WO2017013980A1 - Gas barrier film - Google Patents

Gas barrier film Download PDF

Info

Publication number
WO2017013980A1
WO2017013980A1 PCT/JP2016/068206 JP2016068206W WO2017013980A1 WO 2017013980 A1 WO2017013980 A1 WO 2017013980A1 JP 2016068206 W JP2016068206 W JP 2016068206W WO 2017013980 A1 WO2017013980 A1 WO 2017013980A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
transition metal
region
layer
barrier layer
Prior art date
Application number
PCT/JP2016/068206
Other languages
French (fr)
Japanese (ja)
Inventor
力 安井
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017013980A1 publication Critical patent/WO2017013980A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings

Definitions

  • the present invention relates to a gas barrier film. More specifically, the present invention relates to a gas barrier film having high gas barrier properties and excellent durability (interlayer adhesion) in a high temperature and high humidity environment.
  • a gas barrier film is used as a substrate film or a sealing film.
  • the gas barrier film used for these is required to have high gas barrier properties against moisture and oxygen.
  • a gas barrier film is manufactured by forming an inorganic barrier layer on a film by a vapor deposition method such as a vapor deposition method, a sputtering method, or a chemical deposition method (CVD method: Chemical Vapor Deposition).
  • a vapor deposition method such as a vapor deposition method, a sputtering method, or a chemical deposition method (CVD method: Chemical Vapor Deposition).
  • Silicon-containing compounds such as silicon oxide are widely used as the inorganic barrier layer, but silicon nitride is known to provide higher barrier properties than silicon oxide, and many studies have been made. Has been made.
  • a manufacturing method in which a gas barrier layer is formed by irradiating energy to a barrier precursor layer formed on a substrate by a solution coating method has been studied.
  • a novel gas barrier layer deposition method a coating liquid containing a silicon compound such as polysilazane is applied onto a substrate, and the applied polysilazane coating film is irradiated with vacuum ultraviolet light to constitute silicon oxide.
  • a method for forming a gas barrier layer is proposed (see, for example, Patent Document 1).
  • Patent Document 1 The method described in Patent Document 1 is light in a range of 100 to 200 nm, which is called vacuum ultraviolet light (hereinafter also referred to as “VUV” or “VUV light”), which is larger than the interatomic bonding force in polysilazane.
  • VUV vacuum ultraviolet light
  • Use energy As a result, by the action of only photons called photon processes, the oxidation reaction with active oxygen or ozone proceeds while directly breaking the atomic bonds, resulting in a silicon oxynitride composition at a relatively low temperature and high barrier properties. Has been attracting attention.
  • the gas barrier film produced by such a method is still insufficient as a barrier property.
  • the gas barrier film is at a level that can be used as a substrate of an organic EL device that requires a high gas barrier property. Not reached.
  • adheresion since the adhesiveness between layers under high temperature and high humidity (hereinafter, also referred to as “adhesion”) is deteriorated, the durability is insufficient.
  • a gas barrier layer formed by modifying polysilazane with excimer light has good gas barrier properties at a low temperature up to about 40 ° C., for example, at a high temperature and high humidity such as 85 ° C. and 85% RH.
  • a gas barrier layer formed by this method deteriorates the gas barrier property with the passage of time. This is due to the fact that the adhesion between the gas barrier layer formed by modifying the base material and the polysilazane decreases due to storage in a high temperature and high humidity environment, and peeling occurs between the base material and the gas barrier layer. It is believed that there is.
  • the present invention has been made in view of the above-mentioned problems and circumstances, and its solution is to have a high gas barrier property and durability in a high-temperature and high-humidity environment. Even so, it is to provide a gas barrier film having excellent adhesion between the gas barrier layer and the substrate.
  • the base layer A containing the compound containing the transition metal M1 and the base layer A are formed on the base material, It has a laminate C in which a gas barrier layer B containing at least silicon (Si) and nitrogen (N) is laminated in this order, and a transition metal is present in the interface region between the base layer A and the gas barrier layer B.
  • a gas characterized in that M1 and Si coexist the region D has a value of the atomic ratio of the transition metal M1 / Si within a specific range, and the thickness of the region D is 5 nm or more. It has been found that a gas barrier film having high gas barrier properties and excellent adhesion (adhesion) between the gas barrier layer and the substrate in a high temperature and high humidity environment can be obtained by the barrier film.
