WO2017014246A1 - Gas barrier film and method for producing same - Google Patents

Gas barrier film and method for producing same Download PDF

Info

Publication number
WO2017014246A1
WO2017014246A1 PCT/JP2016/071322 JP2016071322W WO2017014246A1 WO 2017014246 A1 WO2017014246 A1 WO 2017014246A1 JP 2016071322 W JP2016071322 W JP 2016071322W WO 2017014246 A1 WO2017014246 A1 WO 2017014246A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
layer
atom
metal
region
Prior art date
Application number
PCT/JP2016/071322
Other languages
French (fr)
Japanese (ja)
Inventor
森 孝博
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017529914A priority Critical patent/JPWO2017014246A1/en
Publication of WO2017014246A1 publication Critical patent/WO2017014246A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Definitions

  • the present invention relates to a gas barrier film and a method for producing the same.
  • Gas barrier films are used as substrate films and sealing films in flexible electronic devices, particularly flexible organic EL devices.
  • the gas barrier film used for these is required to have high gas barrier properties.
  • a gas barrier film is manufactured by forming an inorganic barrier layer on a base film by a vapor deposition method such as vapor deposition, sputtering, or CVD.
  • a manufacturing method for forming a gas barrier layer by applying energy to a precursor layer formed by applying a solution on a substrate has been studied.
  • studies using a polysilazane compound as a precursor have been widely conducted, and studies are being conducted as a technique that achieves both high productivity by coating and gas barrier properties.
  • the modification of the polysilazane layer using excimer light having a wavelength of 172 nm has attracted attention.
  • a solution containing polysilazane and a catalyst is applied onto a substrate, and then the solvent is removed to form a polysilazane layer.
  • the gas barrier layer formed by modifying polysilazane described in the above Japanese translation of PCT publication No. 2009-503157 (US Patent Application Publication No. 2010/1666977) with excimer light has a low temperature of about 40 ° C.
  • the gas barrier property is good, it has been found that the gas barrier property decreases with time in a very severe environment of high temperature and high humidity such as 80 ° C. and 85% RH.
  • JP-T-2009-503157 US Patent Application Publication No. 2010/1666977
  • JP-T-2009-503157 US Patent Application Publication No. 2010/1666977
  • an object of the present invention is to provide a gas barrier film excellent in durability in a high temperature and high humidity environment.
  • Another object of the present invention is to provide a method for producing a gas barrier film excellent in productivity and production stability.
  • a gas barrier film having a gas barrier layer containing a silicon atom, a metal M1 other than silicon, an element M2 other than silicon and the metal M1, and an oxygen atom on a resin substrate.
  • the ratio of the amount of the silicon atom to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer is [Si] (unit: atom %), And the ratio of the amount of the metal M1 to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer [M1] (unit: atom) %) And the element relative to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer.
  • a method for producing the gas barrier film wherein the first layer containing the silicon atom, the element M2, and the oxygen atom is formed on the resin base material. And a step of forming a second layer containing the metal M1 and the oxygen atom on the first layer.
  • FIG. 1 is a schematic cross-sectional view of a vacuum ultraviolet irradiation apparatus used in the examples, 1 is an apparatus chamber, 2 is a Xe excimer lamp having a double tube structure that irradiates vacuum ultraviolet light of 172 nm, and 3 also serves as an external electrode.
  • An excimer lamp holder, 4 is a sample stage, 5 is a sample on which a polysilazane compound coating layer is formed, 6 is a light shielding plate, and V is a moving speed of the sample stage.
  • the present invention is a gas barrier film having, on a resin substrate, a gas barrier layer containing a silicon atom, a metal M1 other than silicon, an element M2 other than silicon and the metal M1, and an oxygen atom,
  • the ratio of the amount of the silicon atom to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer is [Si] (unit: atom%)
  • the ratio of the amount of the metal M1 to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer is [M1] (unit: atom%)
  • Ratio of the amount of the element M2 to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer Is [M2] (unit: atom%), from the resin substrate side, the region (C)
  • the gas barrier film of the present invention having such a configuration is excellent in durability in a high temperature and high humidity environment. Moreover, the manufacturing method of the gas barrier film of this invention is excellent in productivity and production stability.
  • Area (A) is an area where a lot of metal M1 exists. It has been found that when the region (A) satisfies the relationship of the above formula (a), the region (A) has a property of being excellent in scratch resistance as compared with a region made of an oxide or oxynitride containing silicon (Si) as a main component. . Then, by arranging the region (A) among the regions (A) to (C) on the side farthest from the resin base material, it functions as a protective layer in the gas barrier film manufacturing process and deteriorates the gas barrier property. It has the effect of suppressing.
  • the region (B) is a region having a high gas barrier property.
  • a compound having a bond between Si and the metal M1 hereinafter also referred to as Si-M1 bond
  • Si-M1 bond a compound having a bond between Si and the metal M1
  • Si-M1 bond a compound having a bond between Si and the metal M1
  • Si-M1 bond a compound having a bond between Si and the metal M1
  • Si-M1 bond a compound having a bond between Si and the metal M1 (hereinafter also referred to as Si-M1 bond)
  • the region (B) where the Si-M1 bond is formed has higher moisture and heat resistance than SiO 2
  • the region (B) has excellent durability to maintain a good gas barrier property even when stored in a high temperature and high humidity environment.
  • the element M2 may exist in the region (B), it is considered that the element M2 inhibits the formation of the Si-M1 bond.
  • the region (C) closest to the resin base material is a region mainly containing silicon but containing a relatively large amount of the element M2.
  • the region (C) contains a relatively large amount of the element M2, that is, by satisfying the relationship of the above formula (c), composition change when stored in a high temperature and high humidity environment is suppressed, and durability in a high temperature and high humidity environment is achieved. Excellent in properties. Moreover, it has the effect of reducing the unevenness
  • the composition stability is hardly changed and the production stability becomes stable. It also has excellent productivity.
  • X to Y indicating a range means “X or more and Y or less”.
  • measurement of operation and physical properties is performed under the conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • resin substrate Specific examples of the resin substrate according to the present invention include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, and polyamideimide resin.
  • resin substrates can be used alone or in combination of two or more.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • alicyclic polyolefin (for example, ZEONOR (registered trademark) 1600: 160 ° C, manufactured by Nippon Zeon Co., Ltd.), polyarylate (PAr: 210 ° C), polyethersulfone (PES: 220 ° C), polysulfone (PSF: 190 ° C), cycloolefin copolymer (COC: Compound described in JP-A No.
  • the resin substrate is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
  • an opaque material can be used as the plastic film.
  • the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.
  • the resin base material listed above may be an unstretched film or a stretched film.
  • the resin substrate can be produced by a conventionally known general method. Regarding the method for producing these base materials, the items described in paragraphs “0051” to “0055” of International Publication No. 2013/002026 can be appropriately employed.
  • the surface of the resin substrate may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatments may be combined as necessary. May go.
  • the resin base material may be subjected to an easy adhesion treatment.
  • the resin substrate may be a single layer or a laminated structure of two or more layers.
  • the resin base materials may be the same type or different types.
  • the thickness of the resin base material according to the present invention (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 200 ⁇ m, and more preferably 20 to 150 ⁇ m.
  • the gas barrier film of the present invention has a gas barrier layer containing a silicon atom, a metal M1 other than silicon, an element M2 other than silicon and metal M1, and an oxygen atom.
  • the gas barrier layer may further contain nitrogen atoms.
  • Metal M1 The metal M1 other than silicon is not particularly limited, but a transition metal is preferable.
  • the transition metal refers to a Group 3 element to a Group 11 element in the long-period periodic table, and more specifically, scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr ), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), technetium (Tc) ), Ruthenium (Ru), palladium (Pd), silver (Ag), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu) ), Gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), yt
  • Nb, Ta, V, Zr, Ti, Hf, Y, La, or Ce is preferable as M1 from the viewpoint that a good gas barrier property can be obtained. Furthermore, among these, it is considered from the various examination results that Nb, Ta, and V, which are metals of Group 5 of the long-period periodic table, are likely to be bonded to Si contained in the gas barrier layer. Further preferably, it can be used.
  • the metal M1 is a Group 5 metal (particularly Nb)
  • the metal M1 is particularly preferably Nb or Ta from which a compound with good transparency can be obtained.
  • element M2 examples include elements other than silicon and metal M1, and at least one element selected from the group consisting of elements of Group 1 to Group 14 of the long-period periodic table.
  • element M2 aluminum (Al), titanium (Ti), zirconium (Zr), zinc (Zn), gallium (Ga), indium (In), chromium (Cr), iron (Fe), magnesium (Mg), tin (Sn), nickel (Ni), palladium (Pd), lead (Pb), manganese (Mn), lithium (Li), germanium (Ge), copper (Cu), sodium (Na), potassium (K), calcium (Ca), cobalt (Co), boron (B), beryllium (Be), strontium (Sr), barium (Ba), radium (Ra), thallium (Tl), germanium (Ge), etc.
  • At least one selected from the group consisting of boron (B), aluminum (Al), titanium (Ti), and zirconium (Zr) is more preferable, and aluminum (Al) and boron (B) are more preferable.
  • Aluminum (Al) is particularly preferable.
  • the moisture and heat resistance of the gas barrier film can be further improved.
  • the element M2 may be used independently and 2 or more types may be used together.
  • the gas barrier layer contains silicon atoms, metals M1, elements M2, and oxygen atoms by performing XPS (X-ray Photoelectron Spectroscopy) composition analysis of the gas barrier layer as follows. Can do.
  • ⁇ XPS analysis conditions >> ⁇ Device: QUANTERASXM manufactured by ULVAC-PHI ⁇ X-ray source: Monochromatic Al-K ⁇ ⁇ Sputtering ion: Ar (2 keV) Depth profiles: in terms of SiO 2 sputter thickness, repeat the measurement at a predetermined thickness intervals, - obtaining the depth depth profile Quantification relative sensitivity coefficients background determined by Shirley method, from the peak area obtained Quantified using the method. For data processing, MultiPak manufactured by ULVAC-PHI was used. The elements to be analyzed were Si, metal M1, element M2, O, N, and C.
  • the measurement resolution (predetermined thickness interval) of the depth profile may be 3 nm or less, 2 nm or less, or 1 nm or less. In the embodiment of the present invention, the measurement resolution of the depth profile is 1 nm.
  • the gas barrier layer according to the present invention includes, from the resin substrate side, a region (C) that satisfies the above formula (c), a region (B) that satisfies the above formula (b), and a region (A) that satisfies the above formula (a). In this order.
  • the region (A) is a region that satisfies the above formula (a).
  • the thickness of the region (A) is preferably 1 nm or more from the viewpoint that a certain amount of thickness is necessary to function as a protective layer and from the viewpoint of obtaining a visible light reflectance suitable as a film for optical applications. It is 15 nm or less, more preferably 3 nm or more and 10 nm or less.
  • the thickness of the region (A) can be measured by the following method using XPS composition analysis.
  • the starting point is the measurement point where [M1]> [Si] ⁇ [M2], and [Si] ⁇ [M1]>
  • the region up to the measurement point immediately before the measurement point that is [M2] is defined as the region (A).
  • the sputtering depth in terms of SiO 2 with respect to one measurement point is d (unit: nm)
  • the number of measurement points (A) n measured as the region (A) is multiplied by d [(A).
  • n ⁇ d (nm)] is the thickness of the region (A).
  • the thickness of the regions (A) to (C), and [B] and [C] described later can be measured by the XPS composition analysis described above.
  • the region (B) is a region that satisfies the above formula (b).
  • the thickness of the region (B) is preferably 5 nm or more and 50 nm or less, more preferably 10 nm or more and 30 nm or less, from the viewpoint of gas barrier properties and productivity.
  • the thickness of the region (B) can be measured by the following method using XPS composition analysis.
  • the starting point is [Si] ⁇ [M1]> [M2], and [Si]> [M2] ⁇
  • the region (B) is defined up to the measurement point immediately before the measurement point that becomes [M1].
  • the sputtering depth in terms of SiO 2 for one measurement point is d (unit: nm)
  • the number of measurement points (B) n measured as the region (B) is multiplied by d [(B).
  • n ⁇ d (nm)] is the thickness of the region (B).
  • the region (C) is a region that satisfies the above formula (c).
  • the thickness of the region (C) is preferably 1 nm or more and 500 nm or less, more preferably 10 nm or more and 200 nm or less, from the viewpoint of reducing durability in a high temperature and high humidity environment and unevenness of the resin base material.
  • the thickness of the region (C) can be measured by the following method using XPS composition analysis.
  • the measurement point originated from the surface of the resin base material, starting from the measurement point where [Si]> [M2] ⁇ [M1] was first established.
  • a region (C) is defined up to the measurement point immediately before the measurement point at which the measurement point (measurement point due to the surface of the other layer when another layer is provided between the gas barrier layer and the resin base material) is obtained. To do.
  • the definition of the depth range is calculated in the same way as above. Whether or not the measurement point is due to the surface of the resin substrate (measurement point due to the surface of the other layer) is appropriately determined from the composition of the resin substrate (other layer) used.
  • the mechanism of [C]> [B] is not clear, but is estimated as follows.
  • the first layer formed by the coating method is originally [M2] / [Si] is the thickness of the first layer. It is constant over the entire area of direction.
  • the metal M1 in the second layer diffuses into the first layer while extracting oxygen from the first layer.
  • the first layer has an oxygen deficient composition, it is considered that a Si-M1 bond or a Si-M2 bond is formed.
  • the Si-M1 bond is easier to form than the Si-M2 bond, the Si-M2 bond is formed preferentially, and the phenomenon that Si diffuses into the second layer also occurs.
  • a layer containing a mixed oxide as a main component and having a reduced M2 content is formed on the surface layer side.
  • a region where [Si] ⁇ [M2] is the region (B).
  • [B] is preferably 0 to 0.2, more preferably 0 to 0.1.
  • [C] is preferably 0.001 to 0.5, and more preferably 0.002 to 0.2.
  • [C] / [B] is preferably 1.2 to 20, and more preferably 1.5 to 10.
  • Examples of the method for obtaining a gas barrier film satisfying the relationship [C]> [B] include the following method for producing a gas barrier film of the present invention. In the manufacturing method described later, this can be achieved by laminating the second layer containing the metal M1 on the first layer containing Si and the element M2 by a specific method. Specifically, the lamination is preferably performed under the condition that the metal M1 is oxygen deficient (a state where the amount of oxygen or nitrogen bonded to the maximum valence of the metal M1 is insufficient). When the metal M1 is laminated under conditions that cause oxygen vacancies, a bond is formed between the Si contained in the first layer and the metal M1 contained in the second layer (because the Si and the metal M1 are likely to form a bond). Conceivable).
  • the first layer of Si diffuses into the second layer, and the second layer of metal M1 diffuses into the first layer.
  • the element M2 in the first layer is less likely to form a bond with the metal M1 than Si, and thus the element M2 is difficult to diffuse to the second layer side.
  • the gas-barrier film which satisfy
  • [Si] [M1].
  • [Si] and [M1] at the boundary between the region (A) and the region (B) are preferably 10 atom% or more and 25 atom% or less, and 12 atom% or more and 20 atom% or less from the viewpoint of good gas barrier properties. It is more preferable that
  • [M1] [M2] at the boundary between the region (B) and the region (C).
  • [M1] and [M2] at the boundary between the region (B) and the region (C) are preferably 0 atom% or more and 15 atom% or less, and preferably 0 atom% or more and 5 atom% or less from the viewpoint of good heat and moisture resistance. It is preferable that it is 0 atm% or more and 1 atom% or less.
  • [Si] and [M1] at the boundary between the region (A) and the region (B), and [M1] and [M2] at the boundary between the region (B) and the region (C) are the first layer.
  • the [M2] / [Si] ratio and the film formation conditions of the second layer can be controlled.
  • the region (B) of the gas barrier layer has the following condition ⁇ B> when oxygen is O, nitrogen is N, and the composition of the gas barrier layer is SiM1 x O y N z. It is preferable to satisfy.
  • the above condition ⁇ B> indicates that the gas barrier layer contains the oxygen deficient composition of the complex oxide of Si and the metal M1 over a predetermined thickness.
  • the composition of the composite oxide of Si and metal M1 according to the present invention is represented by SiM1 x O y N z .
  • the composite oxide may partially include a nitride structure.
  • the maximum valence of Si is 4, the maximum valence of metal M1 is b, the valence of O is 2, and the valence of N is 3.
  • both Si and metal M1 are bonded to either O or N. Will be.
  • the composite valence calculated by weighted averaging the maximum valence of each element according to the abundance ratio of each element is “maximum valence”. It shall be adopted as the value of b.
  • the region [b] is a region satisfying x ⁇ 1.
  • the region [b] satisfying this condition is considered to contribute to the improvement of the gas barrier property.
  • the region [b] preferably includes a region satisfying 0.5 ⁇ x ⁇ 1. It is more preferable to include a region that satisfies 6 ⁇ x ⁇ 1, and it is further preferable to include a region that satisfies 0.7 ⁇ x ⁇ 1.
  • the region [b] satisfying (2y + 3z) / (4 + bx) ⁇ 1.0 is present, the effect of improving the gas barrier property is exhibited, but the region [b] Preferably satisfies (2y + 3z) / (4 + bx) ⁇ 0.98, more preferably satisfies (2y + 3z) / (4 + bx) ⁇ 0.95, and (2y + 3z) / (4 + bx) ⁇ 0. More preferably, 92 is satisfied.
  • the value of (2y + 3z) / (4 + bx) in the region [b] decreases, the effect of improving the gas barrier property increases, but the absorption with visible light also increases.
  • (2y + 3z) / (4 + bx) ⁇ 0.7 is preferable, and (2y + 3z) / (4 + bx) ⁇ 0.75. Is more preferable, and (2y + 3z) / (4 + bx) ⁇ 0.8 is more preferable.
  • the thickness of the region [b] where good gas barrier properties can be obtained is preferably 2 nm or more, more preferably 3 nm or more, and more preferably 4 nm or more as the sputtering thickness in terms of SiO 2. More preferably, it is more preferably 5 nm or more.
  • the manufacturing method of the gas barrier film of the present invention is not particularly limited, (1) a step of forming a first layer containing a silicon atom, an element M2, and an oxygen atom on a resin substrate; (2) the first And a step of forming a second layer containing metal M1 and oxygen atoms on one layer.
  • Step of forming first layer As a method of forming the first layer containing silicon atoms, element M2, and oxygen atoms, a method including vapor phase film-forming or applying and drying a coating liquid containing a compound containing polysilazane and element M2 (Hereinafter, also simply referred to as a coating method). Among these, the coating method is preferable from the viewpoint of productivity.
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, and ion plating, plasma CVD (chemical), and the like. Examples thereof include chemical vapor deposition methods such as vapor deposition method and ALD (Atomic Layer Deposition). Among them, the physical vapor deposition method is preferable and the sputtering method is more preferable because the film formation is possible without damaging the lower layer and the productivity is high.
  • bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more.
  • the target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used.
  • RF high frequency
  • a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used.
  • a metal oxide film By controlling the sputtering phenomenon so as to be in the transition region, a metal oxide film can be formed at a high film formation speed, which is preferable.
  • a thin film of an element M2 oxide can be formed by using a target containing the element M2 as a target and further introducing oxygen into the process gas.
  • an oxide target of the element M2 can be used.
  • the inert gas used for the process gas He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used.
  • a thin film such as an oxide, nitride, nitride oxide, or carbonate of the element M2 can be formed.
  • film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, which can be appropriately selected according to the sputtering apparatus, film material, film thickness, and the like.
  • Examples of the target including the element M2 include a plurality of targets described in, for example, JP 2000-026961 A, JP 2009-215651 A, JP 2003-160862 A, JP 2012-007218 A, and the like. A target containing any of these elements can be used.
  • (1-2) Coating Method Another method for forming the first layer includes a method of coating and drying a coating solution containing polysilazane and a compound containing the element M2.
  • Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
  • the polysilazane preferably has the following structure.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different.
  • n is an integer
  • the polysilazane having the structure represented by the general formula (I) is determined to have a number average molecular weight of 150 to 150,000 g / mol. Is preferred.
  • one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • polysilazane has a structure represented by the following general formula (II).
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different.
  • n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. It is preferred that Note that n ′ and p may be the same or different.
  • R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group;
  • R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group;
  • R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5 ' each represents a methyl group is preferred.
  • polysilazane has a structure represented by the following general formula (III).
  • R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ may be the same or different.
  • n ′′, p ′′ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. It is preferable to be determined as follows. Note that n ′′, p ′′, and q may be the same or different.
  • R 1 ′′ , R 3 ′′ and R 6 ′′ each represent a hydrogen atom
  • R 2 ′′ , R 4 ′′ , R 5 ′′ and R 8 ′′ each represent a methyl group.
  • R 9 ′′ represents a (triethoxysilyl) propyl group
  • R 7 ′′ represents an alkyl group or a hydrogen atom.
  • the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard.
  • the ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. For this reason, these perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
  • Perhydropolysilazane is preferably exemplified as polysilazane. Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
  • Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and a commercially available product can be used as it is as a coating solution for forming the first layer.
  • examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by Merck Co., Ltd. . These polysilazane solutions can be used alone or in combination of two or more.
  • polysilazane examples include, but are not limited to, for example, a silicon alkoxide-added polysilazane obtained by reacting the above polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No. 5-238827), a glycidol reacted Glycidol-added polysilazane (Japanese Patent Laid-Open No. 6-122852) obtained by reaction, alcohol-added polysilazane obtained by reacting alcohol (Japanese Patent Laid-Open No.
  • metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal obtained by adding metal fine particles Fine particle added policy Zhang such (JP-A-7-196986), and a polysilazane ceramic at low temperatures.
  • Examples of the compound containing the element M2 used in the coating method include, for example, aluminum isopropoxide, aluminum-sec-butyrate, titanium isopropoxide, aluminum triethylate, aluminum triisopropylate, aluminum tritert-butylate, Aluminum tri-n-butylate, aluminum tri-sec-butylate, aluminum ethyl acetoacetate diisopropylate, acetoalkoxy aluminum diisopropylate, calcium isopropylate, titanium tetraisopropoxide (titanium (IV) isopropylate), zirconium tetraacetylacetate Nate, aluminum diisopropylate monoaluminum tert-butylate, aluminum trisethyl acetoacetate, Luminium oxide isopropoxide trimer, zirconium (IV) isopropylate, tris (2,4-pentanedionato) titanium (V), tetrakis
  • the compound containing the element M2 is preferably a metal alkoxide compound, and among the metal alkoxide compounds, a compound having a branched alkoxy group is more preferable from the viewpoint of reactivity, solubility, and the like, a 2-propoxy group, or More preferred is a compound having a sec-butoxy group. Moreover, the compound which has an ethoxy group from a viewpoint of gas barrier performance, adhesiveness, etc. is more preferable.
  • metal alkoxide compounds having an acetylacetonate group are also preferred.
  • the acetylacetonate group is preferable because it has an interaction with the central element of the alkoxide compound due to the carbonyl structure, so that handling is easy.
  • a compound having a plurality of alkoxide groups or acetylacetonate groups is more preferable from the viewpoint of reactivity and film composition.
  • metal alkoxide compound a commercially available product or a synthetic product may be used.
  • commercially available products include, for example, AMD (aluminum diisopropylate mono-sec-butylate), ASBD (aluminum sec-butylate), ALCH (aluminum ethyl acetoacetate diisopropylate), ALCH-TR (aluminum tris) Ethyl acetoacetate), aluminum chelate M (aluminum alkyl acetoacetate / diisopropylate), aluminum chelate D (aluminum bisethylacetoacetate / monoacetylacetonate), aluminum chelate A (W) (aluminum trisacetylacetonate) , Kawaken Fine Chemical Co., Ltd.), Preneact (registered trademark) AL-M (acetoalkoxyaluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.), Olga Ts
  • the coating liquid containing polysilazane inert gas atmosphere. This is to prevent the metal alkoxide compound from reacting with moisture and oxygen in the atmosphere and causing intense oxidation.
  • the solvent for preparing the coating solution for forming the first layer is not particularly limited as long as it can dissolve the compound containing polysilazane and the element M2, but water and reactive groups that easily react with polysilazane (for example, an organic solvent that does not contain a hydroxyl group or an amine group and is inert to polysilazane is preferable, and an aprotic organic solvent is more preferable.
  • the solvent is an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, terpenes, etc.
  • aprotic solvent for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, terpenes, etc.
  • Hydrogen solvents Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like.
  • the solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
  • the concentration of polysilazane in the coating solution for forming the first layer is not particularly limited and varies depending on the film thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by mass, more preferably 5 to 50% by mass, More preferably, it is 10 to 40% by mass.
  • the coating solution for forming the first layer preferably contains a catalyst from the viewpoint of promoting modification by vacuum ultraviolet rays.
  • a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds.
  • the concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on polysilazane.
  • concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on polysilazane.
  • the following additives may be used as necessary.
  • cellulose ethers, cellulose esters for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc.
  • natural resins for example, rubber, rosin resin, etc., synthetic resins
  • Aminoplasts particularly urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyester resins or modified polyester resins, epoxy resins, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
  • a method of applying the first layer forming coating solution a conventionally known appropriate wet coating method may be employed. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method and the like. It is done.
  • the coating thickness can be appropriately set according to the preferred thickness and purpose.
  • the coating film After applying the coating solution, it is preferable to dry the coating film.
  • the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable first layer can be obtained. The remaining solvent can be removed later.
  • the drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C.
  • the drying temperature is preferably set to 150 ° C. or less in consideration of deformation of the substrate due to heat.
  • the temperature can be set by using a hot plate, oven, furnace or the like.
  • the drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes.
  • the drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
  • the manufacturing method may include a step of removing moisture from the coating film obtained by applying the first layer forming coating solution.
  • a form of dehumidification while maintaining a low humidity environment is preferable. Since the humidity in the low humidity environment varies depending on the temperature, the relationship between the temperature and the humidity shows a preferable form by the definition of the dew point temperature.
  • the preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), the more preferable dew point temperature is ⁇ 5 ° C. or lower (temperature 25 ° C./humidity 10%), and the time for maintaining is the thickness of the first layer It is preferable to set appropriately.
  • the dew point temperature is ⁇ 5 ° C. or lower and the maintaining time is 1 minute or longer.
  • the lower limit of the dew point temperature is not particularly limited, but is usually ⁇ 50 ° C. or higher, and preferably ⁇ 40 ° C. or higher. This is a preferred form from the viewpoint of promoting the dehydration reaction of the first layer converted to silanol by removing water before or during the reforming treatment.
  • the second layer may be formed continuously.
  • the first layer is irradiated with vacuum ultraviolet rays to form polysilazane silicon oxynitride, etc. It is preferable to carry out the conversion reaction into If the first layer containing the element M2 is formed, the composition of the gas barrier layer that is finally obtained by storage over time until the second layer is formed can be suppressed without irradiation with vacuum ultraviolet rays. , Productivity and production stability are improved.
  • the composition of the gas barrier layer finally obtained is hardly changed compared to a production method having no storage step, and production stability is further improved. Therefore, in actual production, there are fewer restrictions on the coating process, the modification process, and the like, and there are fewer restrictions on the substrate conveyance speed in the coating process, the modification process, etc., and the productivity is further improved.
  • UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used.
  • it can be processed in an ultraviolet baking furnace equipped with an ultraviolet ray generation source.
  • the ultraviolet baking furnace itself is generally known.
  • an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used.
  • the object when it is a long film, it can be converted to ceramics by continuously irradiating ultraviolet rays in a drying zone equipped with the ultraviolet ray generation source as described above while being conveyed.
  • the time required for ultraviolet irradiation depends on the resin substrate used and the composition and concentration of the first layer, but is preferably 0.1 second to 10 minutes, more preferably 0.5 seconds to 3 minutes.
  • Excimer irradiation treatment uses light energy of 100 to 200 nm, preferably light energy with a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds the atoms only to photons called photon processes.
  • a film containing silicon oxynitride is formed at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly.
  • the vacuum ultraviolet ray source in the present invention may be any source that generates light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator (for example, Xe excimer lamp) having a maximum emission at about 172 nm, and an emission line at about 185 nm.
  • Excimer radiator for example, Xe excimer lamp
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
  • the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the irradiation object is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • Oxygen is required for the reaction at the time of vacuum ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease.
  • it is preferably performed in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably 10 to 20,000 volume ppm (0.001 to 2 volume%), and preferably 50 to 10,000 volume ppm (0.005 to 1 volume%). More preferably.
  • the water vapor concentration during the conversion process is preferably in the range of 1,000 to 4,000 volume ppm.
  • the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane coating is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. and further preferably 50mW / cm 2 ⁇ 160mW / cm 2. If it is 1 mW / cm 2 or more, the reforming efficiency is improved, and if it is 10 W / cm 2 or less, ablation that can occur in the coating film and damage to the substrate can be reduced.
  • the amount of irradiation energy (irradiation amount) of vacuum ultraviolet rays on the surface of the coating film is preferably 0.1 J / cm 2 or more and less than 1 J / cm 2 , preferably 0.2 to 0.8 J / cm 2. more preferably cm 2. If the amount of irradiation energy is within this range, even if it has a step of storing in a high-temperature and high-humidity environment between the formation of the first layer and the formation of the second layer, it is finally obtained.
  • the composition of the gas barrier layer hardly changes, and the production stability is further improved. Further, in actual production, there are fewer restrictions on the coating process and the modification process, and there are fewer restrictions on the substrate conveyance speed in the coating process and the modification process, and the productivity is further improved.
  • the vacuum ultraviolet ray used may be generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 .
  • the gas containing at least one of CO, CO 2 and CH 4 hereinafter also referred to as carbon-containing gas
  • the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
  • the content of the element M2 in the first layer is preferably 0.001 to 50% by mass, and more preferably 0.1 to 40% by mass with respect to the mass of the entire first layer.
  • the content of the element M2 in the first layer is preferably 5 to 20 mol%, more preferably 5 to 10 mol% with respect to 100 mol% of silicon (Si).
  • the thickness of the first layer formed as described above is preferably 10 to 500 nm, and more preferably 30 to 300 nm.
  • the method for forming the second layer containing the metal M1 and oxygen atoms is preferably a vapor deposition method from the viewpoint of easily forming the regions (A) and (B).
  • the vapor deposition method is not particularly limited, and specific examples include the method described in (1-1) above.
  • the inert gas used for the process gas He, Ne, Ar, Kr, Xe or the like can be used, and Ar is preferably used. Furthermore, by introducing oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas, a transition metal compound thin film such as an oxide, nitride, nitride oxide, or carbonate of metal M1 can be formed. Examples of film formation conditions in the vapor phase film formation method include applied power, discharge current, discharge voltage, time, and the like. These may be appropriately selected according to the apparatus used, the material of the film, the film thickness, and the like. it can.
  • a target containing an oxide of metal M1 is preferable.
  • a sputtering method used as a target containing an oxide of the metal M1 is preferable because the film formation rate is higher and the productivity is higher.
  • the set thickness of the second layer is preferably 1.5 to 30 nm, and preferably 3 to 20 nm.
  • An anchor coat layer may be formed on the surface of the resin substrate on the side where the gas barrier layer according to the present invention is formed for the purpose of improving the adhesion between the resin substrate and the gas barrier layer.
  • polyester resins As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.
  • the above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
  • the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor phase method, the gas generated from the substrate side is blocked to some extent.
  • an anchor coat layer can be formed for the purpose of controlling the composition of the inorganic thin film.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • a hard coat layer may be provided on the surface (one side or both sides) of the resin substrate.
  • the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold.
  • Such curable resins can be used singly or in combination of two or more.
  • the active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.
  • active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray.
  • a layer containing a cured product of the functional resin, ie, a hard coat layer is formed.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. You may use the commercially available resin base material in which the hard-coat layer is formed previously.
  • the thickness of the hard coat layer is preferably from 0.1 to 15 ⁇ m, more preferably from 0.5 to 5 ⁇ m, from the viewpoint of smoothness and bending resistance.
  • the gas barrier film of the present invention may have a smooth layer between the resin substrate and the gas barrier layer.
  • the smooth layer used in the present invention flattens the rough surface of the resin base material where protrusions and the like exist, or flattens the unevenness and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the resin base material.
  • Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
  • the photosensitive material for the smooth layer examples include a resin composition containing an acrylate compound having a radical-reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, and urethane acrylate. And a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. Specifically, a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
  • thermosetting materials include TutProm Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by ADEKA, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd.
  • Examples include coats, thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins.
  • an epoxy resin-based material having heat resistance is particularly preferable.
  • the method for forming the smooth layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary.
  • an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.
  • the thickness of the smooth layer is preferably in the range of 1 to 10 ⁇ m and more preferably in the range of 2 to 7 ⁇ m from the viewpoint of improving the heat resistance of the film and facilitating balance adjustment of the optical properties of the film.
  • the smoothness of the smooth layer is a value expressed by the surface roughness specified by JIS B 0601: 2001, and the 10-point average roughness Rz is preferably 10 nm or more and 30 nm or less. If it is this range, even if it is a case where a gas barrier layer is apply
  • the gas barrier film according to the present invention can be preferably applied to an electronic device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air.
  • the electronic device examples include an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
  • organic EL element organic electroluminescence element
  • LCD liquid crystal display element
  • PV solar cell
  • resin base material As the resin base material, a 100 ⁇ m-thick polyethylene terephthalate film (Lumirror (registered trademark) (U48), manufactured by Toray Industries, Inc.) with easy adhesion treatment on both surfaces was used. A clear hard coat layer having a thickness of 0.5 ⁇ m and having an antiblock function was formed on the surface of the resin substrate opposite to the surface on which the gas barrier layer was formed. That is, a UV curable resin (manufactured by Aika Kogyo Co., Ltd., product number: Z731L) was applied on a resin substrate so that the dry film thickness was 0.5 ⁇ m, and then dried at 80 ° C., and then under high pressure in the air. Curing was performed using a mercury lamp under the condition of an irradiation energy amount of 0.5 J / cm 2 .
  • a clear hard coat layer having a thickness of 2 ⁇ m was formed on the surface of the resin substrate on the side where the gas barrier layer is to be formed as follows.
  • a UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation was applied to a resin substrate so as to have a dry film thickness of 2 ⁇ m, then dried at 80 ° C., and then using a high-pressure mercury lamp in the air. Then, curing was performed under the condition of an irradiation energy amount of 0.5 J / cm 2 . In this way, a resin substrate with a clear hard coat layer was obtained.
  • this resin substrate with a clear hard coat layer is simply referred to as a resin substrate for convenience.
  • Example 1-1 to 1-3 Comparative Examples 1-1 to 1-4
  • the first layer and the second layer were formed as follows to produce a gas barrier film.
  • a first layer was formed on one surface of the resin base material using a magnetron sputtering apparatus (manufactured by Canon Anelva Co., Ltd .: Model EB1100).
  • the following targets and film formation conditions were used as targets, Ar and O 2 were used as process gases, and film formation was performed by DC sputtering.
  • the sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa.
  • the composition was adjusted by adjusting the oxygen partial pressure.
  • the condition of the composition is determined by adjusting the oxygen partial pressure, and the condition in which the composition near the depth of 10 nm from the surface layer becomes the target composition is found. Applied.
  • film thickness change data with respect to the film formation time is obtained in the range of 100 to 300 nm, the film formation time per unit time is calculated, and then the film formation time is set to the set film thickness. The film thickness was adjusted by setting.
  • T1 A silicon target containing no M2 was produced by the method described in Comparative Example 1 of JP2012-007218A. However, the target shape was a plate shape; T2: A target containing 1.5% by mass of boron with respect to silicon as M2 was produced by the method described in Example 1 of JP2012-007218A. However, the target shape was a plate shape; T3: According to the same method as that of the target 1 of the present invention described in “Aspects of the Invention” of JP-A-2003-160862, M2 contains 5% by mass of aluminum, 12% by mass of phosphorus, and the balance (almost 95 A target having a mass%) of silicon was produced. Since the phosphorus content was very small, no analysis was performed on phosphorus in the composition analysis described below.
  • T1-1 T1 was used as a target, and in the above XPS analysis, the oxygen partial pressure was adjusted so that the composition of the layer was SiO 2 . Also, the film formation time was set so that the film thickness was 120 nm; T1-2: Performed in the same manner as T1-1 except that the film formation time was set so that the film thickness was 100 nm; T2-1: Performed in the same manner as T1-1 except that T2 was used as a target and the film formation time was set to 120 nm in the T2 condition determination; T2-2: The same as T2-1, except that the film formation time was set so that the film thickness was 100 nm; T3-1: Performed in the same manner as T1-1 except that T3 was used as a target and a film formation time was set at which the film thickness was 120 nm in the T3 condition determination; T3-2: Performed in the same manner as T3-1 except that the film formation time was set so that the film thickness was 100 nm.
  • a second layer was formed on the first layer.
  • the same apparatus as that used for film formation of the first layer was used, and the film composition and film thickness were set by the same method as that for film formation of the first layer.
  • ⁇ Target> T4 A commercially available oxygen-deficient niobium oxide target was used. The composition was Nb 12 O 29 .
  • T4 was used as a target, and the oxygen partial pressure was 12%. Also, the film formation time was set so that the film thickness was 15 nm; T4-2: Performed in the same manner as T4-1 except that the film formation time was set so that the film thickness was 10 nm; T4-3: Performed in the same manner as T4-1 except that the film formation time was set so that the film thickness was 5 nm.
  • Example 2-1 to 2-15 Comparative Examples 2-1 to 2-7
  • the first layer and the second layer were formed as follows to produce a gas barrier film.
  • the coating liquid (S1 to S9) containing polysilazane as shown below is applied on one surface of the resin substrate, dried to form a coating film, and then modified by vacuum ultraviolet irradiation under the conditions shown below
  • the first layer was formed (S1-1, S2-1, S2-3 to 9-1) or without modification (S1-2, S2-2).
  • the coating solution (S1 to S9) was applied on the resin base material by spin coating so as to have a dry film thickness shown in Table 2 below, and dried at 80 ° C. for 2 minutes.
  • vacuum ultraviolet irradiation treatment was performed on the dried coating film under the film forming conditions shown in Table 2 using the vacuum ultraviolet irradiation apparatus of FIG. 1 having an Xe excimer lamp with a wavelength of 172 nm.
  • the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was set to 0.1% by volume.
  • the stage temperature for installing the sample was set to 80 ° C.
  • reference numeral 1 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) to the inside and exhausts gas from a gas discharge port (not shown), thereby substantially removing water vapor from the inside of the chamber.
  • the oxygen concentration can be maintained at a predetermined concentration.
  • 2 is an Xe excimer lamp having a double tube structure that irradiates 172 nm vacuum ultraviolet light (excimer lamp light intensity: 130 mW / cm 2 )
  • 3 is an excimer lamp holder that also serves as an external electrode
  • 4 is a sample stage.
  • the sample stage 4 can reciprocate horizontally in the apparatus chamber 1 at a predetermined speed (V in FIG. 1) by a moving means (not shown).
  • the sample stage 4 can be maintained at a predetermined temperature by a heating means (not shown).
  • Reference numeral 5 denotes a sample on which a polysilazane compound coating layer is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm.
  • Reference numeral 6 denotes a light-shielding plate which prevents the application of the sample from being irradiated with vacuum ultraviolet rays during aging of the Xe excimer lamp 2.
  • the energy applied to the surface of the sample coating layer in the vacuum ultraviolet irradiation step was measured using a 172 nm sensor head using an ultraviolet integrated light meter (C8026 / H8025 UV POWER METER) manufactured by Hamamatsu Photonics Co., Ltd.
  • the sensor head is installed in the center of the sample stage 4 so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 1 is irradiated with vacuum ultraviolet rays. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as in the process, and the sample stage 4 was moved at a speed of 0.5 m / min for measurement.
  • an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement.
  • the amount of irradiation energy shown in Table 2 was adjusted by adjusting the moving speed of the sample stage.
  • the vacuum ultraviolet irradiation was performed after aging for 10 minutes.
  • ⁇ Coating solution> S1 Dibutyl ether solution containing 20% by mass of perhydropolysilazane (Merck Co., Ltd., NN120-20) and amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) ) And a dibutyl ether solution of 20% by mass of perhydropolysilazane (manufactured by Merck & Co., Inc., NAX120-20) at a ratio of 4: 1 (mass ratio), and further a solid content concentration of 3% by mass with dibutyl ether.
  • the coating solution S1 was prepared by dilution.
  • the coating solution was prepared in a glove box.
  • S2 An aluminum compound solution was prepared by diluting aluminum ethyl acetoacetate diisopropylate with dibutyl ether so that the solid concentration was 3% by mass. S1 and the aluminum compound solution are mixed so that the Al / Si atomic ratio is 0.01, heated to 80 ° C. with stirring, held at 80 ° C. for 2 hours, and then gradually lowered to room temperature (25 ° C.). Chilled.
  • a coating solution S2 was prepared;
  • S3 A coating solution S3 was prepared in the same manner as S2, except that S1 and the aluminum compound solution prepared in S2 were mixed so that the Al / Si atomic ratio was 0.1;
  • S4 Coating solution S4 was prepared in the same manner as S2, except that S1 and the aluminum compound solution prepared in S2 were mixed so that the Al / Si atomic ratio was 0.15;
  • S5 A coating solution S5 was prepared in the same manner as S2, except that S1 and the aluminum compound solution prepared in S2 were mixed so that the Al / Si atomic ratio was 0.005;
  • S6 Coating solution S6 was prepared in the same manner as S2, except that S1 and the aluminum compound solution prepared in S2 were mixed so that the Al / Si atomic ratio was 0.03;
  • S7 A boron compound solution was prepared by diluting triisopropyl borate with dibutyl ether so that the solid concentration was 3% by mass.
  • S1 and boron compound solution are mixed so that the B / Si atomic ratio is 0.01, heated to 80 ° C. with stirring, held at 80 ° C. for 2 hours, and then gradually brought to room temperature (25 ° C.). Chilled.
  • a coating solution S7 was prepared;
  • S1 and the titanium compound liquid were mixed so that the Ti / Si atomic ratio was 0.01, the temperature was raised to 80 ° C. with stirring, the temperature was maintained at 80 ° C. for 2 hours, and then gradually increased to room temperature (25 ° C.). Chilled.
  • a coating solution S8 was prepared;
  • S9 A zirconium compound solution was prepared by diluting zirconium tetraacetylacetonate with dibutyl ether so that the solid concentration was 3% by mass.
  • S1 and the zirconium compound liquid were mixed so that the Zr / Si atomic ratio was 0.01, the temperature was raised to 80 ° C. with stirring, the temperature was maintained at 80 ° C. for 2 hours, and then gradually increased to room temperature (25 ° C.). Chilled.
  • a coating solution S9 was prepared; ⁇ Film formation conditions> S1-1: Using the coating solution S1, coating and drying were performed according to the above-described method so that the dry film thickness was 100 nm.
  • a second layer was formed on the first layer.
  • a magnetron sputtering apparatus (Canon Anelva Co., Ltd .: Model EB1100) was used, and the film composition and film thickness were set by the same method.
  • T4 A commercially available oxygen-deficient niobium oxide target was used.
  • the composition was Nb 12 O 29 ;
  • T5 A commercially available Ta target was used.
  • T4 T4 was used as a target, and the oxygen partial pressure was set to 12% by volume. Also, the film formation time was set so that the film thickness was 15 nm; T4-2: Performed in the same manner as T4-1 except that the film formation time was set so that the film thickness was 10 nm; T4-3: Performed in the same manner as T4-1 except that the film formation time was set so that the film thickness was 5 nm; T4-4: The same as T4-1 except that the film formation time was set so that the film thickness was 2 nm; T4-5: The same as T4-1, except that the film formation time was set so that the film thickness was 1 nm; T4-6: Film formation was performed without introducing oxygen using T4 as a target.
  • the film formation time was set so that the film thickness was 5 nm; T4-7: The same as T4-6, except that the film formation time was set so that the film thickness was 2 nm; T5-1: T5 was used as a target, and the oxygen partial pressure was 18% by volume. The film formation time was set so that the film thickness was 15 nm.
  • the thickness of the regions (A) to (C), the Si ratio at the boundary between the regions (A) and (B), the composition of the region (b), the regions (B) and (C) The M1 ratio, [B], and [C] at the boundary were measured.
  • Samples stored for 24 hours in a high-temperature and high-humidity environment of 85 ° C. and 85% RH with the gas barrier layer exposed were prepared, and Ca method evaluation cells were prepared. That is, three types of samples for gas barrier property evaluation were prepared.
  • thermosetting sheet-like adhesive epoxy resin
  • Ca was vapor-deposited with a size of 20 mm ⁇ 20 mm through a mask in the center of the glass plate using a vacuum vapor deposition apparatus manufactured by ALS Technology.
  • the thickness of Ca was 80 nm.
  • the glass plate on which Ca was vapor-deposited was taken out into the glove box, placed so that the sealing resin layer surface of the barrier film to which the sealing resin layer was bonded and the Ca vapor-deposited surface of the glass plate were in contact, and adhered by vacuum lamination. At this time, heating at 110 ° C. was performed. Further, the adhered sample was placed on a hot plate set at 110 ° C. with the glass plate facing down, and cured for 30 minutes to produce an evaluation cell.
  • a sample using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample was similarly 85. It was stored in a high-temperature and high-humidity environment at 85 ° C. and it was confirmed that no corrosion of metallic calcium occurred even after 100 hours.
  • the transmission density was measured using the evaluation cell.
  • a black and white transmission density meter TM-5 manufactured by Konica Minolta Co., Ltd. was used for transmission density measurement.
  • the transmission density was measured at any four points in the cell, and the average value was calculated. The same applies hereinafter.
  • the evaluation cell After measuring the initial value of the transmission density of each evaluation cell, the evaluation cell is stored in an 85 ° C. and 85% RH environment, and is observed every 1 hour, 5 hours, 10 hours, and thereafter every 5 hours. The transmission density was measured. The observation time when the transmission density became less than 50% of the initial value was determined, and evaluated using the following indices.
  • Indicator Time for transmission density to be less than 50% 0: less than 1 hour 1: 1 to less than 5 hours 2: 5 to 10 hours 3: 10 to 25 hours 4: 25 to 50 hours 5:50 Over time.
  • compositions and evaluation results of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-4 are shown in Table 1 and Table 2 below.
  • Examples 2-1 to 2-15 and Comparative Examples 2-1 to 2 The composition and evaluation results of ⁇ 7 are shown in Table 3 and Table 4 below, respectively. “No film formation” in the film formation condition column for the second layer in Tables 1 and 3 indicates that the second layer was not formed.
  • the gas barrier layer composition of Table 4 is the result of measuring about the sample which formed the 2nd layer, after storing for 24 hours in 20 degreeC50% RH environment after 1st layer formation.
  • the gas barrier films of Examples 1-1 to 1-3 and Examples 2-1 to 2-15 have gas barrier properties even after being stored in a high temperature and high humidity environment. It turns out that it is hard to deteriorate and is excellent in durability.
  • the second layer is formed afterwards regardless of the change in the storage environment after the first layer is formed.
  • a gas barrier film having excellent gas barrier properties can be obtained. That is, the production method according to the present invention is excellent in production stability and productivity.

