WO2018021021A1 - Gas barrier membrane, gas barrier film using same, electronic device using said gas barrier membrane or said gas barrier film, and production method for gas barrier membrane - Google Patents

Gas barrier membrane, gas barrier film using same, electronic device using said gas barrier membrane or said gas barrier film, and production method for gas barrier membrane Download PDF

Info

Publication number
WO2018021021A1
WO2018021021A1 PCT/JP2017/025316 JP2017025316W WO2018021021A1 WO 2018021021 A1 WO2018021021 A1 WO 2018021021A1 JP 2017025316 W JP2017025316 W JP 2017025316W WO 2018021021 A1 WO2018021021 A1 WO 2018021021A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
gas barrier
barrier film
film
region
Prior art date
Application number
PCT/JP2017/025316
Other languages
French (fr)
Japanese (ja)
Inventor
森 孝博
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201780046487.9A priority Critical patent/CN109477202A/en
Priority to JP2018529753A priority patent/JPWO2018021021A1/en
Publication of WO2018021021A1 publication Critical patent/WO2018021021A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides

Definitions

  • the present invention relates to a gas barrier film, a gas barrier film using the same, an electronic device using the same, and a method for manufacturing the gas barrier film.
  • a gas barrier film is used for sealing applications, and specifically, a gas barrier film having a gas barrier film is used as a substrate film or a sealing film.
  • a gas barrier film used for such applications is required to have a water vapor barrier property having a water vapor permeability (WVTR) of 10 ⁇ 6 g / (m 2 ⁇ 24 h).
  • WVTR water vapor permeability
  • Gas barrier films are known for both single-layer films and laminated films.
  • typical gas barrier films currently being studied include, for example, silicon oxide films and silicon nitride films. And an alternate multilayer laminate film of a silicon nitride film and an organic film.
  • a vapor deposition method such as a vapor deposition method, a sputtering method, or a CVD method is known.
  • a manufacturing method for forming a gas barrier film by applying energy to a precursor layer formed by applying a solution on a substrate has been studied.
  • a method of forming an inorganic film having a thickness of 1 ⁇ m or more by a CVD method is generally used as a method for achieving a water vapor barrier property of 10 ⁇ 6 g / (m 2 ⁇ 24 h) level. .
  • an inorganic film having a thickness of 1 ⁇ m or more has a problem that cracks are generated at the time of bending, so that it is difficult to apply to the above-described flexible device.
  • the alternate multilayer laminated film tends to have a greater thickness due to its configuration. Accordingly, it is required to reduce the film thickness while maintaining high water vapor barrier properties.
  • the alternate multilayer laminated film achieves an apparent low water vapor permeability, that is, a high water vapor barrier property by extremely delaying the time for water vapor to pass through the gas barrier layer due to the labyrinth effect formed by the laminated structure. It is thought that there is. For this reason, in the organic EL element using the alternating multilayer laminated film as a sealing application, the light emission failure such as the dark spot is not confirmed in the initial light emission inspection, but the dark spot is delayed after the accelerated test under the high temperature and high humidity environment. May occur. For this reason, a gas barrier film having a truly high water vapor barrier property is required instead of an apparent one in order to suppress a light emission failure that is not confirmed in the initial light emission inspection and to improve the durability of the element.
  • JP 2012-149278 A includes a step of depositing a dry deposition film containing at least silicon atoms and nitrogen atoms on a substrate by a dry method, and then irradiating the film surface with light having a wavelength of 150 nm or less.
  • a method for manufacturing a silicon-containing film is disclosed. According to the document, the silicon-containing film manufactured by this method, that is, the gas barrier film, has a large number of dense Si—N—Si bonds that form the basis of the Si 3 N 4 structure in the modified region, which is high. It is said to exhibit water vapor barrier properties and heat and moisture resistance.
  • an object of the present invention is to provide means capable of achieving both excellent flexibility and high water vapor barrier property in a high temperature and high humidity environment in a gas barrier film.
  • the first aspect of the present invention is: In the atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction, a region satisfying the following formula (1) and the following formula (2) when the composition is represented by M1M2 x N y (a) It is a gas barrier film
  • the second aspect of the present invention is: A method for producing a gas barrier film, comprising forming a non-transition metal M1 containing layer and a transition metal M2 containing layer so as to contact each other, In the thickness direction, it has a region (A) containing the non-transition metal M1 as the main component of the metal element and a region (B) containing the transition metal M2 as the main component of the metal element, The region (A) and the region (B) are in contact with each other, In the atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction of the gas barrier film, the following formula (1) and the following formula (2) are satisfied when the composition is represented by M1M2 x N y A method for manufacturing a gas barrier film having a region (a) to be processed.
  • X to Y indicating a range means “X or more and Y or less”.
  • measurement of operation and physical properties is performed under the conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • the gas barrier film according to the first aspect of the present invention has the following formula (1) when the composition is represented by M1M2 x N y in the atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction. ) And the region (a) satisfying the following formula (2).
  • the composition is indicated by M1M2 x N y ” means that the composition is indicated by focusing only on the non-transition metal M1 atom, the transition metal M2 atom and the nitrogen atom (N) in the existing atoms. Meaning, the region (a) may contain atoms other than these.
  • the first aspect of the present invention it is possible to provide means capable of achieving both excellent flexibility and high water vapor barrier property in a high temperature and high humidity environment in the gas barrier property film.
  • the water vapor barrier property in the high temperature and high humidity environment mentioned here means that water vapor permeation is suppressed at an extremely high level even in an accelerated test, that is, the water vapor barrier property of the gas barrier film is remarkably high. It also indicates that.
  • the flexibility means that a high water vapor barrier property in a high temperature and high humidity environment is maintained even during bending.
  • the gas barrier film according to the first embodiment of the present invention includes a region (a) in which M1M2 x N y has a specific composition in the mixed region. Due to the existence of such a mixed region, the composition changes continuously or stepwise in the thickness direction of the gas barrier film. Therefore, the mixed region can suppress stress concentration, and an excellent flexibility of the gas barrier film is realized.
  • the compound derived from the non-transition metal M1 and the compound derived from the transition metal M2 are chemically bonded to each other in the region (a).
  • the “region” refers to a plane that is substantially perpendicular to the thickness direction of the gas barrier film (that is, a plane parallel to the outermost surface of the gas barrier film) and has a constant or arbitrary thickness. This refers to a three-dimensional range (region) between two opposing surfaces formed when divided by the thickness, and the composition of the constituent components in the region is gradually increased even if the composition in the thickness direction is constant. It may change.
  • the “constituent component” refers to a compound constituting a specific region of a gas barrier film or a metal or non-metal simple substance.
  • the “main component” in the present invention refers to a component having the maximum content as an atomic composition ratio.
  • the main component of a metal element refers to a metal element having the highest content ratio as an atomic composition ratio among the metal elements contained in the constituent components.
  • the gas barrier property of the gas barrier film according to one embodiment of the present invention is based on JIS K 7126-1987 when calculated with a laminate in which the gas barrier film is formed on a film formation target (for example, a substrate).
  • the oxygen permeability measured by the method is preferably 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, preferably less than 1 ⁇ 10 ⁇ 5 ml / (m 2 ⁇ 24 h ⁇ atm). More preferably, it is 1 ⁇ 10 ⁇ 6 ml / (m 2 ⁇ 24 h ⁇ atm) or less (lower limit 0 ml / (m 2 ⁇ 24 h ⁇ atm)).
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) is preferably a high water vapor barrier property of less than 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h), more preferably less than 1 ⁇ 10 ⁇ 6 g / (m 2 ⁇ 24 h). More preferably (lower limit 0 g / m 2 ⁇ 24 h).
  • the gas barrier film according to one embodiment of the present invention essentially contains a non-transition metal M1, a transition metal M2, and nitrogen. Note that the gas barrier film according to one embodiment of the present invention preferably includes only the non-transition metal M1 and the transition metal M2 as the metal element. The presence of non-transition metal M1, transition metal M2 and nitrogen in the gas barrier film can be confirmed by performing XPS (X-ray Photoelectron Spectroscopy) composition analysis of the gas barrier film as follows. .
  • XPS X-ray Photoelectron Spectroscopy
  • the mixed region of the gas barrier film according to one embodiment of the present invention is as follows. It can be determined by measurement by X-ray photoelectron spectroscopy (abbreviation: XPS), which will be described in detail.
  • XPS X-ray photoelectron spectroscopy
  • the element concentration distribution curve (hereinafter referred to as “depth profile”) in the thickness direction of the gas barrier film according to one embodiment of the present invention is specifically a non-transition metal M1 (for example, silicon (Si)).
  • the element concentration, element concentration of transition metal M2 for example, niobium (Nb), tantalum (Ta), etc.
  • the distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of each element (unit: atm%) and the horizontal axis as the etching time (sputtering time).
  • the etching time is generally correlated with the distance in the thickness direction from the surface of the gas barrier film.
  • the distance in the thickness direction from the surface of the gas barrier film calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement can be adopted as the “distance in the thickness direction”.
  • etching rate is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
  • ⁇ Device QUANTERASXM manufactured by ULVAC-PHI ⁇
  • X-ray source Monochromatic Al-K ⁇ ⁇ Sputtering ion: Ar (2 keV)
  • Depth profiles in terms of SiO 2 sputter thickness, repeat the measurement at a predetermined thickness intervals, - obtaining the depth depth profile Quantification relative sensitivity coefficients background determined by Shirley method, from the peak area obtained Quantify using the method.
  • MultiPak manufactured by ULVAC-PHI was used.
  • the elements to be analyzed are non-transition metal M1 (for example, silicon (Si)), transition metal M2 (for example, niobium (Nb), tantalum (Ta), etc.), oxygen (O), nitrogen (N), carbon (C). In this measurement, other elements such as other metal elements may be analyzed as necessary.
  • the measurement resolution (predetermined thickness interval) of the depth profile may be 3 nm or less, 2 nm or less, or 1 nm or less. In the example described later, the measurement resolution of the depth profile is 1 nm.
  • the value of the atomic ratio of the transition metal M2 to the non-transition metal M1 atom is 0.
  • a mixed region which is a region satisfying an elemental composition within a range of 0.02 to 49.
  • FIG. 1 is a schematic graph for explaining an element profile and a mixed region when a composition distribution of a non-transition metal M1 and a transition metal M2 is analyzed by an XPS method in a gas barrier film according to an embodiment of the present invention. It is.
  • membrane which has the area
  • the present invention is not limited to this.
  • FIG. 1 shows the elemental analysis of non-transition metal M1, transition metal M2, oxygen (O), nitrogen (N), and carbon (C) in the depth direction from the surface of the gas barrier film (the left end of the graph).
  • the horizontal axis represents the sputter depth (thickness: nm), and the vertical axis represents the content (atm%) of the non-transition metal M1 and the transition metal M2.
  • a dotted line shows the content rate of the non-transition metal M1
  • a continuous line shows the content rate of the transition metal M2.
  • a region (A) region having an elemental composition mainly composed of a non-transition metal M1 (for example, silicon (Si)) as a metal is shown, and a transition metal as a metal is in contact with the region on the left side of the graph.
  • a region (B) having an elemental composition mainly composed of M2 (for example, niobium (Nb), tantalum (Ta), etc.) is shown. It is shown that the gas barrier film has a mixed region. As shown in this figure, when the gas barrier film has a region (A) and a region (B) to be described later, the mixed region includes a part of the region (A) and a part of the region (B). It becomes the area shown overlapping.
  • a preferable type of non-transition metal M1 in the mixed region is the same as a preferable type of non-transition metal M1 in the region (A) described later, and a preferable type of transition metal M2 in the mixed region is preferable in region (B) described later. This is the same as the type of transition metal M2.
  • the thickness of the mixed region is not particularly limited, but it is preferably 5 nm or more continuously in the thickness direction. The reason is that the presence of 5 nm or more continuously in the thickness direction increases the flexibility improvement effect, and the region (a) described later is more easily formed. From the same viewpoint, the thickness of the mixed region is preferably 8 nm or more continuously in the thickness direction, more preferably 10 nm or more, and further preferably 20 nm or more. The thickness of the mixed region is not particularly limited, but is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less from the viewpoint of optical characteristics.
  • the composition thereof can be expressed as M1M2 x N y (0.02 ⁇ x ⁇ 49, y ⁇ 0).
  • the mixed region includes a compound derived from non-transition metal M1 (non-transition metal M1 simple substance or a compound containing non-transition metal M1 simple substance) and a compound derived from transition metal M2 (a compound containing transition metal M2 simple substance or transition metal M2). And a compound derived from the non-transition metal M1 and the transition metal M2 may be included as a constituent component. Moreover, both of these may be included as constituent components.
  • the mixture of the compound derived from the non-transition metal M1 and the compound derived from the transition metal M2 in the mixed region is derived from the compound derived from the non-transition metal M1 and the transition metal M2.
  • examples of the mixture include those in a state where niobium oxide and silicon oxide are mixed without being chemically bonded to each other.
  • a preferable compound derived from the non-transition metal M1 in the mixture is the region (A) described later.
  • the compound derived from the preferable transition metal M2 in the said mixture is the same as the compound derived from the preferable transition metal M2 in the area
  • the compound derived from the non-transition metal M1 and the transition metal M2 is a compound in which the compound derived from the non-transition metal M1 and the compound derived from the transition metal M2 are chemically bonded to each other. It represents a formed compound or a compound formed by physical bonding by intermolecular interaction or the like.
  • the compound derived from the non-transition metal M1 and the transition metal M2 has, for example, a structure in which a niobium atom and a silicon atom form a chemical bond directly or through an oxygen atom. Compounds and the like.
  • the composition In the mixed region, the composition generally changes continuously or stepwise in the thickness direction of the gas barrier film. Therefore, the mixed region can suppress stress concentration, and an excellent flexibility of the gas barrier film is realized. From the viewpoint of flexibility, the composition of the mixed region preferably changes continuously.
  • the mixed region since the mixed region includes a region (a) described later, the maximum value of the existing atomic ratio of nitrogen atoms to non-transition metal M1 atoms in the mixed region is 0. It will be shown with an elemental composition greater than .6. It is preferable that the position of the mixed region having the maximum value is included in the region (a) described later.
  • the mixed region is preferably formed in the vicinity of the interface between the region (A) and the region (B) of the gas barrier film.
  • the flexibility improving effect of the gas barrier film due to the composition changing continuously or stepwise is further increased. That is, the gas barrier film according to a preferred embodiment of the present invention includes a region (A) containing the non-transition metal M1 as the main component of the metal element and a transition metal M2 as the main component of the metal element in the thickness direction. Region (B), and the region (A) and the region (B) are in contact with each other.
  • the region (a) represents a region where M1M2 x N y has a specific composition in the above-described mixed region.
  • the gas barrier film of the present invention having such a configuration can achieve both excellent flexibility and high water vapor barrier property in a high temperature and high humidity environment.
  • the gas barrier film according to one embodiment of the present invention has the following formula (1) when the composition is represented by M1M2 x N y in an atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction. It has the area
  • x is the existing atomic ratio of the transition metal M2 to the non-transition metal M1
  • y is the existing atomic ratio of nitrogen to the non-transition metal M1
  • the region (a) represents the formula (1) and the formula (2). It is necessary to be satisfied at the same time. That is, at least the region where the non-transition metal M1 atom and the transition metal M2 atom are present at the same time, and the existing atomic ratio of the transition metal M2 to the non-transition metal M1 atom (transition metal M2 atom / non-transition metal M1 atom) It has been found that 0.2 or more and 3.0 or less is a condition for developing a high water vapor barrier property in a high temperature and high humidity environment.
  • transition metal M2 atom / non-transition metal M1 atom is less than 0.2 or more than 3.0, no transition Since the bond between the metal M1 atom and the transition metal M2 atom is reduced, it is considered that the water vapor barrier property in a high temperature and high humidity environment is lowered.
  • a region in which a non-transition metal M1 atom, a transition metal M2 atom, and a nitrogen atom exist at the same time is formed, and an existing atomic ratio of the transition metal M2 to the non-transition metal M1 atom (transition metal M2 atom / non-transition metal M1 atom) Is 0.2 or more and 3.0 or less, and the atomic ratio of the nitrogen atom to the non-transition metal M1 atom (nitrogen atom / non-transition metal M1 atom) is more than 0.6 and 1.4 or less, This is a condition for developing an extremely high water vapor barrier property in a high temperature and high humidity environment.
  • the gas barrier film Since the region (a) can impart a high water vapor barrier property in a high temperature and high humidity environment to the gas barrier film, the gas barrier film has a water vapor barrier in a high temperature and high humidity environment at a level required for an organic EL element or the like.
  • the film can be made thin while maintaining the flexibility, and has excellent flexibility.
  • x is calculated from the sum of weights of the contents of the respective metals.
  • the embodiment using silicon as the non-transition metal M1 is particularly preferable because the water vapor barrier property in a high temperature and high humidity environment can be remarkably improved.
  • the maximum value (y maximum value) of the nitrogen atom existing atom ratio with respect to the non-transition metal M1 atom is indicated by the element composition within the range of y, and therefore, more than 0.6. Although it is 4 or less, it is preferably 0.65 or more from the viewpoint of obtaining a higher water vapor barrier property in a high temperature and high humidity environment.
  • the maximum value of the atomic ratio of nitrogen atoms to the non-transition metal M1 atom (y maximum value) is preferably 1 or less from the viewpoint of obtaining a higher water vapor barrier property in a high temperature and high humidity environment, More preferably, it is 0.9 or less.
  • the region (a) is a region that satisfies the above formula (1) and the above formula (2) when the composition is represented by M1M2 x N y .
  • the region (a) is preferably present in a thickness direction of 1 nm or more, more preferably 2 nm or more, More preferably, it is 3 nm or more, and particularly preferably 4 nm or more.
  • the region (a) is most preferably 5 nm or more continuously in the thickness direction.
  • a preferred embodiment of the present invention is a gas barrier film according to an embodiment of the present invention, wherein the thickness of the region (a) is 5 nm or more.
  • the region (a) is not particularly limited, but from the viewpoint of obtaining a better light transmittance, it is preferably continuously present in the thickness direction of 30 nm or less, more preferably 15 nm or less, More preferably, it is 10 nm or less, and particularly preferably 8 nm or less.
  • composition and thickness of such a region (a) are controlled by a method for forming a non-transition metal M1-containing layer and a transition metal M2-containing layer, a forming order, and a non-transition metal M1-containing in a gas barrier film manufacturing method described later.
  • a method for forming a non-transition metal M1-containing layer and a transition metal M2-containing layer After forming a layer (or transition metal M2 containing layer), it can carry out by selecting suitably the storage method etc. until forming a transition metal M2 containing layer (or non-transition metal M1 containing layer).
  • the gas barrier film according to one embodiment of the present invention includes a region (A) containing a non-transition metal M1 as a main component of a metal element (also simply referred to as “region (A)” in this specification). preferable.
  • the metal element having the maximum atomic composition ratio is the non-transition metal M1 and the transition metal M2, that is, the atomic composition of the non-transition metal M1 in the metal element.
  • the ratio and the atomic composition ratio of the transition metal M2 may both be maximum and the same. In the present invention, such a region (or point) is assumed to be included in the region (A).
  • the average value in the thickness direction of the ratio of the amount of non-transition metal M1 atoms to the total amount of atoms (unit: atm%) (hereinafter also referred to as [M1]) is preferably 20 atm% or more, and 22 atm % Or more, more preferably 24 atm% or more.
  • the average value in the thickness direction of [M1] in the region (A) is preferably 40 atm% or less, and more preferably 38 atm% or less. Preferably, it is 36 atm% or less.
  • the same value is preferably 10 atm% or more and 25 atm% or less, and more preferably 12 atm% or more and 20 atm% or less.
  • the region (A) may contain atoms other than the non-transition metal M1, the transition metal M2, oxygen (O), nitrogen (N), and carbon (C), for example, hydrogen.
  • the atomic weight ratio (unit: atm%) of the hydrogen in the region (A) can be measured by Rutherford Backscattering Spectroscopy (RBS) or HFS analysis (Hydrogen Forwarding Scattering Spectrometry).
  • the non-transition metal M1, transition metal M2, oxygen (O), nitrogen (to the total amount of all atoms present in the region (A) is preferably 90 atm% or more, more preferably 95 atm% or more, and 99 atm. % Or more is more preferable (upper limit of 100 atm%).
  • the non-transition metal M1 is not particularly limited, but is a metal selected from the non-transition metal M1 selected from the metals of Groups 12 to 14 of the long-period periodic table from the viewpoint of water vapor barrier properties. Is preferred. Among these, it is more preferable that Si, Al, Zn, In, or Sn is included, it is more preferable that Si, Sn, or Zn is included, and it is particularly preferable that Si is included.
  • a preferred embodiment of the present invention is a gas barrier film in which the non-transition metal M1 is Si.
  • the non-transition metal M1 may be used alone or in combination of two or more.
  • the form of the non-transition metal M1 as a constituent component of the region (A) is not particularly limited as long as it is a compound derived from the non-transition metal M1 (non-transition metal M1 alone or a compound containing the non-transition metal M1).
  • the non-transition metal M1 is included in the state of an oxide, nitride, carbide, oxynitride, or oxycarbide of the non-transition metal M1.
  • the non-transition metal M1 is contained in the state of the compound containing the non-transition metal M1, and it is more preferable that it is contained in the state of the compound containing the non-transition metal M1 and nitrogen.
  • the form of the non-transition metal M1 included in the region (A) may be a single type or a combination of two or more types.
  • the region (A) may be a single layer or a laminated structure of two or more layers.
  • region (A) is a laminated structure of two or more layers, the non-transition metal compound contained in area
  • the thickness of the region (A) (the total thickness in the case of a laminated structure of two or more layers) is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of water vapor barrier properties.
  • the thickness of the region (A) is not particularly limited, but may be 100 nm or less, 50 nm or less, or 30 nm or less from the presumed mechanism by which the region (A) is formed. Good.
  • the gas barrier film according to one embodiment of the present invention preferably includes a region (B) containing a transition metal M2 as a main component of a metal element (also simply referred to as “region (B)” in this specification). .
  • the presence of a region containing the transition metal M2 as a main component of the metal element in the thickness direction of the gas barrier film can be confirmed by composition analysis using the XPS analysis method described above.
  • the average value in the thickness direction of [M2] in the region (B) is preferably 16 atm% or more, and 18 atm%. More preferably, it is more preferably 20 atm% or more. Further, from the viewpoint of obtaining better light transmittance, the average value in the thickness direction of [M2] in the region (B) is preferably 40 atm% or less, more preferably 38 atm% or less. Preferably, it is 36 atm% or less.
  • the region (B) may contain atoms other than the non-transition metal M1, the transition metal M2, oxygen (O), nitrogen (N), and carbon (C), for example, hydrogen.
  • the method for measuring the ratio of atomic weight of hydrogen in the region (B) (unit: atm%) is the same as the ratio of atomic weight of hydrogen in the region (A).
  • the non-transition metal M1, transition metal M2, oxygen (O), nitrogen (with respect to the total amount of all atoms present in the region (B)
  • the average value in the thickness direction of the ratio of the total amount of N) and carbon (C) atoms (unit: atm%) is preferably 90 atm% or more, more preferably 95 atm% or more, and 99 atm%. More preferably, the upper limit is 100 atm%.
  • the transition metal (M2) is not particularly limited, and any transition metal can be used alone or in combination.
  • the transition metal refers to a Group 3 element to a Group 11 element in the long-period periodic table, and the transition metal includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y , Zr, Nb, Mo, Tc, Ru, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W , Re, Os, Ir, Pt, and Au.
  • transition metals (M2) that can provide good water vapor barrier properties.
  • Nb, Ta, V, Zr, Ti, Hf, Y, La, Ce, and the like can be cited as transition metals (M2) that can provide good water vapor barrier properties.
  • Nb, Ta, and V which are Group 5 elements, are particularly preferably used from the viewpoint of easy bonding to the non-transition metal (M1) contained in the gas barrier film from various examination results. it can.
  • the transition metal M2 is at least one metal selected from the group consisting of Nb, Ta, and V.
  • the transition metal (M2) is a Group 5 element (especially Nb) and the non-transition metal (M1), which will be described in detail later, is Si
  • a significant improvement in water vapor barrier properties can be obtained.
  • the transition metal (M2) is particularly preferably Nb or Ta from which a compound with good transparency can be obtained, and most preferably Nb.
  • the form of the transition metal M2 as a constituent component of the region (B) is not particularly limited as long as it is a compound derived from the transition metal M2 (a compound containing the transition metal M2 alone or the transition metal M2).
  • the transition metal M2 is included in the state of an oxide, nitride, carbide, oxynitride, or oxycarbide of the transition metal M2.
  • the transition metal M2 is contained in the state of the compound containing the transition metal M2, and it is more preferable that it is contained in the state of the transition metal oxide.
  • the transition metal M2 included in the region (B) may be used alone or in combination of two or more.
  • the region (B) may be a single layer or a laminated structure of two or more layers.
  • the transition metal M2 compound contained in the region (B) may be the same or different.
  • the region (B) is formed adjacent to the region (A), thereby forming the region (a) and imparting high water vapor barrier property in a high temperature and high humidity environment.
  • the water vapor barrier property is not necessarily required for (B) itself. Accordingly, the region (B) can be effective even with a relatively thin layer.
  • the thickness of the region (B) is preferably 2 nm or more, It is more preferably 4 nm or more, further preferably 5 nm or more, and particularly preferably 6 nm or more.
  • the thickness of the region (B) is preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 25 nm or less, from the viewpoint of obtaining better light transmittance. 15 nm or less is particularly preferable, and 12 nm or less is extremely preferable.
  • the stacking order of the region (A) and the region (B) is not particularly limited, and the film is formed on a film formation target (for example, a resin base material). It may be arranged in the order of region (A) / region (B) from the object side, or arranged in the order of region (B) / region (A) on the film formation object from the film formation object side. May be. However, the arrangement of the region (A) / region (B) in this order on the film formation object from the film formation object side results in higher water vapor barrier properties and superior flexibility in a high temperature and high humidity environment.
  • a film formation target for example, a resin base material
  • the gas barrier film is a unit having a layered structure of region (A) / region (B) or region (B) / region (A). You may have the structure where the unit which consists of these laminated structures laminated
  • the second embodiment of the present invention includes a non-transition metal M1 containing layer containing the non-transition metal M1 as a main component of the metal element, and a transition metal M2 containing layer containing the transition metal M2 as the main component of the metal element.
  • a method for producing a gas barrier film comprising: In the atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction of the gas barrier film, the following formula (1) and the following formula (2) are satisfied when the composition is represented by M1M2 x N y A method for manufacturing a gas barrier film having a region (a) to be processed.
  • the second embodiment of the present invention it is also possible to provide means capable of achieving both excellent flexibility and high water vapor barrier property in a high temperature and high humidity environment in the gas barrier film. Moreover, according to the manufacturing method of the gas barrier film which concerns on the 2nd form of this invention, the gas barrier film which concerns on the 1st form of this invention demonstrated above can be manufactured.
  • FIG. 2 is a schematic cross-sectional view showing a laminated structure formed in the method for producing a gas barrier film according to one embodiment of the present invention
  • FIG. 3 shows a gas barrier film according to another embodiment of the present invention.
  • It is a cross-sectional schematic diagram which shows the laminated structure formed in a manufacturing method.
  • the laminated structure 10 of the gas barrier film formed on the film formation target according to FIG. 2 the non-transition metal M1 containing layer 12 is formed on the film formation target 11 and then the transition metal M2 containing layer 13 is formed. Is formed.
  • the transition metal M2 containing layer 13 is formed on the film formation target 11, and then the non-transition metal M1 containing layer 12 is formed. Is formed. 2 and 3, the non-transition metal M1 containing layer 12 and the transition metal M2 containing layer 13 are formed so that they are in contact with each other.
  • the film formation target 11 is not particularly limited as long as it is a target on which a gas barrier film can be formed.
  • the film formation target 11 can be a resin base material on which layers having various functions are formed as necessary.
  • the mixed region including the region (A), the region (B), and the region (a) is obtained after the formation of the non-transition metal M1 containing layer 12 (or the transition metal M2 containing layer 13) and the transition metal M2 containing layer 13 (or non As a result of the formation of the transition metal M1 containing layer 12), the substance containing the transition metal M2 enters the non-transition metal M1 containing layer 12 or the substance containing the non-transition metal M1 enters the transition metal M2 containing layer 13. It is thought that it is formed.
  • the composition and thickness of the region (a) are controlled by the formation method, formation order of the non-transition metal M1-containing layer and the transition metal M2-containing layer, and the non-transition metal M1-containing layer (or the transition metal M2-containing layer). After forming, it can be performed by a storage method or the like until a transition metal M2 containing layer (or a non-transition metal M1 containing layer) is formed.
  • the order of formation of the non-transition metal M1 containing layer and the transition metal M2 containing layer is not particularly limited, and a film formation target (for example, a resin base material or the like) ), A non-transition metal M1 containing layer / a transition metal M2 containing layer may be formed in this order from the film forming object side, or the transition metal M2 containing may be formed on the film forming object from the film forming object side. You may form in order of a layer / non-transition metal M1 content layer.
  • the formation of the non-transition metal M1 containing layer / transition metal M2 containing layer in this order on the film forming object from the film forming object side has a higher water vapor barrier property in a high temperature and high humidity environment and more excellent It is preferable from the viewpoint of obtaining flexibility. This is because formation of the region (a) is easier and the thickness of the region (a) can be further increased.
  • the method for producing the gas barrier film includes a unit comprising a non-transition metal M1 containing layer / transition metal M2 containing layer or a transition metal M2 containing layer /
  • a method of repeatedly forming units composed of the non-transition metal M1-containing layer to form a laminated structure, for example, an alternating laminated structure may be used.
  • gas barrier film manufactured by the method for manufacturing a gas barrier film according to one embodiment of the present invention is the same as the above-described gas barrier film according to one embodiment of the present invention.
  • the method for forming the non-transition metal M1-containing layer is not particularly limited, and examples thereof include a vapor deposition method and a coating method. Among these, from the viewpoint that the non-transition metal M1-containing layer and the transition metal M2-containing layer can be continuously formed while conveying the film formation target, and it is excellent in productivity, this is a vapor phase film formation method. It is preferable.
  • a method of forming each layer while conveying the film formation target for example, a roll-to-roll method may be mentioned. That is, the manufacturing method according to a preferred embodiment of the present invention is a manufacturing method including forming the non-transition metal M1-containing layer by a vapor deposition method.
  • the raw material for forming the non-transition metal M1-containing layer is particularly limited as long as it is a compound derived from the non-transition metal M1 (non-transition metal M1 alone or a compound containing the non-transition metal M1).
  • the substance a metal simple substance, the compound containing a metal
  • the raw material of the non-transition metal M1 containing layer further includes a raw material capable of forming the transition metal M2 containing layer, that is, a substance derived from the transition metal M2 (transition metal M2 alone, a compound containing the transition metal M2).
  • the layer classification is determined as follows. First, only the non-transition metal M1-containing layer is separately formed on the film formation target under the same conditions as the production of the gas barrier film. Next, the atomic composition ratio (atm%) of the metal element contained in the constituent components and the atomic composition ratio (atm%) of the non-transition metal M1 are measured in the XPS analysis method in the same manner as the atomic composition profile of the gas barrier film described above. To measure. And among the metal elements contained in the constituent components in the produced layer, the layer having the maximum content of the non-transition metal M1 as the atomic composition ratio is treated as the formation of the non-transition metal M1-containing layer.
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, and ion plating, chemical vapor deposition (CVD), and ALD. Examples thereof include chemical vapor deposition methods such as (Atomic Layer Deposition). Among these, the physical vapor deposition method is preferable, the sputtering method or the CVD method is more preferable, and the sputtering method is more preferable because the film formation is possible without damaging the object to be formed and the productivity is high.
  • the film formation set thickness when forming a layer containing the non-transition metal M1 by the vapor deposition method is 10 nm or more from the viewpoint of water vapor barrier properties. It is preferable that the thickness is 30 nm or more.
  • the film formation setting thickness when the layer containing the non-transition metal M1 is formed by the vapor phase film formation method is preferably 500 nm or less, and more preferably 300 nm or less from the viewpoint of flexibility.
  • the non-transition metal M1 containing layer is calculated from the result of the atomic composition distribution profile obtained when XPS composition analysis is performed, and the thickness direction of the existing atomic ratio of nitrogen atoms to non-transition metal M1 atoms (N / M1) Is preferably 0.10 or more, particularly preferably 0.50 or more, and very preferably 0.90 or more.
  • the region (a) is more easily formed in the mixed region.
  • the transition metal M2 containing layer is made to be nitrogen by, for example, using a transition metal M2 nitride or oxynitride as a raw material and introducing nitrogen during film formation.
  • the region (a) is more easily formed in the mixed region.
  • the average value in the thickness direction of the existing atomic ratio of nitrogen atoms to non-transition metal M1 atoms (N / M1) is 0.50 or more.
  • the region (a) can be formed more favorably within the above range.
  • the average value in the thickness direction of the existing atomic ratio of nitrogen atoms to non-transition metal M1 atoms is 0. It is more preferably 60 or more, further preferably 0.80 or more, particularly preferably 0.85 or more, and extremely preferably 0.90 or more. Moreover, it is preferable that the average value of the thickness direction of the atomic ratio (N / M1) of the nitrogen atom with respect to the non-transition metal M1 atom is 1.4 or less.
  • the XPS measurement analysis and the atomic composition distribution profile used here are the same as those described in the description of the atomic composition profile.
  • the non-transition metal M1 containing layer is formed by the vapor deposition method, for example, the ratio of the non-transition metal M1 and oxygen in the film forming raw material, the ratio of the inert gas and the reactive gas at the time of film formation, By adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation, The composition and thickness of region (a) can be controlled.
  • the chemical vapor deposition (CVD) method is a raw material gas containing a target thin film component on a material for forming a non-transition metal M1-containing layer of a film formation target (for example, a resin base material). And a film is deposited by a chemical reaction in the surface or gas phase of the material forming the non-transition metal M1 containing layer.
  • a method of generating plasma or the like for the purpose of activating the chemical reaction.
  • Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. Law.
  • Non-transition metal M1 containing layer by chemical vapor deposition is advantageous in terms of water vapor barrier properties in a high temperature and high humidity environment.
  • a layer containing a non-transition metal M1 is formed by a vacuum plasma CVD method or a plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure, a metal compound, a decomposition gas, a decomposition temperature, which is a raw material (also referred to as a raw material), By selecting conditions such as input power, a non-transition metal M1-containing layer having a target composition can be formed, which is preferable.
  • CCP Capacitively Coupled Plasma Capacitively Coupled Plasma
  • ICP Inductively Coupled Plasma Inductively Coupled Plasma
  • microwave CVD microwave CVD
  • ECR Electro Cyclotron Resonance CVD, Large CVD
  • plasma CVD methods such as the above are preferably used.
  • the apparatus used for the plasma CVD method is not particularly limited, and a known apparatus can be used.
  • a commercially available vacuum CCP (Capacitively Coupled Plasma Capacitively Coupled Plasma) -CVD apparatus may be used.
  • the source gas used in the plasma CVD method is not particularly limited.
  • the non-transition metal M1 is silicon, silane gas, disilane gas, TEOS (tetraethoxysilane), HMDSO (hexamethyldisiloxane), HMDSN (hexamethyldi).
  • Source gases used in the deposition of silicon-containing films by known plasma CVD methods such as silazane), TMS (tetramethylsilane), hydrazine gas, ammonia gas, nitrogen gas, hydrogen gas, argon gas, neon gas, helium gas May be appropriately selected and used.
  • a preferable example of the source gas includes a combination of silane gas, ammonia gas, and hydrogen gas.
  • the raw material gas preferably contains nitrogen gas.
  • a more preferable example of the source gas includes a combination of silane gas, ammonia gas, hydrogen gas and nitrogen gas.
  • the flow rate of the source gas is preferably 10 to 1000 sccm, more preferably 100 to 800 sccm, and further preferably 200 to 700 sccm.
  • the ratio of the nitrogen gas flow rate to the raw material gas flow rate is preferably 0 to 70%, more preferably 30 to 60%.
  • the film formation conditions may be set appropriately according to the source gas used, the thickness of the layer to be formed, and the like.
  • the supply amount of the reaction gas, the supply balance of each reaction gas, the film formation pressure, the plasma excitation power, the plasma excitation frequency, the power applied such as the bias, the temperature of the film formation target (for example, the substrate), the film formation By appropriately controlling the front pressure, the distance between the film formation target and the plasma generation region, and the like, the non-transition metal M1 containing layer can be controlled, and the composition of the gas barrier film can be controlled.
  • the distance between the electrodes is preferably 10 to 40 mm.
  • the film forming pressure in the chamber is preferably 1 to 100 Pa.
  • the plasma excitation power is preferably 100 to 2000 W.
  • FIG. 4 is a schematic diagram showing an example of a vacuum plasma CVD apparatus that can be used to form the non-transition metal M1-containing layer.
  • the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface inside the vacuum chamber 102. Further, a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105.
  • a heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102.
  • a heat medium is disposed in the heat medium circulation system 106.
  • the heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium.
  • a heating / cooling device 160 having a storage device is provided.
  • the heating / cooling device 160 is configured to measure the temperature of the heat medium, heat or cool the heat medium to a stored set temperature, and supply the heat medium to the susceptor 105.
  • the supplied heat medium flows inside the susceptor 105, heats or cools the susceptor 105, and returns to the heating / cooling device 160.
  • the temperature of the heat medium is higher or lower than the set temperature, and the heating and cooling device 160 heats or cools the heat medium to the set temperature and supplies the heat medium to the susceptor 105.
  • the cooling medium circulates between the susceptor and the heating / cooling device 160, and the susceptor 105 is heated or cooled by the supplied heating medium having the set temperature.
  • the vacuum chamber 102 is connected to an evacuation system 107, and before the film formation process is started by the vacuum plasma CVD apparatus 101, the inside of the vacuum chamber 102 is evacuated in advance and the heat medium is heated from room temperature. The temperature is raised to a set temperature, and a heat medium having the set temperature is supplied to the susceptor 105. The susceptor 105 is at room temperature at the start of use, and when a heat medium having a set temperature is supplied, the susceptor 105 is heated.
  • the film formation object for example, a resin substrate or the like
  • the film formation object 110 is carried into the vacuum chamber 102 while maintaining the vacuum atmosphere in the vacuum chamber 102 and placed on the susceptor 105. Deploy.
  • a large number of nozzles (holes) are formed on the surface of the cathode electrode 103 facing the susceptor 105.
  • the cathode electrode 103 is connected to a gas introduction system 108.
  • a CVD gas is introduced from the gas introduction system 108 to the cathode electrode 103, the CVD gas is ejected from the nozzle of the cathode electrode 103 into the vacuum chamber 102 in a vacuum atmosphere.
  • the cathode electrode 103 is connected to a high frequency power source 109, and the susceptor 105 and the vacuum chamber 102 are connected to the ground potential.
  • a CVD gas is supplied from the gas introduction system 108 into the vacuum chamber 102, a high-frequency power source 109 is activated while supplying a heat medium having a constant temperature from the heating / cooling device 160 to the susceptor 105, and a high-frequency voltage is applied to the cathode electrode 103, Plasma of the introduced CVD gas is formed.
  • the CVD gas activated in the plasma reaches the surface of the film formation target 110 on the susceptor 105, a thin film that is a non-transition metal M1-containing layer grows on the surface of the film formation target 110.
  • the distance between the susceptor 105 and the cathode electrode 103 is set as appropriate.
  • the flow rates of the raw material gas and the cracked gas are appropriately set in consideration of the raw material gas, the cracked gas type, and the like.
  • the flow rate of the source gas is 30 to 300 sccm
  • the flow rate of the decomposition gas is 100 to 1000 sccm.
  • a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and the susceptor 105 is heated or cooled by the heating medium, and a thin film is formed while being maintained at a constant temperature.
  • the lower limit temperature of the growth temperature when forming a thin film is determined by the film quality of the thin film
  • the upper limit temperature is determined by the allowable range of damage to the thin film already formed on the film formation target 110.
  • the lower limit temperature and the upper limit temperature vary depending on the material of the thin film to be formed, the material of the already formed thin film, etc., but the preferable lower temperature for ensuring the film quality with a high water vapor barrier property is 50 ° C. or higher, and the upper limit temperature is It is preferable that it is below the heat-resistant temperature of the film-forming target.
  • the correlation between the film quality of the thin film formed by the vacuum plasma CVD method and the deposition temperature, and the correlation between the damage to the deposition object 110 and the deposition temperature are obtained in advance, and the lower limit temperature and the upper limit temperature are determined.
  • the temperature of the film formation target 110 during the vacuum plasma CVD process is preferably 50 to 250 ° C.
  • the relationship between the temperature of the heating medium supplied to the susceptor 105 and the temperature of the film formation object 110 when plasma is formed by applying a high frequency voltage of 13.56 MHz or more to the cathode electrode 103 is measured in advance.
  • the temperature of the heat medium supplied to the susceptor 105 is required.
  • a lower limit temperature preferably 50 ° C.
  • a heat medium whose temperature is controlled to a temperature equal to or higher than the lower limit temperature is set to be supplied to the susceptor 105.
  • the heat medium refluxed from the susceptor 105 is heated or cooled, and a heat medium having a set temperature (preferably 50 ° C. or higher) is supplied to the susceptor 105.
  • a heat medium having a set temperature preferably 50 ° C. or higher
  • a heat medium having a set temperature preferably 50 ° C. or higher
  • the film formation object 110 is maintained at a temperature condition not lower than the lower limit temperature but not higher than the upper limit temperature.
  • the susceptor 105 Immediately after the startup of the vacuum plasma CVD apparatus 101, the susceptor 105 is at room temperature, and the temperature of the heat medium returned from the susceptor 105 to the heating / cooling apparatus 160 is lower than the set temperature. Therefore, immediately after the activation, the heating / cooling device 160 heats the refluxed heat medium to raise the temperature to the set temperature, and supplies it to the susceptor 105. In this case, the susceptor 105 and the film formation target 110 are heated and heated by the heat medium, and the film formation target 110 is maintained in the range of the lower limit temperature or more and the upper limit temperature or less.
  • the susceptor 105 When a thin film is continuously formed on a plurality of deposition objects 110, the susceptor 105 is heated by heat flowing from the plasma. In this case, since the heat medium recirculated from the susceptor 105 to the heating / cooling device 160 is higher than the lower limit temperature (preferably 50 ° C.), the heating / cooling device 160 cools the heat medium, and the heat medium having a set temperature. Is supplied to the susceptor 105. Thereby, it is possible to form a thin film while maintaining the film formation target 110 in the range of the lower limit temperature or higher and the upper limit temperature or lower.
  • the lower limit temperature preferably 50 ° C.
  • the heating / cooling device 160 heats the heating medium when the temperature of the refluxed heating medium is lower than the set temperature, and cools the heating medium when the temperature is higher than the set temperature.
  • a heat medium having a set temperature is supplied to the susceptor, and as a result, the film formation target 110 is maintained in a temperature range between the lower limit temperature and the upper limit temperature.
  • the film formation target 110 is carried out of the vacuum chamber 102, and the non-film formation target 110 is carried into the vacuum chamber 102.
  • a thin film is formed while supplying a heat medium.
  • ⁇ Spatter ⁇ Film formation by sputtering is advantageous in that the film formation rate is higher and the productivity is higher. Further, it is extremely high to form both the non-transition metal M1 containing layer and the transition metal M2 containing layer by the sputtering method, and in particular, to form each layer continuously by the sputtering method while conveying the film formation target. There is an advantage of having productivity.
  • bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more.
  • the target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used.
  • RF high frequency
  • a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used.
  • the reactive sputtering method is preferable because the metal oxide film can be formed at a high film formation speed by controlling the sputtering phenomenon so as to be in the transition region.
  • a thin film of an oxide of non-transition metal M1 is formed by using a target containing non-transition metal M1 as a target and introducing oxygen into the process gas. Can do.
  • an oxide target of the non-transition metal M1 can be used.
  • the inert gas used for the process gas He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used.
  • a thin film such as an oxide, nitride, nitride oxide, or carbonate of the non-transition metal M1 can be formed.
  • film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, which can be appropriately selected according to the sputtering apparatus, film material, film thickness, and the like.
  • the film forming pressure is preferably 0.1 to 5 Pa.
  • the sputtering power source power is preferably 2 to 10 W / cm 2 .
  • the kind of non-transition metal M1 included in the target and the preferred kind of non-transition metal M1 are the same as those of the non-transition metal M1 described for the region (A). Further, as the target including the non-transition metal M1, the same compound as the compound derived from the non-transition metal M1 described for the region (A) can be used. Here, as a particularly preferable example of the target including the non-transition metal M1, a commercially available silicon target can be given. Examples of the target containing the non-transition metal M1 are described in, for example, JP 2000-026961 A, JP 2009-215651 A, JP 2003-160862 A, and JP 2012-007218 A. A target containing a plurality of elements can be used.
  • the non-transition metal M1 containing layer may be formed by a coating method.
  • a non-transition metal M1 content layer can be obtained by apply
  • the layer containing the non-transition metal M1 formed by the coating method is a layer having few defects because there is no contamination of foreign substances such as particles during film formation.
  • the non-transition metal M1 containing layer may be a single layer or a laminated structure of two or more layers.
  • the non-transition metal M1 containing layer formed by the coating method has an atomic ratio (N / N) of nitrogen atoms to non-transition metal M1 atoms calculated from the result of the atomic composition distribution profile obtained when XPS composition analysis is performed.
  • the maximum value in the thickness direction in a region within 30 nm from the surface layer side (the surface side in contact with the transition metal M2 containing layer) of the non-transition metal M1 containing layer of M1) is preferably 0.50 or more. It is very preferable that it is 90 or more.
  • the region (a) is more easily formed.
  • the transition metal M2 containing layer is made to be nitrogen by, for example, using a transition metal M2 nitride or oxynitride as a raw material and introducing nitrogen during film formation.
  • the region (a) is more easily formed in the mixed region.
  • the atomic ratio of nitrogen atoms to nontransition metal M1 atoms in a region within 30 nm from the surface side of the nontransition metal M1 containing layer is preferably 0.50 or more. This is because the region (a) can be formed more favorably within the above range.
  • the atomic ratio of nitrogen atoms to nontransition metal M1 atoms in a region within 30 nm from the surface side of the nontransition metal M1 containing layer ( The maximum value in the thickness direction of N / M1) is more preferably 0.60 or more, and extremely preferably 0.90 or more. Moreover, the maximum value in the thickness direction of the atomic ratio (N / M1) of nitrogen atoms to non-transition metal M1 atoms in the region within 30 nm from the surface layer side of the non-transition metal M1 containing layer is 1.4 or less. Is preferred.
  • the coating method has a large composition distribution in the thickness direction. This is because it greatly affects the formation of the region (a).
  • the XPS measurement analysis and the atomic composition distribution profile used here are the same as those described in the description of the atomic composition profile.
  • non-transition metal M1 is silicon (Si)
  • Si silicon
  • a layer containing Si (also referred to herein as a silicon-containing layer) can be obtained by applying and drying a coating solution containing a silicon-containing compound.
  • the silicon-containing compound include polysiloxane, polysilsesquioxane, polysilazane, polysiloxazan, polysilane, polycarbosilane, and the like.
  • a well-known compound can be used as polysiloxane, polysilsesquioxane, polysilazane, polysiloxazan, polysilane, and polycarbosilane.
  • the silicon-containing compound include polysilazane having a silicon-nitrogen bond and silicon-hydrogen bond, polysiloxazan having a silicon-nitrogen bond, polysiloxane having a silicon-hydrogen bond, and having a silicon-hydrogen bond.
  • Polysilsesquioxane and polysilane having a silicon-silicon bond can be preferably used.
  • the silicon-containing compounds can be used alone or in combination of two or more.
  • polysilazane is more preferable.
  • Polysilazane is a polymer having a silicon-nitrogen bond, and ceramics such as Si 2 N, Si 3 N 4 , and both intermediate solid solutions SiO z N y having a bond such as Si—N, Si—H, and N—H. It is a precursor inorganic polymer.
  • the polysilazane is not particularly limited and a known one can be used, but it is more preferable to have a structure of the following general formula (I).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. Is preferred. At this time, R 1 , R 2 and R 3 may be the same or different.
  • N is an integer and is preferably determined so that the polysilazane having the structure represented by the general formula (I) has a number average molecular weight of 150 to 150,000 g / mol.
  • the structure represented by the general formula (I) may form a ring structure.
  • perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferable.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings.
  • the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
  • polysilazane that can be used in the present invention are not limited to the following, and examples thereof include JP-A-5-238827, JP-A-6-122852, JP-A-6-240208, and JP-A-6-299118. No. 6, JP-A-6-306329, JP-A-7-196986) and the like.
  • Polysilazane may be a commercially available product.
  • a commercially available product is generally in a solution state dissolved in an organic solvent.
  • the commercially available product can be used as it is as the coating solution for forming the layer (B).
  • Examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by Merck Co., Ltd. .
  • polysilazanes or polysilazane solutions can be used alone or in combination of two or more.
  • the content of polysilazane in the silicon-containing layer before the modification treatment may be 100 mass% when the total mass of the non-transition metal M1 containing layer before the modification treatment is 100 mass%.
  • the content of polysilazane in the layer is preferably 10% by mass or more and 99.9% by mass or less, and preferably 10% by mass or more. More preferably, it is 99.5 mass% or less, More preferably, it is 10 mass% or more and 99 mass% or less, More preferably, it is 40 mass% or more and 98 mass% or less, 70 mass% or more and 97 mass% or less.
  • the coating liquid for forming a silicon-containing layer is a liquid containing a silicon-containing compound as an essential component.
  • the coating solution for forming a silicon-containing layer may further contain a solvent.
  • the solvent is not particularly limited as long as it can dissolve the silicon-containing compound, but does not include water and reactive groups (for example, hydroxyl group or amine group) that easily react with the silicon-containing compound, and silicon.
  • An organic solvent inert to the contained compound is preferred, and an aprotic organic solvent is more preferred.
  • the solvent is an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, terpenes, etc.
  • aprotic solvent for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, terpenes, etc.
  • Hydrogen solvents Halogenated hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Examples of ethers include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like.
  • the solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
  • the concentration of the silicon-containing compound in the coating solution for forming a silicon-containing layer is not particularly limited and varies depending on the film thickness of the layer and the pot life of the coating solution, but is preferably 0.5 to 80% by mass, more preferably 1 to 50% by mass, more preferably 2 to 40% by mass.
  • the silicon-containing layer-forming coating solution preferably contains a catalyst in order to promote the modification.
  • the catalyst is preferably a basic catalyst, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′— Amine catalysts such as tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, and Pd compounds such as propionic acid Pd And metal catalysts such as Rh compounds such as Rh acetylacetonate and N-heterocyclic compounds.
  • the concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on the silicon compound. By setting the amount of the catalyst to be in this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like.
  • the coating solution for forming a silicon-containing layer may further contain other additives.
  • Other additives are not particularly limited, and known additives can be used, and examples thereof include cellulose ethers, cellulose esters, natural resins, synthetic resins, and condensation resins.
  • ⁇ Application method As a method of applying the silicon-containing layer forming coating solution, a conventionally known appropriate wet coating method can be employed. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method and the like. It is done.
  • the coating thickness can be appropriately set according to the preferred thickness and purpose.
  • the coating film After applying the coating solution, the coating film is dried. By drying the coating film, an organic solvent that can be contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable layer (B) can be obtained. The remaining solvent can be removed later.
  • the drying temperature of the coating film is preferably 50 to 200 ° C.
  • the drying temperature is the deformation of the resin substrate due to heat.
  • the temperature can be set by using a hot plate, oven, furnace or the like.
  • the drying time is preferably set to a short time. For example, when the drying temperature is 50 to 150 ° C., the drying time is preferably set within 30 minutes.
  • the lower limit of the drying time is not particularly limited as long as the desired dry state can be achieved, but it is preferably, for example, 30 seconds or more.
  • the drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
  • the coating film obtained by applying the silicon-containing layer forming coating solution may include a step of removing moisture before irradiation with vacuum ultraviolet rays or during irradiation with vacuum ultraviolet rays. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature.
  • the dew point temperature is preferably 4 ° C. or lower (temperature 25 ° C./relative humidity 25% RH), and the maintained time is preferably 1 minute or longer.
  • the lower limit of the dew point temperature is not particularly limited, but is usually ⁇ 50 ° C. or higher.
  • a coating film containing a silicon-containing compound (coating liquid for forming a silicon-containing layer) can be used as it is as a silicon-containing layer, but the resulting coating film is subjected to a modification treatment to convert it into silicon oxynitride or the like.
  • a silicon-containing layer may be formed by performing the above.
  • the modification method is not particularly limited, and a known method can be used, but a method of performing vacuum ultraviolet irradiation is preferable.
  • Vacuum ultraviolet irradiation has the advantage of further improving the water vapor barrier property in a high temperature and high humidity environment.
  • vacuum ultraviolet irradiation has the advantage that the deterioration of the water vapor barrier property due to the environmental influence of storage over time between the formation of the silicon-containing layer and the formation of the transition metal M2 containing layer is further suppressed.
  • Vacuum ultraviolet irradiation is applicable to both batch processing and continuous processing, and can be selected as appropriate.
  • batch processing it can be processed in an ultraviolet baking furnace equipped with an ultraviolet ray generation source.
  • the ultraviolet baking furnace itself is generally known.
  • an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used.
  • the object when it is a long film, it can be converted to ceramics by continuously irradiating ultraviolet rays in a drying zone equipped with the ultraviolet ray generation source as described above while being conveyed.
  • the time required for ultraviolet irradiation is generally from 0.1 second to 10 minutes, preferably from 0.5 second to 3 minutes, depending on the composition and concentration of the silicon-containing layer and the type of film formation target.
  • the modification by vacuum ultraviolet irradiation uses an optical energy of 100 to 200 nm, preferably an optical energy having a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in a silicon-containing compound (particularly a polysilazane compound), and bonds the atoms.
  • photon processes it is preferable to use heat processing together.
  • the vacuum ultraviolet source is preferably an excimer radiator (eg, an Xe excimer lamp) having a maximum emission at about 172 nm, a low pressure mercury vapor lamp having an emission line at about 185 nm, and medium and high pressure mercury vapor having a wavelength component of 230 nm or less.
  • an excimer radiator eg, an Xe excimer lamp
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
  • the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds.
  • the coating film can be modified in a short time by the high energy of the active oxygen, ozone and ultraviolet radiation.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the irradiation object is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • the vacuum ultraviolet ray may be generated by plasma formed by a gas containing at least one of CO, CO 2 and CH 4 .
  • the oxygen concentration at the time of vacuum ultraviolet irradiation is preferably 10 to 20,000 volume ppm (0.001 to 2 volume%), and preferably 50 to 10,000 volume ppm (0.005 to 1 volume%). Is more preferable.
  • the water vapor concentration during the conversion process is preferably in the range of 1,000 to 4,000 volume ppm.
  • the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays it is preferable to use a dry inert gas, and more preferable to use dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the illuminance of the vacuum ultraviolet ray on the coating surface received by the coating film is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2 , further preferably at 50mW / cm 2 ⁇ 160mW / cm 2. If it is 1 mW / cm 2 or more, the reforming efficiency is improved, and if it is 10 W / cm 2 or less, ablation that may occur in the coating film and damage to the film formation target can be reduced.
  • the amount of irradiation energy (irradiation amount) of vacuum ultraviolet rays on the surface of the coating film is preferably 0.1 to 10 J / cm 2 , and more preferably 0.1 to 7 J / cm 2 . If it is this range, generation
  • the thickness of the layer containing the non-transition metal M1 formed by the coating method is preferably 10 to 500 nm, more preferably 30 to 300 nm. preferable.
  • the non-transition metal M1 containing layer is formed by a coating method, for example, a film forming raw material type (polysilazane type or the like) containing the non-transition metal (M1), a catalyst type, a catalyst content, a coating film thickness, and a drying temperature.
  • a coating method for example, a film forming raw material type (polysilazane type or the like) containing the non-transition metal (M1), a catalyst type, a catalyst content, a coating film thickness, and a drying temperature.
  • the composition and thickness of the region (a) can be controlled by adjusting one or more conditions selected from the group consisting of time, modification method, and modification conditions.
  • the method for forming the transition metal M2 containing layer is not particularly limited, and examples thereof include a vapor phase film forming method and a coating method. Among these, from the viewpoint that the non-transition metal M1-containing layer and the transition metal M2-containing layer can be continuously formed while conveying the film formation target, and it is excellent in productivity, this is a vapor phase film formation method. It is preferable.
  • a method of forming each layer while conveying the film formation target for example, a roll-to-roll method may be mentioned. That is, the manufacturing method according to a preferred embodiment of the present invention is a manufacturing method including forming the transition metal M2 containing layer by a vapor deposition method.
  • the raw material for forming the transition metal M2 containing layer is not particularly limited as long as it is a compound derived from the transition metal M2 (a compound containing the transition metal M2 alone or the transition metal M2).
  • the substance (A metal simple substance, the compound containing a metal) derived from other metals may further be contained.
  • the raw material capable of forming the non-transition metal M1 containing layer that is, the substance derived from the non-transition metal M1 (non-transition metal M1 simple substance, compound containing non-transition metal M1) May further be included.
  • the layer classification is determined as follows. First, only the transition metal M2 containing layer is separately formed on the object to be formed under the same conditions as the production of the gas barrier film. Next, the atomic composition ratio (atm%) of the metal element contained in the constituent components and the atomic composition ratio (atm%) of the non-transition metal M2 are measured in the XPS analysis method in the same manner as the atomic composition profile of the gas barrier film described above. To measure. Then, among the metal elements contained in the constituent components in the produced layer, the layer having the maximum transition metal M2 content as the atomic composition ratio is treated as the formation of the transition metal M2 containing layer.
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, and ion plating, chemical vapor deposition (CVD), and ALD. Examples thereof include chemical vapor deposition methods such as (Atomic Layer Deposition). Among these, the physical vapor deposition method is preferable, the sputtering method or the CVD method is more preferable, and the sputtering method is more preferable because the film formation is possible without damaging the object to be formed and the productivity is high.
  • Film formation by sputtering has the advantage of higher film formation rate and higher productivity. Further, it is extremely high to form both the non-transition metal M1 containing layer and the transition metal M2 containing layer by the sputtering method, and in particular, to form each layer continuously by the sputtering method while conveying the film formation target. There is an advantage of having productivity.
  • bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more.
  • the details of the sputtering method are the same as the contents described in the above section [Formation of Non-Transition Metal M1 Containing Layer] except for the contents specifically described below, and thus the description thereof is omitted here.
  • the type of transition metal M2 included in the target used in the sputtering method and the preferable type of transition metal M2 are the same as those of the transition metal M2 described for the region (B). Further, as the target including the transition metal M2, the same compound as the compound derived from the transition metal M2 described for the region (B) can be used.
  • the target containing the transition metal M2 is preferably a target containing an oxide of the transition metal M2 from the viewpoint of higher film formation rate and higher productivity. From the viewpoint of further improving the water vapor barrier property, an oxygen-deficient transition metal M2 oxide is more preferable.
  • a commercially available oxygen-deficient niobium oxide target, a commercially available tantalum target, and the like can be given.
  • the transition metal M2 oxide film as the transition metal M2 containing layer by sputtering for example, a mixed gas of an inert gas and an oxygen gas may be used as the process gas.
  • the ratio of the oxygen partial pressure to the pressure is preferably 0 to 40%, more preferably 5 to 30%.
  • the transition metal M2 containing layer is formed by the vapor deposition method, for example, the ratio of the transition metal (M2) and oxygen in the film forming raw material, the ratio of the inert gas and the reactive gas during film formation, By adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation, The composition and thickness of region (a) can be controlled.
  • a method of controlling the thicknesses of the mixed region and the region (a) a method of controlling the film formation time of the transition metal M2 containing layer is particularly preferable.
  • the transition metal M2 containing layer When forming the transition metal M2 containing layer by a vapor phase film forming method, it is preferable to form the film in an environment containing nitrogen.
  • the transition metal M2 containing layer can be a film containing nitrogen, such as a nitride film or an oxynitride film.
  • the transition metal M2 containing layer contains nitrogen, so that spontaneous diffusion of the substance at the interface between the non-transition metal M1 containing layer and the transition metal M2 containing layer, and the substance in forming the transition metal M2 containing layer By entering the non-transition metal M1-containing layer, nitrogen is easily introduced into the vicinity of the interface.
  • the method for manufacturing a gas barrier film according to a preferred embodiment of the present invention is a manufacturing method in which the atmosphere of the vapor phase film forming method is an atmosphere containing nitrogen.
  • the method for introducing nitrogen is not particularly limited.
  • an inert gas and a nitrogen gas are used as process gases.
  • a mixed gas may be used.
  • the ratio of the nitrogen partial pressure to the total pressure is preferably 10 to 90%, and more preferably 20 to 80%.
  • the film formation setting thickness when forming the transition metal M2 containing layer is 3 nm or more from the viewpoint of forming a sufficiently thick region (a) and obtaining a higher water vapor barrier property in a high temperature and high humidity environment. It is preferable that it is 5 nm or more. Further, since the thickness of the region (a) is saturated even if the thickness is further increased, the viewpoint of obtaining a high water vapor barrier property in a high-temperature and high-humidity environment with a thinner film thickness, and better flexibility From the viewpoint of obtaining, it is preferably 30 nm or less, more preferably 20 nm or less, and further preferably 15 nm or less.
  • the non-transition metal M1 containing layer and the transition metal M2 containing layer may be formed so as to further include the transition metal M2 and the non-transition metal M1, respectively. Therefore, when the non-transition metal M1 containing layer or the transition metal M2 containing layer is formed by a vapor deposition method, the mixed region may be directly formed by using a known co-evaporation method. As such a co-evaporation method, a co-sputtering method is preferable.
  • the co-sputtering method is, for example, a single unit using, as a sputtering target, a composite target made of an alloy containing both the non-transition metal M1 and the transition metal M2, or a composite target made of a composite oxide of the non-transition metal M1 and the transition metal M2. It can be sputter.
  • the co-sputtering method may be, for example, multi-source simultaneous sputtering using a plurality of sputtering targets including a single element of non-transition metal M1 or its oxide and a single element of transition metal M2 or its oxide.
  • the region (a) may be directly formed by appropriately introducing nitrogen.
  • the reason why the effect of the present invention is better achieved is not clear in detail, but the composition of the mixed region (a), the non-transition element M1, the transition element M2 and the nitrogen atom in the mixed region (a) It is presumed that the existence state or the like is likely to become a more suitable state for the effect of the present invention.
  • Another embodiment of the present invention is a gas barrier film having the gas barrier film according to the first embodiment of the present invention on a resin substrate.
  • a gas barrier film can be produced, for example, by using the method for producing a gas barrier film according to the second embodiment of the present invention using a film formation target as a resin substrate.
  • the resin base material surface on which the gas barrier film is formed is not particularly limited, and may be one side or both sides.
  • the region (A) and the region (B) and the gas barrier film is formed on both surfaces the region (A) and the region (B) constituting the gas barrier film.
  • the order of lamination may be the same or different on one side and the other side of the resin substrate.
  • Examples of the resin base material used for the gas barrier film according to one embodiment of the present invention include a film or sheet made of a resin, and a film or sheet made of a colorless and transparent resin is preferable.
  • Examples of the resin used for such a resin base material include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resins such as polyethylene (PE), polypropylene (PP), and cyclopolyolefin; Polyamide resin; Polycarbonate resin; Polystyrene resin; Polyvinyl alcohol resin; Saponified ethylene-vinyl acetate copolymer; Polyacrylonitrile resin; Acetal resin; Polyimide resin; Cellulose ester resin.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Polyolefin resins such as polyethylene (PE), polypropylene (PP), and cyclopolyolefin
  • Polyamide resin Polycarbonate resin
  • resins selected from polyester resins, polyimide resins, cyclopolyolefin resins, and polycarbonate resins are preferable, polyester resins are more preferable, and polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are preferable. More preferred is polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • these resin can be used individually by 1 type or in combination of 2 or more types.
  • the resin substrate may be a single layer or a laminated structure of two or more layers.
  • each layer may be the same type of resin or a different type of resin.
  • the thickness of the resin base material can be appropriately set in consideration of stability when producing the gas barrier film of the present invention.
  • the thickness of the resin substrate (the total thickness in the case of a laminated structure of two or more layers) is preferably in the range of 5 to 500 ⁇ m from the viewpoint that the film can be conveyed even in a vacuum.
  • the gas barrier film according to one embodiment of the present invention is formed using the plasma CVD method, the thin film is formed while discharging through the resin substrate.
  • the total thickness is more preferably in the range of 50 to 200 ⁇ m, and particularly preferably in the range of 50 to 100 ⁇ m.
  • the resin base material it is preferable to subject the resin base material to a surface activation treatment for cleaning the surface of the resin base material from the viewpoint of adhesion to a gas barrier film described later.
  • a surface activation treatment for cleaning the surface of the resin base material from the viewpoint of adhesion to a gas barrier film described later.
  • Examples of such surface activation treatment include easy adhesion treatment, corona treatment, plasma treatment, and flame treatment. Among these, easy adhesion treatment is preferable.
  • An anchor coat layer may be formed on the surface of the resin base on the side where the gas barrier film according to one embodiment of the present invention is formed for the purpose of improving the adhesion between the resin base and the gas barrier film.
  • polyester resins As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.
  • the above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
  • the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • an anchor coat layer as described in JP-A-2004-314626, when an inorganic thin film is formed thereon by a vapor phase method, a certain amount of gas generated from the resin substrate side is generated.
  • An anchor coat layer can also be formed for the purpose of blocking and controlling the composition of the inorganic thin film.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • a hard coat layer may be provided on the surface (one side or both sides) of the resin substrate.
  • the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold.
  • Such curable resins can be used singly or in combination of two or more.
  • the active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.
  • active energy ray curable resin a component containing a monomer having an ethylenically unsaturated bond is preferably used, and the active energy ray curable resin is cured by irradiation with an active energy ray such as an ultraviolet ray or an electron beam.
  • a layer containing the cured product, that is, a hard coat layer is formed.
  • the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable.
  • the ultraviolet curable resin include a resin composition containing a (meth) acrylate compound, a resin composition containing a (meth) acrylate compound and a mercapto compound containing a thiol group, epoxy (meth) acrylate, urethane ( Resin composition containing polyfunctional (meth) acrylate monomer such as meth) acrylate, polyester (meth) acrylate, melamine (meth) acrylate, polyether (meth) acrylate, polyethylene glycol (meth) acrylate, glycerol (meth) acrylate And a resin composition containing an amorphous fluorine-containing polymer.
  • (meth) acrylate represents acrylate or methacrylate.
  • an ultraviolet curable resin you may use a commercial item.
  • Aika Kogyo Co., Ltd. product Z731L, JSR Co., Ltd. OPSTAR (opstar) (trademark) Z7527 etc. are mentioned, for example.
  • the method for forming the hard coat layer is not particularly limited, but it may be formed by a wet coating method (coating method) such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as a vapor deposition method. Is preferred.
  • a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as a vapor deposition method. Is preferred.
  • the drying temperature of the coating film when forming the hard coat layer is not particularly limited, but is preferably 40 to 120 ° C.
  • the active energy ray used when curing the hard coat layer is preferably ultraviolet rays. Although it does not restrict
  • the amount of ultraviolet irradiation energy is not particularly limited, but is preferably 0.3 to 5 J / cm 2 .
  • the thickness of the hard coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • the hard coat layer is not particularly limited, but a clear hard coat layer is preferably used.
  • other layers such as the above-mentioned anchor coat layer and the smooth layer mentioned later, serve as the function of a hard-coat layer.
  • the gas barrier film according to one embodiment of the present invention may have a smooth layer between the resin base material and the gas barrier film.
  • the smooth layer used in one embodiment of the present invention flattens the rough surface of the resin substrate where protrusions and the like are present, or fills irregularities and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the resin substrate.
  • Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
  • the photosensitive material for the smooth layer is preferably an active energy ray curable resin composition, and more preferably an ultraviolet curable resin composition.
  • the ultraviolet curable resin composition include a resin composition containing a (meth) acrylate compound, a resin composition containing a (meth) acrylate compound and a mercapto compound having a thiol group, epoxy (meth) acrylate, and urethane.
  • Resin compositions containing polyfunctional acrylate monomers such as (meth) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polyethylene glycol (meth) acrylate, glycerol (meth) acrylate, and amorphous fluorine-containing polymers
  • examples thereof include a resin composition.
  • (meth) acrylate represents acrylate or methacrylate.
  • a commercially available product may be used as the ultraviolet curable resin, and for example, a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation may be used.
  • Examples of the OPSTAR (registered trademark) series manufactured by JSR Corporation include OPSTAR (registered trademark) Z7527. It is also possible to use any mixture of the above resin compositions, and any photosensitive material containing a reactive monomer having at least one photopolymerizable unsaturated bond in the molecule can be used. There are no particular restrictions.
  • thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd.
  • Examples include coats, thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins.
  • an epoxy resin-based material having heat resistance is particularly preferable.
  • the method for forming the smooth layer is not particularly limited, but may be formed by a wet coating method (coating method) such as a spin coating method, a spray method, a blade coating method, or a dip method, or a dry coating method such as a vapor deposition method. preferable.
  • a wet coating method such as a spin coating method, a spray method, a blade coating method, or a dip method
  • a dry coating method such as a vapor deposition method. preferable.
  • drying conditions for the smooth layer and the light irradiation conditions when the material forming the smooth layer is a photosensitive material the same conditions as those for the hard coat layer can be employed.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary.
  • an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.
  • the thickness of the smooth layer is preferably in the range of 1 to 10 ⁇ m and more preferably in the range of 2 to 7 ⁇ m from the viewpoint of improving the heat resistance of the film and facilitating balance adjustment of the optical properties of the film.
  • the smoothness of the smooth layer is a value expressed by the surface roughness defined by JIS B 0601: 2001, and the 10-point average roughness Rz is preferably 10 nm or more and 30 nm or less. Within this range, even when the gas barrier film is applied in a coating form, the coating property is good even when the coating means is in contact with the smooth layer surface by a coating method such as a wire bar or a wireless bar. It is less likely to be damaged, and it is easy to smooth the unevenness after application.
  • the performance of the gas barrier film according to one embodiment of the present invention and the gas barrier film according to one embodiment of the present invention is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. It can be preferably applied to a device.
  • another embodiment of the present invention is an electronic device including the gas barrier film according to one embodiment of the present invention or the gas barrier film according to one embodiment of the present invention.
  • Still another embodiment of the present invention is to seal the functional layer surface of an electronic device with a sealing member including the gas barrier film according to one embodiment of the present invention or the gas barrier film according to one embodiment of the present invention.
  • the sealing member including the gas barrier film may be a gas barrier film alone.
  • the functional layer surface of the electronic device is sealed by forming the gas barrier film directly on the functional layer surface of the electronic device. It may be broken.
  • a sealing member containing a gas barrier film the laminated body formed by bonding a gas barrier film and a sealing resin layer is mentioned, for example.
  • limit especially as a sealing resin layer For example, a thermosetting type sheet-like adhesive agent (epoxy resin) etc. are mentioned.
  • the following methods are mentioned as an example of the sealing method of the functional layer surface of an electronic device using the sealing member containing a gas barrier film or a gas barrier film.
  • the adhesive forming surface of the sealing member including the gas barrier film or gas barrier film and the functional layer surface of the electronic device are continuously overlapped.
  • the laminated body of a sealing member and an electronic device is arrange
  • the sample is returned to the atmospheric pressure environment, and further heated under a high temperature environment for a predetermined time to cure the adhesive.
  • the electronic device examples include an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like.
  • organic EL element organic electroluminescence element
  • LCD liquid crystal display element
  • PV solar cell
  • the electronic device body is preferably an organic EL element or a solar cell, more preferably an organic EL element, and further preferably an organic EL lighting element.
  • an ultraviolet curable resin manufactured by Aika Kogyo Co., Ltd., product number: Z731L was applied on a resin substrate so that the dry film thickness was 0.5 ⁇ m, and then dried at 80 ° C., and then under high pressure in the air. Curing was performed using a mercury lamp under the condition of an irradiation energy amount of 0.5 J / cm 2 .
  • a clear hard coat layer having a thickness of 2 ⁇ m was formed as a smooth layer on the surface of the resin substrate on the side where the gas barrier film was to be formed as follows.
  • UV curable resin OPSTAR registered trademark
  • Z7527 manufactured by JSR Corporation
  • Formation method A1 of a non-transition metal M1 content layer The resin substrate prepared above is set in the vacuum plasma CVD apparatus 101 shown in FIG. 4 and evacuated, and then the surface of the resin substrate on which the gas barrier film is formed (that is, a clear hard coat layer having a thickness of 2 ⁇ m) A silicon nitride film having a thickness of 50 nm was formed as a layer containing non-transition metal Si.
  • the high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm.
  • the source gas was introduced into the vacuum chamber at a silane gas flow rate of 7.5 sccm, an ammonia gas flow rate of 50 sccm, and a hydrogen gas flow rate of 200 sccm (sccm is cm 3 / min at 133.322 Pa). Furthermore, the resin substrate temperature was set to 100 ° C. at the start of film formation. In this way, a gas barrier film 1 was obtained.
  • Formation method A2 of non-transition metal M1 containing layer A commercially available vacuum CCP (Capacitively Coupled Plasma Capacitively Coupled Plasma) -CVD apparatus was used. Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as source gases. As a power source, a high frequency power source having a frequency of 13.56 MHz was used.
  • the resin base material was set on the substrate holder in the vacuum chamber of the CVD apparatus, and the vacuum chamber was closed. Next, the inside of the vacuum chamber was evacuated, and the raw material gas was introduced when the pressure reached 0.1 Pa.
  • the flow rate of silane gas was 80 sccm
  • the flow rate of ammonia gas was 60 sccm
  • the flow rate of nitrogen gas was 350 sccm
  • the flow rate of hydrogen gas was 80 sccm.
  • a plasma excitation power of 600 W is supplied from the high-frequency power source to the electrode, and the surface of the clear hard coat layer of the resin substrate is a layer containing non-transition metal Si, A silicon nitride film having a thickness of 50 nm was formed.
  • Non-transition metal M1 containing layer formation method A2 is the same except that the flow rate of silane gas is 80 sccm, the flow rate of ammonia gas is 150 sccm, the flow rate of nitrogen gas is 200 sccm, the flow rate of hydrogen gas is 170 sccm, and the plasma excitation power is 1200 W.
  • a silicon nitride film having a thickness of 50 nm was formed as a layer containing non-transition metal Si.
  • a gas barrier film 4 was obtained in the same manner as in Comparative Example 2 except that the formation method A2 of the non-transition metal M1 containing layer was changed to the following formation method A4.
  • Formation method A4 of non-transition metal M1 containing layer A silicon nitride film was formed in the same manner as in the formation method A2 of the non-transition metal M1 containing layer except that the thickness was 100 nm.
  • Formation method A5 of a non-transition metal M1 content layer A silicon nitride film was formed in the same manner as in the formation method A2 of the non-transition metal M1-containing layer except that the thickness was 300 nm.
  • Formation method A6 of non-transition metal M1 containing layer In the formation method A2 of the non-transition metal M1-containing layer, the obtained silicon nitride film is further subjected to plasma irradiation treatment with emission of light having a wavelength of 150 nm or less (105 nm, 107 nm, 121 nm) using the following apparatus and conditions. A silicon nitride film having a thickness of 50 nm was formed as a layer containing non-transition metal Si.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.) Gas: He + H 2 (H 2 concentration: 6 vol%), Total pressure: 19 Pa, Resin base material heating temperature: room temperature, Input power density: 1.3 W / cm 2 , Frequency: 13.56MHz, Processing time: 60 seconds.
  • Formation method A7 of non-transition metal M1 containing layer In the formation method A5 of the non-transition metal M1-containing layer, the obtained silicon nitride film was further subjected to the plasma irradiation treatment in the same manner as the plasma irradiation treatment in the non-transition metal M1-containing layer formation method A6. A silicon nitride film having a thickness of 300 nm was formed in the same manner except for the above.
  • Formation method A8 of non-transition metal M1 containing layer A silicon nitride film having a thickness of 50 nm was formed as a layer containing non-transition metal Si on the surface of the resin substrate on the side on which the gas barrier film was formed, using a magnetron sputtering apparatus (Canon Anelva Co., Ltd .: Model EB1100). .
  • a commercially available silicon target was used as the target, Ar and N 2 were used as the process gas, and the ratio of the nitrogen partial pressure to the total pressure was 50%, and the film was formed by DC sputtering.
  • the sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa.
  • the thickness is in the range of 100 to 300 nm, data on the change in film thickness with respect to the film formation time is taken, the film formation time per unit time is calculated, and then the film formation time is set to the set thickness. It was adjusted by doing.
  • Formation method A9 of non-transition metal M1 containing layer In the formation method A8 of the non-transition metal M1 containing layer, the obtained silicon nitride film was subjected to the plasma irradiation treatment by the same method as the plasma irradiation treatment in the formation method A6 of the non-transition metal M1 containing layer. Similarly, a silicon nitride film having a thickness of 50 nm was formed as a layer containing non-transition metal Si.
  • Formation method B1 of transition metal M2 containing layer On the surface of the silicon nitride film obtained by the formation method A1 of the non-transition metal M1 containing layer, a magnetron sputtering apparatus (manufactured by Canon Anelva Co., Ltd .: model EB1100) is used to oxidize the layer containing the transition metal M2 to a thickness of 6 nm. A niobium film was formed. At this time, a commercially available oxygen-deficient niobium oxide target (composition is Nb 12 O 29 ) is used as the target, Ar and O 2 are used as the process gas, and the ratio of the oxygen partial pressure to the total pressure is 12%.
  • a commercially available oxygen-deficient niobium oxide target composition is Nb 12 O 29
  • Ar and O 2 are used as the process gas
  • the ratio of the oxygen partial pressure to the total pressure is 12%.
  • Film formation was performed by DC sputtering.
  • the sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa.
  • the thickness is in the range of 100 to 300 nm, data on the change in thickness with respect to the film formation time is taken, the film formation time per unit time is calculated, and then the film formation time is set to the set thickness. It was adjusted by doing.
  • Formation method B2 of transition metal M2 containing layer A niobium oxide film was formed in the same manner as in the formation method B1 of the transition metal M2 containing layer except that the thickness was 10 nm.
  • Example 1 Production of gas barrier film 12
  • the laminate of the non-transition metal M1-containing layer and the resin base material is transported, and the above-described transition metal M2-containing layer formation method B1 on the surface of the obtained silicon nitride film
  • the niobium oxide film was further formed by Except this, it carried out similarly to the comparative example 2, and obtained the gas-barrier film 12.
  • Example 2 Production of gas barrier film 13
  • the laminate of the non-transition metal M1 containing layer and the resin base material is transported, and the above-mentioned transition metal M2 containing layer formation method B1 on the surface of the obtained silicon nitride film
  • the niobium oxide film was further formed by Except this, it carried out similarly to the comparative example 3, and obtained the gas-barrier film 13.
  • Example 3 Production of gas barrier film 14
  • the laminate of the non-transition metal M1 containing layer and the resin base material is transported, and the above-described transition metal M2 containing layer formation method B2 on the surface of the obtained silicon nitride film
  • the niobium oxide film was further formed by Except for this, a gas barrier film 14 was obtained in the same manner as in Comparative Example 3.
  • Example 4 Production of gas barrier film 15
  • the laminate of the non-transition metal M1-containing layer and the resin base material is transported, and the above-described transition metal M2-containing layer formation method B1 on the surface of the obtained silicon nitride film Then, a layer containing a transition metal Nb was further formed. Except this, it carried out similarly to the comparative example 8, and obtained the gas barrier film 15 which has a gas barrier film obtained by forming the layer containing a transition metal Nb on the surface of the layer containing non-transition metal Si. .
  • Example 5 Production of gas barrier film 16
  • a gas barrier film 16 was obtained in the same manner as in Example 2 except that the formation method B1 of the transition metal M2 containing layer was changed to the formation method of the following formation method layer B3.
  • Formation method B3 of transition metal M2 containing layer In the formation method B1 of the transition metal M2 containing layer, a commercially available tantalum target (Ta) is used as the target, and the tantalum oxide film having a thickness of 6 nm is similarly used except that the ratio of the oxygen partial pressure to the total pressure is 18%. Formed.
  • Ta tantalum target
  • Example 6 Production of gas barrier film 17
  • a gas barrier film 17 was obtained in the same manner as in Comparative Example 10 except that the formation method B1 of the transition metal M2 containing layer was changed to the following formation method B4.
  • Formation method B4 of transition metal M2 containing layer In the formation method B1 of the transition metal M2 containing layer, the same except that nitrogen gas was introduced into the process gas, Ar and N 2 were used as the process gas, and the ratio of the nitrogen partial pressure to the total pressure was 50% Thus, a niobium oxynitride (niobium oxynitride) film having a thickness of 6 nm was formed as a layer containing the transition metal M2.
  • a gas barrier film 18 was obtained in the same manner as in Example 2 except that the formation method B1 of the transition metal M2 containing layer was changed to the following formation method B5.
  • Transition metal M2-containing layer B5 A niobium oxynitride film was formed in the same manner as in the formation method B1 of the transition metal M2-containing layer, except that the thickness was 2 nm.
  • a gas barrier film 19 was obtained in the same manner as in Comparative Example 1 except that the formation method A1 of the non-transition metal M1 containing layer was changed to the following formation method A10.
  • the coating liquid was applied to the surface of the resin substrate on the side where the gas barrier film was to be formed by spin coating so that the dry film thickness was 100 nm, and dried at 80 ° C. for 2 minutes.
  • vacuum ultraviolet irradiation treatment was performed on the dried coating film using the vacuum ultraviolet irradiation apparatus of FIG. 5 having an Xe excimer lamp with a wavelength of 172 nm under the condition that the irradiation energy amount was 6.0 J / cm 2 .
  • the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was set to 0.1% by volume.
  • the stage temperature at which the sample (the gas barrier film before the modification treatment) was set was 80 ° C.
  • reference numeral 1 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) to the inside and exhausts gas from a gas discharge port (not shown), thereby substantially removing water vapor from the inside of the chamber.
  • the oxygen concentration can be maintained at a predetermined concentration.
  • 2 is an Xe excimer lamp having a double tube structure that irradiates 172 nm vacuum ultraviolet light (excimer lamp light intensity: 130 mW / cm 2 )
  • 3 is an excimer lamp holder that also serves as an external electrode
  • 4 is a sample stage.
  • the sample stage 4 can reciprocate horizontally in the apparatus chamber 1 at a predetermined speed (V in FIG. 5) by a moving means (not shown).
  • the sample stage 4 can be maintained at a predetermined temperature by a heating means (not shown).
  • Reference numeral 5 denotes a sample on which a polysilazane compound coating layer is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm.
  • Reference numeral 6 denotes a light-shielding plate which prevents the application of the sample from being irradiated with vacuum ultraviolet rays during aging of the Xe excimer lamp 2.
  • the energy applied to the surface of the sample coating layer by the vacuum ultraviolet irradiation treatment was measured using a 172 nm sensor head using a UV integrating photometer (C8026 / H8025 UV POWER METER) manufactured by Hamamatsu Photonics Co., Ltd.
  • the sensor head is placed at the center of the sample stage 4 so that the shortest distance between the tube surface of the Xe excimer lamp 2 and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 1 is a vacuum ultraviolet ray. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as that in the irradiation step, and measurement was performed by moving the sample stage 4 at a speed of 0.5 m / min.
  • an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement. Based on the irradiation energy obtained by this measurement, the irradiation energy amount was adjusted by adjusting the moving speed of the sample stage. The vacuum ultraviolet irradiation was performed after aging for 10 minutes.
  • a polysilazane modified film including a silicon oxynitride film having a thickness of 100 nm was formed as a layer containing non-transition metal Si on the surface of the resin base on the side where the gas barrier film was formed.
  • the N / Si ratio of this layer was 0.1 as the average value in the thickness direction of the entire layer.
  • the portion of the polysilazane modified film having a thickness of about 30 nm on the surface layer side opposite to the resin substrate side is silicon oxynitride (silicon oxynitride) in which nitrogen (N) contained in the original polysilazane remains.
  • the maximum value of the N / Si ratio of the film was 0.6.
  • Example 7 Production of gas barrier film 20
  • a niobium oxynitride film was further formed on the surface of the polysilazane modified film obtained by the formation method A10 of the non-transition metal M1-containing layer by the formation method B4 of the transition metal M2-containing layer. Except for this, a gas barrier film 20 was obtained in the same manner as in Comparative Example 13.
  • the production conditions of the gas barrier film in the gas barrier films 1 to 20 are shown in Table 1 below.
  • XPS analysis conditions ⁇ Device: QUANTERASXM manufactured by ULVAC-PHI ⁇
  • X-ray source Monochromatic Al-K ⁇ ⁇ Sputtering ion: Ar (2 keV)
  • Depth profile Measurement was repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data for every 1 nm is obtained in the depth direction)
  • Quantification The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area.
  • MultiPak manufactured by ULVAC-PHI was used.
  • the analyzed elements are non-transition metal M1 (silicon (Si)), transition metal M2 (niobium (Nb), tantalum (Ta)), oxygen (O), nitrogen (N), and carbon (C).
  • the N / Si ratio (average value in the thickness direction) of the non-transition metal M1 containing layer, the presence / absence of the mixed region, and the composition of the mixed region are expressed as M1M2 x N y (0.02 ⁇ x ⁇ 49, y
  • the maximum value (y maximum value) of the atomic ratio of nitrogen atoms to the non-transition metal M1 atoms and the thickness of the region (a) when represented by ⁇ 0) were obtained.
  • the presence or absence of the mixed region is determined by satisfying the elemental composition in which the ratio of the atomic ratio of the transition metal M2 to the nontransition metal M1 in the thickness direction of the gas barrier film is in the range of 0.02 to 49.
  • it shall have a mixed area
  • the determination of the presence or absence of the region (a) has the region (a) when the composition is expressed by M1M2 x N y and the region satisfies the following formula (1) and the following formula (2). It was supposed to be.
  • the N / Si ratio (average value in the thickness direction) of the non-transition metal M1-containing layers of the gas barrier films 10 to 18 and 20 is determined except that the non-transition metal M2 layer is not formed.
  • a measurement sample having only a non-transition metal M1-containing layer on a resin base material formed by the same method as those of these films was prepared, and the measured value was used.
  • a water vapor permeability evaluation cell was prepared as follows. First, after cleaning the surface of the gas barrier film of one gas barrier film with UV, a thermosetting sheet-like adhesive (epoxy resin) having a thickness of 20 ⁇ m was bonded to the surface of the gas barrier film as a sealing resin layer. . Next, the obtained laminate of the gas barrier film and the sealing resin layer was punched out to a size of 50 mm ⁇ 50 mm, and then put into a glove box, followed by drying treatment for 24 hours. Further, after punching out another gas barrier film to a size of 50 mm ⁇ 50 mm, the surface of the gas barrier film included in the gas barrier film was subjected to UV cleaning.
  • a thermosetting sheet-like adhesive epoxy resin
  • Ca was vapor-deposited by the size of 20 mm x 20 mm through the mask in the center position of the gas-barrier film
  • the thickness of Ca was 80 nm.
  • the gas barrier film on which Ca is vapor-deposited is taken out into the glove box, and the sealing resin layer surface of the laminate of the punched gas barrier film and the sealing resin layer, and the gas barrier property on which Ca is vapor-deposited. It arrange
  • the vacuum lamination is performed in a state in which a laminated body (a laminated body of a gas barrier film and a sealing resin layer and a gas barrier film on which Ca is vapor-deposited) is heated at 110 ° C. It was. Then, on the hot plate set at 110 ° C. the laminated body bonded by vacuum lamination, the gas barrier film side to which the sealing resin layer of the laminated body is bonded is placed down and cured for 30 minutes. A cell for evaluating water vapor permeability was prepared.
  • Bending process 1 >> A bending process was performed on the water vapor permeability evaluation cell. First, a metal cylindrical member having a diameter of 10 mm and a length of 100 mm was prepared. Next, the central part of the water vapor permeability evaluation cell was wound around the cylindrical member by 180 ° so that the cylindrical member and the film surface of the gas barrier film on which the sealing resin layer of the water vapor permeability evaluation cell was bonded. . Then, the central portion of the water vapor permeability evaluation cell is 180 ° to the cylindrical member so that the cylindrical surface and the film surface of the gas barrier film on which Ca, which is the opposite surface of the water vapor permeability evaluation cell, is deposited. I wrapped it. The bending process was repeated 100 times, with the winding operation on the two film surfaces of the water vapor permeability evaluation cell for this cylindrical member as one bending process.
  • Bending process 2 >> The surface of the gas barrier film on which the sealing resin layer of the water vapor permeability evaluation cell was bonded was punched into a size of 50 mm ⁇ 50 mm using a commercially available transparent adhesive sheet (thickness 20 ⁇ m), and the thickness 125 ⁇ m. After the PET film was bonded, the same bending treatment as the bending treatment 1 was performed. In the bending process 2, the PET film is bonded to one side, so that the position of each gas barrier film of the two gas barrier films greatly deviates from the center of bending during the bending process. For this reason, the bending process 2 is a process in which the damage to the gas barrier film is larger than that of the bending process 1.
  • the water vapor permeability of the gas barrier film possessed by each gas barrier film is obtained by subjecting the water vapor permeability evaluation cell to a time-dependent treatment in a high temperature and high humidity environment. evaluated.
  • the cell for evaluating water vapor permeability subjected to the bending treatment 2 under the above condition 3 was subjected to a aging treatment in a high-temperature and high-humidity environment after peeling off the transparent adhesive sheet and the PET film.
  • the water vapor permeability is based on the following index according to the degree of decrease in the transmission density from the initial transmission density with respect to the storage time when the water vapor permeability evaluation cell is stored in an environment of 85 ° C. and 85% RH. Evaluation was based on rank.
  • a black and white transmission density meter TM-5 manufactured by Konica Minolta Co., Ltd. was used, and measurement was performed at any four points in the cell, and the average value was calculated.
  • the concentration reduction of 100% represents the transmission concentration when a Ca evaluation cell is produced without performing Ca deposition.
  • rank 8 or higher represents extremely excellent characteristics; 10: Less than 2% decrease in concentration at 200 hours, 9: 2% or more and less than 5% in 200 hours 8: Concentration drop from 5% to less than 10% in 200 hours, 7: 10% or more and less than 20% decrease in density in 200 hours, 6: 20% or more and less than 50% concentration decrease in 200 hours, 5: 50% or more and less than 80% concentration decrease in 200 hours, 4: Less than 80% decrease in concentration at 100 hours, 80% or more decrease in concentration at 200 hours, 3: Less than 80% decrease in density at 50 hours, 80% or more decrease in density at 100 hours, 2: Density drop is less than 80% in 20 hours, density drop is 80% or more in 50 hours, 1: Concentration drop is 80% or more in 20 hours, The results of water vapor permeability evaluation are shown in Table 3 below.
  • the gas barrier film of the example having the gas barrier film according to the present invention is extremely excellent in bending as compared with the gas barrier film of the comparative example having the gas barrier film having a configuration outside the scope of the present invention. It was confirmed that the water vapor barrier property and the remarkably high water vapor barrier property in a high temperature and high humidity environment are compatible.
  • gas barrier films 12 to 17 in which a non-transition metal M1-containing layer and a non-transition metal M2-containing layer are continuously formed by a vapor deposition method were excellent in productivity.
  • the gas barrier film 15 (Example 4) in which the non-transition metal M1 containing layer and the non-transition metal M2 containing layer are continuously formed by sputtering is not changed. In particular, the film formation was possible, so that the productivity was particularly excellent.
  • a silicon nitride film having a thickness of 50 nm was formed under the same conditions as in the non-transition metal M1-containing layer formation method A3.
  • a gas barrier film 21 having a gas barrier film obtained by forming a silicon nitride film / organic film / silicon nitride film in this order was obtained.
  • the composition distribution of the thickness direction of a gas barrier film was measured similarly to other gas barrier films.
  • ⁇ Coating liquid for organic film formation Polymerizable compound: 50 parts by mass of trimethylolpropane triacrylate, Polymerization initiator: ESACURE (registered trademark) KTO46 (manufactured by Lamberti) 1 part by mass, Silane coupling agent: KBM-5013 (manufactured by Shin-Etsu Chemical Co., Ltd.) 5 parts by mass, Surfactant: BYK (registered trademark) 378 (manufactured by Big Chemie Japan Co., Ltd.) 0.5 part by mass, 400 parts by mass of methyl ethyl ketone.
  • ESACURE registered trademark
  • KTO46 manufactured by Lamberti
  • Silane coupling agent KBM-5013 (manufactured by Shin-Etsu Chemical Co., Ltd.) 5 parts by mass
  • gas barrier film 22 for comparative sealing member
  • an organic film having a thickness of 1000 nm and a silicon nitride film having a thickness of 50 nm were further laminated in the same manner as the organic film forming method and the silicon nitride film forming method.
  • a gas barrier film 22 having a gas barrier film obtained by forming a silicon nitride film / organic film / silicon nitride film / organic film / silicon nitride film in this order was obtained.
  • the composition distribution of the thickness direction of a gas barrier film was measured like other gas barrier films.
  • a sufficiently washed alkali-free glass plate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, the following compound 118 is placed in a resistance heating boat made of tungsten, and these substrate holder and the resistance heating boat are vacuum deposition apparatus. In the first vacuum chamber. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber of a vacuum evaporation system.
  • the heating boat containing the compound 118 was energized and heated, and the deposition rate was 0.1 nm / second to 0.2 nm / second.
  • the underlayer of the first electrode was provided with a thickness of 10 nm.
  • the base material formed up to the base layer was transferred to the second vacuum chamber while being vacuumed, and after the pressure in the second vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, the heating boat containing silver was energized and heated.
  • a first electrode made of silver having a thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • the following compound A-3 blue light emitting dopant
  • the following compound H-1 host compound
  • the vapor deposition rate was changed depending on the location, and the vapor deposition rate was changed depending on the location so that the compound H-1 was from 65% by mass to 95% by mass, and the light emitting layer was formed by co-evaporation to a thickness of 70 nm.
  • the following compound ET-1 was deposited to a thickness of 30 nm to form an electron transport layer, and further potassium fluoride (KF) was formed to a thickness of 2 nm. Furthermore, aluminum 110nm was vapor-deposited and the 2nd electrode was formed.
  • KF potassium fluoride
  • a sealing member was prepared by bonding a thermosetting sheet-like adhesive (epoxy resin) with a thickness of 20 ⁇ m as a sealing resin layer to the surface of the gas barrier film of the produced gas barrier film.
  • a thermosetting sheet-like adhesive epoxy resin
  • the sample up to the second electrode was overlaid.
  • the adhesive forming surface of the sealing member and the organic functional layer surface of the element were continuously overlapped so that the ends of the lead electrodes of the first electrode and the second electrode were exposed.
  • the sample was placed in a decompression device, and pressed at 90 ° C. under a reduced pressure of 0.1 MPa, pressed against the superposed base material and the sealing member, and held for 5 minutes. Subsequently, the sample was returned to an atmospheric pressure environment and further heated at 120 ° C. for 30 minutes to cure the adhesive.
  • the sealing step is performed under atmospheric pressure and in a nitrogen atmosphere with a water content of 1 ppm or less, in accordance with JIS B 9920: 2002.
  • the measured cleanliness is class 100, the dew point temperature is ⁇ 80 ° C. or less, and the oxygen concentration is 0. It was performed at an atmospheric pressure of 8 ppm or less.
  • the description regarding formation of the lead-out wiring from an anode and a cathode is abbreviate
  • each gas barrier film used for preparation of the sealing member in each organic EL lighting element is shown in Table 4 below.
  • the organic EL lighting element was stored for 300 hours in an environment of 85 ° C. and 85% RH. Thereafter, the organic EL lighting element was caused to emit light, and the number of dark spots having a circle-equivalent diameter of 200 ⁇ m or more was determined, and this was evaluated as a forced deterioration dark spot with a rank based on the following index. Further, when there was a dark spot of 200 ⁇ m or more generated at a position not recorded as an initial dark spot, it was determined that there was a delayed dark spot.
  • the dark spot evaluation represents extremely excellent characteristics in that the number of dark spots is rank 5 and there is no delayed dark spot; 5: 0-9, 4: 10-19 pieces, 3: 20-29, 2: 30-49, 1:50 or more, These results are shown in Table 4 below.
  • the gas barrier film of the example having the gas barrier film according to the present invention can achieve a high level of water vapor barrier property required for an organic EL element or the like, and dark spots are generated with a delay. It was confirmed that this can be suppressed.
  • the gas barrier film of the comparative example having a gas barrier film having a configuration outside the scope of the present invention the water vapor barrier property in a high-temperature and high-humidity environment is inferior to the gas barrier film of the example, or the dark spot is delayed. It was confirmed that it cannot be suppressed.
  • 1 equipment chamber 2 Xe excimer lamp having a double tube structure for irradiating vacuum ultraviolet rays of 172 nm, 3 Excimer lamp holder that also serves as an external electrode, 4 Sample stage, 5 Sample on which a polysilazane compound coating layer is formed, 6 Shading plate, V Sample stage moving speed, 10, 10 ′ Laminate structure of gas barrier film to be formed on film formation object 11, 110 Film formation object, 12 Non-transition metal M1 containing layer 13 Transition metal M2 containing layer, 101 vacuum plasma CVD apparatus, 102 vacuum chamber, 103 cathode electrode, 105 susceptors, 106 heat medium circulation system, 107 vacuum exhaust system, 108 gas introduction system, 109 high frequency power supply, 160 Heating and cooling device.

