WO2016136841A1 - Gas barrier film - Google Patents

Gas barrier film Download PDF

Info

Publication number
WO2016136841A1
WO2016136841A1 PCT/JP2016/055526 JP2016055526W WO2016136841A1 WO 2016136841 A1 WO2016136841 A1 WO 2016136841A1 JP 2016055526 W JP2016055526 W JP 2016055526W WO 2016136841 A1 WO2016136841 A1 WO 2016136841A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
transition metal
barrier film
film
Prior art date
Application number
PCT/JP2016/055526
Other languages
French (fr)
Japanese (ja)
Inventor
森 孝博
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017502446A priority Critical patent/JP6747426B2/en
Priority to CN201680011634.4A priority patent/CN107249874A/en
Publication of WO2016136841A1 publication Critical patent/WO2016136841A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings

Definitions

  • the present invention relates to a gas barrier film.
  • Gas barrier films are used as substrate films and sealing films in flexible electronic devices, particularly flexible organic EL devices. High barrier properties are required for gas barrier films used in these.
  • a gas barrier film is manufactured by forming an inorganic barrier layer on a base film by a vapor deposition method such as vapor deposition, sputtering, or CVD.
  • a manufacturing method for forming a gas barrier layer by applying energy to a precursor layer formed by applying a solution on a substrate has been studied.
  • studies using a polysilazane compound as a precursor have been widely conducted, and studies are being conducted as a technique for achieving both high productivity and barrier properties by coating.
  • the modification of the polysilazane layer using excimer light having a wavelength of 172 nm has attracted attention.
  • JP 2009-255040 A discloses a first step in which a polysilazane is coated on a resin substrate to form a polymer film having a thickness of 250 nm or less, and the formed polymer film is irradiated with vacuum ultraviolet light. And a third step of repeating the first step and the second step to form a film on the film formed in the second step, and a method for producing a flexible gas barrier film. It is disclosed.
  • a gas barrier layer formed by modifying polysilazane described in International Publication No. 2011/122547, JP-T 2009-503157, and JP-A 2009-255040 with excimer light is 40
  • the gas barrier property at a low temperature up to about 0 ° C. is good, it was found that the gas barrier property decreases with time in a very severe environment of high temperature and high humidity such as 80 ° C. and 85% RH.
  • an object of the present invention is to provide a gas barrier film having excellent durability in a high temperature and high humidity environment.
  • the present inventor has intensively studied to solve the above problems.
  • a layer (A) containing a transition metal compound formed by a vapor deposition method and a coating liquid containing polysilazane in contact with the layer (A) and drying are applied and dried.
  • the gas barrier layer (B) formed by applying vacuum ultraviolet rays with an irradiation energy amount of 1.0 J / cm 2 or more to the coating film obtained in the above finds that the above problem is solved, The present invention has been completed.
  • the present invention applies a layer (A) containing a transition metal compound formed by a vapor deposition method on a resin substrate, and a coating liquid containing polysilazane in contact with the layer (A). And a gas barrier layer (B) formed by applying vacuum ultraviolet rays to the coating film obtained by drying, and the irradiation energy amount of the vacuum ultraviolet rays on the surface of the coating film is 1.0 J / cm 2 or more It is a gas barrier film.
  • FIG. 1 is a schematic cross-sectional view showing a gas barrier film according to an embodiment of the present invention.
  • 10 is a gas barrier film
  • 11 is a substrate
  • 12 is a layer (B)
  • 13 is a layer (A).
  • FIG. 2 is a schematic sectional view showing a gas barrier film according to another embodiment of the present invention.
  • 10 is a gas barrier film
  • 11 is a substrate
  • 12 is a layer (B)
  • 13 is a layer (A).
  • FIG. 3 is a schematic cross-sectional view of the vacuum ultraviolet irradiation apparatus used in the examples.
  • FIG. 1 is a schematic cross-sectional view showing a gas barrier film according to an embodiment of the present invention.
  • 10 is a gas barrier film
  • 11 is a substrate
  • 12 is a layer (B)
  • 13 is a layer (A).
  • FIG. 3 is a schematic cross-sectional view of the vacuum ultraviolet irradiation apparatus used in the examples.
  • 1 is an apparatus chamber
  • 2 is a Xe excimer lamp having a double tube structure that irradiates vacuum ultraviolet rays of 172 nm
  • 3 is an excimer lamp holder that also serves as an external electrode
  • 4 is a sample stage
  • 5 is a polysilazane compound coating layer. 6 is a light shielding plate.
  • a layer (A) (hereinafter also simply referred to as layer (A)) containing a transition metal compound formed by a vapor deposition method on a resin substrate is in contact with the layer (A).
  • a gas barrier layer (B) (hereinafter, also simply referred to as layer (B)) formed by irradiating vacuum ultraviolet rays on a coating film obtained by applying and drying a coating liquid containing polysilazane, It is a gas barrier film whose irradiation energy amount of the said vacuum ultraviolet rays in the surface of a coating film is 1.0 J / cm ⁇ 2 > or more.
  • the gas barrier film of the present invention having such a configuration is excellent in durability in a high temperature and high humidity environment.
  • a layer (A) containing a transition metal compound is formed on a resin substrate by a vapor deposition method, and the layer (A) is in contact with the layer (A).
  • the coating film obtained by applying and drying a coating solution containing polysilazane is irradiated with vacuum ultraviolet rays to form a gas barrier layer (B), or a coating solution containing polysilazane is applied on a resin substrate
  • a layer containing a transition metal compound by a vapor deposition method so as to form a gas barrier layer (B) by irradiating a vacuum ultraviolet ray onto a coating film obtained by drying and forming a gas barrier layer (B) on the layer (B).
  • (A) is formed, and the irradiation energy amount of vacuum ultraviolet rays on the surface of the coating film is 1.0 J / cm 2 or more.
  • silicon oxynitride is formed by irradiating the coating film obtained by applying and drying a coating liquid containing polysilazane with vacuum ultraviolet rays, thereby exhibiting gas barrier properties.
  • a coating liquid containing polysilazane with vacuum ultraviolet rays, thereby exhibiting gas barrier properties.
  • particles such as It is possible to form a gas barrier layer with almost no foreign matter and very few defects.
  • this gas barrier layer is not completely stable against oxidation, and may be gradually oxidized in a high-temperature and high-humidity environment to lower the gas barrier property.
  • the layer (layer (A)) adjacent to the gas barrier layer (layer (B)) obtained by irradiating polysilazane with vacuum ultraviolet rays contains a transition metal compound. Since the layer (A) is more easily oxidized than the layer (B), the oxidation of the layer (B) is suppressed when the layer (A) is oxidized first, and the durability in a high-temperature and high-humidity environment is excellent. It is considered a thing.
  • FIG. 1 is a schematic cross-sectional view showing a gas barrier film according to an embodiment of the present invention.
  • a base material 11, a layer (B) 12, and a layer (A) 13 are arranged in this order.
  • FIG. 2 is a schematic cross-sectional view showing a gas barrier film according to another embodiment of the present invention.
  • a base material 11, a layer (A) 13 and a layer (B) 12 are arranged in this order.
  • the layer (B) and the layer (A) may be in order.
  • the layer (A) and the layer (B) may be formed on both surfaces of the substrate.
  • another layer may be disposed between the substrate and each layer or on each layer. That is, “on the resin base material” is not limited to just above the resin base material.
  • the layer (A) By arranging the layer (A) on the layer (B) on the surface facing the substrate, the layer (A) is more easily oxidized, and the protection of the layer (B) by the layer (A) is more prominently exhibited. Therefore, it is preferable to arrange the base material, the layer (B), and the layer (A) in this order.
  • the gas barrier film of the present invention has a layer (A) containing a transition metal compound formed by a vapor phase film forming method.
  • the layer (A) is more easily electrochemically oxidized than the layer (B), and suppresses the oxidation of the layer (B).
  • the transition metal compound contained in the layer (A) is not particularly limited, and examples thereof include transition metal oxides, nitrides, carbides, oxynitrides, and oxycarbides. Among these, from the viewpoint of more effectively suppressing the oxidation of the layer (B), the transition metal compound is preferably a transition metal oxide.
  • the transition metal compounds may be used alone or in combination of two or more.
  • the layer (A) preferably contains a metal oxide MO x1 where x1 ⁇ x2, where M is the transition metal and MO x2 is the stoichiometrically obtained transition metal oxide.
  • MO x1 where x1 ⁇ x2 M is the transition metal
  • MO x2 is the stoichiometrically obtained transition metal oxide.
  • Nb can take the composition of niobium trioxide, but x2 in the present invention means x2 of a stoichiometric compound having the highest degree of oxidation.
  • the inclusion of the metal oxide MO x1 where x1 ⁇ x2 means that when a composition profile in the thickness direction is measured by a composition analysis method such as XPS, a measurement point where x1 ⁇ x2 is obtained, in the case of Nb Means that a measurement point where x1 ⁇ 2.5 is obtained.
  • the stoichiometric x2 can be calculated from the ratio of each metal and the total thereof.
  • the x1 / x2 ratio is preferably 0.99 or less because the gas barrier performance under high temperature and high humidity is further improved. It is more preferably 0.9 or less, and further preferably 0.8 or less. Further, the minimum value of the x1 / x2 ratio is preferably 0.99 or less, more preferably 0.9 or less, and further preferably 0.8 or less. The smaller the x1 / x2 ratio, the higher the oxidation suppression effect, but the higher the absorption with visible light. Accordingly, when used in applications where transparency is desired, it is preferably 0.2 or more. .3 or more is more preferable. That is, the minimum value of the x1 / x2 ratio is preferably 0.2 or more, and more preferably 0.3 or more.
  • the x1 / x2 ratio can be adjusted by using a metal or a transition metal oxide that is stoichiometrically deficient in oxygen as a target when the layer (A) is formed by sputtering. This can be done by appropriately adjusting the amount of oxygen to be introduced.
  • x1 can be determined by the atomic ratio of O to M using XPS analysis in the thickness direction. If the minimum value of x1 is x1 ⁇ x2, it can be said that the metal oxide MO x1 where x1 ⁇ x2 is included.
  • ⁇ XPS analysis conditions >> ⁇ Equipment: ULVAC-PHI QUANTERASXM ⁇ X-ray source: Monochromatic Al-K ⁇ ⁇ Measurement area: Si2p, C1s, N1s, O1s, etc., set by a regular method according to the metal to be measured ⁇ Sputtering ion: Ar (2 keV) Depth profile: repeats measurement after sputtering for a certain time. In one measurement, the sputtering time is adjusted so that the thickness is about 2.5 nm in terms of SiO 2. ⁇ Quantification: The background is obtained by the Shirley method, and the relative sensitivity coefficient method is calculated from the obtained peak area. And quantified. Data processing uses MultiPak manufactured by ULVAC-PHI.
  • a transition metal atom refers to a Group 3 element to a Group 12 element, and examples of the transition metal include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, and Mo. , Tc, Ru, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir , Pt, and Au.
  • the transition metal in the transition metal compound is preferably a metal having a lower redox potential than silicon.
  • the metal having a lower redox potential than silicon include, for example, niobium (Nb), tantalum (Ta), vanadium (V), zirconium (Zr), titanium (Ti), hafnium (Hf), yttrium (Y ), Lanthanum (La), cerium (Ce) and the like. These metals may be used alone or in combination of two or more.
  • niobium, tantalum, and vanadium which are Group 5 elements, can be preferably used because they have a high oxidation suppressing effect on the polysilazane-modified barrier layer. That is, a preferred embodiment of the present invention is a gas barrier film in which the transition metal is at least one metal selected from the group consisting of vanadium, niobium and tantalum. Furthermore, from the viewpoint of optical properties, the transition metal in the transition metal compound is particularly preferably niobium or tantalum from which a compound with good transparency can be obtained.
  • the content of the transition metal compound in the layer (A) is not particularly limited as long as the effects of the present invention are exhibited, but the content of the transition metal compound is 50% by mass or more based on the total mass of the layer (A). It is preferably 80% by mass or more, more preferably 95% by mass or more, particularly preferably 98% by mass or more, and 100% by mass (that is, the layer (A) is Most preferably, it comprises a transition metal compound.
  • the formation method of the layer (A) is a vapor phase film formation method from the viewpoint of easy adjustment of the composition ratio between the metal element and oxygen.
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, and ion plating, plasma CVD (chemical vapor deposition), and ALD (Atomic Layer Deposition). Chemical vapor deposition methods such as Among them, it is preferable to form by sputtering since film formation is possible without damaging the lower layer and high productivity is obtained.
  • bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more.
  • the target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used.
  • RF high frequency
  • a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used.
  • a metal oxide film By controlling the sputtering phenomenon so as to be in the transition region, a metal oxide film can be formed at a high film formation speed, which is preferable.
  • a transition metal oxide thin film can be formed by using a transition metal for the target and further introducing oxygen into the process gas.
  • an oxygen-deficient transition metal oxide may be used as the target.
  • a transition metal oxide target In the case of forming a film by RF (high frequency) sputtering, a transition metal oxide target can be used.
  • the inert gas used for the process gas He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used.
  • a transition metal compound thin film such as a transition metal oxide, nitride, nitride oxide, or carbonate can be formed.
  • film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, which can be appropriately selected according to the sputtering apparatus, film material, film thickness, and the like.
  • a sputtering method using a transition metal oxide as a target is preferable because it has a higher film formation rate and higher productivity.
  • an oxygen-deficient transition metal oxide may be used as the transition metal oxide.
  • the layer (A) may be a single layer or a laminated structure of two or more layers.
  • the transition metal compounds contained in the layer (A) may be the same or different.
  • the layer (A) is considered to be a layer having a function of suppressing the oxidation of the layer (B) and maintaining the gas barrier property, the gas barrier property is not necessarily required. Therefore, even if the layer (A) is a relatively thin layer, the effect can be exhibited.
  • the thickness of the layer (A) (the total thickness in the case of a laminated structure of two or more layers) is the barrier From the viewpoint of in-plane uniformity of the property, the thickness is preferably 1 to 200 nm, more preferably 2 to 100 nm, and further preferably 3 to 50 nm.
  • the thickness of the layer (A) is the barrier property surface. From the viewpoint of internal uniformity, the thickness is preferably 1 to 200 nm, more preferably 2 to 150 nm, and still more preferably 20 to 150 nm.
  • the gas barrier layer (B) according to the present invention is formed by irradiating a coating film obtained by applying and drying a coating liquid containing polysilazane with vacuum ultraviolet rays.
  • the layer (B) exhibits gas barrier properties by irradiation with vacuum ultraviolet rays. Further, unlike the case where the film is formed by the vapor deposition method, foreign substances such as particles are not mixed at the time of film formation, so that the gas barrier layer has very few defects.
  • the layer (B) may be a single layer or a laminated structure of two or more layers.
  • each layer (B) is preferably 10 to 300 nm from the viewpoint of gas barrier performance. In the case of a laminated structure of two or more layers, the total thickness is preferably 10 to 1000 nm from the viewpoint of suppressing cracks. In the case of the layer structure of substrate-layer (B) -layer (A), the thickness per layer of the layer (B) is more preferably 50 to 300 nm from the viewpoint of gas barrier performance, It is more preferably from ⁇ 300 nm, most preferably from 200 to 300 nm.
  • the thickness of the layer (B) formed in contact with the layer (A) is preferably 5 nm to 200 nm, It is more preferably 10 nm to 150 nm, and further preferably 20 nm to 120 nm.
  • the base material-layer (A) -layer (B) layer structure it is preferable that a modified region of polysilazane is formed on the interface side between the layer (A) and the layer (B). For this reason, in the case of the vacuum ultraviolet irradiation treatment, it is preferable that the vacuum ultraviolet light is transmitted to the vicinity of the layer (A) / layer (B) interface.
  • the polysilazane modified region exhibiting barrier properties is formed in contact with the layer (A), thereby improving the oxidation resistance. Since the vacuum ultraviolet light is absorbed by the polysilazane layer, it is preferable that the polysilazane coating layer is relatively thin so that the vacuum ultraviolet light is transmitted to the vicinity of the (A) / (B) interface. Therefore, in the case of the base material-layer (A) -layer (B) layer structure, the preferred range is thinner than the base material-layer (B) -layer (A) layer structure. Become.
  • the thickness of the layer (B) can be measured by TEM observation.
  • the layer (B) is formed by irradiating a coating film obtained by applying and drying a coating liquid containing polysilazane with vacuum ultraviolet rays.
  • Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
  • the polysilazane preferably has the following structure.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different.
  • n is an integer
  • the polysilazane having the structure represented by the general formula (I) is determined to have a number average molecular weight of 150 to 150,000 g / mol. Is preferred.
  • one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • polysilazane has a structure represented by the following general formula (II).
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different.
  • n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. It is preferred that Note that n ′ and p may be the same or different.
  • R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group;
  • R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group;
  • R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5' each represents a methyl group is preferred.
  • polysilazane has a structure represented by the following general formula (III).
  • R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ may be the same or different.
  • n ′′, p ′′ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. It is preferable to be determined as follows. Note that n ′′, p ′′ and q may be the same or different.
  • R 1 ′′ , R 3 ′′ and R 6 ′′ each represent a hydrogen atom
  • R 2 ′′ , R 4 ′′ , R 5 ′′ and R 8 ′′ each represent a methyl group.
  • R 9 ′′ represents a (triethoxysilyl) propyl group
  • R 7 ′′ represents an alkyl group or a hydrogen atom.
  • the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard.
  • the ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. For this reason, these perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings.
  • the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
  • Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as it is as the coating solution for forming the layer (B).
  • Examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd. Is mentioned. These polysilazane solutions can be used alone or in combination of two or more.
  • polysilazane examples include, but are not limited to, for example, a silicon alkoxide-added polysilazane obtained by reacting the polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No. 5-23827), and a glycidol reaction.
  • a silicon alkoxide-added polysilazane obtained by reacting the polysilazane with a silicon alkoxide
  • glycidol-added polysilazane Japanese Patent Laid-Open No. 6-122852
  • alcohol-added polysilazane obtained by reacting alcohol
  • metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal obtained by adding metal fine particles Fine particle added policy Zhang such (JP-A-7-196986), and a polysilazane ceramic at low temperatures.
  • the content of polysilazane in the layer (B) before application of vacuum ultraviolet light can be 100% by mass when the total mass of the layer (B) is 100% by mass.
  • the content of polysilazane in the layer is preferably 10% by mass or more and 99% by mass or less, and 40% by mass or more and 95% by mass. More preferably, it is 70 mass% or less and 95 mass% or less.
  • the solvent for preparing the coating liquid for forming the layer (B) is not particularly limited as long as it can dissolve polysilazane, but water and reactive groups (for example, hydroxyl group, or easily reacting with polysilazane).
  • An organic solvent that does not contain an amine group and is inert to polysilazane is preferable, and an aprotic organic solvent is more preferable.
  • the solvent is an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, terpenes, etc.
  • aprotic solvent for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, terpenes, etc.
  • Hydrogen solvents Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like.
  • the solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
  • the concentration of polysilazane in the coating solution for forming the layer (B) is not particularly limited and varies depending on the layer thickness and the pot life of the coating solution, but is preferably 1 to 80% by mass, more preferably 5 to 50% by mass. More preferably, it is 10 to 40% by mass.
  • the coating liquid for forming the layer (B) preferably contains a catalyst in order to promote reforming.
  • a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds.
  • the concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on polysilazane.
  • concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on polysilazane.
  • the following additives can be used as necessary.
  • cellulose ethers, cellulose esters for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc.
  • natural resins for example, rubber, rosin resin, etc., synthetic resins
  • Aminoplasts particularly urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyester resins or modified polyester resins, epoxy resins, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
  • Method of applying the layer (B) forming coating solution As a method of applying the layer (B) forming coating solution, a conventionally known appropriate wet coating method may be employed. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method and the like. It is done.
  • the coating thickness can be appropriately set according to the preferred thickness and purpose.
  • the coating film After applying the coating solution, it is preferable to dry the coating film.
  • the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable layer (B) can be obtained. The remaining solvent can be removed later.
  • the drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C.
  • the drying temperature is preferably set to 150 ° C. or lower in consideration of deformation of the base material due to heat.
