、ケイ素(Si)の含有量100mol%に対して0.05~10mol%の範囲内であることが好ましく、より好ましくは0.5~5mol%の範囲内である。
In addition, when using these compounds, it is preferable to mix with the coating liquid containing polysilazane in inert gas atmosphere. This is to prevent these compounds from reacting with moisture and oxygen in the atmosphere and causing intense oxidation.
When these compounds and polysilazane are mixed, the temperature is preferably raised to 30 to 100 ° C. and maintained for 1 minute to 24 hours with stirring.
The content of the additive metal element in the polysilazane-containing layer constituting the gas barrier layer according to the present invention is preferably in the range of 0.05 to 10 mol% with respect to the silicon (Si) content of 100 mol%, More preferably, it is in the range of 0.5 to 5 mol%.
(改質処理)
 ポリシラザンを用いたB領域の形成においては、ポリシラザン含有層を形成した後、改質処理を施すことが好ましい。
 改質処理とは、ポリシラザンにエネルギーを付与して、その一部又は全てを酸化ケイ素又は酸化窒化ケイ素への転化する処理である。
(Modification process)
In the formation of the B region using polysilazane, it is preferable to perform a modification treatment after forming the polysilazane-containing layer.
The modification treatment is treatment for imparting energy to polysilazane and converting part or all of it into silicon oxide or silicon oxynitride.
 本発明における改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができ、例えば、公知のプラズマ処理、プラズマイオン注入処理、紫外線照射処理、真空紫外線照射処理等を挙げることができる。本発明においては、低温で転化反応が可能なプラズマ、オゾンや紫外線を使う転化反応が好ましい。プラズマやオゾンによる転化反応としては、従来公知の方法を用いることができる。本発明においては、基材上に塗布方式のポリシラザン含有塗布液の塗膜を設け、波長200nm以下の真空紫外線(VUV)を照射して改質処理する真空紫外線照射処理を適用してガスバリアー層を形成する方法が好ましい。 As the modification treatment in the present invention, a known method based on the conversion reaction of polysilazane can be selected, and examples thereof include known plasma treatment, plasma ion implantation treatment, ultraviolet irradiation treatment, vacuum ultraviolet irradiation treatment and the like. In the present invention, a conversion reaction using plasma, ozone or ultraviolet light that can be converted at a low temperature is preferable. A conventionally known method can be used as the conversion reaction by plasma or ozone. In the present invention, a gas barrier layer is applied by applying a vacuum ultraviolet ray irradiation treatment in which a coating film of a polysilazane-containing coating solution of a coating method is provided on a substrate, and a modification treatment is performed by irradiating a vacuum ultraviolet ray (VUV) having a wavelength of 200 nm or less. The method of forming is preferred.
 真空紫外光源としては、希ガスエキシマランプが好ましく用いられ、例えば、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製、株式会社エム・ディ・コム製など)等を挙げることができる。 As the vacuum ultraviolet light source, a rare gas excimer lamp is preferably used. For example, an excimer lamp (single wavelength of 172 nm, 222 nm, 308 nm, for example, manufactured by USHIO INC., Manufactured by M.D. Can be mentioned.
 真空紫外線照射による処理は、ポリシラザン内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で酸化ケイ素膜の形成を行う方法である。 The treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in polysilazane, and the bonding of atoms is an action of only a photon called a photon process. Thus, a silicon oxide film is formed at a relatively low temperature (about 200 ° C. or less) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly.
 これらの改質処理の詳細については、例えば、特開2012-086394号公報の段落0055~0091、特開2012-006154号公報の段落0049~0085、特開2011-251460号公報の段落0046~0074等に記載の内容を参照することができる。 For details of these reforming treatments, for example, paragraphs 0055 to 0091 of JP2012-086394A, paragraphs 0049 to 0085 of JP2012-006154A, paragraphs 0046 to 0074 of JP2011-251460A, for example. Etc. can be referred to.
(混合領域の形成方法)
 混合領域の形成方法としては、上記説明したようにA領域及びB領域を形成する際に、それぞれの形成条件を適宜調整して、A領域とB領域との間に混合領域を形成する方法が好ましい。
(Method for forming mixed region)
As a method of forming the mixed region, there is a method of forming the mixed region between the A region and the B region by appropriately adjusting the respective formation conditions when forming the A region and the B region as described above. preferable.
 B領域を上述した気相成膜法により形成する場合は、例えば、成膜原料における非遷移金属(M1)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、成膜時の磁力及び成膜時の電力からなる群から選択される1種又は2種以上の条件を調整することで混合領域を形成することができる。
 B領域を上述した塗布成膜法により形成する場合は、例えば、非遷移金属(M1)を含有する成膜原料種(ポリシラザン種等)、触媒種、触媒含有量、塗布膜厚、乾燥温度・時間、改質方法及び改質条件からなる群から選択される1種又は2種以上の条件を調整することで混合領域を形成することができる。
When forming the B region by the above-described vapor deposition method, for example, the ratio of the non-transition metal (M1) and oxygen in the deposition material, the ratio of the inert gas and the reactive gas during the deposition, A mixed region is formed by adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation. can do.
When forming the B region by the above-described coating film forming method, for example, a film forming raw material type (polysilazane type or the like) containing a non-transition metal (M1), a catalyst type, a catalyst content, a coating film thickness, a drying temperature, The mixed region can be formed by adjusting one or more conditions selected from the group consisting of time, reforming method and reforming conditions.
 A領域を上述した気相成膜法により形成する場合は、例えば、成膜原料における遷移金属(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、成膜時の磁力及び成膜時の電力からなる群から選択される1種又は2種以上の条件を調整することで混合領域を形成することができる。 When the A region is formed by the above-described vapor deposition method, for example, the ratio of the transition metal (M2) and oxygen in the deposition material, the ratio of the inert gas and the reactive gas during the deposition, and the deposition The mixed region is formed by adjusting one or more conditions selected from the group consisting of the amount of gas supplied, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation. be able to.
 なお、上記した方法によって、混合領域の厚さを制御するには、A領域及びB領域を形成する方法の形成条件を適宜調整して、制御することができる。例えば、A領域を気相成膜法で形成する際には、成膜時間を制御することにより所望の厚さにすることができる。また、これに加えて、非遷移金属(M1)と遷移金属(M2)との混合領域を直接形成する方法も好ましい。 Note that, in order to control the thickness of the mixed region by the above-described method, the formation conditions of the method of forming the A region and the B region can be adjusted as appropriate. For example, when forming the A region by a vapor deposition method, a desired thickness can be obtained by controlling the deposition time. In addition to this, a method of directly forming a mixed region of the non-transition metal (M1) and the transition metal (M2) is also preferable.
 混合領域を直接形成する方法としては、公知の共蒸着法を用いることが好ましい。このような共蒸着法として、好ましくは、共スパッタ法が挙げられる。本発明において採用される共スパッタ法は、例えば、非遷移金属(M1)及び遷移金属(M2)の双方を含む合金からなる複合ターゲットや、非遷移金属(M1)及び遷移金属(M2)の複合酸化物からなる複合ターゲットをスパッタリングターゲットとして用いた1元スパッタでありうる。
 また、本発明における共スパッタ法は、非遷移金属(M1)の単体又はその酸化物と、遷移金属(M2)の単体又はその酸化物とを含む複数のスパッタリングターゲットを用いた多元同時スパッタであってもよい。これらのスパッタリングターゲットを作製する方法や、これらのスパッタリングターゲットを用いて複合酸化物からなる薄膜を作製する方法については、例えば、特開2000-160331号公報、特開2004-068109号公報、特開2013-047361号公報などの記載が適宜参照されうる。
 そして、共蒸着法を実施する際の成膜条件としては、成膜原料における遷移金属(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度及び成膜時の電力からなる群から選択される1種又は2種以上の条件が例示され、これらの成膜条件(好ましくは、酸素分圧)を調整することによって、酸素欠損組成を有する薄膜を形成することができる。すなわち、上述したような共蒸着法を用いてガスバリアー層を形成することで、形成されるガスバリアー層の厚さ方向のほとんどの領域を混合領域とすることができる。このため、このような手法によれば、混合領域の厚さを制御するという極めて簡便な操作により、所望のガスバリアー性を実現することができる。なお、混合領域の厚さを制御するには、例えば、共蒸着法を実施する際の成膜時間を調整すればよい。
As a method for directly forming the mixed region, it is preferable to use a known co-evaporation method. As such a co-evaporation method, a co-sputtering method is preferable. The co-sputtering method employed in the present invention is, for example, a composite target made of an alloy containing both a non-transition metal (M1) and a transition metal (M2), or a composite of a non-transition metal (M1) and a transition metal (M2). One-way sputtering using a composite target made of an oxide as a sputtering target may be used.