Abstract

The present invention provides a means with which a gas barrier membrane can satisfy both excellent bending properties and high water-vapor barrier properties in a high-temperature, high-humidity environment. The present invention relates to a gas barrier membrane having a region (a) that satisfies the following expression (1) and the following expression (2) when the composition is represented by M1M2xNy in the atomic composition distribution profile obtained when an XPS composition analysis is performed in the thickness direction. M1M2xNy Expression (1): 0.2 ≤ x ≤ 3.0 Expression (2): 0.6 ≤ y ≤ 1.4 x: Abundance ratio of transition metal M2 atoms with respect to non-transition metal M1 atoms y: Abundance ratio of nitrogen atoms with respect to non-transition metal M1 atoms

Description

ガスバリア性膜、これを用いたガスバリア性フィルム、およびこれらを用いた電子デバイス、ならびにガスバリア性膜の製造方法Gas barrier film, gas barrier film using the same, electronic device using the same, and method for producing gas barrier film
 本発明は、ガスバリア性膜、これを用いたガスバリア性フィルム、およびこれらを用いた電子デバイス、ならびにガスバリア性膜の製造方法に関する。 The present invention relates to a gas barrier film, a gas barrier film using the same, an electronic device using the same, and a method for manufacturing the gas barrier film.
 フレキシブル電子デバイス、特にフレキシブル有機EL素子には、封止用途にガスバリア性膜が用いられており、具体的には、基板フィルムや封止フィルムとしてガスバリア性膜を有するガスバリア性フィルムが用いられている。かような用途に用いられるガスバリア性膜としては、水蒸気透過度(WVTR)で10-6g/(m・24h)レベルの高い水蒸気バリア性が必要とされている。ガスバリア性膜は、単層膜、積層膜共に知られているが、高いバリア性の達成を目的として、現在検討されている代表的なガスバリア性膜としては、例えば、酸化ケイ素膜と窒化ケイ素膜との交互多層積層膜や、窒化ケイ素膜と有機膜との交互多層積層膜等が挙げられる。 For flexible electronic devices, particularly flexible organic EL elements, a gas barrier film is used for sealing applications, and specifically, a gas barrier film having a gas barrier film is used as a substrate film or a sealing film. . A gas barrier film used for such applications is required to have a water vapor barrier property having a water vapor permeability (WVTR) of 10 −6 g / (m 2 · 24 h). Gas barrier films are known for both single-layer films and laminated films. For the purpose of achieving high barrier properties, typical gas barrier films currently being studied include, for example, silicon oxide films and silicon nitride films. And an alternate multilayer laminate film of a silicon nitride film and an organic film.
 これらのガスバリア性膜や、積層構造を有するガスバリア性膜に含まれる各膜の形成方法としては、蒸着法、スパッタ法、CVD法等の気相成膜法が知られている。また、近年、基材上に溶液を塗布して形成された前駆体層にエネルギーを印加して、ガスバリア性膜を形成する製造方法も検討されてきている。これらの中でも、10-6g/(m・24h)レベルの水蒸気バリア性を達成する方法としては、一般的に、CVD法で厚さ1μm以上の無機膜を形成する方法が用いられている。しかしながら、厚さ1μm以上の無機膜は、屈曲時にクラックが発生するとの問題が発生するため、前述のようなフレキシブルデバイスへの適用は困難である。また、交互多層積層膜は、その構成から、厚さがさらに大きくなりやすい傾向がある。これより、高い水蒸気バリア性を維持しつつ、膜厚を低減することが要求されている。 As a method for forming each of the gas barrier films and each film included in the gas barrier film having a laminated structure, a vapor deposition method such as a vapor deposition method, a sputtering method, or a CVD method is known. In recent years, a manufacturing method for forming a gas barrier film by applying energy to a precursor layer formed by applying a solution on a substrate has been studied. Among these, a method of forming an inorganic film having a thickness of 1 μm or more by a CVD method is generally used as a method for achieving a water vapor barrier property of 10 −6 g / (m 2 · 24 h) level. . However, an inorganic film having a thickness of 1 μm or more has a problem that cracks are generated at the time of bending, so that it is difficult to apply to the above-described flexible device. Further, the alternate multilayer laminated film tends to have a greater thickness due to its configuration. Accordingly, it is required to reduce the film thickness while maintaining high water vapor barrier properties.
 ここで、交互多層積層膜は、積層構造が形成する迷路効果により水蒸気がガスバリア性層を透過する時間を極端に遅らせることで、見かけ上の低い水蒸気透過度、すなわち高い水蒸気バリア性を達成していると考えられる。このため、交互多層積層膜を封止用途として用いた有機EL素子では、初期発光検査ではダークスポット等の発光不良が確認されないが、高温高湿環境経時下の加速試験後にてダークスポットが遅れて発生する場合がある。これより、初期発光検査で確認されない発光不良の抑制や、素子の耐久性向上のためにも、見かけ上ではなく、真に高い水蒸気バリア性を有するガスバリア性膜が要求されている。 Here, the alternate multilayer laminated film achieves an apparent low water vapor permeability, that is, a high water vapor barrier property by extremely delaying the time for water vapor to pass through the gas barrier layer due to the labyrinth effect formed by the laminated structure. It is thought that there is. For this reason, in the organic EL element using the alternating multilayer laminated film as a sealing application, the light emission failure such as the dark spot is not confirmed in the initial light emission inspection, but the dark spot is delayed after the accelerated test under the high temperature and high humidity environment. May occur. For this reason, a gas barrier film having a truly high water vapor barrier property is required instead of an apparent one in order to suppress a light emission failure that is not confirmed in the initial light emission inspection and to improve the durability of the element.
 かような要求の存在下、真に高い水蒸気バリア性を有する無機膜を形成するための技術開発が進められている。たとえば特開2012-149278号公報には、乾式法により少なくともケイ素原子、窒素原子を含む乾式堆積膜を基材上に堆積させた後に、膜表面に波長が150nm以下の光照射を行う工程を含む、シリコン含有膜の製造方法が開示されている。当該文献によると、この方法で製造されたシリコン含有膜、すなわちガスバリア性膜は、Si構造の元になる緻密なSi-N-Si結合が、変性領域により多く形成されており、高い水蒸気バリア性、耐湿熱性を示すとされている。 In the presence of such demands, technological development for forming an inorganic film having a truly high water vapor barrier property is underway. For example, JP 2012-149278 A includes a step of depositing a dry deposition film containing at least silicon atoms and nitrogen atoms on a substrate by a dry method, and then irradiating the film surface with light having a wavelength of 150 nm or less. A method for manufacturing a silicon-containing film is disclosed. According to the document, the silicon-containing film manufactured by this method, that is, the gas barrier film, has a large number of dense Si—N—Si bonds that form the basis of the Si 3 N 4 structure in the modified region, which is high. It is said to exhibit water vapor barrier properties and heat and moisture resistance.
 しかしながら、特開2012-149278号公報に開示された技術では、フレキシブルデバイスへ適用した際に優れた屈曲性を示す厚さにおいて、有機EL素子等に要求されるレベルの水蒸気バリア性を達成することができないという問題がある。 However, the technique disclosed in Japanese Patent Application Laid-Open No. 2012-149278 achieves a water vapor barrier property at a level required for an organic EL element or the like at a thickness that exhibits excellent flexibility when applied to a flexible device. There is a problem that can not be.
 そこで本発明は、ガスバリア性膜において、優れた屈曲性と、高温高湿環境での高い水蒸気バリア性とを両立させうる手段を提供することを目的とする。 Therefore, an object of the present invention is to provide means capable of achieving both excellent flexibility and high water vapor barrier property in a high temperature and high humidity environment in a gas barrier film.
 本発明の上記課題は、以下の手段によって解決されうる。 The above-mentioned problem of the present invention can be solved by the following means.
 本発明の第一の形態は、
 厚さ方向にXPS組成分析を行った際に得られる原子組成分布プロファイルにおいて、組成をM1M2で示した際に、下記式(1)および下記式(2)を満足する領域(a)を有する、ガスバリア性膜である。
The first aspect of the present invention is:
In the atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction, a region satisfying the following formula (1) and the following formula (2) when the composition is represented by M1M2 x N y (a) It is a gas barrier film | membrane which has.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 本発明の第二の形態は、
 非遷移金属M1含有層と遷移金属M2含有層とを、両者が接するように形成することを含む、ガスバリア性膜の製造方法であって、
 厚さ方向に、金属元素の主成分として、非遷移金属M1を含有する領域(A)と、金属元素の主成分として、遷移金属M2を含有する領域(B)とを有し、
 前記領域(A)と前記領域(B)とが接しており、
 前記ガスバリア性膜の厚さ方向にXPS組成分析を行った際に得られる原子組成分布プロファイルにおいて、組成をM1M2で示した際に、下記式(1)および下記式(2)を満足する領域(a)を有する、ガスバリア性膜の製造方法である。
The second aspect of the present invention is:
A method for producing a gas barrier film, comprising forming a non-transition metal M1 containing layer and a transition metal M2 containing layer so as to contact each other,
In the thickness direction, it has a region (A) containing the non-transition metal M1 as the main component of the metal element and a region (B) containing the transition metal M2 as the main component of the metal element,
The region (A) and the region (B) are in contact with each other,
In the atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction of the gas barrier film, the following formula (1) and the following formula (2) are satisfied when the composition is represented by M1M2 x N y A method for manufacturing a gas barrier film having a region (a) to be processed.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
本発明の一実施形態に係るガスバリア性膜における、非遷移金属M1および遷移金属M2の組成分布をXPS法により分析したときの元素プロファイルと混合領域とを説明するための模式的なグラフである。It is a typical graph for demonstrating an element profile and a mixed area | region when the composition distribution of the non-transition metal M1 and the transition metal M2 in the gas barrier film | membrane which concerns on one Embodiment of this invention is analyzed by XPS method. 本発明の一実施形態に係るガスバリア性膜の製造方法において形成される、積層構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the laminated structure formed in the manufacturing method of the gas barrier film | membrane which concerns on one Embodiment of this invention. 本発明の他の実施形態に係るガスバリア性膜の製造方法において形成される、積層構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the laminated structure formed in the manufacturing method of the gas barrier film | membrane which concerns on other embodiment of this invention. 本発明の一実施形態に係るガスバリア性膜の形成に用いられうる真空プラズマCVD装置の一例を示す模式図である。It is a schematic diagram which shows an example of the vacuum plasma CVD apparatus which can be used for formation of the gas barrier film which concerns on one Embodiment of this invention. 実施例で用いた紫外線照射装置の断面模式図である。It is a cross-sectional schematic diagram of the ultraviolet irradiation apparatus used in the Example.
 以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、本明細書において、特記しない限り、操作および物性等の測定は、室温(20~25℃)/相対湿度40~50%RHの条件で行う。 Hereinafter, preferred embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment. In this specification, “X to Y” indicating a range means “X or more and Y or less”. In the present specification, unless otherwise specified, measurement of operation and physical properties is performed under the conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。また、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 In addition, the dimensional ratio of the drawings is exaggerated for convenience of explanation and may be different from the actual ratio. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 <ガスバリア性膜>
 本発明の第一の形態に係るガスバリア性膜は、厚さ方向にXPS組成分析を行った際に得られる原子組成分布プロファイルにおいて、組成をM1M2で示した際に、下記式(1)および下記式(2)を満足する領域(a)を有する。
<Gas barrier film>
The gas barrier film according to the first aspect of the present invention has the following formula (1) when the composition is represented by M1M2 x N y in the atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction. ) And the region (a) satisfying the following formula (2).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 なお、本明細書において、「組成をM1M2で示す」とは、存在原子中で非遷移金属M1原子、遷移金属M2原子および窒素原子(N)のみに注目して組成を示すことを意味し、領域(a)はこれら以外の原子を含んでいてもよい。 In the present specification, “the composition is indicated by M1M2 x N y ” means that the composition is indicated by focusing only on the non-transition metal M1 atom, the transition metal M2 atom and the nitrogen atom (N) in the existing atoms. Meaning, the region (a) may contain atoms other than these.
 本発明の第一の形態によれば、ガスバリア性膜において、優れた屈曲性と、高温高湿環境での高い水蒸気バリア性とを両立させるうる手段を提供することができる。なお、ここでいう高温高湿環境での水蒸気バリア性とは、加速試験を行った際にも水蒸気の透過が極めて高いレベルで抑制されること、すなわち、ガスバリア性膜が顕著に高い水蒸気バリア性を示すことをも表す。また、ここでいう屈曲性とは、屈曲時にも高温高湿環境での高い水蒸気バリア性が維持されることを表す。 According to the first aspect of the present invention, it is possible to provide means capable of achieving both excellent flexibility and high water vapor barrier property in a high temperature and high humidity environment in the gas barrier property film. In addition, the water vapor barrier property in the high temperature and high humidity environment mentioned here means that water vapor permeation is suppressed at an extremely high level even in an accelerated test, that is, the water vapor barrier property of the gas barrier film is remarkably high. It also indicates that. Moreover, the flexibility here means that a high water vapor barrier property in a high temperature and high humidity environment is maintained even during bending.
 本発明者は、上記構成によって課題が解決されるメカニズムを以下のように推定している。まず、本発明の第一の形態に係るガスバリア性膜は、混合領域内に、M1M2が特定の組成を有する領域(a)を含む。かような領域を含む混合領域が存在することで、ガスバリア性膜の厚さ方向において、組成は連続的にまたは段階的に変化することとなる。したがって、混合領域は、応力集中を抑止することができ、ガスバリア性膜の優れた屈曲性が実現される。また、高温高湿環境での高い水蒸気バリア性発現のメカニズムは明確ではないが、領域(a)において、非遷移金属M1に由来する化合物と、遷移金属M2に由来する化合物とが相互に化学結合をして、または分子間相互作用等による物理的結合をして、高密度領域を形成すると推測している。そして、高密度領域は、高い水蒸気バリア性を発現させ、その結果、高温高湿環境経時下の加速試験となる高温高湿環境での水蒸気バリア性が向上すると推測している。なお、上記メカニズムは推測に基づくものであり、その正誤が本発明の技術的範囲に影響を及ぼすものではない。 The inventor presumes the mechanism by which the problem is solved by the above configuration as follows. First, the gas barrier film according to the first embodiment of the present invention includes a region (a) in which M1M2 x N y has a specific composition in the mixed region. Due to the existence of such a mixed region, the composition changes continuously or stepwise in the thickness direction of the gas barrier film. Therefore, the mixed region can suppress stress concentration, and an excellent flexibility of the gas barrier film is realized. In addition, although the mechanism of the high water vapor barrier property in a high temperature and high humidity environment is not clear, the compound derived from the non-transition metal M1 and the compound derived from the transition metal M2 are chemically bonded to each other in the region (a). It is presumed that a high-density region is formed by physical bonding by intermolecular interaction or the like. And it is estimated that a high-density area | region expresses high water vapor | steam barrier property, As a result, the water vapor | steam barrier property in the high temperature / humidity environment used as the acceleration test under high temperature / humidity environment time-lapse improves. Note that the above mechanism is based on speculation, and its correctness does not affect the technical scope of the present invention.
 以下、ガスバリア性膜を構成する各領域について説明するが、使用される技術用語の定義について予め説明する。 Hereinafter, each region constituting the gas barrier film will be described, but definitions of technical terms used will be described in advance.
 本願明細書において、「領域」とは、ガスバリア性膜の厚さ方向に対して略垂直な面(すなわち当該ガスバリア性膜の最表面に平行な面)で当該ガスバリア性膜を一定または任意の厚さで分割したときに形成される対向する二つの面の間の三次元的範囲内(領域)をいい、当該領域内の構成成分の組成は、厚さ方向において一定であっても、徐々に変化するものであっても良い。 In the specification of the present application, the “region” refers to a plane that is substantially perpendicular to the thickness direction of the gas barrier film (that is, a plane parallel to the outermost surface of the gas barrier film) and has a constant or arbitrary thickness. This refers to a three-dimensional range (region) between two opposing surfaces formed when divided by the thickness, and the composition of the constituent components in the region is gradually increased even if the composition in the thickness direction is constant. It may change.
 本願明細書でいう「構成成分」とは、ガスバリア性膜の特定領域を構成する化合物または金属もしくは非金属の単体をいう。また、本発明でいう「主成分」とは、原子組成比として含有率が最大である構成成分をいう。例えば、「金属元素の主成分」といえば、構成成分に含まれる金属元素の中で、原子組成比として含有率が最大である金属元素をいう。 As used herein, the “constituent component” refers to a compound constituting a specific region of a gas barrier film or a metal or non-metal simple substance. In addition, the “main component” in the present invention refers to a component having the maximum content as an atomic composition ratio. For example, “the main component of a metal element” refers to a metal element having the highest content ratio as an atomic composition ratio among the metal elements contained in the constituent components.
 本発明の一形態に係るガスバリア性膜のガスバリア性は、成膜対象物(例えば、基板等)上に当該ガスバリア性膜を形成させた積層体で算出した際、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m・24h・atm)以下であることが好ましく、1×10-5ml/(m・24h・atm)未満であることがより好ましく、1×10-6ml/(m・24h・atm)以下であることがさらに好ましい(下限0ml/(m・24h・atm))。また、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下の高水蒸気バリア性であることが好ましく、1×10-5g/(m・24h)未満であることがより好ましく、1×10-6g/(m・24h)以下であることがさらに好ましい(下限0g/m・24h)。 The gas barrier property of the gas barrier film according to one embodiment of the present invention is based on JIS K 7126-1987 when calculated with a laminate in which the gas barrier film is formed on a film formation target (for example, a substrate). The oxygen permeability measured by the method is preferably 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, preferably less than 1 × 10 −5 ml / (m 2 · 24 h · atm). More preferably, it is 1 × 10 −6 ml / (m 2 · 24 h · atm) or less (lower limit 0 ml / (m 2 · 24 h · atm)). Further, the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method according to JIS K 7129-1992 is 1 × 10 −3 g / (m 2 · 24 h) is preferably a high water vapor barrier property of less than 1 × 10 −5 g / (m 2 · 24 h), more preferably less than 1 × 10 −6 g / (m 2 · 24 h). More preferably (lower limit 0 g / m 2 · 24 h).
 〔原子組成プロファイル〕
 本発明の一の形態に係るガスバリア性膜は、非遷移金属M1、遷移金属M2および窒素を必須に含む。なお、本発明の一形態に係るガスバリア性膜は、金属元素として、非遷移金属M1および遷移金属M2のみを含むものであることが好ましい。ガスバリア膜内に非遷移金属M1、遷移金属M2および窒素が含まれていることについては、ガスバリア膜を下記のようなXPS(X-ray Photoelectron Spectroscopy)組成分析を行うことにより、確認することができる。
(Atomic composition profile)
The gas barrier film according to one embodiment of the present invention essentially contains a non-transition metal M1, a transition metal M2, and nitrogen. Note that the gas barrier film according to one embodiment of the present invention preferably includes only the non-transition metal M1 and the transition metal M2 as the metal element. The presence of non-transition metal M1, transition metal M2 and nitrogen in the gas barrier film can be confirmed by performing XPS (X-ray Photoelectron Spectroscopy) composition analysis of the gas barrier film as follows. .
 (XPS分析条件)
 本発明の一形態に係るガスバリア性膜の混合領域、領域(a)、領域(A)および領域(B)の有無、ならびにこれらの領域における組成分布および各領域の厚さ等については、以下に詳述するX線光電子分光法(X-ray Photoelectron Spectroscopy、略称:XPS)により測定することにより求めることができる。
(XPS analysis conditions)
The mixed region of the gas barrier film according to one embodiment of the present invention, the presence / absence of the region (a), the region (A) and the region (B), the composition distribution in these regions, the thickness of each region, and the like are as follows. It can be determined by measurement by X-ray photoelectron spectroscopy (abbreviation: XPS), which will be described in detail.
 以下、XPS分析法による各領域の測定方法について説明する。 Hereinafter, a method for measuring each region by the XPS analysis method will be described.
 本発明の一形態に係るガスバリア性膜の厚さ方向における元素濃度分布曲線(以下、「デプスプロファイル」という。)は、具体的には、非遷移金属M1(例えば、ケイ素(Si)等)の元素濃度、遷移金属M2(例えば、ニオブ(Nb)、タンタル(Ta)等)の元素濃度、酸素(O)、窒素(N)、炭素(C)の元素濃度等を、X線光電子分光法の測定とアルゴン等の希ガスイオンスパッタとを併用し、ガスバリア性膜の表面より内部を露出させつつ順次表面組成分析を行うことにより作成することができる。 The element concentration distribution curve (hereinafter referred to as “depth profile”) in the thickness direction of the gas barrier film according to one embodiment of the present invention is specifically a non-transition metal M1 (for example, silicon (Si)). The element concentration, element concentration of transition metal M2 (for example, niobium (Nb), tantalum (Ta), etc.), element concentration of oxygen (O), nitrogen (N), carbon (C), etc. It can be prepared by using the measurement and rare gas ion sputtering such as argon in combination, and sequentially performing surface composition analysis while exposing the inside from the surface of the gas barrier film.
 このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:atm%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は、前記ガスバリア性膜の表面からの厚さ方向の距離におおむね相関することから、「ガスバリア性膜の表面からの厚さ方向の距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリア性膜の表面からの厚さ方向の距離を採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。 The distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of each element (unit: atm%) and the horizontal axis as the etching time (sputtering time). In the element distribution curve with the horizontal axis as the etching time, the etching time is generally correlated with the distance in the thickness direction from the surface of the gas barrier film. The distance in the thickness direction from the surface of the gas barrier film calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement can be adopted as the “distance in the thickness direction”. In addition, as a sputtering method employed for such XPS depth profile measurement, a rare gas ion sputtering method using argon (Ar + ) as an etching ion species is employed, and the etching rate (etching rate) is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
 以下に、本発明の一形態に係るガスバリア性膜の組成分析に適用可能なXPS分析の具体的な条件の一例を示す。 Hereinafter, an example of specific conditions of XPS analysis applicable to the composition analysis of the gas barrier film according to one embodiment of the present invention will be shown.
 ・装置:アルバック・ファイ社製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを得る
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量する。データ処理は、アルバック・ファイ社製のMultiPakを用いた。なお、分析する元素は、非遷移金属M1(例えば、ケイ素(Si)等)、遷移金属M2(例えば、ニオブ(Nb)、タンタル(Ta)等)、酸素(O)、窒素(N)、炭素(C)である。なお、本測定では、必要に応じて他の元素、例えば他の金属元素についても分析を行ってもよい。
・ Device: QUANTERASXM manufactured by ULVAC-PHI
・ X-ray source: Monochromatic Al-Kα
・ Sputtering ion: Ar (2 keV)
Depth profiles: in terms of SiO 2 sputter thickness, repeat the measurement at a predetermined thickness intervals, - obtaining the depth depth profile Quantification relative sensitivity coefficients background determined by Shirley method, from the peak area obtained Quantify using the method. For data processing, MultiPak manufactured by ULVAC-PHI was used. The elements to be analyzed are non-transition metal M1 (for example, silicon (Si)), transition metal M2 (for example, niobium (Nb), tantalum (Ta), etc.), oxygen (O), nitrogen (N), carbon (C). In this measurement, other elements such as other metal elements may be analyzed as necessary.
 デプスプロファイルの測定解像度(所定の厚さ間隔)は、3nm以下であってもよく、2nm以下であってもよく、1nm以下であってもよい。なお、後述する実施例においては、デプスプロファイルの測定解像度は1nmである。 The measurement resolution (predetermined thickness interval) of the depth profile may be 3 nm or less, 2 nm or less, or 1 nm or less. In the example described later, the measurement resolution of the depth profile is 1 nm.
 次いで、各領域について詳細な説明をする。 Next, detailed explanation will be given for each area.
 〔混合領域〕
 本発明の一形態に係るガスバリア性膜は、厚さ方向にXPS組成分析を行った際に得られる原子組成分布プロファイルにおいて、非遷移金属M1原子に対する遷移金属M2の存在原子比の値が、0.02~49の範囲内の元素組成を満足する領域である、混合領域を有する。
[Mixed area]
In the gas barrier film according to one embodiment of the present invention, in the atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction, the value of the atomic ratio of the transition metal M2 to the non-transition metal M1 atom is 0. A mixed region, which is a region satisfying an elemental composition within a range of 0.02 to 49.
 図1は、本発明の一実施形態に係るガスバリア性膜における、非遷移金属M1および遷移金属M2の組成分布をXPS法により分析したときの元素プロファイルと混合領域を説明するための模式的なグラフである。なお、本図においては、後述する領域(A)と、領域(B)とを有するガスバリア性膜について説明しているが、ガスバリア性膜が領域(a)を含む混合領域を有するものであれば、本発明はこれに限定されるものではない。 FIG. 1 is a schematic graph for explaining an element profile and a mixed region when a composition distribution of a non-transition metal M1 and a transition metal M2 is analyzed by an XPS method in a gas barrier film according to an embodiment of the present invention. It is. In addition, in this figure, although the gas barrier film | membrane which has the area | region (A) mentioned later and the area | region (B) is demonstrated, if a gas barrier film | membrane has a mixed area | region containing a area | region (a), it is. However, the present invention is not limited to this.
 図1は、ガスバリア性膜の表面(グラフの左端部)より深さ方向に、非遷移金属M1、遷移金属M2、酸素(O)、窒素(N)、炭素(C)の元素分析を行い、横軸にスパッタの深さ(厚さ:nm)を、縦軸に非遷移金属M1と遷移金属M2の含有率(atm%)を示したグラフである。また、点線が非遷移金属M1の含有率を示し、実線が遷移金属M2の含有率を示す。グラフの右側より、金属として非遷移金属M1(例えば、ケイ素(Si)等)を主成分とする元素組成である領域(A)領域が示され、これに接してグラフの左側に金属として遷移金属M2(例えば、ニオブ(Nb)、タンタル(Ta)等)を主成分とする元素組成である領域(B)が示されている。そして、ガスバリア性膜中に、混合領域を有することが示されている。なお、本図のように、ガスバリア性膜が後述する領域(A)と、領域(B)とを有する場合は、混合領域は、領域(A)の一部と領域(B)の一部とに重なって示される領域となる。 FIG. 1 shows the elemental analysis of non-transition metal M1, transition metal M2, oxygen (O), nitrogen (N), and carbon (C) in the depth direction from the surface of the gas barrier film (the left end of the graph). The horizontal axis represents the sputter depth (thickness: nm), and the vertical axis represents the content (atm%) of the non-transition metal M1 and the transition metal M2. Moreover, a dotted line shows the content rate of the non-transition metal M1, and a continuous line shows the content rate of the transition metal M2. From the right side of the graph, a region (A) region having an elemental composition mainly composed of a non-transition metal M1 (for example, silicon (Si)) as a metal is shown, and a transition metal as a metal is in contact with the region on the left side of the graph. A region (B) having an elemental composition mainly composed of M2 (for example, niobium (Nb), tantalum (Ta), etc.) is shown. It is shown that the gas barrier film has a mixed region. As shown in this figure, when the gas barrier film has a region (A) and a region (B) to be described later, the mixed region includes a part of the region (A) and a part of the region (B). It becomes the area shown overlapping.
 混合領域における好ましい非遷移金属M1の種類は、後述する領域(A)における好ましい非遷移金属M1の種類と同様であり、混合領域における好ましい遷移金属M2の種類は、後述する領域(B)における好ましい遷移金属M2の種類と同様である。 A preferable type of non-transition metal M1 in the mixed region is the same as a preferable type of non-transition metal M1 in the region (A) described later, and a preferable type of transition metal M2 in the mixed region is preferable in region (B) described later. This is the same as the type of transition metal M2.
 混合領域の厚さは、特に制限されないが、厚さ方向に連続して5nm以上存在することが好ましい。この理由は、厚さ方向に連続して5nm以上存在することで、屈曲性向上効果がより大きくなり、また後述する領域(a)がより形成され易くなるからである。同様の観点から、混合領域の厚さは、厚さ方向に連続して8nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることがさらに好ましい。混合領域の厚さは、特に上限はないが、光学特性の観点から、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることがさらに好ましい。 The thickness of the mixed region is not particularly limited, but it is preferably 5 nm or more continuously in the thickness direction. The reason is that the presence of 5 nm or more continuously in the thickness direction increases the flexibility improvement effect, and the region (a) described later is more easily formed. From the same viewpoint, the thickness of the mixed region is preferably 8 nm or more continuously in the thickness direction, more preferably 10 nm or more, and further preferably 20 nm or more. The thickness of the mixed region is not particularly limited, but is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less from the viewpoint of optical characteristics.
 ここで、混合領域は、窒素原子を有していてもよいことから、その組成はM1M2(0.02≦x≦49、y≧0)として表すこともできる。 Here, since the mixed region may have a nitrogen atom, the composition thereof can be expressed as M1M2 x N y (0.02 ≦ x ≦ 49, y ≧ 0).
 混合領域は、非遷移金属M1に由来する化合物(非遷移金属M1単体または非遷移金属M1単体を含む化合物)と、遷移金属M2に由来する化合物(遷移金属M2単体または遷移金属M2を含む化合物)との混合物が構成成分として含まれていてもよく、または非遷移金属M1および遷移金属M2に由来する化合物が構成成分として含まれていてもよい。また、これらの両方が構成成分として含まれていてもよい。 The mixed region includes a compound derived from non-transition metal M1 (non-transition metal M1 simple substance or a compound containing non-transition metal M1 simple substance) and a compound derived from transition metal M2 (a compound containing transition metal M2 simple substance or transition metal M2). And a compound derived from the non-transition metal M1 and the transition metal M2 may be included as a constituent component. Moreover, both of these may be included as constituent components.
 ここで、本明細書においては、混合領域に非遷移金属M1に由来する化合物と、遷移金属M2に由来する化合物との混合物とは、非遷移金属M1に由来する化合物と、遷移金属M2に由来する化合物とが互いに化学結合することなく混じり合っている状態の物をいう。混合物としては、例えば、酸化ニオブと酸化ケイ素とが互いに化学結合することなく混じり合っている状態の物等が挙げられる。 Here, in this specification, the mixture of the compound derived from the non-transition metal M1 and the compound derived from the transition metal M2 in the mixed region is derived from the compound derived from the non-transition metal M1 and the transition metal M2. A compound in a state where it is mixed with each other without chemically bonding to each other. Examples of the mixture include those in a state where niobium oxide and silicon oxide are mixed without being chemically bonded to each other.
 混合領域に非遷移金属M1に由来する化合物と、遷移金属M2に由来する化合物との混合物が含まれる場合、当該混合物中における好ましい非遷移金属M1に由来する化合物は、後述する領域(A)における好ましい非遷移金属M1に由来する化合物と同様である。また、当該混合物中における好ましい遷移金属M2に由来する化合物は、後述する領域(A)における好ましい遷移金属M2に由来する化合物と同様である。 When a mixture of a compound derived from the non-transition metal M1 and a compound derived from the transition metal M2 is included in the mixed region, a preferable compound derived from the non-transition metal M1 in the mixture is the region (A) described later. The same as the compound derived from the preferred non-transition metal M1. Moreover, the compound derived from the preferable transition metal M2 in the said mixture is the same as the compound derived from the preferable transition metal M2 in the area | region (A) mentioned later.
 また、本明細書においては、非遷移金属M1および遷移金属M2に由来する化合物とは、非遷移金属M1に由来する化合物と、遷移金属M2に由来する化合物と、が相互に化学結合をして形成された化合物や、分子間相互作用等による物理的結合をして形成された化合物を表す。本明細書においては、非遷移金属M1および遷移金属M2に由来する化合物としては、例えば、ニオブ原子とケイ素原子とが直接的に、または酸素原子を介して化学結合を形成している構造を有する化合物等が挙げられる。 In this specification, the compound derived from the non-transition metal M1 and the transition metal M2 is a compound in which the compound derived from the non-transition metal M1 and the compound derived from the transition metal M2 are chemically bonded to each other. It represents a formed compound or a compound formed by physical bonding by intermolecular interaction or the like. In the present specification, the compound derived from the non-transition metal M1 and the transition metal M2 has, for example, a structure in which a niobium atom and a silicon atom form a chemical bond directly or through an oxygen atom. Compounds and the like.
 混合領域は、一般的に、ガスバリア性膜の厚さ方向において、組成は連続的にまたは段階的に変化することとなる。したがって、混合領域は、応力集中を抑止することができ、ガスバリア性膜の優れた屈曲性が実現される。なお、屈曲性の観点から、混合領域は、組成が連続的に変化することが好ましい。 In the mixed region, the composition generally changes continuously or stepwise in the thickness direction of the gas barrier film. Therefore, the mixed region can suppress stress concentration, and an excellent flexibility of the gas barrier film is realized. From the viewpoint of flexibility, the composition of the mixed region preferably changes continuously.
 なお、本発明に係るガスバリア性膜では、混合領域は後述する領域(a)を含むことから、混合領域内における、非遷移金属M1原子に対する窒素原子の存在原子比の値の最大値は、0.6超の元素組成で示されることとなる。この最大値となる混合領域の位置は、後述する領域(a)内に含まれることが好ましい。 In the gas barrier film according to the present invention, since the mixed region includes a region (a) described later, the maximum value of the existing atomic ratio of nitrogen atoms to non-transition metal M1 atoms in the mixed region is 0. It will be shown with an elemental composition greater than .6. It is preferable that the position of the mixed region having the maximum value is included in the region (a) described later.
 なお、混合領域は、ガスバリア性膜が有する領域(A)と、領域(B)との界面付近に形成されることが好ましい。このとき、組成が連続的にまたは段階的に変化することに起因する、ガスバリア性膜の屈曲性向上効果はより大きくなる。すなわち、本発明の好ましい一形態に係るガスバリア性膜は、厚さ方向に、金属元素の主成分として非遷移金属M1を含有する領域(A)と、金属元素の主成分として遷移金属M2を含有する領域(B)とを有し、前記領域(A)と前記領域(B)とが接しているものである。 The mixed region is preferably formed in the vicinity of the interface between the region (A) and the region (B) of the gas barrier film. At this time, the flexibility improving effect of the gas barrier film due to the composition changing continuously or stepwise is further increased. That is, the gas barrier film according to a preferred embodiment of the present invention includes a region (A) containing the non-transition metal M1 as the main component of the metal element and a transition metal M2 as the main component of the metal element in the thickness direction. Region (B), and the region (A) and the region (B) are in contact with each other.
 〔領域(a)〕
 領域(a)とは、上述した混合領域内で、M1M2が特定の組成を有する領域を表す。このような構成を有する本発明のガスバリア性膜は、優れた屈曲性と、高温高湿環境での高い水蒸気バリア性とを両立させることができる。本発明の一形態に係るガスバリア性膜は、厚さ方向にXPS組成分析を行った際に得られる原子組成分布プロファイルにおいて、組成をM1M2で示した際に、下記式(1)および下記式(2)を満足する領域(a)(以下、単に領域(a)とも称する)を有する。
[Area (a)]
The region (a) represents a region where M1M2 x N y has a specific composition in the above-described mixed region. The gas barrier film of the present invention having such a configuration can achieve both excellent flexibility and high water vapor barrier property in a high temperature and high humidity environment. The gas barrier film according to one embodiment of the present invention has the following formula (1) when the composition is represented by M1M2 x N y in an atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction. It has the area | region (a) (henceforth only area | region (a)) which satisfies following formula (2).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 xは、非遷移金属M1に対する遷移金属M2の存在原子比であり、yは、非遷移金属M1に対する窒素の存在原子比であるが、領域(a)は式(1)および式(2)を同時に満足することが必要である。つまり、少なくとも、非遷移金属M1原子と遷移金属M2原子とが同時に存在する領域であって、非遷移金属M1原子に対する遷移金属M2の存在原子比(遷移金属M2原子/非遷移金属M1原子)が0.2以上3.0以下であることが高温高湿環境で高い水蒸気バリア性を発現する条件であることを見出したものである。ここで、非遷移金属M1原子に対する遷移金属M2の存在原子比(遷移金属M2原子/非遷移金属M1原子)が0.2未満であっても、また、3.0を超えても、非遷移金属M1原子と遷移金属M2原子との結合が減少するため、高温高湿環境での水蒸気バリア性が低下すると考えられる。そして、非遷移金属M1原子と遷移金属M2原子と窒素原子とが同時に存在する領域が形成され、非遷移金属M1原子に対する遷移金属M2の存在原子比(遷移金属M2原子/非遷移金属M1原子)が0.2以上3.0以下であり、かつ、非遷移金属M1原子に対する窒素原子の存在原子比(窒素原子/非遷移金属M1原子)が0.6超1.4以下であることが、高温高湿環境での極めて高い水蒸気バリア性を発現するための条件となる。 x is the existing atomic ratio of the transition metal M2 to the non-transition metal M1, and y is the existing atomic ratio of nitrogen to the non-transition metal M1, but the region (a) represents the formula (1) and the formula (2). It is necessary to be satisfied at the same time. That is, at least the region where the non-transition metal M1 atom and the transition metal M2 atom are present at the same time, and the existing atomic ratio of the transition metal M2 to the non-transition metal M1 atom (transition metal M2 atom / non-transition metal M1 atom) It has been found that 0.2 or more and 3.0 or less is a condition for developing a high water vapor barrier property in a high temperature and high humidity environment. Here, even if the atomic ratio of transition metal M2 to non-transition metal M1 atom (transition metal M2 atom / non-transition metal M1 atom) is less than 0.2 or more than 3.0, no transition Since the bond between the metal M1 atom and the transition metal M2 atom is reduced, it is considered that the water vapor barrier property in a high temperature and high humidity environment is lowered. Then, a region in which a non-transition metal M1 atom, a transition metal M2 atom, and a nitrogen atom exist at the same time is formed, and an existing atomic ratio of the transition metal M2 to the non-transition metal M1 atom (transition metal M2 atom / non-transition metal M1 atom) Is 0.2 or more and 3.0 or less, and the atomic ratio of the nitrogen atom to the non-transition metal M1 atom (nitrogen atom / non-transition metal M1 atom) is more than 0.6 and 1.4 or less, This is a condition for developing an extremely high water vapor barrier property in a high temperature and high humidity environment.
 領域(a)は、ガスバリア性膜に高温高湿環境での高い水蒸気バリア性を付与しうることから、ガスバリア性膜は、有機EL素子等に要求されるレベルの高温高湿環境での水蒸気バリア性を維持しつつ、薄膜化が可能となり、優れた屈曲性を有することとなる。 Since the region (a) can impart a high water vapor barrier property in a high temperature and high humidity environment to the gas barrier film, the gas barrier film has a water vapor barrier in a high temperature and high humidity environment at a level required for an organic EL element or the like. The film can be made thin while maintaining the flexibility, and has excellent flexibility.
 領域(a)が複数種の非遷移金属M1または複数種の遷移金属M2を有する場合は、各金属の含有量の重み付けをした総和からxを算出する。 When the region (a) has a plurality of kinds of non-transition metals M1 or a plurality of kinds of transition metals M2, x is calculated from the sum of weights of the contents of the respective metals.
 非遷移金属M1としてケイ素を用いた態様は、高温高湿環境での水蒸気バリア性を著しく向上させうるため特に好ましい。 The embodiment using silicon as the non-transition metal M1 is particularly preferable because the water vapor barrier property in a high temperature and high humidity environment can be remarkably improved.
 ここで、領域(a)における、非遷移金属M1原子に対する窒素原子の存在原子比の最大値(y最大値)は、前記yの範囲内の元素組成で示されることから0.6超1.4以下となるが、高温高湿環境でのより高い水蒸気バリア性を得るとの観点から、0.65以上であることが好ましい。また、非遷移金属M1原子に対する窒素原子の存在原子比の最大値(y最大値)は、高温高湿環境でのより高い水蒸気バリア性を得るとの観点から、1以下であることが好ましく、0.9以下であることがより好ましい。 Here, in the region (a), the maximum value (y maximum value) of the nitrogen atom existing atom ratio with respect to the non-transition metal M1 atom is indicated by the element composition within the range of y, and therefore, more than 0.6. Although it is 4 or less, it is preferably 0.65 or more from the viewpoint of obtaining a higher water vapor barrier property in a high temperature and high humidity environment. In addition, the maximum value of the atomic ratio of nitrogen atoms to the non-transition metal M1 atom (y maximum value) is preferably 1 or less from the viewpoint of obtaining a higher water vapor barrier property in a high temperature and high humidity environment, More preferably, it is 0.9 or less.
 領域(a)は、組成をM1M2で示した際に、上記式(1)および上記式(2)を満足する領域である。ここで、高温高湿環境での水蒸気バリア性をより高めるとの観点から、領域(a)は、厚さ方向に連続して1nm以上存在することが好ましく、2nm以上存在することがより好ましく、3nm以上存在することがよりさらに好ましく、4nm以上存在することが特に好ましい。そして、後述する非遷移金属M1含有層と遷移金属M2含有層とを、共に気相成膜によって形成する際に、極めて高い屈曲性と、高温高湿環境での極めて高い水蒸気バリア性とをより安定的に得るとの観点から、領域(a)は、厚さ方向に連続して5nm以上存在することが最も好ましい。これより、本発明の好ましい一形態は、領域(a)の厚さが5nm以上である、本発明の一形態に係るガスバリア性膜である。また、領域(a)は、特に制限されないが、より良好な光透過率を得るとの観点から、厚さ方向に連続して30nm以下存在することが好ましく、15nm以下存在することがより好ましく、10nm以下存在することがさらに好ましく、8nm以下存在することが特に好ましい。 The region (a) is a region that satisfies the above formula (1) and the above formula (2) when the composition is represented by M1M2 x N y . Here, from the viewpoint of further improving the water vapor barrier property in a high-temperature and high-humidity environment, the region (a) is preferably present in a thickness direction of 1 nm or more, more preferably 2 nm or more, More preferably, it is 3 nm or more, and particularly preferably 4 nm or more. Then, when both the non-transition metal M1 containing layer and the transition metal M2 containing layer, which will be described later, are formed by vapor phase film formation, extremely high flexibility and extremely high water vapor barrier properties in a high temperature and high humidity environment are obtained. From the viewpoint of obtaining stably, the region (a) is most preferably 5 nm or more continuously in the thickness direction. Thus, a preferred embodiment of the present invention is a gas barrier film according to an embodiment of the present invention, wherein the thickness of the region (a) is 5 nm or more. Further, the region (a) is not particularly limited, but from the viewpoint of obtaining a better light transmittance, it is preferably continuously present in the thickness direction of 30 nm or less, more preferably 15 nm or less, More preferably, it is 10 nm or less, and particularly preferably 8 nm or less.
 このような領域(a)の組成や厚さの制御は、後述するガスバリア性膜の製造方法において、非遷移金属M1含有層および遷移金属M2含有層の形成方法、形成順序、非遷移金属M1含有層(または遷移金属M2含有層)を形成した後、遷移金属M2含有層(または非遷移金属M1含有層)を形成するまでの間の保管方法等を適宜選択することによって行うことができる。 The composition and thickness of such a region (a) are controlled by a method for forming a non-transition metal M1-containing layer and a transition metal M2-containing layer, a forming order, and a non-transition metal M1-containing in a gas barrier film manufacturing method described later. After forming a layer (or transition metal M2 containing layer), it can carry out by selecting suitably the storage method etc. until forming a transition metal M2 containing layer (or non-transition metal M1 containing layer).
 〔領域(A)〕
 本発明の一形態に係るガスバリア性膜は、金属元素の主成分として、非遷移金属M1を含有する領域(A)(本明細書において、単に「領域(A)」とも称する)を含むことが好ましい。
[Area (A)]
The gas barrier film according to one embodiment of the present invention includes a region (A) containing a non-transition metal M1 as a main component of a metal element (also simply referred to as “region (A)” in this specification). preferable.
 ガスバリア性膜の厚さ方向において、非遷移金属M1を金属元素の主成分として含む領域が存在することは、前述のXPS分析方法による組成分析によって確認することができる。 The existence of a region containing the non-transition metal M1 as a main component of the metal element in the thickness direction of the gas barrier film can be confirmed by composition analysis by the XPS analysis method described above.
 なお、ガスバリア性膜の厚さ方向において、原子組成比として最大である金属元素が、非遷移金属M1および遷移金属M2の2つとなる、すなわち、金属元素の中の、非遷移金属M1の原子組成比と、遷移金属M2の原子組成比とが共に最大かつ同一となる場合がある。本発明においては、かような領域(または点)は、領域(A)に含まれるものとして扱うものとする。 In the thickness direction of the gas barrier film, the metal element having the maximum atomic composition ratio is the non-transition metal M1 and the transition metal M2, that is, the atomic composition of the non-transition metal M1 in the metal element. The ratio and the atomic composition ratio of the transition metal M2 may both be maximum and the same. In the present invention, such a region (or point) is assumed to be included in the region (A).