Abstract

The present invention is a gas barrier film which comprises, on a resin base, a gas barrier layer that contains silicon atoms, a metal M1 other than silicon, an element M2 other than silicon and the metal M1, and oxygen atoms. If [Si] (atom%) is the ratio of the amount of the silicon atoms relative to the total amount of the silicon atoms, the metal M1, the element M2, the oxygen atoms, nitrogen atoms and carbon atoms in the gas barrier layer, [M1] (atom%) is the ratio of the amount of the metal M1 relative to the total amount of the silicon atoms, the metal M1, the element M2, the oxygen atoms, nitrogen atoms and carbon atoms in the gas barrier layer, and [M2] (atom%) is the ratio of the amount of the element M2 relative to the total amount of the silicon atoms, the metal M1, the element M2, the oxygen atoms, nitrogen atoms and carbon atoms in the gas barrier layer, this gas barrier film sequentially has a region (C) that satisfies formula (c), a region (B) that satisfies formula (b) and a region (A) that satisfies formula (a) in this order from the resin base side.

Description

ガスバリア性フィルムおよびその製造方法Gas barrier film and method for producing the same
 本発明は、ガスバリア性フィルムおよびその製造方法に関する。 The present invention relates to a gas barrier film and a method for producing the same.
 フレキシブル電子デバイス、特にフレキシブル有機ELデバイスには、基板フィルムや封止フィルムとしてガスバリア性フィルムが用いられている。これらに用いられるガスバリア性フィルムには高いガスバリア性が求められている。 Gas barrier films are used as substrate films and sealing films in flexible electronic devices, particularly flexible organic EL devices. The gas barrier film used for these is required to have high gas barrier properties.
 一般に、ガスバリア性フィルムは、基材フィルム上に蒸着法、スパッタ法、CVD法等の気相成膜法によって無機バリア層を形成することにより製造されている。近年、基材上に溶液を塗布して形成された前駆体層にエネルギーを印加して、ガスバリア層を形成する製造方法も検討されてきている。特に、前駆体としてポリシラザン化合物を用いた検討が広く行われており、塗布による高生産性とガスバリア性とを両立する技術として検討が進められている。特に波長172nmのエキシマ光を用いたポリシラザン層の改質が注目されている。 Generally, a gas barrier film is manufactured by forming an inorganic barrier layer on a base film by a vapor deposition method such as vapor deposition, sputtering, or CVD. In recent years, a manufacturing method for forming a gas barrier layer by applying energy to a precursor layer formed by applying a solution on a substrate has been studied. In particular, studies using a polysilazane compound as a precursor have been widely conducted, and studies are being conducted as a technique that achieves both high productivity by coating and gas barrier properties. In particular, the modification of the polysilazane layer using excimer light having a wavelength of 172 nm has attracted attention.
 水蒸気透過率(WVTR)として、10-2g/m/day以下である高いガスバリア性を有するガスバリア層としては、スパッタ成膜による酸化ケイ素ガスバリア層の適用検討が多くなされてきている。これらの検討において、成膜条件安定化のために、多種の金属を複合したターゲットを用いる検討もなされている。例えば、ケイ素にアルミニウムやホウ素を添加して、アーク発生を防止したり、ターゲット割れを防止したりする技術が見出されてきている。しかし、成膜条件は安定するものの、ガスバリア性自体の向上は乏しく、十分なガスバリア性が得られるにいたっていない。また、85℃85%RHといった高温高湿の非常に過酷な環境下では、経時でガスバリア性が低下する懸念がある。 As a gas barrier layer having a high gas barrier property that has a water vapor transmission rate (WVTR) of 10 −2 g / m 2 / day or less, application studies of a silicon oxide gas barrier layer by sputtering film formation have been frequently made. In these studies, studies have been made to use a target in which various metals are combined in order to stabilize the film formation conditions. For example, a technique has been found in which aluminum or boron is added to silicon to prevent arc generation or target cracking. However, although the film forming conditions are stable, the improvement of the gas barrier property itself is poor, and a sufficient gas barrier property has not been obtained. Moreover, in a very severe environment of high temperature and high humidity such as 85 ° C. and 85% RH, there is a concern that the gas barrier property may deteriorate with time.
 近年、基材上に溶液を塗布することによって形成した前駆体層にエネルギーを印加してガスバリア層を形成する製造方法も検討されてきている。特に、前駆体としてポリシラザンを用いた検討が広く行われており、塗布による高生産性とガスバリア性とを両立する技術として検討が進められている。特に、波長172nmのエキシマ光を用いたポリシラザン層の改質が注目されている。 In recent years, a manufacturing method in which a gas barrier layer is formed by applying energy to a precursor layer formed by applying a solution on a substrate has been studied. In particular, studies using polysilazane as a precursor have been widely conducted, and studies are being conducted as a technique for achieving both high productivity by coating and gas barrier properties. In particular, the modification of the polysilazane layer using excimer light having a wavelength of 172 nm has attracted attention.
 例えば、特表2009-503157号公報(米国特許出願公開第2010/166977号明細書)には、ポリシラザンおよび触媒を含む溶液を基材上に塗布し、次いで溶剤を除去しポリシラザン層を形成した後、水蒸気を含む雰囲気中において、上記のポリシラザン層を、230nm未満の波長成分を含むVUV放射線および230~300nmの波長成分を含むUV放射線で照射することによって、基材上にガスバリア層を形成する方法が開示されている。 For example, in Japanese translations of PCT publication No. 2009-503157 (US Patent Application Publication No. 2010/1666977), a solution containing polysilazane and a catalyst is applied onto a substrate, and then the solvent is removed to form a polysilazane layer. A method of forming a gas barrier layer on a substrate by irradiating the polysilazane layer with VUV radiation containing a wavelength component of less than 230 nm and UV radiation containing a wavelength component of 230 to 300 nm in an atmosphere containing water vapor Is disclosed.
 しかしながら、上記特表2009-503157号公報(米国特許出願公開第2010/166977号明細書)に記載されているポリシラザンをエキシマ光で改質して形成したガスバリア層は、40℃程度までの低温におけるガスバリア性は良好であるものの、80℃85%RHといった高温高湿の非常に過酷な環境下では、経時でガスバリア性が低下することがわかった。 However, the gas barrier layer formed by modifying polysilazane described in the above Japanese translation of PCT publication No. 2009-503157 (US Patent Application Publication No. 2010/1666977) with excimer light has a low temperature of about 40 ° C. Although the gas barrier property is good, it has been found that the gas barrier property decreases with time in a very severe environment of high temperature and high humidity such as 80 ° C. and 85% RH.
 このように、ガスバリア層の高温高湿環境下での性能劣化を抑制し、電子デバイス用として使用できるガスバリア性フィルムが求められていた。 Thus, there has been a demand for a gas barrier film that can be used as an electronic device while suppressing the performance degradation of the gas barrier layer in a high temperature and high humidity environment.
 また、特表2009-503157号公報(米国特許出願公開第2010/166977号明細書)に記載の製造方法では、生産性および生産安定性が不十分であるという問題もあった。 Also, the manufacturing method described in JP-T-2009-503157 (US Patent Application Publication No. 2010/1666977) has a problem that the productivity and the production stability are insufficient.
 そこで、本発明は、高温高湿環境での耐久性に優れたガスバリア性フィルムを提供することを目的とする。 Therefore, an object of the present invention is to provide a gas barrier film excellent in durability in a high temperature and high humidity environment.
 また、本発明は、生産性および生産安定性に優れたガスバリア性フィルムの製造方法を提供することを目的とする。 Another object of the present invention is to provide a method for producing a gas barrier film excellent in productivity and production stability.
 本発明の一形態によれば、樹脂基材上に、ケイ素原子と、ケイ素以外の金属M1と、ケイ素および前記金属M1以外の元素M2と、酸素原子と、を含むガスバリア層を有するガスバリア性フィルムであって、前記ガスバリア層中の前記ケイ素原子、前記金属M1、前記元素M2、前記酸素原子、窒素原子、および炭素原子の合計量に対する前記ケイ素原子の量の比率を[Si](単位:atom%)とし、前記ガスバリア層中の前記ケイ素原子、前記金属M1、前記元素M2、前記酸素原子、窒素原子、および炭素原子の合計量に対する前記金属M1の量の比率を[M1](単位:atom%)とし、前記ガスバリア層中の前記ケイ素原子、前記金属M1、前記元素M2、前記酸素原子、窒素原子、および炭素原子の合計量に対する前記元素M2の量の比率を[M2](単位:atom%)とした場合に、前記樹脂基材側から、下記式(c)を満たす領域(C)、下記式(b)を満たす領域(B)、および下記式(a)を満たす領域(A)をこの順に有する、ガスバリア性フィルムを提供する。 According to one aspect of the present invention, a gas barrier film having a gas barrier layer containing a silicon atom, a metal M1 other than silicon, an element M2 other than silicon and the metal M1, and an oxygen atom on a resin substrate. The ratio of the amount of the silicon atom to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer is [Si] (unit: atom %), And the ratio of the amount of the metal M1 to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer [M1] (unit: atom) %) And the element relative to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer. When the ratio of the amount of M2 is [M2] (unit: atom%), the region (C) satisfying the following formula (c) and the region (B) satisfying the following formula (b) from the resin base material side. And a gas barrier film having a region (A) satisfying the following formula (a) in this order.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、本発明の他の一形態によれば、上記ガスバリア性フィルムの製造方法であって、前記樹脂基材上に、前記ケイ素原子、前記元素M2、および前記酸素原子を含む第1層を形成する工程と、前記第1層上に、前記金属M1および前記酸素原子を含む第2層を形成する工程と、を有する、ガスバリア性フィルムの製造方法を提供する。 According to another aspect of the present invention, there is provided a method for producing the gas barrier film, wherein the first layer containing the silicon atom, the element M2, and the oxygen atom is formed on the resin base material. And a step of forming a second layer containing the metal M1 and the oxygen atom on the first layer.
実施例で用いた真空紫外線照射装置の断面模式図であり、1は装置チャンバーであり、2は172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプであり、3は外部電極を兼ねるエキシマランプのホルダーであり、4は試料ステージであり、5はポリシラザン化合物塗布層が形成された試料であり、6は遮光板であり、Vは試料ステージの移動速度である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of a vacuum ultraviolet irradiation apparatus used in the examples, 1 is an apparatus chamber, 2 is a Xe excimer lamp having a double tube structure that irradiates vacuum ultraviolet light of 172 nm, and 3 also serves as an external electrode. An excimer lamp holder, 4 is a sample stage, 5 is a sample on which a polysilazane compound coating layer is formed, 6 is a light shielding plate, and V is a moving speed of the sample stage.
 本発明は、樹脂基材上に、ケイ素原子と、ケイ素以外の金属M1と、ケイ素および前記金属M1以外の元素M2と、酸素原子と、を含むガスバリア層を有するガスバリア性フィルムであって、前記ガスバリア層中の前記ケイ素原子、前記金属M1、前記元素M2、前記酸素原子、窒素原子、および炭素原子の合計量に対する前記ケイ素原子の量の比率を[Si](単位:atom%)とし、前記ガスバリア層中の前記ケイ素原子、前記金属M1、前記元素M2、前記酸素原子、窒素原子、および炭素原子の合計量に対する前記金属M1の量の比率を[M1](単位:atom%)とし、前記ガスバリア層中の前記ケイ素原子、前記金属M1、前記元素M2、前記酸素原子、窒素原子、および炭素原子の合計量に対する前記元素M2の量の比率を[M2](単位:atom%)とした場合に、前記樹脂基材側から、下記式(c)を満たす領域(C)、下記式(b)を満たす領域(B)、および下記式(a)を満たす領域(A)をこの順に有する、ガスバリア性フィルムである。 The present invention is a gas barrier film having, on a resin substrate, a gas barrier layer containing a silicon atom, a metal M1 other than silicon, an element M2 other than silicon and the metal M1, and an oxygen atom, The ratio of the amount of the silicon atom to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer is [Si] (unit: atom%), and The ratio of the amount of the metal M1 to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer is [M1] (unit: atom%), and Ratio of the amount of the element M2 to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer Is [M2] (unit: atom%), from the resin substrate side, the region (C) satisfying the following formula (c), the region (B) satisfying the following formula (b), and the following formula ( It is a gas barrier film having a region (A) satisfying a) in this order.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このような構成を有する本発明のガスバリア性フィルムは、高温高湿環境での耐久性に優れる。また、本発明のガスバリア性フィルムの製造方法は、生産性および生産安定性に優れる。 The gas barrier film of the present invention having such a configuration is excellent in durability in a high temperature and high humidity environment. Moreover, the manufacturing method of the gas barrier film of this invention is excellent in productivity and production stability.
 なぜ、本発明のガスバリア性フィルムにより上記効果が得られるのか、詳細は不明であるが、下記のようなメカニズムが考えられる。なお、下記のメカニズムは推測によるものであり、本発明は下記メカニズムに何ら拘泥されるものではない。 The details of the reason why the above-described effect can be obtained by the gas barrier film of the present invention are unknown, but the following mechanism is conceivable. The following mechanism is based on speculation, and the present invention is not limited to the following mechanism.
 領域(A)は、金属M1が多く存在する領域である。領域(A)が上記式(a)の関係を満たすことにより、ケイ素(Si)を主成分とした酸化物や酸窒化物からなる領域よりも、耐傷性に優れるという性質を有することを見出した。そして、領域(A)~(C)のうち、領域(A)を樹脂基材から最も離れた側に配置させることにより、ガスバリア性フィルムの製造工程において、保護層として機能し、ガスバリア性の劣化を抑制するという効果を有する。 Area (A) is an area where a lot of metal M1 exists. It has been found that when the region (A) satisfies the relationship of the above formula (a), the region (A) has a property of being excellent in scratch resistance as compared with a region made of an oxide or oxynitride containing silicon (Si) as a main component. . Then, by arranging the region (A) among the regions (A) to (C) on the side farthest from the resin base material, it functions as a protective layer in the gas barrier film manufacturing process and deteriorates the gas barrier property. It has the effect of suppressing.
 領域(B)は、高いガスバリア性を有する領域である。領域(B)には、Siと金属M1との結合(以下、Si-M1結合とも称する)を有する化合物が高比率で含まれていると考えられ、Si-M1結合が形成されることにより、緻密な構造となり高いガスバリア性が得られると考えられる。また、Si-M1結合が形成されている領域(B)は、SiOよりも耐湿熱性が高いため、高温高湿環境で保存しても良好なガスバリア性を維持する優れた耐久性を有する。領域(B)内に元素M2は存在してもよいが、元素M2はSi-M1結合の形成を阻害すると考えられるため、領域(B)においては上記式(b)の関係を満たすことで、一層ガスバリア性が向上しているものと考えられる。そして、領域(B)が領域(A)と領域(C)との間に配置されていることにより、樹脂基材の凹凸の影響によりガスバリア性が劣化することを抑制するという効果を有する。 The region (B) is a region having a high gas barrier property. In the region (B), it is considered that a compound having a bond between Si and the metal M1 (hereinafter also referred to as Si-M1 bond) is contained in a high ratio, and by forming the Si-M1 bond, It is considered that a dense structure is obtained and a high gas barrier property is obtained. In addition, since the region (B) where the Si-M1 bond is formed has higher moisture and heat resistance than SiO 2 , the region (B) has excellent durability to maintain a good gas barrier property even when stored in a high temperature and high humidity environment. Although the element M2 may exist in the region (B), it is considered that the element M2 inhibits the formation of the Si-M1 bond. Therefore, in the region (B), by satisfying the relationship of the above formula (b), It is considered that the gas barrier properties are further improved. And since area | region (B) is arrange | positioned between area | region (A) and area | region (C), it has the effect of suppressing that gas barrier property deteriorates by the influence of the unevenness | corrugation of a resin base material.
 領域(A)~(C)のうち、最も樹脂基材に近い領域(C)は、ケイ素を主成分とするものの、元素M2が比較的多く存在する領域である。領域(C)が元素M2を比較的多く含むことにより、すなわち上記式(c)の関係を満たすことにより、高温高湿環境で保存した時の組成変化が抑制され、高温高湿環境での耐久性に優れる。また、上述のような樹脂基材の凹凸を軽減する効果を有している。 Among the regions (A) to (C), the region (C) closest to the resin base material is a region mainly containing silicon but containing a relatively large amount of the element M2. When the region (C) contains a relatively large amount of the element M2, that is, by satisfying the relationship of the above formula (c), composition change when stored in a high temperature and high humidity environment is suppressed, and durability in a high temperature and high humidity environment is achieved. Excellent in properties. Moreover, it has the effect of reducing the unevenness | corrugation of the above resin base materials.
 さらに、本発明のガスバリア性フィルムの製造方法によれば、製造過程において高温高湿環境下で保存する工程を有していたとしても、組成がほとんど変化せず安定した品質となる生産安定性を有し、また生産性にも優れる。 Furthermore, according to the method for producing a gas barrier film of the present invention, even if it has a step of storing in a high-temperature and high-humidity environment during the production process, the composition stability is hardly changed and the production stability becomes stable. It also has excellent productivity.
 以下、本発明の好ましい実施形態を説明する。なお、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、本明細書において、特記しない限り、操作および物性等の測定は、室温(20~25℃)/相対湿度40~50%RHの条件で行う。 Hereinafter, preferred embodiments of the present invention will be described. In this specification, “X to Y” indicating a range means “X or more and Y or less”. In the present specification, unless otherwise specified, measurement of operation and physical properties is performed under the conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 [樹脂基材]
 本発明に係る樹脂基材としては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を含む基材が挙げられる。該樹脂基材は、単独でもまたは2種以上組み合わせても用いることができる。
[Resin substrate]
Specific examples of the resin substrate according to the present invention include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, and polyamideimide resin. , Polyetherimide resin, cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin , A base material containing a thermoplastic resin such as an alicyclic modified polycarbonate resin, a fluorene ring modified polyester resin, or an acryloyl compound. These resin substrates can be used alone or in combination of two or more.
 基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。 More preferable specific examples of the thermoplastic resin that can be used as the substrate include, for example, polyethylene terephthalate (PET: 70 ° C.), polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), and alicyclic. Polyolefin (for example, ZEONOR (registered trademark) 1600: 160 ° C, manufactured by Nippon Zeon Co., Ltd.), polyarylate (PAr: 210 ° C), polyethersulfone (PES: 220 ° C), polysulfone (PSF: 190 ° C), cycloolefin copolymer (COC: Compound described in JP-A No. 2001-150584: 162 ° C.), polyimide (for example, Neoprim (registered trademark): 260 ° C. manufactured by Mitsubishi Gas Chemical Co., Ltd.), fluorene ring-modified polycarbonate (BCF-PC: JP No. 2000-227603 Described compound: 225 ° C., alicyclic modified polycarbonate (IP-PC: compound described in JP 2000-227603 A: 205 ° C.), acryloyl compound (compound described in JP 2002-80616 A: 300 ° C.) And the like) (Tg is shown in parentheses).
 本発明に係るガスバリア性フィルムは、有機EL素子等の電子デバイスとして利用されることから、樹脂基材は透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。 Since the gas barrier film according to the present invention is used as an electronic device such as an organic EL element, the resin substrate is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more. The light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
 ただし、本発明に係るガスバリア性フィルムをディスプレイ用途に用いる場合であっても、観察側に設置しない場合などは必ずしも透明性が要求されない。したがって、このような場合は、プラスチックフィルムとして不透明な材料を用いることもできる。不透明な材料としては、例えば、ポリイミド、ポリアクリロニトリル、公知の液晶ポリマーなどが挙げられる。 However, even when the gas barrier film according to the present invention is used for display, transparency is not necessarily required when it is not installed on the observation side. Therefore, in such a case, an opaque material can be used as the plastic film. Examples of the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.
 また、上記に挙げた樹脂基材は、未延伸フィルムでもよく、延伸フィルムでもよい。当該樹脂基材は、従来公知の一般的な方法により製造することが可能である。これらの基材の製造方法については、国際公開第2013/002026号の段落「0051」~「0055」の記載された事項を適宜採用することができる。 Further, the resin base material listed above may be an unstretched film or a stretched film. The resin substrate can be produced by a conventionally known general method. Regarding the method for producing these base materials, the items described in paragraphs “0051” to “0055” of International Publication No. 2013/002026 can be appropriately employed.
 樹脂基材の表面は、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理等を行っていてもよく、必要に応じて上記処理を組み合わせて行っていてもよい。また、樹脂基材には易接着処理を行ってもよい。 The surface of the resin substrate may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatments may be combined as necessary. May go. The resin base material may be subjected to an easy adhesion treatment.
 該樹脂基材は、単層でもよいし2層以上の積層構造であってもよい。該樹脂基材が2層以上の積層構造である場合、各樹脂基材は同じ種類であってもよいし異なる種類であってもよい。 The resin substrate may be a single layer or a laminated structure of two or more layers. When the resin base material has a laminated structure of two or more layers, the resin base materials may be the same type or different types.
 本発明に係る樹脂基材の厚さ(2層以上の積層構造である場合はその総厚)は、10~200μmであることが好ましく、20~150μmであることがより好ましい。 The thickness of the resin base material according to the present invention (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 200 μm, and more preferably 20 to 150 μm.
 [ガスバリア層]
 本発明のガスバリア性フィルムは、ケイ素原子と、ケイ素以外の金属M1と、ケイ素および金属M1以外の元素M2と、酸素原子と、を含むガスバリア層を有する。当該ガスバリア層は、さらに窒素原子を含んでもよい。
[Gas barrier layer]
The gas barrier film of the present invention has a gas barrier layer containing a silicon atom, a metal M1 other than silicon, an element M2 other than silicon and metal M1, and an oxygen atom. The gas barrier layer may further contain nitrogen atoms.
 〔金属M1〕
 ケイ素以外の金属M1としては、特に制限されないが、遷移金属が好ましい。
[Metal M1]
The metal M1 other than silicon is not particularly limited, but a transition metal is preferable.
 ここで、遷移金属とは、長周期型周期表の第3族元素から第11族元素を指し、より具体的には、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、ルテニウム(Ru)、パラジウム(Pd)、銀(Ag)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、および金(Au)等が挙げられる。これら遷移金属は、単独でもよいし2種以上組み合わせて用いてもよい。 Here, the transition metal refers to a Group 3 element to a Group 11 element in the long-period periodic table, and more specifically, scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr ), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), technetium (Tc) ), Ruthenium (Ru), palladium (Pd), silver (Ag), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu) ), Gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbi (Yb), lutetium (Lu), hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), and gold (Au) Etc. These transition metals may be used alone or in combination of two or more.
 なかでも、良好なガスバリア性が得られるという観点から、M1としては、Nb、Ta、V、Zr、Ti、Hf、Y、La、またはCeが好ましい。さらに、これらの中でも、種々の検討結果から、特に長周期型周期表の第5族の金属であるNb、Ta、およびVは、ガスバリア層に含有されるSiに対する結合が生じやすいと考えられるため、さらに好ましく用いることができる。金属M1が第5族の金属(特に、Nb)であると、著しいガスバリア性の向上効果が得られる。これは、Siと第5族の金属(特に、Nb)との結合が特に生じやすいためであると考えられる。さらに、光学特性の観点から、金属M1は、透明性が良好な化合物が得られるNb、Taが特に好ましい。 Among these, Nb, Ta, V, Zr, Ti, Hf, Y, La, or Ce is preferable as M1 from the viewpoint that a good gas barrier property can be obtained. Furthermore, among these, it is considered from the various examination results that Nb, Ta, and V, which are metals of Group 5 of the long-period periodic table, are likely to be bonded to Si contained in the gas barrier layer. Further preferably, it can be used. When the metal M1 is a Group 5 metal (particularly Nb), a significant gas barrier property improvement effect can be obtained. This is presumably because the bond between Si and the Group 5 metal (particularly Nb) is particularly likely to occur. Furthermore, from the viewpoint of optical characteristics, the metal M1 is particularly preferably Nb or Ta from which a compound with good transparency can be obtained.