  • An underlayer A containing a compound containing a transition metal M1 and a gas barrier layer B formed in contact with the underlayer A and containing at least silicon (Si) and nitrogen (N) are formed on the substrate.
  • a gas barrier film having a laminate C laminated in order When the composition distribution in the thickness direction of the laminate C is analyzed by the XPS method, the transition metal M1 and Si coexist in the interface region between the base layer A and the gas barrier layer B, and the transition metal M1 / Si.
  • a gas barrier film comprising a region D having an atomic ratio value of 0.11 to 9.0 and a thickness of the region D of 5 nm or more.
  • transition metal M1 is at least one selected from niobium (Nb), zirconium (Zr), titanium (Ti), and iron (Fe). the film.
  • gas barrier layer B is a layer formed by applying a coating liquid containing polysilazane and drying the coating solution. the film.
  • the transition metal M2 and Si coexist in a region different from the region D, and the atomic ratio of the transition metal M2 / Si The ratio according to any one of Items 1 to 5, wherein the ratio E is within a range of 0.11 to 9.0, and the region E is not in contact with the region D. Gas barrier film.
  • gas barrier film as described in paragraph 6, characterized in that satisfies represented by the following formula (1).
  • the present invention it is possible to provide a gas barrier film having high gas barrier properties and excellent adhesion between a gas barrier layer and a substrate in a high temperature and high humidity environment.
  • the gas barrier film of the present invention is formed on a base material in contact with the base layer A containing the compound containing the transition metal M1, and at least silicon (Si) and nitrogen ( N) and the gas barrier layer B containing the laminate C in this order, and when the composition distribution in the thickness direction of the laminate C is analyzed by the XPS method, the base layer A and the gas In the interface region with the barrier layer B, there is a region D in which transition metal M1 and Si coexist and the atomic ratio of transition metal M1 / Si is in the range of 0.11 to 9.0.
  • region D is 5 nm or more, and by setting it as the structure prescribed
  • the region D according to the present invention is formed by the component of the gas barrier layer B entering the surface recess of the underlayer A containing the compound containing the transition metal M1, preferably the compound containing the transition metal M1 that is a spherical particle. Is done.
  • the first effect is that the M1-OH structure that is considered to exist on the surface of the compound containing the transition metal M1 reacts with the Si—NH 2 structure of the gas barrier layer B to form an M1-O—Si bond.
  • This M1-O—Si bond is considered less susceptible to hydrolysis than the Si—O—Si bond, and is less likely to deteriorate under high temperature and high humidity than an underlayer containing general colloidal silica. Therefore, high adhesiveness can be obtained by this effect.
  • the underlayer A has a concavo-convex structure with spherical transition metal M1 particles
  • the underlayer A and the gas barrier layer B are intricately in contact with each other.
  • the anchor effect appears.
  • the area of the interface where the underlayer A and the gas barrier layer B are in contact with each other is greatly increased from the projected area of the interface, the area for forming the M1-O—Si bond is also increased. It is estimated that the number of M1-O—Si bonds increased, and as a result, high adhesiveness could be realized.
  • Schematic sectional view showing an example of the configuration of the gas barrier film The schematic diagram which shows an example of a structure of the area
  • the gas barrier film of the present invention contains, on a base material, an underlayer A containing a compound containing a transition metal M1, and at least silicon (Si) and nitrogen (N) in contact with the underlayer A. It has a laminated body C in which a gas barrier layer B is formed and laminated, and when the composition distribution in the thickness direction of the laminated body C is analyzed by the XPS method, an interface region between the base layer A and the gas barrier layer B is formed.
  • the transition metal M1 and Si coexist, and the value of the atomic ratio of the transition metal M1 / Si is in a specific range, and the region D has a layer thickness of 5 nm or more. This feature is a technical feature common to or corresponding to the claimed invention.
  • the compound containing the transition metal M1 in the present invention, from the viewpoint that the effect intended by the present invention can be further expressed, it is possible for the compound containing the transition metal M1 to be a spherical particle, so that the region D can be efficiently formed, resulting in better adhesion. It is preferable at the point which can obtain property.