In addition, the co-sputtering method in the present invention is multi-source simultaneous sputtering using a plurality of sputtering targets including a single non-transition metal (M1) or its oxide and a single transition metal (M2) or its oxide. May be. With respect to a method for producing these sputtering targets and a method for producing a thin film made of a composite oxide using these sputtering targets, for example, JP 2000-160331 A, JP 2004-068109 A, JP Reference can be made to the descriptions in Japanese Patent Application Laid-Open No. 2013-047361.
The film forming conditions for performing the co-evaporation method include the ratio of transition metal (M2) and oxygen in the film forming raw material, the ratio of inert gas to reactive gas during film formation, Examples include one or more conditions selected from the group consisting of the gas supply amount, the degree of vacuum during film formation, and the power during film formation. These film formation conditions (preferably oxygen partial pressure) are By adjusting, a thin film having an oxygen deficient composition can be formed. That is, by forming the gas barrier layer using the co-evaporation method as described above, almost all regions in the thickness direction of the formed gas barrier layer can be mixed regions. For this reason, according to such a method, a desired gas barrier property can be realized by an extremely simple operation of controlling the thickness of the mixed region. In addition, what is necessary is just to adjust the film-forming time at the time of implementing a co-evaporation method, for example, in order to control the thickness of a mixing area | region.
〈その他の機能層〉
 本発明のガスバリアー性フィルムにおいては、上記説明した構成層の他に、本発明の目的効果を損なわない範囲で、他の機能層を設けることができる。
<Other functional layers>
In the gas barrier film of the present invention, in addition to the constituent layers described above, other functional layers can be provided as long as the object effects of the present invention are not impaired.
(アンカーコート層)
 本発明に係るガスバリアー層を形成する側の基材の表面には、基材とガスバリアー層との密着性の向上を目的として、アンカーコート層が配置されてもよい。
(Anchor coat layer)
An anchor coat layer may be disposed on the surface of the base material on the side where the gas barrier layer according to the present invention is formed for the purpose of improving the adhesion between the base material and the gas barrier layer.
 アンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコーン樹脂、アルキルチタネート等を単独で又は2種以上組み合わせて使用することができる。 As an anchor coat agent used for the anchor coat layer, polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicone resin, alkyl titanate, etc. are used alone. Or it can use in combination of 2 or more types.
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5.0g/m(乾燥状態)程度が好ましい。 Conventionally known additives can be added to these anchor coating agents. The above-mentioned anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to. The application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
 また、アンカーコート層は、物理蒸着法又は化学蒸着法といった気相成膜法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化ケイ素を主体とした無機膜を形成することもできる。また、特開2004-314626号公報に記載されているようなアンカーコート層を形成することで、その上に気相成膜法により無機薄膜を形成する際に、基材側から発生するガスをある程度遮断して、無機薄膜の組成を制御するといった目的でアンカーコート層を形成することもできる。 The anchor coat layer can also be formed by a vapor deposition method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like. Further, by forming an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor deposition method, a gas generated from the substrate side is reduced. An anchor coat layer can also be formed for the purpose of blocking to some extent and controlling the composition of the inorganic thin film.
 アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 μm.
(クリアハードコート層)
 基材の表面(片面又は両面)には、クリアハードコート層が配置されてもよい。クリアハードコート層に含まれる材料の例としては、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独でも又は2種以上組み合わせても用いることができる。
(Clear hard coat layer)
A clear hard coat layer may be disposed on the surface (one side or both sides) of the substrate. Examples of the material contained in the clear hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because of easy molding. Such curable resins can be used singly or in combination of two or more.
 活性エネルギー線硬化性樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて、活性エネルギー線硬化性樹脂の硬化物を含む層、すなわちクリアハードコート層が形成される。活性エネルギー線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。あらかじめクリアハードコート層が形成されている市販の基材を用いてもよい。 The active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray. A layer containing a cured product of the conductive resin, that is, a clear hard coat layer is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. A commercially available base material on which a clear hard coat layer is formed in advance may be used.
 クリアハードコート層の厚さは、平滑性及び屈曲耐性の観点から、0.1~15μmの範囲内が好ましく、1~5μmの範囲内であることがより好ましい。 The thickness of the clear hard coat layer is preferably in the range of 0.1 to 15 μm and more preferably in the range of 1 to 5 μm from the viewpoint of smoothness and bending resistance.
 クリアハードコート層の形成材料に適用可能な活性エネルギー線硬化性樹脂としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズを用いることができる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。 Examples of the active energy ray-curable resin applicable to the material for forming the clear hard coat layer include, for example, a resin composition containing an acrylate compound having a radical-reactive unsaturated compound, an acrylate compound and a mercapto compound having a thiol group And a resin composition in which a polyfunctional acrylate monomer such as epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, glycerol methacrylate or the like is dissolved. Specifically, a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
 熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、株式会社アデカ製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製の各種シリコーン樹脂、日東紡株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。この中でも、特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。 Specific examples of thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistance epoxy resin), various silicone resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd. Examples thereof include a thermosetting urethane resin composed of a coat, an acrylic polyol and an isocyanate prepolymer, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, and a silicone resin. Among these, a heat-resistant epoxy resin-based material is particularly preferable.
 クリアハードコート層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、又は蒸着法等のドライコーティング法により形成することが好ましい。 The formation method of the clear hard coat layer is not particularly limited, but it is preferably formed by a spin coating method, a spray method, a blade coating method, a wet coating method such as a dip method, or a dry coating method such as a vapor deposition method.
 クリアハードコート層の形成では、上述の活性エネルギー線硬化性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、クリアハードコート層の積層位置に関係なく、いずれのクリアハードコート層においても、成膜性向上及び膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。 In the formation of the clear hard coat layer, additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above active energy ray-curable resin as necessary. Further, regardless of the position of the clear hard coat layer, an appropriate resin or additive may be used in any clear hard coat layer in order to improve the film formability and prevent the generation of pinholes in the film.
 クリアハードコート層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にする観点から、1~10μmの範囲内が好ましく、更に好ましくは、2~7μmの範囲内にすることが好ましい。 The thickness of the clear hard coat layer is preferably in the range of 1 to 10 μm, more preferably in the range of 2 to 7 μm from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. It is preferable to be inside.
《電子デバイス》
 本発明のガスバリアー性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化する電子デバイスに好ましく適用できる。
《Electronic device》
The gas barrier film of the present invention can be preferably applied to an electronic device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air.
 本発明のガスバリアー性フィルムを具備した電子デバイスに用いられる電子デバイス本体の例としては、例えば、量子ドット(QD)含有樹脂層を有するQDフィルム、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該電子デバイス本体は、有機EL素子又は太陽電池が好ましく、有機EL素子がより好ましい。 Examples of the electronic device body used in the electronic device provided with the gas barrier film of the present invention include, for example, a QD film having a quantum dot (QD) -containing resin layer, an organic electroluminescence element (organic EL element), and a liquid crystal display. An element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like can be given. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
〈量子ドット(QD)フィルム〉
 本発明のガスバリアー性フィルムは、量子ドットを含有するQDフィルムに適用することができる。
<Quantum dot (QD) film>
The gas barrier film of the present invention can be applied to a QD film containing quantum dots.
 以下、QD含有樹脂層の主要な構成要素である量子ドット(QD)及び樹脂等について説明する。 Hereinafter, quantum dots (QD), resins, and the like, which are main components of the QD-containing resin layer, will be described.