 ここで、高温高湿環境下での水蒸気バリア性がより高まるとの観点から、領域(A)内における、非遷移金属M1、遷移金属M2、酸素(O)、窒素(N)および炭素(C)の原子の合計量に対する非遷移金属M1原子の量の比率(単位:atm%)(以下、[M1]とも称する)の厚さ方向の平均値は、20atm%以上であることが好ましく、22atm%以上であることがより好ましく、24atm%以上であることがさらに好ましい。また、より良好な光透過率を得るとの観点から、領域(A)内における〔M1〕の厚さ方向の平均値は、40atm%以下であることが好ましく、38atm%以下であることがより好ましく、36atm%以下であることがさらに好ましい。 Here, from the viewpoint of further improving the water vapor barrier property in a high temperature and high humidity environment, the non-transition metal M1, the transition metal M2, oxygen (O), nitrogen (N) and carbon (C) in the region (A). The average value in the thickness direction of the ratio of the amount of non-transition metal M1 atoms to the total amount of atoms (unit: atm%) (hereinafter also referred to as [M1]) is preferably 20 atm% or more, and 22 atm % Or more, more preferably 24 atm% or more. Further, from the viewpoint of obtaining better light transmittance, the average value in the thickness direction of [M1] in the region (A) is preferably 40 atm% or less, and more preferably 38 atm% or less. Preferably, it is 36 atm% or less.
 また、前記のように、[M1]と、非遷移金属M1、遷移金属M2、酸素(O)、窒素(N)および炭素(C)の原子の合計量に対する非遷移金属M2原子の量の比率(単位:atm%)(以下、[M2]とも称する)とが同一の値となる領域(または点)が存在する場合は、高温高湿環境での水蒸気バリア性がより高まるとの観点から、この同一となる値は10atm%以上25atm%以下であることが好ましく、12atm%以上20atm%以下であることがより好ましい。 As described above, the ratio of the amount of non-transition metal M2 atoms to the total amount of [M1] and non-transition metal M1, transition metal M2, oxygen (O), nitrogen (N), and carbon (C) atoms. When there is a region (or point) where (unit: atm%) (hereinafter also referred to as [M2]) has the same value, from the viewpoint that the water vapor barrier property in a high-temperature and high-humidity environment is further increased, The same value is preferably 10 atm% or more and 25 atm% or less, and more preferably 12 atm% or more and 20 atm% or less.
 なお、領域(A)は、非遷移金属M1、遷移金属M2、酸素(O)、窒素(N)および炭素(C)以外の原子、例えば水素を含んでいてもよい。ここで、領域(A)中の水素の原子量の比率(単位:atm%)は、ラザフォード後方散乱分析(Rutherford Backscattering Spectroscpy:RBS)、HFS分析(Hydrogen Forward Scattering Spectrometry)によって測定することができる。ただし、高温高湿環境での水蒸気バリア性がより高まるとの観点から、領域(A)中に存在する全原子の合計量に対する、非遷移金属M1、遷移金属M2、酸素(O)、窒素(N)および炭素(C)の原子の合計量の比率(単位:atm%)の、厚さ方向の平均値は、90atm%以上であることが好ましく、95atm%以上であることがより好ましく、99atm%以上であることがさらに好ましい(上限100atm%)。 The region (A) may contain atoms other than the non-transition metal M1, the transition metal M2, oxygen (O), nitrogen (N), and carbon (C), for example, hydrogen. Here, the atomic weight ratio (unit: atm%) of the hydrogen in the region (A) can be measured by Rutherford Backscattering Spectroscopy (RBS) or HFS analysis (Hydrogen Forwarding Scattering Spectrometry). However, from the viewpoint that the water vapor barrier property in a high-temperature and high-humidity environment is further increased, the non-transition metal M1, transition metal M2, oxygen (O), nitrogen (to the total amount of all atoms present in the region (A) ( The average value in the thickness direction of the ratio of the total amount of N) and carbon (C) atoms (unit: atm%) is preferably 90 atm% or more, more preferably 95 atm% or more, and 99 atm. % Or more is more preferable (upper limit of 100 atm%).
 非遷移金属M1としては、特に制限されないが、水蒸気バリア性の観点から、長周期型周期表の第12族~第14族の金属から選択される非遷移金属M1から選択される金属であることが好ましい。これらの中でも、Si、Al、Zn、InまたはSnを含むことがより好ましく、Si、SnまたはZnを含むことがさらに好ましく、Siを含むことが特に好ましい。これより、本発明の好ましい一形態は、非遷移金属M1がSiである、ガスバリア性膜である。非遷移金属M1は1種単独であっても2種以上併用してもよい。 The non-transition metal M1 is not particularly limited, but is a metal selected from the non-transition metal M1 selected from the metals of Groups 12 to 14 of the long-period periodic table from the viewpoint of water vapor barrier properties. Is preferred. Among these, it is more preferable that Si, Al, Zn, In, or Sn is included, it is more preferable that Si, Sn, or Zn is included, and it is particularly preferable that Si is included. Thus, a preferred embodiment of the present invention is a gas barrier film in which the non-transition metal M1 is Si. The non-transition metal M1 may be used alone or in combination of two or more.
 領域(A)の構成成分としての非遷移金属M1の形態は、非遷移金属M1に由来する化合物(非遷移金属M1単体または非遷移金属M1を含む化合物)であれば、特に限定されない。非遷移金属M1は、例えば、非遷移金属M1の酸化物、窒化物、炭化物、酸窒化物、または酸炭化物の状態で含まれることが挙げられる。中でも、非遷移金属M1が非遷移金属M1を含む化合物の状態で含まれることが好ましく、非遷移金属M1および窒素を含む化合物の状態で含まれていることがより好ましい。なお、領域(A)に含まれる非遷移金属M1の形態は1種単独であっても2種以上併用してもよい。 The form of the non-transition metal M1 as a constituent component of the region (A) is not particularly limited as long as it is a compound derived from the non-transition metal M1 (non-transition metal M1 alone or a compound containing the non-transition metal M1). For example, the non-transition metal M1 is included in the state of an oxide, nitride, carbide, oxynitride, or oxycarbide of the non-transition metal M1. Especially, it is preferable that the non-transition metal M1 is contained in the state of the compound containing the non-transition metal M1, and it is more preferable that it is contained in the state of the compound containing the non-transition metal M1 and nitrogen. In addition, the form of the non-transition metal M1 included in the region (A) may be a single type or a combination of two or more types.
 領域(A)は、単層でもよいし2層以上の積層構造であってもよい。領域(A)が2層以上の積層構造である場合、領域(A)に含まれる非遷移金属化合物は同じものであってもよいし、異なるものであってもよい。 The region (A) may be a single layer or a laminated structure of two or more layers. When area | region (A) is a laminated structure of two or more layers, the non-transition metal compound contained in area | region (A) may be the same, and may differ.
 領域(A)の厚さ(2層以上の積層構造である場合はその総厚)は、水蒸気バリア性の観点から、5nm以上であることが好ましく、10nm以上であることがより好ましい。また、領域(A)の厚さは、特に上限はないが、領域(A)が形成される推定メカニズムから、100nm以下であってもよく、50nm以下であってよく、30nm以下であってもよい。 The thickness of the region (A) (the total thickness in the case of a laminated structure of two or more layers) is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of water vapor barrier properties. In addition, the thickness of the region (A) is not particularly limited, but may be 100 nm or less, 50 nm or less, or 30 nm or less from the presumed mechanism by which the region (A) is formed. Good.
 〔領域(B)〕
 本発明の一形態に係るガスバリア性膜は、金属元素の主成分として、遷移金属M2を含有する領域(B)(本明細書において、単に「領域(B)」とも称する)を含むことが好ましい。
[Area (B)]
The gas barrier film according to one embodiment of the present invention preferably includes a region (B) containing a transition metal M2 as a main component of a metal element (also simply referred to as “region (B)” in this specification). .
 ガスバリア性膜の厚さ方向において、遷移金属M2を金属元素の主成分として含む領域が存在することは、前述のXPS分析方法等による組成分析によって確認することができる。 The presence of a region containing the transition metal M2 as a main component of the metal element in the thickness direction of the gas barrier film can be confirmed by composition analysis using the XPS analysis method described above.
 ここで、高温高湿環境下での水蒸気バリア性がより高まるとの観点から、領域(B)内における〔M2〕の厚さ方向の平均値は、16atm%以上であることが好ましく、18atm%以上であることがより好ましく、20atm%以上であることがさらに好ましい。また、より良好な光透過率を得るとの観点から、領域(B)内における〔M2〕の厚さ方向の平均値は、40atm%以下であることが好ましく、38atm%以下であることがより好ましく、36atm%以下であることがさらに好ましい。 Here, from the viewpoint that the water vapor barrier property in a high temperature and high humidity environment is further increased, the average value in the thickness direction of [M2] in the region (B) is preferably 16 atm% or more, and 18 atm%. More preferably, it is more preferably 20 atm% or more. Further, from the viewpoint of obtaining better light transmittance, the average value in the thickness direction of [M2] in the region (B) is preferably 40 atm% or less, more preferably 38 atm% or less. Preferably, it is 36 atm% or less.
 なお、領域(B)は、非遷移金属M1、遷移金属M2、酸素(O)、窒素(N)および炭素(C)以外の原子、例えば水素を含んでいてもよい。ここで、領域(B)中の水素の原子量の比率(単位:atm%)の測定方法は、領域(A)中の水素の原子量の比率と同様である。ただし、高温高湿環境での水蒸気バリア性がより高まるとの観点から、領域(B)中に存在する全原子の合計量に対する、非遷移金属M1、遷移金属M2、酸素(O)、窒素(N)および炭素(C)の原子の合計量の比率(単位:atm%)の、厚さ方向の平均値は90atm%以上であることが好ましく、95atm%以上であることがより好ましく、99atm%以上であることがさらに好ましい(上限100atm%)。 Note that the region (B) may contain atoms other than the non-transition metal M1, the transition metal M2, oxygen (O), nitrogen (N), and carbon (C), for example, hydrogen. Here, the method for measuring the ratio of atomic weight of hydrogen in the region (B) (unit: atm%) is the same as the ratio of atomic weight of hydrogen in the region (A). However, from the viewpoint that the water vapor barrier property in a high-temperature and high-humidity environment is further increased, the non-transition metal M1, transition metal M2, oxygen (O), nitrogen (with respect to the total amount of all atoms present in the region (B) ( The average value in the thickness direction of the ratio of the total amount of N) and carbon (C) atoms (unit: atm%) is preferably 90 atm% or more, more preferably 95 atm% or more, and 99 atm%. More preferably, the upper limit is 100 atm%.
 遷移金属(M2)としては、特に制限されず、任意の遷移金属が単独でまたは組み合わせて用いられうる。ここで、遷移金属とは、長周期型周期表の第3族元素から第11族元素を指し、遷移金属としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Tc、Ru、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、およびAuなどが挙げられる。 The transition metal (M2) is not particularly limited, and any transition metal can be used alone or in combination. Here, the transition metal refers to a Group 3 element to a Group 11 element in the long-period periodic table, and the transition metal includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y , Zr, Nb, Mo, Tc, Ru, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W , Re, Os, Ir, Pt, and Au.
 なかでも、良好な水蒸気バリア性が得られる遷移金属(M2)としては、Nb、Ta、V、Zr、Ti、Hf、Y、La、Ce等が挙げられる。これらのなかでも、種々の検討結果から、特に第5族元素であるNb、Ta、Vが、ガスバリア性膜に含有される非遷移金属(M1)に対する結合が生じやすい観点から、好ましく用いることができる。これより、本発明の好ましい一形態に係るガスバリア性膜は、遷移金属M2がNb、TaおよびVからなる群より選択される少なくとも1種の金属である。 Among these, Nb, Ta, V, Zr, Ti, Hf, Y, La, Ce, and the like can be cited as transition metals (M2) that can provide good water vapor barrier properties. Among these, Nb, Ta, and V, which are Group 5 elements, are particularly preferably used from the viewpoint of easy bonding to the non-transition metal (M1) contained in the gas barrier film from various examination results. it can. Thus, in the gas barrier film according to a preferred embodiment of the present invention, the transition metal M2 is at least one metal selected from the group consisting of Nb, Ta, and V.
 特に、遷移金属(M2)が第5族元素(特に、Nb)であって、詳細は後述する非遷移金属(M1)がSiであると、著しい水蒸気バリア性の向上効果を得ることができ、特に好ましい組み合わせである。これは、Siと第5族元素(特に、Nb)との結合が特に生じやすいためであると考えられる。さらに、光学特性の観点から、遷移金属(M2)は、透明性が良好な化合物が得られるNb、Taが特に好ましく、Nbであることが最も好ましい。 In particular, when the transition metal (M2) is a Group 5 element (especially Nb) and the non-transition metal (M1), which will be described in detail later, is Si, a significant improvement in water vapor barrier properties can be obtained. A particularly preferred combination. This is presumably because the bond between Si and the Group 5 element (particularly Nb) is particularly likely to occur. Furthermore, from the viewpoint of optical properties, the transition metal (M2) is particularly preferably Nb or Ta from which a compound with good transparency can be obtained, and most preferably Nb.
 領域(B)の構成成分としての遷移金属M2の形態は、遷移金属M2に由来する化合物(遷移金属M2単体または遷移金属M2を含む化合物)であれば、特に限定されない。遷移金属M2は、例えば、遷移金属M2の酸化物、窒化物、炭化物、酸窒化物、または酸炭化物の状態で含まれることが挙げられる。中でも、遷移金属M2が遷移金属M2を含む化合物の状態で含まれることが好ましく、遷移金属酸化物の状態で含まれていることがより好ましい。なお、領域(B)に含まれる遷移金属M2の形態は1種単独であっても2種以上併用してもよい。 The form of the transition metal M2 as a constituent component of the region (B) is not particularly limited as long as it is a compound derived from the transition metal M2 (a compound containing the transition metal M2 alone or the transition metal M2). For example, the transition metal M2 is included in the state of an oxide, nitride, carbide, oxynitride, or oxycarbide of the transition metal M2. Especially, it is preferable that the transition metal M2 is contained in the state of the compound containing the transition metal M2, and it is more preferable that it is contained in the state of the transition metal oxide. The transition metal M2 included in the region (B) may be used alone or in combination of two or more.
 領域(B)は、単層でもよいし2層以上の積層構造であってもよい。領域(B)が2層以上の積層構造である場合、領域(B)に含まれる遷移金属M2化合物は同じものであってもよいし、異なるものであってもよい。 The region (B) may be a single layer or a laminated structure of two or more layers. When the region (B) has a laminated structure of two or more layers, the transition metal M2 compound contained in the region (B) may be the same or different.
 領域(B)は、領域(A)に隣接して形成されることによって、領域(a)を形成し、高温高湿環境での高い水蒸気バリア性を付与するものであると考えられるため、領域(B)自体には必ずしも水蒸気バリア性は必要ではない。したがって、領域(B)は比較的薄い層でも効果を発揮しうる。具体的には、領域(a)を高温高湿環境でのより高い水蒸気バリア性を実現する厚さで形成するとの観点から、領域(B)の厚さは、2nm以上であることが好ましく、4nm以上であることがより好ましく、5nm以上であることがさらに好ましく、6nm以上であることが特に好ましい。また、領域(B)の厚さは、より良好な光透過率を得るとの観点から、50nm以下であることが好ましく、30nm以下であることがより好ましく、25nm以下であることがよりさらに好ましく、15nm以下であることが特に好ましく、12nm以下であることが極めて好ましい。 The region (B) is formed adjacent to the region (A), thereby forming the region (a) and imparting high water vapor barrier property in a high temperature and high humidity environment. The water vapor barrier property is not necessarily required for (B) itself. Accordingly, the region (B) can be effective even with a relatively thin layer. Specifically, from the viewpoint of forming the region (a) with a thickness that realizes higher water vapor barrier properties in a high-temperature and high-humidity environment, the thickness of the region (B) is preferably 2 nm or more, It is more preferably 4 nm or more, further preferably 5 nm or more, and particularly preferably 6 nm or more. In addition, the thickness of the region (B) is preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 25 nm or less, from the viewpoint of obtaining better light transmittance. 15 nm or less is particularly preferable, and 12 nm or less is extremely preferable.
 〔領域(A)および領域(B)の積層順序〕
 本発明の一形態に係るガスバリア性膜において、領域(A)と、領域(B)との積層順序は、特に制限されず、成膜対象物(例えば、樹脂基材等)上に、成膜対象物側から、領域(A)/領域(B)の順に配置されていてもよいし、成膜対象物上に、成膜対象物側から、領域(B)/領域(A)の順に配置されていてもよい。しかしながら、成膜対象物上に、成膜対象物側から、領域(A)/領域(B)の順に配置されることが、高温高湿環境でのより高い水蒸気バリア性およびより優れた屈曲性を得るとの観点から好ましい。また、優れた屈曲性が得られるガスバリア性膜の厚さの範囲内において、ガスバリア性膜は、領域(A)/領域(B)の積層構造からなるユニットまたは領域(B)/領域(A)の積層構造からなるユニットが複数積層した構造、例えば交互積層構造を有していてもよい。
[Stacking order of region (A) and region (B)]
In the gas barrier film according to one embodiment of the present invention, the stacking order of the region (A) and the region (B) is not particularly limited, and the film is formed on a film formation target (for example, a resin base material). It may be arranged in the order of region (A) / region (B) from the object side, or arranged in the order of region (B) / region (A) on the film formation object from the film formation object side. May be. However, the arrangement of the region (A) / region (B) in this order on the film formation object from the film formation object side results in higher water vapor barrier properties and superior flexibility in a high temperature and high humidity environment. From the viewpoint of obtaining Further, within the range of the thickness of the gas barrier film capable of obtaining excellent flexibility, the gas barrier film is a unit having a layered structure of region (A) / region (B) or region (B) / region (A). You may have the structure where the unit which consists of these laminated structures laminated | stacked two or more, for example, an alternating laminated structure.
 <ガスバリア性膜の製造方法>
 本発明の一形態に係るガスバリア性膜の製造方法は、特に制限されないが、非遷移金属M1含有層と遷移金属M2含有層とを、両者が接するように形成することを含むことが好ましい。
<Method for producing gas barrier film>
Although the manufacturing method of the gas barrier film | membrane which concerns on one form of this invention is not restrict | limited in particular, It is preferable to include forming a non-transition metal M1 content layer and a transition metal M2 content layer so that both may touch.
 すなわち、本発明の第二の形態は、金属元素の主成分として非遷移金属M1を含有する非遷移金属M1含有層と、金属元素の主成分として遷移金属M2を含有する遷移金属M2含有層とを、接するように形成することを含む、ガスバリア性膜の製造方法であって、
 前記ガスバリア性膜の厚さ方向にXPS組成分析を行った際に得られる原子組成分布プロファイルにおいて、組成をM1M2で示した際に、下記式(1)および下記式(2)を満足する領域(a)を有する、ガスバリア性膜の製造方法である。
That is, the second embodiment of the present invention includes a non-transition metal M1 containing layer containing the non-transition metal M1 as a main component of the metal element, and a transition metal M2 containing layer containing the transition metal M2 as the main component of the metal element. A method for producing a gas barrier film, comprising:
In the atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction of the gas barrier film, the following formula (1) and the following formula (2) are satisfied when the composition is represented by M1M2 x N y A method for manufacturing a gas barrier film having a region (a) to be processed.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 本発明の第二の形態によっても、ガスバリア性膜において、優れた屈曲性と、高温高湿環境での高い水蒸気バリア性とを両立させるうる手段を提供することができる。また、本発明の第二の形態に係るガスバリア性膜の製造方法によれば、上記で説明した本発明の第一の形態に係るガスバリア性フィルムが製造されうる。 According to the second embodiment of the present invention, it is also possible to provide means capable of achieving both excellent flexibility and high water vapor barrier property in a high temperature and high humidity environment in the gas barrier film. Moreover, according to the manufacturing method of the gas barrier film which concerns on the 2nd form of this invention, the gas barrier film which concerns on the 1st form of this invention demonstrated above can be manufactured.
 図2は、本発明の一実施形態に係るガスバリア性膜の製造方法において形成される、積層構造を示す断面模式図であり、図3は、本発明の他の実施形態に係るガスバリア性膜の製造方法において形成する積層構造を示す断面模式図である。ここで、図2に係る成膜対象物上へ形成するガスバリア性膜の積層構造10は、成膜対象物11上に、非遷移金属M1含有層12を形成し、その後遷移金属M2含有層13を形成したものである。また、図3に係る成膜対象物上へ形成するガスバリア性膜の積層構造10’は、成膜対象物11上に、遷移金属M2含有層13を形成し、その後非遷移金属M1含有層12を形成したものである。図2および図3においては、非遷移金属M1含有層12と遷移金属M2含有層13とは両者が接するように形成されている。また、成膜対象物11は、ガスバリア性膜が形成されうる対象物であれば特に制限されない。例えば、ガスバリア性フィルムを製造する際には、成膜対象物11は、必要に応じて種々の機能を有する層が形成された樹脂基材でありうる。領域(A)、領域(B)、および領域(a)を含む混合領域は、非遷移金属M1含有層12(または遷移金属M2含有層13)の形成後、遷移金属M2含有層13(または非遷移金属M1含有層12)を形成する際に、遷移金属M2を含む物質が非遷移金属M1含有層12へと、または非遷移金属M1を含む物質が遷移金属M2含有層13へと入り込む結果として形成されると考えられる。また、領域(A)、領域(B)および領域(a)を含む混合領域は、非遷移金属M1含有層および遷移金属M2含有層を形成後に、これらの層間で物質の自発的な拡散が生じる結果として形成されると考えられる。 FIG. 2 is a schematic cross-sectional view showing a laminated structure formed in the method for producing a gas barrier film according to one embodiment of the present invention, and FIG. 3 shows a gas barrier film according to another embodiment of the present invention. It is a cross-sectional schematic diagram which shows the laminated structure formed in a manufacturing method. Here, in the laminated structure 10 of the gas barrier film formed on the film formation target according to FIG. 2, the non-transition metal M1 containing layer 12 is formed on the film formation target 11 and then the transition metal M2 containing layer 13 is formed. Is formed. Further, in the laminated structure 10 ′ of the gas barrier film formed on the film formation target according to FIG. 3, the transition metal M2 containing layer 13 is formed on the film formation target 11, and then the non-transition metal M1 containing layer 12 is formed. Is formed. 2 and 3, the non-transition metal M1 containing layer 12 and the transition metal M2 containing layer 13 are formed so that they are in contact with each other. The film formation target 11 is not particularly limited as long as it is a target on which a gas barrier film can be formed. For example, when a gas barrier film is manufactured, the film formation target 11 can be a resin base material on which layers having various functions are formed as necessary. The mixed region including the region (A), the region (B), and the region (a) is obtained after the formation of the non-transition metal M1 containing layer 12 (or the transition metal M2 containing layer 13) and the transition metal M2 containing layer 13 (or non As a result of the formation of the transition metal M1 containing layer 12), the substance containing the transition metal M2 enters the non-transition metal M1 containing layer 12 or the substance containing the non-transition metal M1 enters the transition metal M2 containing layer 13. It is thought that it is formed. Further, in the mixed region including the region (A), the region (B), and the region (a), after the non-transition metal M1 containing layer and the transition metal M2 containing layer are formed, spontaneous diffusion of the substance occurs between these layers. It is thought that it is formed as a result.
 ここで、領域(a)の組成や厚さの制御は、非遷移金属M1含有層および遷移金属M2含有層の形成方法、形成順序、非遷移金属M1含有層(または遷移金属M2含有層)を形成した後、遷移金属M2含有層(または非遷移金属M1含有層)を形成するまでの間の保管方法等によって行うことができる。 Here, the composition and thickness of the region (a) are controlled by the formation method, formation order of the non-transition metal M1-containing layer and the transition metal M2-containing layer, and the non-transition metal M1-containing layer (or the transition metal M2-containing layer). After forming, it can be performed by a storage method or the like until a transition metal M2 containing layer (or a non-transition metal M1 containing layer) is formed.
 本発明の一形態に係るガスバリア性膜の製造方法において、非遷移金属M1含有層と、遷移金属M2含有層との形成順序は、特に制限されず、成膜対象物(例えば、樹脂基材等)上に、成膜対象物側から、非遷移金属M1含有層/遷移金属M2含有層の順に形成してもよいし、成膜対象物上に、成膜対象物側から、遷移金属M2含有層/非遷移金属M1含有層の順に形成してもよい。しかしながら、成膜対象物上に、成膜対象物側から、非遷移金属M1含有層/遷移金属M2含有層の順に形成することが、高温高湿環境でのより高い水蒸気バリア性およびより優れた屈曲性を得るとの観点から好ましい。この理由は、領域(a)の形成がより容易であり、さらに領域(a)の厚さをより大きくすることができるからである。また、優れた屈曲性が得られるガスバリア性膜の厚さの範囲内において、ガスバリア性膜の製造方法は、非遷移金属M1含有層/遷移金属M2含有層からなるユニットまたは遷移金属M2含有層/非遷移金属M1含有層からなるユニットを繰り返し形成して積層構造とする方法、例えば交互積層構造とする方法であってもよい。 In the method for producing a gas barrier film according to one embodiment of the present invention, the order of formation of the non-transition metal M1 containing layer and the transition metal M2 containing layer is not particularly limited, and a film formation target (for example, a resin base material or the like) ), A non-transition metal M1 containing layer / a transition metal M2 containing layer may be formed in this order from the film forming object side, or the transition metal M2 containing may be formed on the film forming object from the film forming object side. You may form in order of a layer / non-transition metal M1 content layer. However, the formation of the non-transition metal M1 containing layer / transition metal M2 containing layer in this order on the film forming object from the film forming object side has a higher water vapor barrier property in a high temperature and high humidity environment and more excellent It is preferable from the viewpoint of obtaining flexibility. This is because formation of the region (a) is easier and the thickness of the region (a) can be further increased. In addition, within the thickness range of the gas barrier film that provides excellent flexibility, the method for producing the gas barrier film includes a unit comprising a non-transition metal M1 containing layer / transition metal M2 containing layer or a transition metal M2 containing layer / A method of repeatedly forming units composed of the non-transition metal M1-containing layer to form a laminated structure, for example, an alternating laminated structure may be used.
 なお、本発明の一形態に係るガスバリア性膜の製造方法によって製造されるガスバリア性膜は、前述した本発明の一形態に係るガスバリア性膜と同様である。 Note that the gas barrier film manufactured by the method for manufacturing a gas barrier film according to one embodiment of the present invention is the same as the above-described gas barrier film according to one embodiment of the present invention.
 〔非遷移金属M1含有層の形成〕
 非遷移金属M1含有層を形成する方法としては、特に制限されず、例えば、気相成膜法や塗布法が挙げられる。中でも、成膜対象物を搬送しながら、非遷移金属M1含有層と遷移金属M2含有層とを連続して形成することができ、生産性に優れるとの観点から、気相成膜法であることが好ましい。ここで、成膜対象物を搬送しながら各層を成膜する方法としては、例えば、ロール・トゥ・ロール法が挙げられる。すなわち、本発明の好ましい一形態に係る製造方法は、非遷移金属M1含有層を、気相成膜法で形成することを含む製造方法である。
[Formation of non-transition metal M1-containing layer]
The method for forming the non-transition metal M1-containing layer is not particularly limited, and examples thereof include a vapor deposition method and a coating method. Among these, from the viewpoint that the non-transition metal M1-containing layer and the transition metal M2-containing layer can be continuously formed while conveying the film formation target, and it is excellent in productivity, this is a vapor phase film formation method. It is preferable. Here, as a method of forming each layer while conveying the film formation target, for example, a roll-to-roll method may be mentioned. That is, the manufacturing method according to a preferred embodiment of the present invention is a manufacturing method including forming the non-transition metal M1-containing layer by a vapor deposition method.
 本発明の一形態において、非遷移金属M1含有層を形成するための原料は、非遷移金属M1に由来する化合物(非遷移金属M1単体または非遷移金属M1を含む化合物)であれば、特に制限されない。また、非遷移金属M1含有層を形成するための原料としては、その他の金属に由来する物質(金属単体、金属を含む化合物)がさらに含まれていてもよい。このとき、非遷移金属M1含有層の原料の中に、遷移金属M2含有層を形成しうる原料、すなわち遷移金属M2に由来する物質(遷移金属M2単体、遷移金属M2を含む化合物)がさらに含まれていてもよい。この場合は、層の分類を以下のようにして決定する。まず、非遷移金属M1含有層のみを、ガスバリア性膜の製造と同条件で、成膜対象物上に別途成膜する。次いで、構成成分に含まれる金属元素の原子組成比(atm%)、および非遷移金属M1の原子組成比(atm%)を、前述したガスバリア性膜の原子組成プロファイルと同様に、XPS分析方法にて測定する。そして、作製した層中の構成成分に含まれる金属元素の中で、原子組成比として非遷移金属M1の含有量が最大となる層を非遷移金属M1含有層の形成として扱うものとする。 In one embodiment of the present invention, the raw material for forming the non-transition metal M1-containing layer is particularly limited as long as it is a compound derived from the non-transition metal M1 (non-transition metal M1 alone or a compound containing the non-transition metal M1). Not. Moreover, as a raw material for forming a non-transition metal M1 content layer, the substance (a metal simple substance, the compound containing a metal) derived from another metal may further be contained. In this case, the raw material of the non-transition metal M1 containing layer further includes a raw material capable of forming the transition metal M2 containing layer, that is, a substance derived from the transition metal M2 (transition metal M2 alone, a compound containing the transition metal M2). It may be. In this case, the layer classification is determined as follows. First, only the non-transition metal M1-containing layer is separately formed on the film formation target under the same conditions as the production of the gas barrier film. Next, the atomic composition ratio (atm%) of the metal element contained in the constituent components and the atomic composition ratio (atm%) of the non-transition metal M1 are measured in the XPS analysis method in the same manner as the atomic composition profile of the gas barrier film described above. To measure. And among the metal elements contained in the constituent components in the produced layer, the layer having the maximum content of the non-transition metal M1 as the atomic composition ratio is treated as the formation of the non-transition metal M1-containing layer.
 (気相成膜法)
 気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法等の物理気相成長(PVD)法、化学気相成長(chemical vapor deposition、CVD)法、ALD(Atomic Layer Deposition)などの化学気相成長法が挙げられる。中でも、成膜対象物へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、物理気相成長法が好ましく、スパッタ法またはCVD法がより好ましく、スパッタ法がさらに好ましい。
(Vapor deposition method)
The vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, and ion plating, chemical vapor deposition (CVD), and ALD. Examples thereof include chemical vapor deposition methods such as (Atomic Layer Deposition). Among these, the physical vapor deposition method is preferable, the sputtering method or the CVD method is more preferable, and the sputtering method is more preferable because the film formation is possible without damaging the object to be formed and the productivity is high.
 気相成膜法で非遷移金属M1の含む層を形成する際の成膜設定厚さ(2層以上の積層構造である場合はその総厚)は、水蒸気バリア性の観点から、10nm以上であることが好ましく、30nm以上であることがより好ましい。また、気相成膜法で非遷移金属M1の含む層を形成する際の成膜設定厚さは、屈曲性の観点から、500nm以下であることが好ましく、300nm以下であることがより好ましい。 The film formation set thickness when forming a layer containing the non-transition metal M1 by the vapor deposition method (the total thickness in the case of a laminated structure of two or more layers) is 10 nm or more from the viewpoint of water vapor barrier properties. It is preferable that the thickness is 30 nm or more. In addition, the film formation setting thickness when the layer containing the non-transition metal M1 is formed by the vapor phase film formation method is preferably 500 nm or less, and more preferably 300 nm or less from the viewpoint of flexibility.
 非遷移金属M1含有層は、XPS組成分析を行った際に得られる原子組成分布プロファイルの結果から算出される、非遷移金属M1原子に対する窒素原子の存在原子比(N/M1)の厚さ方向の平均値が0.10以上であることが好ましく、0.50以上であることが特に好ましく、0.90以上であることが極めて好ましい。非遷移金属M1原子に対する窒素原子の存在原子比(N/M1)の厚さ方向の平均値が0.90以上であると、混合領域内において、領域(a)がより形成されやすくなる。また、遷移金属M2含有層の形成において、例えば、原料として遷移金属M2の窒化物や酸窒化物を用いること、および成膜中に窒素を導入すること等によって、遷移金属M2含有層を、窒素を含む層として形成する際には、混合領域内において、領域(a)がより形成されやすくなる。この際、遷移金属M2含有層として窒素を含む層を形成する際には、非遷移金属M1原子に対する窒素原子の存在原子比(N/M1)の厚さ方向の平均値が0.50以上であることが好ましい。この理由は、上記範囲であると、より良好に領域(a)を形成することができるからである。同様の観点から、遷移金属M2含有層として窒素を含む層を形成する際には、非遷移金属M1原子に対する窒素原子の存在原子比(N/M1)の厚さ方向の平均値は、0.60以上であることがより好ましく、0.80以上であることがさらに好ましく、0.85以上であることが特に好ましく、0.90以上であることが極めて好ましい。また、非遷移金属M1原子に対する窒素原子の存在原子比(N/M1)の厚さ方向の平均値は、1.4以下であることが好ましい。なお、ここでいうXPS測定分析および原子組成分布プロファイルは、前記原子組成プロファイルの説明で述べたものと同様のものを用いている。 The non-transition metal M1 containing layer is calculated from the result of the atomic composition distribution profile obtained when XPS composition analysis is performed, and the thickness direction of the existing atomic ratio of nitrogen atoms to non-transition metal M1 atoms (N / M1) Is preferably 0.10 or more, particularly preferably 0.50 or more, and very preferably 0.90 or more. When the average value in the thickness direction of the existing atomic ratio (N / M1) of nitrogen atoms to non-transition metal M1 atoms is 0.90 or more, the region (a) is more easily formed in the mixed region. Further, in the formation of the transition metal M2 containing layer, the transition metal M2 containing layer is made to be nitrogen by, for example, using a transition metal M2 nitride or oxynitride as a raw material and introducing nitrogen during film formation. When forming as a layer containing, the region (a) is more easily formed in the mixed region. At this time, when forming a layer containing nitrogen as the transition metal M2 containing layer, the average value in the thickness direction of the existing atomic ratio of nitrogen atoms to non-transition metal M1 atoms (N / M1) is 0.50 or more. Preferably there is. This is because the region (a) can be formed more favorably within the above range. From the same viewpoint, when forming a layer containing nitrogen as the transition metal M2 containing layer, the average value in the thickness direction of the existing atomic ratio of nitrogen atoms to non-transition metal M1 atoms (N / M1) is 0. It is more preferably 60 or more, further preferably 0.80 or more, particularly preferably 0.85 or more, and extremely preferably 0.90 or more. Moreover, it is preferable that the average value of the thickness direction of the atomic ratio (N / M1) of the nitrogen atom with respect to the non-transition metal M1 atom is 1.4 or less. The XPS measurement analysis and the atomic composition distribution profile used here are the same as those described in the description of the atomic composition profile.
 気相成膜法によって非遷移金属M1含有層を形成する場合は、例えば、成膜原料における前記非遷移金属M1と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、成膜時の磁力、および、成膜時の電力からなる群から選択される1種または2種以上の条件を調節することで、領域(a)の組成および厚さを制御することができる。 When the non-transition metal M1 containing layer is formed by the vapor deposition method, for example, the ratio of the non-transition metal M1 and oxygen in the film forming raw material, the ratio of the inert gas and the reactive gas at the time of film formation, By adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation, The composition and thickness of region (a) can be controlled.
 ≪CVD≫
 化学気相成長(Chemical Vapor Deposition、CVD)法は、成膜対象物(たとえば樹脂基材等)の、非遷移金属M1含有層を形成する材料上に、目的とする薄膜の成分を含む原料ガスを供給し、非遷移金属M1含有層を形成する材料の表面或いは気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、真空プラズマCVD法、大気圧プラズマCVD法など公知のCVD法等が挙げられる。これらの方法は、特に限定されるものではないが、成膜速度や処理面積の観点から、プラズマCVD法を適用することが好ましい。化学蒸着法により非遷移金属M1含有層を形成すると、高温高湿環境での水蒸気バリア性の点で有利である。また、真空プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法により非遷移金属M1を含む層を形成すると、原材料(原料ともいう)である金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、目的の組成からなる非遷移金属M1含有層を形成できることから、好ましい。
≪CVD≫
The chemical vapor deposition (CVD) method is a raw material gas containing a target thin film component on a material for forming a non-transition metal M1-containing layer of a film formation target (for example, a resin base material). And a film is deposited by a chemical reaction in the surface or gas phase of the material forming the non-transition metal M1 containing layer. In addition, for the purpose of activating the chemical reaction, there is a method of generating plasma or the like. Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. Law. These methods are not particularly limited, but it is preferable to apply the plasma CVD method from the viewpoint of the film forming speed and the processing area. Forming the non-transition metal M1 containing layer by chemical vapor deposition is advantageous in terms of water vapor barrier properties in a high temperature and high humidity environment. Further, when a layer containing a non-transition metal M1 is formed by a vacuum plasma CVD method or a plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure, a metal compound, a decomposition gas, a decomposition temperature, which is a raw material (also referred to as a raw material), By selecting conditions such as input power, a non-transition metal M1-containing layer having a target composition can be formed, which is preferable.
 ここで、プラズマCVDとしては、CCP(Capacitively Coupled Plasma 容量結合プラズマ)-CVD、ICP(Inductively Coupled Plasma 誘導結合プラズマ)-CVD、マイクロ波CVD、ECR(Electron Cyclotron Resonance)-CVD、大気圧バリア放電CVDなどの、各種のプラズマCVDが、好適に利用される。 Here, as the plasma CVD, CCP (Capacitively Coupled Plasma Capacitively Coupled Plasma) -CVD, ICP (Inductively Coupled Plasma Inductively Coupled Plasma) -CVD, microwave CVD, ECR (Electron Cyclotron Resonance CVD, Large CVD) Various plasma CVD methods such as the above are preferably used.
 プラズマCVD法に用いる装置としては、特に制限されず公知の装置を用いることができ、たとえば、市販の真空CCP(Capacitively Coupled Plasma 容量結合プラズマ)-CVD装置を用いていてもよい。 The apparatus used for the plasma CVD method is not particularly limited, and a known apparatus can be used. For example, a commercially available vacuum CCP (Capacitively Coupled Plasma Capacitively Coupled Plasma) -CVD apparatus may be used.
 プラズマCVD法で使用する原料ガスには、特に限定はなく、非遷移金属M1がケイ素の場合は、シランガス、ジシランガス、TEOS(テトラエトキシシラン)、HMDSO(ヘキサメチルジシロキサン)、HMDSN(ヘキサメチルジシラザン)、TMS(テトラメチルシラン)、ヒドラジンガス、アンモニアガス、窒素ガス、水素ガス、アルゴンガス、ネオンガス、ヘリウムガス等、公知のプラズマCVD法によるケイ素含有膜の成膜で用いられている原料ガスを、適宜、選択して使用すれば良い。原料ガスの好ましい一例としては、シランガス、アンモニアガス、および水素ガスの組み合わせが挙げられる。ここで、高温高湿環境での水蒸気バリア性をより高めるとの観点から、原料ガスは窒素ガスを含むことが好ましい。原料ガスのより好ましい一例としては、シランガス、アンモニアガス、水素ガスおよび窒素ガスの組み合わせが挙げられる。 The source gas used in the plasma CVD method is not particularly limited. When the non-transition metal M1 is silicon, silane gas, disilane gas, TEOS (tetraethoxysilane), HMDSO (hexamethyldisiloxane), HMDSN (hexamethyldi). Source gases used in the deposition of silicon-containing films by known plasma CVD methods such as silazane), TMS (tetramethylsilane), hydrazine gas, ammonia gas, nitrogen gas, hydrogen gas, argon gas, neon gas, helium gas May be appropriately selected and used. A preferable example of the source gas includes a combination of silane gas, ammonia gas, and hydrogen gas. Here, from the viewpoint of further improving the water vapor barrier property in a high-temperature and high-humidity environment, the raw material gas preferably contains nitrogen gas. A more preferable example of the source gas includes a combination of silane gas, ammonia gas, hydrogen gas and nitrogen gas.
 ここで、原料ガスの流量は、10~1000sccmであることが好ましく、100~800sccmであることがより好ましく、200~700sccmであることがさらに好ましい。また、原料ガスの流量に対する窒素ガスの流量の比率は、0~70%であることが好ましく、30~60%であることがより好ましい。 Here, the flow rate of the source gas is preferably 10 to 1000 sccm, more preferably 100 to 800 sccm, and further preferably 200 to 700 sccm. The ratio of the nitrogen gas flow rate to the raw material gas flow rate is preferably 0 to 70%, more preferably 30 to 60%.
 また、成膜条件も、基本的に、用いる原料ガスや成膜する層の厚さ等に応じて、適宜、設定すればよい。この成膜時に、反応ガスの供給量、各反応ガスの供給バランス、成膜圧力、プラズマ励起電力、プラズマ励起周波数、バイアス等の付与電力、成膜対象物(例えば、基板等)温度、成膜前到達圧力、成膜対象物とプラズマ生成領域との距離等を、適宜、制御することにより、非遷移金属M1含有層を制御し、ガスバリア性膜の組成を制御することができる。例えば、電極間距離は10~40mmであることが好ましい。例えば、チャンバの成膜圧力は、1~100Paであることが好ましい。そして、例えば、プラズマ励起電力は、100~2000Wであることが好ましい。 Also, the film formation conditions may be set appropriately according to the source gas used, the thickness of the layer to be formed, and the like. At the time of film formation, the supply amount of the reaction gas, the supply balance of each reaction gas, the film formation pressure, the plasma excitation power, the plasma excitation frequency, the power applied such as the bias, the temperature of the film formation target (for example, the substrate), the film formation By appropriately controlling the front pressure, the distance between the film formation target and the plasma generation region, and the like, the non-transition metal M1 containing layer can be controlled, and the composition of the gas barrier film can be controlled. For example, the distance between the electrodes is preferably 10 to 40 mm. For example, the film forming pressure in the chamber is preferably 1 to 100 Pa. For example, the plasma excitation power is preferably 100 to 2000 W.
 以下、図4を参照しつつ、CVD法のなかでも好適な形態である真空プラズマCVD法について具体的に説明する。図4は、非遷移金属M1含有層の形成に用いられうる真空プラズマCVD装置の一例を示す模式図である。 Hereinafter, with reference to FIG. 4, the vacuum plasma CVD method, which is a preferred form among the CVD methods, will be described in detail. FIG. 4 is a schematic diagram showing an example of a vacuum plasma CVD apparatus that can be used to form the non-transition metal M1-containing layer.
 図4において、真空プラズマCVD装置101は、真空槽102を有しており、真空槽102の内部の底面側には、サセプタ105が配置されている。また、真空槽102の内部の天井側には、サセプタ105と対向する位置にカソード電極103が配置されている。真空槽102の外部には、熱媒体循環系106と、真空排気系107と、ガス導入系108と、高周波電源109が配置されている。熱媒体循環系106内には熱媒体が配置されている。熱媒体循環系106には、熱媒体を移動させるポンプと、熱媒体を加熱する加熱装置と、冷却する冷却装置と、熱媒体の温度を測定する温度センサと、熱媒体の設定温度を記憶する記憶装置とを有する加熱冷却装置160が設けられている。 4, the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface inside the vacuum chamber 102. Further, a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105. A heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102. A heat medium is disposed in the heat medium circulation system 106. The heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium. A heating / cooling device 160 having a storage device is provided.
 加熱冷却装置160は、熱媒体の温度を測定し、熱媒体を記憶された設定温度まで加熱または冷却し、サセプタ105に供給するように構成されている。供給された熱媒体はサセプタ105の内部を流れ、サセプタ105を加熱または冷却して加熱冷却装置160に戻る。このとき、熱媒体の温度は、設定温度よりも高温または低温になっており、加熱冷却装置160は熱媒体を設定温度まで加熱または冷却し、サセプタ105に供給する。このようにして冷却媒体はサセプタと加熱冷却装置160との間を循環し、サセプタ105は、供給された設定温度の熱媒体によって加熱または冷却される。 The heating / cooling device 160 is configured to measure the temperature of the heat medium, heat or cool the heat medium to a stored set temperature, and supply the heat medium to the susceptor 105. The supplied heat medium flows inside the susceptor 105, heats or cools the susceptor 105, and returns to the heating / cooling device 160. At this time, the temperature of the heat medium is higher or lower than the set temperature, and the heating and cooling device 160 heats or cools the heat medium to the set temperature and supplies the heat medium to the susceptor 105. In this manner, the cooling medium circulates between the susceptor and the heating / cooling device 160, and the susceptor 105 is heated or cooled by the supplied heating medium having the set temperature.
 真空槽102は真空排気系107に接続されており、この真空プラズマCVD装置101によって成膜処理を開始する前に、予め真空槽102の内部を真空排気するとともに、熱媒体を加熱して室温から設定温度まで昇温させておき、設定温度の熱媒体をサセプタ105に供給する。サセプタ105は使用開始時には室温であり、設定温度の熱媒体が供給されると、サセプタ105は昇温される。 The vacuum chamber 102 is connected to an evacuation system 107, and before the film formation process is started by the vacuum plasma CVD apparatus 101, the inside of the vacuum chamber 102 is evacuated in advance and the heat medium is heated from room temperature. The temperature is raised to a set temperature, and a heat medium having the set temperature is supplied to the susceptor 105. The susceptor 105 is at room temperature at the start of use, and when a heat medium having a set temperature is supplied, the susceptor 105 is heated.
 一定時間、設定温度の熱媒体を循環させた後、真空槽102内の真空雰囲気を維持しながら真空槽102内に成膜対象物(例えば、樹脂基板等)110を搬入し、サセプタ105上に配置する。 After circulating the heat medium at a set temperature for a certain period of time, the film formation object (for example, a resin substrate or the like) 110 is carried into the vacuum chamber 102 while maintaining the vacuum atmosphere in the vacuum chamber 102 and placed on the susceptor 105. Deploy.
 カソード電極103のサセプタ105に対向する面には多数のノズル(孔)が形成されている。カソード電極103はガス導入系108に接続されており、ガス導入系108からカソード電極103にCVDガスを導入すると、カソード電極103のノズルから真空雰囲気の真空槽102内にCVDガスが噴出される。カソード電極103は高周波電源109に接続されており、サセプタ105および真空槽102は接地電位に接続されている。 A large number of nozzles (holes) are formed on the surface of the cathode electrode 103 facing the susceptor 105. The cathode electrode 103 is connected to a gas introduction system 108. When a CVD gas is introduced from the gas introduction system 108 to the cathode electrode 103, the CVD gas is ejected from the nozzle of the cathode electrode 103 into the vacuum chamber 102 in a vacuum atmosphere. The cathode electrode 103 is connected to a high frequency power source 109, and the susceptor 105 and the vacuum chamber 102 are connected to the ground potential.
 ガス導入系108から真空槽102内にCVDガスを供給し、加熱冷却装置160から一定温度の熱媒体をサセプタ105に供給しながら高周波電源109を起動し、カソード電極103に高周波電圧を印加すると、導入されたCVDガスのプラズマが形成される。プラズマ中で活性化されたCVDガスがサセプタ105上の成膜対象物110の表面に到達すると、成膜対象物110の表面に非遷移金属M1含有層である薄膜が成長する。この際のサセプタ105とカソード電極103との距離は適宜設定される。 When a CVD gas is supplied from the gas introduction system 108 into the vacuum chamber 102, a high-frequency power source 109 is activated while supplying a heat medium having a constant temperature from the heating / cooling device 160 to the susceptor 105, and a high-frequency voltage is applied to the cathode electrode 103, Plasma of the introduced CVD gas is formed. When the CVD gas activated in the plasma reaches the surface of the film formation target 110 on the susceptor 105, a thin film that is a non-transition metal M1-containing layer grows on the surface of the film formation target 110. At this time, the distance between the susceptor 105 and the cathode electrode 103 is set as appropriate.