  • the transition metal M1 is at least one selected from niobium (Nb), zirconium (Zr), titanium (Ti), and iron (Fe). It is preferable from the viewpoint that M1-O—Si bonds can be formed and excellent adhesiveness can be obtained even when stored in a high temperature and high humidity environment.
  • the gas barrier layer B is a layer formed by applying a coating liquid containing polysilazane and drying it, because a high-quality gas barrier layer can be formed by simple means. .
  • the gas barrier layer B is a layer formed by applying and drying a coating liquid containing polysilazane and an aluminum compound, or polysilazane and a boron compound, and the transition metal shown below is further formed thereon.
  • M2 the gas barrier property in the region E shown below can be further stabilized, which is preferable in terms of increasing production efficiency.
  • the transition metal M2 and Si coexist in a region different from the region D, and the transition metal M2 / Si
  • the ratio of atomic ratios is in the range of 0.11 to 9.0 and the region E is not in contact with the region D, or the composition in the region E is expressed by SiM2 x O y N z Satisfying the condition represented by the above formula (1) is a region where the transition metal M2 and Si are stably combined as the region E, and it is difficult to be hydrolyzed, and higher gas barrier properties can be realized. Is preferable.
  • the transition metal M2 is niobium (Nb) or tantalum (Ta), which is a constituent material of the gas barrier layer and can form an effective M2-O—Si bond by interaction with Si. It is preferable in that excellent adhesiveness can be obtained even when stored in a high temperature and high humidity environment.
  • the gas barrier film of the present invention contains, on a base material, an underlayer A containing a compound containing a transition metal M1, and at least silicon (Si) and nitrogen (N) in contact with the underlayer A.
  • an underlayer A containing a compound containing a transition metal M1
  • at least silicon (Si) and nitrogen (N) in contact with the underlayer A.
  • One of the characteristics is that the gas barrier layer B is formed and the laminate C is laminated in this order.
  • the transition metal M1 and Si coexist in the interface region between the base layer A and the gas barrier layer B, and the transition metal M1 / Si A region D having a thickness of 5 nm or more having an atomic ratio value in a range of 0.11 to 9.0 is provided.
  • the “gas barrier film” as used in the present invention has a water vapor permeability (abbreviation: WVTR, temperature: 38 ° C., relative humidity (RH): 100%) measured by a method according to JIS K 7129-1992. It means that the film is 1.0 (g / m 2 ⁇ 24 h) or less.
  • the water vapor transmission rate can be determined by, for example, measuring with a water vapor transmission rate measuring device (trade name: Permatran, manufactured by Mocon) in an atmosphere of 38 ° C. and 100% RH.
  • a water vapor transmission rate measuring device (trade name: Permatran, manufactured by Mocon) in an atmosphere of 38 ° C. and 100% RH.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the gas barrier film of the present invention.
  • a gas barrier film (1) has a base layer (3) containing a compound containing a transition metal M1 as a first constituent layer on a substrate (2), on which As the second constituent layer, a gas barrier layer B (4) containing at least silicon (Si) and nitrogen (N) is formed to constitute a laminate (C).
  • the atomic ratio value of the transition metal M1 / Si is between the base layer A (3) and the gas barrier layer B (4) constituting the laminate (C).
  • a region D having a layer thickness within a range of 0.11 to 9.0 and having a thickness of 5 nm or more is provided.
  • the underlayer A (3) is composed of a compound containing the transition metal M1, preferably spherical particles containing the transition metal M1, and as a result, the underlayer A (3).
  • the surface of the substrate has a concavo-convex structure, and a gas barrier layer B (4) is formed thereon, preferably by wet coating, so that the concavo-convex structure portion on the surface of the base layer A (3) is formed as described above.
  • M1-OH present on the surface of the compound containing the transition metal M1 constituting the underlayer A (3) and Si— constituting the gas barrier layer B (4) NH 2 reacts at the contact interface to form M1-O—Si bonds.
  • This M1-O—Si bond for example, Nb—O—Si bond, Zr—O—Si bond, Ti—O—Si bond, Fe—O—Si bond, etc. is added to the Si—O—Si bond.
  • the base layer contains colloidal silica and the like, it is less likely to be decomposed, so that it is less deteriorated in a high-temperature and high-humidity environment, and excellent adhesiveness can be maintained.