(量子ドット)
 一般に、ナノメートルサイズの半導体物質で量子閉じ込め(quantum confinement)効果を示す半導体ナノ粒子は、「量子ドット」とも称されている。このような量子ドットは、半導体原子が数百個から数千個集まった10数nm程度以内の小さな塊であるが、励起源から光を吸収してエネルギー励起状態に達すると、量子ドットのエネルギーバンドギャップに相当するエネルギーを放出する。
(Quantum dot)
In general, semiconductor nanoparticles exhibiting a quantum confinement effect with a nanometer-sized semiconductor material are also referred to as “quantum dots”. Such a quantum dot is a small lump within about 10 and several nanometers in which several hundred to several thousand semiconductor atoms are gathered, but when absorbing energy from an excitation source and reaching an energy excited state, the energy of the quantum dot Releases energy corresponding to the band gap.
 したがって、量子ドットは、量子サイズ効果によりユニークな光学特性を有することが知られている。具体的には、(1)粒子のサイズを制御することにより、様々な波長、色を発光させることができる、(2)吸収帯が広く、単一波長の励起光で様々なサイズの微粒子を発光させることができる、(3)蛍光スペクトルが良好な対称形である、(4)有機色素に比べて耐久性、耐退色性に優れる、といった特徴を有する。 Therefore, it is known that quantum dots have unique optical characteristics due to the quantum size effect. Specifically, (1) By controlling the size of the particles, various wavelengths and colors can be emitted. (2) The absorption band is wide and fine particles of various sizes can be obtained with a single wavelength of excitation light. It has the characteristics that it can emit light, (3) it has a symmetrical fluorescence spectrum, and (4) it has excellent durability and fading resistance compared to organic dyes.
 QD含有樹脂層が含有する量子ドットは公知のものであってもよく、公知の任意の方法を使用して生成することができる。例えば、好適な量子ドット及びその形成方法としては、米国特許第6225198号明細書、米国特許出願公開第2002/0066401号明細書、米国特許第6207229号明細書、同第6322901号明細書、同第6949206号明細書、同第7572393号明細書、同第7267865号明細書、同第7374807号明細書、米国特許出願第11/299299号、及び米国特許第6861155号明細書に記載のものが挙げられる。 The quantum dot contained in the QD-containing resin layer may be a known one, and can be generated using any known method. For example, suitable quantum dots and methods for forming them include US Pat. No. 6,225,198, US Patent Application Publication No. 2002/0066401, US Pat. No. 6,207,229, US Pat. No. 6,322,901, And those described in US Pat. No. 6,949,206, US Pat. No. 7,572,393, US Pat. No. 7,267,865, US Pat. No. 7,374,807, US Patent Application No. 11/299299, and US Pat. No. 6,861,155. .
 量子ドットは、任意の好適な材料、好ましくは無機材料、より好ましくは無機導体又は半導体材料から生成される。好適な半導体材料には、II-VI族、III-V族、IV-VI族及びIV族の半導体を含む、任意の種類の半導体が含まれる。 Quantum dots are generated from any suitable material, preferably an inorganic material, more preferably an inorganic conductor or semiconductor material. Suitable semiconductor materials include any type of semiconductor, including II-VI, III-V, IV-VI and IV semiconductors.
 好適な半導体材料には、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む。)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si、Ge、Al、(Al、Ga、In)(S、Se、Te)、AlCO、及び二つ以上のこのような半導体の適切な組合せが含まれるが、これらに限定されない。 Suitable semiconductor materials include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb. , InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe , BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , (Al, Ga, In) 2 (S, Se, Te) 3, Al 2 O, and include but are more than one suitable combination of such semiconductor, and the like.
 本発明においては、次のようなコア/シェル型の量子ドット、例えば、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等も好ましく使用できる。 In the present invention, the following core / shell type quantum dots, for example, CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS, and the like can be preferably used.
(量子ドット(QD)含有樹脂層)
 QD含有樹脂層には、量子ドットを保持するバインダーとして樹脂を用いることができる。例えば、ポリカーボネート系、ポリアリレート系、ポリスルホン(ポリエーテルスルホンも含む。)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系、ポリエチレン系、ポリプロピレン系、セロファン系、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースエステル系、ポリ塩化ビニリデン系、ポリビニルアルコール系、エチレンビニルアルコール系、シンジオタクティックポリスチレン系、ノルボルネン系、ポリメチルペンテン系、ポリエーテルケトン系、ポリエーテルケトンイミド系、ポリアミド樹脂、フッ素樹脂、ナイロン系、ポリメチルメタクリレート等のアクリル系樹脂等を挙げることができる。
(Quantum dot (QD) -containing resin layer)
Resin can be used for a QD containing resin layer as a binder holding a quantum dot. For example, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyester such as polyethylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate Cellulose esters such as pionate and cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, norbornene, polymethylpentene, polyether ketone, polyether ketone imide And acrylic resins such as polyamide resins, fluororesins, nylon resins, and polymethyl methacrylate.
 QD含有樹脂層は、厚さが50~200μmの範囲内であることが好ましい。 The QD-containing resin layer preferably has a thickness in the range of 50 to 200 μm.
 なお、QD含有樹脂層における量子ドットの含有量は、使用する化合物によって最適量は異なるが、一般的には15~60体積%の範囲内であることが好ましい。 The optimum amount of quantum dots in the QD-containing resin layer varies depending on the compound used, but is generally preferably in the range of 15 to 60% by volume.
《有機EL素子》
 本発明のガスバリアー性フィルムを適用する電子デバイスの代表例としては、図3に示すような有機EL素子が挙げられる。図3に示すとおり、有機EL素子10は、支持体11上に、一対の電極12及び14と、当該一対の電極12及び14の間に位置する有機機能層13と、有機機能層13を被覆する封止材15と、を備えている。支持体11として、本発明のガスバリアー性フィルム1を適用することができる。
<< Organic EL element >>
A typical example of an electronic device to which the gas barrier film of the present invention is applied is an organic EL element as shown in FIG. As shown in FIG. 3, the organic EL element 10 covers a support 11 with a pair of electrodes 12 and 14, an organic functional layer 13 positioned between the pair of electrodes 12 and 14, and the organic functional layer 13. Sealing material 15 to be provided. The gas barrier film 1 of the present invention can be applied as the support 11.
 有機機能層13は、少なくとも発光層を備え、必要に応じて正孔注入層、正孔輸送層、電子輸送層、電子注入層等を備えている。
 発光層は、発光性の有機化合物や有機金属錯体等を含有し、一方の電極(陽極)から直接注入されるか、又は陽極から正孔輸送層等を介して注入される正孔と、他方の電極(陰極)から直接注入されるか、又は電子輸送層等を介して注入される電子とが、再結合することにより発光する。
The organic functional layer 13 includes at least a light emitting layer, and includes a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like as necessary.
The light-emitting layer contains a light-emitting organic compound, an organometallic complex, or the like, and is directly injected from one electrode (anode) or from the anode through a hole transport layer, and the other. Electrons directly injected from the electrode (cathode) or electrons injected through the electron transport layer or the like emit light by recombination.
 有機機能層13や電極12及び14は、大気中の酸素や水等のガスの浸入によって劣化しやすい。このような有機機能層13等の劣化による発光性能の低下を抑えるため、有機EL素子10は、上述したガスバリアー性フィルム1を支持体11として具備しているが、封止材15としてガスバリアー性フィルム1を具備することもできる。 The organic functional layer 13 and the electrodes 12 and 14 are liable to deteriorate due to the intrusion of gas such as oxygen and water in the atmosphere. The organic EL element 10 includes the above-described gas barrier film 1 as the support 11 in order to suppress a decrease in light emission performance due to such deterioration of the organic functional layer 13 and the like, but a gas barrier as the sealing material 15. The film 1 can also be provided.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
[実施例1]
《ガスバリアー性フィルムの作製》
 下記の方法に従って、ガスバリアー性フィルム101~109を作製した。
[Example 1]
<< Production of gas barrier film >>
Gas barrier films 101 to 109 were produced according to the following method.
〈ガスバリアー性フィルム101の作製〉
(1)基材の準備
 両面に易接着処理した厚さ100μmのポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラー(登録商標)U48、略称:PETフィルム)の両面に、クリアハードコート層1(裏面側)及びクリアハードコート層2(ガスバリアー層形成面側)を下記の方法により形成した。
<Preparation of gas barrier film 101>
(1) Preparation of base material Clear hard coat layer 1 (back side) on both sides of a 100 μm thick polyethylene terephthalate film (Lumirror (registered trademark) U48, abbreviated as PET film) manufactured by Toray Industries, Inc. ) And clear hard coat layer 2 (gas barrier layer forming surface side) were formed by the following method.