  • the temperature can be set by using a hot plate, oven, furnace or the like.
  • the drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes.
  • the drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
  • the coating film obtained by applying the coating solution for forming the layer (B) may include a step of removing moisture before irradiation with vacuum ultraviolet rays or during irradiation with vacuum ultraviolet rays.
  • a method for removing moisture a form of dehumidification while maintaining a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature.
  • the preferred dew point temperature is 4 ° C. or less (temperature 25 ° C./humidity 25%), the more preferred dew point temperature is ⁇ 5 ° C.
  • the dew point temperature is ⁇ 5 ° C. or lower and the maintaining time is 1 minute or longer.
  • the lower limit of the dew point temperature is not particularly limited, but is usually ⁇ 50 ° C. or higher, and preferably ⁇ 40 ° C. or higher. From the viewpoint of promoting the dehydration reaction of the layer (B) converted to silanol by removing water before or during the reforming treatment.
  • the coating film formed as described above is irradiated with vacuum ultraviolet rays to carry out a conversion reaction of polysilazane to silicon oxynitride or the like. That is, the coating film obtained by applying and drying a coating solution containing polysilazane is modified into an inorganic thin film that can exhibit gas barrier properties by irradiation with vacuum ultraviolet rays.
  • the coating film modified by such vacuum ultraviolet irradiation treatment is also referred to as a polysilazane modified layer.
  • UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used.
  • it can be processed in an ultraviolet baking furnace equipped with an ultraviolet ray generation source.
  • the ultraviolet baking furnace itself is generally known.
  • an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used.
  • the object when it is a long film, it can be converted to ceramics by continuously irradiating ultraviolet rays in a drying zone equipped with the ultraviolet ray generation source as described above while being conveyed.
  • the time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the substrate and layer (B) used.
  • vacuum ultraviolet irradiation treatment excimer irradiation treatment
  • the modification by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy with a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds the atoms only to photons called photon processes.
  • a film containing silicon oxynitride is formed at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly.
  • the vacuum ultraviolet ray source in the present invention may be any source that generates light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator (for example, Xe excimer lamp) having a maximum emission at about 172 nm, and an emission line at about 185 nm.
  • Excimer radiator for example, Xe excimer lamp
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
  • the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • Oxygen is required for the reaction at the time of vacuum ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease.
  • it is preferably performed in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably 10 to 20,000 volume ppm (0.001 to 2 volume%), and preferably 50 to 10,000 volume ppm (0.005 to 1 volume%). More preferably.
  • the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
  • the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane coating is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. preferably, further preferably at 50mW / cm 2 ⁇ 160mW / cm 2. If it is 1 mW / cm 2 or more, the reforming efficiency is improved, and if it is 10 W / cm 2 or less, ablation that can occur in the coating film and damage to the substrate can be reduced.
  • the irradiation energy amount (irradiation amount) of vacuum ultraviolet rays on the surface of the coating film is 1.0 J / cm 2 or more.
  • the irradiation energy amount is preferably 1.5 J / cm 2 or more from the viewpoint of production stability (a property in which the gas barrier performance does not decrease or is low even in a storage environment after forming the modified layer), 2.0 J / cm 2 or more, and further preferably 2.5 J / cm 2 or more, 4.0 J / cm 2 or more is particularly preferable.
  • the upper limit value of the irradiation energy amount is not particularly limited, it is preferably 10.0J / cm 2 or less, and more preferably 8.0J / cm 2 or less. If it is this range, generation
  • the vacuum ultraviolet ray used may be generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 .
  • the gas containing at least one of CO, CO 2 and CH 4 hereinafter also referred to as carbon-containing gas
  • the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
  • resin substrate Specific examples of the resin substrate according to the present invention include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, and polyamideimide resin.
  • Examples include base materials containing thermoplastic resins such as resins, alicyclic modified polycarbonate resins, fluorene ring modified polyester resins, and acryloyl compounds. These resin substrates can be used alone or in combination of two or more.
  • the resin base material is preferably made of a heat-resistant material. Specifically, a resin base material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used.
  • Tg glass transition temperature
  • the base material satisfies the requirements for use as a laminated film for electronic parts and displays. That is, when the gas barrier film according to the present invention is used for these applications, the gas barrier film may be exposed to a process at 150 ° C. or higher.
  • the substrate dimensions are not stable when the gas barrier film is passed through the temperature process as described above, and thermal expansion and contraction occur. Inconvenience that the shut-off performance deteriorates or a problem that it cannot withstand the heat process is likely to occur. If it is less than 15 ppm / K, the film may break like glass and the flexibility may deteriorate.
  • Polyolefin for example, ZEONOR (registered trademark) 1600: 160 ° C, manufactured by Nippon Zeon Co., Ltd.
  • polyarylate PAr: 210 ° C
  • polyethersulfone PES: 220 ° C
  • polysulfone PSF: 190 ° C
  • cycloolefin copolymer COC: Compound described in JP-A No. 2001-150584: 162 ° C.
  • polyimide for example, Neoprim (registered trademark): 260 ° C.
  • the resin substrate is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
  • an opaque material can be used as the plastic film.
  • the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.
  • the resin base material listed above may be an unstretched film or a stretched film.
  • the resin substrate can be produced by a conventionally known general method. The method for producing these base materials is described in paragraphs “0051” to “0055” of International Publication No. 2013/002026 (paragraphs “0056” to “0060” of US Patent Application Publication No. 2014/106151). Can be adopted as appropriate.
  • the surface of the resin substrate may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatments may be combined as necessary. May go.
  • the resin base material may be subjected to an easy adhesion treatment.
  • the resin substrate may be a single layer or a laminated structure of two or more layers.
  • the resin base materials may be the same type or different types.
  • the thickness of the resin base material according to the present invention (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 200 ⁇ m, and more preferably 20 to 150 ⁇ m.
  • Anchor coat layer For the purpose of improving the adhesion between the resin substrate and the layer (A) or the layer (B), the anchor is formed on the surface of the resin substrate on the side where the layer (A) and the layer (B) according to the present invention are formed.
  • a coat layer may be formed.
  • polyester resins As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.
  • the above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
  • the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor phase method, the gas generated from the substrate side is blocked to some extent.
  • an anchor coat layer can be formed for the purpose of controlling the composition of the inorganic thin film.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • a hard coat layer may be provided on the surface (one side or both sides) of the resin substrate.
  • the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold.
  • Such curable resins can be used singly or in combination of two or more.
  • the active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.
  • active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray.
  • a layer containing a cured product of the functional resin, that is, a hard coat layer is formed.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable.
  • Specific examples of the active energy ray-curable resin include photosensitive materials for the smooth layer described below. You may use the commercially available resin base material in which the hard-coat layer is formed previously.
  • the thickness of the hard coat layer is preferably 0.1 to 15 ⁇ m and more preferably 1 to 5 ⁇ m from the viewpoint of smoothness and bending resistance.
  • smooth layer In the gas barrier film of this invention, you may have a smooth layer between a resin base material and a layer (A) or a layer (B).
  • the smooth layer used in the present invention flattens the rough surface of the resin base material where protrusions and the like exist, or flattens the unevenness and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the resin base material.
  • Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
  • a resin composition containing an acrylate compound having a radical reactive unsaturated compound for example, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, examples thereof include a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
  • thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd.
  • Examples include coats, thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins.
  • an epoxy resin-based material having heat resistance is particularly preferable.
  • the method for forming the smooth layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive material as necessary.
  • an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.
  • the thickness of the smooth layer is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 2 to 7 ⁇ m, from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. Is preferred.
  • the smoothness of the smooth layer is a value expressed by the surface roughness defined by JIS B 0601: 2001, and the 10-point average roughness Rz is preferably 10 nm or more and 30 nm or less. If it is this range, even if it is a case where a barrier layer is apply
  • the gas barrier film of the present invention can be preferably applied to a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. That is, this invention provides the electronic device containing the gas barrier film of this invention, and an electronic device main body.
  • Examples of the electronic device body used in the electronic device of the present invention include, for example, an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like. be able to. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
  • organic EL element organic electroluminescence element
  • LCD liquid crystal display element
  • PV solar cell
  • Example 1 to 13 Production of gas barrier films 1 to 13
  • resin substrate As the resin base material, a 100 ⁇ m-thick polyethylene terephthalate film (Lumirror (registered trademark) (U48), manufactured by Toray Industries, Inc.) with easy adhesion treatment on both surfaces was used. A clear hard coat layer having a thickness of 0.5 ⁇ m and having an antiblock function was formed on the surface of the resin substrate opposite to the surface on which the gas barrier layer was formed.
  • Limirror registered trademark
  • U48 polyethylene terephthalate film
  • a UV curable resin manufactured by Aika Kogyo Co., Ltd., product number: Z731L was applied to a resin substrate so that the dry film thickness was 0.5 ⁇ m, dried at 80 ° C., and then high-pressure mercury in the air. Curing was performed using a lamp under the condition of an irradiation energy amount of 0.5 J / cm 2 .
  • a clear hard coat layer (smooth layer) having a thickness of 2 ⁇ m was formed on the surface of the resin substrate on the side on which the gas barrier layer was formed as follows.
  • a UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation was applied to a resin substrate so as to have a dry film thickness of 2 ⁇ m, then dried at 80 ° C., and then using a high-pressure mercury lamp in the air. Then, curing was performed under the condition of an irradiation energy amount of 0.5 J / cm 2 . In this way, a resin substrate with a clear hard coat layer was obtained.
  • this resin substrate with a clear hard coat layer is simply referred to as a resin substrate for convenience.
  • the layer (B) was formed by applying a coating liquid containing polysilazane as shown below on the resin substrate to form a coating film, and then performing modification by vacuum ultraviolet irradiation.
  • a dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) ))
  • a dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) containing 20% by mass of perhydropolysilazane in a ratio of 4: 1 (mass ratio), and further for adjusting the dry film thickness
  • a coating solution was prepared by appropriately diluting with dibutyl ether.
  • the coating solution was applied onto the resin substrate by spin coating so as to have a dry film thickness shown in Table 2 below, and dried at 80 ° C. for 2 minutes.
  • vacuum ultraviolet irradiation treatment was performed on the dried coating film under the irradiation energy conditions shown in Table 2 using the vacuum ultraviolet irradiation apparatus of FIG. 3 having an Xe excimer lamp with a wavelength of 172 nm.
  • the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was set to 0.1% by volume.
  • the stage temperature for installing the sample was set to 80 ° C.
  • reference numeral 1 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) to the inside, and exhausts gas from a gas discharge port (not shown), thereby substantially removing water vapor from the inside of the chamber.
  • the oxygen concentration can be maintained at a predetermined concentration.
  • 2 is an Xe excimer lamp (excimer lamp light intensity: 130 mW / cm 2 ) having a double tube structure that irradiates vacuum ultraviolet rays of 172 nm
  • 3 is an excimer lamp holder that also serves as an external electrode.
  • Reference numeral 4 denotes a sample stage. The sample stage 4 can be reciprocated horizontally at a predetermined speed in the apparatus chamber 1 by a moving means (not shown).
  • the sample stage 4 can be maintained at a predetermined temperature by a heating means (not shown).
  • Reference numeral 5 denotes a sample on which a polysilazane compound coating layer is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm.
  • Reference numeral 6 denotes a light-shielding plate which prevents the application of the sample from being irradiated with vacuum ultraviolet rays during aging of the Xe excimer lamp 2.
  • the energy applied to the surface of the sample coating layer in the vacuum ultraviolet irradiation process was measured using a 172 nm sensor head using a UV integrating photometer: C8026 / H8025 UV POWER METER manufactured by Hamamatsu Photonics.
  • the sensor head is installed in the center of the sample stage 4 so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 1 is irradiated with vacuum ultraviolet rays. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as in the process, and the sample stage 4 was moved at a speed of 0.5 m / min for measurement.
  • an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement.
  • the irradiation energy shown in Table 2 was adjusted by adjusting the moving speed of the sample stage.
  • the vacuum ultraviolet irradiation was performed after aging for 10 minutes.
  • the layer (A) was directly formed on the layer (B) by DC or RF, using a magnetron sputtering apparatus, using the targets and film formation conditions shown in Table 1 below, depending on the target used.
  • the film formation conditions used for film formation in each gas barrier film are shown in Table 1 below.
  • Example 4 Production of gas barrier film 17
  • a silicon oxide layer was formed on the layer (B) in Example 1 using the targets and film formation conditions shown in Tables 1 and 2 below instead of the layer (A).
  • a gas barrier film 17 was obtained.
  • Example 5 Production of gas barrier film 18
  • a silicon oxycarbide layer was formed as follows, and the targets shown in Tables 1 and 2 below were formed on the formed silicon oxycarbide layer.
  • the gas barrier film 18 was obtained in the same manner as in Example 1 except that the niobium oxide layer was formed using the film forming conditions.
  • silicon oxycarbide layer Polymethylsilsesquioxane (SR-13, manufactured by Konishi Chemical Industry Co., Ltd.) was dissolved in methyl ethyl ketone and filtered to obtain a 5% by mass coating solution. This was applied by spin coating so that the dry film thickness was 100 nm, and dried at 100 ° C. for 2 minutes.
  • SR-13 Polymethylsilsesquioxane
  • Example 1 (Comparative Examples 6 to 8: Production of gas barrier films 19 to 21)
  • the gas barrier film was formed in the same manner as in Example 1 except that the reforming energy in forming the layer (B) was set to the conditions shown in Table 2 and the layer (A) was not formed. 19-21 were obtained.
  • Example 9 Production of gas barrier film 22
  • the gas barrier film 22 was obtained in the same manner as in Example 1 except that the reforming energy at the time of forming the layer (B) was changed to the conditions shown in Table 2.
  • Evaluation methods 1. Barrier property evaluation by Ca method 1 ⁇ Water vapor permeability evaluation 1 of gas barrier film (hereinafter simply referred to as evaluation 1)> According to the following measuring method, the water vapor permeability of each gas barrier film was evaluated.
  • thermosetting sheet-like adhesive epoxy resin
  • a thermosetting sheet-like adhesive epoxy resin
  • Ca was vapor-deposited with a size of 20 mm ⁇ 20 mm through a mask at the center of the glass plate using a vacuum vapor deposition apparatus manufactured by LS Technology Co., Ltd.
  • the thickness of Ca was 80 nm.
  • the glass plate on which Ca was vapor-deposited was taken out into the glove box, placed so that the sealing resin layer surface of the barrier film to which the sealing resin layer was bonded and the Ca vapor-deposited surface of the glass plate were in contact, and adhered by vacuum lamination. At this time, heating at 110 ° C. was performed. Further, the adhered sample was placed on a hot plate set at 110 ° C. with the glass plate facing down and cured for 30 minutes to prepare an evaluation cell.
  • a sample using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample is similarly 85. Storage at high temperature and high humidity of 85 ° C. and 85% RH was conducted, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
  • the transmission density was measured using the evaluation cell.
  • a black and white transmission densitometer TM-5 manufactured by Konica Minolta was used.
  • the transmission density was measured at any four points in the cell, and the average value was calculated. The same applies hereinafter.
  • the evaluation cell was stored in an environment of 85 ° C. and 85% RH, and observed for 1 hour, 5 hours, 10 hours, 20 hours, and every 20 hours thereafter, and the transmission density was measured. The observation time when the transmission density was less than 50% of the initial value was determined. The results are shown in Table 2.
  • the gas barrier films 1 to 13 are excellent in durability in a high temperature and high humidity environment. Such an effect is obtained by comparing the gas barrier film 16 not provided with the layer (A) and the gas barrier film 18 in which the layer (A) and the layer (B) are not adjacent to each other. It can be seen that this is achieved by the fact that the layer (A) and the layer (B) are adjacent to each other.
  • the gas barrier film 22 whose irradiation energy during polysilazane modification is less than 1.0 J / cm 2 is significantly less durable in a high-temperature and high-humidity environment than the gas barrier film 13. I understand that.
  • the gas barrier films 2 to 4 are compared, it can be seen that the gas barrier films 2 and 3 where x1 ⁇ x2 are more excellent in durability in a high temperature and high humidity environment. Further, when the gas barrier film 4 and the gas barrier film 13 are compared, it can be seen that the gas barrier film 4 having a higher irradiation energy amount is superior in durability in a high temperature and high humidity environment.
  • the layer (A) was formed on the layer (B) using a magnetron sputtering apparatus and using the targets and film formation conditions shown in Table 1 above by DC or RF depending on the target to be used.
  • the film formation conditions used for film formation in each gas barrier film are shown in Table 3 below.
  • Example 14 (Comparative Example 12: Production of gas barrier film 30)
  • the silicon oxide layer was formed, and the dry film thickness of the layer (B) was 150 nm.
  • a gas barrier film 30 was obtained in the same manner as in Example 14 except that the coating film was formed as described above.
  • Example 14 (Comparative Example 13: Production of gas barrier film 31)
  • a niobium oxide layer was formed on the resin base material using the targets and film formation conditions shown in Table 1 and Table 3 below.
  • a gas barrier film 31 was obtained in the same manner as in Example 14 except that the layer was formed.
  • silicon oxycarbide layer Polymethylsilsesquioxane (SR-13, manufactured by Konishi Chemical Industry Co., Ltd.) was dissolved in methyl ethyl ketone and filtered to obtain a 5% by mass coating solution. This was applied by spin coating so that the dry film thickness was 50 nm, and dried at 100 ° C. for 2 minutes.
  • SR-13 Polymethylsilsesquioxane
  • Example 14 Production of gas barrier film 32
  • a gas barrier film 32 was obtained in the same manner as in Example 15 except that the irradiation energy at the time of forming the layer (B) was changed to the conditions shown in Table 3.
  • Evaluation 1 was performed on the gas barrier films of Examples 14 to 20 and Comparative Examples 12 to 14. The results are shown in Table 3.
  • evaluation 3 Water vapor permeability evaluation 3 of gas barrier film (hereinafter simply referred to as evaluation 3)>
  • the gas barrier film obtained in each Example and Comparative Example was stored for 48 hours in an environment of 40 ° C. and 90% RH.
  • the transmission density initial value was determined in the same manner as in Evaluation 1.
  • the observation time when each sample was less than 50% of the initial transmission density was determined in the same manner as in Evaluation 1 above.
  • the results are shown in Table 3.
  • this evaluation was performed in order to evaluate manufacturing stability by whether the barrier property of an upper layer deteriorated.
  • the gas barrier films 23 to 29 are excellent in durability in a high temperature and high humidity environment. Such an effect is obtained by comparing the gas barrier film 30 not provided with the layer (A) and the gas barrier film 31 in which the layer (A) and the layer (B) are not adjacent to each other. It can be seen that this is achieved by the fact that the layer (A) and the layer (B) are adjacent to each other.
  • the gas barrier film 32 having an irradiation energy of less than 1.0 J / cm 2 during the polysilazane modification has a significantly reduced durability in a high temperature and high humidity environment as compared with the gas barrier film 24. I understand that.
  • the degree of modification in the vicinity of the interface due to the difference in the excimer permeation amount of the polysilazane layer (the thinner the polysilazane layer is modified) and the polysilazane modification It is considered that the barrier performance of the layer itself is exhibited in combination with the barrier property of the layer itself (a better thickness of the polysilazane layer is better). For this reason, in the said Example, it is guessed that the gas barrier film 27 whose film thickness of a layer (B) is 100 nm brought the most favorable result.