 〔元素M2〕
 元素M2としては、ケイ素および金属M1以外の元素であって、長周期型周期表の第1族~第14族の元素からなる群より選択される少なくとも1種の元素が挙げられる。元素M2のさらなる具体例としては、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、クロム(Cr)、鉄(Fe)、マグネシウム(Mg)、スズ(Sn)、ニッケル(Ni)、パラジウム(Pd)、鉛(Pb)、マンガン(Mn)、リチウム(Li)、ゲルマニウム(Ge)、銅(Cu)、ナトリウム(Na)、カリウム(K)、カルシウム(Ca)、コバルト(Co)、ホウ素(B)、ベリリウム(Be)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、タリウム(Tl)、ゲルマニウム(Ge)等が好ましく挙げられる。これらのうち、ホウ素(B)、アルミニウム(Al)、チタン(Ti)、およびジルコニウム(Zr)からなる群より選択される少なくとも1種がより好ましく、アルミニウム(Al)、ホウ素(B)がさらに好ましく、アルミニウム(Al)が特に好ましい。
[Element M2]
Examples of the element M2 include elements other than silicon and metal M1, and at least one element selected from the group consisting of elements of Group 1 to Group 14 of the long-period periodic table. As further specific examples of the element M2, aluminum (Al), titanium (Ti), zirconium (Zr), zinc (Zn), gallium (Ga), indium (In), chromium (Cr), iron (Fe), magnesium (Mg), tin (Sn), nickel (Ni), palladium (Pd), lead (Pb), manganese (Mn), lithium (Li), germanium (Ge), copper (Cu), sodium (Na), potassium (K), calcium (Ca), cobalt (Co), boron (B), beryllium (Be), strontium (Sr), barium (Ba), radium (Ra), thallium (Tl), germanium (Ge), etc. Preferably mentioned. Among these, at least one selected from the group consisting of boron (B), aluminum (Al), titanium (Ti), and zirconium (Zr) is more preferable, and aluminum (Al) and boron (B) are more preferable. Aluminum (Al) is particularly preferable.
 これらの元素M2を含むことによって、ガスバリア性フィルムの耐湿熱性をより向上できる。なお、元素M2は、単独で使用されてもよいし、2種以上が併用されてもよい。 By including these elements M2, the moisture and heat resistance of the gas barrier film can be further improved. In addition, the element M2 may be used independently and 2 or more types may be used together.
 ガスバリア層内にケイ素原子、金属M1、元素M2、および酸素原子が含まれていることについては、ガスバリア層を下記のようなXPS(X-ray Photoelectron Spectroscopy)組成分析を行うことにより、確認することができる。 It is confirmed that the gas barrier layer contains silicon atoms, metals M1, elements M2, and oxygen atoms by performing XPS (X-ray Photoelectron Spectroscopy) composition analysis of the gas barrier layer as follows. Can do.
 《XPS分析条件》
 ・装置:アルバック・ファイ社製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを得る
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバック・ファイ社製のMultiPakを用いた。なお、分析する元素は、Si、金属M1、元素M2、O、N、Cとした。
<< XPS analysis conditions >>
・ Device: QUANTERASXM manufactured by ULVAC-PHI
・ X-ray source: Monochromatic Al-Kα
・ Sputtering ion: Ar (2 keV)
Depth profiles: in terms of SiO 2 sputter thickness, repeat the measurement at a predetermined thickness intervals, - obtaining the depth depth profile Quantification relative sensitivity coefficients background determined by Shirley method, from the peak area obtained Quantified using the method. For data processing, MultiPak manufactured by ULVAC-PHI was used. The elements to be analyzed were Si, metal M1, element M2, O, N, and C.
 本発明においては、デプスプロファイルの測定解像度(所定の厚さ間隔)は、3nm以下であってもよく、2nm以下であってもよく、1nm以下であってもよい。本発明の実施例においては、デプスプロファイルの測定解像度は1nmである。 In the present invention, the measurement resolution (predetermined thickness interval) of the depth profile may be 3 nm or less, 2 nm or less, or 1 nm or less. In the embodiment of the present invention, the measurement resolution of the depth profile is 1 nm.
 本発明に係るガスバリア層は、樹脂基材側から、上記式(c)を満たす領域(C)、上記式(b)を満たす領域(B)、および上記式(a)を満たす領域(A)をこの順に有する。 The gas barrier layer according to the present invention includes, from the resin substrate side, a region (C) that satisfies the above formula (c), a region (B) that satisfies the above formula (b), and a region (A) that satisfies the above formula (a). In this order.
 〔領域(A)〕
 領域(A)は、上記式(a)を満足する領域である。領域(A)の厚さは、保護層として機能するためにはある程度の厚さが必要であるという観点と、光学用途のフィルムとして好適な可視光反射率を得るという観点から、好ましくは1nm以上15nm以下、より好ましくは3nm以上10nm以下である。領域(A)の厚さは、XPS組成分析を利用した以下のような方法により測定することができる。
[Area (A)]
The region (A) is a region that satisfies the above formula (a). The thickness of the region (A) is preferably 1 nm or more from the viewpoint that a certain amount of thickness is necessary to function as a protective layer and from the viewpoint of obtaining a visible light reflectance suitable as a film for optical applications. It is 15 nm or less, more preferably 3 nm or more and 10 nm or less. The thickness of the region (A) can be measured by the following method using XPS composition analysis.
 すなわち、ガスバリア層をXPSにより表層側から深さ方向に分析していく際、最初に[M1]>[Si]≧[M2]となった測定点を起点とし、[Si]≧[M1]>[M2]となった測定点の一つ前の測定点までを領域(A)と定義する。一つの測定点に対するSiO換算のスパッタ深さをd(単位:nm)とした時に、領域(A)として計測された測定点の数(A)nと、dとを乗じた[(A)n×d(nm)]を領域(A)の厚さとする。 That is, when the gas barrier layer is analyzed in the depth direction from the surface layer side by XPS, the starting point is the measurement point where [M1]> [Si] ≧ [M2], and [Si] ≧ [M1]> The region up to the measurement point immediately before the measurement point that is [M2] is defined as the region (A). When the sputtering depth in terms of SiO 2 with respect to one measurement point is d (unit: nm), the number of measurement points (A) n measured as the region (A) is multiplied by d [(A). n × d (nm)] is the thickness of the region (A).
 領域(A)~(C)の厚さ、ならびに後述の[B]および[C]は、上記したXPS組成分析により測定することができる。 The thickness of the regions (A) to (C), and [B] and [C] described later can be measured by the XPS composition analysis described above.
 〔領域(B)〕
 領域(B)は、上記式(b)を満足する領域である。領域(B)の厚さは、ガスバリア性および生産性の観点から、好ましくは5nm以上50nm以下、より好ましくは10nm以上30nm以下である。領域(B)の厚さは、XPS組成分析を利用した以下のような方法により測定することができる。
[Area (B)]
The region (B) is a region that satisfies the above formula (b). The thickness of the region (B) is preferably 5 nm or more and 50 nm or less, more preferably 10 nm or more and 30 nm or less, from the viewpoint of gas barrier properties and productivity. The thickness of the region (B) can be measured by the following method using XPS composition analysis.
 すなわち、ガスバリア層をXPSにより表層側から深さ方向に分析していく際、最初に[Si]≧[M1]>[M2]となった測定点を起点とし、[Si]>[M2]≧[M1]となった測定点の一つ前の測定点までを領域(B)と定義する。一つの測定点に対するSiO換算のスパッタ深さをd(単位:nm)とした時に、領域(B)として計測された測定点の数(B)nと、dとを乗じた[(B)n×d(nm)]を領域(B)の厚さとする。 That is, when the gas barrier layer is analyzed in the depth direction from the surface layer side by XPS, the starting point is [Si] ≧ [M1]> [M2], and [Si]> [M2] ≧ The region (B) is defined up to the measurement point immediately before the measurement point that becomes [M1]. When the sputtering depth in terms of SiO 2 for one measurement point is d (unit: nm), the number of measurement points (B) n measured as the region (B) is multiplied by d [(B). n × d (nm)] is the thickness of the region (B).
 〔領域(C)〕
 領域(C)は、上記式(c)を満足する領域である。領域(C)の厚さは、高温高湿環境での耐久性や樹脂基材の凹凸を軽減するという観点から、好ましくは1nm以上500nm以下、より好ましくは10nm以上200nm以下である。領域(C)の厚さは、XPS組成分析を利用した以下のような方法により測定することができる。
[Region (C)]
The region (C) is a region that satisfies the above formula (c). The thickness of the region (C) is preferably 1 nm or more and 500 nm or less, more preferably 10 nm or more and 200 nm or less, from the viewpoint of reducing durability in a high temperature and high humidity environment and unevenness of the resin base material. The thickness of the region (C) can be measured by the following method using XPS composition analysis.
 ガスバリア層をXPSにより表層側から深さ方向に分析していく際、最初に[Si]>[M2]≧[M1]となった測定点を起点とし、樹脂基材の表面に起因する測定点(ガスバリア層と樹脂基材との間に他の層を有する場合は他の層表面に起因する測定点)が得られた測定点の一つ前の測定点までを、領域(C)と定義する。深さ範囲の規定は上記と同じように計算される。樹脂基材の表面に起因する測定点(他の層表面に起因する測定点)であるかどうかは、用いた樹脂基材(他の層)の組成から適宜判断する。 When analyzing the gas barrier layer in the depth direction from the surface layer side by XPS, the measurement point originated from the surface of the resin base material, starting from the measurement point where [Si]> [M2] ≧ [M1] was first established. A region (C) is defined up to the measurement point immediately before the measurement point at which the measurement point (measurement point due to the surface of the other layer when another layer is provided between the gas barrier layer and the resin base material) is obtained. To do. The definition of the depth range is calculated in the same way as above. Whether or not the measurement point is due to the surface of the resin substrate (measurement point due to the surface of the other layer) is appropriately determined from the composition of the resin substrate (other layer) used.
 このような領域(A)~(C)を有する本発明のガスバリア性フィルムを得る方法としては、下記の本発明のガスバリア性フィルムの製造方法が挙げられる。詳細は後で述べる。 As a method for obtaining the gas barrier film of the present invention having such regions (A) to (C), the following method for producing the gas barrier film of the present invention can be mentioned. Details will be described later.
 <[B]および[C]>
 上記領域(B)における[M2]と[Si]との比([M2]/[Si])の平均値を[B]とし、上記領域(C)における[M2]と[Si]との比([M2]/[Si])の平均値を[C]とした場合、[C]>[B]であることが好ましい。このような関係を満たすことにより、ガスバリア性および高温高湿環境下での耐久性が向上する。
<[B] and [C]>
The average value of the ratio ([M2] / [Si]) between [M2] and [Si] in the region (B) is [B], and the ratio between [M2] and [Si] in the region (C) When the average value of ([M2] / [Si]) is [C], it is preferable that [C]> [B]. By satisfying such a relationship, gas barrier properties and durability under a high temperature and high humidity environment are improved.
 なお、[C]>[B]となるメカニズムは明確ではないが、次のように推定している。後述の本発明に係る製造方法の(1-2)塗布法を例にとると、塗布法により形成される第1層は、本来であれば[M2]/[Si]は第1層の厚み方向の全領域に亘って一定である。しかしながら、第1層の上に第2層を形成すると、第2層中の金属M1は、第1層の酸素を引き抜きながら、第1層中に拡散していく。その際、第1層は酸素欠損組成になるため、Si-M1結合やSi-M2結合が形成されると考えられる。しかしながら、Si-M1結合は、Si-M2結合よりも形成しやすいことから、Si-M2結合が優先的に形成され、第2層中にSiが拡散していく現象も生じながら、Si-M1混合酸化物を主成分とし、M2の含有量が低減した層が表層側に形成される。このSi-M1混合酸化物を主成分とし、M2の含有量が低減した層の中で、[Si]≧[M2]となる領域が領域(B)である。これにより、上記のように[C]>[B]となると考えられる。 Note that the mechanism of [C]> [B] is not clear, but is estimated as follows. Taking (1-2) coating method of the manufacturing method according to the present invention as an example, the first layer formed by the coating method is originally [M2] / [Si] is the thickness of the first layer. It is constant over the entire area of direction. However, when the second layer is formed on the first layer, the metal M1 in the second layer diffuses into the first layer while extracting oxygen from the first layer. At that time, since the first layer has an oxygen deficient composition, it is considered that a Si-M1 bond or a Si-M2 bond is formed. However, since the Si-M1 bond is easier to form than the Si-M2 bond, the Si-M2 bond is formed preferentially, and the phenomenon that Si diffuses into the second layer also occurs. A layer containing a mixed oxide as a main component and having a reduced M2 content is formed on the surface layer side. In the layer having the Si—M1 mixed oxide as a main component and the M2 content reduced, a region where [Si] ≧ [M2] is the region (B). Thereby, it is considered that [C]> [B] as described above.
 上記[B]は、0~0.2であることが好ましく、0~0.1であることがより好ましい。また、上記[C]は、0.001~0.5であることが好ましく、0.002~0.2であることがより好ましい。さらに、[C]>[B]のとき、[C]/[B]は、1.2~20であることが好ましく、1.5~10であることがより好ましい。 [B] is preferably 0 to 0.2, more preferably 0 to 0.1. [C] is preferably 0.001 to 0.5, and more preferably 0.002 to 0.2. Furthermore, when [C]> [B], [C] / [B] is preferably 1.2 to 20, and more preferably 1.5 to 10.
 この[C]>[B]の関係を満たすガスバリア性フィルムを得る方法としては、下記の本発明のガスバリア性フィルムの製造方法が挙げられる。後述の製造方法において、Siと元素M2とを含有する第1層に、金属M1を含有する第2層を特定の方法で積層することで達成することができる。具体的には、金属M1が酸素欠損となる条件(金属M1の最大価数に対して、結合している酸素または窒素の量が不足している状態)で積層することが好ましい。金属M1を酸素欠損となる条件で積層すると、第1層に含まれるSiと第2層に含まれる金属M1との間に結合を生じる(Siと金属M1とが結合を生じやすいことに起因すると考えられる)。この際、第1層のSiは第2層に拡散していき、また、第2層の金属M1は第1層に拡散していく。一方、第1層の元素M2は、Siと比較して、金属M1との結合を生じ難いため、元素M2は第2層側へ拡散し難い。これにより、[C]>[B]の関係を満たすガスバリア性フィルムが得られる。 Examples of the method for obtaining a gas barrier film satisfying the relationship [C]> [B] include the following method for producing a gas barrier film of the present invention. In the manufacturing method described later, this can be achieved by laminating the second layer containing the metal M1 on the first layer containing Si and the element M2 by a specific method. Specifically, the lamination is preferably performed under the condition that the metal M1 is oxygen deficient (a state where the amount of oxygen or nitrogen bonded to the maximum valence of the metal M1 is insufficient). When the metal M1 is laminated under conditions that cause oxygen vacancies, a bond is formed between the Si contained in the first layer and the metal M1 contained in the second layer (because the Si and the metal M1 are likely to form a bond). Conceivable). At this time, the first layer of Si diffuses into the second layer, and the second layer of metal M1 diffuses into the first layer. On the other hand, the element M2 in the first layer is less likely to form a bond with the metal M1 than Si, and thus the element M2 is difficult to diffuse to the second layer side. Thereby, the gas-barrier film which satisfy | fills the relationship of [C]> [B] is obtained.
 <領域(A)、(B)、(C)の境界>
 領域(A)と領域(B)との境界においては、[Si]=[M1]となる。この領域(A)と領域(B)との境界における[Si]および[M1]は、ガスバリア性が良好となる観点から、10atom%以上25atom%以下であることが好ましく、12atom%以上20atom%以下であることがより好ましい。
<Boundaries of regions (A), (B), (C)>
At the boundary between the region (A) and the region (B), [Si] = [M1]. [Si] and [M1] at the boundary between the region (A) and the region (B) are preferably 10 atom% or more and 25 atom% or less, and 12 atom% or more and 20 atom% or less from the viewpoint of good gas barrier properties. It is more preferable that
 なお、領域(A)と領域(B)との境界における[Si]および[M1]、ならびに、領域(B)と領域(C)との境界における[M1]および[M2]は、XPS組成分析で得られる測定点間を内挿することで得られる。 [Si] and [M1] at the boundary between the region (A) and the region (B), and [M1] and [M2] at the boundary between the region (B) and the region (C) are XPS composition analysis. It is obtained by interpolating between the measurement points obtained in (1).
 領域(B)と領域(C)との境界においては、[M1]=[M2]となる。この領域(B)と領域(C)との境界における[M1]および[M2]は、耐湿熱性が良好となる観点から、0atom%以上15atom%以下であることが好ましく、0atom%以上5atom%以下であることが好ましく、0atm%以上1atom%以下であることが好ましい。 [M1] = [M2] at the boundary between the region (B) and the region (C). [M1] and [M2] at the boundary between the region (B) and the region (C) are preferably 0 atom% or more and 15 atom% or less, and preferably 0 atom% or more and 5 atom% or less from the viewpoint of good heat and moisture resistance. It is preferable that it is 0 atm% or more and 1 atom% or less.
 このような領域(A)と領域(B)との境界における[Si]および[M1]、ならびに領域(B)と領域(C)との境界における[M1]および[M2]は、第1層の[M2]/[Si]比率や、第2層の成膜条件を制御することにより制御することができる。 [Si] and [M1] at the boundary between the region (A) and the region (B), and [M1] and [M2] at the boundary between the region (B) and the region (C) are the first layer. The [M2] / [Si] ratio and the film formation conditions of the second layer can be controlled.
 <酸素欠損領域>
 本発明に係るガスバリア性フィルムにおいて、ガスバリア層の領域(B)は、酸素をO、窒素をNとして、当該ガスバリア層の組成をSiM1としたときに、下記条件<B>を満たすことが好ましい。
<Oxygen deficient region>
In the gas barrier film according to the present invention, the region (B) of the gas barrier layer has the following condition <B> when oxygen is O, nitrogen is N, and the composition of the gas barrier layer is SiM1 x O y N z. It is preferable to satisfy.
 ・条件<B>
 y>0、z≧0を満たし、かつ、前記Siの最大価数を4とし、前記金属M1の最大価数をbとしたときに下記数式(1)を満たす領域[b](XPS組成分析による測定点として少なくとも1点)を有する。
・ Condition <B>
Region [b] satisfying the following formula (1) when y> 0, z ≧ 0, the maximum valence of Si is 4, and the maximum valence of metal M1 is b [X] (XPS composition analysis) At least one measurement point).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記条件<B>は、ガスバリア層が、Siと金属M1との複合酸化物の酸素欠損組成を、所定の厚さ以上にわたって含んでいることを表している。 The above condition <B> indicates that the gas barrier layer contains the oxygen deficient composition of the complex oxide of Si and the metal M1 over a predetermined thickness.
 上述したように、本発明に係るSiと金属M1との複合酸化物の組成は、SiM1で示される。この組成からも明らかなように、上記複合酸化物は、一部窒化物の構造を含んでいてもよい。ここでは、Siの最大価数を4、金属M1の最大価数をb、Oの価数を2、Nの価数を3とする。そして、上記複合酸化物(一部窒化物となっているものを含む)が化学量論的組成になっている場合は、(2y+3z)/(4+bx)=1.0となる。この式は、Siおよび金属M1の結合手の合計と、OおよびNの結合手の合計とが同数であることを意味し、この場合、Siおよび金属M1、ともに、O、Nのいずれかと結合していることになる。なお、本発明において、金属M1として2種以上が併用される場合には、各元素の最大価数を各元素の存在比率によって加重平均することにより算出される複合価数を「最大価数」のbの値として採用するものとする。 As described above, the composition of the composite oxide of Si and metal M1 according to the present invention is represented by SiM1 x O y N z . As is clear from this composition, the composite oxide may partially include a nitride structure. Here, the maximum valence of Si is 4, the maximum valence of metal M1 is b, the valence of O is 2, and the valence of N is 3. When the composite oxide (including a partly nitrided) has a stoichiometric composition, (2y + 3z) / (4 + bx) = 1.0. This formula means that the total number of bonds of Si and metal M1 and the total number of bonds of O and N are the same. In this case, both Si and metal M1 are bonded to either O or N. Will be. In the present invention, when two or more kinds are used in combination as the metal M1, the composite valence calculated by weighted averaging the maximum valence of each element according to the abundance ratio of each element is “maximum valence”. It shall be adopted as the value of b.
 一方、本発明に係る領域[b]のように(2y+3z)/(a+bx)<1となる場合には、Siおよび金属M1の結合手の合計に対して、OおよびNの結合手の合計が不足していることを意味し、この状態が上記複合酸化物の「酸素欠損」である。酸素欠損状態においては、Siおよび金属M1の余った結合手は互いに結合する可能性を有しており、Siや金属M1の金属同士が直接結合すると、金属の間にOやNを介して結合した場合よりも緻密で高密度な構造が形成され、その結果として、ガスバリア性が向上すると考えられる。 On the other hand, when (2y + 3z) / (a + bx) <1 as in the region [b] according to the present invention, the total number of O and N bonds is greater than the total number of bonds of Si and metal M1. This means that there is a shortage, and this state is the “oxygen deficiency” of the composite oxide. In the oxygen deficient state, the remaining bonds of Si and metal M1 have the possibility of bonding to each other. When the metals of Si and metal M1 are directly bonded to each other, they are bonded to each other through O or N. It is considered that a denser and higher density structure is formed than in the case, and as a result, the gas barrier property is improved.
 また、本発明において、領域[b]は、x<1を満たす領域である。この領域では、Siおよび金属M1の双方が金属同士の直接結合に関与することから、この条件を満たす領域[b]が存在することで、ガスバリア性の向上に寄与すると考えられる。なお、Siおよび金属M1の存在比率が近いほどガスバリア性の向上に寄与しうると考えられることから、領域[b]は、0.5<x<1を満たす領域を含むことが好ましく、0.6<x<1を満たす領域を含むことがより好ましく、0.7<x<1を満たす領域を含むことがさらに好ましい。 In the present invention, the region [b] is a region satisfying x <1. In this region, since both Si and the metal M1 are involved in the direct bonding between the metals, the region [b] satisfying this condition is considered to contribute to the improvement of the gas barrier property. Note that it is considered that the closer the abundance ratio of Si and metal M1 is, the more the gas barrier property can be improved, so the region [b] preferably includes a region satisfying 0.5 <x <1. It is more preferable to include a region that satisfies 6 <x <1, and it is further preferable to include a region that satisfies 0.7 <x <1.
 ここで、上述したように、(2y+3z)/(4+bx)<1.0を満たす領域[b]が存在すれば、ガスバリア性の向上効果が発揮されることが確認されたが、領域[b]は、最小値として(2y+3z)/(4+bx)≦0.98を満たすことが好ましく、(2y+3z)/(4+bx)≦0.95を満たすことがより好ましく、(2y+3z)/(4+bx)≦0.92を満たすことがさらに好ましい。ここで、領域[b]における(2y+3z)/(4+bx)の値が小さくなるほど、ガスバリア性の向上効果は高くなるものの可視光での吸収も大きくなる。したがって、透明性が望まれる用途に使用するガスバリア性フィルムの場合には、(2y+3z)/(4+bx)≧0.7であることが好ましく、(2y+3z)/(4+bx)≧0.75であることがより好ましく、(2y+3z)/(4+bx)≧0.8であることがさらに好ましい。 Here, as described above, it was confirmed that if the region [b] satisfying (2y + 3z) / (4 + bx) <1.0 is present, the effect of improving the gas barrier property is exhibited, but the region [b] Preferably satisfies (2y + 3z) / (4 + bx) ≦ 0.98, more preferably satisfies (2y + 3z) / (4 + bx) ≦ 0.95, and (2y + 3z) / (4 + bx) ≦ 0. More preferably, 92 is satisfied. Here, as the value of (2y + 3z) / (4 + bx) in the region [b] decreases, the effect of improving the gas barrier property increases, but the absorption with visible light also increases. Therefore, in the case of a gas barrier film used for an application where transparency is desired, (2y + 3z) / (4 + bx) ≧ 0.7 is preferable, and (2y + 3z) / (4 + bx) ≧ 0.75. Is more preferable, and (2y + 3z) / (4 + bx) ≧ 0.8 is more preferable.
 なお、本発明において良好なガスバリア性が得られる領域[b]の厚さは、SiO換算のスパッタ厚さとして、2nm以上であることが好ましく、3nm以上であることがより好ましく、4nm以上であることがさらに好ましく、5nm以上であることが特に好ましい。 In the present invention, the thickness of the region [b] where good gas barrier properties can be obtained is preferably 2 nm or more, more preferably 3 nm or more, and more preferably 4 nm or more as the sputtering thickness in terms of SiO 2. More preferably, it is more preferably 5 nm or more.
 [ガスバリア性フィルムの製造方法]
 本発明のガスバリア性フィルムの製造方法は、特に制限されないが、(1)樹脂基材上に、ケイ素原子、元素M2、および酸素原子を含む第1層を形成する工程と、(2)前記第1層上に金属M1および酸素原子を含む第2層を形成する工程と、を有する製造方法が好ましい。
[Method for producing gas barrier film]
Although the manufacturing method of the gas barrier film of the present invention is not particularly limited, (1) a step of forming a first layer containing a silicon atom, an element M2, and an oxygen atom on a resin substrate; (2) the first And a step of forming a second layer containing metal M1 and oxygen atoms on one layer.
 以下、上記の好ましい製造方法について説明する。 Hereinafter, the preferable manufacturing method will be described.
 〔第1層を形成する工程〕
 ケイ素原子、元素M2、および酸素原子を含む第1層を形成する方法としては、気相成膜法や、ポリシラザンと元素M2を含有する化合物とを含む塗布液を塗布し乾燥することを有する方法(以下、単に塗布法とも称する)が挙げられる。中でも、生産性の観点から、塗布法が好ましい。
[Step of forming first layer]
As a method of forming the first layer containing silicon atoms, element M2, and oxygen atoms, a method including vapor phase film-forming or applying and drying a coating liquid containing a compound containing polysilazane and element M2 (Hereinafter, also simply referred to as a coating method). Among these, the coating method is preferable from the viewpoint of productivity.
 (1-1)気相成膜法
 気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法等の物理気相成長(PVD)法、プラズマCVD(chemical vapordeposition)法、ALD(Atomic Layer Deposition)などの化学気相成長法が挙げられる。中でも、下層へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、物理気相成長法が好ましく、スパッタ法がより好ましい。