(クリアハードコート層の形成)
 上記PETフィルムの裏面側(ガスバリアー層を形成する面とは反対側の面)に、UV硬化型樹脂(アイカ工業株式会社製、品番:Z731L)を乾燥層厚が0.5μmになるように湿式塗布方式により塗布した後、形成した塗膜を80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行い、裏面側のクリアハードコート層1を形成した。
(Formation of clear hard coat layer)
A UV curable resin (manufactured by Aika Industry Co., Ltd., product number: Z731L) is applied to the back side of the PET film (the side opposite to the side on which the gas barrier layer is formed) so that the dry layer thickness is 0.5 μm. After coating by the wet coating method, the formed coating film is dried at 80 ° C., and then cured in air using a high-pressure mercury lamp under the condition of an irradiation energy amount of 0.5 J / cm 2 to clear the back side. Hard coat layer 1 was formed.
 次いで、PETフィルムの表面側(ガスバリアー層を形成する面)に、JSR株式会社製のUV硬化型樹脂「オプスター(登録商標)Z7527」を用い、乾燥層厚が2μmになるように、湿式塗布方式で塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行い、表面側に厚さ2μmのクリアハードコート層2を形成した。 Next, using UV curable resin “OPSTAR (registered trademark) Z7527” manufactured by JSR Corporation on the surface side of the PET film (surface on which the gas barrier layer is formed), wet coating so that the dry layer thickness is 2 μm. After coating by the method, it is dried at 80 ° C., and then cured under a condition of irradiation energy of 0.5 J / cm 2 using a high-pressure mercury lamp in the air, and a clear hard coat layer having a thickness of 2 μm on the surface side. 2 was formed.
(2)ガスバリアー層の形成
(非遷移金属(M1)を含有する膜の形成)
 基材のクリアハードコート層2を形成した面側に、気相法・スパッタ(キャノンアネルバ社製のマグネトロンスパッタ装置、型式EB1100)により、非遷移金属(M1)を含有する膜を形成した。用いたスパッタ装置は、2元同時スパッタが可能なものである。
(2) Formation of gas barrier layer (formation of film containing non-transition metal (M1))
A film containing a non-transition metal (M1) was formed on the surface of the base material on which the clear hard coat layer 2 was formed by a vapor phase method / sputtering (a magnetron sputtering apparatus manufactured by Canon Anelva, model EB1100). The sputtering apparatus used is capable of two-way simultaneous sputtering.
 ここで、ターゲットとして多結晶Siターゲットを用い、プロセスガスとしてArとOとの混合ガスを用いて、DCスパッタにより、厚さ55nmとなるように成膜した。スパッタ電源パワーは5.0W/cmとし、成膜圧力は0.4Paとした。成膜は、組成がSiOとなるように酸素分圧を調整することにより行った。なお、事前にガラス基板を用いた成膜を行い、酸素分圧を調整することにより組成の条件出しを行い、表層から深さ10nm近傍の組成がSiOとなる条件を見出し、その条件を適用した。また、厚さに関しては、100~300nmの範囲内で成膜時間に対する厚さ変化のデータを取り、単位時間当たりに成膜される厚さを算出した後、設定する厚さとなるように成膜時間を設定した。 Here, a polycrystalline Si target was used as a target, and a mixed gas of Ar and O 2 was used as a process gas to form a film having a thickness of 55 nm by DC sputtering. The sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa. Film formation was performed by adjusting the oxygen partial pressure so that the composition was SiO 2 . In addition, film formation using a glass substrate is performed in advance, and the condition of the composition is determined by adjusting the oxygen partial pressure. The condition where the composition near the depth of 10 nm from the surface layer becomes SiO 2 is found, and the condition is applied. did. As for the thickness, data on the change in thickness with respect to the film formation time is obtained within a range of 100 to 300 nm, the film formation per unit time is calculated, and then the film is formed to have a set thickness. Set the time.
 上記方法により、基材の一方の面側に、組成が非遷移金属酸化物SiOである膜を、厚さ55nmで形成した。 By the above method, a film having a composition of non-transition metal oxide SiO 2 was formed with a thickness of 55 nm on one surface side of the substrate.
(遷移金属(M2)を含有する膜の形成)
 上記形成した非遷移金属(M1)を含有する膜の上に、気相法・スパッタ(キャノンアネルバ社製のマグネトロンスパッタ装置、型式EB1100)により、遷移金属(M2)を含有する膜を形成した。
(Formation of film containing transition metal (M2))
A film containing a transition metal (M2) was formed on the formed film containing a non-transition metal (M1) by a vapor phase method / sputtering (a magnetron sputtering apparatus manufactured by Canon Anelva, model EB1100).
 ターゲットとしては、市販の金属Nbターゲットを用い、プロセスガスとしてArとOの混合ガスを用いて、DCスパッタにより、厚さ10nmとなるように成膜した。スパッタ電源パワーは5.0W/cmとし、成膜圧力は0.4Paとした。また、成膜条件において、酸素分圧を12%とした。なお、事前にガラス基板材を用いた成膜により、成膜条件において、成膜時間に対する厚さ変化のデータを取り、単位時間当たりに成膜される厚さを算出した後、設定する厚さとなるように成膜時間を設定した。 As a target, a commercially available metal Nb target was used, and a mixed gas of Ar and O 2 was used as a process gas, and a film was formed to a thickness of 10 nm by DC sputtering. The sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa. Further, the oxygen partial pressure was 12% under the film forming conditions. It should be noted that, after film formation using a glass substrate material in advance, the thickness change data with respect to the film formation time is taken under the film formation conditions, the thickness to be formed per unit time is calculated, The film formation time was set so that
 以上によって、層厚65nmのガスバリアー層を形成した。 Thus, a gas barrier layer having a layer thickness of 65 nm was formed.
(3)ガスバリアー層のXPS分析
 XPS分析により、ガスバリアー層の表面側から厚さ方向の組成分布プロファイルを測定した。なお、XPS分析条件は以下のとおりである。なお、分析に用いた試料は、試料作製後、20℃・50%RHの環境下で保管した試料を用いた。
(3) XPS Analysis of Gas Barrier Layer A composition distribution profile in the thickness direction was measured from the surface side of the gas barrier layer by XPS analysis. The XPS analysis conditions are as follows. The sample used for the analysis was a sample stored in an environment of 20 ° C. and 50% RH after sample preparation.
(XPS分析条件)
・装置:アルバック・ファイ社製QUANTERA SXM
・X線源:単色化Al-Kα
・スパッタイオン:Ar(2keV)
・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを得た。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる。)。
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバック・ファイ社製のMultiPakを用いた。なお、分析した元素は、非遷移金属(Si)、遷移金属(Nb)、O、N、Cである。
(XPS analysis conditions)
・ Device: QUANTERA SXM manufactured by ULVAC-PHI
・ X-ray source: Monochromatic Al-Kα
・ Sputtering ion: Ar (2 keV)
Depth profile: Measurement was repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data every 1 nm is obtained in the depth direction).
Quantification: The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. For data processing, MultiPak manufactured by ULVAC-PHI was used. The analyzed elements are non-transition metal (Si), transition metal (Nb), O, N, and C.
(4)混合領域の酸素欠損指標(2y+3z)/(a+bx)の算出
 混合領域における厚さ方向の(2y+3z)/(a+bx)の値を算出した。ここで、aはSi(M1)の最大価数4、bはNb(M2)の最大価数5である。また、x、y及びzは、XPS分析から求めた、Si(M1)の原子数比率を1としたときの、Nb(M2)、O及びNのそれぞれの原子数比率の値である。そして、混合領域における(2y+3z)/(a+bx)の最小値を酸素欠損度指標として求め、当該最小値が1.0未満の場合、混合領域が酸素欠損状態にあると判断した。
(4) Calculation of oxygen deficiency index (2y + 3z) / (a + bx) in the mixed region The value of (2y + 3z) / (a + bx) in the thickness direction in the mixed region was calculated. Here, a is the maximum valence 4 of Si (M1), and b is the maximum valence 5 of Nb (M2). X, y, and z are values of the atomic ratios of Nb (M2), O, and N, respectively, when the atomic ratio of Si (M1) is 1, which is obtained from XPS analysis. Then, the minimum value of (2y + 3z) / (a + bx) in the mixed region was obtained as an oxygen deficiency index, and when the minimum value was less than 1.0, it was determined that the mixed region was in an oxygen deficient state.