  • FIG. 2 is a schematic diagram showing an example of the configuration of the region D formed at the interface between the base layer and the gas barrier layer.
  • an underlayer A (3) containing a compound containing a transition metal M1 is formed on a substrate (not shown).
  • a concavo-convex structure is formed corresponding to the shape of the spherical particles constituting the base layer A (3), and the particle density is also particularly high in the surface region of the base layer A (3). It is low, and there is a gap between the particles.
  • a region having a thickness of 5 nm or more in which the value of the atomic ratio of the transition metal M1 / Si is in the range of 0.11 to 9.0 when the gas barrier layer forming coating solution enters the concavo-convex structure portion. D can be formed.
  • the thickness of the region D according to the present invention is 5 nm or more, preferably 5 to 30 nm, and more preferably 8 to 20 nm. If it is in the range prescribed
  • a compound containing the transition metal M1 used for forming the underlayer as a specific means for controlling the region D to a desired thickness, for example, a compound containing the transition metal M1 used for forming the underlayer, more specifically, the particle size of the spherical particles, and the like are appropriately selected.
  • the density of the compound containing the transition metal M1 and the mass ratio of the compound containing the transition metal M1 and the binder for forming the underlayer can be appropriately set. it can.
  • the thickness of the region D is preferably changed in relation to the degree of unevenness of the surface depending on the compound constituting the underlayer A (3), more specifically, the particle size of the spherical particles.
  • the unevenness of the underlayer A (3) is too small, the first effect and the second effect described in the above estimation mechanism cannot be sufficiently exhibited, and the adhesiveness may be insufficient.
  • the number of irregularities of the underlayer A is excessive or too deep, the surface roughness of the gas barrier layer B (4) becomes rough, and the protrusion (uneven structure) of the underlayer A (3) is provided thereon. It becomes impossible to coat with the gas barrier layer B (4), and as a result, it becomes difficult to obtain sufficient gas barrier properties.
  • the degree of surface unevenness of the foundation layer A (3) can be quantified by measuring the difference in thickness of the foundation layer A (3) from the cross-sectional TEM image.
  • the height difference of the underlayer A (3) is preferably in the range of 5 to 30 nm, more preferably in the range of 8 to 20 nm when measured in the range of the cross-sectional TEM image length of 1.0 ⁇ m. It is.
  • the transition metal M1 and Si coexist in the interface region between the base layer A and the gas barrier layer B.
  • the transition metal M1 / Si has an atomic number ratio in the range of 0.11 to 9.0 and a thickness of 5 nm or more.
  • the element concentration distribution (hereinafter also referred to as a depth profile) in the thickness direction of the laminate C according to the present invention is specifically a transition metal M1 distribution curve, a silicon distribution curve, an oxygen distribution curve, a nitrogen distribution curve, and carbon.
  • a distribution curve or the like is performed by using both X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon to sequentially expose the inside from the surface of the laminate C. It can be created by so-called XPS depth profile measurement that analyzes the composition.
  • XPS X-ray photoelectron spectroscopy
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of each element (unit: atom%) and the horizontal axis as the etching time (sputtering time).
  • the etching time is roughly correlated with the distance from the surface of the gas barrier layer B (4) in the thickness direction of the laminate C in the layer thickness direction. Therefore, as the “distance from the surface of the gas barrier layer B (4) in the thickness direction of the laminate C”, the gas calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement.
  • the distance from the surface of the barrier layer can be employed.
  • etching rate is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
  • QUANTERASXM manufactured by ULVAC-PHI ⁇ X-ray source: Monochromatic Al-K ⁇ ⁇ Sputtering ion: Ar (2 keV)
  • Depth profile Measurement is repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data every 1 nm is obtained in the depth direction).
  • the background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area.
  • Data processing uses MultiPak manufactured by ULVAC-PHI.
  • the analyzed elements were silicon (Si), transition metal M1, oxygen (O), nitrogen (N), and carbon (C).
  • the composition ratio is calculated, and the range in which the transition metal M1 and Si coexist and the atomic ratio of the transition metal M1 / Si is in the range of 0.11 to 9.0 is obtained. This was defined as region D and its thickness was determined. The thickness of the region D represents the sputtering depth in XPS analysis in terms of SiO 2 .