 また、原料ガスおよび分解ガスの流量は、原料ガスおよび分解ガス種等を考慮して適宜設定される。一実施形態として、原料ガスの流量は、30~300sccmであり、分解ガスの流量は100~1000sccmである。 Further, the flow rates of the raw material gas and the cracked gas are appropriately set in consideration of the raw material gas, the cracked gas type, and the like. In one embodiment, the flow rate of the source gas is 30 to 300 sccm, and the flow rate of the decomposition gas is 100 to 1000 sccm.
 薄膜成長中は、加熱冷却装置160から一定温度の熱媒体がサセプタ105に供給されており、サセプタ105は、熱媒体によって加熱または冷却され、一定温度に維持された状態で薄膜が形成される。一般に、薄膜を形成する際の成長温度の下限温度は、薄膜の膜質により決まっており、上限温度は、成膜対象物110上に既に形成されている薄膜のダメージの許容範囲により決まっている。下限温度や上限温度は形成する薄膜の材質や、既に形成されている薄膜の材質等によって異なるが、水蒸気バリア性の高い膜質を確保するための好ましい下限温度は50℃以上であり、上限温度は成膜対象物の耐熱温度以下であることが好ましい。 During the growth of the thin film, a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and the susceptor 105 is heated or cooled by the heating medium, and a thin film is formed while being maintained at a constant temperature. Generally, the lower limit temperature of the growth temperature when forming a thin film is determined by the film quality of the thin film, and the upper limit temperature is determined by the allowable range of damage to the thin film already formed on the film formation target 110. The lower limit temperature and the upper limit temperature vary depending on the material of the thin film to be formed, the material of the already formed thin film, etc., but the preferable lower temperature for ensuring the film quality with a high water vapor barrier property is 50 ° C. or higher, and the upper limit temperature is It is preferable that it is below the heat-resistant temperature of the film-forming target.
 真空プラズマCVD法で形成される薄膜の膜質と成膜温度との相関関係、および成膜対象物110が受けるダメージと成膜温度との相関関係を予め求め、下限温度・上限温度が決定される。例えば、真空プラズマCVDプロセス中の成膜対象物110の温度は50~250℃であることが好ましい。 The correlation between the film quality of the thin film formed by the vacuum plasma CVD method and the deposition temperature, and the correlation between the damage to the deposition object 110 and the deposition temperature are obtained in advance, and the lower limit temperature and the upper limit temperature are determined. . For example, the temperature of the film formation target 110 during the vacuum plasma CVD process is preferably 50 to 250 ° C.
 さらに、カソード電極103に13.56MHz以上の高周波電圧を印加してプラズマを形成した場合の、サセプタ105に供給する熱媒体の温度と成膜対象物110の温度の関係が予め測定されており、真空プラズマCVDプロセス中に成膜対象物110の温度を、下限温度以上、上限温度以下に維持するために、サセプタ105に供給する熱媒体の温度が求められる。例えば、下限温度(好ましくは50℃)が記憶され、下限温度以上の温度に温度制御された熱媒体がサセプタ105に供給されるように設定されている。サセプタ105から還流された熱媒体は、加熱または冷却され、設定温度(好ましくは、50℃以上)の熱媒体がサセプタ105に供給される。ここで、例えば、CVDガスとしてシランガスとアンモニアガスと窒素ガスとの混合ガスを供給し、成膜対象物110を下限温度以上上限温度以下の温度条件に維持することで、ケイ素含有層である窒化ケイ素(SiN)膜が形成される。 Furthermore, the relationship between the temperature of the heating medium supplied to the susceptor 105 and the temperature of the film formation object 110 when plasma is formed by applying a high frequency voltage of 13.56 MHz or more to the cathode electrode 103 is measured in advance. In order to maintain the temperature of the film formation target 110 at a value between the lower limit temperature and the upper limit temperature during the vacuum plasma CVD process, the temperature of the heat medium supplied to the susceptor 105 is required. For example, a lower limit temperature (preferably 50 ° C.) is stored, and a heat medium whose temperature is controlled to a temperature equal to or higher than the lower limit temperature is set to be supplied to the susceptor 105. The heat medium refluxed from the susceptor 105 is heated or cooled, and a heat medium having a set temperature (preferably 50 ° C. or higher) is supplied to the susceptor 105. Here, for example, by supplying a mixed gas of silane gas, ammonia gas, and nitrogen gas as a CVD gas, and maintaining the film formation object 110 at a temperature condition not lower than the lower limit temperature but not higher than the upper limit temperature, the nitridation that is a silicon-containing layer A silicon (SiN) film is formed.
 真空プラズマCVD装置101の起動直後は、サセプタ105は室温であり、サセプタ105から加熱冷却装置160に還流された熱媒体の温度は設定温度よりも低い。したがって、起動直後は、加熱冷却装置160は還流された熱媒体を加熱して設定温度に昇温させ、サセプタ105に供給することになる。この場合、サセプタ105および成膜対象物110は熱媒体によって加熱、昇温され、成膜対象物110は、下限温度以上、上限温度以下の範囲に維持される。 Immediately after the startup of the vacuum plasma CVD apparatus 101, the susceptor 105 is at room temperature, and the temperature of the heat medium returned from the susceptor 105 to the heating / cooling apparatus 160 is lower than the set temperature. Therefore, immediately after the activation, the heating / cooling device 160 heats the refluxed heat medium to raise the temperature to the set temperature, and supplies it to the susceptor 105. In this case, the susceptor 105 and the film formation target 110 are heated and heated by the heat medium, and the film formation target 110 is maintained in the range of the lower limit temperature or more and the upper limit temperature or less.
 複数枚の成膜対象物110に連続して薄膜を形成すると、プラズマから流入する熱によってサセプタ105が昇温する。この場合、サセプタ105から加熱冷却装置160に還流される熱媒体は下限温度(好ましくは50℃)よりも高温になっているため、加熱冷却装置160は熱媒体を冷却し、設定温度の熱媒体をサセプタ105に供給する。これにより、成膜対象物110を下限温度以上、上限温度以下の範囲に維持しながら薄膜を形成することができる。このように、加熱冷却装置160は、還流された熱媒体の温度が設定温度よりも低温の場合には熱媒体を加熱し、設定温度よりも高温の場合は熱媒体を冷却し、いずれの場合も設定温度の熱媒体をサセプタに供給しており、その結果、成膜対象物110は下限温度以上、上限温度以下の温度範囲が維持される。薄膜が所定膜厚に形成されたら、成膜対象物110を真空槽102の外部に搬出し、未成膜の成膜対象物110を真空槽102内に搬入し、上記と同様に、設定温度の熱媒体を供給しながら薄膜を形成する。 When a thin film is continuously formed on a plurality of deposition objects 110, the susceptor 105 is heated by heat flowing from the plasma. In this case, since the heat medium recirculated from the susceptor 105 to the heating / cooling device 160 is higher than the lower limit temperature (preferably 50 ° C.), the heating / cooling device 160 cools the heat medium, and the heat medium having a set temperature. Is supplied to the susceptor 105. Thereby, it is possible to form a thin film while maintaining the film formation target 110 in the range of the lower limit temperature or higher and the upper limit temperature or lower. Thus, the heating / cooling device 160 heats the heating medium when the temperature of the refluxed heating medium is lower than the set temperature, and cools the heating medium when the temperature is higher than the set temperature. In addition, a heat medium having a set temperature is supplied to the susceptor, and as a result, the film formation target 110 is maintained in a temperature range between the lower limit temperature and the upper limit temperature. When the thin film is formed to a predetermined film thickness, the film formation target 110 is carried out of the vacuum chamber 102, and the non-film formation target 110 is carried into the vacuum chamber 102. A thin film is formed while supplying a heat medium.
 ≪スパッタ≫
 スパッタ法による成膜は、成膜レートがより高く、より高い生産性を有するとの利点がある。また、非遷移金属M1含有層と、遷移金属M2含有層とを共にスパッタ法で形成すること、特に、成膜対象物を搬送しながら各層を連続してスパッタ法で形成することは、極めて高い生産性を有するとの利点がある。
≪Spatter≫
Film formation by sputtering is advantageous in that the film formation rate is higher and the productivity is higher. Further, it is extremely high to form both the non-transition metal M1 containing layer and the transition metal M2 containing layer by the sputtering method, and in particular, to form each layer continuously by the sputtering method while conveying the film formation target. There is an advantage of having productivity.
 スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロン(DMS)スパッタリング、イオンビームスパッタリング、ECRスパッタリングなどを単独でまたは2種以上組み合わせて用いることができる。また、ターゲットの印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング、およびRF(高周波)スパッタリングのいずれを用いてもよい。また、金属モードと、酸化物モードの中間である遷移モードを利用した反応性スパッタ法も用いることができる。反応性スパッタ法は、遷移領域となるようにスパッタ現象を制御することにより、高い成膜スピードで金属酸化物を成膜することが可能となるため好ましい。DCスパッタリングやDMSスパッタリングを行なう際には、そのターゲットに非遷移金属M1を含むターゲットを用い、さらに、プロセスガス中に酸素を導入することで、非遷移金属M1の酸化物の薄膜を形成することができる。また、RFスパッタリングで成膜する場合は、非遷移金属M1の酸化物のターゲットを用いることができる。プロセスガスに用いられる不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、非遷移金属M1の酸化物、窒化物、窒酸化物、炭酸化物等の薄膜を作ることができる。スパッタ法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、膜厚等に応じて適宜選択することができる。例えば、成膜圧力は、0.1~5Paであることが好ましい。また、例えば、スパッタ電源パワーは2~10W/cmであることが好ましい。 For the film formation by sputtering, bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more. The target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used. In addition, a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used. The reactive sputtering method is preferable because the metal oxide film can be formed at a high film formation speed by controlling the sputtering phenomenon so as to be in the transition region. When performing DC sputtering or DMS sputtering, a thin film of an oxide of non-transition metal M1 is formed by using a target containing non-transition metal M1 as a target and introducing oxygen into the process gas. Can do. In the case of forming a film by RF sputtering, an oxide target of the non-transition metal M1 can be used. As the inert gas used for the process gas, He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used. Furthermore, by introducing oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas, a thin film such as an oxide, nitride, nitride oxide, or carbonate of the non-transition metal M1 can be formed. Examples of film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, which can be appropriately selected according to the sputtering apparatus, film material, film thickness, and the like. For example, the film forming pressure is preferably 0.1 to 5 Pa. Further, for example, the sputtering power source power is preferably 2 to 10 W / cm 2 .
 ターゲットに含まれる非遷移金属M1の種類や、好ましい非遷移金属M1の種類は、領域(A)について説明した非遷移金属M1と同様である。また、上記非遷移金属M1を含むターゲットとしても、領域(A)について説明した非遷移金属M1に由来する化合物と同様のものを使用することができる。ここで、上記非遷移金属M1を含むターゲットの特に好ましい一例としては、市販のシリコンターゲットが挙げられる。また、上記非遷移金属M1を含むターゲットとしては、例えば、特開2000-026961号公報、特開2009-215651号公報、特開2003-160862号公報、特開2012-007218号公報等に記載されている、複数の元素を含むターゲットを用いることができる。 The kind of non-transition metal M1 included in the target and the preferred kind of non-transition metal M1 are the same as those of the non-transition metal M1 described for the region (A). Further, as the target including the non-transition metal M1, the same compound as the compound derived from the non-transition metal M1 described for the region (A) can be used. Here, as a particularly preferable example of the target including the non-transition metal M1, a commercially available silicon target can be given. Examples of the target containing the non-transition metal M1 are described in, for example, JP 2000-026961 A, JP 2009-215651 A, JP 2003-160862 A, and JP 2012-007218 A. A target containing a plurality of elements can be used.
 (塗布法)
 非遷移金属M1含有層は、塗布法によって形成してもよい。非遷移金属M1含有層は、非遷移金属M1を含む化合物を含有する塗布液を塗布および乾燥することで得ることができる。塗布法で形成された非遷移金属M1を含む層は、成膜時にパーティクル等の異物混入がないため、欠陥の少ない層となる。非遷移金属M1含有層は、単層でもよいし2層以上の積層構造であってもよい。
(Coating method)
The non-transition metal M1 containing layer may be formed by a coating method. A non-transition metal M1 content layer can be obtained by apply | coating and drying the coating liquid containing the compound containing non-transition metal M1. The layer containing the non-transition metal M1 formed by the coating method is a layer having few defects because there is no contamination of foreign substances such as particles during film formation. The non-transition metal M1 containing layer may be a single layer or a laminated structure of two or more layers.
 塗布法によって形成される非遷移金属M1含有層は、XPS組成分析を行った際に得られる原子組成分布プロファイルの結果から算出される、非遷移金属M1原子に対する窒素原子の存在原子比(N/M1)の、非遷移金属M1含有層の表層側(遷移金属M2含有層と接する側の面側)から30nm以内の領域における厚さ方向の最大値が0.50以上であることが好ましく、0.90以上であることが極めて好ましい。表層側から30nm以内の領域における非遷移金属M1原子に対する窒素原子の存在原子比(N/M1)の厚さ方向の最大値が0.90以上であると、混合領域内において、領域(a)がより形成されやすくなる。また、遷移金属M2含有層の形成において、例えば、原料として遷移金属M2の窒化物や酸窒化物を用いること、および成膜中に窒素を導入すること等によって、遷移金属M2含有層を、窒素を含む層として形成する際には、混合領域内において、領域(a)がより形成されやすくなる。この際、遷移金属M2含有層として窒素を含む層を形成する際には、非遷移金属M1含有層の表層側から30nm以内の領域における非遷移金属M1原子に対する窒素原子の存在原子比(N/M1)の厚さ方向の最大値が0.50以上であることが好ましい。この理由は、上記範囲であると、より良好に領域(a)を形成することができるからである。同様の観点から、遷移金属M2含有層として窒素を含む層を形成する際には、非遷移金属M1含有層の表層側から30nm以内の領域における非遷移金属M1原子に対する窒素原子の存在原子比(N/M1)の厚さ方向の最大値が、0.60以上であることがより好ましく、0.90以上であることが極めて好ましい。また、非遷移金属M1含有層の表層側から30nm以内の領域における非遷移金属M1原子に対する窒素原子の存在原子比(N/M1)の厚さ方向の最大値は、1.4以下であることが好ましい。ここで、非遷移金属M1含有層の表層側から30nm以内の領域の最大値の好ましい条件を規定している理由は、塗布法は厚さ方向で組成の分布が大きいことから、当該最大値が領域(a)の形成に大きな影響を与えるからである。なお、ここでいうXPS測定分析および原子組成分布プロファイルは、前記原子組成プロファイルの説明で述べたものと同様のものを用いている。 The non-transition metal M1 containing layer formed by the coating method has an atomic ratio (N / N) of nitrogen atoms to non-transition metal M1 atoms calculated from the result of the atomic composition distribution profile obtained when XPS composition analysis is performed. The maximum value in the thickness direction in a region within 30 nm from the surface layer side (the surface side in contact with the transition metal M2 containing layer) of the non-transition metal M1 containing layer of M1) is preferably 0.50 or more. It is very preferable that it is 90 or more. When the maximum value in the thickness direction of the atomic ratio (N / M1) of nitrogen atoms to non-transition metal M1 atoms in the region within 30 nm from the surface layer side is 0.90 or more, the region (a) Is more easily formed. Further, in the formation of the transition metal M2 containing layer, the transition metal M2 containing layer is made to be nitrogen by, for example, using a transition metal M2 nitride or oxynitride as a raw material and introducing nitrogen during film formation. When forming as a layer containing, the region (a) is more easily formed in the mixed region. At this time, when a layer containing nitrogen is formed as the transition metal M2 containing layer, the atomic ratio of nitrogen atoms to nontransition metal M1 atoms in a region within 30 nm from the surface side of the nontransition metal M1 containing layer (N / The maximum value in the thickness direction of M1) is preferably 0.50 or more. This is because the region (a) can be formed more favorably within the above range. From the same viewpoint, when forming a layer containing nitrogen as the transition metal M2 containing layer, the atomic ratio of nitrogen atoms to nontransition metal M1 atoms in a region within 30 nm from the surface side of the nontransition metal M1 containing layer ( The maximum value in the thickness direction of N / M1) is more preferably 0.60 or more, and extremely preferably 0.90 or more. Moreover, the maximum value in the thickness direction of the atomic ratio (N / M1) of nitrogen atoms to non-transition metal M1 atoms in the region within 30 nm from the surface layer side of the non-transition metal M1 containing layer is 1.4 or less. Is preferred. Here, the reason why the preferable condition of the maximum value of the region within 30 nm from the surface layer side of the non-transition metal M1 containing layer is defined is that the coating method has a large composition distribution in the thickness direction. This is because it greatly affects the formation of the region (a). The XPS measurement analysis and the atomic composition distribution profile used here are the same as those described in the description of the atomic composition profile.
 以下では、非遷移金属M1がケイ素(Si)である場合を例として説明するが、本発明はこれに限定されるものではない。 Hereinafter, the case where the non-transition metal M1 is silicon (Si) will be described as an example, but the present invention is not limited to this.
 ≪ケイ素含有化合物≫
 Siを含有する層(本明細書では、ケイ素含有層とも称する)は、ケイ素含有化合物を含有する塗布液を塗布および乾燥することで得ることができる。ケイ素含有化合物としては、例えば、ポリシロキサン、ポリシルセスキオキサン、ポリシラザン、ポリシロキサザン、ポリシラン、ポリカルボシラン等を挙げることができる。なお、ポリシロキサン、ポリシルセスキオキサン、ポリシラザン、ポリシロキサザン、ポリシラン、ポリカルボシランとしては、公知の化合物を使用することができる。これらの中でも、ケイ素-窒素結合、ケイ素-水素結合、およびケイ素-ケイ素結合からなる群より選択される少なくとも1種を有することが好ましい。ケイ素含有化合物のより好ましい具体例としては、ケイ素-窒素結合とケイ素-水素結合とを有するポリシラザン、ケイ素-窒素結合を有するポリシロキサザン、ケイ素-水素結合を有するポリシロキサン、ケイ素-水素結合を有するポリシルセスキオキサン、ケイ素-ケイ素結合を有するポリシランを好ましく用いることができる。ケイ素含有化合物は、単独でもまたは2種以上組み合わせても用いることができる。
≪Silicon-containing compound≫
A layer containing Si (also referred to herein as a silicon-containing layer) can be obtained by applying and drying a coating solution containing a silicon-containing compound. Examples of the silicon-containing compound include polysiloxane, polysilsesquioxane, polysilazane, polysiloxazan, polysilane, polycarbosilane, and the like. In addition, a well-known compound can be used as polysiloxane, polysilsesquioxane, polysilazane, polysiloxazan, polysilane, and polycarbosilane. Among these, it is preferable to have at least one selected from the group consisting of a silicon-nitrogen bond, a silicon-hydrogen bond, and a silicon-silicon bond. More preferable specific examples of the silicon-containing compound include polysilazane having a silicon-nitrogen bond and silicon-hydrogen bond, polysiloxazan having a silicon-nitrogen bond, polysiloxane having a silicon-hydrogen bond, and having a silicon-hydrogen bond. Polysilsesquioxane and polysilane having a silicon-silicon bond can be preferably used. The silicon-containing compounds can be used alone or in combination of two or more.
 ケイ素含有化合物としては、ポリシラザンがより好ましい。ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、および両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。ポリシラザンは、特に制限されず公知のものを用いることができるが、下記の一般式(I)の構造を有することがさらに好ましい。 As the silicon-containing compound, polysilazane is more preferable. Polysilazane is a polymer having a silicon-nitrogen bond, and ceramics such as Si 2 N, Si 3 N 4 , and both intermediate solid solutions SiO z N y having a bond such as Si—N, Si—H, and N—H. It is a precursor inorganic polymer. The polysilazane is not particularly limited and a known one can be used, but it is more preferable to have a structure of the following general formula (I).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(I)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基であることが好ましい。この際、R、RおよびRは、それぞれ、同じであってもあるいは異なるものであってもよい。また、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、一般式(I)で表される構造は環構造を形成していてもよい。 In general formula (I), R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. Is preferred. At this time, R 1 , R 2 and R 3 may be the same or different. N is an integer and is preferably determined so that the polysilazane having the structure represented by the general formula (I) has a number average molecular weight of 150 to 150,000 g / mol. The structure represented by the general formula (I) may form a ring structure.
 これらの中でも、一般式(I)で表される構造を有する化合物において、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造とが存在する構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。 Among these, in the compound having the structure represented by the general formula (I), perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferable. Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
 本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、特開平5-238827号公報、特開平6-122852号公報、特開平6-240208号公報、特開平6-299118号公報、特開平6-306329号公報、特開平7-196986号公報)等に記載のものが挙げられる。 Other examples of polysilazane that can be used in the present invention are not limited to the following, and examples thereof include JP-A-5-238827, JP-A-6-122852, JP-A-6-240208, and JP-A-6-299118. No. 6, JP-A-6-306329, JP-A-7-196986) and the like.
 ポリシラザンは、市販品を用いてもよい。市販品は、有機溶媒に溶解した溶液状態であるものが一般的であり、この場合、市販品をそのまま層(B)形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、メルク株式会社製のNN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。 Polysilazane may be a commercially available product. A commercially available product is generally in a solution state dissolved in an organic solvent. In this case, the commercially available product can be used as it is as the coating solution for forming the layer (B). Examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by Merck Co., Ltd. .
 これらポリシラザンまたはポリシラザン溶液は、単独でもまたは2種以上組み合わせても用いることができる。 These polysilazanes or polysilazane solutions can be used alone or in combination of two or more.
 後述する改質処理前のケイ素含有層中におけるポリシラザンの含有率としては、改質処理前の非遷移金属M1含有層の全質量を100質量%としたとき、100質量%でありうる。また、改質処理前のケイ素含有層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10質量%以上99.9質量%以下であることが好ましく、10質量%以上99.5質量%以下であることがより好ましく、10質量%以上99質量%以下であることがさらに好ましく、40質量%以上98質量%以下であることがよりさらに好ましく、70質量%以上97質量%以下であることが特に好ましく、90質量%以上97質量%以下であることが極めて好ましく、93質量%以上97質量%以下であることが最も好ましい。 The content of polysilazane in the silicon-containing layer before the modification treatment, which will be described later, may be 100 mass% when the total mass of the non-transition metal M1 containing layer before the modification treatment is 100 mass%. When the silicon-containing layer before the modification treatment contains a material other than polysilazane, the content of polysilazane in the layer is preferably 10% by mass or more and 99.9% by mass or less, and preferably 10% by mass or more. More preferably, it is 99.5 mass% or less, More preferably, it is 10 mass% or more and 99 mass% or less, More preferably, it is 40 mass% or more and 98 mass% or less, 70 mass% or more and 97 mass% or less. % Is particularly preferably 90% by mass or more and 97% by mass or less, and most preferably 93% by mass or more and 97% by mass or less.
 ≪ケイ素含有層形成用塗布液≫
 ケイ素含有層形成用塗布液は、ケイ素含有化合物を必須として含む液体である。ケイ素含有層形成用塗布液は、溶剤をさらに含んでいてもよい。溶剤としては、ケイ素含有化合物を溶解できるものであれば特に制限されないが、ケイ素含有化合物と容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ケイ素含有化合物に対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターペン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン化炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ-およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
≪Coating liquid for forming silicon-containing layer≫
The coating liquid for forming a silicon-containing layer is a liquid containing a silicon-containing compound as an essential component. The coating solution for forming a silicon-containing layer may further contain a solvent. The solvent is not particularly limited as long as it can dissolve the silicon-containing compound, but does not include water and reactive groups (for example, hydroxyl group or amine group) that easily react with the silicon-containing compound, and silicon. An organic solvent inert to the contained compound is preferred, and an aprotic organic solvent is more preferred. Specifically, the solvent is an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, terpenes, etc. Hydrogen solvents; Halogenated hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Examples of ethers include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like. The solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
 ケイ素含有層形成用塗布液におけるケイ素含有化合物の濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは0.5~80質量%、より好ましくは1~50質量%、さらに好ましくは2~40質量%である。 The concentration of the silicon-containing compound in the coating solution for forming a silicon-containing layer is not particularly limited and varies depending on the film thickness of the layer and the pot life of the coating solution, but is preferably 0.5 to 80% by mass, more preferably 1 to 50% by mass, more preferably 2 to 40% by mass.
 ケイ素含有層の改質を行う場合には、改質を促進するために、ケイ素含有層形成用塗布液は、触媒を含有することが好ましい。触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1~10質量%、より好ましくは0.5~7質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行による過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。 When the silicon-containing layer is modified, the silicon-containing layer-forming coating solution preferably contains a catalyst in order to promote the modification. The catalyst is preferably a basic catalyst, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′— Amine catalysts such as tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, and Pd compounds such as propionic acid Pd And metal catalysts such as Rh compounds such as Rh acetylacetonate and N-heterocyclic compounds. Of these, it is preferable to use an amine catalyst. The concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on the silicon compound. By setting the amount of the catalyst to be in this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like.
 また、ケイ素含有層形成用塗布液は、他の添加剤をさらに含んでいてもよい。他の添加剤としては、特に制限されず、公知の添加剤を用いることができ、例えば、セルロースエーテル類、セルロースエステル類、天然樹脂、合成樹脂、縮合樹脂等が挙げられる。 Further, the coating solution for forming a silicon-containing layer may further contain other additives. Other additives are not particularly limited, and known additives can be used, and examples thereof include cellulose ethers, cellulose esters, natural resins, synthetic resins, and condensation resins.
 ≪塗布方法≫
 ケイ素含有層形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用されうる。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、ダイコート法、グラビア印刷法等が挙げられる。
≪Application method≫
As a method of applying the silicon-containing layer forming coating solution, a conventionally known appropriate wet coating method can be employed. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method and the like. It is done.
 塗布厚さは、好ましい厚さや目的に応じて適切に設定されうる。 The coating thickness can be appropriately set according to the preferred thickness and purpose.
 塗布液を塗布した後は、塗膜を乾燥させる。塗膜を乾燥することによって、塗膜中に含有されうる有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適な層(B)が得られうる。なお、残存する溶媒は後に除去されうる。 After applying the coating solution, the coating film is dried. By drying the coating film, an organic solvent that can be contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable layer (B) can be obtained. The remaining solvent can be removed later.
 塗膜の乾燥温度は、50~200℃であることが好ましい。例えば、ガスバリア性膜をガスバリア性フィルムの形態で用いる場合であって、かつガラス転移温度(Tg)が70℃のポリエチレンテレフタレート基材を用いる場合には、乾燥温度は、熱による樹脂基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が50~150℃である場合には乾燥時間は30分以内に設定することが好ましい。この際、乾燥時間の下限は、目的の乾燥状態の達成が可能な限り特に制限されないが、例えば30秒以上であることが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。 The drying temperature of the coating film is preferably 50 to 200 ° C. For example, when a gas barrier film is used in the form of a gas barrier film and a polyethylene terephthalate substrate having a glass transition temperature (Tg) of 70 ° C. is used, the drying temperature is the deformation of the resin substrate due to heat. In view of the above, it is preferable to set the temperature to 150 ° C. or lower. The temperature can be set by using a hot plate, oven, furnace or the like. The drying time is preferably set to a short time. For example, when the drying temperature is 50 to 150 ° C., the drying time is preferably set within 30 minutes. At this time, the lower limit of the drying time is not particularly limited as long as the desired dry state can be achieved, but it is preferably, for example, 30 seconds or more. The drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
 ケイ素含有層形成用塗布液を塗布して得られた塗膜は、真空紫外線の照射前または真空紫外線の照射中に水分を除去する工程を含んでいてもよい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。露点温度は4℃以下(温度25℃/相対湿度25%RH)であることが好ましく、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、-50℃以上である。 The coating film obtained by applying the silicon-containing layer forming coating solution may include a step of removing moisture before irradiation with vacuum ultraviolet rays or during irradiation with vacuum ultraviolet rays. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature. The dew point temperature is preferably 4 ° C. or lower (temperature 25 ° C./relative humidity 25% RH), and the maintained time is preferably 1 minute or longer. The lower limit of the dew point temperature is not particularly limited, but is usually −50 ° C. or higher.
 ≪改質(転化)≫
 ケイ素含有化合物を含む塗膜(ケイ素含有層形成用塗布液)をそのままケイ素含有層とすることができるが、得られた塗膜に対して改質処理を行い、酸窒化ケイ素等への転化反応を行うことによりケイ素含有層を形成してもよい。改質方法としては、特に制限されず、公知の方法を用いることができるが、真空紫外線照射を行う方法であることが好ましい。真空紫外線照射は、高温高湿環境での水蒸気バリア性をさらに向上させるとの利点がある。また、真空紫外線照射は、ケイ素含有層の形成と、遷移金属M2含有層の形成との間における、経時保存の環境影響による水蒸気バリア性の劣化がより抑制されるとの利点がある。
≪Reformation (conversion) ≫
A coating film containing a silicon-containing compound (coating liquid for forming a silicon-containing layer) can be used as it is as a silicon-containing layer, but the resulting coating film is subjected to a modification treatment to convert it into silicon oxynitride or the like. A silicon-containing layer may be formed by performing the above. The modification method is not particularly limited, and a known method can be used, but a method of performing vacuum ultraviolet irradiation is preferable. Vacuum ultraviolet irradiation has the advantage of further improving the water vapor barrier property in a high temperature and high humidity environment. Moreover, vacuum ultraviolet irradiation has the advantage that the deterioration of the water vapor barrier property due to the environmental influence of storage over time between the formation of the silicon-containing layer and the formation of the transition metal M2 containing layer is further suppressed.
 真空紫外線照射は、バッチ処理にも連続処理にも適合可能であり、適宜選定することができる。例えば、バッチ処理の場合には、紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、対象が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、ケイ素含有層の組成や濃度、また成膜対象物の種類にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。 Vacuum ultraviolet irradiation is applicable to both batch processing and continuous processing, and can be selected as appropriate. For example, in the case of batch processing, it can be processed in an ultraviolet baking furnace equipped with an ultraviolet ray generation source. The ultraviolet baking furnace itself is generally known. For example, an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used. Further, when the object is a long film, it can be converted to ceramics by continuously irradiating ultraviolet rays in a drying zone equipped with the ultraviolet ray generation source as described above while being conveyed. The time required for ultraviolet irradiation is generally from 0.1 second to 10 minutes, preferably from 0.5 second to 3 minutes, depending on the composition and concentration of the silicon-containing layer and the type of film formation target.
 真空紫外線照射による改質は、ケイ素含有化合物(特にはポリシラザン化合物)内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸窒化ケイ素を含む膜の形成を行う方法である。なお、エキシマ照射処理を行う際は、熱処理を併用することが好ましい。 The modification by vacuum ultraviolet irradiation uses an optical energy of 100 to 200 nm, preferably an optical energy having a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in a silicon-containing compound (particularly a polysilazane compound), and bonds the atoms. A method of forming a film containing silicon oxynitride at a relatively low temperature (about 200 ° C. or less) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by the action of only photons called photon processes It is. In addition, when performing an excimer irradiation process, it is preferable to use heat processing together.
 真空紫外線源は、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。 The vacuum ultraviolet source is preferably an excimer radiator (eg, an Xe excimer lamp) having a maximum emission at about 172 nm, a low pressure mercury vapor lamp having an emission line at about 185 nm, and medium and high pressure mercury vapor having a wavelength component of 230 nm or less. A lamp, and an excimer lamp having a maximum emission at about 222 nm.
 このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。 Among these, the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
 また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間で塗膜の改質を実現できる。 Also, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. The coating film can be modified in a short time by the high energy of the active oxygen, ozone and ultraviolet radiation.
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。 ¡Excimer lamps have high light generation efficiency and can be lit with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the irradiation object is suppressed. For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.
 真空紫外線は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。 The vacuum ultraviolet ray may be generated by plasma formed by a gas containing at least one of CO, CO 2 and CH 4 .
 真空紫外線照射時の酸素濃度は、10~20,000体積ppm(0.001~2体積%)とすることが好ましく、50~10,000体積ppm(0.005~1体積%)とすることがより好ましい。また、転化プロセスの間の水蒸気濃度は、好ましくは1,000~4,000体積ppmの範囲である。 The oxygen concentration at the time of vacuum ultraviolet irradiation is preferably 10 to 20,000 volume ppm (0.001 to 2 volume%), and preferably 50 to 10,000 volume ppm (0.005 to 1 volume%). Is more preferable. Also, the water vapor concentration during the conversion process is preferably in the range of 1,000 to 4,000 volume ppm.
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることがより好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 As the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays, it is preferable to use a dry inert gas, and more preferable to use dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 真空紫外線照射工程において、塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm~10W/cmであると好ましく、30mW/cm~200mW/cmであるとより好ましく、50mW/cm~160mW/cmであるとさらに好ましい。1mW/cm以上であれば、改質効率が向上し、10W/cm以下であれば、塗膜に生じ得るアブレーションや、成膜対象物へのダメージを低減することができる。 In the vacuum ultraviolet ray irradiation step, the illuminance of the vacuum ultraviolet ray on the coating surface received by the coating film is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2 , further preferably at 50mW / cm 2 ~ 160mW / cm 2. If it is 1 mW / cm 2 or more, the reforming efficiency is improved, and if it is 10 W / cm 2 or less, ablation that may occur in the coating film and damage to the film formation target can be reduced.
 塗膜の表面における真空紫外線の照射エネルギー量(照射量)は、0.1~10J/cmであることが好ましく、0.1~7J/cmであることがより好ましい。この範囲であれば、過剰改質によるクラックの発生や、成膜対象物の熱変形を抑制することができ、また生産性が向上する。 The amount of irradiation energy (irradiation amount) of vacuum ultraviolet rays on the surface of the coating film is preferably 0.1 to 10 J / cm 2 , and more preferably 0.1 to 7 J / cm 2 . If it is this range, generation | occurrence | production of the crack by excessive reforming and the thermal deformation of the film-forming target object can be suppressed, and productivity will improve.
 上記説明した塗布法で形成されたケイ素含有層をはじめ、塗布法で形成された非遷移金属M1を含む層の厚さは、10~500nmであることが好ましく、30~300nmであることがより好ましい。 The thickness of the layer containing the non-transition metal M1 formed by the coating method, including the silicon-containing layer formed by the coating method described above, is preferably 10 to 500 nm, more preferably 30 to 300 nm. preferable.
 塗布法によって非遷移金属M1含有層を形成する場合は、例えば、前記非遷移金属(M1)を含有する成膜原料種(ポリシラザン種等)、触媒種、触媒含有量、塗布膜厚、乾燥温度・時間、改質方法、改質条件からなる群から選択される1種または2種以上の条件を調節することで、領域(a)の組成および厚さを制御することができる。 When the non-transition metal M1 containing layer is formed by a coating method, for example, a film forming raw material type (polysilazane type or the like) containing the non-transition metal (M1), a catalyst type, a catalyst content, a coating film thickness, and a drying temperature. The composition and thickness of the region (a) can be controlled by adjusting one or more conditions selected from the group consisting of time, modification method, and modification conditions.
 〔遷移金属M2含有層の形成方法〕
 遷移金属M2含有層を形成する方法としては、特に制限されず、気相成膜法や塗布法が挙げられる。中でも、成膜対象物を搬送しながら、非遷移金属M1含有層と遷移金属M2含有層とを連続して形成することができ、生産性に優れるとの観点から、気相成膜法であることが好ましい。ここで、成膜対象物を搬送しながら各層を成膜する方法としては、例えば、ロールtoロール法が挙げられる。すなわち、本発明の好ましい一形態に係る製造方法は、遷移金属M2含有層を、気相成膜法で形成することを含む、製造方法である。
[Method of forming transition metal M2 containing layer]
The method for forming the transition metal M2 containing layer is not particularly limited, and examples thereof include a vapor phase film forming method and a coating method. Among these, from the viewpoint that the non-transition metal M1-containing layer and the transition metal M2-containing layer can be continuously formed while conveying the film formation target, and it is excellent in productivity, this is a vapor phase film formation method. It is preferable. Here, as a method of forming each layer while conveying the film formation target, for example, a roll-to-roll method may be mentioned. That is, the manufacturing method according to a preferred embodiment of the present invention is a manufacturing method including forming the transition metal M2 containing layer by a vapor deposition method.
 本発明の一形態において、遷移金属M2含有層を形成するための原料は、遷移金属M2に由来する化合物(遷移金属M2単体または遷移金属M2を含む化合物)であれば、特に制限されない。また、遷移金属M2含有層を形成するための原料としては、その他の金属に由来する物質(金属単体、金属を含む化合物)がさらに含まれていてもよい。このとき、遷移金属M2含有層の原料の中に、非遷移金属M1含有層を形成しうる原料、すなわち非遷移金属M1に由来する物質(非遷移金属M1単体、非遷移金属M1を含む化合物)がさらに含まれていてもよい。この場合は、層の分類を以下のようにして決定する。まず、遷移金属M2含有層のみを、ガスバリア性膜の製造と同条件で、成膜対象物上に別途成膜する。次いで、構成成分に含まれる金属元素の原子組成比(atm%)、および非遷移金属M2の原子組成比(atm%)を、前述したガスバリア性膜の原子組成プロファイルと同様に、XPS分析方法にて測定する。そして、作製した層中の構成成分に含まれる金属元素の中で、原子組成比として遷移金属M2の含有量が最大となる層を遷移金属M2含有層の形成として扱うものとする。 In one embodiment of the present invention, the raw material for forming the transition metal M2 containing layer is not particularly limited as long as it is a compound derived from the transition metal M2 (a compound containing the transition metal M2 alone or the transition metal M2). Moreover, as a raw material for forming a transition metal M2 content layer, the substance (A metal simple substance, the compound containing a metal) derived from other metals may further be contained. At this time, in the raw material of the transition metal M2 containing layer, the raw material capable of forming the non-transition metal M1 containing layer, that is, the substance derived from the non-transition metal M1 (non-transition metal M1 simple substance, compound containing non-transition metal M1) May further be included. In this case, the layer classification is determined as follows. First, only the transition metal M2 containing layer is separately formed on the object to be formed under the same conditions as the production of the gas barrier film. Next, the atomic composition ratio (atm%) of the metal element contained in the constituent components and the atomic composition ratio (atm%) of the non-transition metal M2 are measured in the XPS analysis method in the same manner as the atomic composition profile of the gas barrier film described above. To measure. Then, among the metal elements contained in the constituent components in the produced layer, the layer having the maximum transition metal M2 content as the atomic composition ratio is treated as the formation of the transition metal M2 containing layer.
 (気相成膜法)
 気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法等の物理気相成長(PVD)法、化学気相成長(chemical vapor deposition、CVD)法、ALD(Atomic Layer Deposition)などの化学気相成長法が挙げられる。中でも、成膜対象物へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、物理気相成長法が好ましく、スパッタ法またはCVD法がより好ましく、スパッタ法がさらに好ましい。
(Vapor deposition method)
The vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, and ion plating, chemical vapor deposition (CVD), and ALD. Examples thereof include chemical vapor deposition methods such as (Atomic Layer Deposition). Among these, the physical vapor deposition method is preferable, the sputtering method or the CVD method is more preferable, and the sputtering method is more preferable because the film formation is possible without damaging the object to be formed and the productivity is high.
 スパッタ法による成膜は、成膜レートがより高く、より高い生産性を有するとの利点がある。また、非遷移金属M1含有層と、遷移金属M2含有層とを共にスパッタ法で形成すること、特に、成膜対象物を搬送しながら各層を連続してスパッタ法で形成することは、極めて高い生産性を有するとの利点がある。 Film formation by sputtering has the advantage of higher film formation rate and higher productivity. Further, it is extremely high to form both the non-transition metal M1 containing layer and the transition metal M2 containing layer by the sputtering method, and in particular, to form each layer continuously by the sputtering method while conveying the film formation target. There is an advantage of having productivity.
 スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロン(DMS)スパッタリング、イオンビームスパッタリング、ECRスパッタリングなどを単独でまたは2種以上組み合わせて用いることができる。スパッタ法の詳細は、以下で特に説明する内容を除いては上記〔非遷移金属M1含有層の形成〕の項で説明した内容と同様であるため、ここでは説明を省略する。 For the film formation by sputtering, bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more. The details of the sputtering method are the same as the contents described in the above section [Formation of Non-Transition Metal M1 Containing Layer] except for the contents specifically described below, and thus the description thereof is omitted here.
 スパッタ法で用いられるターゲットに含まれる遷移金属M2の種類や、好ましい遷移金属M2の種類は、領域(B)について説明した遷移金属M2と同様である。また、上記遷移金属M2を含むターゲットとしても、領域(B)について説明した遷移金属M2に由来する化合物と同様のものを使用することができる。ここで、遷移金属M2を含むターゲットとしては、成膜レートがより高く、より高い生産性を有するとの観点から、遷移金属M2の酸化物を含むターゲットであることが好ましく、高温高湿環境での水蒸気バリア性をさらに向上させるとの観点から、酸素欠損型の遷移金属M2の酸化物であることがより好ましい。ここで、遷移金属M2を含むターゲットの好ましい例としては、市販の酸素欠損型酸化ニオブターゲットや、市販のタンタルターゲット等が挙げられる。 The type of transition metal M2 included in the target used in the sputtering method and the preferable type of transition metal M2 are the same as those of the transition metal M2 described for the region (B). Further, as the target including the transition metal M2, the same compound as the compound derived from the transition metal M2 described for the region (B) can be used. Here, the target containing the transition metal M2 is preferably a target containing an oxide of the transition metal M2 from the viewpoint of higher film formation rate and higher productivity. From the viewpoint of further improving the water vapor barrier property, an oxygen-deficient transition metal M2 oxide is more preferable. Here, as a preferable example of the target containing the transition metal M2, a commercially available oxygen-deficient niobium oxide target, a commercially available tantalum target, and the like can be given.