(1-1) Vapor Deposition Method The vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, and ion plating, plasma CVD (chemical), and the like. Examples thereof include chemical vapor deposition methods such as vapor deposition method and ALD (Atomic Layer Deposition). Among them, the physical vapor deposition method is preferable and the sputtering method is more preferable because the film formation is possible without damaging the lower layer and the productivity is high.
 スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロン(DMS)スパッタリング、イオンビームスパッタリング、ECRスパッタリングなどを単独でまたは2種以上組み合わせて用いることができる。また、ターゲットの印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング、およびRF(高周波)スパッタリングのいずれを用いてもよい。また、金属モードと、酸化物モードの中間である遷移モードを利用した反応性スパッタ法も用いることができる。遷移領域となるようにスパッタ現象を制御することにより、高い成膜スピードで金属酸化物を成膜することが可能となるため好ましい。DCスパッタリングやDMSスパッタリングを行なう際には、そのターゲットに元素M2を含むターゲットを用い、さらに、プロセスガス中に酸素を導入することで、元素M2の酸化物の薄膜を形成することができる。また、RFスパッタリングで成膜する場合は、元素M2の酸化物のターゲットを用いることができる。プロセスガスに用いられる不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素等を導入することで、元素M2の酸化物、窒化物、窒酸化物、炭酸化物等の薄膜を作ることができる。スパッタ法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、膜厚等に応じて適宜選択することができる。 For the film formation by sputtering, bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more. The target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used. In addition, a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used. By controlling the sputtering phenomenon so as to be in the transition region, a metal oxide film can be formed at a high film formation speed, which is preferable. When DC sputtering or DMS sputtering is performed, a thin film of an element M2 oxide can be formed by using a target containing the element M2 as a target and further introducing oxygen into the process gas. In the case of forming a film by RF sputtering, an oxide target of the element M2 can be used. As the inert gas used for the process gas, He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used. Furthermore, by introducing oxygen, nitrogen, carbon dioxide, carbon monoxide, or the like into the process gas, a thin film such as an oxide, nitride, nitride oxide, or carbonate of the element M2 can be formed. Examples of film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, which can be appropriately selected according to the sputtering apparatus, film material, film thickness, and the like.
 上記元素M2を含むターゲットとしては、例えば、特開2000-026961号公報、特開2009-215651号公報、特開2003-160862号公報、特開2012-007218号公報等に記載されている、複数の元素を含むターゲットを用いることができる。 Examples of the target including the element M2 include a plurality of targets described in, for example, JP 2000-026961 A, JP 2009-215651 A, JP 2003-160862 A, JP 2012-007218 A, and the like. A target containing any of these elements can be used.
 (1-2)塗布法
 他の第1層の形成方法として、ポリシラザンと元素M2を含有する化合物とを含む塗布液を塗布し乾燥する方法が挙げられる。
(1-2) Coating Method Another method for forming the first layer includes a method of coating and drying a coating solution containing polysilazane and a compound containing the element M2.
 <ポリシラザン>
 ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、および両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
<Polysilazane>
Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
 具体的には、ポリシラザンは、好ましくは下記の構造を有する。 Specifically, the polysilazane preferably has the following structure.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(I)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R、RおよびRは、それぞれ、同じであってもあるいは異なるものであってもよい。 In the general formula (I), R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different.
 また、上記一般式(I)において、nは、整数であり、上記一般式(I)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。 In the general formula (I), n is an integer, and the polysilazane having the structure represented by the general formula (I) is determined to have a number average molecular weight of 150 to 150,000 g / mol. Is preferred.
 上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンである。 In the compound having the structure represented by the general formula (I), one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
 または、ポリシラザンとしては、下記一般式(II)で表される構造を有する。 Alternatively, polysilazane has a structure represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記一般式(II)において、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ、同じであってもあるいは異なるものであってもよい。また、上記一般式(II)において、n’およびpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’およびpは、同じであってもあるいは異なるものであってもよい。 In the general formula (II), R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. In this case, R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different. In the general formula (II), n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. It is preferred that Note that n ′ and p may be the same or different.
 上記一般式(II)のポリシラザンのうち、R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’およびR5’が各々メチル基を表す化合物;R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’が各々メチル基を表し、R5’がビニル基を表す化合物;R1’、R3’、R4’およびR6’が各々水素原子を表し、R2’およびR’が各々メチル基を表す化合物が好ましい。 Among the polysilazanes of the above general formula (II), R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group; R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group; R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5 ' each represents a methyl group is preferred.
 または、ポリシラザンとしては、下記一般式(III)で表される構造を有する。 Alternatively, polysilazane has a structure represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記一般式(III)において、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ、同じであってもあるいは異なるものであってもよい。 In the general formula (III), R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ may be the same or different.
 また、上記一般式(III)において、n”、p”およびqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n”、p”およびqは、同じであってもあるいは異なるものであってもよい。 In the general formula (III), n ″, p ″ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. It is preferable to be determined as follows. Note that n ″, p ″, and q may be the same or different.
 上記一般式(III)のポリシラザンのうち、R1”、R3”およびR6”が各々水素原子を表し、R2”、R4”、R5”およびR8”が各々メチル基を表し、R9”が(トリエトキシシリル)プロピル基を表し、R7”がアルキル基または水素原子を表す化合物が好ましい。 Of the polysilazanes of the above general formula (III), R 1 ″ , R 3 ″ and R 6 ″ each represent a hydrogen atom, and R 2 ″ , R 4 ″ , R 5 ″ and R 8 ″ each represent a methyl group. , R 9 ″ represents a (triethoxysilyl) propyl group, and R 7 ″ represents an alkyl group or a hydrogen atom.
 一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンとを選択してよく、混合して使用することもできる。 On the other hand, the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard. The ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. For this reason, these perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
 ポリシラザンとして、パーヒドロポリシラザンが好ましく挙げられる。パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造とが存在する構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。 Perhydropolysilazane is preferably exemplified as polysilazane. Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
 ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのまま第1層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、メルク株式会社製のNN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。これらポリシラザン溶液は、単独でもまたは2種以上組み合わせても用いることができる。 Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and a commercially available product can be used as it is as a coating solution for forming the first layer. Examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by Merck Co., Ltd. . These polysilazane solutions can be used alone or in combination of two or more.
 本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。 Other examples of the polysilazane that can be used in the present invention include, but are not limited to, for example, a silicon alkoxide-added polysilazane obtained by reacting the above polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No. 5-238827), a glycidol reacted Glycidol-added polysilazane (Japanese Patent Laid-Open No. 6-122852) obtained by reaction, alcohol-added polysilazane obtained by reacting alcohol (Japanese Patent Laid-Open No. 6-240208), metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal obtained by adding metal fine particles Fine particle added policy Zhang such (JP-A-7-196986), and a polysilazane ceramic at low temperatures.
 <元素M2を含有する化合物>
 塗布法で用いられる元素M2を含有する化合物の例としては、例えば、アルミニウムイソプロポキシド、アルミニウム-sec-ブチレート、チタンイソプロポキシド、アルミニウムトリエチレート、アルミニウムトリイソプロピレート、アルミニウムトリtert-ブチレート、アルミニウムトリn-ブチレート、アルミニウムトリsec-ブチレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アセトアルコキシアルミニウムジイソプロピレート、カルシウムイソプロピレート、チタンテトライソプロポキシド(チタン(IV)イソプロピレート)、ジルコニウムテトラアセチルアセトネート、アルミニウムジイソプロピレートモノアルミニウムtert-ブチレート、アルミニウムトリスエチルアセトアセテート、アルミニウムオキシドイソプロポキサイドトリマー、ジルコニウム(IV)イソプロピレート、トリス(2,4-ペンタンジオナト)チタニウム(V)、テトラキス(2,4-ペンタンジオナト)ジルコニウム(IV)、トリス(2,4-ペンタンジオナト)コバルト(III)、トリス(2,4-ペンタンジオナト)鉄(III)、ビス(2,4-ペンタジオナト)パラジウム(II)、トリス(2,4-ペンタンジオナト)イリジウム(III)、トリス(2,4-ペンタンジオナト)アルミニウム(III)、ビス(2,4-ペンタンジオナト)ニッケル(II)、ビス(2,4-ペンタンジオナト)銅(II)、ビス(2,4-ペンタンジオナト)亜鉛(II)、トリス(2,4-ペンタンジオナト)マンガン(III)、トリス(2,4-ペンタンジオナト)クロム(III)、トリス(2,4-ペンタンジオナト)インジウム(III)、トリス(2,4-ペンタンジオナト)カルシウム(III)、マグネシウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、トリメチルガリウム、ジ-n-ブチルジメトキシ錫、テトラエチル鉛、マンガン(III)アセチルアセトナート、ジエチルジエトキシゲルマン、ベリリウムアセチルアセトネート、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリn-プロピル、ホウ酸トリイソプロピル、ホウ酸トリn-ブチル、ホウ酸トリtert-ブチル、ストロンチウムイソプロポキシド、バリウムジイソプロポキシド、バリウムtert-ブトキシド、バリウムアセチルアセトネート、タリウムエトキシド、およびタリウムアセチルアセトネートなどが挙げられる。これら化合物は、単独でもまたは2種以上混合して用いてもよい。
<Compound containing element M2>
Examples of the compound containing the element M2 used in the coating method include, for example, aluminum isopropoxide, aluminum-sec-butyrate, titanium isopropoxide, aluminum triethylate, aluminum triisopropylate, aluminum tritert-butylate, Aluminum tri-n-butylate, aluminum tri-sec-butylate, aluminum ethyl acetoacetate diisopropylate, acetoalkoxy aluminum diisopropylate, calcium isopropylate, titanium tetraisopropoxide (titanium (IV) isopropylate), zirconium tetraacetylacetate Nate, aluminum diisopropylate monoaluminum tert-butylate, aluminum trisethyl acetoacetate, Luminium oxide isopropoxide trimer, zirconium (IV) isopropylate, tris (2,4-pentanedionato) titanium (V), tetrakis (2,4-pentandedionato) zirconium (IV), tris (2,4- Pentandionato) cobalt (III), tris (2,4-pentandionato) iron (III), bis (2,4-pentadionato) palladium (II), tris (2,4-pentandionato) iridium (III ), Tris (2,4-pentanedionato) aluminum (III), bis (2,4-pentanedionato) nickel (II), bis (2,4-pentandedionato) copper (II), bis (2 , 4-Pentandionato) Zinc (II), Tris (2,4-pentandionato) Manganese (III), Tris ( , 4-pentandionato) chromium (III), tris (2,4-pentandionato) indium (III), tris (2,4-pentandionato) calcium (III), magnesium ethoxide, sodium ethoxide, Potassium ethoxide, trimethylgallium, di-n-butyldimethoxytin, tetraethyllead, manganese (III) acetylacetonate, diethyldiethoxygermane, berylliumacetylacetonate, trimethylborate, triethylborate, trin-propylborate , Triisopropyl borate, tri-n-butyl borate, tri-tert-butyl borate, strontium isopropoxide, barium diisopropoxide, barium tert-butoxide, barium acetylacetonate, thallium ethoxide, and titanium Examples include lithium acetylacetonate. These compounds may be used alone or in combination of two or more.
 元素M2を含有する化合物は、金属アルコキシド化合物であることが好ましく、金属アルコキシド化合物の中でも、反応性、溶解性等の観点から分岐状のアルコキシ基を有する化合物がより好ましく、2-プロポキシ基、またはsec-ブトキシ基を有する化合物がさらに好ましい。また、ガスバリア性能、密着性等の観点から、エトキシ基を有する化合物がより好ましい。 The compound containing the element M2 is preferably a metal alkoxide compound, and among the metal alkoxide compounds, a compound having a branched alkoxy group is more preferable from the viewpoint of reactivity, solubility, and the like, a 2-propoxy group, or More preferred is a compound having a sec-butoxy group. Moreover, the compound which has an ethoxy group from a viewpoint of gas barrier performance, adhesiveness, etc. is more preferable.
 さらに、アセチルアセトナート基を有する金属アルコキシド化合物もまた好ましい。アセチルアセトナート基は、カルボニル構造によりアルコキシド化合物の中心元素と相互作用を有するため、取り扱い性が容易になり好ましい。さらに好ましくは上記のアルコキシド基、またはアセチルアセトナート基を複数種有する化合物が反応性や膜組成の観点からより好ましい。 Furthermore, metal alkoxide compounds having an acetylacetonate group are also preferred. The acetylacetonate group is preferable because it has an interaction with the central element of the alkoxide compound due to the carbonyl structure, so that handling is easy. More preferably, a compound having a plurality of alkoxide groups or acetylacetonate groups is more preferable from the viewpoint of reactivity and film composition.
 金属アルコキシド化合物は、市販品を用いてもよいし合成品を用いてもよい。市販品の具体的な例としては、例えば、AMD(アルミニウムジイソプロピレートモノsec-ブチレート)、ASBD(アルミニウムsec-ブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH-TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL-M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)、オルガチックスシリーズ(マツモトファインケミカル株式会社製)等が挙げられる。 As the metal alkoxide compound, a commercially available product or a synthetic product may be used. Specific examples of commercially available products include, for example, AMD (aluminum diisopropylate mono-sec-butylate), ASBD (aluminum sec-butylate), ALCH (aluminum ethyl acetoacetate diisopropylate), ALCH-TR (aluminum tris) Ethyl acetoacetate), aluminum chelate M (aluminum alkyl acetoacetate / diisopropylate), aluminum chelate D (aluminum bisethylacetoacetate / monoacetylacetonate), aluminum chelate A (W) (aluminum trisacetylacetonate) , Kawaken Fine Chemical Co., Ltd.), Preneact (registered trademark) AL-M (acetoalkoxyaluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.), Olga Tsu box series (manufactured by Matsumoto Fine Chemical Co., Ltd.) and the like.
 なお、金属アルコキシド化合物を用いる場合は、ポリシラザンを含む塗布液と不活性ガス雰囲気下で混合することが好ましい。金属アルコキシド化合物が大気中の水分や酸素と反応し、激しく酸化が進むことを抑制するためである。 In addition, when using a metal alkoxide compound, it is preferable to mix with the coating liquid containing polysilazane in inert gas atmosphere. This is to prevent the metal alkoxide compound from reacting with moisture and oxygen in the atmosphere and causing intense oxidation.
 <第1層形成用塗布液>
 第1層形成用塗布液を調製するための溶剤としては、ポリシラザンおよび元素M2を含有する化合物を溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ポリシラザンに対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターペン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ-およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
<First layer forming coating solution>
The solvent for preparing the coating solution for forming the first layer is not particularly limited as long as it can dissolve the compound containing polysilazane and the element M2, but water and reactive groups that easily react with polysilazane ( For example, an organic solvent that does not contain a hydroxyl group or an amine group and is inert to polysilazane is preferable, and an aprotic organic solvent is more preferable. Specifically, the solvent is an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, terpenes, etc. Hydrogen solvents; Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like. The solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
 第1層形成用塗布液におけるポリシラザンの濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1~80質量%、より好ましくは5~50質量%、さらに好ましくは10~40質量%である。 The concentration of polysilazane in the coating solution for forming the first layer is not particularly limited and varies depending on the film thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by mass, more preferably 5 to 50% by mass, More preferably, it is 10 to 40% by mass.
 第1層形成用塗布液は、真空紫外線による改質を促進させるという観点から、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ポリシラザンを基準としたとき、好ましくは0.1~10質量%、より好ましくは0.5~7質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行による過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。 The coating solution for forming the first layer preferably contains a catalyst from the viewpoint of promoting modification by vacuum ultraviolet rays. As the catalyst applicable to the present invention, a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds. Of these, it is preferable to use an amine catalyst. The concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on polysilazane. By setting the amount of the catalyst to be in this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like.
 第1層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステル樹脂もしくは変性ポリエステル樹脂、エポキシ樹脂、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。 In the first layer forming coating solution, the following additives may be used as necessary. For example, cellulose ethers, cellulose esters; for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc., natural resins; for example, rubber, rosin resin, etc., synthetic resins; Aminoplasts, particularly urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyester resins or modified polyester resins, epoxy resins, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
 <第1層形成用塗布液を塗布する方法>
 第1層形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、ダイコート法、グラビア印刷法等が挙げられる。
<Method of Applying First Layer Forming Coating Solution>
As a method of applying the first layer forming coating solution, a conventionally known appropriate wet coating method may be employed. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method and the like. It is done.
 塗布厚さは、好ましい厚さや目的に応じて適切に設定され得る。 The coating thickness can be appropriately set according to the preferred thickness and purpose.
 塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適な第1層が得られうる。なお、残存する溶媒は後に除去されうる。 After applying the coating solution, it is preferable to dry the coating film. By drying the coating film, the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable first layer can be obtained. The remaining solvent can be removed later.
 塗膜の乾燥温度は、適用する基材によっても異なるが、50~200℃であることが好ましい。例えば、ガラス転移温度(Tg)が70℃のポリエチレンテレフタレート基材を用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。 The drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C. For example, when a polyethylene terephthalate substrate having a glass transition temperature (Tg) of 70 ° C. is used, the drying temperature is preferably set to 150 ° C. or less in consideration of deformation of the substrate due to heat. The temperature can be set by using a hot plate, oven, furnace or the like. The drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes. The drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
 上記製造方法においては、第1層形成用塗布液を塗布して得られた塗膜に対して、水分を除去する工程を含んでいてもよい。水分を除去する方法としては、低湿度環境を維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度との関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-5℃以下(温度25℃/湿度10%)であり、維持される時間は第1層の膜厚によって適宜設定することが好ましい。具体的には、露点温度は-5℃以下で、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、-50℃以上であり、-40℃以上であることが好ましい。改質処理前、あるいは改質処理中に水分を除去することによって、シラノールに転化した第1層の脱水反応を促進する観点から好ましい形態である。 The manufacturing method may include a step of removing moisture from the coating film obtained by applying the first layer forming coating solution. As a method for removing moisture, a form of dehumidification while maintaining a low humidity environment is preferable. Since the humidity in the low humidity environment varies depending on the temperature, the relationship between the temperature and the humidity shows a preferable form by the definition of the dew point temperature. The preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), the more preferable dew point temperature is −5 ° C. or lower (temperature 25 ° C./humidity 10%), and the time for maintaining is the thickness of the first layer It is preferable to set appropriately. Specifically, it is preferable that the dew point temperature is −5 ° C. or lower and the maintaining time is 1 minute or longer. The lower limit of the dew point temperature is not particularly limited, but is usually −50 ° C. or higher, and preferably −40 ° C. or higher. This is a preferred form from the viewpoint of promoting the dehydration reaction of the first layer converted to silanol by removing water before or during the reforming treatment.
 <真空紫外線照射>
 上記のようにして第1層を形成した後、引き続き第2層を形成してもよいが、第2層の形成前に第1層に対して真空紫外線を照射し、ポリシラザンの酸窒化ケイ素等への転化反応を行うことが好ましい。元素M2を含む第1層を形成すれば、真空紫外線を照射しなくても、第2層を形成するまでの経時保存によって最終的に得られるガスバリア層の組成が変化してしまうことは抑えられ、生産性および生産安定性は向上する。しかしながら、第1層を形成後、真空紫外線照射を行うことにより、たとえ第1層を形成した後第2層を形成するまでの間、高温高湿環境下で保存する工程を有していたとしても、最終的に得られるガスバリア層の組成が、保存する工程を有していない製造方法と比べてもほとんど変化せず、生産安定性がより向上する。したがって、実生産において、塗布工程や改質工程等の制限がより少なくなり、また、塗布工程や改質工程等における基材の搬送速度の制限もより少なくなり、生産性がより向上する。
<Vacuum UV irradiation>
After the first layer is formed as described above, the second layer may be formed continuously. However, before forming the second layer, the first layer is irradiated with vacuum ultraviolet rays to form polysilazane silicon oxynitride, etc. It is preferable to carry out the conversion reaction into If the first layer containing the element M2 is formed, the composition of the gas barrier layer that is finally obtained by storage over time until the second layer is formed can be suppressed without irradiation with vacuum ultraviolet rays. , Productivity and production stability are improved. However, after forming the first layer, by performing vacuum ultraviolet irradiation, it was assumed that it had a process of storing in a high temperature and high humidity environment until the second layer was formed after the first layer was formed. However, the composition of the gas barrier layer finally obtained is hardly changed compared to a production method having no storage step, and production stability is further improved. Therefore, in actual production, there are fewer restrictions on the coating process, the modification process, and the like, and there are fewer restrictions on the substrate conveyance speed in the coating process, the modification process, etc., and the productivity is further improved.
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、対象が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する樹脂基材や第1層の組成、濃度にもよるが、好ましくは0.1秒~10分であり、より好ましくは0.5秒~3分である。 UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used. For example, in the case of batch processing, it can be processed in an ultraviolet baking furnace equipped with an ultraviolet ray generation source. The ultraviolet baking furnace itself is generally known. For example, an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used. Further, when the object is a long film, it can be converted to ceramics by continuously irradiating ultraviolet rays in a drying zone equipped with the ultraviolet ray generation source as described above while being conveyed. The time required for ultraviolet irradiation depends on the resin substrate used and the composition and concentration of the first layer, but is preferably 0.1 second to 10 minutes, more preferably 0.5 seconds to 3 minutes.