  • the thickness of the region D is 5 nm or more, preferably in the range of 5 to 30 nm, and more preferably in the range of 8 to 20 nm.
  • FIG. 3 shows a schematic graph of the element profile when the composition distribution of Si and the transition metal M1 in the thickness direction of the gas barrier film including the region D is analyzed by the XPS method.
  • FIG. 3 shows the elemental analysis of Si, M1, O, N, and C in the depth direction from the surface of the gas barrier film (left end of the graph), and the horizontal axis represents the sputter depth (film thickness: nm).
  • the elemental composition of the gas barrier layer B (4), the elemental composition of the region D, and the elemental composition profile of the base layer A (3) is within the range of 11 to 9.0.
  • Examples of the substrate applicable to the gas barrier film of the present invention include a plastic film.
  • the plastic film is not particularly limited in material, thickness, and the like as long as it can hold the base layer A, the gas barrier layer B, and the like, and can be appropriately selected according to the purpose of use.
  • plastic film applicable to the present invention examples include conventionally known plastic films.
  • plastic film Preferable specific examples that can be used as the plastic film are polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC) and the like.
  • the substrate is not particularly limited as a shape such as a single wafer shape or a roll shape, but a roll shape that can be handled by a roll-to-roll method is preferable from the viewpoint of productivity.
  • the thickness of the substrate is appropriately selected depending on the application and is not particularly limited, but is typically in the range of 1 to 800 ⁇ m, preferably in the range of 5 to 500 ⁇ m, more preferably 10 to It is in the range of 200 ⁇ m.
  • the base material used in the present invention can be produced by a conventionally known general method.
  • a melt casting method for producing an unstretched substrate that is substantially amorphous and not oriented by melting a resin as a material with an extruder, extruding with an annular die or a T-die, and quenching A solution casting method or the like in which a resin is dissolved in a solvent to prepare a dope, and then the dope is cast on a metal support and dried to produce a substrate, or the like can be used.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc.
  • a stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • various known treatments for improving adhesion such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, can be performed.
  • corona discharge treatment flame treatment
  • oxidation treatment oxidation treatment
  • plasma treatment plasma treatment
  • the underlayer A according to the present invention is a layer containing a compound containing at least a transition metal M1. Further, the transition metal M1 constituting the compound is preferably at least one selected from niobium (Nb), zirconium (Zr), titanium (Ti), and iron (Fe).
  • the transition metal M1 applied to the formation of the underlayer A according to the present invention refers to a Group 3 element to a Group 12 element.
  • the transition metal M1 according to the present invention Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Examples include Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, and Au.
  • Ti, Ce, Nb, Fe, Zr, La, and Nd are preferable, and at least one selected from Nb, Zr, Ti, and Fe that can obtain a compound having good transparency is preferable, and particularly preferable. Is Nb or Zr.
  • the transition metal M1 is preferably contained in the underlayer A as an oxide.
  • the transition metal M1 applied to the underlayer A may be used alone or in combination of two or more.
  • One preferred embodiment of the compound containing the transition metal M1 according to the present invention is to have a particle shape.
  • the particle shape may be any shape such as a spherical shape, a spindle shape, and an indeterminate shape, but is preferably a spherical particle from the viewpoint that a desired uneven structure can be stably formed on the surface of the underlayer.
  • the spherical particles have a major axis / minor axis ratio value (aspect ratio) in the range of 1.00 to 1.50, preferably in the range of 1.00 to 1.20. More preferably, it is in the range of 1.00 to 1.10.
  • the particle size of the compound containing the transition metal M1 is preferably in the range of 5 to 50 nm as the major axis, and more preferably in the range of 10 to 30 nm. Within this range, an appropriate uneven structure can be formed without forming coarse protrusions on the surface of the underlayer A.
  • the compound containing the transition metal M1 can be obtained as a commercial product.
  • the nanoparticle dispersion of the transition metal oxide the following ultrafine oxide sol can be mentioned.
  • the ultrafine oxide sols listed below are all manufactured by Taki Chemical Co., Ltd.
  • zirconium oxide (ZrO 2 ) sol (Nanouse (registered trademark) ZR series) is also commercially available from Nissan Chemical Industries.
  • a binder in forming the underlayer A according to the present invention, can be used together with the compound containing the transition metal M1 described above.