Abstract

Provided is a gas barrier film having excellent durability in high-temperature, high-humidity environments. This gas barrier film comprises, on a resin base, a layer (A) that contains a transition metal compound and is formed by a vapor phase film formation method, and a gas barrier layer (B) that is in contact with the layer (A) and is formed by applying vacuum ultraviolet light to a coating film which is obtained by applying and drying a coating liquid containing a polysilazane. The amount of irradiation energy from the vacuum ultraviolet light on the surface of the coating film is 1.0 J/cm2 or more.

Description

ガスバリア性フィルムGas barrier film
 本発明は、ガスバリア性フィルムに関する。 The present invention relates to a gas barrier film.
 フレキシブル電子デバイス、特にフレキシブル有機ELデバイスには、基板フィルムや封止フィルムとしてガスバリア性フィルムが用いられている。これらに用いられるガスバリア性フィルムには高いバリア性が求められている。 Gas barrier films are used as substrate films and sealing films in flexible electronic devices, particularly flexible organic EL devices. High barrier properties are required for gas barrier films used in these.
 一般に、ガスバリア性フィルムは、基材フィルム上に蒸着法、スパッタ法、CVD法等の気相成膜法によって無機バリア層を形成することにより製造されている。近年、基材上に溶液を塗布して形成された前駆体層にエネルギーを印加して、ガスバリア層を形成する製造方法も検討されてきている。特に、前駆体としてポリシラザン化合物を用いた検討が広く行われており、塗布による高生産性とバリア性とを両立する技術として検討が進められている。特に波長172nmのエキシマ光を用いたポリシラザン層の改質が注目されている。 Generally, a gas barrier film is manufactured by forming an inorganic barrier layer on a base film by a vapor deposition method such as vapor deposition, sputtering, or CVD. In recent years, a manufacturing method for forming a gas barrier layer by applying energy to a precursor layer formed by applying a solution on a substrate has been studied. In particular, studies using a polysilazane compound as a precursor have been widely conducted, and studies are being conducted as a technique for achieving both high productivity and barrier properties by coating. In particular, the modification of the polysilazane layer using excimer light having a wavelength of 172 nm has attracted attention.
 ここで、国際公開第2011/122547号(米国特許出願公開第2014/374665号明細書)には、ポリシラザン化合物を含む層に炭化水素系化合物のイオンが注入されて得られる層を有する成形体が開示されている。また、特表2009-503157号公報(米国特許出願公開第2010/166977号明細書)には、ポリシラザンおよび触媒を含む溶液を基材上に塗布し、次いで溶剤を除去しポリシラザン層を形成した後、水蒸気を含む雰囲気中において、上記のポリシラザン層を、230nm未満の波長成分を含むVUV放射線および230~300nmの波長成分を含むUV放射線で照射することによって、基材上にガスバリア層を形成する方法が開示されている。さらに、特開2009-255040号公報には、樹脂基材上に、ポリシラザンを塗工して膜厚250nm以下のポリマー膜を形成する第一ステップと、形成されたポリマー膜に真空紫外光を照射する第二ステップと、上記第二ステップで形成された膜上に上記第一ステップおよび上記第二ステップを繰り返して膜を重ねて形成する第三ステップと、を含む、フレキシブルガスバリアフィルムの製造方法が開示されている。 Here, in WO2011 / 122547 (US Patent Application Publication No. 2014/374665), a molded body having a layer obtained by implanting hydrocarbon compound ions into a layer containing a polysilazane compound. It is disclosed. In Japanese translations of PCT publication No. 2009-503157 (US Patent Application Publication No. 2010/1666977), a solution containing polysilazane and a catalyst is applied onto a substrate, and then the solvent is removed to form a polysilazane layer. A method of forming a gas barrier layer on a substrate by irradiating the polysilazane layer with VUV radiation containing a wavelength component of less than 230 nm and UV radiation containing a wavelength component of 230 to 300 nm in an atmosphere containing water vapor Is disclosed. Furthermore, JP 2009-255040 A discloses a first step in which a polysilazane is coated on a resin substrate to form a polymer film having a thickness of 250 nm or less, and the formed polymer film is irradiated with vacuum ultraviolet light. And a third step of repeating the first step and the second step to form a film on the film formed in the second step, and a method for producing a flexible gas barrier film. It is disclosed.
 しかしながら、上記国際公開第2011/122547号、特表2009-503157号公報、および特開2009-255040号公報のように記載されているポリシラザンをエキシマ光で改質して形成したガスバリア層は、40℃程度までの低温におけるガスバリア性は良好であるものの、80℃85%RHといった高温高湿の非常に過酷な環境下では、経時でガスバリア性が低下することがわかった。 However, a gas barrier layer formed by modifying polysilazane described in International Publication No. 2011/122547, JP-T 2009-503157, and JP-A 2009-255040 with excimer light is 40 Although the gas barrier property at a low temperature up to about 0 ° C. is good, it was found that the gas barrier property decreases with time in a very severe environment of high temperature and high humidity such as 80 ° C. and 85% RH.
 このように、ポリシラザンを改質することにより得られるガスバリア層の高温高湿条件下での性能劣化を抑制し、電子デバイス用として使用できるガスバリア性フィルムが求められていた。 Thus, there has been a demand for a gas barrier film that can be used as an electronic device by suppressing the performance deterioration of the gas barrier layer obtained by modifying polysilazane under high temperature and high humidity conditions.
 そこで本発明は、高温高湿環境での耐久性に優れるガスバリア性フィルムを提供することを目的とする。 Therefore, an object of the present invention is to provide a gas barrier film having excellent durability in a high temperature and high humidity environment.
 本発明者は、上記の課題を解決すべく、鋭意研究を行った。その結果、樹脂基材上に、気相成膜法により形成される遷移金属化合物を含む層(A)と、前記層(A)に接しており、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に1.0J/cm以上の照射エネルギー量で真空紫外線を印加して形成されるガスバリア層(B)と、を有するガスバリア性フィルムにより、上記課題が解決することを見出し、本発明を完成させるに至った。 The present inventor has intensively studied to solve the above problems. As a result, on the resin substrate, a layer (A) containing a transition metal compound formed by a vapor deposition method and a coating liquid containing polysilazane in contact with the layer (A) and drying are applied and dried. The gas barrier layer (B) formed by applying vacuum ultraviolet rays with an irradiation energy amount of 1.0 J / cm 2 or more to the coating film obtained in the above, finds that the above problem is solved, The present invention has been completed.
 すなわち、本発明は、樹脂基材上に、気相成膜法により形成される遷移金属化合物を含む層(A)と、前記層(A)に接しており、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を印加して形成されるガスバリア層(B)と、を有し、前記塗膜の表面における前記真空紫外線の照射エネルギー量が1.0J/cm以上である、ガスバリア性フィルムである。 That is, the present invention applies a layer (A) containing a transition metal compound formed by a vapor deposition method on a resin substrate, and a coating liquid containing polysilazane in contact with the layer (A). And a gas barrier layer (B) formed by applying vacuum ultraviolet rays to the coating film obtained by drying, and the irradiation energy amount of the vacuum ultraviolet rays on the surface of the coating film is 1.0 J / cm 2 or more It is a gas barrier film.
図1は本発明の一実施形態に係るガスバリア性フィルムを示す断面模式図である。図1において、10はガスバリア性フィルム、11は基材、12は層(B)、13は層(A)を示す。FIG. 1 is a schematic cross-sectional view showing a gas barrier film according to an embodiment of the present invention. In FIG. 1, 10 is a gas barrier film, 11 is a substrate, 12 is a layer (B), and 13 is a layer (A). 図2は本発明の他の実施形態に係るガスバリア性フィルムを示す断面模式図である。図2において、10はガスバリア性フィルム、11は基材、12は層(B)、13は層(A)を示す。FIG. 2 is a schematic sectional view showing a gas barrier film according to another embodiment of the present invention. In FIG. 2, 10 is a gas barrier film, 11 is a substrate, 12 is a layer (B), and 13 is a layer (A). 図3は実施例で用いた真空紫外線照射装置の断面模式図である。図3において、1は装置チャンバー、2は172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプ、3は外部電極を兼ねるエキシマランプのホルダー、4は試料ステージ、5はポリシラザン化合物塗布層が形成された試料、6は遮光板を示す。FIG. 3 is a schematic cross-sectional view of the vacuum ultraviolet irradiation apparatus used in the examples. In FIG. 3, 1 is an apparatus chamber, 2 is a Xe excimer lamp having a double tube structure that irradiates vacuum ultraviolet rays of 172 nm, 3 is an excimer lamp holder that also serves as an external electrode, 4 is a sample stage, and 5 is a polysilazane compound coating layer. 6 is a light shielding plate.
 本発明は、樹脂基材上に、気相成膜法により形成される遷移金属化合物を含む層(A)(以下、単に層(A)とも称する)と、前記層(A)に接しており、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を照射して形成されるガスバリア層(B)(以下、単に層(B)とも称する)と、を有し、前記塗膜の表面における前記真空紫外線の照射エネルギー量が1.0J/cm以上である、ガスバリア性フィルムである。このような構成を有する本発明のガスバリア性フィルムは、高温高湿環境での耐久性に優れる。 In the present invention, a layer (A) (hereinafter also simply referred to as layer (A)) containing a transition metal compound formed by a vapor deposition method on a resin substrate is in contact with the layer (A). A gas barrier layer (B) (hereinafter, also simply referred to as layer (B)) formed by irradiating vacuum ultraviolet rays on a coating film obtained by applying and drying a coating liquid containing polysilazane, It is a gas barrier film whose irradiation energy amount of the said vacuum ultraviolet rays in the surface of a coating film is 1.0 J / cm < 2 > or more. The gas barrier film of the present invention having such a configuration is excellent in durability in a high temperature and high humidity environment.
 また、本発明の他の一実施形態は、樹脂基材上に、気相成膜法により遷移金属化合物を含む層(A)を形成し、層(A)上に層(A)に接するようにポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を照射してガスバリア層(B)を形成すること、または、樹脂基材上に、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を照射してガスバリア層(B)を形成し、層(B)上に層(B)に接するように気相成膜法により遷移金属化合物を含む層(A)を形成することを有し、塗膜の表面における真空紫外線の照射エネルギー量が1.0J/cm以上である、ガスバリア性フィルムの製造方法である。 In another embodiment of the present invention, a layer (A) containing a transition metal compound is formed on a resin substrate by a vapor deposition method, and the layer (A) is in contact with the layer (A). The coating film obtained by applying and drying a coating solution containing polysilazane is irradiated with vacuum ultraviolet rays to form a gas barrier layer (B), or a coating solution containing polysilazane is applied on a resin substrate A layer containing a transition metal compound by a vapor deposition method so as to form a gas barrier layer (B) by irradiating a vacuum ultraviolet ray onto a coating film obtained by drying and forming a gas barrier layer (B) on the layer (B). (A) is formed, and the irradiation energy amount of vacuum ultraviolet rays on the surface of the coating film is 1.0 J / cm 2 or more.
 なぜ、本発明のガスバリア性フィルムにより上記効果が得られるのか、詳細は不明であるが、下記のようなメカニズムが考えられる。なお、下記のメカニズムは推測によるものであり、本発明は下記メカニズムに何ら拘泥されるものではない。 The details of the reason why the above-described effect can be obtained by the gas barrier film of the present invention are unknown, but the following mechanism is conceivable. The following mechanism is based on speculation, and the present invention is not limited to the following mechanism.
 層(B)は、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を照射することによって、酸窒化ケイ素が形成され、これによりガスバリア性を発現する。また、気相成膜法で形成される場合とは異なり、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成されることにより、成膜時にパーティクル等の異物混入がほとんどなくなり、欠陥が非常に少ないガスバリア層を形成することが可能となる。しかしながら、このガスバリア層は酸化に対して完全に安定ではなく、高温高湿環境では徐々に酸化されてガスバリア性が低下することがある。 In the layer (B), silicon oxynitride is formed by irradiating the coating film obtained by applying and drying a coating liquid containing polysilazane with vacuum ultraviolet rays, thereby exhibiting gas barrier properties. Unlike the case where it is formed by a vapor phase film forming method, by applying energy to a coating film obtained by applying and drying a coating liquid containing polysilazane, particles such as It is possible to form a gas barrier layer with almost no foreign matter and very few defects. However, this gas barrier layer is not completely stable against oxidation, and may be gradually oxidized in a high-temperature and high-humidity environment to lower the gas barrier property.
 これに対し、本発明のガスバリア性フィルムは、ポリシラザンに真空紫外線を照射して得られるガスバリア層(層(B))に隣接する層(層(A))が、遷移金属化合物を含む。層(A)は、層(B)よりも酸化されやすいため、層(A)が先に酸化されることにより、層(B)の酸化が抑制され、高温高湿環境での耐久性に優れるものと考えられる。 On the other hand, in the gas barrier film of the present invention, the layer (layer (A)) adjacent to the gas barrier layer (layer (B)) obtained by irradiating polysilazane with vacuum ultraviolet rays contains a transition metal compound. Since the layer (A) is more easily oxidized than the layer (B), the oxidation of the layer (B) is suppressed when the layer (A) is oxidized first, and the durability in a high-temperature and high-humidity environment is excellent. It is considered a thing.
 以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。また、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 本明細書において、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。 In this specification, unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 図1は本発明の一実施形態に係るガスバリア性フィルムを示す断面模式図である。図1のガスバリア性フィルム10は、基材11、層(B)12、および層(A)13がこの順に配置される。また、図2は本発明の他の実施形態に係るガスバリア性フィルムを示す断面模式図である。図2のガスバリア性フィルム10は、基材11、層(A)13および層(B)12がこの順に配置される。すなわち、層(A)および層(B)は隣接して配置される限り、基材側から層(A)、層(B)の順であっても、層(B)、層(A)の順であってもよい。また、基材の一方の面に層(A)、層(B)が形成される形態だけではなく、基材の両面に層(A)および層(B)が形成されていてもよい。さらに、基材と各層との間、または、各層上には他の層が配置されていてもよい。すなわち、樹脂基材上とは、樹脂基材の直上のみに限定されるものではない。 FIG. 1 is a schematic cross-sectional view showing a gas barrier film according to an embodiment of the present invention. In the gas barrier film 10 of FIG. 1, a base material 11, a layer (B) 12, and a layer (A) 13 are arranged in this order. FIG. 2 is a schematic cross-sectional view showing a gas barrier film according to another embodiment of the present invention. In the gas barrier film 10 of FIG. 2, a base material 11, a layer (A) 13 and a layer (B) 12 are arranged in this order. That is, as long as the layer (A) and the layer (B) are disposed adjacent to each other, even if the layer (A) and the layer (B) are in this order from the base material side, the layer (B) and the layer (A) It may be in order. Moreover, not only the form in which the layer (A) and the layer (B) are formed on one surface of the substrate, the layer (A) and the layer (B) may be formed on both surfaces of the substrate. Furthermore, another layer may be disposed between the substrate and each layer or on each layer. That is, “on the resin base material” is not limited to just above the resin base material.
 層(A)が基材と相対する面の層(B)に配置されることで、層(A)がより酸化されやすく、層(A)による層(B)の保護がより顕著に発揮されることからは、基材、層(B)、層(A)の順に配置されることが好ましい。 By arranging the layer (A) on the layer (B) on the surface facing the substrate, the layer (A) is more easily oxidized, and the protection of the layer (B) by the layer (A) is more prominently exhibited. Therefore, it is preferable to arrange the base material, the layer (B), and the layer (A) in this order.
 [(A)遷移金属化合物を含む層]
 本発明のガスバリア性フィルムは、気相成膜法により形成される遷移金属化合物を含む層(A)を有する。層(A)は、電気化学的に層(B)よりも酸化されやすく、層(B)の酸化を抑制する。
[(A) Layer containing transition metal compound]
The gas barrier film of the present invention has a layer (A) containing a transition metal compound formed by a vapor phase film forming method. The layer (A) is more easily electrochemically oxidized than the layer (B), and suppresses the oxidation of the layer (B).
 層(A)に含まれる遷移金属化合物としては、特に限定されないが、例えば、遷移金属の酸化物、窒化物、炭化物、酸窒化物、または酸炭化物が挙げられる。中でも層(B)の酸化をより効果的に抑制するという観点からは、遷移金属化合物が遷移金属酸化物であることが好ましい。遷移金属化合物は1種単独であっても2種以上併用してもよい。 The transition metal compound contained in the layer (A) is not particularly limited, and examples thereof include transition metal oxides, nitrides, carbides, oxynitrides, and oxycarbides. Among these, from the viewpoint of more effectively suppressing the oxidation of the layer (B), the transition metal compound is preferably a transition metal oxide. The transition metal compounds may be used alone or in combination of two or more.
 また、層(A)は、遷移金属をM、化学量論的に得られる遷移金属酸化物をMOx2とした場合に、x1<x2である金属酸化物MOx1を含むことが好ましい。かような金属酸化物を含むことで、ガスバリア性フィルムのガスバリア性能が向上し、高温高湿条件下であっても高いガスバリア性能が維持される。x1<x2である金属酸化物MOx1を含むことによって、化学量論的な酸化度よりも低い酸化度である領域、つまりはさらなる酸化の余地がある領域が存在することとなるため、より高いガスバリア性能が発揮されると考えられる。 The layer (A) preferably contains a metal oxide MO x1 where x1 <x2, where M is the transition metal and MO x2 is the stoichiometrically obtained transition metal oxide. By including such a metal oxide, the gas barrier performance of the gas barrier film is improved, and high gas barrier performance is maintained even under high temperature and high humidity conditions. By including the metal oxide MO x1 where x1 <x2, there is a region with a lower degree of oxidation than the stoichiometric degree of oxidation, that is, a region with room for further oxidation, which is higher. It is thought that gas barrier performance is exhibited.
 例えば、Nb(ニオブ)の酸化物を例に挙げると、Nbの化学量論的に得られる酸化物は五酸化二ニオブであり、これはNbO2.5であるため、x2=2.5である。Nbは三酸化二ニオブの組成も取り得るが、本発明においてのx2は、酸化度の最も大きい化学量論的な化合物のx2を意味する。x1<x2である金属酸化物MOx1を含むとは、XPS等の組成分析方法で厚さ方向の組成プロファイルを測定した際に、x1<x2である測定点が得られるということ、Nbの場合は、x1<2.5である測定点が得られることを意味する。(A)が複数種の金属を含有する場合であっても、それぞれの金属の比率とその合計から化学量論的なx2を計算して用いることができる。 For example, taking the oxide of Nb (niobium) as an example, the Nb stoichiometric oxide is niobium pentoxide, which is NbO 2.5 , so x2 = 2.5. is there. Nb can take the composition of niobium trioxide, but x2 in the present invention means x2 of a stoichiometric compound having the highest degree of oxidation. The inclusion of the metal oxide MO x1 where x1 <x2 means that when a composition profile in the thickness direction is measured by a composition analysis method such as XPS, a measurement point where x1 <x2 is obtained, in the case of Nb Means that a measurement point where x1 <2.5 is obtained. Even when (A) contains a plurality of kinds of metals, the stoichiometric x2 can be calculated from the ratio of each metal and the total thereof.
 x1<x2の関係を酸化度の指標としてx1/x2比で表すと、x1/x2比は、高温高湿下でのガスバリア性能がより向上することから、0.99以下であることが好ましく、0.9以下であることがより好ましく、0.8以下であることがさらに好ましい。また、x1/x2比の最小値が、0.99以下であることが好ましく、0.9以下であることがより好ましく、0.8以下であることがさらに好ましい。x1/x2比が小さくなるほど酸化抑制効果は高くなるが、それにつれて可視光での吸収も高くなるため、透明性が望まれる用途に使用する場合は、0.2以上であることが好ましく、0.3以上であることがより好ましい。すなわち、x1/x2比の最小値が、0.2以上であることが好ましく、0.3以上であることがより好ましい。 Expressing the relationship of x1 <x2 as an index of the degree of oxidation as an x1 / x2 ratio, the x1 / x2 ratio is preferably 0.99 or less because the gas barrier performance under high temperature and high humidity is further improved. It is more preferably 0.9 or less, and further preferably 0.8 or less. Further, the minimum value of the x1 / x2 ratio is preferably 0.99 or less, more preferably 0.9 or less, and further preferably 0.8 or less. The smaller the x1 / x2 ratio, the higher the oxidation suppression effect, but the higher the absorption with visible light. Accordingly, when used in applications where transparency is desired, it is preferably 0.2 or more. .3 or more is more preferable. That is, the minimum value of the x1 / x2 ratio is preferably 0.2 or more, and more preferably 0.3 or more.
 x1/x2<1である領域の層(A)における厚さ方向の割合は、バリア性の観点から、領域(A)の厚さに対して、1~100%であることが好ましく、10~100%であることがより好ましく、50~100%であることがさらに好ましい。 The ratio in the thickness direction of the layer (A) in the region where x1 / x2 <1 is preferably 1 to 100% with respect to the thickness of the region (A) from the viewpoint of barrier properties. 100% is more preferable, and 50 to 100% is more preferable.
 x1/x2比の調整は、層(A)の形成をスパッタで行う場合を例に挙げると、ターゲットとして金属、もしくは、化学量論的に酸素が欠損した遷移金属酸化物を用い、スパッタの際に導入する酸素の量を適宜調整することで行うことができる。 The x1 / x2 ratio can be adjusted by using a metal or a transition metal oxide that is stoichiometrically deficient in oxygen as a target when the layer (A) is formed by sputtering. This can be done by appropriately adjusting the amount of oxygen to be introduced.
 x1は、厚さ方向のXPS分析を用いてMに対するOの原子比により求めることができる。x1の最小値がx1<x2となれば、x1<x2である金属酸化物MOx1を含むと言える。 x1 can be determined by the atomic ratio of O to M using XPS analysis in the thickness direction. If the minimum value of x1 is x1 <x2, it can be said that the metal oxide MO x1 where x1 <x2 is included.
 《XPS分析条件》
 ・装置:アルバックファイ製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・測定領域:Si2p、C1s、N1s、O1s、その他測定する金属に応じて定法により設定
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:一定時間スパッタ後、測定を繰り返す。1回の測定は、SiO換算で、約2.5nmの厚さ分となるようにスパッタ時間を調整する
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバックファイ社製のMultiPakを用いる。
<< XPS analysis conditions >>
・ Equipment: ULVAC-PHI QUANTERASXM
・ X-ray source: Monochromatic Al-Kα
・ Measurement area: Si2p, C1s, N1s, O1s, etc., set by a regular method according to the metal to be measured ・ Sputtering ion: Ar (2 keV)
Depth profile: repeats measurement after sputtering for a certain time. In one measurement, the sputtering time is adjusted so that the thickness is about 2.5 nm in terms of SiO 2.・ Quantification: The background is obtained by the Shirley method, and the relative sensitivity coefficient method is calculated from the obtained peak area. And quantified. Data processing uses MultiPak manufactured by ULVAC-PHI.
 遷移金属原子とは、第3族元素から第12族元素を指し、遷移金属としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、およびAuなどが挙げられる。 A transition metal atom refers to a Group 3 element to a Group 12 element, and examples of the transition metal include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, and Mo. , Tc, Ru, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir , Pt, and Au.