 <真空紫外線照射処理:エキシマ照射処理>
 真空紫外線照射による改質は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸窒化ケイ素を含む膜の形成を行う方法である。なお、エキシマ照射処理を行う際は、熱処理を併用することが好ましい。
<Vacuum UV irradiation treatment: Excimer irradiation treatment>
The modification by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy with a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds the atoms only to photons called photon processes. In this method, a film containing silicon oxynitride is formed at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly. In addition, when performing an excimer irradiation process, it is preferable to use heat processing together.
 本発明においての真空紫外線源は、100~180nmの波長の光を発生させるものであればよいが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。 The vacuum ultraviolet ray source in the present invention may be any source that generates light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator (for example, Xe excimer lamp) having a maximum emission at about 172 nm, and an emission line at about 185 nm. Low pressure mercury vapor lamps with medium pressure and medium and high pressure mercury vapor lamps with wavelength components of 230 nm or less, and excimer lamps with maximum emission at about 222 nm.
 このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。 Among these, the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
 また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン塗膜の改質を実現できる。 Also, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。 ¡Excimer lamps have high light generation efficiency and can be lit with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the irradiation object is suppressed. For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.
 真空紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10~20,000体積ppm(0.001~2体積%)とすることが好ましく、50~10,000体積ppm(0.005~1体積%)とすることがより好ましい。また、転化プロセスの間の水蒸気濃度は、好ましくは1,000~4,000体積ppmの範囲である。 Oxygen is required for the reaction at the time of vacuum ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. In addition, it is preferably performed in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably 10 to 20,000 volume ppm (0.001 to 2 volume%), and preferably 50 to 10,000 volume ppm (0.005 to 1 volume%). More preferably. Also, the water vapor concentration during the conversion process is preferably in the range of 1,000 to 4,000 volume ppm.
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 The gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 真空紫外線照射において、ポリシラザン塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm~10W/cmであると好ましく、30mW/cm~200mW/cmであることがより好ましく、50mW/cm~160mW/cmであるとさらに好ましい。1mW/cm以上であれば、改質効率が向上し、10W/cm以下であれば、塗膜に生じ得るアブレーションや、基材へのダメージを低減することができる。 In vacuum ultraviolet irradiation, the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane coating is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. and further preferably 50mW / cm 2 ~ 160mW / cm 2. If it is 1 mW / cm 2 or more, the reforming efficiency is improved, and if it is 10 W / cm 2 or less, ablation that can occur in the coating film and damage to the substrate can be reduced.
 真空紫外線照射を行う場合、塗膜の表面における真空紫外線の照射エネルギー量(照射量)は、0.1J/cm以上1J/cm未満であることが好ましく、0.2~0.8J/cmであることがより好ましい。照射エネルギー量がこの範囲であれば、たとえ第1層を形成した後第2層を形成するまでの間、高温高湿環境下で保存する工程を有していたとしても、最終的に得られるガスバリア層の組成がほとんど変化せず、生産安定性がより向上する。また、実生産において、塗布工程や改質工程の制限がより少なくなり、塗布工程や改質工程における基材の搬送速度の制限もより少なくなり、生産性がより向上する。 When vacuum ultraviolet irradiation is performed, the amount of irradiation energy (irradiation amount) of vacuum ultraviolet rays on the surface of the coating film is preferably 0.1 J / cm 2 or more and less than 1 J / cm 2 , preferably 0.2 to 0.8 J / cm 2. more preferably cm 2. If the amount of irradiation energy is within this range, even if it has a step of storing in a high-temperature and high-humidity environment between the formation of the first layer and the formation of the second layer, it is finally obtained. The composition of the gas barrier layer hardly changes, and the production stability is further improved. Further, in actual production, there are fewer restrictions on the coating process and the modification process, and there are fewer restrictions on the substrate conveyance speed in the coating process and the modification process, and the productivity is further improved.
 用いられる真空紫外線は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。 The vacuum ultraviolet ray used may be generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 . Further, as the gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas), the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
 第1層における元素M2の含有量は、第1層全体の質量に対して0.001~50質量%であることが好ましく、0.1~40質量%であることがより好ましい。 The content of the element M2 in the first layer is preferably 0.001 to 50% by mass, and more preferably 0.1 to 40% by mass with respect to the mass of the entire first layer.
 また、第1層における元素M2の含有量は、ケイ素(Si)の含有量100mol%に対して5~20mol%であることが好ましく、5~10mol%であることがより好ましい。 In addition, the content of the element M2 in the first layer is preferably 5 to 20 mol%, more preferably 5 to 10 mol% with respect to 100 mol% of silicon (Si).
 上記のようにして形成される第1層の厚さは、10~500nmであることが好ましく、30~300nmであることがより好ましい。 The thickness of the first layer formed as described above is preferably 10 to 500 nm, and more preferably 30 to 300 nm.
 〔第2層の形成方法〕
 金属M1および酸素原子を含む第2層の形成方法は、領域(A)および(B)を形成しやすいという観点から、気相成膜法であることが好ましい。気相成膜法としては、特に制限されず、具体的には、上記(1-1)で示した方法が挙げられる。
[Method for forming second layer]
The method for forming the second layer containing the metal M1 and oxygen atoms is preferably a vapor deposition method from the viewpoint of easily forming the regions (A) and (B). The vapor deposition method is not particularly limited, and specific examples include the method described in (1-1) above.
 プロセスガスに用いられる不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、金属M1の酸化物、窒化物、窒酸化物、炭酸化物等の遷移金属化合物薄膜を作ることができる。気相成膜法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、用いる装置や、膜の材料、膜厚等に応じて適宜選択することができる。 As the inert gas used for the process gas, He, Ne, Ar, Kr, Xe or the like can be used, and Ar is preferably used. Furthermore, by introducing oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas, a transition metal compound thin film such as an oxide, nitride, nitride oxide, or carbonate of metal M1 can be formed. Examples of film formation conditions in the vapor phase film formation method include applied power, discharge current, discharge voltage, time, and the like. These may be appropriately selected according to the apparatus used, the material of the film, the film thickness, and the like. it can.
 気相成膜法に用いるターゲットとしては、金属M1の酸化物を含むターゲットが好ましい。 As a target used in the vapor deposition method, a target containing an oxide of metal M1 is preferable.
 第2層の形成方法の中でも、成膜レートがより高く、より高い生産性を有することから、金属M1の酸化物を含むターゲットとして用いるスパッタ法が好ましい。 Among the formation methods of the second layer, a sputtering method used as a target containing an oxide of the metal M1 is preferable because the film formation rate is higher and the productivity is higher.
 第2層の成膜設定厚さは、1.5~30nmであることが好ましく、3~20nmであることが好ましい。 The set thickness of the second layer is preferably 1.5 to 30 nm, and preferably 3 to 20 nm.
 [種々の機能を有する層(他の層)]
 本発明のガスバリア性フィルムにおいては、種々の機能を有する層を設けることができる。
[Layers with various functions (other layers)]
In the gas barrier film of the present invention, layers having various functions can be provided.
 <アンカーコート層>
 本発明に係るガスバリア層を形成する側の樹脂基材の表面には、樹脂基材とガスバリア層との密着性の向上を目的として、アンカーコート層を形成してもよい。
<Anchor coat layer>
An anchor coat layer may be formed on the surface of the resin substrate on the side where the gas barrier layer according to the present invention is formed for the purpose of improving the adhesion between the resin substrate and the gas barrier layer.
 アンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を単独でまたは2種以上組み合わせて使用することができる。 As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5.0g/m(乾燥状態)程度が好ましい。 Conventionally known additives can be added to these anchor coating agents. The above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to. The application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
 また、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化珪素を主体とした無機膜を形成することもできる。あるいは、特開2004-314626号公報に記載されているようなアンカーコート層を形成することで、その上に気相法により無機薄膜を形成する際に、基材側から発生するガスをある程度遮断して、無機薄膜の組成を制御するといった目的でアンカーコート層を形成することもできる。 Also, the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like. Alternatively, by forming an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor phase method, the gas generated from the substrate side is blocked to some extent. Thus, an anchor coat layer can be formed for the purpose of controlling the composition of the inorganic thin film.
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 μm.
 <ハードコート層>
 樹脂基材の表面(片面または両面)には、ハードコート層を有していてもよい。ハードコート層に含まれる材料の例としては、例えば、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることができる。
<Hard coat layer>
A hard coat layer may be provided on the surface (one side or both sides) of the resin substrate. Examples of the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold. Such curable resins can be used singly or in combination of two or more.
 活性エネルギー線硬化性樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて、活性エネルギー線硬化性樹脂の硬化物を含む層、すなわちハードコート層が形成される。活性エネルギー線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。予めハードコート層が形成されている市販の樹脂基材を用いてもよい。 The active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray. A layer containing a cured product of the functional resin, ie, a hard coat layer is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. You may use the commercially available resin base material in which the hard-coat layer is formed previously.
 ハードコート層の厚さは、平滑性および屈曲耐性の観点から、0.1~15μmが好ましく、0.5~5μmであることがより好ましい。 The thickness of the hard coat layer is preferably from 0.1 to 15 μm, more preferably from 0.5 to 5 μm, from the viewpoint of smoothness and bending resistance.
 <平滑層>
 本発明のガスバリア性フィルムにおいては、樹脂基材とガスバリア層との間に、平滑層を有してもよい。本発明に用いられる平滑層は、突起等が存在する樹脂基材の粗面を平坦化し、あるいは、樹脂基材に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性材料、または熱硬化性材料を硬化させて作製される。
<Smooth layer>
The gas barrier film of the present invention may have a smooth layer between the resin substrate and the gas barrier layer. The smooth layer used in the present invention flattens the rough surface of the resin base material where protrusions and the like exist, or flattens the unevenness and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the resin base material. To be provided. Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
 平滑層の感光性材料としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物とを含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズを用いることができる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。 Examples of the photosensitive material for the smooth layer include a resin composition containing an acrylate compound having a radical-reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, and urethane acrylate. And a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. Specifically, a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
 熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、株式会社ADEKA製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製の各種シリコン樹脂、日東紡株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。この中でも特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。 Specific examples of thermosetting materials include TutProm Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by ADEKA, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd. Examples include coats, thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins. Among these, an epoxy resin-based material having heat resistance is particularly preferable.
 平滑層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。 The method for forming the smooth layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
 平滑層の形成では、上述の感光性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。 In the formation of the smooth layer, additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary. In addition, regardless of the position where the smooth layer is laminated, in any smooth layer, an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.
 平滑層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にする観点から、1~10μmの範囲が好ましく、2~7μmの範囲がより好ましい。 The thickness of the smooth layer is preferably in the range of 1 to 10 μm and more preferably in the range of 2 to 7 μm from the viewpoint of improving the heat resistance of the film and facilitating balance adjustment of the optical properties of the film.
 平滑層の平滑性は、JIS B 0601:2001で規定される表面粗さで表現される値で、十点平均粗さRzが、10nm以上30nm以下であることが好ましい。この範囲であれば、ガスバリア層を塗布形式で塗布した場合であっても、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合であっても塗布性が損なわれることが少なく、また、塗布後の凹凸を平滑化することも容易である。 The smoothness of the smooth layer is a value expressed by the surface roughness specified by JIS B 0601: 2001, and the 10-point average roughness Rz is preferably 10 nm or more and 30 nm or less. If it is this range, even if it is a case where a gas barrier layer is apply | coated by the application type, even if it is a case where a coating means contacts the smooth layer surface by application methods, such as a wire bar and a wireless bar, applicability | paintability will be impaired. In addition, it is easy to smooth the unevenness after coating.
 [電子デバイス]
 本発明に係るガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化する電子デバイスに好ましく適用できる。
[Electronic device]
The gas barrier film according to the present invention can be preferably applied to an electronic device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air.
 上記電子デバイスの例としては、例えば、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該電子デバイスは有機EL素子または太陽電池が好ましく、有機EL素子がより好ましい。 Examples of the electronic device include an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
 〔樹脂基材の作製〕
 樹脂基材としては、両面に易接着処理した厚さ100μmのポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラー(登録商標)(U48))を用いた。この樹脂基材のガスバリア層を形成する面とは反対の面に、厚さ0.5μmのアンチブロック機能を有するクリアハードコート層を形成した。すなわち、UV硬化型樹脂(アイカ工業株式会社製、品番:Z731L)を乾燥膜厚が0.5μmになるように樹脂基材上に塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。
[Production of resin base material]
As the resin base material, a 100 μm-thick polyethylene terephthalate film (Lumirror (registered trademark) (U48), manufactured by Toray Industries, Inc.) with easy adhesion treatment on both surfaces was used. A clear hard coat layer having a thickness of 0.5 μm and having an antiblock function was formed on the surface of the resin substrate opposite to the surface on which the gas barrier layer was formed. That is, a UV curable resin (manufactured by Aika Kogyo Co., Ltd., product number: Z731L) was applied on a resin substrate so that the dry film thickness was 0.5 μm, and then dried at 80 ° C., and then under high pressure in the air. Curing was performed using a mercury lamp under the condition of an irradiation energy amount of 0.5 J / cm 2 .
 次に、樹脂基材のガスバリア層を形成する側の面に厚さ2μmのクリアハードコート層を以下のようにして形成した。JSR株式会社製、UV硬化型樹脂オプスター(登録商標)Z7527を、乾燥膜厚が2μmになるように樹脂基材に塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。このようにして、クリアハードコート層付樹脂基材を得た。以降、本実施例および比較例においては、便宜上、このクリアハードコート層付樹脂基材を単に樹脂基材とする。 Next, a clear hard coat layer having a thickness of 2 μm was formed on the surface of the resin substrate on the side where the gas barrier layer is to be formed as follows. A UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation was applied to a resin substrate so as to have a dry film thickness of 2 μm, then dried at 80 ° C., and then using a high-pressure mercury lamp in the air. Then, curing was performed under the condition of an irradiation energy amount of 0.5 J / cm 2 . In this way, a resin substrate with a clear hard coat layer was obtained. Hereinafter, in this example and the comparative example, this resin substrate with a clear hard coat layer is simply referred to as a resin substrate for convenience.
 (実施例1-1~1-3、比較例1-1~1-4)
 樹脂基材上に、下記のようにして第1層および第2層を形成し、ガスバリア性フィルムを作製した。
(Examples 1-1 to 1-3, Comparative Examples 1-1 to 1-4)
On the resin base material, the first layer and the second layer were formed as follows to produce a gas barrier film.
 〔第1層の成膜〕
 樹脂基材の一方の面上に、マグネトロンスパッタ装置(キヤノンアネルバ株式会社製:型式EB1100)により、第1層を形成した。
[Deposition of the first layer]
A first layer was formed on one surface of the resin base material using a magnetron sputtering apparatus (manufactured by Canon Anelva Co., Ltd .: Model EB1100).
 ターゲットとしては下記のターゲットおよび成膜条件を用い、プロセスガスにはArとOとを用いて、DCスパッタにより、成膜を行った。スパッタ電源パワーは5.0W/cmとし、成膜圧力は0.4Paとした。また、各成膜条件において、酸素分圧を調整することにより組成調整を行った。なお、事前にガラス基板を用いた成膜において、酸素分圧を調整することにより組成の条件出しを行い、表層から深さ10nm近傍の組成が目標とする組成となる条件を見出し、その条件を適用した。また、膜厚に関しては、100~300nmの範囲で成膜時間に対する膜厚変化のデータを取り、単位時間当たりに成膜される膜厚を算出した後、設定膜厚となるように成膜時間を設定することで膜厚を調整した。 The following targets and film formation conditions were used as targets, Ar and O 2 were used as process gases, and film formation was performed by DC sputtering. The sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa. In each film formation condition, the composition was adjusted by adjusting the oxygen partial pressure. In addition, in film formation using a glass substrate in advance, the condition of the composition is determined by adjusting the oxygen partial pressure, and the condition in which the composition near the depth of 10 nm from the surface layer becomes the target composition is found. Applied. Regarding the film thickness, film thickness change data with respect to the film formation time is obtained in the range of 100 to 300 nm, the film formation time per unit time is calculated, and then the film formation time is set to the set film thickness. The film thickness was adjusted by setting.
 <ターゲット>
 T1:特開2012-007218号公報の比較例1に記載の方法により、M2を含有しないシリコンターゲットを作製した。ただし、ターゲット形状は板状とした;
 T2:特開2012-007218号公報の実施例1に記載の方法により、M2としてホウ素をシリコンに対して1.5質量%含有するターゲットを作製した。ただし、ターゲット形状は板状とした;
 T3:特開2003-160862号公報の「発明の実施の態様」に記載の本発明ターゲット1と同様の方法により、M2としてアルミニウムを5質量%含み、リンを12質量ppm含み、残部(ほぼ95質量%)がシリコンであるターゲットを作製した。リンの含有量はごくわずかであるため、後述の組成分析においてはリンについての分析は行わなかった。
<Target>
T1: A silicon target containing no M2 was produced by the method described in Comparative Example 1 of JP2012-007218A. However, the target shape was a plate shape;
T2: A target containing 1.5% by mass of boron with respect to silicon as M2 was produced by the method described in Example 1 of JP2012-007218A. However, the target shape was a plate shape;
T3: According to the same method as that of the target 1 of the present invention described in “Aspects of the Invention” of JP-A-2003-160862, M2 contains 5% by mass of aluminum, 12% by mass of phosphorus, and the balance (almost 95 A target having a mass%) of silicon was produced. Since the phosphorus content was very small, no analysis was performed on phosphorus in the composition analysis described below.
 <成膜条件>
 T1-1:ターゲットとしてT1を用い、上述のXPS分析において、層の組成がSiOとなるように酸素分圧を調整した。また、膜厚が120nmとなるように成膜時間を設定した;
 T1-2:膜厚が100nmとなるように成膜時間を設定したこと以外は、T1-1と同様にして行った;
 T2-1:ターゲットとしてT2を用い、T2の条件出しにおける、膜厚が120nmとなる成膜時間を設定したこと以外は、T1-1と同様にして行った;
 T2-2:膜厚が100nmとなるように成膜時間を設定したこと以外は、T2-1と同様にして行った;
 T3-1:ターゲットとしてT3を用い、T3の条件出しにおける膜厚が120nmとなる成膜時間を設定したこと以外は、T1-1と同様にして行った;
 T3-2:膜厚が100nmとなるように成膜時間を設定したこと以外は、T3-1と同様にして行った。
<Film formation conditions>
T1-1: T1 was used as a target, and in the above XPS analysis, the oxygen partial pressure was adjusted so that the composition of the layer was SiO 2 . Also, the film formation time was set so that the film thickness was 120 nm;
T1-2: Performed in the same manner as T1-1 except that the film formation time was set so that the film thickness was 100 nm;
T2-1: Performed in the same manner as T1-1 except that T2 was used as a target and the film formation time was set to 120 nm in the T2 condition determination;
T2-2: The same as T2-1, except that the film formation time was set so that the film thickness was 100 nm;
T3-1: Performed in the same manner as T1-1 except that T3 was used as a target and a film formation time was set at which the film thickness was 120 nm in the T3 condition determination;
T3-2: Performed in the same manner as T3-1 except that the film formation time was set so that the film thickness was 100 nm.
 <成膜安定性評価>
 上記成膜条件で1時間の連続成膜を行い、アーク発生の有無を確認した。アーク発生がない場合は成膜安定性良好(○)、アーク発生があった場合は成膜安定性不良(×)と判定した。
<Film stability evaluation>
Continuous film formation was performed for 1 hour under the above film formation conditions, and the presence or absence of arc generation was confirmed. When no arc was generated, the film formation stability was good (◯), and when the arc was generated, the film formation stability was poor (x).
 〔第2層の成膜〕
 第1層上に第2層を形成した。成膜には第1層の成膜で用いたものと同じ装置を用い、第1層の成膜と同様の方法により、膜組成および膜厚の設定を行った。
[Deposition of second layer]
A second layer was formed on the first layer. For film formation, the same apparatus as that used for film formation of the first layer was used, and the film composition and film thickness were set by the same method as that for film formation of the first layer.
 <ターゲット>
 T4:市販の酸素欠損型酸化ニオブターゲットを用いた。組成はNb1229であった。
<Target>
T4: A commercially available oxygen-deficient niobium oxide target was used. The composition was Nb 12 O 29 .
 <成膜条件>
 T4-1:ターゲットとしてT4を用い、酸素分圧を12%とした。また、膜厚が15nmとなるように成膜時間を設定した;
 T4-2:膜厚が10nmとなるように成膜時間を設定したこと以外は、T4-1と同様にして行った;
 T4-3:膜厚が5nmとなるように成膜時間を設定したこと以外は、T4-1と同様にして行った。
<Film formation conditions>
T4-1: T4 was used as a target, and the oxygen partial pressure was 12%. Also, the film formation time was set so that the film thickness was 15 nm;
T4-2: Performed in the same manner as T4-1 except that the film formation time was set so that the film thickness was 10 nm;
T4-3: Performed in the same manner as T4-1 except that the film formation time was set so that the film thickness was 5 nm.
 (実施例2-1~2-15、比較例2-1~2-7)
 樹脂基材上に、下記のようにして第1層および第2層を形成し、ガスバリア性フィルムを作製した。