  • binders applicable to the formation of the underlayer A include diene (co) polymers such as polystyrene, polypropylene, polybutadiene, polyisoprene, and ethylene-butadiene copolymer, styrene-butadiene copolymer, and methyl methacrylate-butadiene.
  • diene (co) polymers such as polystyrene, polypropylene, polybutadiene, polyisoprene, and ethylene-butadiene copolymer, styrene-butadiene copolymer, and methyl methacrylate-butadiene.
  • Copolymer synthetic rubber such as acrylonitrile-butadiene copolymer, polymethyl methacrylate, methyl methacrylate- (2-ethylhexyl acrylate) copolymer, methyl methacrylate-methacrylic acid copolymer, methyl acrylate- (N-methylolacrylamide) Copolymers, (meth) acrylic (co) polymers such as polyacrylonitrile, polyvinyl acetate, vinyl acetate-vinyl propionate copolymers, vinyl ester (co) polymers such as vinyl acetate-ethylene copolymers, acetic acid Bi Le - (2-ethylhexyl acrylate) copolymers, polyvinyl chloride, polyvinylidene chloride, polystyrene and copolymers thereof.
  • synthetic rubber such as acrylonitrile-butadiene copolymer, polymethyl methacrylate, methyl methacrylate- (2-ethylhe
  • Formation method of base layer A As a method for forming the underlayer A on the substrate, for example, in addition to the compound containing the transition metal M1 and the binder, a solvent, a surfactant, and the like are added to form a coating solution for forming the underlayer A. After preparation, known spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method, etc.
  • the base layer A can be formed by coating on a substrate by a wet coating method and drying and removing a solvent, a diluent and the like.
  • the thickness of the underlying layer A after drying is not particularly limited, but is in the range of 20 to 500 nm, preferably in the range of 20 to 200 nm, and more preferably in the range of 30 to 150 nm. .
  • the gas barrier layer B is not particularly limited as long as it is a layer containing at least silicon (Si) and nitrogen (N), but a preferred embodiment is that a coating liquid containing polysilazane is applied and dried. It is a layer formed.
  • the gas barrier layer B according to the present invention forms a gas barrier layer B and a region D on the base layer A according to the present invention by applying a coating liquid containing polysilazane by a known wet coating method and then performing a modification treatment. To do.
  • the “polysilazane” used in the present invention is a polymer having a silicon (Si) -nitrogen (N) bond in the structure, and is a polymer that is a precursor of silicon oxynitride (SiON). What has the structure represented by these is used preferably.
  • R 1 , R 2 , and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • perhydropolysilazane all of R 1, R 2 and R 3 are hydrogen atom (abbreviation: PHPS) are particularly preferred.
  • Polysilazane is also commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.
  • Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials Co., Ltd.
  • the coating liquid for forming a gas barrier layer containing polysilazane contains a solvent and, if necessary, an additive element compound to be described later, and is wet-coated on the base layer A formed on the substrate. Form using the method.
  • Solvents used in the preparation of the coating solution for gas barrier layer formation include aprotic solvents; aliphatic hydrocarbons, alicyclic hydrocarbons, aromatics such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben Hydrocarbon solvents such as hydrocarbons; halogen hydrocarbon solvents such as methylene chloride and trichloroethane; esters such as ethyl acetate and butyl acetate; ketones such as acetone and methyl ethyl ketone; aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Ethers such as cyclic ethers: For example, tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes) and the like can be mentioned.
  • Hydrocarbon solvents such as
  • the concentration of polysilazane in the coating liquid for forming a gas barrier layer is not particularly limited and varies depending on the thickness of the layer to be formed and the pot life of the coating liquid, but is preferably in the range of 1 to 80% by mass, more preferably 5 It is in the range of ⁇ 50 mass%, more preferably in the range of 10 ⁇ 40 mass%.
  • any appropriate wet coating method can be employed as a method of applying the coating liquid containing polysilazane.
  • spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, gravure printing method and the like can be mentioned.
  • After applying the coating solution it is preferable to dry the coating film. By drying the coating film, the solvent contained in the coating film can be removed.
  • Specific methods for forming the gas barrier layer include, for example, paragraphs (0058) to (0064) of JP2014-151571A, paragraphs (0052) to (0056) of JP2011-183773A, and the like. It can be adopted by reference.