 中でも、遷移金属化合物中の遷移金属は、ケイ素よりも酸化還元電位が低い金属であることが好ましい。ケイ素よりも酸化還元電位の低い遷移金属の化合物を含む層とすることで、より良好なバリア性が得られる。ケイ素よりも酸化還元電位が低い金属の具体例としては、例えば、ニオブ(Nb)、タンタル(Ta)、バナジウム(V)、ジルコニウム(Zr)、チタン(Ti)、ハフニウム(Hf)、イットリウム(Y)、ランタン(La)、セリウム(Ce)等が挙げられる。これら金属は、単独でもまたは2種以上混合して用いてもよい。これらの中でも特に第5族元素であるニオブ、タンタル、バナジウムがポリシラザン改質バリア層の酸化抑制効果が高いため、好ましく用いることができる。すなわち、本発明の好適な一実施形態は、遷移金属がバナジウム、ニオブおよびタンタルからなる群より選択される少なくとも1種の金属である、ガスバリア性フィルムである。さらに、光学特性の観点から、遷移金属化合物中の遷移金属は、透明性が良好な化合物が得られるニオブ、タンタルが特に好ましい。 Among these, the transition metal in the transition metal compound is preferably a metal having a lower redox potential than silicon. By forming a layer containing a transition metal compound having a lower oxidation-reduction potential than silicon, better barrier properties can be obtained. Specific examples of the metal having a lower redox potential than silicon include, for example, niobium (Nb), tantalum (Ta), vanadium (V), zirconium (Zr), titanium (Ti), hafnium (Hf), yttrium (Y ), Lanthanum (La), cerium (Ce) and the like. These metals may be used alone or in combination of two or more. Among these, niobium, tantalum, and vanadium, which are Group 5 elements, can be preferably used because they have a high oxidation suppressing effect on the polysilazane-modified barrier layer. That is, a preferred embodiment of the present invention is a gas barrier film in which the transition metal is at least one metal selected from the group consisting of vanadium, niobium and tantalum. Furthermore, from the viewpoint of optical properties, the transition metal in the transition metal compound is particularly preferably niobium or tantalum from which a compound with good transparency can be obtained.
 主要な金属の標準酸化還元電位およびx2を下表に示す。 The standard redox potential and x2 of major metals are shown in the table below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 層(A)中における遷移金属化合物の含有量は、本発明の効果を奏する限り特に限定されないが、遷移金属化合物の含有量が、層(A)の全質量に対して50質量%以上であることが好ましく、80質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%である(すなわち、層(A)は遷移金属化合物からなる)ことが最も好ましい。 The content of the transition metal compound in the layer (A) is not particularly limited as long as the effects of the present invention are exhibited, but the content of the transition metal compound is 50% by mass or more based on the total mass of the layer (A). It is preferably 80% by mass or more, more preferably 95% by mass or more, particularly preferably 98% by mass or more, and 100% by mass (that is, the layer (A) is Most preferably, it comprises a transition metal compound.
 層(A)の形成方法は、金属元素と酸素との組成比を調整しやすいという観点から、気相成膜法である。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法等の物理気相成長(PVD)法、プラズマCVD(chemical vapordeposition)法、ALD(Atomic Layer Deposition)などの化学気相成長法が挙げられる。中でも、下層へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、スパッタ法により形成することが好ましい。 The formation method of the layer (A) is a vapor phase film formation method from the viewpoint of easy adjustment of the composition ratio between the metal element and oxygen. The vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, and ion plating, plasma CVD (chemical vapor deposition), and ALD (Atomic Layer Deposition). Chemical vapor deposition methods such as Among them, it is preferable to form by sputtering since film formation is possible without damaging the lower layer and high productivity is obtained.
 スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロン(DMS)スパッタリング、イオンビームスパッタリング、ECRスパッタリングなどを単独でまたは2種以上組み合わせて用いることができる。また、ターゲットの印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング、およびRF(高周波)スパッタリングのいずれを用いてもよい。また、金属モードと、酸化物モードの中間である遷移モードを利用した反応性スパッタ法も用いることができる。遷移領域となるようにスパッタ現象を制御することにより、高い成膜スピードで金属酸化物を成膜することが可能となるため好ましい。DCスパッタリングやDMSスパッタリングを行なう際には、そのターゲットに遷移金属を用い、さらに、プロセスガス中に酸素を導入することで、遷移金属酸化物の薄膜を形成することができる。または、DCスパッタリングやDMSスパッタリングを行なう際には、そのターゲットに酸素欠損型の遷移金属酸化物を用いてもよい。また、RF(高周波)スパッタリングで成膜する場合は、遷移金属の酸化物のターゲットを用いることができる。プロセスガスに用いられる不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、遷移金属の酸化物、窒化物、窒酸化物、炭酸化物等の遷移金属化合物薄膜を作ることができる。スパッタ法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、膜厚等に応じて適宜選択することができる。 For the film formation by sputtering, bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more. The target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used. In addition, a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used. By controlling the sputtering phenomenon so as to be in the transition region, a metal oxide film can be formed at a high film formation speed, which is preferable. When performing DC sputtering or DMS sputtering, a transition metal oxide thin film can be formed by using a transition metal for the target and further introducing oxygen into the process gas. Alternatively, when performing DC sputtering or DMS sputtering, an oxygen-deficient transition metal oxide may be used as the target. In the case of forming a film by RF (high frequency) sputtering, a transition metal oxide target can be used. As the inert gas used for the process gas, He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used. Furthermore, by introducing oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas, a transition metal compound thin film such as a transition metal oxide, nitride, nitride oxide, or carbonate can be formed. Examples of film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, which can be appropriately selected according to the sputtering apparatus, film material, film thickness, and the like.
 中でも、成膜レートがより高く、より高い生産性を有することから、遷移金属の酸化物をターゲットとして用いるスパッタ法が好ましい。この際、遷移金属の酸化物として酸素欠損型の遷移金属酸化物を用いてもよい。 Among these, a sputtering method using a transition metal oxide as a target is preferable because it has a higher film formation rate and higher productivity. At this time, an oxygen-deficient transition metal oxide may be used as the transition metal oxide.
 層(A)は、単層でもよいし2層以上の積層構造であってもよい。層(A)が2層以上の積層構造である場合、層(A)に含まれる遷移金属化合物は同じものであってもよいし異なるものであってもよい。 The layer (A) may be a single layer or a laminated structure of two or more layers. When the layer (A) has a laminated structure of two or more layers, the transition metal compounds contained in the layer (A) may be the same or different.
 層(A)は、層(B)の酸化を抑制しガスバリア性を維持する機能を有する層であると考えられるため、必ずしもガスバリア性は必要ではない。したがって、層(A)は比較的薄い層でも効果を発揮し得る。具体的には、基材-層(B)-層(A)の層構成の場合には、層(A)の厚さ(2層以上の積層構造である場合はその総厚)は、バリア性の面内均一性の観点から、1~200nmであることが好ましく、2~100nmであることがより好ましく、3~50nmであることがさらに好ましい。特に50nm以下であれば、層(A)の成膜の生産性がより向上する。また、基材-層(A)-層(B)の層構成の場合には、層(A)の厚さ(2層以上の積層構造である場合はその総厚)は、バリア性の面内均一性の観点から、1~200nmであることが好ましく、2~150nmであることがより好ましく、20~150nmであることがさらに好ましい。 Since the layer (A) is considered to be a layer having a function of suppressing the oxidation of the layer (B) and maintaining the gas barrier property, the gas barrier property is not necessarily required. Therefore, even if the layer (A) is a relatively thin layer, the effect can be exhibited. Specifically, in the case of the layer structure of the base material-layer (B) -layer (A), the thickness of the layer (A) (the total thickness in the case of a laminated structure of two or more layers) is the barrier From the viewpoint of in-plane uniformity of the property, the thickness is preferably 1 to 200 nm, more preferably 2 to 100 nm, and further preferably 3 to 50 nm. In particular, when the thickness is 50 nm or less, the productivity of forming the layer (A) is further improved. Further, in the case of the layer structure of the base material-layer (A) -layer (B), the thickness of the layer (A) (the total thickness in the case of a laminated structure of two or more layers) is the barrier property surface. From the viewpoint of internal uniformity, the thickness is preferably 1 to 200 nm, more preferably 2 to 150 nm, and still more preferably 20 to 150 nm.
 [(B)ガスバリア層]
 本発明に係るガスバリア層(B)は、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を照射して形成される。真空紫外線の照射により、層(B)はガスバリア性を発現する。また、気相成膜法で形成される場合とは異なり、成膜時にパーティクル等の異物混入がないため、欠陥の非常に少ないガスバリア層となる。
[(B) Gas barrier layer]
The gas barrier layer (B) according to the present invention is formed by irradiating a coating film obtained by applying and drying a coating liquid containing polysilazane with vacuum ultraviolet rays. The layer (B) exhibits gas barrier properties by irradiation with vacuum ultraviolet rays. Further, unlike the case where the film is formed by the vapor deposition method, foreign substances such as particles are not mixed at the time of film formation, so that the gas barrier layer has very few defects.
 層(B)は、単層でもよいし2層以上の積層構造であってもよい。 The layer (B) may be a single layer or a laminated structure of two or more layers.
 層(B)の1層あたりの厚さは、ガスバリア性能の観点から、10~300nmであることが好ましい。2層以上の積層構造である場合はその総厚は、クラック抑制の観点から、10~1000nmであることが好ましい。基材-層(B)-層(A)の層構成の場合には、ガスバリア性能の観点から、層(B)の1層あたりの厚さは、50~300nmであることがより好ましく、100~300nmであることがさらに好ましく、200~300nmであることが最も好ましい。さらに、基材-層(A)-層(B)の層構成の場合には、層(A)に接して形成される層(B)の厚さは、5nm~200nmであることが好ましく、10nm~150nmであることがより好ましく、20nm~120nmであることがさらに好ましい。基材-層(A)-層(B)の層構成の場合には、ポリシラザンの改質領域が層(A)と層(B)との界面側に形成されることが好ましい。このため、真空紫外線照射処理の場合には、真空紫外光が層(A)/層(B)の界面近傍にまで透過することが好ましい。これは、バリア性を発現するポリシラザン改質領域が、層(A)と接して形成されることで、耐酸化性が向上するためである。真空紫外光は、ポリシラザン層によって吸収されるため、真空紫外光が(A)/(B)界面近傍にまで透過するためには、ポリシラザン塗布層が比較的薄いほうが好ましい。このため、基材-層(A)-層(B)の層構成の場合には、基材-層(B)-層(A)の層構成の場合よりも、好適な範囲は薄い範囲となる。 The thickness of each layer (B) is preferably 10 to 300 nm from the viewpoint of gas barrier performance. In the case of a laminated structure of two or more layers, the total thickness is preferably 10 to 1000 nm from the viewpoint of suppressing cracks. In the case of the layer structure of substrate-layer (B) -layer (A), the thickness per layer of the layer (B) is more preferably 50 to 300 nm from the viewpoint of gas barrier performance, It is more preferably from ˜300 nm, most preferably from 200 to 300 nm. Furthermore, in the case of the layer structure of substrate-layer (A) -layer (B), the thickness of the layer (B) formed in contact with the layer (A) is preferably 5 nm to 200 nm, It is more preferably 10 nm to 150 nm, and further preferably 20 nm to 120 nm. In the case of the base material-layer (A) -layer (B) layer structure, it is preferable that a modified region of polysilazane is formed on the interface side between the layer (A) and the layer (B). For this reason, in the case of the vacuum ultraviolet irradiation treatment, it is preferable that the vacuum ultraviolet light is transmitted to the vicinity of the layer (A) / layer (B) interface. This is because the polysilazane modified region exhibiting barrier properties is formed in contact with the layer (A), thereby improving the oxidation resistance. Since the vacuum ultraviolet light is absorbed by the polysilazane layer, it is preferable that the polysilazane coating layer is relatively thin so that the vacuum ultraviolet light is transmitted to the vicinity of the (A) / (B) interface. Therefore, in the case of the base material-layer (A) -layer (B) layer structure, the preferred range is thinner than the base material-layer (B) -layer (A) layer structure. Become.
 層(B)の厚さは、TEM観察により測定することができる。 The thickness of the layer (B) can be measured by TEM observation.
 層(B)は、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を照射して形成される。ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、および両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。 The layer (B) is formed by irradiating a coating film obtained by applying and drying a coating liquid containing polysilazane with vacuum ultraviolet rays. Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
 具体的には、ポリシラザンは、好ましくは下記の構造を有する。 Specifically, the polysilazane preferably has the following structure.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(I)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R、RおよびRは、それぞれ、同じであってもあるいは異なるものであってもよい。 In the general formula (I), R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different.
 また、上記一般式(I)において、nは、整数であり、上記一般式(I)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。 In the general formula (I), n is an integer, and the polysilazane having the structure represented by the general formula (I) is determined to have a number average molecular weight of 150 to 150,000 g / mol. Is preferred.
 上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンである。 In the compound having the structure represented by the general formula (I), one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
 または、ポリシラザンとしては、下記一般式(II)で表される構造を有する。 Alternatively, polysilazane has a structure represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(II)において、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ、同じであってもあるいは異なるものであってもよい。また、上記一般式(II)において、n’およびpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’およびpは、同じであってもあるいは異なるものであってもよい。 In the general formula (II), R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. In this case, R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different. In the general formula (II), n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. It is preferred that Note that n ′ and p may be the same or different.
 上記一般式(II)のポリシラザンのうち、R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’およびR5’が各々メチル基を表す化合物;R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’が各々メチル基を表し、R5’がビニル基を表す化合物;R1’、R3’、R4’およびR6’が各々水素原子を表し、R2’およびR5’が各々メチル基を表す化合物が好ましい。 Among the polysilazanes of the above general formula (II), R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group; R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group; R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5' each represents a methyl group is preferred.
 または、ポリシラザンとしては、下記一般式(III)で表される構造を有する。 Alternatively, polysilazane has a structure represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(III)において、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ、同じであってもあるいは異なるものであってもよい。 In the general formula (III), R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ may be the same or different.
 また、上記一般式(III)において、n”、p”およびqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n”、pおよびqは、同じであってもあるいは異なるものであってもよい。 In the general formula (III), n ″, p ″ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. It is preferable to be determined as follows. Note that n ″, p and q may be the same or different.
 上記一般式(III)のポリシラザンのうち、R1”、R3”およびR6”が各々水素原子を表し、R2”、R4”、R5”およびR8”が各々メチル基を表し、R9”が(トリエトキシシリル)プロピル基を表し、R7”がアルキル基または水素原子を表す化合物が好ましい。 Of the polysilazanes of the above general formula (III), R 1 ″ , R 3 ″ and R 6 ″ each represent a hydrogen atom, and R 2 ″ , R 4 ″ , R 5 ″ and R 8 ″ each represent a methyl group. , R 9 ″ represents a (triethoxysilyl) propyl group, and R 7 ″ represents an alkyl group or a hydrogen atom.
 一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンとを選択してよく、混合して使用することもできる。 On the other hand, the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard. The ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. For this reason, these perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
 パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造とが存在する構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
 ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのまま層(B)形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。これらポリシラザン溶液は、単独でもまたは2種以上組み合わせても用いることができる。 Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as it is as the coating solution for forming the layer (B). Examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd. Is mentioned. These polysilazane solutions can be used alone or in combination of two or more.
 本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。 Other examples of the polysilazane that can be used in the present invention include, but are not limited to, for example, a silicon alkoxide-added polysilazane obtained by reacting the polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No. 5-23827), and a glycidol reaction. Glycidol-added polysilazane (Japanese Patent Laid-Open No. 6-122852) obtained by reaction, alcohol-added polysilazane obtained by reacting alcohol (Japanese Patent Laid-Open No. 6-240208), metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal obtained by adding metal fine particles Fine particle added policy Zhang such (JP-A-7-196986), and a polysilazane ceramic at low temperatures.
 ポリシラザンを用いる場合、真空紫外線印加前の層(B)中におけるポリシラザンの含有率としては、層(B)の全質量を100質量%としたとき、100質量%でありうる。また、真空紫外線印加前の層(B)がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10質量%以上99質量%以下であることが好ましく、40質量%以上95質量%以下であることがより好ましく、特に好ましくは70質量%以上95質量%以下である。 In the case of using polysilazane, the content of polysilazane in the layer (B) before application of vacuum ultraviolet light can be 100% by mass when the total mass of the layer (B) is 100% by mass. Moreover, when the layer (B) before applying the vacuum ultraviolet ray contains a material other than polysilazane, the content of polysilazane in the layer is preferably 10% by mass or more and 99% by mass or less, and 40% by mass or more and 95% by mass. More preferably, it is 70 mass% or less and 95 mass% or less.
 (層(B)形成用塗布液(ポリシラザンを含有する塗布液))
 層(B)形成用塗布液を調製するための溶剤としては、ポリシラザンを溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ポリシラザンに対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターペン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ-およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
(Layer (B) forming coating solution (coating solution containing polysilazane))
The solvent for preparing the coating liquid for forming the layer (B) is not particularly limited as long as it can dissolve polysilazane, but water and reactive groups (for example, hydroxyl group, or easily reacting with polysilazane). An organic solvent that does not contain an amine group and is inert to polysilazane is preferable, and an aprotic organic solvent is more preferable. Specifically, the solvent is an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, terpenes, etc. Hydrogen solvents; Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like. The solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
 層(B)形成用塗布液におけるポリシラザンの濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1~80質量%、より好ましくは5~50質量%、さらに好ましくは10~40質量%である。 The concentration of polysilazane in the coating solution for forming the layer (B) is not particularly limited and varies depending on the layer thickness and the pot life of the coating solution, but is preferably 1 to 80% by mass, more preferably 5 to 50% by mass. More preferably, it is 10 to 40% by mass.
 層(B)形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ポリシラザンを基準としたとき、好ましくは0.1~10質量%、より好ましくは0.5~7質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行による過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。 The coating liquid for forming the layer (B) preferably contains a catalyst in order to promote reforming. As the catalyst applicable to the present invention, a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds. Of these, it is preferable to use an amine catalyst. The concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on polysilazane. By setting the amount of the catalyst to be in this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like.
 層(B)形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステル樹脂もしくは変性ポリエステル樹脂、エポキシ樹脂、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。 In the coating liquid for forming the layer (B), the following additives can be used as necessary. For example, cellulose ethers, cellulose esters; for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc., natural resins; for example, rubber, rosin resin, etc., synthetic resins; Aminoplasts, particularly urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyester resins or modified polyester resins, epoxy resins, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
 (層(B)形成用塗布液を塗布する方法)
 層(B)形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、ダイコート法、グラビア印刷法等が挙げられる。
(Method of applying the layer (B) forming coating solution)
As a method of applying the layer (B) forming coating solution, a conventionally known appropriate wet coating method may be employed. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method and the like. It is done.
 塗布厚さは、好ましい厚さや目的に応じて適切に設定され得る。 The coating thickness can be appropriately set according to the preferred thickness and purpose.
 塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適な層(B)が得られうる。なお、残存する溶媒は後に除去されうる。 After applying the coating solution, it is preferable to dry the coating film. By drying the coating film, the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable layer (B) can be obtained. The remaining solvent can be removed later.
 塗膜の乾燥温度は、適用する基材によっても異なるが、50~200℃であることが好ましい。例えば、ガラス転移温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。 The drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C. For example, when a polyethylene terephthalate base material having a glass transition temperature (Tg) of 70 ° C. is used as the base material, the drying temperature is preferably set to 150 ° C. or lower in consideration of deformation of the base material due to heat. The temperature can be set by using a hot plate, oven, furnace or the like. The drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes. The drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
 層(B)形成用塗布液を塗布して得られた塗膜は、真空紫外線の照射前または真空紫外線の照射中に水分を除去する工程を含んでいてもよい。水分を除去する方法としては、低湿度環境を維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-5℃以下(温度25℃/湿度10%)であり、維持される時間は層(B)の膜厚によって適宜設定することが好ましい。具体的には、露点温度は-5℃以下で、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、-50℃以上であり、-40℃以上であることが好ましい。改質処理前、あるいは改質処理中に水分を除去することによって、シラノールに転化した層(B)の脱水反応を促進する観点から好ましい形態である。 The coating film obtained by applying the coating solution for forming the layer (B) may include a step of removing moisture before irradiation with vacuum ultraviolet rays or during irradiation with vacuum ultraviolet rays. As a method for removing moisture, a form of dehumidification while maintaining a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature. The preferred dew point temperature is 4 ° C. or less (temperature 25 ° C./humidity 25%), the more preferred dew point temperature is −5 ° C. or less (temperature 25 ° C./humidity 10%), and the time maintained is the film of layer (B) It is preferable to set appropriately depending on the thickness. Specifically, it is preferable that the dew point temperature is −5 ° C. or lower and the maintaining time is 1 minute or longer. The lower limit of the dew point temperature is not particularly limited, but is usually −50 ° C. or higher, and preferably −40 ° C. or higher. From the viewpoint of promoting the dehydration reaction of the layer (B) converted to silanol by removing water before or during the reforming treatment.