〈ガスバリアー性フィルム102~104の作製〉
 ガスバリアー性フィルム101の作製において、基材を表1に記載のとおりに変更した以外は同様にして、ガスバリアー性フィルム102~104を作製した。
<Preparation of gas barrier films 102-104>
In the production of the gas barrier film 101, gas barrier films 102 to 104 were produced in the same manner except that the base material was changed as shown in Table 1.
 PEN:帝人株式会社製 テオネックス
 PES:住友化学株式会社製 スミカエクセル4010GL30
 PI:三菱瓦斯化学株式会社製 ネオプリム
PEN: Teonex manufactured by Teijin Limited PES: Sumika Excel 4010GL30 manufactured by Sumitomo Chemical Co., Ltd.
PI: Neoprim, manufactured by Mitsubishi Gas Chemical Co., Ltd.
〈ガスバリアー性フィルム105の作製〉
 ガスバリアー性フィルム104の作製において、非遷移金属(M1)を含有する膜を形成する際のターゲットを酸化アルミニウム(屈折率1.63)に変更し、厚さ70nmとなるように成膜した以外は同様にして、ガスバリアー性フィルム105を作製した。
<Preparation of gas barrier film 105>
In the production of the gas barrier film 104, the target for forming the film containing the non-transition metal (M1) was changed to aluminum oxide (refractive index 1.63), and the film was formed to have a thickness of 70 nm. In the same manner, a gas barrier film 105 was produced.
〈ガスバリアー性フィルム106~108の作製〉
 ガスバリアー性フィルム102~104の作製において、遷移金属を含有する膜を形成する際のターゲットを金属Taターゲットに変更し、厚さ10nmとなるように成膜した以外は同様にして、ガスバリアー性フィルム106~108をそれぞれ作製した。
<Preparation of gas barrier films 106-108>
In the production of the gas barrier films 102 to 104, the gas barrier property was similarly changed except that the target for forming the film containing the transition metal was changed to a metal Ta target and formed to a thickness of 10 nm. Films 106 to 108 were produced.
〈ガスバリアー性フィルム109の作製〉
 ガスバリアー性フィルム104の作製において、以下のようにしてガスバリアー層を形成した以外は同様にして、ガスバリアー性フィルム109を作製した。
<Preparation of gas barrier film 109>
In the production of the gas barrier film 104, a gas barrier film 109 was produced in the same manner except that the gas barrier layer was formed as follows.
(ガスバリアー層の形成)
 基材のクリアハードコート層2を形成した面側に、ターゲットとして多結晶Siターゲット及び金属Nbターゲットを用い、プロセスガスにはArとOとを用いて、DC方式により共スパッタ法である2元同時スパッタを行うことにより、ガスバリアー層を形成した。酸素分圧は18%とし、膜中のSiとNbの原子比率が同量となるように、多結晶Siターゲットにおける電源パワーと、金属Nbターゲットにおける電源パワーとを調整した。また、層厚が50nmとなるように成膜時間を設定した。
(Formation of gas barrier layer)
On the surface side of the base material on which the clear hard coat layer 2 is formed, a polycrystalline Si target and a metal Nb target are used as targets, Ar and O 2 are used as process gases, and a co-sputtering method is performed by a DC method. A gas barrier layer was formed by performing original co-sputtering. The power supply power in the polycrystalline Si target and the power supply power in the metal Nb target were adjusted so that the oxygen partial pressure was 18% and the atomic ratio of Si and Nb in the film was the same. The film formation time was set so that the layer thickness was 50 nm.
《評価》
 作製した各ガスバリアー性フィルムについて、以下のようにして水蒸気透過度及び保存性を評価した。
 評価結果を表1に示す。
<Evaluation>
About each produced gas-barrier film, water vapor permeability and preservability were evaluated as follows.
The evaluation results are shown in Table 1.
〈水蒸気透過度の測定〉
 以下の測定方法に従って、作製した各ガスバリアー性フィルムの透過水分量(水蒸気透過度)を測定し、水蒸気バリアー性を評価した。
 なお、本発明のガスバリアー性フィルムに関し、水蒸気透過度の測定方法は特に限定するところではないが、本実施例では水蒸気透過度測定方法として、Ca法を採用した。
<Measurement of water vapor transmission rate>
According to the following measurement method, the permeated water amount (water vapor permeability) of each produced gas barrier film was measured to evaluate the water vapor barrier property.
In addition, regarding the gas-barrier film of this invention, although the measuring method of water vapor permeability is not specifically limited, In this Example, Ca method was employ | adopted as a water vapor permeability measuring method.
(使用装置)
 蒸着装置:日本電子(株)製真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
(Device used)
Vapor deposition device: JEE-400, a vacuum vapor deposition device manufactured by JEOL Ltd.
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
(評価材料)
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
(Evaluation materials)
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
(水蒸気バリアー性評価用セルの作製)
 真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、試料のガスバリアー層の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下に移して、アルミニウム蒸着面に封止用紫外線硬化樹脂(ナガセケムテックス社製)を介して厚さ0.2mmの石英ガラスを張り合わせ、紫外線を照射して樹脂を硬化接着させて本封止することで、水蒸気バリアー性評価用セルを作製した。
(Preparation of water vapor barrier property evaluation cell)
Using a vacuum vapor deposition apparatus (vacuum vapor deposition apparatus JEE-400 manufactured by JEOL Ltd.), metal calcium was vapor deposited by masking portions other than the portion (12 mm × 12 mm in 9 locations) of the gas barrier layer of the sample. Thereafter, the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet. After sealing with aluminum, the vacuum state is released, and it is immediately transferred to a dry nitrogen gas atmosphere, and a quartz glass having a thickness of 0.2 mm is provided on the aluminum vapor deposition surface via a sealing UV curable resin (manufactured by Nagase ChemteX). Were bonded together, and the resin was cured and adhered, followed by main sealing, thereby producing a water vapor barrier property evaluation cell.
 そして、恒温恒湿度オーブンを用い、得られた評価用セルを60℃・90%RHの高温高湿下で保存し、特開2005-283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量(g/(m・24h))を計算した。
 なお、ガスバリアー性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリアー性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板に金属カルシウムを蒸着した試料を用いたセルで、同様に60℃・90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウムの腐食が発生しないことを確認した。
Then, using the constant temperature and humidity oven, the obtained evaluation cell was stored under high temperature and high humidity of 60 ° C. and 90% RH, and the amount of corrosion of metallic calcium was determined based on the method described in JP-A-2005-283561. From this, the amount of water permeated into the cell (g / (m 2 · 24 h)) was calculated.
In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample obtained by depositing metallic calcium on a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample In the same manner, the cell was stored under high temperature and high humidity of 60 ° C. and 90% RH, and it was confirmed that corrosion of metallic calcium did not occur even after 1000 hours.
〈保存性の評価(クラック評価)〉
 作製したガスバリアー性フィルムについて、サイズ300mm×300mmのサンプルを85℃・85%RH環境下に14日保存後、上記と同様の方法で透過水分量(水蒸気透過度)を測定し、保存前後での透過水分量の変化より、下式に従って耐劣化度を算出し、下記の基準に従って保存性を評価した。
 耐劣化度=(保存後の透過水分量/保存前の透過水分量)×100(%)
<Evaluation of storage stability (crack evaluation)>
About the produced gas barrier film, after storing a sample of size 300 mm × 300 mm in an environment of 85 ° C. and 85% RH for 14 days, the permeated water content (water vapor permeability) was measured by the same method as above, and before and after storage. From the change in permeated water amount, the degree of deterioration resistance was calculated according to the following formula, and the storage stability was evaluated according to the following criteria.
Deterioration resistance = (permeated water amount after storage / permeated water amount before storage) × 100 (%)
 5:耐劣化度が、98%以上である。
 4:耐劣化度が、95%以上、98%未満である。
 3:耐劣化度が、90%以上、95%未満である。
 2:耐劣化度が、80%以上、90%未満である。
 1:耐劣化度が、80%未満である。
5: Deterioration resistance is 98% or more.
4: Deterioration resistance is 95% or more and less than 98%.
3: Deterioration resistance is 90% or more and less than 95%.