  • the modification treatment is treatment for imparting energy to polysilazane and converting part or all thereof to silicon oxide or silicon oxynitride.
  • a known method based on the conversion reaction of polysilazane can be selected, and examples thereof include known plasma treatment, plasma ion implantation treatment, ultraviolet irradiation treatment, vacuum ultraviolet irradiation treatment and the like.
  • a plasma that can be converted at a low temperature, or a conversion reaction using ozone or ultraviolet light is preferable. Conventionally known methods can be used for plasma and ozone.
  • a gas barrier layer is applied by applying a vacuum ultraviolet ray irradiation treatment in which a coating film of a polysilazane-containing coating solution of a coating method is provided on a substrate, and a modification treatment is performed by irradiating vacuum ultraviolet rays (VUV) having a wavelength of 200 nm or less.
  • VUV vacuum ultraviolet rays
  • the thickness of the gas barrier layer B is not particularly limited, but is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm.
  • the entire gas barrier layer may be a modified layer, or a part of the gas barrier layer may be a partially modified layer that has been subjected to a modification treatment.
  • VUV vacuum ultraviolet light
  • the VUV illuminance on the coating surface received by the polysilazane-containing coating film that is the precursor of the gas barrier layer is preferably in the range of 30 to 200 mW / cm 2 , and preferably 50 to 160 mW. More preferably within the range of / cm 2 .
  • the reforming efficiency can be sufficiently achieved, and by setting it to 200 mW / cm 2 or less, the damage occurrence rate to the coating film can be suppressed to a very low level. And it is preferable from a viewpoint which can suppress the damage to a base material or the base layer A already formed.
  • Irradiation energy amount of VUV in the polysilazane coating film surface is preferably in the range of 200 ⁇ 10000mJ / cm 2, and more preferably in a range of 500 ⁇ 5000mJ / cm 2.
  • the amount of irradiation energy of VUV 200 mJ / cm 2 or more the polysilazane layer can be stably reformed, and by setting it to 10000 mJ / cm 2 or less, excessive modification is suppressed and formed. Occurrence of cracks in the gas barrier layer and thermal deformation of the base material and the underlayer A can be suppressed.
  • a rare gas excimer lamp is preferably used.
  • an excimer lamp (single wavelength of 172 nm, 222 nm, 308 nm, for example, manufactured by USHIO INC., Manufactured by M.D. Can be mentioned.
  • Treatment by vacuum ultraviolet irradiation uses light energy having a wavelength of 100 to 200 nm, preferably light energy having a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in polysilazane, and bonds the atoms to photons called photon processes.
  • This is a method of forming a silicon oxide film in a relatively low temperature environment (about 200 ° C. or less) by causing an oxidation reaction with active oxygen or ozone to proceed while being directly cut by the action of only.
  • the oxygen concentration at the time of VUV irradiation is preferably in the range of 10 to 10,000 ppm, more preferably in the range of 50 to 5000 ppm, still more preferably in the range of 80 to 4500 ppm, and most preferably in the range of 100 to 1000 ppm.
  • a dry inert gas as a gas that satisfies the irradiation atmosphere, and it is particularly preferable to use a dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation environment and changing the flow rate ratio.
  • Two or more gas barrier layers may be laminated, and a gas barrier layer may be formed and laminated on a gas barrier layer formed by a plasma CVD method by a wet coating method using the polysilazane.
  • the gas barrier layer according to the present invention is preferably formed using polysilazane, particularly preferably perhydropolysilazane, as a precursor, but the gas barrier layer as the final product is a layer formed of polysilazane. It can be proved by analyzing by the following method.
  • the composition distribution in the thickness direction of the layer containing Si is analyzed and indicated by SiO x N y , the measurement point of 80% or more of the thickness of the formed gas valley layer is obtained. If the composition has a y value in the range of ⁇ 2% of (0.8 ⁇ x / 3), it is possible to estimate that the layer is a gas barrier layer formed from perhydropolysilazane. Become.
  • the coating liquid for forming the gas barrier layer B contains an additive element (at least one element selected from the group consisting of elements of Group 2 to Group 14 of the long-period periodic table). It can be included.