 ここで、スパッタ法によって遷移金属M2含有層として遷移金属M2の酸化物膜を形成する際には、例えば、プロセスガスとして不活性ガスと酸素ガスとの混合ガスを用いればよく、この際、全圧に対する酸素分圧の割合は0~40%であることが好ましく、5~30%であることがより好ましい。 Here, when forming the transition metal M2 oxide film as the transition metal M2 containing layer by sputtering, for example, a mixed gas of an inert gas and an oxygen gas may be used as the process gas. The ratio of the oxygen partial pressure to the pressure is preferably 0 to 40%, more preferably 5 to 30%.
 気相成膜法によって遷移金属M2含有層を形成する場合は、例えば、成膜原料における前記遷移金属(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、成膜時の磁力、および、成膜時の電力からなる群から選択される1種または2種以上の条件を調節することで、領域(a)の組成および厚さを制御することができる。ここで、混合領域および領域(a)の厚さを制御する方法としては、遷移金属M2含有層の成膜時間を制御する方法が特に好ましい。 When the transition metal M2 containing layer is formed by the vapor deposition method, for example, the ratio of the transition metal (M2) and oxygen in the film forming raw material, the ratio of the inert gas and the reactive gas during film formation, By adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation, The composition and thickness of region (a) can be controlled. Here, as a method of controlling the thicknesses of the mixed region and the region (a), a method of controlling the film formation time of the transition metal M2 containing layer is particularly preferable.
 気相成膜法によって遷移金属M2含有層を形成する際には、窒素を含む環境下で成膜を行うことが好ましい。このとき、遷移金属M2含有層は、窒化物膜や、酸窒化物膜等の窒素を含む膜となりうる。そして、遷移金属M2含有層が窒素を含むことで、非遷移金属M1含有層と、遷移金属M2含有層との界面における物質の自発的な拡散や、遷移金属M2含有層を形成する際における物質の非遷移金属M1含有層への入り込みによって、界面近傍領域に窒素が導入されやすくなる。そして、その結果、混合領域において、非遷移金属M1原子に対する窒素原子の存在原子比(y)は、前記式(2)を満たす範囲内の値へとより容易に制御されうる。したがって、本発明の好ましい一形態に係るガスバリア性膜の製造方法は、上記気相成膜法の雰囲気が窒素を含む雰囲気である、製造方法である。窒素の導入方法としては、特に制限されないが、例えば、スパッタ法で遷移金属M2含有層として遷移金属M2の窒化物膜を形成する際には、例えば、プロセスガスとして不活性ガスと窒素ガスとの混合ガスを用いればよい。この際、全圧に対する窒素分圧の割合は、10~90%であることが好ましく、20~80%であることがより好ましい。 When forming the transition metal M2 containing layer by a vapor phase film forming method, it is preferable to form the film in an environment containing nitrogen. At this time, the transition metal M2 containing layer can be a film containing nitrogen, such as a nitride film or an oxynitride film. The transition metal M2 containing layer contains nitrogen, so that spontaneous diffusion of the substance at the interface between the non-transition metal M1 containing layer and the transition metal M2 containing layer, and the substance in forming the transition metal M2 containing layer By entering the non-transition metal M1-containing layer, nitrogen is easily introduced into the vicinity of the interface. As a result, in the mixed region, the existing atomic ratio (y) of the nitrogen atom to the non-transition metal M1 atom can be more easily controlled to a value within the range satisfying the formula (2). Therefore, the method for manufacturing a gas barrier film according to a preferred embodiment of the present invention is a manufacturing method in which the atmosphere of the vapor phase film forming method is an atmosphere containing nitrogen. The method for introducing nitrogen is not particularly limited. For example, when a transition metal M2 nitride film is formed as the transition metal M2 containing layer by sputtering, for example, an inert gas and a nitrogen gas are used as process gases. A mixed gas may be used. At this time, the ratio of the nitrogen partial pressure to the total pressure is preferably 10 to 90%, and more preferably 20 to 80%.
 遷移金属M2含有層を形成する際の成膜設定厚さは、十分な厚さの領域(a)を形成し、高温高湿環境でのより高い水蒸気バリア性を得るとの観点から、3nm以上であることが好ましく、5nm以上であることがより好ましい。また、これ以上厚さを増しても領域(a)の厚さは飽和するため、より薄い膜厚で高温高湿環境での高い水蒸気バリア性を得るとの観点、またより優れた屈曲性を得るとの観点から、30nm以下であることが好ましく、20nm以下であることがより好ましく、15nm以下であることがさらに好ましい。 The film formation setting thickness when forming the transition metal M2 containing layer is 3 nm or more from the viewpoint of forming a sufficiently thick region (a) and obtaining a higher water vapor barrier property in a high temperature and high humidity environment. It is preferable that it is 5 nm or more. Further, since the thickness of the region (a) is saturated even if the thickness is further increased, the viewpoint of obtaining a high water vapor barrier property in a high-temperature and high-humidity environment with a thinner film thickness, and better flexibility From the viewpoint of obtaining, it is preferably 30 nm or less, more preferably 20 nm or less, and further preferably 15 nm or less.
 〔共蒸着法による混合領域の形成〕
 前記のように、非遷移金属M1含有層、遷移金属M2含有層は、それぞれ、遷移金属M2および非遷移金属M1をさらに含む形で形成されてもよい。よって、気相成膜法によって非遷移金属M1含有層または遷移金属M2含有層を形成する場合は、公知の共蒸着法を用いることで、混合領域が直接形成されてもよい。このような共蒸着法として、好ましくは、共スパッタ法が挙げられる。共スパッタ法は、例えば、非遷移金属M1および遷移金属M2の双方を含む合金からなる複合ターゲットや、非遷移金属M1および遷移金属M2の複合酸化物からなる複合ターゲットをスパッタリングターゲットとして用いた1元スパッタでありうる。共スパッタ法は、例えば、非遷移金属M1の単体またはその酸化物と、遷移金属M2の単体またはその酸化物とを含む複数のスパッタリングターゲットを用いた多元同時スパッタであってもよい。これらのスパッタリングターゲットを作製する方法や、これらのスパッタリングターゲットを用いて複合酸化物からなる薄膜を作製する方法については、例えば、特開2000-160331号公報、特開2004-068109号公報、特開2013-047361号公報などの記載が適宜参照されうる。また、共蒸着法によって混合領域を形成する際に、適宜窒素を導入することで、領域(a)を直接形成してもよい。
[Formation of mixed region by co-evaporation method]
As described above, the non-transition metal M1 containing layer and the transition metal M2 containing layer may be formed so as to further include the transition metal M2 and the non-transition metal M1, respectively. Therefore, when the non-transition metal M1 containing layer or the transition metal M2 containing layer is formed by a vapor deposition method, the mixed region may be directly formed by using a known co-evaporation method. As such a co-evaporation method, a co-sputtering method is preferable. The co-sputtering method is, for example, a single unit using, as a sputtering target, a composite target made of an alloy containing both the non-transition metal M1 and the transition metal M2, or a composite target made of a composite oxide of the non-transition metal M1 and the transition metal M2. It can be sputter. The co-sputtering method may be, for example, multi-source simultaneous sputtering using a plurality of sputtering targets including a single element of non-transition metal M1 or its oxide and a single element of transition metal M2 or its oxide. With respect to a method for producing these sputtering targets and a method for producing a thin film made of a composite oxide using these sputtering targets, for example, JP 2000-160331 A, JP 2004-068109 A, JP Reference can be made to the descriptions in Japanese Patent Application Laid-Open No. 2013-047361. Further, when the mixed region is formed by a co-evaporation method, the region (a) may be directly formed by appropriately introducing nitrogen.
 ただし、本発明に係る製造方法においては、非遷移金属M1のみを含有する非遷移金属M1層、および遷移金属M2のみを含有する遷移金属M2層をそれぞれ形成するほうが、本発明の効果をより良好に得ることができることから好ましい。この際、本発明の効果がより良好に奏される理由は、詳細は不明であるが、混合領域(a)の組成、混合領域(a)中の非遷移元素M1、遷移元素M2および窒素原子の存在状態等が、本発明の効果に対してより適する状態となり易いからであると推測している。 However, in the manufacturing method according to the present invention, it is better to form the non-transition metal M1 layer containing only the non-transition metal M1 and the transition metal M2 layer containing only the transition metal M2, respectively. It is preferable because it can be obtained. At this time, the reason why the effect of the present invention is better achieved is not clear in detail, but the composition of the mixed region (a), the non-transition element M1, the transition element M2 and the nitrogen atom in the mixed region (a) It is presumed that the existence state or the like is likely to become a more suitable state for the effect of the present invention.
 <ガスバリア性フィルムおよびガスバリア性フィルムの製造方法>
 本発明の他の一形態は、樹脂基材上に、本発明の第一の形態に係るガスバリア性膜を有する、ガスバリア性フィルムである。かようなガスバリア性フィルムは、例えば、成膜対象物を樹脂基材として、本発明の第二の形態に係るガスバリア性膜の製造方法を使用すること等で製造されうる。
<Gas barrier film and gas barrier film production method>
Another embodiment of the present invention is a gas barrier film having the gas barrier film according to the first embodiment of the present invention on a resin substrate. Such a gas barrier film can be produced, for example, by using the method for producing a gas barrier film according to the second embodiment of the present invention using a film formation target as a resin substrate.
 本発明の一形態に係るガスバリア性フィルムにおいて、ガスバリア性膜を形成する樹脂基材面は、特に制限されず、片面であっても両面であってもよい。また、ガスバリア性膜が領域(A)と、領域(B)と、を有する場合であって、かつガスバリア性膜を両面に形成する場合、ガスバリア性膜を構成する領域(A)と領域(B)との積層数および積層順序は、樹脂基材の一方の面と他方の面とで同様であっても異なっていてもよい。 In the gas barrier film according to one embodiment of the present invention, the resin base material surface on which the gas barrier film is formed is not particularly limited, and may be one side or both sides. In the case where the gas barrier film has the region (A) and the region (B) and the gas barrier film is formed on both surfaces, the region (A) and the region (B) constituting the gas barrier film. ) And the order of lamination may be the same or different on one side and the other side of the resin substrate.
 〔樹脂基材〕
 本発明の一形態に係るガスバリア性フィルムに用いる樹脂基材としては、樹脂からなるフィルムまたはシートが挙げられ、無色透明な樹脂からなるフィルムまたはシートであることが好ましい。このような樹脂基材に用いる樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、シクロポリオレフィン等のポリオレフィン系樹脂;ポリアミド系樹脂;ポリカーボネート系樹脂;ポリスチレン系樹脂;ポリビニルアルコール系樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル系樹脂;アセタール系樹脂;ポリイミド系樹脂;セルロースエステル系樹脂が挙げられる。
[Resin substrate]
Examples of the resin base material used for the gas barrier film according to one embodiment of the present invention include a film or sheet made of a resin, and a film or sheet made of a colorless and transparent resin is preferable. Examples of the resin used for such a resin base material include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resins such as polyethylene (PE), polypropylene (PP), and cyclopolyolefin; Polyamide resin; Polycarbonate resin; Polystyrene resin; Polyvinyl alcohol resin; Saponified ethylene-vinyl acetate copolymer; Polyacrylonitrile resin; Acetal resin; Polyimide resin; Cellulose ester resin.
 これらの樹脂の中でも、ポリエステル系樹脂、ポリイミド系樹脂、シクロポリオレフィン系樹脂、およびポリカーボネート系樹脂から選ばれる樹脂が好ましく、ポリエステル系樹脂がより好ましく、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)がさらに好ましく、ポリエチレンテレフタレート(PET)が特に好ましい。また、これらの樹脂は、1種を単独でまたは2種以上を組み合わせて使用することができる。 Among these resins, resins selected from polyester resins, polyimide resins, cyclopolyolefin resins, and polycarbonate resins are preferable, polyester resins are more preferable, and polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are preferable. More preferred is polyethylene terephthalate (PET). Moreover, these resin can be used individually by 1 type or in combination of 2 or more types.
 樹脂基材は、単層でもよいし2層以上の積層構造であってもよい。該樹脂基材が2層以上の積層構造である場合、各層は同じ種類の樹脂であってもよいし異なる種類の樹脂であってもよい。 The resin substrate may be a single layer or a laminated structure of two or more layers. When the resin substrate has a laminated structure of two or more layers, each layer may be the same type of resin or a different type of resin.
 樹脂基材の厚さは、本発明のガスバリア性フィルムを製造する際の安定性を考慮して適宜に設定することができる。樹脂基材の厚さ(2層以上の積層構造である場合はその総厚)は、真空中においてもフィルムの搬送が可能であるという観点から、5~500μmの範囲であることが好ましい。 The thickness of the resin base material can be appropriately set in consideration of stability when producing the gas barrier film of the present invention. The thickness of the resin substrate (the total thickness in the case of a laminated structure of two or more layers) is preferably in the range of 5 to 500 μm from the viewpoint that the film can be conveyed even in a vacuum.
 さらに、プラズマCVD法を用いて本発明の一形態に係るガスバリア性膜を形成する場合には、樹脂基材を通して放電しながら薄膜を形成することから、樹脂基材の厚さ(2層以上の積層構造である場合はその総厚)は50~200μmの範囲であることがより好ましく、50~100μmの範囲であることが特に好ましい。 Furthermore, when the gas barrier film according to one embodiment of the present invention is formed using the plasma CVD method, the thin film is formed while discharging through the resin substrate. In the case of a laminated structure, the total thickness) is more preferably in the range of 50 to 200 μm, and particularly preferably in the range of 50 to 100 μm.
 また、樹脂基材には、後述するガスバリア性膜との密着性の観点から、樹脂基材の表面を洗浄するための表面活性処理を施すことが好ましい。このような表面活性処理としては、例えば、易接着処理、コロナ処理、プラズマ処理、フレーム処理が挙げられる。これらの中でも、易接着処理が好ましい。 In addition, it is preferable to subject the resin base material to a surface activation treatment for cleaning the surface of the resin base material from the viewpoint of adhesion to a gas barrier film described later. Examples of such surface activation treatment include easy adhesion treatment, corona treatment, plasma treatment, and flame treatment. Among these, easy adhesion treatment is preferable.
 〔種々の機能を有する層〕
 本発明の一形態に係るガスバリア性フィルムにおいては、種々の機能を有する層を設けることができる。
[Layers with various functions]
In the gas barrier film according to one embodiment of the present invention, layers having various functions can be provided.
 ≪アンカーコート層≫
 本発明の一形態に係るガスバリア性膜を形成する側の樹脂基材の表面には、樹脂基材とガスバリア性膜との密着性の向上を目的として、アンカーコート層を形成してもよい。
≪Anchor coat layer≫
An anchor coat layer may be formed on the surface of the resin base on the side where the gas barrier film according to one embodiment of the present invention is formed for the purpose of improving the adhesion between the resin base and the gas barrier film.
 アンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を単独でまたは2種以上組み合わせて使用することができる。 As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5.0g/m(乾燥状態)程度が好ましい。 Conventionally known additives can be added to these anchor coating agents. The above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to. The application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
 また、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化珪素を主体とした無機膜を形成することもできる。あるいは、特開2004-314626号公報に記載されているようなアンカーコート層を形成することで、その上に気相法により無機薄膜を形成する際に、樹脂基材側から発生するガスをある程度遮断して、無機薄膜の組成を制御するといった目的でアンカーコート層を形成することもできる。 Also, the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like. Alternatively, by forming an anchor coat layer as described in JP-A-2004-314626, when an inorganic thin film is formed thereon by a vapor phase method, a certain amount of gas generated from the resin substrate side is generated. An anchor coat layer can also be formed for the purpose of blocking and controlling the composition of the inorganic thin film.
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 μm.
 ≪ハードコート層≫
 樹脂基材の表面(片面または両面)には、ハードコート層を有していてもよい。ハードコート層に含まれる材料の例としては、例えば、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることができる。
≪Hard coat layer≫
A hard coat layer may be provided on the surface (one side or both sides) of the resin substrate. Examples of the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold. Such curable resins can be used singly or in combination of two or more.
 活性エネルギー線硬化性樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化性樹脂としては、エチレン性不飽和結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて、活性エネルギー線硬化性樹脂の硬化物を含む層、すなわちハードコート層が形成される。活性エネルギー線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。紫外線硬化性樹脂としては、例えば、(メタ)アクリレート化合物を含有する樹脂組成物、(メタ)アクリレート化合物とチオール基を含有するメルカプト化合物とを含有する樹脂組成物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、メラミン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、グリセロール(メタ)アクリレート等の多官能(メタ)アクリレートモノマーを含有する樹脂組成物、非晶質フッ素含有ポリマーを含有する樹脂組成物等が挙げられる。ここで、(メタ)アクリレートとは、アクリレートまたはメタクリレートを表す。また、紫外線硬化性樹脂としては、市販品を用いてもよく、市販品としては、例えば、アイカ工業株式会社製 Z731Lや、JSR株式会社製 OPSTAR(オプスター)(登録商標)Z7527等が挙げられる。また、予めハードコート層が形成されている市販の樹脂基材を用いてもよい。 The active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated bond is preferably used, and the active energy ray curable resin is cured by irradiation with an active energy ray such as an ultraviolet ray or an electron beam. A layer containing the cured product, that is, a hard coat layer is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. Examples of the ultraviolet curable resin include a resin composition containing a (meth) acrylate compound, a resin composition containing a (meth) acrylate compound and a mercapto compound containing a thiol group, epoxy (meth) acrylate, urethane ( Resin composition containing polyfunctional (meth) acrylate monomer such as meth) acrylate, polyester (meth) acrylate, melamine (meth) acrylate, polyether (meth) acrylate, polyethylene glycol (meth) acrylate, glycerol (meth) acrylate And a resin composition containing an amorphous fluorine-containing polymer. Here, (meth) acrylate represents acrylate or methacrylate. Moreover, as an ultraviolet curable resin, you may use a commercial item. As a commercial item, Aika Kogyo Co., Ltd. product Z731L, JSR Co., Ltd. OPSTAR (opstar) (trademark) Z7527 etc. are mentioned, for example. Moreover, you may use the commercially available resin base material in which the hard-coat layer is formed previously.
 ハードコート層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法(塗布法)、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。 The method for forming the hard coat layer is not particularly limited, but it may be formed by a wet coating method (coating method) such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as a vapor deposition method. Is preferred.
 ハードコート層を形成する際の塗膜の乾燥温度は、特に制限されないが、40~120℃であることが好ましい。 The drying temperature of the coating film when forming the hard coat layer is not particularly limited, but is preferably 40 to 120 ° C.
 ハードコート層を硬化する際に用いる活性エネルギー線としては、紫外線が好ましい。
紫外線照射装置としては、特に制限されないが、例えば、高圧水銀ランプ等が挙げられる。紫外線照射条件は、特に制限されないが、例えば、空気下で行うことが挙げられる。紫外線照射エネルギー量は、特に制限されないが、0.3~5J/cmであることが好ましい。
The active energy ray used when curing the hard coat layer is preferably ultraviolet rays.
Although it does not restrict | limit especially as an ultraviolet irradiation device, For example, a high pressure mercury lamp etc. are mentioned. Although ultraviolet irradiation conditions are not specifically limited, For example, performing under air is mentioned. The amount of ultraviolet irradiation energy is not particularly limited, but is preferably 0.3 to 5 J / cm 2 .
 また、ハードコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。 The thickness of the hard coat layer is not particularly limited, but is preferably about 0.5 to 10 μm.
 ハードコート層としては、特に制限されないが、クリアハードコート層を用いることが好ましい。なお、前述のアンカーコート層や、後述する平滑層等の他の層は、ハードコート層の機能を兼ねるものであることが好ましい。 The hard coat layer is not particularly limited, but a clear hard coat layer is preferably used. In addition, it is preferable that other layers, such as the above-mentioned anchor coat layer and the smooth layer mentioned later, serve as the function of a hard-coat layer.
 ≪平滑層≫
 本発明の一形態に係るガスバリア性フィルムにおいては、樹脂基材とガスバリア性膜との間に、平滑層を有してもよい。本発明の一形態に用いられる平滑層は、突起等が存在する樹脂基材の粗面を平坦化し、あるいは、樹脂基材に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性材料、または、熱硬化性材料を硬化させて作製される。
≪Smooth layer≫
The gas barrier film according to one embodiment of the present invention may have a smooth layer between the resin base material and the gas barrier film. The smooth layer used in one embodiment of the present invention flattens the rough surface of the resin substrate where protrusions and the like are present, or fills irregularities and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the resin substrate. Provided for flattening. Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
 平滑層の感光性材料としては、活性エネルギー線硬化性樹脂組成物であることが好ましく、紫外線硬化性樹脂組成物であることがより好ましい。紫外線硬化性樹脂組成物としては、例えば、(メタ)アクリレート化合物を含有する樹脂組成物、(メタ)アクリレート化合物とチオール基を有するメルカプト化合物とを含有する樹脂組成物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、グリセロール(メタ)アクリレート等の多官能アクリレートモノマーを含有する樹脂組成物、非晶質フッ素含有ポリマーを含有する樹脂組成物等が挙げられる。ここで、(メタ)アクリレートとは、アクリレートまたはメタクリレートを表す。紫外線硬化性樹脂としては、市販品を用いてもよく、市販品としては、例えば、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズを用いることができる。JSR株式会社製のOPSTAR(登録商標)シリーズとしては、例えば、OPSTAR(オプスター)(登録商標)Z7527等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性材料であれば特に制限はない。 The photosensitive material for the smooth layer is preferably an active energy ray curable resin composition, and more preferably an ultraviolet curable resin composition. Examples of the ultraviolet curable resin composition include a resin composition containing a (meth) acrylate compound, a resin composition containing a (meth) acrylate compound and a mercapto compound having a thiol group, epoxy (meth) acrylate, and urethane. Resin compositions containing polyfunctional acrylate monomers such as (meth) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polyethylene glycol (meth) acrylate, glycerol (meth) acrylate, and amorphous fluorine-containing polymers Examples thereof include a resin composition. Here, (meth) acrylate represents acrylate or methacrylate. A commercially available product may be used as the ultraviolet curable resin, and for example, a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation may be used. Examples of the OPSTAR (registered trademark) series manufactured by JSR Corporation include OPSTAR (registered trademark) Z7527. It is also possible to use any mixture of the above resin compositions, and any photosensitive material containing a reactive monomer having at least one photopolymerizable unsaturated bond in the molecule can be used. There are no particular restrictions.
 熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、株式会社アデカ製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標)EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製の各種シリコン樹脂、日東紡株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。この中でも特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。 Specific examples of thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd. Examples include coats, thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins. Among these, an epoxy resin-based material having heat resistance is particularly preferable.
 平滑層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法(塗布法)、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。 The method for forming the smooth layer is not particularly limited, but may be formed by a wet coating method (coating method) such as a spin coating method, a spray method, a blade coating method, or a dip method, or a dry coating method such as a vapor deposition method. preferable.
 平滑層の乾燥条件、および平滑層を形成する材料が感光性材料である際の光照射の条件は、前記のハードコート層の条件と同様のものを採用することができる。 As the drying conditions for the smooth layer and the light irradiation conditions when the material forming the smooth layer is a photosensitive material, the same conditions as those for the hard coat layer can be employed.
 平滑層の形成では、上述の感光性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。 In the formation of the smooth layer, additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary. In addition, regardless of the position where the smooth layer is laminated, in any smooth layer, an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.
 平滑層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にする観点から、1~10μmの範囲が好ましく、2~7μmの範囲がより好ましい。 The thickness of the smooth layer is preferably in the range of 1 to 10 μm and more preferably in the range of 2 to 7 μm from the viewpoint of improving the heat resistance of the film and facilitating balance adjustment of the optical properties of the film.
 平滑層の平滑性は、JIS B 0601:2001で規定される表面粗さで表現される値で、十点平均粗さRzが、10nm以上、30nm以下であることが好ましい。この範囲であれば、ガスバリア性膜を塗布形式で塗布した場合であっても、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合であっても塗布性が損なわれることが少なく、また、塗布後の凹凸を平滑化することも容易である。 The smoothness of the smooth layer is a value expressed by the surface roughness defined by JIS B 0601: 2001, and the 10-point average roughness Rz is preferably 10 nm or more and 30 nm or less. Within this range, even when the gas barrier film is applied in a coating form, the coating property is good even when the coating means is in contact with the smooth layer surface by a coating method such as a wire bar or a wireless bar. It is less likely to be damaged, and it is easy to smooth the unevenness after application.
 <電子デバイスおよび電子デバイスの製造方法>
 本発明の一形態に係るガスバリア性膜や、本発明の一形態に係るガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく適用できる。これより、本発明の他の一形態は、本発明の一形態に係るガスバリア性膜または本発明の一形態に係るガスバリア性フィルムを含む、電子デバイスである。
<Electronic device and electronic device manufacturing method>
The performance of the gas barrier film according to one embodiment of the present invention and the gas barrier film according to one embodiment of the present invention is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. It can be preferably applied to a device. Thus, another embodiment of the present invention is an electronic device including the gas barrier film according to one embodiment of the present invention or the gas barrier film according to one embodiment of the present invention.
 また、本発明のさらなる他の一形態は、本発明の一形態に係るガスバリア性膜または本発明の一形態に係るガスバリア性フィルムを含む封止部材によって、電子デバイスの機能層面を封止することを含む、電子デバイスの製造方法である。 Still another embodiment of the present invention is to seal the functional layer surface of an electronic device with a sealing member including the gas barrier film according to one embodiment of the present invention or the gas barrier film according to one embodiment of the present invention. The manufacturing method of an electronic device containing this.
 ガスバリア性膜を含む封止部材としては、ガスバリア性膜単体であってもよく、この場合、電子デバイスの機能層面に直接ガスバリア性膜を形成することで、電子デバイスの機能層面の封止が行われていてもよい。また、ガスバリア性フィルムを含む封止部材としては、例えば、ガスバリア性フィルムと、封止樹脂層とを貼合してなる積層体が挙げられる。封止樹脂層としては、特に制限されないが、例えば、熱硬化型のシート状接着剤(エポキシ系樹脂)等が挙げられる。ここで、ガスバリア性膜またはガスバリア性フィルムを含む封止部材を用いた、電子デバイスの機能層面の封止方法の一例としては、以下のような方法が挙げられる。まず、ガスバリア性膜またはガスバリア性フィルムを含む封止部材の接着剤形成面と、電子デバイスの機能層面とを連続的に重ね合わせる。次いで、封止部材と電子デバイスとの積層体を減圧装置内に配置し、高温減圧条件下で、重ね合わせた基材と封止部材とに押圧をかけて保持する。続いて、試料を大気圧環境に戻し、さらに高温環境下で一定時間加熱して接着剤を硬化させる。 The sealing member including the gas barrier film may be a gas barrier film alone. In this case, the functional layer surface of the electronic device is sealed by forming the gas barrier film directly on the functional layer surface of the electronic device. It may be broken. Moreover, as a sealing member containing a gas barrier film, the laminated body formed by bonding a gas barrier film and a sealing resin layer is mentioned, for example. Although it does not restrict | limit especially as a sealing resin layer, For example, a thermosetting type sheet-like adhesive agent (epoxy resin) etc. are mentioned. Here, the following methods are mentioned as an example of the sealing method of the functional layer surface of an electronic device using the sealing member containing a gas barrier film or a gas barrier film. First, the adhesive forming surface of the sealing member including the gas barrier film or gas barrier film and the functional layer surface of the electronic device are continuously overlapped. Subsequently, the laminated body of a sealing member and an electronic device is arrange | positioned in a pressure-reduction apparatus, and it presses and hold | maintains the base material and sealing member which were piled up on high temperature pressure reduction conditions. Subsequently, the sample is returned to the atmospheric pressure environment, and further heated under a high temperature environment for a predetermined time to cure the adhesive.
 電子デバイスとしては、例えば、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該電子デバイス本体は有機EL素子または太陽電池が好ましく、有機EL素子がより好ましく、有機EL照明素子がさらに好ましい。 Examples of the electronic device include an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, more preferably an organic EL element, and further preferably an organic EL lighting element.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
 <ガスバリア性膜を有するガスバリア性フィルムの製造>
 〔比較例1:ガスバリア性フィルム1の製造〕
 (樹脂基材)
 樹脂基材としては、両面に易接着処理した厚さ50μmのポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラー(登録商標)U48)を用いた。この樹脂基材のガスバリア性膜を形成する面とは反対の面に、厚さ0.5μmのアンチブロック機能を有するクリアハードコート層を形成した。すなわち、紫外線硬化性樹脂(アイカ工業株式会社製、品番:Z731L)を乾燥膜厚が0.5μmになるように樹脂基材上に塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。
<Manufacture of gas barrier film having gas barrier film>
[Comparative Example 1: Production of gas barrier film 1]
(Resin base material)
As the resin substrate, a 50 μm thick polyethylene terephthalate film (Lumirror (registered trademark) U48, manufactured by Toray Industries, Inc.) with easy adhesion treatment on both sides was used. A clear hard coat layer having an antiblock function with a thickness of 0.5 μm was formed on the surface of the resin substrate opposite to the surface on which the gas barrier film was formed. That is, an ultraviolet curable resin (manufactured by Aika Kogyo Co., Ltd., product number: Z731L) was applied on a resin substrate so that the dry film thickness was 0.5 μm, and then dried at 80 ° C., and then under high pressure in the air. Curing was performed using a mercury lamp under the condition of an irradiation energy amount of 0.5 J / cm 2 .
 次に、樹脂基材のガスバリア性膜を形成する側の面に、平滑層として、厚さ2μmのクリアハードコート層を以下のようにして形成した。JSR株式会社製、紫外線硬化性樹脂オプスター(登録商標)Z7527を、乾燥膜厚が2μmになるように樹脂基材に塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。このようにして、クリアハードコート層付樹脂基材を得た。以降、本実施例および比較例においては、便宜上、このクリアハードコート層付樹脂基材を単に樹脂基材とする。 Next, a clear hard coat layer having a thickness of 2 μm was formed as a smooth layer on the surface of the resin substrate on the side where the gas barrier film was to be formed as follows. After applying UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation to a resin base material so that the dry film thickness becomes 2 μm, it is dried at 80 ° C., and then using a high-pressure mercury lamp in the air. Then, curing was performed under the condition of an irradiation energy amount of 0.5 J / cm 2 . In this way, a resin substrate with a clear hard coat layer was obtained. Hereinafter, in this example and the comparative example, this resin substrate with a clear hard coat layer is simply referred to as a resin substrate for convenience.
 (非遷移金属M1含有層の形成方法A1)
 上記で準備した樹脂基材を図4に示す真空プラズマCVD装置101にセットし、真空排気した後、樹脂基材のガスバリア性膜を形成する側の表面(すなわち、厚さ2μmのクリアハードコート層の表面)に、非遷移金属Siを含有する層として、厚さ50nmの窒化ケイ素膜を形成した。この際に使用した高周波電源は27.12MHzの高周波電源であり、電極間距離は20mmとした。また、原料ガスとしては、シランガス流量を7.5sccm、アンモニアガス流量を50sccm、水素ガス流量を200sccm(sccmは、133.322Paにおける、cm/minである)として真空チャンバ内へ導入した。さらに、成膜開始時に樹脂基材温度を100℃とした。このようにして、ガスバリア性フィルム1を得た。
(Formation method A1 of a non-transition metal M1 content layer)
The resin substrate prepared above is set in the vacuum plasma CVD apparatus 101 shown in FIG. 4 and evacuated, and then the surface of the resin substrate on which the gas barrier film is formed (that is, a clear hard coat layer having a thickness of 2 μm) A silicon nitride film having a thickness of 50 nm was formed as a layer containing non-transition metal Si. The high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm. The source gas was introduced into the vacuum chamber at a silane gas flow rate of 7.5 sccm, an ammonia gas flow rate of 50 sccm, and a hydrogen gas flow rate of 200 sccm (sccm is cm 3 / min at 133.322 Pa). Furthermore, the resin substrate temperature was set to 100 ° C. at the start of film formation. In this way, a gas barrier film 1 was obtained.
 〔比較例2:ガスバリア性フィルム2の製造〕
 非遷移金属M1含有層の形成方法A1を下記形成方法A2に変更した以外は同様にして、比較例1と同様にして、ガスバリア性フィルム2を得た。
[Comparative Example 2: Production of gas barrier film 2]
A gas barrier film 2 was obtained in the same manner as in Comparative Example 1 except that the formation method A1 of the non-transition metal M1 containing layer was changed to the following formation method A2.
 (非遷移金属M1含有層の形成方法A2)
 市販の真空CCP(Capacitively Coupled Plasma 容量結合プラズマ)-CVD装置を用いた。原料ガスとして、シランガス(SiH)、アンモニアガス(NH)、窒素ガス(N)、および水素ガス(H)を用いた。また、電源として、周波数13.56MHzの高周波電源を用いた。
(Formation method A2 of non-transition metal M1 containing layer)
A commercially available vacuum CCP (Capacitively Coupled Plasma Capacitively Coupled Plasma) -CVD apparatus was used. Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as source gases. As a power source, a high frequency power source having a frequency of 13.56 MHz was used.
 樹脂基材をCVD装置の真空チャンバ内の基板ホルダーにセットして、真空チャンバを閉塞した。次いで、真空チャンバ内を排気して、圧力が0.1Paとなった時点で、原料ガスを導入した。なお、シランガスの流量は80sccm、アンモニアガスの流量は60sccm、窒素ガスの流量は350sccm、水素ガスの流量は80sccmとした。 The resin base material was set on the substrate holder in the vacuum chamber of the CVD apparatus, and the vacuum chamber was closed. Next, the inside of the vacuum chamber was evacuated, and the raw material gas was introduced when the pressure reached 0.1 Pa. The flow rate of silane gas was 80 sccm, the flow rate of ammonia gas was 60 sccm, the flow rate of nitrogen gas was 350 sccm, and the flow rate of hydrogen gas was 80 sccm.
 真空チャンバ内の圧力が50Paで安定した後、高周波電源から電極に、600Wのプラズマ励起電力を供給して、樹脂基材のクリアハードコート層の表面に、非遷移金属Siを含有する層として、厚さ50nmの窒化ケイ素膜を形成した。 After the pressure in the vacuum chamber is stabilized at 50 Pa, a plasma excitation power of 600 W is supplied from the high-frequency power source to the electrode, and the surface of the clear hard coat layer of the resin substrate is a layer containing non-transition metal Si, A silicon nitride film having a thickness of 50 nm was formed.
 〔比較例3:ガスバリア性フィルム3の製造〕
 非遷移金属M1含有層の形成方法A2を下記形成方法A3に変更した以外は、比較例2と同様にして、ガスバリア性フィルム3を得た。
[Comparative Example 3: Production of gas barrier film 3]
A gas barrier film 3 was obtained in the same manner as in Comparative Example 2, except that the formation method A2 of the non-transition metal M1 containing layer was changed to the following formation method A3.
 (非遷移金属M1含有層の形成方法A3)
 非遷移金属M1含有層の形成方法A2において、シランガスの流量を80sccm、アンモニアガスの流量を150sccm、窒素ガスの流量を200sccm、水素ガスの流量を170sccmとし、プラズマ励起電力を1200Wとした以外は同様にして、非遷移金属Siを含有する層として、厚さ50nmの窒化ケイ素膜を形成した。
(Formation method A3 of non-transition metal M1 containing layer)
Non-transition metal M1 containing layer formation method A2 is the same except that the flow rate of silane gas is 80 sccm, the flow rate of ammonia gas is 150 sccm, the flow rate of nitrogen gas is 200 sccm, the flow rate of hydrogen gas is 170 sccm, and the plasma excitation power is 1200 W. Thus, a silicon nitride film having a thickness of 50 nm was formed as a layer containing non-transition metal Si.
 〔比較例4:ガスバリア性フィルム4の製造〕
 非遷移金属M1含有層の形成方法A2を下記形成方法A4に変更した以外は、比較例2と同様にして、ガスバリア性フィルム4を得た。
[Comparative Example 4: Production of Gas Barrier Film 4]
A gas barrier film 4 was obtained in the same manner as in Comparative Example 2 except that the formation method A2 of the non-transition metal M1 containing layer was changed to the following formation method A4.
 (非遷移金属M1含有層の形成方法A4)
 非遷移金属M1含有層の形成方法A2において、厚さが100nmとなるように形成した以外は同様にして、窒化ケイ素膜を形成した。
(Formation method A4 of non-transition metal M1 containing layer)
A silicon nitride film was formed in the same manner as in the formation method A2 of the non-transition metal M1 containing layer except that the thickness was 100 nm.
 〔比較例5:ガスバリア性フィルム5の製造〕
 非遷移金属M1含有層の形成方法A2を下記形成方法A5に変更した以外は、比較例2と同様にして、ガスバリア性フィルム5を得た。
[Comparative Example 5: Production of gas barrier film 5]
A gas barrier film 5 was obtained in the same manner as in Comparative Example 2 except that the formation method A2 of the non-transition metal M1 containing layer was changed to the following formation method A5.
 (非遷移金属M1含有層の形成方法A5)
 非遷移金属M1含有層の形成方法A2において、厚さが300nmとなるように形成した以外は同様にして、窒化ケイ素膜を形成した。
(Formation method A5 of a non-transition metal M1 content layer)
A silicon nitride film was formed in the same manner as in the formation method A2 of the non-transition metal M1-containing layer except that the thickness was 300 nm.
 〔比較例6:ガスバリア性フィルム6の製造〕
 非遷移金属M1含有層の形成方法A2を下記形成方法A6に変更した以外は、比較例2と同様にして、ガスバリア性フィルム6を得た。
[Comparative Example 6: Production of gas barrier film 6]
A gas barrier film 6 was obtained in the same manner as in Comparative Example 2 except that the formation method A2 of the non-transition metal M1 containing layer was changed to the following formation method A6.
 (非遷移金属M1含有層の形成方法A6)
 非遷移金属M1含有層の形成方法A2において、得られた窒化ケイ素膜に対して、下記の装置および条件を用いて波長150nm以下の発光(105nm、107nm、121nm)を伴うプラズマ照射処理をさらに行ったこと以外は同様にして、非遷移金属Siを含有する層として、厚さ50nmの窒化ケイ素膜を形成した。
(Formation method A6 of non-transition metal M1 containing layer)
In the formation method A2 of the non-transition metal M1-containing layer, the obtained silicon nitride film is further subjected to plasma irradiation treatment with emission of light having a wavelength of 150 nm or less (105 nm, 107 nm, 121 nm) using the following apparatus and conditions. A silicon nitride film having a thickness of 50 nm was formed as a layer containing non-transition metal Si.
 ≪プラズマ照射処理≫
 プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)、
 ガス:        He+H(H濃度:6vol%)、
 全圧力:       19Pa、
 樹脂基材加熱温度:  室温、
 投入電力密度:    1.3W/cm
 周波数:       13.56MHz、
 処理時間:      60秒。
≪Plasma irradiation treatment≫
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: He + H 2 (H 2 concentration: 6 vol%),
Total pressure: 19 Pa,
Resin base material heating temperature: room temperature,
Input power density: 1.3 W / cm 2 ,
Frequency: 13.56MHz,
Processing time: 60 seconds.
 〔比較例7:ガスバリア性フィルム7の製造〕
 非遷移金属M1含有層の形成方法A5を下記形成方法A7に変更した以外は、比較例5と同様にして、ガスバリア性フィルム7を得た。
[Comparative Example 7: Production of gas barrier film 7]
A gas barrier film 7 was obtained in the same manner as in Comparative Example 5 except that the formation method A5 of the non-transition metal M1 containing layer was changed to the following formation method A7.
 (非遷移金属M1含有層の形成方法A7)
 非遷移金属M1含有層の形成方法A5において、得られた窒化ケイ素膜に対して、上記非遷移金属M1含有層の形成方法A6におけるプラズマ照射処理と同様の方法でプラズマ照射処理をさらに行ったこと以外は同様にして、厚さ300nmの窒化ケイ素膜を形成した。
(Formation method A7 of non-transition metal M1 containing layer)
In the formation method A5 of the non-transition metal M1-containing layer, the obtained silicon nitride film was further subjected to the plasma irradiation treatment in the same manner as the plasma irradiation treatment in the non-transition metal M1-containing layer formation method A6. A silicon nitride film having a thickness of 300 nm was formed in the same manner except for the above.
 〔比較例8:ガスバリア性フィルム8の製造〕
 非遷移金属M1含有層の形成方法A1を下記形成方法A8に変更した以外は、比較例1と同様にして、ガスバリア性フィルム8を得た。
[Comparative Example 8: Production of gas barrier film 8]
A gas barrier film 8 was obtained in the same manner as in Comparative Example 1 except that the formation method A1 of the non-transition metal M1 containing layer was changed to the following formation method A8.
 (非遷移金属M1含有層の形成方法A8)
 樹脂基材のガスバリア性膜を形成する側の表面に、マグネトロンスパッタ装置(キャノンアネルバ株式会社製:型式EB1100)により、非遷移金属Siを含有する層として、厚さ50nmの窒化ケイ素膜を形成した。この際、ターゲットとしては市販のシリコンターゲットを用い、プロセスガスにはArとNとを用い、全圧に対する窒素分圧の割合を50%として、DCスパッタにより成膜を行った。また、スパッタ電源パワーは5.0W/cmとし、成膜圧力は0.4Paとした。そして、厚さは、100~300nmの範囲で成膜時間に対する膜厚変化のデータを取り、単位時間当たりに成膜される厚さを算出した後、設定厚さとなるように成膜時間を設定することで調整した。
(Formation method A8 of non-transition metal M1 containing layer)
A silicon nitride film having a thickness of 50 nm was formed as a layer containing non-transition metal Si on the surface of the resin substrate on the side on which the gas barrier film was formed, using a magnetron sputtering apparatus (Canon Anelva Co., Ltd .: Model EB1100). . At this time, a commercially available silicon target was used as the target, Ar and N 2 were used as the process gas, and the ratio of the nitrogen partial pressure to the total pressure was 50%, and the film was formed by DC sputtering. The sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa. The thickness is in the range of 100 to 300 nm, data on the change in film thickness with respect to the film formation time is taken, the film formation time per unit time is calculated, and then the film formation time is set to the set thickness. It was adjusted by doing.
 〔比較例9:ガスバリア性フィルム9の製造〕
 非遷移金属M1含有層の形成方法A8を下記形成方法A9に変更した以外は、比較例8と同様にして、ガスバリア性フィルム9を得た。
[Comparative Example 9: Production of gas barrier film 9]
A gas barrier film 9 was obtained in the same manner as in Comparative Example 8 except that the formation method A8 of the non-transition metal M1 containing layer was changed to the following formation method A9.
 (非遷移金属M1含有層の形成方法A9)
 非遷移金属M1含有層の形成方法A8において、得られた窒化ケイ素膜に対して、上記非遷移金属M1含有層の形成方法A6におけるプラズマ照射処理と同様の方法でプラズマ照射処理を行ったこと以外は同様にして、非遷移金属Siを含有する層として、厚さ50nmの窒化ケイ素膜を形成した。
(Formation method A9 of non-transition metal M1 containing layer)
In the formation method A8 of the non-transition metal M1 containing layer, the obtained silicon nitride film was subjected to the plasma irradiation treatment by the same method as the plasma irradiation treatment in the formation method A6 of the non-transition metal M1 containing layer. Similarly, a silicon nitride film having a thickness of 50 nm was formed as a layer containing non-transition metal Si.
 〔比較例10:ガスバリア性フィルム10の製造〕
 非遷移金属M1含有層の形成方法A1の後、非遷移金属M1含有層と樹脂基材との積層体を搬送し、得られた窒化ケイ素膜の表面に下記遷移金属M2含有層の形成方法B1にて酸化Nb膜の形成を行った。このようにしたこと以外は、比較例1と同様にして、ガスバリア性フィルム10を得た。
[Comparative Example 10: Production of gas barrier film 10]
After the formation method A1 of the non-transition metal M1 containing layer, the laminate of the non-transition metal M1 containing layer and the resin base material is transported, and the following transition metal M2 containing layer formation method B1 on the surface of the obtained silicon nitride film Then, an oxide Nb film was formed. Except for this, a gas barrier film 10 was obtained in the same manner as in Comparative Example 1.
 (遷移金属M2含有層の形成方法B1)
 非遷移金属M1含有層の形成方法A1により得られた窒化ケイ素膜の表面に、マグネトロンスパッタ装置(キャノンアネルバ株式会社製:型式EB1100)により、遷移金属M2を含有する層として、厚さ6nmの酸化ニオブ膜を形成した。この際、ターゲットとしては市販の酸素欠損型酸化ニオブターゲット(組成はNb1229)を用い、プロセスガスにはArとOとを用い、全圧に対する酸素分圧の割合を12%として、DCスパッタにより成膜を行った。また、スパッタ電源パワーは5.0W/cmとし、成膜圧力は0.4Paとした。そして、厚さは、100~300nmの範囲で成膜時間に対する厚さ変化のデータを取り、単位時間当たりに成膜される厚さを算出した後、設定厚さとなるように成膜時間を設定することで調整した。
(Formation method B1 of transition metal M2 containing layer)
On the surface of the silicon nitride film obtained by the formation method A1 of the non-transition metal M1 containing layer, a magnetron sputtering apparatus (manufactured by Canon Anelva Co., Ltd .: model EB1100) is used to oxidize the layer containing the transition metal M2 to a thickness of 6 nm. A niobium film was formed. At this time, a commercially available oxygen-deficient niobium oxide target (composition is Nb 12 O 29 ) is used as the target, Ar and O 2 are used as the process gas, and the ratio of the oxygen partial pressure to the total pressure is 12%. Film formation was performed by DC sputtering. The sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa. The thickness is in the range of 100 to 300 nm, data on the change in thickness with respect to the film formation time is taken, the film formation time per unit time is calculated, and then the film formation time is set to the set thickness. It was adjusted by doing.