(Examples 2-1 to 2-15, Comparative Examples 2-1 to 2-7)
On the resin base material, the first layer and the second layer were formed as follows to produce a gas barrier film.
 〔第1層の成膜〕
 下記に示すようなポリシラザンを含む塗布液(S1~S9)を上記樹脂基材の一方の面上に塗布し、乾燥して塗布膜を形成した後、真空紫外線照射による改質を下記に示す条件で行うか(S1-1、S2-1、S2-3~9-1)、または改質を行わずに(S1-2、S2-2)第1層を形成した。
[Deposition of the first layer]
The coating liquid (S1 to S9) containing polysilazane as shown below is applied on one surface of the resin substrate, dried to form a coating film, and then modified by vacuum ultraviolet irradiation under the conditions shown below The first layer was formed (S1-1, S2-1, S2-3 to 9-1) or without modification (S1-2, S2-2).
 上記樹脂基材上にスピンコート法により塗布液(S1~S9)を下記表2に示す乾燥膜厚になるように塗布し、80℃で2分間乾燥した。次いで、乾燥した塗膜に対して、波長172nmのXeエキシマランプを有する図1の真空紫外線照射装置を用い、表2に示す成膜条件で真空紫外線照射処理を行った。この際、照射雰囲気は窒素で置換し、酸素濃度は0.1体積%とした。また、試料を設置するステージ温度を80℃とした。 The coating solution (S1 to S9) was applied on the resin base material by spin coating so as to have a dry film thickness shown in Table 2 below, and dried at 80 ° C. for 2 minutes. Next, vacuum ultraviolet irradiation treatment was performed on the dried coating film under the film forming conditions shown in Table 2 using the vacuum ultraviolet irradiation apparatus of FIG. 1 having an Xe excimer lamp with a wavelength of 172 nm. At this time, the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was set to 0.1% by volume. The stage temperature for installing the sample was set to 80 ° C.
 図1において、1は装置チャンバーであり、図示しないガス供給口から内部に窒素と酸素とを適量供給し、図示しないガス排出口から排気することで、チャンバー内部から実質的に水蒸気を除去し、酸素濃度を所定の濃度に維持することができる。2は172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプ(エキシマランプ光強度:130mW/cm)、3は外部電極を兼ねるエキシマランプのホルダーであり、4は試料ステージである。試料ステージ4は、図示しない移動手段により装置チャンバー1内を水平に所定の速度(図1のV)で往復移動することができる。また、試料ステージ4は図示しない加熱手段により、所定の温度に維持することができる。5はポリシラザン化合物塗布層が形成された試料である。試料ステージが水平移動する際、試料の塗布層表面と、エキシマランプ管面との最短距離が3mmとなるように試料ステージの高さが調整されている。6は遮光板であり、Xeエキシマランプ2のエージング中に試料の塗布層に真空紫外線が照射されないようにしている。 In FIG. 1, reference numeral 1 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) to the inside and exhausts gas from a gas discharge port (not shown), thereby substantially removing water vapor from the inside of the chamber. The oxygen concentration can be maintained at a predetermined concentration. 2 is an Xe excimer lamp having a double tube structure that irradiates 172 nm vacuum ultraviolet light (excimer lamp light intensity: 130 mW / cm 2 ), 3 is an excimer lamp holder that also serves as an external electrode, and 4 is a sample stage. The sample stage 4 can reciprocate horizontally in the apparatus chamber 1 at a predetermined speed (V in FIG. 1) by a moving means (not shown). The sample stage 4 can be maintained at a predetermined temperature by a heating means (not shown). Reference numeral 5 denotes a sample on which a polysilazane compound coating layer is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm. Reference numeral 6 denotes a light-shielding plate which prevents the application of the sample from being irradiated with vacuum ultraviolet rays during aging of the Xe excimer lamp 2.
 真空紫外線照射工程で試料塗布層表面に照射されるエネルギーは、浜松ホトニクス株式会社製の紫外線積算光量計(C8026/H8025 UV POWER METER)を用い、172nmのセンサヘッドを用いて測定した。測定に際しては、Xeエキシマランプ管面とセンサヘッドの測定面との最短距離が、3mmとなるようにセンサヘッドを試料ステージ4中央に設置し、かつ、装置チャンバー1内の雰囲気が、真空紫外線照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージ4を0.5m/minの速度で移動させて測定を行った。測定に先立ち、Xeエキシマランプ2の照度を安定させるため、Xeエキシマランプ点灯後に10分間のエージング時間を設け、その後試料ステージを移動させて測定を開始した。 The energy applied to the surface of the sample coating layer in the vacuum ultraviolet irradiation step was measured using a 172 nm sensor head using an ultraviolet integrated light meter (C8026 / H8025 UV POWER METER) manufactured by Hamamatsu Photonics Co., Ltd. In the measurement, the sensor head is installed in the center of the sample stage 4 so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 1 is irradiated with vacuum ultraviolet rays. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as in the process, and the sample stage 4 was moved at a speed of 0.5 m / min for measurement. Prior to the measurement, in order to stabilize the illuminance of the Xe excimer lamp 2, an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement.
 この測定で得られた照射エネルギーを元に、試料ステージの移動速度を調整することで表2に示した照射エネルギー量となるように調整した。尚、真空紫外線照射に際しては、10分間のエージング後に行った。 Based on the irradiation energy obtained by this measurement, the amount of irradiation energy shown in Table 2 was adjusted by adjusting the moving speed of the sample stage. The vacuum ultraviolet irradiation was performed after aging for 10 minutes.
 <塗布液>
 S1:パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(メルク株式会社製、NN120-20)と、アミン触媒(N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(メルク株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらにジブチルエーテルで固形分濃度が3質量%となるように希釈し、塗布液S1を調製した。なお、塗布液の調製はグローブボックス内で行った。以下の調製も同様である;
 S2:アルミニウムエチルアセトアセテート・ジイソプロピレートをジブチルエーテルで固形分濃度が3質量%となるように希釈したアルミニウム化合物液を作製した。S1とアルミニウム化合物液とを、Al/Si原子比率が0.01となるように混合し、攪拌しながら80℃まで昇温し、80℃で2時間保持した後、室温(25℃)まで徐冷した。このようにして、塗布液S2を調製した;
 S3:S1と上記S2で作製したアルミニウム化合物液とを、Al/Si原子比率が0.1となるように混合したこと以外は、S2と同様にして、塗布液S3を調製した;
 S4:S1と上記S2で作製したアルミニウム化合物液とを、Al/Si原子比率が0.15となるように混合したこと以外は、S2と同様にして、塗布液S4を調製した;
 S5:S1と上記S2で作製したアルミニウム化合物液とを、Al/Si原子比率が0.005となるように混合したこと以外は、S2と同様にして、塗布液S5を調製した;
 S6:S1と上記S2で作製したアルミニウム化合物液とを、Al/Si原子比率が0.03となるように混合したこと以外は、S2と同様にして、塗布液S6を調製した;
 S7:ホウ酸トリイソプロピルをジブチルエーテルで固形分濃度が3質量%となるように希釈したホウ素化合物液を作製した。S1とホウ素化合物液とを、B/Si原子比率が0.01となるように混合し、攪拌しながら80℃まで昇温し、80℃で2時間保持した後、室温(25℃)まで徐冷した。このようにして、塗布液S7を調製した;
 S8:チタンイソプロポキシドをジブチルエーテルで固形分濃度が3質量%となるように希釈したチタン化合物液を作製した。S1とチタン化合物液とを、Ti/Si原子比率が0.01となるように混合し、攪拌しながら80℃まで昇温し、80℃で2時間保持した後、室温(25℃)まで徐冷した。このようにして、塗布液S8を調製した;
 S9:ジルコニウムテトラアセチルアセトネートをジブチルエーテルで固形分濃度が3質量%となるように希釈したジルコニウム化合物液を作製した。S1とジルコニウム化合物液とを、Zr/Si原子比率が0.01となるように混合し、攪拌しながら80℃まで昇温し、80℃で2時間保持した後、室温(25℃)まで徐冷した。このようにして、塗布液S9を調製した;
 <成膜条件>
 S1-1:塗布液S1を用い、上述の方法に従って乾燥膜厚が100nmとなるように塗布、乾燥した。その後、上述の真空紫外線照射を0.8J/cmとなる条件で行った;
 S1-2:真空紫外線照射を行わなかったこと以外は、S1-1と同様にして行った;
 S2-1:塗布液S2を用いたこと以外は、S1-1と同様にして行った;
 S2-2:真空紫外線照射を行わなかったこと以外は、S2-1と同様にして行った;
 S2-3:真空紫外線照射を0.3J/cmとなる条件で行ったこと以外は、S2-1と同様にして行った;
 S2-4:真空紫外線照射を0.5J/cmとなる条件で行ったこと以外は、S2-1と同様にして行った;
 S3-1:塗布液S3を用いたこと以外は、S1-1と同様にして行った;
 S4-1:塗布液S4を用いたこと以外は、S1-1と同様にして行った;
 S5-1:塗布液S5を用いたこと以外は、S1-1と同様にして行った;
 S6-1:塗布液S6を用いたこと以外は、S1-1と同様にして行った;
 S7-1:塗布液S7を用いたこと以外は、S1-1と同様にして行った;
 S8-1:塗布液S8を用いたこと以外は、S1-1と同様にして行った;
 S9-1:塗布液S9を用いたこと以外は、S1-1と同様にして行った。
<Coating solution>
S1: Dibutyl ether solution containing 20% by mass of perhydropolysilazane (Merck Co., Ltd., NN120-20) and amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) ) And a dibutyl ether solution of 20% by mass of perhydropolysilazane (manufactured by Merck & Co., Inc., NAX120-20) at a ratio of 4: 1 (mass ratio), and further a solid content concentration of 3% by mass with dibutyl ether. The coating solution S1 was prepared by dilution. The coating solution was prepared in a glove box. The following preparation is similar;
S2: An aluminum compound solution was prepared by diluting aluminum ethyl acetoacetate diisopropylate with dibutyl ether so that the solid concentration was 3% by mass. S1 and the aluminum compound solution are mixed so that the Al / Si atomic ratio is 0.01, heated to 80 ° C. with stirring, held at 80 ° C. for 2 hours, and then gradually lowered to room temperature (25 ° C.). Chilled. In this way, a coating solution S2 was prepared;
S3: A coating solution S3 was prepared in the same manner as S2, except that S1 and the aluminum compound solution prepared in S2 were mixed so that the Al / Si atomic ratio was 0.1;
S4: Coating solution S4 was prepared in the same manner as S2, except that S1 and the aluminum compound solution prepared in S2 were mixed so that the Al / Si atomic ratio was 0.15;
S5: A coating solution S5 was prepared in the same manner as S2, except that S1 and the aluminum compound solution prepared in S2 were mixed so that the Al / Si atomic ratio was 0.005;
S6: Coating solution S6 was prepared in the same manner as S2, except that S1 and the aluminum compound solution prepared in S2 were mixed so that the Al / Si atomic ratio was 0.03;
S7: A boron compound solution was prepared by diluting triisopropyl borate with dibutyl ether so that the solid concentration was 3% by mass. S1 and boron compound solution are mixed so that the B / Si atomic ratio is 0.01, heated to 80 ° C. with stirring, held at 80 ° C. for 2 hours, and then gradually brought to room temperature (25 ° C.). Chilled. In this way, a coating solution S7 was prepared;
S8: A titanium compound solution was prepared by diluting titanium isopropoxide with dibutyl ether so that the solid concentration was 3% by mass. S1 and the titanium compound liquid were mixed so that the Ti / Si atomic ratio was 0.01, the temperature was raised to 80 ° C. with stirring, the temperature was maintained at 80 ° C. for 2 hours, and then gradually increased to room temperature (25 ° C.). Chilled. In this way, a coating solution S8 was prepared;
S9: A zirconium compound solution was prepared by diluting zirconium tetraacetylacetonate with dibutyl ether so that the solid concentration was 3% by mass. S1 and the zirconium compound liquid were mixed so that the Zr / Si atomic ratio was 0.01, the temperature was raised to 80 ° C. with stirring, the temperature was maintained at 80 ° C. for 2 hours, and then gradually increased to room temperature (25 ° C.). Chilled. In this way, a coating solution S9 was prepared;
<Film formation conditions>
S1-1: Using the coating solution S1, coating and drying were performed according to the above-described method so that the dry film thickness was 100 nm. Thereafter, the above-described vacuum ultraviolet irradiation was performed under the condition of 0.8 J / cm 2 ;
S1-2: The same as S1-1 except that the vacuum ultraviolet irradiation was not performed;
S2-1: The same as S1-1 except that the coating solution S2 was used;
S2-2: Performed in the same manner as S2-1 except that the vacuum ultraviolet irradiation was not performed;
S2-3: The same as S2-1 except that the vacuum ultraviolet irradiation was performed under the condition of 0.3 J / cm 2 ;
S2-4: The same as S2-1 except that the vacuum ultraviolet irradiation was performed under the condition of 0.5 J / cm 2 ;
S3-1: Performed in the same manner as S1-1 except that the coating solution S3 was used;
S4-1: The same as S1-1 except that the coating solution S4 was used;
S5-1: The same as S1-1 except that the coating solution S5 was used;
S6-1: The same as S1-1 except that the coating solution S6 was used;
S7-1: The same as S1-1 except that the coating solution S7 was used;
S8-1: Performed in the same manner as S1-1 except that the coating liquid S8 was used;
S9-1: Performed in the same manner as S1-1 except that the coating liquid S9 was used.
 〔第2層の成膜〕
 第1層上に第2層を形成した。成膜にはマグネトロンスパッタ装置(キャノンアネルバ株式会社製:型式EB1100)を用い、同様の方法により、膜組成および膜厚の設定を行った。
[Deposition of second layer]
A second layer was formed on the first layer. For film formation, a magnetron sputtering apparatus (Canon Anelva Co., Ltd .: Model EB1100) was used, and the film composition and film thickness were set by the same method.
 <ターゲット>
 T4:市販の酸素欠損型酸化ニオブターゲットを用いた。組成はNb1229であった;
 T5:市販のTaターゲットを用いた。
<Target>
T4: A commercially available oxygen-deficient niobium oxide target was used. The composition was Nb 12 O 29 ;
T5: A commercially available Ta target was used.
 <成膜条件>
 T4-1:ターゲットとしてT4を用い、酸素分圧を12体積%とした。また、膜厚が15nmとなるように成膜時間を設定した;
 T4-2:膜厚が10nmとなるように成膜時間を設定したこと以外は、T4-1と同様にして行った;
 T4-3:膜厚が5nmとなるように成膜時間を設定したこと以外は、T4-1と同様にして行った;
 T4-4:膜厚が2nmとなるように成膜時間を設定したこと以外は、T4-1と同様にして行った;
 T4-5:膜厚が1nmとなるように成膜時間を設定したこと以外は、T4-1と同様にして行った;
 T4-6:ターゲットとしてT4を用い、酸素を導入せずに成膜を行った。また、膜厚が5nmとなるように成膜時間を設定した;
 T4-7:膜厚が2nmとなるように成膜時間を設定したこと以外は、T4-6と同様にして行った;
 T5-1:ターゲットとしてT5を用い、酸素分圧を18体積%とした。また、膜厚が15nmとなるように成膜時間を設定した。
<Film formation conditions>
T4-1: T4 was used as a target, and the oxygen partial pressure was set to 12% by volume. Also, the film formation time was set so that the film thickness was 15 nm;
T4-2: Performed in the same manner as T4-1 except that the film formation time was set so that the film thickness was 10 nm;
T4-3: Performed in the same manner as T4-1 except that the film formation time was set so that the film thickness was 5 nm;
T4-4: The same as T4-1 except that the film formation time was set so that the film thickness was 2 nm;
T4-5: The same as T4-1, except that the film formation time was set so that the film thickness was 1 nm;
T4-6: Film formation was performed without introducing oxygen using T4 as a target. Also, the film formation time was set so that the film thickness was 5 nm;
T4-7: The same as T4-6, except that the film formation time was set so that the film thickness was 2 nm;
T5-1: T5 was used as a target, and the oxygen partial pressure was 18% by volume. The film formation time was set so that the film thickness was 15 nm.
 [評価方法]
 〔厚さ方向の組成分布(ガスバリア層組成)の測定〕
 XPS分析により、ガスバリア層の厚さ方向の組成分布プロファイルを測定した。なお、XPS分析条件は以下の通りである。
[Evaluation methods]
[Measurement of composition distribution in the thickness direction (gas barrier layer composition)]
The composition distribution profile in the thickness direction of the gas barrier layer was measured by XPS analysis. The XPS analysis conditions are as follows.
 <XPS分析条件>
 ・装置:アルバック・ファイ社製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを得た。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバック・ファイ社製のMultiPakを用いた。なお、分析した元素は、Si、金属M1、元素M2、O、N、Cとした。
<XPS analysis conditions>
・ Device: QUANTERASXM manufactured by ULVAC-PHI
・ X-ray source: Monochromatic Al-Kα
・ Sputtering ion: Ar (2 keV)
Depth profile: Measurement was repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data for every 1 nm is obtained in the depth direction)
Quantification: The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. For data processing, MultiPak manufactured by ULVAC-PHI was used. The analyzed elements were Si, metal M1, element M2, O, N, and C.
 このXPS組成分析により、領域(A)~(C)の厚さ、領域(A)と領域(B)との境界におけるSi比率、領域(b)の組成、領域(B)と領域(C)との境界におけるM1比率、[B]、および[C]を測定した。 By this XPS composition analysis, the thickness of the regions (A) to (C), the Si ratio at the boundary between the regions (A) and (B), the composition of the region (b), the regions (B) and (C) The M1 ratio, [B], and [C] at the boundary were measured.
 <ガスバリア性評価>
 実施例1-1~1-3および比較例1-1~1-4の各試料については、高温高湿条件下での保存なしのサンプルと、ガスバリア性フィルムをガスバリア層が露出した状態で85℃85%RHの高温高湿環境に24時間保存したサンプルとを準備し、それぞれ下記に示す方法でCa法評価用セルを作製した。
<Gas barrier property evaluation>
For each of the samples of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-4, the sample without storage under high temperature and high humidity conditions and a gas barrier film with the gas barrier layer exposed to 85 were used. Samples stored for 24 hours in a high-temperature and high-humidity environment of 85 ° C. at 85 ° C. were prepared, and Ca method evaluation cells were prepared by the methods described below.
 実施例2-1~2-15および比較例2-1~2-7の各試料については、下記の2つの条件で第2層を成膜したサンプルを準備し、それぞれ下記に示す方法でCa法評価用セルを作製した;
 ・第1層形成後、20℃50%RH環境下で24時間保存した後、第2層を成膜
 ・第1層形成後、60℃90%RH環境下で48時間保存した後、第2層を成膜
 また、第1層形成後、20℃50%RH環境下で24時間保存した後、第2層を成膜した試料については、高温高湿保存なしのサンプルと、ガスバリア性フィルムをガスバリア層が露出した状態で85℃85%RHの高温高湿環境に24時間保存したサンプルとを準備し、それぞれCa法評価用セルを作製した。すなわちガスバリア性評価用サンプルを3種類準備した。
For each sample of Examples 2-1 to 2-15 and Comparative Examples 2-1 to 2-7, a sample in which the second layer was formed under the following two conditions was prepared, and the Ca A method evaluation cell was produced;
After the first layer is formed, the second layer is formed after storage for 24 hours in an environment of 20 ° C. and 50% RH. After the first layer is formed, the second layer is stored after being stored in an environment of 60% 90% RH for 48 hours. After forming the first layer, after storing for 24 hours in an environment of 20 ° C. and 50% RH, for the sample on which the second layer was formed, a sample without high-temperature and high-humidity storage and a gas barrier film were used. Samples stored for 24 hours in a high-temperature and high-humidity environment of 85 ° C. and 85% RH with the gas barrier layer exposed were prepared, and Ca method evaluation cells were prepared. That is, three types of samples for gas barrier property evaluation were prepared.
 <ガスバリア性フィルムの水蒸気透過性評価(Ca法)>
 以下の測定方法に従って、各ガスバリア性フィルムの水蒸気透過性を評価した。
<Evaluation of water vapor permeability of gas barrier film (Ca method)>
According to the following measuring method, the water vapor permeability of each gas barrier film was evaluated.
 ガスバリア性フィルムのガスバリア層表面をUV洗浄した後、ガスバリア層表面に、封止樹脂層として熱硬化型のシート状接着剤(エポキシ樹脂)を厚さ20μmで貼合した。これを50mm×50mmのサイズに打ち抜いた後、グローブボックス内に入れて、24時間乾燥処理を行った。 After the surface of the gas barrier layer of the gas barrier film was UV washed, a thermosetting sheet-like adhesive (epoxy resin) was bonded to the surface of the gas barrier layer with a thickness of 20 μm as a sealing resin layer. This was punched out to a size of 50 mm × 50 mm, then placed in a glove box and dried for 24 hours.
 50mm×50mmサイズの無アルカリガラス板(厚さ0.7mm)の片面をUV洗浄した。 One side of a 50 mm × 50 mm non-alkali glass plate (thickness 0.7 mm) was UV cleaned.
 株式会社エイエルエステクノロジー製の真空蒸着装置を用い、ガラス板の中央に、マスクを介して20mm×20mmのサイズでCaを蒸着した。Caの厚さは80nmとした。 Ca was vapor-deposited with a size of 20 mm × 20 mm through a mask in the center of the glass plate using a vacuum vapor deposition apparatus manufactured by ALS Technology. The thickness of Ca was 80 nm.
 Ca蒸着済のガラス板をグローブボックス内に取出し、封止樹脂層を貼合したバリアフィルムの封止樹脂層面とガラス板のCa蒸着面とを接するように配置し、真空ラミネートにより接着した。この際、110℃の加熱を行った。さらに、接着した試料を110℃に設定したホットプレート上にガラス板を下にして置き、30分間硬化させて、評価用セルを作製した。 The glass plate on which Ca was vapor-deposited was taken out into the glove box, placed so that the sealing resin layer surface of the barrier film to which the sealing resin layer was bonded and the Ca vapor-deposited surface of the glass plate were in contact, and adhered by vacuum lamination. At this time, heating at 110 ° C. was performed. Further, the adhered sample was placed on a hot plate set at 110 ° C. with the glass plate facing down, and cured for 30 minutes to produce an evaluation cell.
 なお、ガスバリア性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリア性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いた試料を、同様な85℃85%RHの高温高湿環境下で保存し、100時間経過後でも金属カルシウム腐食が発生しないことを確認した。 In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample was similarly 85. It was stored in a high-temperature and high-humidity environment at 85 ° C. and it was confirmed that no corrosion of metallic calcium occurred even after 100 hours.
 (透過濃度の測定)
 上記評価用セルを用いて、透過濃度を測定した。透過濃度測定には、コニカミノルタ株式会社製の白黒透過濃度計 TM-5を用いた。透過濃度は、セルの任意の4点で測定し、その平均値を算出した。以下、同様である。
(Measurement of transmission density)
The transmission density was measured using the evaluation cell. For transmission density measurement, a black and white transmission density meter TM-5 manufactured by Konica Minolta Co., Ltd. was used. The transmission density was measured at any four points in the cell, and the average value was calculated. The same applies hereinafter.
 各評価用セルの透過濃度の初期値を測定した後、評価用セルを85℃85%RH環境下に保存し、1時間後、5時間後、10時間後、それ以降は5時間毎に観察し、透過濃度を測定した。透過濃度初期値の50%未満となった時点の観察時間を求め、下記の指標で評価した。 After measuring the initial value of the transmission density of each evaluation cell, the evaluation cell is stored in an 85 ° C. and 85% RH environment, and is observed every 1 hour, 5 hours, 10 hours, and thereafter every 5 hours. The transmission density was measured. The observation time when the transmission density became less than 50% of the initial value was determined, and evaluated using the following indices.
 指標 透過濃度が50%未満となる時間
  0:1時間未満
  1:1時間以上5時間未満
  2:5時間以上10時間未満
  3:10時間以上25時間未満
  4:25時間以上50時間未満
  5:50時間以上。
Indicator Time for transmission density to be less than 50% 0: less than 1 hour 1: 1 to less than 5 hours 2: 5 to 10 hours 3: 10 to 25 hours 4: 25 to 50 hours 5:50 Over time.
 実施例1-1~1-3および比較例1-1~1-4の組成および評価結果を下記表1および表2に、実施例2-1~2-15および比較例2-1~2-7の組成および評価結果を下記表3および表4に、それぞれ示す。なお、表1および表3の第2層の成膜条件欄における「成膜なし」は、第2層を形成しなかったことを示す。また、表4のガスバリア層組成は、第1層形成後、20℃50%RH環境で24時間保存した後、第2層を成膜したサンプルについて測定した結果である。 The compositions and evaluation results of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-4 are shown in Table 1 and Table 2 below. Examples 2-1 to 2-15 and Comparative Examples 2-1 to 2 The composition and evaluation results of −7 are shown in Table 3 and Table 4 below, respectively. “No film formation” in the film formation condition column for the second layer in Tables 1 and 3 indicates that the second layer was not formed. Moreover, the gas barrier layer composition of Table 4 is the result of measuring about the sample which formed the 2nd layer, after storing for 24 hours in 20 degreeC50% RH environment after 1st layer formation.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 上記表2および表4から明らかなように、実施例1-1~1-3および実施例2-1~2-15のガスバリア性フィルムは、高温高湿環境で保存した後でも、ガスバリア性が劣化しにくく、耐久性に優れていることがわかる。 As is clear from Tables 2 and 4 above, the gas barrier films of Examples 1-1 to 1-3 and Examples 2-1 to 2-15 have gas barrier properties even after being stored in a high temperature and high humidity environment. It turns out that it is hard to deteriorate and is excellent in durability.
 また、上記表2および表4から明らかなように、本発明に係る製造方法によれば、第1層を成膜した後の保存環境の変化に関わらず、その後第2層を形成することにより、ガスバリア性に優れたガスバリア性フィルムを得ることができる。すなわち、本発明に係る製造方法は、生産安定性に優れ、また生産性にも優れる。 Further, as apparent from Table 2 and Table 4 above, according to the manufacturing method of the present invention, the second layer is formed afterwards regardless of the change in the storage environment after the first layer is formed. A gas barrier film having excellent gas barrier properties can be obtained. That is, the production method according to the present invention is excellent in production stability and productivity.
 なお、本出願は、2015年7月23日に出願された日本特許出願第2015-146183号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2015-146183 filed on July 23, 2015, the disclosure of which is incorporated by reference in its entirety.