2: Deterioration resistance is 80% or more and less than 90%.
1: Deterioration resistance is less than 80%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〈まとめ〉
 表1から明らかなように、本発明のガスバリアー性フィルムは、比較例のガスバリアー性フィルムと比較して、水蒸気透過度及び保存性に優れていることが確認された。
 以上から、ガスバリアー層が、少なくとも厚さ方向において、5族の遷移金属及び12~14族の非遷移金属(M1)が含有されている混合領域を有し、基材の構成材料のガラス転移温度が150℃以上であることが、高いガスバリアー性を有しつつ、生産性にも優れたガスバリアー性フィルムを提供することに有用であることがわかる。
<Summary>
As is clear from Table 1, it was confirmed that the gas barrier film of the present invention was superior in water vapor permeability and storage stability as compared with the gas barrier film of the comparative example.
From the above, the gas barrier layer has a mixed region containing at least the group 5 transition metal and the group 12 to 14 non-transition metal (M1) in the thickness direction, and the glass transition of the constituent material of the base material It can be seen that a temperature of 150 ° C. or higher is useful for providing a gas barrier film having high gas barrier properties and excellent productivity.
[実施例2]
《ガスバリアー性フィルムの作製》
 下記の方法に従って、ガスバリアー性フィルム201~205を作製した。
[Example 2]
<< Production of gas barrier film >>
Gas barrier films 201 to 205 were prepared according to the following method.
〈ガスバリアー性フィルム201の作製〉
(1)基材の準備
 両面に易接着処理した厚さ100μmのポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラー(登録商標)U48、略称:PETフィルム)の両面に、クリアハードコート層1(裏面側)及びクリアハードコート層2(ガスバリアー層形成面側)を下記の方法により形成した。
<Preparation of gas barrier film 201>
(1) Preparation of base material Clear hard coat layer 1 (back side) on both sides of a 100 μm thick polyethylene terephthalate film (Lumirror (registered trademark) U48, abbreviated as PET film) manufactured by Toray Industries, Inc. ) And clear hard coat layer 2 (gas barrier layer forming surface side) were formed by the following method.
(クリアハードコート層の形成)
 上記PETフィルムの裏面側(ガスバリアー層を形成する面とは反対側の面)に、UV硬化型樹脂(アイカ工業株式会社製、品番:Z731L)を乾燥層厚が0.5μmになるように湿式塗布方式により塗布した後、形成した塗膜を80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行い、裏面側のクリアハードコート層1を形成した。
(Formation of clear hard coat layer)
A UV curable resin (manufactured by Aika Industry Co., Ltd., product number: Z731L) is applied to the back side of the PET film (the side opposite to the side on which the gas barrier layer is formed) so that the dry layer thickness is 0.5 μm. After coating by the wet coating method, the formed coating film is dried at 80 ° C., and then cured in air using a high-pressure mercury lamp under the condition of an irradiation energy amount of 0.5 J / cm 2 to clear the back side. Hard coat layer 1 was formed.
 次いで、PETフィルムの表面側(ガスバリアー層を形成する面)に、JSR株式会社製のUV硬化型樹脂「オプスター(登録商標)Z7527」を用い、乾燥層厚が2μmになるように、湿式塗布方式で塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行い、表面側に厚さ2μmのクリアハードコート層2を形成した。 Next, using UV curable resin “OPSTAR (registered trademark) Z7527” manufactured by JSR Corporation on the surface side of the PET film (surface on which the gas barrier layer is formed), wet coating so that the dry layer thickness is 2 μm. After coating by the method, it is dried at 80 ° C., and then cured under a condition of irradiation energy of 0.5 J / cm 2 using a high-pressure mercury lamp in the air, and a clear hard coat layer having a thickness of 2 μm on the surface side. 2 was formed.
(2)ガスバリアー層の形成
(非遷移金属(M1)を含有する膜の形成)
 非遷移金属(M1)として、Siを含有するポリシラザンを用い、以下のようにして、塗布・改質方式により非遷移金属(M1)を含有する膜を形成した。
(2) Formation of gas barrier layer (formation of film containing non-transition metal (M1))
A polysilazane containing Si was used as the non-transition metal (M1), and a film containing the non-transition metal (M1) was formed by a coating / modification method as follows.
 まず、パーヒドロポリシラザン(PHPS)を20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、更に乾燥膜厚調整のため脱水ジブチルエーテルで適宜希釈し、塗布液を調製した。 First, a dibutyl ether solution containing 20% by mass of perhydropolysilazane (PHPS, manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6) -Dihydrohexane (TMDAH))-containing perhydropolysilazane 20% by weight dibutyl ether solution (manufactured by AZ Electronic Materials Co., Ltd., NAX120-20) was mixed at a ratio of 4: 1 (mass ratio) and further dried. In order to adjust the film thickness, it was appropriately diluted with dehydrated dibutyl ether to prepare a coating solution.
 次いで、グローブボックス内の窒素雰囲気下で、スピンコート法により上記塗布液を乾燥膜厚が55nmとなるように塗布し、80℃で10分間乾燥した。 Next, the above coating solution was applied by spin coating in a nitrogen atmosphere in the glove box so that the dry film thickness was 55 nm, and dried at 80 ° C. for 10 minutes.
 次いで、非遷移金属(M1)を含有する膜を形成した試料を、波長172nmのXeエキシマランプを有する図4に示す真空紫外線照射装置に設置し、照射エネルギー5.0J/cmの条件で真空紫外線照射処理を行った。この際、チャンバー内に窒素と酸素とを供給し、照射雰囲気の酸素濃度を0.1体積%に調整した。また、試料を設置するステージ温度を80℃とした。 Next, the sample on which the film containing the non-transition metal (M1) was formed was placed in the vacuum ultraviolet irradiation apparatus shown in FIG. 4 having a Xe excimer lamp with a wavelength of 172 nm, and vacuum was applied under the condition of irradiation energy of 5.0 J / cm 2. An ultraviolet irradiation treatment was performed. At this time, nitrogen and oxygen were supplied into the chamber, and the oxygen concentration in the irradiation atmosphere was adjusted to 0.1% by volume. The stage temperature for installing the sample was set to 80 ° C.
 図4に示す真空紫外光照射装置100において、符号101は装置チャンバーであり、図示しないガス供給口から内部に窒素と酸素とを適量供給し、図示しないガス排出口から排気することで、チャンバー内部から実質的に水蒸気を除去し、酸素濃度を所定の濃度に維持することができる。符号102は172nmの真空紫外光を照射する二重管構造を有するXeエキシマランプ(エキシマランプ光強度:130mW/cm)、符号103は外部電極を兼ねるエキシマランプのホルダーである。符号104は、試料ステージである。試料ステージ104は、図示しない移動手段により装置チャンバー101内を水平に所定の速度で往復移動することができる。また、試料ステージ104は図示しない加熱手段により、所定の温度に維持することができる。符号105は、ポリシラザン化合物塗布層が形成された試料である。試料ステージが水平移動する際、試料の塗布層表面と、エキシマランプ管面との最短距離が3mmとなるように試料ステージの高さが調整されている。符号106は遮光板であり、Xeエキシマランプ102のエージング中に試料の塗布層に真空紫外線が照射されないようにしている。 In the vacuum ultraviolet light irradiation apparatus 100 shown in FIG. 4, reference numeral 101 denotes an apparatus chamber, which supplies an appropriate amount of nitrogen and oxygen from a gas supply port (not shown) to the inside and exhausts it from a gas discharge port (not shown). It is possible to substantially remove water vapor from the water and maintain the oxygen concentration at a predetermined concentration. Reference numeral 102 denotes a Xe excimer lamp (excimer lamp light intensity: 130 mW / cm 2 ) having a double tube structure that irradiates vacuum ultraviolet light of 172 nm, and reference numeral 103 denotes an excimer lamp holder that also serves as an external electrode. Reference numeral 104 denotes a sample stage. The sample stage 104 can be reciprocated horizontally at a predetermined speed in the apparatus chamber 101 by a moving means (not shown). The sample stage 104 can be maintained at a predetermined temperature by a heating means (not shown). Reference numeral 105 denotes a sample on which a polysilazane compound coating layer is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm. Reference numeral 106 denotes a light shielding plate, which prevents the application layer of the sample from being irradiated with vacuum ultraviolet rays while the Xe excimer lamp 102 is aged.