 〔比較例11:ガスバリア性フィルム11の製造〕
 遷移金属M2含有層の形成方法B1を下記形成方法B2に変更した以外は、比較例10と同様にして、ガスバリア性フィルム11を得た。
[Comparative Example 11: Production of gas barrier film 11]
A gas barrier film 11 was obtained in the same manner as in Comparative Example 10 except that the formation method B1 of the transition metal M2 containing layer was changed to the following formation method B2.
 (遷移金属M2含有層の形成方法B2)
 遷移金属M2含有層の形成方法B1において、厚さが10nmとなるように形成した以外は同様にして、酸化ニオブ膜を形成した。
(Formation method B2 of transition metal M2 containing layer)
A niobium oxide film was formed in the same manner as in the formation method B1 of the transition metal M2 containing layer except that the thickness was 10 nm.
 〔実施例1:ガスバリア性フィルム12の製造〕
 非遷移金属M1含有層の形成方法A2の後、非遷移金属M1含有層と樹脂基材との積層体を搬送し、得られた窒化ケイ素膜の表面に上記遷移金属M2含有層の形成方法B1にて酸化ニオブ膜の形成をさらに行った。これ以外は比較例2と同様にして、ガスバリア性フィルム12を得た。
[Example 1: Production of gas barrier film 12]
After the formation method A2 of the non-transition metal M1-containing layer, the laminate of the non-transition metal M1-containing layer and the resin base material is transported, and the above-described transition metal M2-containing layer formation method B1 on the surface of the obtained silicon nitride film The niobium oxide film was further formed by Except this, it carried out similarly to the comparative example 2, and obtained the gas-barrier film 12.
 〔実施例2:ガスバリア性フィルム13の製造〕
 非遷移金属M1含有層の形成方法A3の後、非遷移金属M1含有層と樹脂基材との積層体を搬送し、得られた窒化ケイ素膜の表面に上記遷移金属M2含有層の形成方法B1にて酸化ニオブ膜の形成をさらに行った。これ以外は比較例3と同様にして、ガスバリア性フィルム13を得た。
[Example 2: Production of gas barrier film 13]
After the formation method A3 of the non-transition metal M1 containing layer, the laminate of the non-transition metal M1 containing layer and the resin base material is transported, and the above-mentioned transition metal M2 containing layer formation method B1 on the surface of the obtained silicon nitride film The niobium oxide film was further formed by Except this, it carried out similarly to the comparative example 3, and obtained the gas-barrier film 13.
 〔実施例3:ガスバリア性フィルム14の製造〕
 非遷移金属M1含有層の形成方法A3の後、非遷移金属M1含有層と樹脂基材との積層体を搬送し、得られた窒化ケイ素膜の表面に上記遷移金属M2含有層の形成方法B2にて酸化ニオブ膜の形成をさらに行った。これ以外は比較例3と同様にして、ガスバリア性フィルム14を得た。
[Example 3: Production of gas barrier film 14]
After the formation method A3 of the non-transition metal M1 containing layer, the laminate of the non-transition metal M1 containing layer and the resin base material is transported, and the above-described transition metal M2 containing layer formation method B2 on the surface of the obtained silicon nitride film The niobium oxide film was further formed by Except for this, a gas barrier film 14 was obtained in the same manner as in Comparative Example 3.
 〔実施例4:ガスバリア性フィルム15の製造〕
 非遷移金属M1含有層の形成方法A8の後、非遷移金属M1含有層と樹脂基材との積層体を搬送し、得られた窒化ケイ素膜の表面に上記遷移金属M2含有層の形成方法B1にて遷移金属Nbを含有する層の形成をさらに行った。これ以外は比較例8と同様にして、非遷移金属Siを含有する層の表面に遷移金属Nbを含有する層が形成されることで得られるガスバリア性膜を有する、ガスバリア性フィルム15を得た。
[Example 4: Production of gas barrier film 15]
After the formation method A8 of the non-transition metal M1-containing layer, the laminate of the non-transition metal M1-containing layer and the resin base material is transported, and the above-described transition metal M2-containing layer formation method B1 on the surface of the obtained silicon nitride film Then, a layer containing a transition metal Nb was further formed. Except this, it carried out similarly to the comparative example 8, and obtained the gas barrier film 15 which has a gas barrier film obtained by forming the layer containing a transition metal Nb on the surface of the layer containing non-transition metal Si. .
 〔実施例5:ガスバリア性フィルム16の製造〕
 遷移金属M2含有層の形成方法B1を下記形成方法層B3の形成方法に変更した以外は、実施例2と同様にして、ガスバリア性フィルム16を得た。
[Example 5: Production of gas barrier film 16]
A gas barrier film 16 was obtained in the same manner as in Example 2 except that the formation method B1 of the transition metal M2 containing layer was changed to the formation method of the following formation method layer B3.
 (遷移金属M2含有層の形成方法B3)
 遷移金属M2含有層の形成方法B1において、ターゲットとしては市販のタンタルターゲット(Ta)を用い、全圧に対する酸素分圧の割合を18%とした以外は同様にして、厚さ6nmの酸化タンタル膜を形成した。
(Formation method B3 of transition metal M2 containing layer)
In the formation method B1 of the transition metal M2 containing layer, a commercially available tantalum target (Ta) is used as the target, and the tantalum oxide film having a thickness of 6 nm is similarly used except that the ratio of the oxygen partial pressure to the total pressure is 18%. Formed.
 〔実施例6:ガスバリア性フィルム17の製造〕
 遷移金属M2含有層の形成方法B1を下記形成方法B4に変更した以外は、比較例10と同様にして、ガスバリア性フィルム17を得た。
[Example 6: Production of gas barrier film 17]
A gas barrier film 17 was obtained in the same manner as in Comparative Example 10 except that the formation method B1 of the transition metal M2 containing layer was changed to the following formation method B4.
 (遷移金属M2含有層の形成方法B4)
 遷移金属M2含有層の形成方法B1において、プロセスガス中に窒素ガスを導入して、プロセスガスにはArとNとを用い、全圧に対する窒素分圧の割合を50%とした以外は同様にして、遷移金属M2を含有する層として、厚さ6nmの酸化窒化ニオブ(酸窒化ニオブ)膜を形成した。
(Formation method B4 of transition metal M2 containing layer)
In the formation method B1 of the transition metal M2 containing layer, the same except that nitrogen gas was introduced into the process gas, Ar and N 2 were used as the process gas, and the ratio of the nitrogen partial pressure to the total pressure was 50% Thus, a niobium oxynitride (niobium oxynitride) film having a thickness of 6 nm was formed as a layer containing the transition metal M2.
 〔比較例12:ガスバリア性フィルム18の製造〕
 遷移金属M2含有層の形成方法B1を下記形成方法B5に変更したこと以外は、実施例2と同様にして、ガスバリア性フィルム18を得た。
[Comparative Example 12: Production of gas barrier film 18]
A gas barrier film 18 was obtained in the same manner as in Example 2 except that the formation method B1 of the transition metal M2 containing layer was changed to the following formation method B5.
 (遷移金属M2含有層B5)
 遷移金属M2含有層の形成方法B1において、厚さが2nmとなるように形成した以外は同様にして、酸化窒化ニオブ膜を形成した。
(Transition metal M2-containing layer B5)
A niobium oxynitride film was formed in the same manner as in the formation method B1 of the transition metal M2-containing layer, except that the thickness was 2 nm.
 〔比較例13:ガスバリア性フィルム19の製造〕
 非遷移金属M1含有層の形成方法A1を下記形成方法A10に変更したこと以外は、比較例1と同様にして、ガスバリア性フィルム19を得た。
[Comparative Example 13: Production of gas barrier film 19]
A gas barrier film 19 was obtained in the same manner as in Comparative Example 1 except that the formation method A1 of the non-transition metal M1 containing layer was changed to the following formation method A10.
 (非遷移金属M1含有層の形成方法A10)
 パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(メルク株式会社製、NN120-20)と、アミン触媒(N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン(TMDAH))をパーヒドロポリシラザン100質量部に対して5質量部含有する、パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(メルク株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらにジブチルエーテルで濃度が3質量%となるように希釈し、非遷移金属Siを含有する塗布液を調製した。塗布液の調製はグローブボックス内で行った。
(Formation method A10 of non-transition metal M1 containing layer)
A dibutyl ether solution containing 20% by mass of perhydropolysilazane (Merck Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH)) 5 parts by weight per 100 parts by weight of perhydropolysilazane and a dibutyl ether solution containing 20% by weight of perhydropolysilazane (manufactured by Merck & Co., NAX120-20) mixed at a ratio of 4: 1 (mass ratio) Further, it was diluted with dibutyl ether so that the concentration became 3% by mass to prepare a coating solution containing non-transition metal Si. The coating solution was prepared in a glove box.
 上記樹脂基材のガスバリア性膜を形成する側の表面にスピンコート法により塗布液を乾燥膜厚が100nmになるよう塗布し、80℃で2分間乾燥した。次いで、乾燥した塗膜に対して、波長172nmのXeエキシマランプを有する図5の真空紫外線照射装置を用い、照射エネルギー量が6.0J/cmとなる条件で真空紫外線照射処理を行った。この際、照射雰囲気は窒素で置換し、酸素濃度は0.1体積%とした。また、試料(改質処理前のガスバリア性フィルム)を設置するステージ温度を80℃とした。 The coating liquid was applied to the surface of the resin substrate on the side where the gas barrier film was to be formed by spin coating so that the dry film thickness was 100 nm, and dried at 80 ° C. for 2 minutes. Next, vacuum ultraviolet irradiation treatment was performed on the dried coating film using the vacuum ultraviolet irradiation apparatus of FIG. 5 having an Xe excimer lamp with a wavelength of 172 nm under the condition that the irradiation energy amount was 6.0 J / cm 2 . At this time, the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was set to 0.1% by volume. Further, the stage temperature at which the sample (the gas barrier film before the modification treatment) was set was 80 ° C.
 図5において、1は装置チャンバであり、図示しないガス供給口から内部に窒素と酸素とを適量供給し、図示しないガス排出口から排気することで、チャンバ内部から実質的に水蒸気を除去し、酸素濃度を所定の濃度に維持することができる。2は172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプ(エキシマランプ光強度:130mW/cm)、3は外部電極を兼ねるエキシマランプのホルダーであり、4は試料ステージである。試料ステージ4は、図示しない移動手段により装置チャンバ1内を水平に所定の速度(図5のV)で往復移動することができる。また、試料ステージ4は図示しない加熱手段により、所定の温度に維持することができる。5はポリシラザン化合物塗布層が形成された試料である。試料ステージが水平移動する際、試料の塗布層表面と、エキシマランプ管面との最短距離が3mmとなるように試料ステージの高さが調整されている。6は遮光板であり、Xeエキシマランプ2のエージング中に試料の塗布層に真空紫外線が照射されないようにしている。 In FIG. 5, reference numeral 1 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) to the inside and exhausts gas from a gas discharge port (not shown), thereby substantially removing water vapor from the inside of the chamber. The oxygen concentration can be maintained at a predetermined concentration. 2 is an Xe excimer lamp having a double tube structure that irradiates 172 nm vacuum ultraviolet light (excimer lamp light intensity: 130 mW / cm 2 ), 3 is an excimer lamp holder that also serves as an external electrode, and 4 is a sample stage. The sample stage 4 can reciprocate horizontally in the apparatus chamber 1 at a predetermined speed (V in FIG. 5) by a moving means (not shown). The sample stage 4 can be maintained at a predetermined temperature by a heating means (not shown). Reference numeral 5 denotes a sample on which a polysilazane compound coating layer is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm. Reference numeral 6 denotes a light-shielding plate which prevents the application of the sample from being irradiated with vacuum ultraviolet rays during aging of the Xe excimer lamp 2.
 ここで、真空紫外線照射処理で試料塗布層表面に照射されるエネルギーは、浜松ホトニクス株式会社製の紫外線積算光量計(C8026/H8025 UV POWER METER)を用い、172nmのセンサヘッドを用いて測定した。測定に際しては、Xeエキシマランプ2管面とセンサヘッドの測定面との最短距離が、3mmとなるようにセンサヘッドを試料ステージ4中央に設置し、かつ、装置チャンバ1内の雰囲気が、真空紫外線照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージ4を0.5m/minの速度で移動させて測定を行った。測定に先立ち、Xeエキシマランプ2の照度を安定させるため、Xeエキシマランプ点灯後に10分間のエージング時間を設け、その後試料ステージを移動させて測定を開始した。この測定で得られた照射エネルギーを元に、試料ステージの移動速度を調整することで照射エネルギー量を調整した。なお、真空紫外線照射に際しては、10分間のエージング後に行った。 Here, the energy applied to the surface of the sample coating layer by the vacuum ultraviolet irradiation treatment was measured using a 172 nm sensor head using a UV integrating photometer (C8026 / H8025 UV POWER METER) manufactured by Hamamatsu Photonics Co., Ltd. In measurement, the sensor head is placed at the center of the sample stage 4 so that the shortest distance between the tube surface of the Xe excimer lamp 2 and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 1 is a vacuum ultraviolet ray. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as that in the irradiation step, and measurement was performed by moving the sample stage 4 at a speed of 0.5 m / min. Prior to the measurement, in order to stabilize the illuminance of the Xe excimer lamp 2, an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement. Based on the irradiation energy obtained by this measurement, the irradiation energy amount was adjusted by adjusting the moving speed of the sample stage. The vacuum ultraviolet irradiation was performed after aging for 10 minutes.
 このようにして、樹脂基材のガスバリア性膜を形成する側の表面に、非遷移金属Siを含有する層として、厚さ100nmの酸化窒化ケイ素膜を含むポリシラザン改質膜を形成した。なお、後述するXPS分析によってこの層の厚さ方向の組成分布の測定を行ったところ、この層のN/Si比は、層全体に係る厚さ方向の平均値としては0.1であったが、ポリシラザン改質膜の、樹脂基材側とは反対側の表層側の厚さ約30nm部分は、元のポリシラザンが含有していた窒素(N)が残存する酸化窒化ケイ素(酸窒化ケイ素)膜であり、その部分のN/Si比の最大値は0.6であった。 Thus, a polysilazane modified film including a silicon oxynitride film having a thickness of 100 nm was formed as a layer containing non-transition metal Si on the surface of the resin base on the side where the gas barrier film was formed. When the composition distribution in the thickness direction of this layer was measured by XPS analysis to be described later, the N / Si ratio of this layer was 0.1 as the average value in the thickness direction of the entire layer. However, the portion of the polysilazane modified film having a thickness of about 30 nm on the surface layer side opposite to the resin substrate side is silicon oxynitride (silicon oxynitride) in which nitrogen (N) contained in the original polysilazane remains. The maximum value of the N / Si ratio of the film was 0.6.
 〔実施例7:ガスバリア性フィルム20の製造〕
 非遷移金属M1含有層の形成方法A10により得られたポリシラザン改質膜の表面に上記遷移金属M2含有層の形成方法B4にて酸化窒化ニオブ膜の形成をさらに行った。このようにしたこと以外は、比較例13と同様にして、ガスバリア性フィルム20を得た。
[Example 7: Production of gas barrier film 20]
A niobium oxynitride film was further formed on the surface of the polysilazane modified film obtained by the formation method A10 of the non-transition metal M1-containing layer by the formation method B4 of the transition metal M2-containing layer. Except for this, a gas barrier film 20 was obtained in the same manner as in Comparative Example 13.
 ガスバリア性フィルム1~20におけるガスバリア性膜の製造条件を下記表1に示す。 The production conditions of the gas barrier film in the gas barrier films 1 to 20 are shown in Table 1 below.
 <ガスバリア性フィルムの評価>
 〔ガスバリア性膜の厚さ方向の組成分布の測定〕
 XPS分析により、ガスバリア性膜の厚さ方向の組成分布プロファイルを測定した。XPS分析条件は以下の通りである。
<Evaluation of gas barrier film>
[Measurement of composition distribution in thickness direction of gas barrier film]
The composition distribution profile in the thickness direction of the gas barrier film was measured by XPS analysis. XPS analysis conditions are as follows.
 (XPS分析条件)
 ・装置:アルバック・ファイ社製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを得た。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバック・ファイ社製のMultiPakを用いた。なお、分析した元素は、非遷移金属M1(ケイ素(Si))、遷移金属M2(ニオブ(Nb)、タンタル(Ta))、酸素(O)、窒素(N)、炭素(C)である。
(XPS analysis conditions)
・ Device: QUANTERASXM manufactured by ULVAC-PHI
・ X-ray source: Monochromatic Al-Kα
・ Sputtering ion: Ar (2 keV)
Depth profile: Measurement was repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data for every 1 nm is obtained in the depth direction)
Quantification: The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. For data processing, MultiPak manufactured by ULVAC-PHI was used. The analyzed elements are non-transition metal M1 (silicon (Si)), transition metal M2 (niobium (Nb), tantalum (Ta)), oxygen (O), nitrogen (N), and carbon (C).
 測定結果より、金属元素の主成分として非遷移金属M1を含有する領域(A)および金属元素の主成分として遷移金属M2を含有する領域(B)、混合領域、および領域(a)の有無を判定した。また、測定結果から、非遷移金属M1含有層のN/Si比(厚さ方向の平均値)、混合領域の有無、混合領域の組成をM1M2(0.02≦x≦49、y≧0)で表した際の非遷移金属M1原子に対する窒素原子の存在原子比の最大値(y最大値)、および領域(a)の厚さを求めた。 From the measurement results, the presence or absence of the region (A) containing the non-transition metal M1 as the main component of the metal element, the region (B) containing the transition metal M2 as the main component of the metal element, the mixed region, and the region (a) Judged. Further, from the measurement results, the N / Si ratio (average value in the thickness direction) of the non-transition metal M1 containing layer, the presence / absence of the mixed region, and the composition of the mixed region are expressed as M1M2 x N y (0.02 ≦ x ≦ 49, y The maximum value (y maximum value) of the atomic ratio of nitrogen atoms to the non-transition metal M1 atoms and the thickness of the region (a) when represented by ≧ 0) were obtained.
 ここで、混合領域の有無の判断は、ガスバリア性膜の厚さ方向において、非遷移金属M1原子に対する遷移金属M2の存在原子比の値が、0.02~49の範囲内の元素組成を満足する領域を有する場合は、混合領域を有するものとした。 Here, the presence or absence of the mixed region is determined by satisfying the elemental composition in which the ratio of the atomic ratio of the transition metal M2 to the nontransition metal M1 in the thickness direction of the gas barrier film is in the range of 0.02 to 49. When it has the area | region to do, it shall have a mixed area | region.
 また、領域(a)の有無の判断は、組成をM1M2で示した際に、下記式(1)および下記式(2)を満足する領域を有する場合は、領域(a)を有するものとした。 In addition, the determination of the presence or absence of the region (a) has the region (a) when the composition is expressed by M1M2 x N y and the region satisfies the following formula (1) and the following formula (2). It was supposed to be.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 なお、本評価において、ガスバリア性フィルム10~18および20の非遷移金属M1含有層のN/Si比(厚さ方向の平均値)については、非遷移金属M2層を形成しないことを除いて、これらのフィルムと同様の方法で形成した、樹脂基材上に非遷移金属M1含有層のみを有する測定用サンプルを作製し、その測定値を用いた。 In this evaluation, the N / Si ratio (average value in the thickness direction) of the non-transition metal M1-containing layers of the gas barrier films 10 to 18 and 20 is determined except that the non-transition metal M2 layer is not formed. A measurement sample having only a non-transition metal M1-containing layer on a resin base material formed by the same method as those of these films was prepared, and the measured value was used.
 これらの結果を下記表2に示す。なお、ガスバリア性フィルム10~18および20(実施例1~7)に係るガスバリア性膜のy最大値は、混合領域の組成をM1M2で表した際に、0.2≦x≦3.0となる範囲内に存在していた。 These results are shown in Table 2 below. Note that the maximum y value of the gas barrier films according to the gas barrier films 10 to 18 and 20 (Examples 1 to 7) is 0.2 ≦ x ≦ 3 when the composition of the mixed region is represented by M1M2 x N y. It was within the range of 0.0.
 〔ガスバリア性膜の水蒸気透過性(水蒸気バリア性)評価(Ca法)〕
 (水蒸気透過性評価用セルの作製)
 以下の測定方法に従って、ガスバリア性膜を有する各ガスバリア性フィルムの水蒸気透過性を、3種類の条件で評価した。ここで、1種類の水蒸気透過性評価用セルを作製するためには2枚のガスバリア性フィルムが必要であることから、3種類の条件での評価のため、各ガスバリア性フィルムを6枚ずつ用意した。
[Evaluation of water vapor permeability (water vapor barrier property) of gas barrier membrane (Ca method)]
(Production of water vapor permeability evaluation cell)
According to the following measuring method, the water vapor permeability of each gas barrier film having a gas barrier film was evaluated under three conditions. Here, since two gas barrier films are required to produce one type of water vapor permeability evaluation cell, six gas barrier films are prepared for evaluation under three types of conditions. did.
 水蒸気透過性評価用セルは次のように作製した。まず、1枚のガスバリア性フィルムのガスバリア性膜表面をUV洗浄した後、ガスバリア性膜表面に、封止樹脂層として厚さ20μmの熱硬化型のシート状接着剤(エポキシ樹脂)を貼合した。次いで、得られたガスバリア性フィルムと封止樹脂層との積層体を50mm×50mmのサイズに打ち抜いた後、グローブボックス内に入れて、24時間乾燥処理を行った。また、他の1枚のガスバリア性フィルムを50mm×50mmのサイズに打ち抜いた後、ガスバリア性フィルムが有するガスバリア性膜の表面をUV洗浄した。次いで、株式会社エイエルエステクノロジー製の真空蒸着装置を用い、ガスバリア性フィルムが有するガスバリア性膜表面の中央位置に、マスクを介して20mm×20mmのサイズでCaを蒸着した。ここで、Caの厚さは80nmとした。続いて、Caが蒸着されたガスバリア性フィルムを前記のグローブボックス内に取出し、前記打ち抜かれたガスバリア性フィルムと封止樹脂層との積層体の封止樹脂層面と、Caが蒸着されたガスバリア性フィルムのCa蒸着面とが接するように配置し、真空ラミネートで接着した。ここで、真空ラミネートは、接着が行われる積層体(ガスバリア性フィルムと封止樹脂層との積層体と、Caが蒸着されたガスバリア性フィルムとの積層体)を110℃で加熱した状態で行った。その後、真空ラミネートで接着した積層体を110℃に設定したホットプレート上に、当該積層体の封止樹脂層が貼合されたガスバリア性フィルム側を下にして置き、30分間硬化させることで、水蒸気透過性評価用セルを作製した。 A water vapor permeability evaluation cell was prepared as follows. First, after cleaning the surface of the gas barrier film of one gas barrier film with UV, a thermosetting sheet-like adhesive (epoxy resin) having a thickness of 20 μm was bonded to the surface of the gas barrier film as a sealing resin layer. . Next, the obtained laminate of the gas barrier film and the sealing resin layer was punched out to a size of 50 mm × 50 mm, and then put into a glove box, followed by drying treatment for 24 hours. Further, after punching out another gas barrier film to a size of 50 mm × 50 mm, the surface of the gas barrier film included in the gas barrier film was subjected to UV cleaning. Subsequently, Ca was vapor-deposited by the size of 20 mm x 20 mm through the mask in the center position of the gas-barrier film | membrane surface which a gas-barrier film has using the vacuum evaporation apparatus by an LS technology company. Here, the thickness of Ca was 80 nm. Subsequently, the gas barrier film on which Ca is vapor-deposited is taken out into the glove box, and the sealing resin layer surface of the laminate of the punched gas barrier film and the sealing resin layer, and the gas barrier property on which Ca is vapor-deposited. It arrange | positioned so that the Ca vapor deposition surface of a film might touch, and it adhere | attached by the vacuum lamination. Here, the vacuum lamination is performed in a state in which a laminated body (a laminated body of a gas barrier film and a sealing resin layer and a gas barrier film on which Ca is vapor-deposited) is heated at 110 ° C. It was. Then, on the hot plate set at 110 ° C. the laminated body bonded by vacuum lamination, the gas barrier film side to which the sealing resin layer of the laminated body is bonded is placed down and cured for 30 minutes. A cell for evaluating water vapor permeability was prepared.
 3種類の条件での評価のため、上記方法で3つの水蒸気透過性評価用セルを作製した後、各条件の評価に必要となる前処理を行った。 For the evaluation under three kinds of conditions, after preparing three water vapor permeability evaluation cells by the above method, pretreatment necessary for the evaluation of each condition was performed.
 ≪条件1:標準≫
 水蒸気透過性評価用セルをそのまま用いるため、前処理は行わなかった。
<< Condition 1: Standard >>
Since the water vapor permeability evaluation cell was used as it was, no pretreatment was performed.
 ≪条件2:屈曲処理1≫
 水蒸気透過性評価用セルに対して屈曲処理を行った。まず、直径10mm、長さ100mmの金属の円筒形部材を用意した。次いで、円筒部材と、水蒸気透過性評価用セルの封止樹脂層が貼合されたガスバリア性フィルムのフィルム面とが接するように、水蒸気透過性評価用セル中央部を円筒部材に180°巻き付けた。そして、円筒部材と、水蒸気透過性評価用セルの反対側の面であるCaが蒸着されたガスバリア性フィルムのフィルム面とが接するように、水蒸気透過性評価用セル中央部を円筒部材に180°巻き付けた。この円筒部材に対する水蒸気透過性評価用セルの2つのフィルム面での巻き付け操作を1回の屈曲処理として、屈曲処理を100回繰り返した。
<< Condition 2: Bending process 1 >>
A bending process was performed on the water vapor permeability evaluation cell. First, a metal cylindrical member having a diameter of 10 mm and a length of 100 mm was prepared. Next, the central part of the water vapor permeability evaluation cell was wound around the cylindrical member by 180 ° so that the cylindrical member and the film surface of the gas barrier film on which the sealing resin layer of the water vapor permeability evaluation cell was bonded. . Then, the central portion of the water vapor permeability evaluation cell is 180 ° to the cylindrical member so that the cylindrical surface and the film surface of the gas barrier film on which Ca, which is the opposite surface of the water vapor permeability evaluation cell, is deposited. I wrapped it. The bending process was repeated 100 times, with the winding operation on the two film surfaces of the water vapor permeability evaluation cell for this cylindrical member as one bending process.
 ≪条件3:屈曲処理2≫
 水蒸気透過性評価用セルの封止樹脂層が貼合されたガスバリア性フィルムの表面に、市販の透明粘着剤シート(厚さ20μm)を用いて、50mm×50mmのサイズに打ち抜いた、厚さ125μmのPETフィルムを貼合した後、屈曲処理1と同様の屈曲処理を行った。屈曲処理2は、片側にPETフィルムを貼合したことで、屈曲処理の際に、2枚のガスバリア性フィルムの各ガスバリア性膜の存在位置が曲げ中心から大きくずれることとなる。このため、屈曲処理2は、屈曲処理1よりも、ガスバリア性膜へのダメージが大きい処理となる。
<< Condition 3: Bending process 2 >>
The surface of the gas barrier film on which the sealing resin layer of the water vapor permeability evaluation cell was bonded was punched into a size of 50 mm × 50 mm using a commercially available transparent adhesive sheet (thickness 20 μm), and the thickness 125 μm. After the PET film was bonded, the same bending treatment as the bending treatment 1 was performed. In the bending process 2, the PET film is bonded to one side, so that the position of each gas barrier film of the two gas barrier films greatly deviates from the center of bending during the bending process. For this reason, the bending process 2 is a process in which the damage to the gas barrier film is larger than that of the bending process 1.
 (高温高湿環境下処理)
 各条件の評価に必要となる前処理を行った後、水蒸気透過性評価用セルに対して高温高湿環境下経時処理を行うことで、各ガスバリア性フィルムが有するガスバリア性膜の水蒸気透過性を評価した。ここで、上記条件3の屈曲処理2を行った水蒸気透過性評価用セルは、透明粘着剤シートおよびPETフィルムを剥離した後に高温高湿環境下経時処理を行った。具体的には、水蒸気透過性は、水蒸気透過性評価用セルを85℃85%RH環境下に保存した際の、保存時間に対する初期の透過濃度からの透過濃度低下の程度により、下記指標に基づくランクによる評価とした。透過濃度測定には、コニカミノルタ株式会社製の白黒透過濃度計 TM-5を用いて、セルの任意の4点で測定し、その平均値を算出した。ここで、濃度低下100%とは、Ca蒸着を行わずにCa評価用セルを作製した場合の透過濃度を表すものとする。なお、ランク8以上が極めて優れた特性を表すものとする;
 10:200時間で濃度低下が2%未満、
  9:200時間で濃度低下が2%以上5%未満、
  8:200時間で濃度低下が5%以上10%未満、
  7:200時間で濃度低下が10%以上20%未満、
  6:200時間で濃度低下が20%以上50%未満、
  5:200時間で濃度低下が50%以上80%未満、
  4:100時間では濃度低下が80%未満、200時間で濃度低下が80%以上、
  3:50時間では濃度低下が80%未満、100時間で濃度低下が80%以上、
  2:20時間では濃度低下が80%未満、50時間で濃度低下が80%以上、
  1:20時間で濃度低下が80%以上、
 水蒸気透過性評価の結果を下記表3に示す。
(Treatment in high temperature and high humidity environment)
After performing the pre-treatment necessary for the evaluation of each condition, the water vapor permeability of the gas barrier film possessed by each gas barrier film is obtained by subjecting the water vapor permeability evaluation cell to a time-dependent treatment in a high temperature and high humidity environment. evaluated. Here, the cell for evaluating water vapor permeability subjected to the bending treatment 2 under the above condition 3 was subjected to a aging treatment in a high-temperature and high-humidity environment after peeling off the transparent adhesive sheet and the PET film. Specifically, the water vapor permeability is based on the following index according to the degree of decrease in the transmission density from the initial transmission density with respect to the storage time when the water vapor permeability evaluation cell is stored in an environment of 85 ° C. and 85% RH. Evaluation was based on rank. For the transmission density measurement, a black and white transmission density meter TM-5 manufactured by Konica Minolta Co., Ltd. was used, and measurement was performed at any four points in the cell, and the average value was calculated. Here, the concentration reduction of 100% represents the transmission concentration when a Ca evaluation cell is produced without performing Ca deposition. It should be noted that rank 8 or higher represents extremely excellent characteristics;
10: Less than 2% decrease in concentration at 200 hours,
9: 2% or more and less than 5% in 200 hours
8: Concentration drop from 5% to less than 10% in 200 hours,
7: 10% or more and less than 20% decrease in density in 200 hours,
6: 20% or more and less than 50% concentration decrease in 200 hours,
5: 50% or more and less than 80% concentration decrease in 200 hours,
4: Less than 80% decrease in concentration at 100 hours, 80% or more decrease in concentration at 200 hours,
3: Less than 80% decrease in density at 50 hours, 80% or more decrease in density at 100 hours,
2: Density drop is less than 80% in 20 hours, density drop is 80% or more in 50 hours,
1: Concentration drop is 80% or more in 20 hours,
The results of water vapor permeability evaluation are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 以上の結果より、本発明に係るガスバリア性膜を有する実施例のガスバリア性フィルムは、本発明の範囲外の構成のガスバリア性膜を有する比較例のガスバリア性フィルムと比較して、極めて優れた屈曲性と、高温高湿環境での顕著に高い水蒸気バリア性とが両立されることが確認された。 From the above results, the gas barrier film of the example having the gas barrier film according to the present invention is extremely excellent in bending as compared with the gas barrier film of the comparative example having the gas barrier film having a configuration outside the scope of the present invention. It was confirmed that the water vapor barrier property and the remarkably high water vapor barrier property in a high temperature and high humidity environment are compatible.
 上記作製したガスバリア性フィルムの製造方法の中でも、非遷移金属M1含有層と、非遷移金属M2含有層と、を連続して気相成膜法で成膜したガスバリア性フィルム12~17(実施例1~6)の製造方法は、生産性に優れていた。また、これらの中でも、非遷移金属M1含有層と、非遷移金属M2含有層と、を連続してスパッタ法で成膜したガスバリア性フィルム15(実施例4)は、成膜装置を変更せずに連続して成膜が可能となるため、特に生産性に優れていた。 Among the gas barrier film manufacturing methods produced above, gas barrier films 12 to 17 in which a non-transition metal M1-containing layer and a non-transition metal M2-containing layer are continuously formed by a vapor deposition method (Examples) The production methods 1 to 6) were excellent in productivity. Among these, the gas barrier film 15 (Example 4) in which the non-transition metal M1 containing layer and the non-transition metal M2 containing layer are continuously formed by sputtering is not changed. In particular, the film formation was possible, so that the productivity was particularly excellent.
 <有機EL照明素子の耐久性評価>
 下記のようにして作製した有機EL照明素子を用いて、高温高湿環境下経時後にダークスポット評価を行った。
<Durability evaluation of organic EL lighting elements>
Using the organic EL lighting element produced as described below, dark spot evaluation was performed after aging in a high temperature and high humidity environment.
 〔比較封止部材用ガスバリア性フィルムの製造〕
 (比較封止部材用ガスバリア性フィルム21の製造)
 ガスバリア性フィルム3の製造において、上記非遷移金属M1含有層の形成方法A3により得られた厚さ50nmの窒化ケイ素膜の表面に、下記を混合して得られた有機膜形成用塗布液を乾燥後の厚さが1000nmとなるように塗布し、80℃で乾燥して塗工膜を得た。次いで、大気下で高圧水銀ランプを用いて照射エネルギー0.5J/cmで紫外線照射して塗工膜を硬化し、有機膜を形成した。続いて、上記非遷移金属M1含有層の形成方法A3と同様の条件によって、厚さ50nmの窒化ケイ素膜を形成した。このようにして、窒化ケイ素膜/有機膜/窒化ケイ素膜をこの順に形成することで得られるガスバリア性膜を有する、ガスバリア性フィルム21を得た。そして、ガスバリア性フィルム21について、他のガスバリア性フィルムと同様にガスバリア性膜の厚さ方向の組成分布の測定を行った。
[Manufacture of gas barrier film for comparative sealing member]
(Manufacture of gas barrier film 21 for comparative sealing member)
In the production of the gas barrier film 3, the coating liquid for forming an organic film obtained by mixing the following was dried on the surface of the silicon nitride film having a thickness of 50 nm obtained by the formation method A3 of the non-transition metal M1-containing layer. It apply | coated so that latter thickness might be set to 1000 nm, and it dried at 80 degreeC and obtained the coating film. Subsequently, the coating film was cured by irradiating with ultraviolet rays at an irradiation energy of 0.5 J / cm 2 using a high-pressure mercury lamp in the atmosphere to form an organic film. Subsequently, a silicon nitride film having a thickness of 50 nm was formed under the same conditions as in the non-transition metal M1-containing layer formation method A3. Thus, a gas barrier film 21 having a gas barrier film obtained by forming a silicon nitride film / organic film / silicon nitride film in this order was obtained. And about the gas barrier film 21, the composition distribution of the thickness direction of a gas barrier film was measured similarly to other gas barrier films.
 ≪有機膜形成用塗布液≫
 重合性化合物:トリメチロールプロパントリアクリレート 50質量部、
 重合開始剤:ESACURE(登録商標) KTO46(Lamberti社製)                         1質量部、
 シランカップリング剤:KBM-5013(信越化学工業株式会社製)                              5質量部、
 界面活性剤:BYK(登録商標)378(ビックケミー・ジャパン株式会社製)                        0.5質量部、
 メチルエチルケトン                 400質量部。
≪Coating liquid for organic film formation≫
Polymerizable compound: 50 parts by mass of trimethylolpropane triacrylate,
Polymerization initiator: ESACURE (registered trademark) KTO46 (manufactured by Lamberti) 1 part by mass,
Silane coupling agent: KBM-5013 (manufactured by Shin-Etsu Chemical Co., Ltd.) 5 parts by mass,
Surfactant: BYK (registered trademark) 378 (manufactured by Big Chemie Japan Co., Ltd.) 0.5 part by mass,
400 parts by mass of methyl ethyl ketone.
 (比較封止部材用ガスバリア性フィルム22の製造)
 ガスバリア性フィルム21の製造において、有機膜の形成方法および窒化ケイ素膜の形成方法と同様の方法で、さらに厚さ1000nmの有機膜および厚さ50nmの窒化ケイ素膜を積層させた。このようにして、窒化ケイ素膜/有機膜/窒化ケイ素膜/有機膜/窒化ケイ素膜をこの順に形成することで得られるガスバリア性膜を有する、ガスバリア性フィルム22を得た。そして、ガスバリア性フィルム22について、他のガスバリア性フィルムと同様にガスバリア性膜の厚さ方向の組成分布の測定を行った。
(Manufacture of gas barrier film 22 for comparative sealing member)
In the production of the gas barrier film 21, an organic film having a thickness of 1000 nm and a silicon nitride film having a thickness of 50 nm were further laminated in the same manner as the organic film forming method and the silicon nitride film forming method. Thus, a gas barrier film 22 having a gas barrier film obtained by forming a silicon nitride film / organic film / silicon nitride film / organic film / silicon nitride film in this order was obtained. And about the gas barrier film 22, the composition distribution of the thickness direction of a gas barrier film was measured like other gas barrier films.
 〔有機EL照明素子の作製〕
 無アルカリガラス板(厚さ0.7mm)を基材として用い、封止部材として、上記で作製したガスバリア性フィルム3、13、14、18、21および22を用いて、下記に示すような方法で、発光領域の面積が5cm×5cmとなるように、ボトムエミッション型の有機EL照明素子101~106を作製した。
[Production of organic EL lighting elements]
Using a non-alkali glass plate (thickness 0.7 mm) as a base material, and using the gas barrier films 3, 13, 14, 18, 21, and 22 prepared above as a sealing member, a method as shown below Thus, bottom emission type organic EL lighting elements 101 to 106 were fabricated so that the area of the light emitting region was 5 cm × 5 cm.
 (下地層、第1電極の形成)
 十分に洗浄した無アルカリガラス板を、市販の真空蒸着装置の基材ホルダーに固定し、下記の化合物118をタングステン製の抵抗加熱ボートに入れ、これら基材ホルダーと抵抗加熱ボートとを真空蒸着装置の第1真空槽内に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の第2真空槽内に取り付けた。
(Formation of underlayer and first electrode)
A sufficiently washed alkali-free glass plate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, the following compound 118 is placed in a resistance heating boat made of tungsten, and these substrate holder and the resistance heating boat are vacuum deposition apparatus. In the first vacuum chamber. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber of a vacuum evaporation system.
 次に、真空蒸着装置の第1真空槽を4×10-4Paまで減圧した後、化合物118の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で第1電極の下地層を厚さ10nmで設けた。 Next, after reducing the pressure in the first vacuum tank of the vacuum deposition apparatus to 4 × 10 −4 Pa, the heating boat containing the compound 118 was energized and heated, and the deposition rate was 0.1 nm / second to 0.2 nm / second. The underlayer of the first electrode was provided with a thickness of 10 nm.
 そして、下地層まで形成した基材を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で厚さ8nmの銀からなる第1電極を形成した。 Then, the base material formed up to the base layer was transferred to the second vacuum chamber while being vacuumed, and after the pressure in the second vacuum chamber was reduced to 4 × 10 −4 Pa, the heating boat containing silver was energized and heated. Thus, a first electrode made of silver having a thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
 (有機機能層~第2電極)
 引き続き、市販の真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、基材を移動させながら化合物HT-1を、蒸着速度0.1nm/秒で蒸着し、20nmの正孔輸送層(HTL)を設けた。
(Organic functional layer to second electrode)
Subsequently, the pressure was reduced to a vacuum degree of 1 × 10 −4 Pa using a commercially available vacuum deposition apparatus, and then the compound HT-1 was deposited at a deposition rate of 0.1 nm / second while moving the base material. A transport layer (HTL) was provided.
 次に、下記の化合物A-3(青色発光ドーパント)、および下記の化合物H-1(ホスト化合物)を、化合物A-3が膜厚に対し線形に35質量%から5質量%になるように場所により蒸着速度を変化させ、化合物H-1は65質量%から95質量%になるように場所により蒸着速度を変化させて、厚さ70nmになるように共蒸着して発光層を形成した。 Next, the following compound A-3 (blue light emitting dopant) and the following compound H-1 (host compound) are added so that the compound A-3 is linearly 35% by mass to 5% by mass with respect to the film thickness. The vapor deposition rate was changed depending on the location, and the vapor deposition rate was changed depending on the location so that the compound H-1 was from 65% by mass to 95% by mass, and the light emitting layer was formed by co-evaporation to a thickness of 70 nm.
 その後、下記の化合物ET-1を膜厚30nmに蒸着して電子輸送層を形成し、さらにフッ化カリウム(KF)を厚さ2nmで形成した。さらに、アルミニウム110nmを蒸着して第2電極を形成した。 Thereafter, the following compound ET-1 was deposited to a thickness of 30 nm to form an electron transport layer, and further potassium fluoride (KF) was formed to a thickness of 2 nm. Furthermore, aluminum 110nm was vapor-deposited and the 2nd electrode was formed.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 (固体封止)
 次に、上記作製したガスバリア性フィルムのガスバリア性膜表面に、封止樹脂層として熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmで貼合した封止部材を用意した。この封止部材を用いて、第2電極までを作製した試料に重ね合わせた。このとき、第1電極および第2電極の引き出し電極の端部が外に出るように、封止部材の接着剤形成面と、素子の有機機能層面とを連続的に重ね合わせた。
(Solid sealing)
Next, a sealing member was prepared by bonding a thermosetting sheet-like adhesive (epoxy resin) with a thickness of 20 μm as a sealing resin layer to the surface of the gas barrier film of the produced gas barrier film. Using this sealing member, the sample up to the second electrode was overlaid. At this time, the adhesive forming surface of the sealing member and the organic functional layer surface of the element were continuously overlapped so that the ends of the lead electrodes of the first electrode and the second electrode were exposed.
 次いで、試料を減圧装置内に配置し、90℃で0.1MPaの減圧条件下で、重ね合わせた基材と封止部材とに押圧をかけて5分間保持した。続いて、試料を大気圧環境に戻し、さらに120℃で30分間加熱して接着剤を硬化させた。 Next, the sample was placed in a decompression device, and pressed at 90 ° C. under a reduced pressure of 0.1 MPa, pressed against the superposed base material and the sealing member, and held for 5 minutes. Subsequently, the sample was returned to an atmospheric pressure environment and further heated at 120 ° C. for 30 minutes to cure the adhesive.
 上記封止工程は、大気圧下、含水率1ppm以下の窒素雰囲気下で、JIS B 9920:2002に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppm以下の大気圧で行った。なお、陽極、陰極からの引き出し配線等の形成に関する記載は省略してある。 The sealing step is performed under atmospheric pressure and in a nitrogen atmosphere with a water content of 1 ppm or less, in accordance with JIS B 9920: 2002. The measured cleanliness is class 100, the dew point temperature is −80 ° C. or less, and the oxygen concentration is 0. It was performed at an atmospheric pressure of 8 ppm or less. In addition, the description regarding formation of the lead-out wiring from an anode and a cathode is abbreviate | omitted.
 このようにして、発光領域の面積が5cm×5cmサイズの有機EL照明素子を作製した。 In this way, an organic EL lighting element having a light emitting region area of 5 cm × 5 cm was manufactured.
 なお、各有機EL照明素子における封止部材の作製に用いられた各ガスバリア性フィルムは下記表4に示す。 In addition, each gas barrier film used for preparation of the sealing member in each organic EL lighting element is shown in Table 4 below.
 〔ダークスポット(DS)評価)
 (初期ダークスポット評価)
 有機EL照明素子を発光させて、発光状態を撮影して、1画素10μm相当の高解像度のデジタル画像とした。4画素以上の非発光点をダークスポットとし、発生位置(中心位置)を画素の位置として記録した。
[Dark spot (DS) evaluation)
(Initial dark spot evaluation)
The organic EL lighting element was caused to emit light, and the light emission state was photographed to obtain a high-resolution digital image equivalent to 10 μm per pixel. Non-light emitting points of 4 pixels or more were recorded as dark spots, and the generation position (center position) was recorded as the pixel position.
 (強制劣化ダークスポット、および、遅れ発生ダークスポット評価)
 初期ダークスポットの評価後に、有機EL照明素子を85℃85%RHの環境下で300時間保存した。その後、有機EL照明素子を発光させて、円換算直径が200μm以上のダークスポットの数を求め、これを強制劣化ダークスポットとして下記指標に基づくランクで評価した。また、初期ダークスポットとして記録されていない位置に発生した200μm以上のダークスポットがあった場合、遅れ発生ダークスポット有りとした。なお、ダークスポット評価は、ダークスポットの数がランク5であり、かつ遅れ発生ダークスポットが無いことが極めて優れた特性を表すものとする; 
 5:0~9個、
 4:10~19個、
 3:20~29個、
 2:30~49個、
 1:50個以上、
 これらの結果を下記表4に示す。
(Forced deterioration dark spot and delayed occurrence dark spot evaluation)
After the evaluation of the initial dark spot, the organic EL lighting element was stored for 300 hours in an environment of 85 ° C. and 85% RH. Thereafter, the organic EL lighting element was caused to emit light, and the number of dark spots having a circle-equivalent diameter of 200 μm or more was determined, and this was evaluated as a forced deterioration dark spot with a rank based on the following index. Further, when there was a dark spot of 200 μm or more generated at a position not recorded as an initial dark spot, it was determined that there was a delayed dark spot. It should be noted that the dark spot evaluation represents extremely excellent characteristics in that the number of dark spots is rank 5 and there is no delayed dark spot;
5: 0-9,
4: 10-19 pieces,
3: 20-29,
2: 30-49,
1:50 or more,
These results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 以上の結果より、本発明に係るガスバリア性膜を有する実施例のガスバリア性フィルムは、有機EL素子等に要求されるレベルの高い水蒸気バリア性を達成することができ、ダークスポットが遅れて発生することを抑制できることが確認された。一方、本発明の範囲外の構成のガスバリア性膜を有する比較例のガスバリア性フィルムでは、高温高湿環境での水蒸気バリア性が実施例のガスバリア性フィルムよりも劣るか、またはダークスポットが遅れて発生することを抑制できないことが確認された。 From the above results, the gas barrier film of the example having the gas barrier film according to the present invention can achieve a high level of water vapor barrier property required for an organic EL element or the like, and dark spots are generated with a delay. It was confirmed that this can be suppressed. On the other hand, in the gas barrier film of the comparative example having a gas barrier film having a configuration outside the scope of the present invention, the water vapor barrier property in a high-temperature and high-humidity environment is inferior to the gas barrier film of the example, or the dark spot is delayed. It was confirmed that it cannot be suppressed.
 本出願は、2016年7月28日に出願された日本特許出願番号特願2016-148796号に基づいており、その開示内容は、参照により全体として組み入れられている。 This application is based on Japanese Patent Application No. 2016-148996 filed on July 28, 2016, the disclosure of which is incorporated by reference in its entirety.
  1  装置チャンバ、
  2  172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプ、
  3  外部電極を兼ねるエキシマランプのホルダー、
  4  試料ステージ、
  5  ポリシラザン化合物塗布層が形成された試料、
  6  遮光板、
  V  試料ステージの移動速度、
  10、10’  成膜対象物上へ形成するガスバリア性膜の積層構造
  11、110  成膜対象物、
  12  非遷移金属M1含有層
  13  遷移金属M2含有層、
  101 真空プラズマCVD装置、
  102 真空槽、
  103 カソード電極、
  105 サセプタ、
  106 熱媒体循環系、
  107 真空排気系、
  108 ガス導入系、
  109 高周波電源、
  160 加熱冷却装置。
1 equipment chamber,
2 Xe excimer lamp having a double tube structure for irradiating vacuum ultraviolet rays of 172 nm,
3 Excimer lamp holder that also serves as an external electrode,
4 Sample stage,
5 Sample on which a polysilazane compound coating layer is formed,
6 Shading plate,
V Sample stage moving speed,
10, 10 ′ Laminate structure of gas barrier film to be formed on film formation object 11, 110 Film formation object,
12 Non-transition metal M1 containing layer 13 Transition metal M2 containing layer,
101 vacuum plasma CVD apparatus,
102 vacuum chamber,
103 cathode electrode,
105 susceptors,
106 heat medium circulation system,
107 vacuum exhaust system,
108 gas introduction system,
109 high frequency power supply,
160 Heating and cooling device.