 <真空紫外線照射>
 続いて、上記のようにして形成された塗膜に対して、真空紫外線を照射し、ポリシラザンの酸窒化ケイ素等への転化反応を行う。すなわち、真空紫外線を照射することでポリシラザンを含有する塗布液を塗布・乾燥して得られる塗膜がガスバリア性を発現しうる無機薄膜へと改質する。かような真空紫外線照射処理により改質された塗膜をポリシラザン改質層とも称する。
<Vacuum UV irradiation>
Subsequently, the coating film formed as described above is irradiated with vacuum ultraviolet rays to carry out a conversion reaction of polysilazane to silicon oxynitride or the like. That is, the coating film obtained by applying and drying a coating solution containing polysilazane is modified into an inorganic thin film that can exhibit gas barrier properties by irradiation with vacuum ultraviolet rays. The coating film modified by such vacuum ultraviolet irradiation treatment is also referred to as a polysilazane modified layer.
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、対象が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材や層(B)の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。 UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used. For example, in the case of batch processing, it can be processed in an ultraviolet baking furnace equipped with an ultraviolet ray generation source. The ultraviolet baking furnace itself is generally known. For example, an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used. Further, when the object is a long film, it can be converted to ceramics by continuously irradiating ultraviolet rays in a drying zone equipped with the ultraviolet ray generation source as described above while being conveyed. The time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the substrate and layer (B) used.
 (真空紫外線照射処理:エキシマ照射処理)
 真空紫外線照射による改質は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸窒化ケイ素を含む膜の形成を行う方法である。なお、エキシマ照射処理を行う際は、熱処理を併用することが好ましい。
(Vacuum ultraviolet irradiation treatment: excimer irradiation treatment)
The modification by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy with a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds the atoms only to photons called photon processes. In this method, a film containing silicon oxynitride is formed at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly. In addition, when performing an excimer irradiation process, it is preferable to use heat processing together.
 本発明においての真空紫外線源は、100~180nmの波長の光を発生させるものであればよいが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。 The vacuum ultraviolet ray source in the present invention may be any source that generates light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator (for example, Xe excimer lamp) having a maximum emission at about 172 nm, and an emission line at about 185 nm. Low pressure mercury vapor lamps with medium pressure and medium and high pressure mercury vapor lamps with wavelength components of 230 nm or less, and excimer lamps with maximum emission at about 222 nm.
 このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。 Among these, the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
 また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン塗膜の改質を実現できる。 Also, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。 ¡Excimer lamps have high light generation efficiency and can be lit with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed. For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.
 真空紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10~20,000体積ppm(0.001~2体積%)とすることが好ましく、50~10,000体積ppm(0.005~1体積%)とすることがより好ましい。また、転化プロセスの間の水蒸気濃度は、好ましくは1000~4000体積ppmの範囲である。 Oxygen is required for the reaction at the time of vacuum ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. In addition, it is preferably performed in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably 10 to 20,000 volume ppm (0.001 to 2 volume%), and preferably 50 to 10,000 volume ppm (0.005 to 1 volume%). More preferably. Also, the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 The gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 真空紫外線照射工程において、ポリシラザン塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm~10W/cmであると好ましく、30mW/cm~200mW/cmであることがより好ましく、50mW/cm~160mW/cmであるとさらに好ましい。1mW/cm以上であれば、改質効率が向上し、10W/cm以下であれば、塗膜に生じ得るアブレーションや、基材へのダメージを低減することができる。 In the vacuum ultraviolet irradiation step, the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane coating is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. preferably, further preferably at 50mW / cm 2 ~ 160mW / cm 2. If it is 1 mW / cm 2 or more, the reforming efficiency is improved, and if it is 10 W / cm 2 or less, ablation that can occur in the coating film and damage to the substrate can be reduced.
 本発明においては、塗膜の表面における真空紫外線の照射エネルギー量(照射量)は、1.0J/cm以上である。照射エネルギー量が1.0J/cm未満の場合、層(B)のガスバリア性の保存安定性が低下し、高温高湿条件下の保存でのガスバリア性が著しく低下する。該照射エネルギー量は、製造安定性(改質層を形成した後の保管環境下でも、ガスバリア性能の低下がおきない、または少ない特性)の観点からは、1.5J/cm以上が好ましく、2.0J/cm以上がより好ましく、2.5J/cm以上がさらに好ましく、4.0J/cm以上が特に好ましい。一方、照射エネルギー量の上限値は、特に制限されないが、10.0J/cm以下であることが好ましく、8.0J/cm以下であることがより好ましい。この範囲であれば、過剰改質によるクラックの発生や、基材の熱変形を抑制することができ、また生産性が向上する。 In the present invention, the irradiation energy amount (irradiation amount) of vacuum ultraviolet rays on the surface of the coating film is 1.0 J / cm 2 or more. When the irradiation energy amount is less than 1.0 J / cm 2 , the storage stability of the gas barrier property of the layer (B) is lowered, and the gas barrier property during storage under high temperature and high humidity conditions is significantly lowered. The irradiation energy amount is preferably 1.5 J / cm 2 or more from the viewpoint of production stability (a property in which the gas barrier performance does not decrease or is low even in a storage environment after forming the modified layer), 2.0 J / cm 2 or more, and further preferably 2.5 J / cm 2 or more, 4.0 J / cm 2 or more is particularly preferable. On the other hand, the upper limit value of the irradiation energy amount is not particularly limited, it is preferably 10.0J / cm 2 or less, and more preferably 8.0J / cm 2 or less. If it is this range, generation | occurrence | production of the crack by excessive reforming and the thermal deformation of a base material can be suppressed, and productivity will improve.
 用いられる真空紫外線は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。 The vacuum ultraviolet ray used may be generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 . Further, as the gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas), the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
 [樹脂基材]
 本発明に係る樹脂基材としては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を含む基材が挙げられる。該樹脂基材は、単独でもまたは2種以上組み合わせても用いることができる。
[Resin substrate]
Specific examples of the resin substrate according to the present invention include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, and polyamideimide resin. , Polyetherimide resin, cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate Examples include base materials containing thermoplastic resins such as resins, alicyclic modified polycarbonate resins, fluorene ring modified polyester resins, and acryloyl compounds. These resin substrates can be used alone or in combination of two or more.
 樹脂基材は耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の樹脂基材が使用される。該基材は、電子部品用途、ディスプレイ用積層フィルムとしての必要条件を満たしている。即ち、これらの用途に本発明に係るガスバリア性フィルムを用いる場合、ガスバリア性フィルムは、150℃以上の工程に曝されることがある。この場合、ガスバリア性フィルムにおける基材の線膨張係数が100ppm/Kを超えると、ガスバリア性フィルムを前記のような温度の工程に流す際に基板寸法が安定せず、熱膨張および収縮に伴い、遮断性性能が劣化する不都合や、あるいは、熱工程に耐えられないという不具合が生じやすくなる。15ppm/K未満では、フィルムがガラスのように割れてしまいフレキシビリティが劣化する場合がある。 The resin base material is preferably made of a heat-resistant material. Specifically, a resin base material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used. The base material satisfies the requirements for use as a laminated film for electronic parts and displays. That is, when the gas barrier film according to the present invention is used for these applications, the gas barrier film may be exposed to a process at 150 ° C. or higher. In this case, when the coefficient of linear expansion of the base material in the gas barrier film exceeds 100 ppm / K, the substrate dimensions are not stable when the gas barrier film is passed through the temperature process as described above, and thermal expansion and contraction occur. Inconvenience that the shut-off performance deteriorates or a problem that it cannot withstand the heat process is likely to occur. If it is less than 15 ppm / K, the film may break like glass and the flexibility may deteriorate.
 基材のTgや線膨張係数は、添加剤などによって調整することができる。基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。 The Tg and linear expansion coefficient of the substrate can be adjusted by additives. More preferable specific examples of the thermoplastic resin that can be used as the substrate include, for example, polyethylene terephthalate (PET: 70 ° C.), polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), and alicyclic. Polyolefin (for example, ZEONOR (registered trademark) 1600: 160 ° C, manufactured by Nippon Zeon Co., Ltd.), polyarylate (PAr: 210 ° C), polyethersulfone (PES: 220 ° C), polysulfone (PSF: 190 ° C), cycloolefin copolymer (COC: Compound described in JP-A No. 2001-150584: 162 ° C.), polyimide (for example, Neoprim (registered trademark): 260 ° C. manufactured by Mitsubishi Gas Chemical Co., Ltd.), fluorene ring-modified polycarbonate (BCF-PC: JP In 2000-227603 Listed compound: 225 ° C.), alicyclic modified polycarbonate (IP-PC: compound described in JP 2000-227603 A: 205 ° C.), acryloyl compound (compound described in JP 2002-80616 A: 300 ° C.) And the like) (Tg is shown in parentheses).
 本発明に係るガスバリア性フィルムは、有機EL素子等の電子デバイスとして利用されることから、樹脂基材は透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。 Since the gas barrier film according to the present invention is used as an electronic device such as an organic EL element, the resin substrate is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more. The light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
 ただし、本発明に係るガスバリア性フィルムをディスプレイ用途に用いる場合であっても、観察側に設置しない場合などは必ずしも透明性が要求されない。したがって、このような場合は、プラスチックフィルムとして不透明な材料を用いることもできる。不透明な材料としては、例えば、ポリイミド、ポリアクリロニトリル、公知の液晶ポリマーなどが挙げられる。 However, even when the gas barrier film according to the present invention is used for display, transparency is not necessarily required when it is not installed on the observation side. Therefore, in such a case, an opaque material can be used as the plastic film. Examples of the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.
 また、上記に挙げた樹脂基材は、未延伸フィルムでもよく、延伸フィルムでもよい。当該樹脂基材は、従来公知の一般的な方法により製造することが可能である。これらの基材の製造方法については、国際公開第2013/002026号の段落「0051」~「0055」(米国特許出願公開第2014/106151号明細書 段落「0056」~「0060」)の記載された事項を適宜採用することができる。 Further, the resin base material listed above may be an unstretched film or a stretched film. The resin substrate can be produced by a conventionally known general method. The method for producing these base materials is described in paragraphs “0051” to “0055” of International Publication No. 2013/002026 (paragraphs “0056” to “0060” of US Patent Application Publication No. 2014/106151). Can be adopted as appropriate.
 樹脂基材の表面は、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理等を行っていてもよく、必要に応じて上記処理を組み合わせて行っていてもよい。また、樹脂基材には易接着処理を行ってもよい。 The surface of the resin substrate may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatments may be combined as necessary. May go. The resin base material may be subjected to an easy adhesion treatment.
 該樹脂基材は、単層でもよいし2層以上の積層構造であってもよい。該樹脂基材が2層以上の積層構造である場合、各樹脂基材は同じ種類であってもよいし異なる種類であってもよい。 The resin substrate may be a single layer or a laminated structure of two or more layers. When the resin base material has a laminated structure of two or more layers, the resin base materials may be the same type or different types.
 本発明に係る樹脂基材の厚さ(2層以上の積層構造である場合はその総厚)は、10~200μmであることが好ましく、20~150μmであることがより好ましい。 The thickness of the resin base material according to the present invention (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 200 μm, and more preferably 20 to 150 μm.
 [種々の機能を有する層]
 本発明のガスバリア性フィルムにおいては、種々の機能を有する層を設けることができる。
[Layers with various functions]
In the gas barrier film of the present invention, layers having various functions can be provided.
 (アンカーコート層)
 本発明に係る層(A)および層(B)を形成する側の樹脂基材の表面には、樹脂基材と層(A)または層(B)との密着性の向上を目的として、アンカーコート層を形成してもよい。
(Anchor coat layer)
For the purpose of improving the adhesion between the resin substrate and the layer (A) or the layer (B), the anchor is formed on the surface of the resin substrate on the side where the layer (A) and the layer (B) according to the present invention are formed. A coat layer may be formed.
 アンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を単独でまたは2種以上組み合わせて使用することができる。 As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5.0g/m(乾燥状態)程度が好ましい。 Conventionally known additives can be added to these anchor coating agents. The above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to. The application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
 また、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化珪素を主体とした無機膜を形成することもできる。あるいは、特開2004-314626号公報に記載されているようなアンカーコート層を形成することで、その上に気相法により無機薄膜を形成する際に、基材側から発生するガスをある程度遮断して、無機薄膜の組成を制御するといった目的でアンカーコート層を形成することもできる。 Also, the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like. Alternatively, by forming an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor phase method, the gas generated from the substrate side is blocked to some extent. Thus, an anchor coat layer can be formed for the purpose of controlling the composition of the inorganic thin film.
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 μm.
 (ハードコート層)
 樹脂基材の表面(片面または両面)には、ハードコート層を有していてもよい。ハードコート層に含まれる材料の例としては、例えば、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることができる。
(Hard coat layer)
A hard coat layer may be provided on the surface (one side or both sides) of the resin substrate. Examples of the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold. Such curable resins can be used singly or in combination of two or more.
 活性エネルギー線硬化性樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて、活性エネルギー線硬化性樹脂の硬化物を含む層、すなわちハードコート層が形成される。活性エネルギー線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。活性エネルギー線硬化性樹脂としては、具体的には、下記平滑層の感光性材料が挙げられる。予めハードコート層が形成されている市販の樹脂基材を用いてもよい。 The active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray. A layer containing a cured product of the functional resin, that is, a hard coat layer is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. Specific examples of the active energy ray-curable resin include photosensitive materials for the smooth layer described below. You may use the commercially available resin base material in which the hard-coat layer is formed previously.
 ハードコート層の厚さは、平滑性および屈曲耐性の観点から、0.1~15μmが好ましく、1~5μmであることがより好ましい。 The thickness of the hard coat layer is preferably 0.1 to 15 μm and more preferably 1 to 5 μm from the viewpoint of smoothness and bending resistance.
 (平滑層)
 本発明のガスバリア性フィルムにおいては、樹脂基材と層(A)または層(B)との間に、平滑層を有してもよい。本発明に用いられる平滑層は、突起等が存在する樹脂基材の粗面を平坦化し、あるいは、樹脂基材に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性材料、または、熱硬化性材料を硬化させて作製される。
(Smooth layer)
In the gas barrier film of this invention, you may have a smooth layer between a resin base material and a layer (A) or a layer (B). The smooth layer used in the present invention flattens the rough surface of the resin base material where protrusions and the like exist, or flattens the unevenness and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the resin base material. To be provided. Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
 平滑層の感光性材料としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズを用いることができる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。 As the photosensitive material of the smooth layer, for example, a resin composition containing an acrylate compound having a radical reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, Examples thereof include a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. Specifically, a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
 熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、株式会社アデカ製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製の各種シリコン樹脂、日東紡株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。この中でも特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。 Specific examples of thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd. Examples include coats, thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins. Among these, an epoxy resin-based material having heat resistance is particularly preferable.
 平滑層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。 The method for forming the smooth layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
 平滑層の形成では、上述の感光性材料に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。 In the formation of the smooth layer, additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive material as necessary. In addition, regardless of the position where the smooth layer is laminated, in any smooth layer, an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.
 平滑層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にする観点から、1~10μmの範囲が好ましく、さらに好ましくは、2μm~7μmの範囲にすることが好ましい。 The thickness of the smooth layer is preferably in the range of 1 to 10 μm, more preferably in the range of 2 to 7 μm, from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. Is preferred.
 平滑層の平滑性は、JIS B 0601:2001で規定される表面粗さで表現される値で、十点平均粗さRzが、10nm以上、30nm以下であることが好ましい。この範囲であれば、バリア層を塗布形式で塗布した場合であっても、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合であっても塗布性が損なわれることが少なく、また、塗布後の凹凸を平滑化することも容易である。 The smoothness of the smooth layer is a value expressed by the surface roughness defined by JIS B 0601: 2001, and the 10-point average roughness Rz is preferably 10 nm or more and 30 nm or less. If it is this range, even if it is a case where a barrier layer is apply | coated with an application | coating form, even if it is a case where a coating means contacts the smooth layer surface by application methods, such as a wire bar and a wireless bar, applicability | paintability will be impaired. In addition, it is easy to smooth the unevenness after coating.
 [電子デバイス]
 本発明のガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく適用できる。すなわち、本発明は、本発明のガスバリア性フィルムと、電子デバイス本体と、を含む電子デバイスを提供する。
[Electronic device]
The gas barrier film of the present invention can be preferably applied to a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. That is, this invention provides the electronic device containing the gas barrier film of this invention, and an electronic device main body.
 本発明の電子デバイスに用いられる電子デバイス本体の例としては、例えば、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該電子デバイス本体は有機EL素子または太陽電池が好ましく、有機EL素子がより好ましい。 Examples of the electronic device body used in the electronic device of the present invention include, for example, an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like. be able to. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
 (実施例1~13:ガスバリア性フィルム1~13の作製)
 〔樹脂基材〕
 樹脂基材としては、両面に易接着処理した厚さ100μmのポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラー(登録商標)(U48))を用いた。この樹脂基材のガスバリア層を形成する面とは反対の面に、厚さ0.5μmのアンチブロック機能を有するクリアハードコート層を形成した。すなわち、UV硬化型樹脂(アイカ工業株式会社製、品番:Z731L)を乾燥膜厚が0.5μmになるように樹脂基材に塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。
(Examples 1 to 13: Production of gas barrier films 1 to 13)
[Resin substrate]
As the resin base material, a 100 μm-thick polyethylene terephthalate film (Lumirror (registered trademark) (U48), manufactured by Toray Industries, Inc.) with easy adhesion treatment on both surfaces was used. A clear hard coat layer having a thickness of 0.5 μm and having an antiblock function was formed on the surface of the resin substrate opposite to the surface on which the gas barrier layer was formed. Specifically, a UV curable resin (manufactured by Aika Kogyo Co., Ltd., product number: Z731L) was applied to a resin substrate so that the dry film thickness was 0.5 μm, dried at 80 ° C., and then high-pressure mercury in the air. Curing was performed using a lamp under the condition of an irradiation energy amount of 0.5 J / cm 2 .
 次に、樹脂基材のガスバリア層を形成する側の面に厚さ2μmのクリアハードコート層(平滑層)を以下のようにして形成した。JSR株式会社製、UV硬化型樹脂オプスター(登録商標)Z7527を、乾燥膜厚が2μmになるように樹脂基材に塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。このようにして、クリアハードコート層付樹脂基材を得た。以降、本実施例および比較例においては、便宜上、このクリアハードコート層付樹脂基材を単に樹脂基材とする。 Next, a clear hard coat layer (smooth layer) having a thickness of 2 μm was formed on the surface of the resin substrate on the side on which the gas barrier layer was formed as follows. A UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation was applied to a resin substrate so as to have a dry film thickness of 2 μm, then dried at 80 ° C., and then using a high-pressure mercury lamp in the air. Then, curing was performed under the condition of an irradiation energy amount of 0.5 J / cm 2 . In this way, a resin substrate with a clear hard coat layer was obtained. Hereinafter, in this example and the comparative example, this resin substrate with a clear hard coat layer is simply referred to as a resin substrate for convenience.