 真空紫外光照射工程で試料塗布層表面に照射されるエネルギーは、浜松ホトニクス社製の紫外線積算光量計:C8026/H8025 UV POWER METERを用い、172nmのセンサヘッドを用いて測定した。測定に際しては、Xeエキシマランプ管面とセンサヘッドの測定面との最短距離が、3mmとなるようにセンサヘッドを試料ステージ104中央に設置し、かつ、装置チャンバー101内の雰囲気が、真空紫外光照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージ104を0.5m/minの速度で移動させて測定を行った。測定に先立ち、Xeエキシマランプ102の照度を安定させるため、Xeエキシマランプ点灯後に10分間のエージング時間を設け、その後試料ステージを移動させて測定を開始した。 The energy irradiated on the surface of the sample coating layer in the vacuum ultraviolet light irradiation step was measured using a 172 nm sensor head using a UV integrating photometer: C8026 / H8025 UV POWER METER manufactured by Hamamatsu Photonics. In the measurement, the sensor head is installed in the center of the sample stage 104 so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 101 is vacuum ultraviolet light. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as that in the irradiation step, and measurement was performed by moving the sample stage 104 at a speed of 0.5 m / min. Prior to the measurement, in order to stabilize the illuminance of the Xe excimer lamp 102, an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement.
 この測定で得られた照射エネルギーを元に、試料ステージの移動速度を調整することで、5.0J/cmの照射エネルギー量となるように調整した。なお、真空紫外光照射は、10分間のエージング後に行った。 Based on the irradiation energy obtained by this measurement, the moving speed of the sample stage was adjusted to adjust the irradiation energy amount to 5.0 J / cm 2 . The vacuum ultraviolet light irradiation was performed after aging for 10 minutes.
(遷移金属を含有する膜の形成)
 上記形成した非遷移金属(M1)を含有する膜の上に、気相法・スパッタ(キャノンアネルバ社製のマグネトロンスパッタ装置、型式EB1100)により、遷移金属を含有する膜を形成した。
(Formation of film containing transition metal)
A film containing a transition metal was formed on the formed film containing a non-transition metal (M1) by a vapor phase method / sputtering (a magnetron sputtering apparatus manufactured by Canon Anelva, model EB1100).
 ターゲットとしては、市販の金属Nbターゲットを用い、プロセスガスとしてArとOの混合ガスを用いて、DCスパッタにより、厚さ9nmとなるように成膜した。スパッタ電源パワーは5.0W/cmとし、成膜圧力は0.4Paとした。また、成膜条件において、酸素分圧を12%とした。なお、事前にガラス基板材を用いた成膜により、成膜条件において、成膜時間に対する厚さ変化のデータを取り、単位時間当たりに成膜される厚さを算出した後、設定する厚さとなるように成膜時間を設定した。 As a target, a commercially available metal Nb target was used, and a mixed gas of Ar and O 2 was used as a process gas, and the film was formed to a thickness of 9 nm by DC sputtering. The sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa. Further, the oxygen partial pressure was 12% under the film forming conditions. It should be noted that, after film formation using a glass substrate material in advance, the thickness change data with respect to the film formation time is taken under the film formation conditions, the thickness to be formed per unit time is calculated, The film formation time was set so that
 以上によって、層厚64nmのガスバリアー層を形成した。 Thus, a gas barrier layer having a layer thickness of 64 nm was formed.
(3)ガスバリアー層のXPS分析
 上記方法により形成したガスバリアー層について、XPS分析を実施例1と同様にして行った。
(3) XPS analysis of gas barrier layer XPS analysis was performed in the same manner as in Example 1 for the gas barrier layer formed by the above method.
(4)混合領域の酸素欠損指標(2y+3z)/(a+bx)の算出
 混合領域における厚さ方向の(2y+3z)/(a+bx)の値を実施例1と同様にして算出した。
(4) Calculation of oxygen deficiency index (2y + 3z) / (a + bx) in the mixed region The value of (2y + 3z) / (a + bx) in the thickness direction in the mixed region was calculated in the same manner as in Example 1.
〈ガスバリアー性フィルム202~204の作製〉
 ガスバリアー性フィルム201の作製において、基材を表2に記載のとおりに変更した以外は同様にして、ガスバリアー性フィルム202~204を作製した。
<Preparation of gas barrier films 202 to 204>
In the production of the gas barrier film 201, gas barrier films 202 to 204 were produced in the same manner except that the base material was changed as shown in Table 2.
 PEN:帝人株式会社製 テオネックス
 PES:住友化学株式会社製 スミカエクセル4010GL30
 PI:三菱瓦斯化学株式会社製 ネオプリム
PEN: Teonex manufactured by Teijin Limited PES: Sumika Excel 4010GL30 manufactured by Sumitomo Chemical Co., Ltd.
PI: Neoprim, manufactured by Mitsubishi Gas Chemical Co., Ltd.
〈ガスバリアー性フィルム205の作製〉
 ガスバリアー性フィルム204の作製において、遷移金属を含有する膜を形成する際のターゲットを金属Taターゲットに変更し、厚さ10nmとなるように成膜した以外は同様にして、ガスバリアー性フィルム205を作製した。
<Preparation of gas barrier film 205>
In the production of the gas barrier film 204, the gas barrier film 205 was similarly formed except that the target for forming the film containing the transition metal was changed to a metal Ta target and formed to a thickness of 10 nm. Was made.
《評価》
 作製した各ガスバリアー性フィルムについて、実施例1と同様にして、水蒸気透過度及び保存性を評価した。
 評価結果を表2に示す。
<Evaluation>
About each produced gas-barrier film, it carried out similarly to Example 1, and evaluated water vapor permeability and preservability.
The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
〈まとめ〉
 表2から明らかなように、本発明のガスバリアー性フィルムは、比較例のガスバリアー性フィルムと比較して、水蒸気透過度及び保存性に優れていることが確認された。
<Summary>
As is clear from Table 2, it was confirmed that the gas barrier film of the present invention was superior in water vapor permeability and storage stability compared to the gas barrier film of the comparative example.
 本発明は、高いガスバリアー性を有しつつ、生産性にも優れたガスバリアー性フィルムを提供することに、特に好適に利用することができる。 The present invention can be particularly suitably used for providing a gas barrier film having high gas barrier properties and excellent productivity.
1 ガスバリアー性フィルム
2 基材
3 ガスバリアー層
10 有機EL素子
11 支持体
12、14 電極
13 有機機能層
15 封止材
100 真空紫外光照射装置
101 装置チャンバー
102 Xeエキシマランプ
103 ホルダー
104 試料ステージ
105 試料
106 遮光板
DESCRIPTION OF SYMBOLS 1 Gas barrier film 2 Base material 3 Gas barrier layer 10 Organic EL element 11 Support body 12, 14 Electrode 13 Organic functional layer 15 Sealing material 100 Vacuum ultraviolet light irradiation apparatus 101 Apparatus chamber 102 Xe excimer lamp 103 Holder 104 Sample stage 105 Sample 106 light shielding plate

Claims (9)

  1.  基材上に、ガスバリアー層を有するガスバリアー性フィルムであって、
     前記ガスバリアー層が、少なくとも厚さ方向において、5族の遷移金属(M2)及び12~14族の非遷移金属(M1)が含有されている混合領域を有し、
     前記基材の構成材料のガラス転移温度が、150℃以上であることを特徴とするガスバリアー性フィルム。
    A gas barrier film having a gas barrier layer on a substrate,
    The gas barrier layer has a mixed region containing at least a group 5 transition metal (M2) and a group 12-14 non-transition metal (M1) in the thickness direction;
    A gas barrier film, wherein a glass transition temperature of a constituent material of the substrate is 150 ° C. or higher.
  2.  前記基材の構成材料のガラス転移温度が、180℃以上であることを特徴とする請求項1に記載のガスバリアー性フィルム。 The gas barrier film according to claim 1, wherein a glass transition temperature of the constituent material of the substrate is 180 ° C or higher.
  3.  前記基材の構成材料が、ポリイミドであることを特徴とする請求項2に記載のガスバリアー性フィルム。 The gas barrier film according to claim 2, wherein the constituent material of the substrate is polyimide.