Claims (11)

  1.  厚さ方向にXPS組成分析を行った際に得られる原子組成分布プロファイルにおいて、組成をM1M2で示した際に、下記式(1)および下記式(2)を満足する領域(a)を有する、ガスバリア性膜;
    Figure JPOXMLDOC01-appb-M000001
    In the atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction, a region satisfying the following formula (1) and the following formula (2) when the composition is represented by M1M2 x N y (a) Having a gas barrier film;
    Figure JPOXMLDOC01-appb-M000001
  2.  厚さ方向に、金属元素の主成分として非遷移金属M1を含有する領域(A)と、金属元素の主成分として遷移金属M2を含有する領域(B)とを有し、前記領域(A)と前記領域(B)とが接している、請求項1に記載のガスバリア性膜。 A region (A) containing the non-transition metal M1 as the main component of the metal element and a region (B) containing the transition metal M2 as the main component of the metal element in the thickness direction, the region (A) The gas barrier film according to claim 1, wherein the region (B) is in contact.
  3.  前記非遷移金属M1がSiである、請求項1または2に記載のガスバリア性膜。 The gas barrier film according to claim 1 or 2, wherein the non-transition metal M1 is Si.
  4.  前記遷移金属M2がNb、TaおよびVからなる群より選択される少なくとも1種の金属である、請求項1~3のいずれか1項に記載のガスバリア性膜。 The gas barrier film according to any one of claims 1 to 3, wherein the transition metal M2 is at least one metal selected from the group consisting of Nb, Ta and V.
  5.  前記領域(a)の厚さが5nm以上である、請求項1~4のいずれか1項に記載のガスバリア性膜。 The gas barrier film according to any one of claims 1 to 4, wherein the thickness of the region (a) is 5 nm or more.
  6.  樹脂基材上に、請求項1~5のいずれか1項に記載のガスバリア性膜を有する、ガスバリア性フィルム。 A gas barrier film having the gas barrier film according to any one of claims 1 to 5 on a resin substrate.
  7.  請求項1~5のいずれか1項に記載のガスバリア性膜または請求項6に記載のガスバリア性フィルムを含む、電子デバイス。 An electronic device comprising the gas barrier film according to any one of claims 1 to 5 or the gas barrier film according to claim 6.
  8.  金属元素の主成分として非遷移金属M1を含有する非遷移金属M1含有層と、金属元素の主成分として遷移金属M2を含有する遷移金属M2含有層とを、接するように形成することを含む、ガスバリア性膜の製造方法であって、
     前記ガスバリア性膜の厚さ方向にXPS組成分析を行った際に得られる原子組成分布プロファイルにおいて、組成をM1M2で示した際に、下記式(1)および下記式(2)を満足する領域(a)を有する、ガスバリア性膜の製造方法;
    Figure JPOXMLDOC01-appb-M000002
    Forming a non-transition metal M1 containing layer containing the non-transition metal M1 as the main component of the metal element and a transition metal M2 containing layer containing the transition metal M2 as the main component of the metal element in contact with each other; A method for producing a gas barrier film,
    In the atomic composition distribution profile obtained when XPS composition analysis is performed in the thickness direction of the gas barrier film, the following formula (1) and the following formula (2) are satisfied when the composition is represented by M1M2 x N y A method for producing a gas barrier film having a region (a) to be treated;
    Figure JPOXMLDOC01-appb-M000002
  9.  前記遷移金属M2含有層は、気相成膜法で形成される、請求項8に記載のガスバリア性膜の製造方法。 The method for producing a gas barrier film according to claim 8, wherein the transition metal M2 containing layer is formed by a vapor deposition method.
  10.  前記気相成膜法の雰囲気は、窒素を含む雰囲気である、請求項9に記載のガスバリア性膜の製造方法。 The method for producing a gas barrier film according to claim 9, wherein the atmosphere of the vapor deposition method is an atmosphere containing nitrogen.
  11.  前記非遷移金属M1含有層は、気相成膜法で形成される、請求項8~10のいずれか1項に記載のガスバリア性膜の製造方法。 The method for producing a gas barrier film according to any one of claims 8 to 10, wherein the non-transition metal M1-containing layer is formed by a vapor deposition method.
PCT/JP2017/025316 2016-07-28 2017-07-11 Gas barrier membrane, gas barrier film using same, electronic device using said gas barrier membrane or said gas barrier film, and production method for gas barrier membrane WO2018021021A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780046487.9A CN109477202A (en) 2016-07-28 2017-07-11 Gas barrier film, using it barrier properties for gases membrane material and using they electronic equipment and gas barrier film manufacturing method
JP2018529753A JPWO2018021021A1 (en) 2016-07-28 2017-07-11 Gas barrier film, gas barrier film using the same, electronic device using the same, and method for producing gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-148796 2016-07-28
JP2016148796 2016-07-28

Publications (1)

Publication Number Publication Date
WO2018021021A1 true WO2018021021A1 (en) 2018-02-01

Family

ID=61015890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025316 WO2018021021A1 (en) 2016-07-28 2017-07-11 Gas barrier membrane, gas barrier film using same, electronic device using said gas barrier membrane or said gas barrier film, and production method for gas barrier membrane

Country Status (3)

Country Link
JP (1) JPWO2018021021A1 (en)
CN (1) CN109477202A (en)
WO (1) WO2018021021A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035128A (en) * 2003-07-18 2005-02-10 Sumitomo Bakelite Co Ltd Transparent gas barrier film and display device using it
JP2012509203A (en) * 2008-11-17 2012-04-19 スリーエム イノベイティブ プロパティズ カンパニー Gradient composition barrier
WO2015178069A1 (en) * 2014-05-20 2015-11-26 コニカミノルタ株式会社 Gas barrier film
WO2016039060A1 (en) * 2014-09-10 2016-03-17 コニカミノルタ株式会社 Gas barrier film and organic electroluminescent element
JP2016095893A (en) * 2014-11-11 2016-05-26 シーゲイト テクノロジー エルエルシーSeagate Technology LLC Devices including amorphous gas barrier layer, and method of forming the same
WO2016136842A1 (en) * 2015-02-25 2016-09-01 コニカミノルタ株式会社 Gas barrier film
WO2016147959A1 (en) * 2015-03-18 2016-09-22 コニカミノルタ株式会社 Gas barrier film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101718560B1 (en) * 2009-04-09 2017-03-21 스미또모 가가꾸 가부시키가이샤 Gas-barrier multilayer film
CN103154052B (en) * 2010-10-06 2016-02-24 株式会社日本触媒 Diolefin series carboxylate anion is with its salt and be polymerized or solidification compound
EP2724854A4 (en) * 2011-06-27 2015-03-25 Konica Minolta Inc Gas barrier film, manufacturing process for gas barrier film, and electronic device
JPWO2014142036A1 (en) * 2013-03-11 2017-02-16 コニカミノルタ株式会社 Gas barrier film, method for producing gas barrier film, and organic electroluminescence element
CN105593013A (en) * 2013-10-10 2016-05-18 柯尼卡美能达株式会社 Method for manufacturing gas barrier film
CN105658424A (en) * 2013-10-24 2016-06-08 柯尼卡美能达株式会社 Gas barrier film
JP2015113348A (en) * 2013-12-06 2015-06-22 信越化学工業株式会社 Curable composition and optical semiconductor device
CN104553115A (en) * 2014-12-26 2015-04-29 常州二维碳素科技有限公司 Composite gas barrier film and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035128A (en) * 2003-07-18 2005-02-10 Sumitomo Bakelite Co Ltd Transparent gas barrier film and display device using it
JP2012509203A (en) * 2008-11-17 2012-04-19 スリーエム イノベイティブ プロパティズ カンパニー Gradient composition barrier
WO2015178069A1 (en) * 2014-05-20 2015-11-26 コニカミノルタ株式会社 Gas barrier film
WO2016039060A1 (en) * 2014-09-10 2016-03-17 コニカミノルタ株式会社 Gas barrier film and organic electroluminescent element
JP2016095893A (en) * 2014-11-11 2016-05-26 シーゲイト テクノロジー エルエルシーSeagate Technology LLC Devices including amorphous gas barrier layer, and method of forming the same
WO2016136842A1 (en) * 2015-02-25 2016-09-01 コニカミノルタ株式会社 Gas barrier film
WO2016147959A1 (en) * 2015-03-18 2016-09-22 コニカミノルタ株式会社 Gas barrier film

Also Published As

Publication number Publication date
CN109477202A (en) 2019-03-15
JPWO2018021021A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP5895687B2 (en) Gas barrier film
WO2014163062A1 (en) Method for manufacturing gas barrier film, gas barrier film, and electronic device
JP2012016854A (en) Gas barrier film, organic photoelectric conversion element, and organic electroluminescent element
JP2012131194A (en) Gas barrier film
JP5884531B2 (en) Water vapor barrier film manufacturing method, water vapor barrier film and electronic device
JP5581834B2 (en) Method for producing gas barrier film, organic electronic device
JP2012067193A (en) Method for cleaning gas barrier film, gas barrier package and organic electronic device
TWI617459B (en) Gas barrier film and manufacturing method thereof
JP2012228859A (en) Gas barrier film and method of manufacturing the same
JP2017095758A (en) Method for producing gas barrier film
JPWO2016190284A6 (en) Gas barrier film and method for producing the same
WO2016178391A1 (en) Long gas-barrier film and method for producing same, and short gas-barrier film and method for producing same
JPWO2016178391A6 (en) Elongated gas barrier film and method for producing the same, and short gas barrier film and method for producing the same
WO2018021021A1 (en) Gas barrier membrane, gas barrier film using same, electronic device using said gas barrier membrane or said gas barrier film, and production method for gas barrier membrane
WO2017047346A1 (en) Electronic device and method for sealing electronic device
WO2017090592A1 (en) Gas barrier film, and electronic device provided with same
WO2017090498A1 (en) Method for producing gas barrier film
WO2017010249A1 (en) Gas barrier film
JP2016171038A (en) Method for manufacturing electronic device
WO2017110463A1 (en) Gas barrier film and method for manufacturing same
JP2018012234A (en) Gas barrier film and electronic device
JP2013226758A (en) Method for manufacturing gas barrier film
WO2017090602A1 (en) Gas barrier film, and electronic device provided with same
JP6477077B2 (en) Method for producing gas barrier film
WO2016136843A1 (en) Gas barrier film and electronic device using gas barrier film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529753

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834029

Country of ref document: EP

Kind code of ref document: A1