 〔層(B)ポリシラザン改質層の形成〕
 層(B)は、下記に示すようなポリシラザンを含む塗布液を上記樹脂基材上に塗布し塗布膜を形成した後、真空紫外線照射による改質を行って形成した。
[Formation of layer (B) modified polysilazane layer]
The layer (B) was formed by applying a coating liquid containing polysilazane as shown below on the resin substrate to form a coating film, and then performing modification by vacuum ultraviolet irradiation.
 パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N',N'-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで適宜希釈し、塗布液を調製した。 A dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) )) And a dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) containing 20% by mass of perhydropolysilazane in a ratio of 4: 1 (mass ratio), and further for adjusting the dry film thickness A coating solution was prepared by appropriately diluting with dibutyl ether.
 上記樹脂基材上にスピンコート法により塗布液を下記表2に示す乾燥膜厚になるよう塗布し、80℃で2分間乾燥した。次いで、乾燥した塗膜に対して、波長172nmのXeエキシマランプを有する図3の真空紫外線照射装置を用い、表2に示した照射エネルギー条件で真空紫外線照射処理を行った。この際、照射雰囲気は窒素で置換し、酸素濃度は0.1体積%とした。また、試料を設置するステージ温度を80℃とした。 The coating solution was applied onto the resin substrate by spin coating so as to have a dry film thickness shown in Table 2 below, and dried at 80 ° C. for 2 minutes. Next, vacuum ultraviolet irradiation treatment was performed on the dried coating film under the irradiation energy conditions shown in Table 2 using the vacuum ultraviolet irradiation apparatus of FIG. 3 having an Xe excimer lamp with a wavelength of 172 nm. At this time, the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was set to 0.1% by volume. The stage temperature for installing the sample was set to 80 ° C.
 図3において、1は装置チャンバーであり、図示しないガス供給口から内部に窒素と酸素とを適量供給し、図示しないガス排出口から排気することで、チャンバー内部から実質的に水蒸気を除去し、酸素濃度を所定の濃度に維持することができる。2は172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプ(エキシマランプ光強度:130mW/cm)、3は外部電極を兼ねるエキシマランプのホルダーである。4は試料ステージである。試料ステージ4は、図示しない移動手段により装置チャンバー1内を水平に所定の速度で往復移動することができる。また、試料ステージ4は図示しない加熱手段により、所定の温度に維持することができる。5はポリシラザン化合物塗布層が形成された試料である。試料ステージが水平移動する際、試料の塗布層表面と、エキシマランプ管面との最短距離が3mmとなるように試料ステージの高さが調整されている。6は遮光板であり、Xeエキシマランプ2のエージング中に試料の塗布層に真空紫外線が照射されないようにしている。 In FIG. 3, reference numeral 1 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) to the inside, and exhausts gas from a gas discharge port (not shown), thereby substantially removing water vapor from the inside of the chamber. The oxygen concentration can be maintained at a predetermined concentration. 2 is an Xe excimer lamp (excimer lamp light intensity: 130 mW / cm 2 ) having a double tube structure that irradiates vacuum ultraviolet rays of 172 nm, and 3 is an excimer lamp holder that also serves as an external electrode. Reference numeral 4 denotes a sample stage. The sample stage 4 can be reciprocated horizontally at a predetermined speed in the apparatus chamber 1 by a moving means (not shown). The sample stage 4 can be maintained at a predetermined temperature by a heating means (not shown). Reference numeral 5 denotes a sample on which a polysilazane compound coating layer is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm. Reference numeral 6 denotes a light-shielding plate which prevents the application of the sample from being irradiated with vacuum ultraviolet rays during aging of the Xe excimer lamp 2.
 真空紫外線照射工程で試料塗布層表面に照射されるエネルギーは、浜松ホトニクス社製の紫外線積算光量計:C8026/H8025 UV POWER METERを用い、172nmのセンサヘッドを用いて測定した。測定に際しては、Xeエキシマランプ管面とセンサヘッドの測定面との最短距離が、3mmとなるようにセンサヘッドを試料ステージ4中央に設置し、かつ、装置チャンバー1内の雰囲気が、真空紫外線照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージ4を0.5m/minの速度で移動させて測定を行った。測定に先立ち、Xeエキシマランプ2の照度を安定させるため、Xeエキシマランプ点灯後に10分間のエージング時間を設け、その後試料ステージを移動させて測定を開始した。 The energy applied to the surface of the sample coating layer in the vacuum ultraviolet irradiation process was measured using a 172 nm sensor head using a UV integrating photometer: C8026 / H8025 UV POWER METER manufactured by Hamamatsu Photonics. In the measurement, the sensor head is installed in the center of the sample stage 4 so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 1 is irradiated with vacuum ultraviolet rays. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as in the process, and the sample stage 4 was moved at a speed of 0.5 m / min for measurement. Prior to the measurement, in order to stabilize the illuminance of the Xe excimer lamp 2, an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement.
 この測定で得られた照射エネルギーを元に、試料ステージの移動速度を調整することで表2に示した照射エネルギーとなるように調整した。尚、真空紫外線照射に際しては、10分間のエージング後に行った。 Based on the irradiation energy obtained in this measurement, the irradiation energy shown in Table 2 was adjusted by adjusting the moving speed of the sample stage. The vacuum ultraviolet irradiation was performed after aging for 10 minutes.
 〔層(A)の形成〕
 層(A)は、マグネトロンスパッタ装置を用い、下記表1に示すターゲットおよび成膜条件を用い、用いるターゲットに応じて、DCまたはRFで上記層(B)上に直接形成した。各ガスバリア性フィルムにおいて成膜に用いた成膜条件は下記表1に示す。
[Formation of layer (A)]
The layer (A) was directly formed on the layer (B) by DC or RF, using a magnetron sputtering apparatus, using the targets and film formation conditions shown in Table 1 below, depending on the target used. The film formation conditions used for film formation in each gas barrier film are shown in Table 1 below.
 (比較例1:ガスバリア性フィルム14の作製)
 実施例1において用いた樹脂基材上に、下記表1および2に示すターゲットおよび成膜条件を用い、酸化ケイ素層を形成して、ガスバリア性フィルム14を得た。
(Comparative Example 1: Production of gas barrier film 14)
On the resin base material used in Example 1, a silicon oxide layer was formed using the targets and film formation conditions shown in Tables 1 and 2 below to obtain a gas barrier film 14.
 (比較例2:ガスバリア性フィルム15の作製)
 実施例1において用いた樹脂基材上に、下記表1および2に示すターゲットおよび成膜条件を用い、酸化ニオブ層を形成して、ガスバリア性フィルム15を得た。
(Comparative Example 2: Production of gas barrier film 15)
A niobium oxide layer was formed on the resin substrate used in Example 1 using the targets and film formation conditions shown in Tables 1 and 2 below, to obtain a gas barrier film 15.
 (比較例3:ガスバリア性フィルム16の作製)
 実施例1において層(B)上に層(A)を形成しなかったこと以外は、実施例1と同様にしてガスバリア性フィルム16を得た。
(Comparative Example 3: Production of gas barrier film 16)
A gas barrier film 16 was obtained in the same manner as in Example 1 except that the layer (A) was not formed on the layer (B) in Example 1.
 (比較例4:ガスバリア性フィルム17の作製)
 実施例1において層(B)上に、層(A)の代わりに、下記表1および2に示すターゲットおよび成膜条件を用い、酸化ケイ素層を形成したこと以外は実施例1と同様にしてガスバリア性フィルム17を得た。
(Comparative Example 4: Production of gas barrier film 17)
The same procedure as in Example 1 was conducted except that a silicon oxide layer was formed on the layer (B) in Example 1 using the targets and film formation conditions shown in Tables 1 and 2 below instead of the layer (A). A gas barrier film 17 was obtained.
 (比較例5:ガスバリア性フィルム18の作製)
 実施例1において層(B)上に、層(A)の代わりに、下記のようにして酸炭化ケイ素層を形成し、形成された酸炭化ケイ素層上に、下記表1および2に示すターゲットおよび成膜条件を用い、酸化ニオブ層を形成したこと以外は実施例1と同様にして、ガスバリア性フィルム18を得た。
(Comparative Example 5: Production of gas barrier film 18)
In Example 1, instead of the layer (A) on the layer (B), a silicon oxycarbide layer was formed as follows, and the targets shown in Tables 1 and 2 below were formed on the formed silicon oxycarbide layer. The gas barrier film 18 was obtained in the same manner as in Example 1 except that the niobium oxide layer was formed using the film forming conditions.
 酸炭化ケイ素層の形成:ポリメチルシルセスキオキサン(SR-13、小西化学工業社製)をメチルエチルケトンに溶解し、ろ過して、5質量%の塗布液を得た。これをスピンコートにより乾燥膜厚が100nmとなるように塗布し、100℃で2分間乾燥した。 Formation of silicon oxycarbide layer: Polymethylsilsesquioxane (SR-13, manufactured by Konishi Chemical Industry Co., Ltd.) was dissolved in methyl ethyl ketone and filtered to obtain a 5% by mass coating solution. This was applied by spin coating so that the dry film thickness was 100 nm, and dried at 100 ° C. for 2 minutes.
 (比較例6~8:ガスバリア性フィルム19~21の作製)
 実施例1において、層(B)の形成の際の改質エネルギーを表2に記載の条件とし、また、層(A)を形成しなかったこと以外は実施例1と同様にしてガスバリア性フィルム19~21を得た。
(Comparative Examples 6 to 8: Production of gas barrier films 19 to 21)
In Example 1, the gas barrier film was formed in the same manner as in Example 1 except that the reforming energy in forming the layer (B) was set to the conditions shown in Table 2 and the layer (A) was not formed. 19-21 were obtained.
 (比較例9:ガスバリア性フィルム22の作製)
 実施例1において、層(B)の形成の際の改質エネルギーを表2に記載の条件としたこと以外は実施例1と同様にしてガスバリア性フィルム22を得た。
(Comparative Example 9: Production of gas barrier film 22)
In Example 1, the gas barrier film 22 was obtained in the same manner as in Example 1 except that the reforming energy at the time of forming the layer (B) was changed to the conditions shown in Table 2.
 (x1/x2比最小値)
 上述のXPS組成分析による厚さ方向の組成分布プロファイルより求めた。
(X1 / x2 ratio minimum value)
It was obtained from the composition distribution profile in the thickness direction by the above XPS composition analysis.
 (厚さ方向でx1/x2<1となる割合)
 上記の厚さ方向の組成分布プロファイルより、厚さ方向でx1/x2<1となる割合を求め、下記の指標に基づいてランク分けした。
(Ratio where x1 / x2 <1 in the thickness direction)
From the composition distribution profile in the thickness direction, the ratio of x1 / x2 <1 in the thickness direction was determined, and ranked based on the following indices.
 5 75%以上、100%以下
 4 50%以上、75%未満
 3 25%以上、50%未満
 2 0%を超えて25%未満
 1 0%
 結果を表2に示す。
5 75% or more, 100% or less 4 50% or more, less than 75% 3 25% or more, less than 50% 2 Over 20% and less than 25% 10%
The results are shown in Table 2.
 (評価方法)
1.Ca法によるバリア性評価1
 <ガスバリア性フィルムの水蒸気透過性評価1(以下、単に評価1とする)>
 以下の測定方法に従って、各ガスバリア性フィルムの水蒸気透過性を評価した。
(Evaluation methods)
1. Barrier property evaluation by Ca method 1
<Water vapor permeability evaluation 1 of gas barrier film (hereinafter simply referred to as evaluation 1)>
According to the following measuring method, the water vapor permeability of each gas barrier film was evaluated.
 バリアフィルムのバリア層表面をUV洗浄した後、バリア層面に封止樹脂層として熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmで貼合した。これを50mm×50mmのサイズに打ち抜いた後、グローブボックス内に入れて、24時間乾燥処理を行った。 After the surface of the barrier layer of the barrier film was UV-cleaned, a thermosetting sheet-like adhesive (epoxy resin) was bonded to the barrier layer surface as a sealing resin layer with a thickness of 20 μm. This was punched out to a size of 50 mm × 50 mm, then placed in a glove box and dried for 24 hours.
 50mm×50mmサイズの無アルカリガラス板(厚さ0.7mm)の片面をUV洗浄した。 One side of a 50 mm × 50 mm non-alkali glass plate (thickness 0.7 mm) was UV cleaned.
 株式会社 エイエルエステクノロジー製の真空蒸着装置を用い、ガラス板の中央に、マスクを介して20mm×20mmのサイズでCaを蒸着した。Caの厚さは80nmとした。 Ca was vapor-deposited with a size of 20 mm × 20 mm through a mask at the center of the glass plate using a vacuum vapor deposition apparatus manufactured by LS Technology Co., Ltd. The thickness of Ca was 80 nm.
 Ca蒸着済のガラス板をグローブボックス内に取出し、封止樹脂層を貼合したバリアフィルムの封止樹脂層面とガラス板のCa蒸着面とを接するように配置し、真空ラミネートにより接着した。この際、110℃の加熱を行った。さらに、接着した試料を110℃に設定したホットプレート上にガラス板を下にして置き、30分間硬化させて、評価用セルを作成した。 The glass plate on which Ca was vapor-deposited was taken out into the glove box, placed so that the sealing resin layer surface of the barrier film to which the sealing resin layer was bonded and the Ca vapor-deposited surface of the glass plate were in contact, and adhered by vacuum lamination. At this time, heating at 110 ° C. was performed. Further, the adhered sample was placed on a hot plate set at 110 ° C. with the glass plate facing down and cured for 30 minutes to prepare an evaluation cell.
 なお、ガスバリア性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリア性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いた試料を、同様に85℃、85%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。 In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample is similarly 85. Storage at high temperature and high humidity of 85 ° C. and 85% RH was conducted, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
 (透過濃度の測定)
 上記評価用セルを用いて、透過濃度を測定した。
(Measurement of transmission density)
The transmission density was measured using the evaluation cell.
 透過濃度測定には、コニカミノルタ社製の白黒透過濃度計 TM-5を用いた。 For transmission density measurement, a black and white transmission densitometer TM-5 manufactured by Konica Minolta was used.
 透過濃度は、セルの任意の4点で測定し、その平均値を算出した。以下、同様である。 The transmission density was measured at any four points in the cell, and the average value was calculated. The same applies hereinafter.
 次いで、評価用セルを85℃85%RH環境下に保存し、1時間後、5時間後、10時間後、20時間後、それ以降は20時間毎に観察し、透過濃度を測定した。透過濃度初期値の50%未満となった時点の観察時間を求めた。結果を表2に示す。 Next, the evaluation cell was stored in an environment of 85 ° C. and 85% RH, and observed for 1 hour, 5 hours, 10 hours, 20 hours, and every 20 hours thereafter, and the transmission density was measured. The observation time when the transmission density was less than 50% of the initial value was determined. The results are shown in Table 2.
 <ガスバリア性フィルムの水蒸気透過性評価2(以下、単に評価2とする)>
 各実施例および比較例において、基材上に下層を形成した後、30℃60%RHの環境で7日間保管後に、上層を形成した。各試料について、上記評価1と同様にして透過濃度初期値の50%未満となった時点の観察時間を求めた。結果を表2に示す。なお、本評価は、下層のバリア性が劣化するか否かで製造安定性を評価する目的で行った。
<Water vapor permeability evaluation 2 of gas barrier film (hereinafter simply referred to as evaluation 2)>
In each Example and Comparative Example, after forming a lower layer on the substrate, the upper layer was formed after storage for 7 days in an environment of 30 ° C. and 60% RH. For each sample, the observation time when it was less than 50% of the initial transmission density was determined in the same manner as in Evaluation 1. The results are shown in Table 2. In addition, this evaluation was performed in order to evaluate manufacturing stability by whether the barrier property of a lower layer deteriorated.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記結果より、ガスバリア性フィルム1~13は、高温高湿環境での耐久性に優れることがわかる。かような効果は、層(A)を設けていないガスバリア性フィルム16、層(A)と層(B)とが隣接していないガスバリア性フィルム18との比較により、層(A)が存在すること、かつ、層(A)および層(B)とが隣接していることによって達成されていることがわかる。また、ポリシラザン改質の際の照射エネルギーが1.0J/cm未満であるガスバリア性フィルム22は、ガスバリア性フィルム13と比較して、高温高湿環境での耐久性が顕著に低下していることがわかる。 From the above results, it can be seen that the gas barrier films 1 to 13 are excellent in durability in a high temperature and high humidity environment. Such an effect is obtained by comparing the gas barrier film 16 not provided with the layer (A) and the gas barrier film 18 in which the layer (A) and the layer (B) are not adjacent to each other. It can be seen that this is achieved by the fact that the layer (A) and the layer (B) are adjacent to each other. In addition, the gas barrier film 22 whose irradiation energy during polysilazane modification is less than 1.0 J / cm 2 is significantly less durable in a high-temperature and high-humidity environment than the gas barrier film 13. I understand that.
 ガスバリア性フィルム2~4を比較すると、x1<x2であるガスバリア性フィルム2および3のほうがより高温高湿環境での耐久性に優れることがわかる。また、ガスバリア性フィルム4とガスバリア性フィルム13とを比較すると、照射エネルギー量が高いガスバリア性フィルム4のほうがより高温高湿環境での耐久性に優れることがわかる。 When the gas barrier films 2 to 4 are compared, it can be seen that the gas barrier films 2 and 3 where x1 <x2 are more excellent in durability in a high temperature and high humidity environment. Further, when the gas barrier film 4 and the gas barrier film 13 are compared, it can be seen that the gas barrier film 4 having a higher irradiation energy amount is superior in durability in a high temperature and high humidity environment.
 (実施例14~20:ガスバリア性フィルム23~29の作製)
 〔樹脂基材〕
 上記実施例1~13の樹脂基材の欄に記載した樹脂基材と同じ樹脂基材を用いた。
(Examples 14 to 20: Production of gas barrier films 23 to 29)
[Resin substrate]
The same resin base material as that described in the column of resin base material in Examples 1 to 13 was used.
 〔層(A)の形成〕
 層(A)は、マグネトロンスパッタ装置を用い、用いるターゲットに応じて、DCまたはRFで上記表1に示すターゲットおよび成膜条件を用い、上記層(B)上に形成した。各ガスバリア性フィルムにおいて成膜に用いた成膜条件は下記表3に示す。
[Formation of layer (A)]
The layer (A) was formed on the layer (B) using a magnetron sputtering apparatus and using the targets and film formation conditions shown in Table 1 above by DC or RF depending on the target to be used. The film formation conditions used for film formation in each gas barrier film are shown in Table 3 below.
 〔層(B)ポリシラザン改質層の形成〕
 層(B)は、実施例1の「層(B)ポリシラザン改質層の形成」と同様にして、上記層(A)直上に形成した。なお、改質の際の照射エネルギー量は、下記表3に記載のように行った。
[Formation of layer (B) modified polysilazane layer]
The layer (B) was formed immediately above the layer (A) in the same manner as in “Formation of layer (B) modified polysilazane layer” in Example 1. In addition, the irradiation energy amount at the time of the modification was performed as described in Table 3 below.
 (比較例12:ガスバリア性フィルム30の作製)
 実施例14において、酸化ニオブ層の代わりに、上記表1および下記表3に示すターゲットおよび成膜条件を用い、酸化ケイ素層を形成したこと、および層(B)の乾燥膜厚が150nmとなるように塗膜の形成を行ったこと以外は実施例14と同様にしてガスバリア性フィルム30を得た。
(Comparative Example 12: Production of gas barrier film 30)
In Example 14, instead of the niobium oxide layer, using the targets and film formation conditions shown in Table 1 and Table 3 below, the silicon oxide layer was formed, and the dry film thickness of the layer (B) was 150 nm. A gas barrier film 30 was obtained in the same manner as in Example 14 except that the coating film was formed as described above.
 (比較例13:ガスバリア性フィルム31の作製)
 実施例14において樹脂基材上に、層(A)の代わりに、上記表1および下記表3に示すターゲットおよび成膜条件を用い、酸化ニオブ層を形成した後、下記のようにし酸炭化ケイ素層を形成したこと以外は実施例14と同様にして、ガスバリア性フィルム31を得た。
(Comparative Example 13: Production of gas barrier film 31)
In Example 14, instead of the layer (A), a niobium oxide layer was formed on the resin base material using the targets and film formation conditions shown in Table 1 and Table 3 below. A gas barrier film 31 was obtained in the same manner as in Example 14 except that the layer was formed.
 酸炭化ケイ素層の形成:ポリメチルシルセスキオキサン(SR-13、小西化学工業社製)をメチルエチルケトンに溶解し、ろ過して、5質量%の塗布液を得た。これをスピンコートにより乾燥膜厚が50nmとなるように塗布し、100℃で2分間乾燥した。 Formation of silicon oxycarbide layer: Polymethylsilsesquioxane (SR-13, manufactured by Konishi Chemical Industry Co., Ltd.) was dissolved in methyl ethyl ketone and filtered to obtain a 5% by mass coating solution. This was applied by spin coating so that the dry film thickness was 50 nm, and dried at 100 ° C. for 2 minutes.
 (比較例14:ガスバリア性フィルム32の作製)
 実施例15において、層(B)の形成の際の照射エネルギーを表3に記載の条件としたこと以外は実施例15と同様にしてガスバリア性フィルム32を得た。
(Comparative Example 14: Production of gas barrier film 32)
In Example 15, a gas barrier film 32 was obtained in the same manner as in Example 15 except that the irradiation energy at the time of forming the layer (B) was changed to the conditions shown in Table 3.
 実施例14~20および比較例12~14のガスバリア性フィルムについて、評価1を行った。結果を表3に示す。 Evaluation 1 was performed on the gas barrier films of Examples 14 to 20 and Comparative Examples 12 to 14. The results are shown in Table 3.
 <ガスバリア性フィルムの水蒸気透過性評価3(以下、単に評価3とする)>
 各実施例および比較例で得られたガスバリア性フィルムを40℃90%RHの環境で48時間保管した。保管後のガスバリア性フィルムについて、評価1と同様にして透過濃度初期値を求めた。その後、各試料について、上記評価1と同様にして、透過濃度初期値の50%未満となった時点の観察時間を求めた。結果を表3に示す。なお、本評価は、上層のバリア性が劣化するか否かで製造安定性を評価する目的で行った。
<Water vapor permeability evaluation 3 of gas barrier film (hereinafter simply referred to as evaluation 3)>
The gas barrier film obtained in each Example and Comparative Example was stored for 48 hours in an environment of 40 ° C. and 90% RH. With respect to the gas barrier film after storage, the transmission density initial value was determined in the same manner as in Evaluation 1. Thereafter, the observation time when each sample was less than 50% of the initial transmission density was determined in the same manner as in Evaluation 1 above. The results are shown in Table 3. In addition, this evaluation was performed in order to evaluate manufacturing stability by whether the barrier property of an upper layer deteriorated.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記結果より、ガスバリア性フィルム23~29は、高温高湿環境での耐久性に優れることがわかる。かような効果は、層(A)を設けていないガスバリア性フィルム30、層(A)と層(B)とが隣接していないガスバリア性フィルム31との比較により、層(A)が存在すること、かつ、層(A)および層(B)とが隣接していることによって達成されていることがわかる。また、ポリシラザン改質の際の照射エネルギーが1.0J/cm未満であるガスバリア性フィルム32は、ガスバリア性フィルム24と比較して、高温高湿環境での耐久性が顕著に低下していることがわかる。 From the above results, it can be seen that the gas barrier films 23 to 29 are excellent in durability in a high temperature and high humidity environment. Such an effect is obtained by comparing the gas barrier film 30 not provided with the layer (A) and the gas barrier film 31 in which the layer (A) and the layer (B) are not adjacent to each other. It can be seen that this is achieved by the fact that the layer (A) and the layer (B) are adjacent to each other. In addition, the gas barrier film 32 having an irradiation energy of less than 1.0 J / cm 2 during the polysilazane modification has a significantly reduced durability in a high temperature and high humidity environment as compared with the gas barrier film 24. I understand that.
 なお、基材-層(A)-層(B)の場合には、ポリシラザン層のエキシマ透過量の差による界面近傍の改質程度(ポリシラザン層が薄いほど改質される)と、ポリシラザン改質層自体のバリア性(ポリシラザン層がある程度厚い方が良好)とが複合してバリア性能を発揮しているものと考えられる。このため、上記実施例では、層(B)の膜厚が100nmであるガスバリア性フィルム27が最も良好な結果になったものと推察される。 In the case of the substrate-layer (A) -layer (B), the degree of modification in the vicinity of the interface due to the difference in the excimer permeation amount of the polysilazane layer (the thinner the polysilazane layer is modified) and the polysilazane modification It is considered that the barrier performance of the layer itself is exhibited in combination with the barrier property of the layer itself (a better thickness of the polysilazane layer is better). For this reason, in the said Example, it is guessed that the gas barrier film 27 whose film thickness of a layer (B) is 100 nm brought the most favorable result.
 本出願は、2015年2月25日に出願された日本特許出願番号2015-035034号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2015-035034 filed on February 25, 2015, the disclosure content of which is referenced and incorporated as a whole.