Claims (8)

  1.  樹脂基材上に、ケイ素原子と、ケイ素以外の金属M1と、ケイ素および前記金属M1以外の元素M2と、酸素原子と、を含むガスバリア層を有するガスバリア性フィルムであって、
     前記ガスバリア層中の前記ケイ素原子、前記金属M1、前記元素M2、前記酸素原子、窒素原子、および炭素原子の合計量に対する前記ケイ素原子の量の比率を[Si](単位:atom%)とし、
     前記ガスバリア層中の前記ケイ素原子、前記金属M1、前記元素M2、前記酸素原子、窒素原子、および炭素原子の合計量に対する前記金属M1の量の比率を[M1](単位:atom%)とし、
     前記ガスバリア層中の前記ケイ素原子、前記金属M1、前記元素M2、前記酸素原子、窒素原子、および炭素原子の合計量に対する前記元素M2の量の比率を[M2](単位:atom%)とした場合に、
     前記樹脂基材側から、下記式(c)を満たす領域(C)、下記式(b)を満たす領域(B)、および下記式(a)を満たす領域(A)をこの順に有する、ガスバリア性フィルム。
    Figure JPOXMLDOC01-appb-M000001
    A gas barrier film having a gas barrier layer containing a silicon atom, a metal M1 other than silicon, an element M2 other than silicon and the metal M1, and an oxygen atom on a resin substrate,
    The ratio of the amount of the silicon atom to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer is [Si] (unit: atom%),
    The ratio of the amount of the metal M1 to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer is [M1] (unit: atom%),
    The ratio of the amount of the element M2 to the total amount of the silicon atom, the metal M1, the element M2, the oxygen atom, the nitrogen atom, and the carbon atom in the gas barrier layer was [M2] (unit: atom%). In case,
    Gas barrier properties having, from the resin substrate side, a region (C) satisfying the following formula (c), a region (B) satisfying the following formula (b), and a region (A) satisfying the following formula (a) in this order. the film.
    Figure JPOXMLDOC01-appb-M000001
  2.  前記領域(B)における前記[M2]と前記[Si]との比([M2]/[Si])の平均値を[B]とし、前記領域(C)における前記[M2]と前記[Si]との比([M2]/[Si])の平均値を[C]とした場合に、[C]>[B]を満足する、請求項1に記載のガスバリア性フィルム。 The average value of the ratio ([M2] / [Si]) between the [M2] and the [Si] in the region (B) is [B], and the [M2] and the [Si] in the region (C) The gas barrier film according to claim 1, wherein [C]> [B] is satisfied, where [C] is an average value of a ratio with respect to ([M2] / [Si]).
  3.  前記金属M1が、長周期型周期表第5族の金属である、請求項1または2に記載のガスバリア性フィルム。 The gas barrier film according to claim 1 or 2, wherein the metal M1 is a metal of Group 5 of the periodic table.
  4.  前記元素M2が、アルミニウム(Al)、ホウ素(B)、ジルコニウム(Zr)、およびチタン(Ti)からなる群より選択される少なくとも1種である、請求項1~3のいずれか1項に記載のガスバリア性フィルム。 The element M2 according to any one of claims 1 to 3, wherein the element M2 is at least one selected from the group consisting of aluminum (Al), boron (B), zirconium (Zr), and titanium (Ti). Gas barrier film.
  5.  請求項1~4のいずれか1項に記載のガスバリア性フィルムの製造方法であって、
     前記樹脂基材上に、前記ケイ素原子、前記元素M2、および前記酸素原子を含む第1層を形成する工程と、
     前記第1層上に、前記金属M1および前記酸素原子を含む第2層を形成する工程と、
    を有する、ガスバリア性フィルムの製造方法。
    A method for producing a gas barrier film according to any one of claims 1 to 4,
    Forming a first layer containing the silicon atom, the element M2, and the oxygen atom on the resin substrate;
    Forming a second layer containing the metal M1 and the oxygen atom on the first layer;
    A method for producing a gas barrier film, comprising:
  6.  前記第1層を形成する工程は、前記樹脂基材上にポリシラザンと前記元素M2を含有する化合物とを含む溶液を塗布し乾燥することを有する、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the step of forming the first layer includes applying a solution containing polysilazane and the compound containing the element M2 on the resin base material and drying the solution.
  7.  前記第2層は気相成膜法により形成される、請求項5または6に記載の製造方法。 The manufacturing method according to claim 5 or 6, wherein the second layer is formed by a vapor deposition method.
  8.  前記気相製膜法は物理気相成長法である、請求項7に記載の製造方法。 The manufacturing method according to claim 7, wherein the vapor deposition method is a physical vapor deposition method.
PCT/JP2016/071322 2015-07-23 2016-07-20 Gas barrier film and method for producing same WO2017014246A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017529914A JPWO2017014246A1 (en) 2015-07-23 2016-07-20 Gas barrier film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015146183 2015-07-23
JP2015-146183 2015-07-23