  4.  前記ガスバリアー層が、5族の遷移金属(M2)又はその化合物が主成分aとして含有されている領域(以下、「A領域」という。)と、12~14族の非遷移金属(M1)又はその化合物が主成分bとして含有されている領域(以下、「B領域」という。)と、を有し、
     前記混合領域が前記A領域と前記B領域との間に介在し、かつ、前記混合領域に前記主成分a及び前記主成分bに由来する化合物が含有されていることを特徴とする請求項1から請求項3までのいずれか一項に記載のガスバリアー性フィルム。
    The gas barrier layer is composed of a group 5 transition metal (M2) or a compound containing the compound as a main component a (hereinafter referred to as “A region”) and a group 12-14 non-transition metal (M1). Or a region containing the compound as the main component b (hereinafter referred to as “B region”),
    The mixed region is interposed between the A region and the B region, and the mixed region contains a compound derived from the main component a and the main component b. The gas barrier film according to any one of claims 1 to 3.
  5.  前記混合領域の組成を下記化学組成式(1)で表したとき、前記混合領域の少なくとも一部が下記関係式(2)を満たすことを特徴とする請求項1から請求項4までのいずれか一項に記載のガスバリアー性フィルム。
     化学組成式(1):(M1)(M2)
     関係式(2):(2y+3z)/(a+bx)<1.0
    (ただし、式中、M1:非遷移金属、M2:遷移金属、O:酸素、N:窒素、x,y,z:化学量論係数、a:M1の最大価数、b:M2の最大価数を表す。)
    The composition of the said mixing area | region is represented by following chemical composition formula (1), At least one part of the said mixing area | region satisfy | fills the following relational expression (2), Any one of Claim 1 to 4 The gas barrier film according to one item.
    Chemical composition formula (1): (M1) (M2) x O y N z
    Relational expression (2): (2y + 3z) / (a + bx) <1.0
    (Where, M1: non-transition metal, M2: transition metal, O: oxygen, N: nitrogen, x, y, z: stoichiometric coefficient, a: maximum valence of M1, b: maximum valence of M2 Represents a number.)
  6.  前記非遷移金属(M1)が、ケイ素であることを特徴とする請求項1から請求項5までのいずれか一項に記載のガスバリアー性フィルム。 The gas barrier film according to any one of claims 1 to 5, wherein the non-transition metal (M1) is silicon.
  7.  請求項1から請求項6までのいずれか一項に記載のガスバリアー性フィルムを具備していることを特徴とする電子デバイス。 An electronic device comprising the gas barrier film according to any one of claims 1 to 6.
  8.  量子ドット含有樹脂層を有することを特徴とする請求項7に記載の電子デバイス。 The electronic device according to claim 7, further comprising a quantum dot-containing resin layer.
  9.  有機エレクトロルミネッセンス素子を具備していることを特徴とする請求項7に記載の電子デバイス。 The electronic device according to claim 7, further comprising an organic electroluminescence element.
PCT/JP2016/084572 2015-11-24 2016-11-22 Gas barrier film, and electronic device provided with same WO2017090592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015228662A JP2019010736A (en) 2015-11-24 2015-11-24 Gas barrier film and electronic device having the same
JP2015-228662 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090592A1 true WO2017090592A1 (en) 2017-06-01

Family

ID=58764212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084572 WO2017090592A1 (en) 2015-11-24 2016-11-22 Gas barrier film, and electronic device provided with same

Country Status (3)

Country Link
JP (1) JP2019010736A (en)
TW (1) TW201730009A (en)
WO (1) WO2017090592A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138207A1 (en) * 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate
WO2020138206A1 (en) * 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470330A (en) * 1990-02-16 1992-03-05 Nitto Denko Corp Transparent water-impermeable film and el light emitting apparatus
JP2014093328A (en) * 2012-10-31 2014-05-19 Fujifilm Corp Semiconductor film, semiconductor film manufacturing method, solar cell, light-emitting diode, thin film transistor and electronic device
JP2014151571A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Gas barrier film, production method of the same and electronic device including the gas barrier film
JP2014201033A (en) * 2013-04-08 2014-10-27 コニカミノルタ株式会社 Gas barrier film and method for producing the same
JP2014201032A (en) * 2013-04-08 2014-10-27 コニカミノルタ株式会社 Gas barrier film and method for producing the same
JP2015003464A (en) * 2013-06-21 2015-01-08 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same
WO2015141226A1 (en) * 2014-03-18 2015-09-24 株式会社クラレ Electronic device
WO2016136842A1 (en) * 2015-02-25 2016-09-01 コニカミノルタ株式会社 Gas barrier film
WO2016190284A1 (en) * 2015-05-22 2016-12-01 コニカミノルタ株式会社 Gas barrier film and method for manufacturing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470330A (en) * 1990-02-16 1992-03-05 Nitto Denko Corp Transparent water-impermeable film and el light emitting apparatus
JP2014093328A (en) * 2012-10-31 2014-05-19 Fujifilm Corp Semiconductor film, semiconductor film manufacturing method, solar cell, light-emitting diode, thin film transistor and electronic device
JP2014151571A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Gas barrier film, production method of the same and electronic device including the gas barrier film
JP2014201033A (en) * 2013-04-08 2014-10-27 コニカミノルタ株式会社 Gas barrier film and method for producing the same
JP2014201032A (en) * 2013-04-08 2014-10-27 コニカミノルタ株式会社 Gas barrier film and method for producing the same
JP2015003464A (en) * 2013-06-21 2015-01-08 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same
WO2015141226A1 (en) * 2014-03-18 2015-09-24 株式会社クラレ Electronic device
WO2016136842A1 (en) * 2015-02-25 2016-09-01 コニカミノルタ株式会社 Gas barrier film
WO2016190284A1 (en) * 2015-05-22 2016-12-01 コニカミノルタ株式会社 Gas barrier film and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138207A1 (en) * 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate
WO2020138206A1 (en) * 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate
JPWO2020138206A1 (en) * 2018-12-27 2021-11-18 リンテック株式会社 Gas barrier laminate
JPWO2020138207A1 (en) * 2018-12-27 2021-11-18 リンテック株式会社 Gas barrier laminate
JP7398394B2 (en) 2018-12-27 2023-12-14 リンテック株式会社 Gas barrier laminate
JP7401463B2 (en) 2018-12-27 2023-12-19 リンテック株式会社 Gas barrier laminate

Also Published As

Publication number Publication date
TW201730009A (en) 2017-09-01
JP2019010736A (en) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2017090592A1 (en) Gas barrier film, and electronic device provided with same
JP2017095758A (en) Method for producing gas barrier film
WO2016190284A1 (en) Gas barrier film and method for manufacturing same
JPWO2016190284A6 (en) Gas barrier film and method for producing the same
WO2017090606A1 (en) Gas barrier film, method for manufacturing same, and electronic device using same
JP6720981B2 (en) Gas barrier film and method for producing the same
WO2017090609A1 (en) Gas barrier film and electronic device
JP6737279B2 (en) Electronic device and method for sealing electronic device
JP6645137B2 (en) Gas barrier pressure-sensitive adhesive sheet and electronic device having the same
WO2017090602A1 (en) Gas barrier film, and electronic device provided with same
WO2017090591A1 (en) Gas barrier film and electronic device
WO2017090605A1 (en) Gas barrier film and electronic device
WO2017110463A1 (en) Gas barrier film and method for manufacturing same
JP2017125241A (en) Functional film and method for manufacturing quantum dot (qd) containing laminated member including the same
WO2017090576A1 (en) Gas barrier film and electronic device
WO2017090498A1 (en) Method for producing gas barrier film
WO2017013980A1 (en) Gas barrier film
WO2017090579A1 (en) Multilayer gas barrier film and electronic device
WO2017090613A1 (en) Gas barrier film and electronic device
WO2017010249A1 (en) Gas barrier film
JP2018012267A (en) Gas barrier film and production method of the same
WO2016136841A1 (en) Gas barrier film
WO2018021021A1 (en) Gas barrier membrane, gas barrier film using same, electronic device using said gas barrier membrane or said gas barrier film, and production method for gas barrier membrane
JP2017094570A (en) Method for producing gas barrier film
WO2017014246A1 (en) Gas barrier film and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16868539

Country of ref document: EP

Kind code of ref document: A1