Claims (10)

  1.  樹脂基材上に、気相成膜法により形成される遷移金属化合物を含む層(A)と、前記層(A)に接しており、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を印加して形成されるガスバリア層(B)と、を有し、前記塗膜の表面における前記真空紫外線の照射エネルギー量が1.0J/cm以上である、ガスバリア性フィルム。 A layer (A) containing a transition metal compound formed by a vapor phase film-forming method on a resin substrate, and in contact with the layer (A), obtained by applying and drying a coating liquid containing polysilazane. And a gas barrier layer (B) formed by applying vacuum ultraviolet rays to the coating film, wherein the irradiation energy amount of the vacuum ultraviolet rays on the surface of the coating film is 1.0 J / cm 2 or more. .
  2.  前記遷移金属化合物中の遷移金属がケイ素よりも酸化還元電位が低い金属である、請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein the transition metal in the transition metal compound is a metal having a lower oxidation-reduction potential than silicon.
  3.  前記層(A)が前記遷移金属をM、化学量論的に得られる遷移金属酸化物をMOx2とした場合に、x1<x2である金属酸化物MOx1を含む、請求項1または2に記載のガスバリア性フィルム。 The layer (A) includes a metal oxide MO x1 where x1 <x2, where M is the transition metal and MO x2 is a stoichiometrically obtained transition metal oxide. The gas barrier film according to the description.
  4.  前記遷移金属がバナジウム、ニオブおよびタンタルからなる群より選択される少なくとも1種の金属である、請求項2または3に記載のガスバリア性フィルム。 The gas barrier film according to claim 2 or 3, wherein the transition metal is at least one metal selected from the group consisting of vanadium, niobium and tantalum.
  5.  樹脂基材、層(B)、および層(A)がこの順に配置される、請求項1~4のいずれか1項に記載のガスバリア性フィルム。 The gas barrier film according to any one of claims 1 to 4, wherein the resin substrate, the layer (B), and the layer (A) are arranged in this order.
  6.  樹脂基材上に、気相成膜法により遷移金属化合物を含む層(A)を形成し、前記層(A)上に層(A)に接するようにポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を照射してガスバリア層(B)を形成すること、または、樹脂基材上に、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を照射してガスバリア層(B)を形成し、前記層(B)上に層(B)に接するように気相成膜法により遷移金属化合物を含む層(A)を形成することを有し、前記塗膜の表面における前記真空紫外線の照射エネルギー量が1.0J/cm以上である、ガスバリア性フィルムの製造方法。 A layer (A) containing a transition metal compound is formed on a resin substrate by a vapor deposition method, and a coating liquid containing polysilazane is applied and dried on the layer (A) so as to be in contact with the layer (A). The coating film obtained is irradiated with vacuum ultraviolet rays to form the gas barrier layer (B), or the coating film obtained by applying and drying a coating liquid containing polysilazane on the resin substrate is vacuum ultraviolet rays. Forming a gas barrier layer (B), and forming a layer (A) containing a transition metal compound on the layer (B) by a vapor deposition method so as to be in contact with the layer (B). The manufacturing method of the gas barrier film whose irradiation energy amount of the said vacuum ultraviolet rays in the surface of the said coating film is 1.0 J / cm < 2 > or more.
  7.  前記遷移金属化合物中の遷移金属がケイ素よりも酸化還元電位が低い金属である、請求項6に記載のガスバリア性フィルムの製造方法。 The method for producing a gas barrier film according to claim 6, wherein the transition metal in the transition metal compound is a metal having a lower oxidation-reduction potential than silicon.
  8.  前記層(A)が前記遷移金属をM、化学量論的に得られる遷移金属酸化物をMOx2とした場合に、x1<x2である金属酸化物MOx1を含む、請求項6または7に記載のガスバリア性フィルムの製造方法。 The layer (A) includes a metal oxide MO x1 where x1 <x2, where M is the transition metal and MO x2 is a stoichiometrically obtained transition metal oxide. The manufacturing method of the gas-barrier film of description.
  9.  前記遷移金属がバナジウム、ニオブおよびタンタルからなる群より選択される少なくとも1種の金属である、請求項7または8に記載のガスバリア性フィルムの製造方法。 The method for producing a gas barrier film according to claim 7 or 8, wherein the transition metal is at least one metal selected from the group consisting of vanadium, niobium and tantalum.
  10.  樹脂基材、層(B)、および層(A)がこの順に配置される、請求項6~9のいずれか1項に記載のガスバリア性フィルムの製造方法。 The method for producing a gas barrier film according to any one of claims 6 to 9, wherein the resin substrate, the layer (B), and the layer (A) are arranged in this order.
PCT/JP2016/055526 2015-02-25 2016-02-24 Gas barrier film WO2016136841A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017502446A JP6747426B2 (en) 2015-02-25 2016-02-24 Gas barrier film
CN201680011634.4A CN107249874A (en) 2015-02-25 2016-02-24 Gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-035034 2015-02-25
JP2015035034 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016136841A1 true WO2016136841A1 (en) 2016-09-01