Publications (1)

Publication Number Publication Date
WO2017014246A1 true WO2017014246A1 (en) 2017-01-26

Family

ID=57834968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071322 WO2017014246A1 (en) 2015-07-23 2016-07-20 Gas barrier film and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2017014246A1 (en)
TW (1) TWI627063B (en)
WO (1) WO2017014246A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157515A1 (en) * 2012-04-19 2013-10-24 コニカミノルタ株式会社 Method for manufacturing transparent conductive film, transparent conductive film, and electronic device
JP2014151571A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Gas barrier film, production method of the same and electronic device including the gas barrier film
WO2015002156A1 (en) * 2013-07-01 2015-01-08 コニカミノルタ株式会社 Gas-barrier film and method for producing same, and electronic device using same
JP2015003464A (en) * 2013-06-21 2015-01-08 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same
JP2015033764A (en) * 2013-08-07 2015-02-19 コニカミノルタ株式会社 Gas barrier film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157515A1 (en) * 2012-04-19 2013-10-24 コニカミノルタ株式会社 Method for manufacturing transparent conductive film, transparent conductive film, and electronic device
JP2014151571A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Gas barrier film, production method of the same and electronic device including the gas barrier film
JP2015003464A (en) * 2013-06-21 2015-01-08 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same
WO2015002156A1 (en) * 2013-07-01 2015-01-08 コニカミノルタ株式会社 Gas-barrier film and method for producing same, and electronic device using same
JP2015033764A (en) * 2013-08-07 2015-02-19 コニカミノルタ株式会社 Gas barrier film

Also Published As

Publication number Publication date
TW201716242A (en) 2017-05-16
TWI627063B (en) 2018-06-21
JPWO2017014246A1 (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6319316B2 (en) Method for producing gas barrier film
WO2016136842A1 (en) Gas barrier film
JPWO2016136842A6 (en) Gas barrier film
JP2014201032A (en) Gas barrier film and method for producing the same
WO2016190284A1 (en) Gas barrier film and method for manufacturing same
JP2014201033A (en) Gas barrier film and method for producing the same
JP2017095758A (en) Method for producing gas barrier film
JPWO2016190284A6 (en) Gas barrier film and method for producing the same
WO2015119260A1 (en) Modified polysilazane, coating solution containing said modified polysilazane, and gas barrier film produced using said coating solution
JP6737279B2 (en) Electronic device and method for sealing electronic device
WO2017014246A1 (en) Gas barrier film and method for producing same
TW201730009A (en) Gas barrier film, and electronic device provided with same
JP6747426B2 (en) Gas barrier film
JP2016171038A (en) Method for manufacturing electronic device
WO2017090498A1 (en) Method for producing gas barrier film
WO2017110463A1 (en) Gas barrier film and method for manufacturing same
JPWO2016136841A6 (en) Gas barrier film
WO2017010249A1 (en) Gas barrier film
JP6295865B2 (en) Gas barrier film
WO2016136843A1 (en) Gas barrier film and electronic device using gas barrier film
WO2015029732A1 (en) Gas barrier film and process for manufacturing gas barrier film
JP2018012234A (en) Gas barrier film and electronic device
JP2016193527A (en) Gas barrier film
WO2018021021A1 (en) Gas barrier membrane, gas barrier film using same, electronic device using said gas barrier membrane or said gas barrier film, and production method for gas barrier membrane
WO2017090602A1 (en) Gas barrier film, and electronic device provided with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827806

Country of ref document: EP

Kind code of ref document: A1