Family

ID=56788878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055526 WO2016136841A1 (en) 2015-02-25 2016-02-24 Gas barrier film

Country Status (3)

Country Link
JP (1) JP6747426B2 (en)
CN (1) CN107249874A (en)
WO (1) WO2016136841A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708680B (en) * 2019-01-08 2020-11-01 穎華科技股份有限公司 Polymer plastic front plate and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151571A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Gas barrier film, production method of the same and electronic device including the gas barrier film
JP2015003464A (en) * 2013-06-21 2015-01-08 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005034817A1 (en) * 2005-07-26 2007-02-01 Clariant International Limited Process for producing a thin vitreous coating on substrates to reduce gas permeation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151571A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Gas barrier film, production method of the same and electronic device including the gas barrier film
JP2015003464A (en) * 2013-06-21 2015-01-08 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same

Also Published As

Publication number Publication date
CN107249874A (en) 2017-10-13
JPWO2016136841A1 (en) 2017-12-14
JP6747426B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
WO2016136842A1 (en) Gas barrier film
JPWO2016136842A6 (en) Gas barrier film
JP6073549B2 (en) Gas barrier film, electronic device, and method for producing gas barrier film
JP2017095758A (en) Method for producing gas barrier film
JPWO2016190284A6 (en) Gas barrier film and method for producing the same
JPWO2016190284A1 (en) Gas barrier film and method for producing the same
CN107531016B (en) Strip gas barrier film and its manufacturing method and short strip shape gas barrier film and its manufacturing method
WO2016194559A1 (en) Gas barrier film
JPWO2016178391A6 (en) Elongated gas barrier film and method for producing the same, and short gas barrier film and method for producing the same
JPWO2013168647A1 (en) Method for producing gas barrier film
WO2016136841A1 (en) Gas barrier film
JPWO2016136841A6 (en) Gas barrier film
WO2017047346A1 (en) Electronic device and method for sealing electronic device
WO2016190053A1 (en) Gas barrier film and method for producing gas barrier film
JP2016171038A (en) Method for manufacturing electronic device
WO2017010249A1 (en) Gas barrier film
WO2017090498A1 (en) Method for producing gas barrier film
WO2016136843A1 (en) Gas barrier film and electronic device using gas barrier film
WO2017014246A1 (en) Gas barrier film and method for producing same
JP2017001219A (en) Gas barrier film
WO2016136840A1 (en) Gas barrier film
JP2016193527A (en) Gas barrier film
JP2016175372A (en) Gas barrier film
JP6477077B2 (en) Method for producing gas barrier film
WO2015029732A1 (en) Gas barrier film and process for manufacturing gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502446

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755585

Country of ref document: EP

Kind code of ref document: A1