  • additive elements include aluminum (Al), titanium (Ti), zirconium (Zr), zinc (Zn), gallium (Ga), indium (In), chromium (Cr), iron (Fe), magnesium (Mg) ), Tin (Sn), nickel (Ni), palladium (Pd), lead (Pb), manganese (Mn), lithium (Li), germanium (Ge), copper (Cu), sodium (Na), potassium (K ), Calcium (Ca), cobalt (Co), boron (B), beryllium (Be), strontium (Sr), barium (Ba), radium (Ra), thallium (Tl), germanium (Ge) and the like. .
  • the gas barrier layer according to the present invention is preferably formed by applying a coating liquid containing polysilazane and an aluminum compound, or polysilazane and a boron compound, and drying it.
  • the transition metal M2 and Si coexist at a position not in contact with the region D, and the value of the atomic ratio of the transition metal M2 / Si is 0. It is a preferred embodiment to have a region E in the range of .11 to 9.0.
  • the composition of the already formed gas barrier layer B may change.
  • the quality of the gas barrier film for example, the gas barrier property is not stable due to a change in elemental composition such that nitrogen atoms are separated and oxygen atoms are taken in.
  • the composition change in a high-temperature and high-humidity environment after the formation of the gas barrier layer B is suppressed, and the stability is improved.
  • the quality (gas barrier property) when the sputtering process is performed on the gas barrier layer B with the compound containing the transition metal M2 in the subsequent process is stabilized, that is, the production stability is greatly improved.
  • Examples of the aluminum compound applicable to the present invention include aluminum isopoloxide, aluminum sec-butyrate, titanium isopropoxide, aluminum triethylate, aluminum triisopropylate, aluminum tritert-butylate, and aluminum tri-n-butylate.
  • Examples of the boron compound include trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, tri-tert-butyl borate and the like.
  • aluminum compounds are preferred.
  • Specific commercial products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate / diisopropylate), ALCH-TR (aluminum trisethyl acetoate).
  • Acetate aluminum chelate M (aluminum alkyl acetoacetate / diisopropylate), aluminum chelate D (aluminum bisethylacetoacetate / monoacetylacetonate), aluminum chelate A (W) (aluminum trisacetylacetonate) Ken Fine Chemical Co., Ltd.), Preneact (registered trademark) AL-M (acetoalkoxyaluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.) It is possible.
  • the temperature is preferably raised to 30 to 100 ° C. and maintained for 1 minute to 24 hours with stirring.
  • the content of the additive element in the gas barrier layer is preferably in the range of 5 to 20 mol%, more preferably in the range of 5 to 10 mol% with respect to 100 mol% of the silicon (Si) content.
  • the transition metal M2 and Si coexist in different regions not in contact with the region D.
  • the region E has a ratio of the number ratio of transition metal M2 / Si in the range of 0.11 to 9.0.
  • FIG. 4 is a schematic cross-sectional view showing an example of the configuration of a gas barrier film having a region E on the gas barrier layer.
  • the substrate (2) has an underlayer (3) and a gas barrier layer (4).
  • the region E is further provided on the gas barrier layer (4). At this time, the region D and the region E are arranged at different positions.
  • the region E according to the present invention is formed by forming a layer containing the transition metal M2 on the gas barrier layer (4) formed from the coating liquid containing polysilazane by a vapor deposition method. It is preferable. As the vapor deposition method, physical vapor deposition is preferable, and sputtering is particularly preferable. Applicable sputtering methods include DC sputtering method, RF sputtering method, magnetron sputtering method, ion beam sputtering method and the like, and there are no particular restrictions on the method, but among them, a magnetic field is applied to the target side with a magnet. Magnetron sputtering, which forms and separates the plasma from the sample, is preferred.
  • the transition metal M2 applicable to the formation of the region E according to the present invention refers to a Group 3 element to a Group 12 element.
  • the transition metal M2 according to the present invention Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Examples include Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, and Au.
  • the transition metal M2 is preferably a metal having a lower redox potential than silicon.
  • the metal having a lower redox potential than silicon include niobium, tantalum, barium, zirconium, titanium, hafnium, yttrium, lanthanum, cerium, and the like. These metals may be used alone or in combination of two or more.
  • the gas barrier layer (4) in which the group 5 elements niobium, tantalum, and vanadium are formed in the lower region has a high oxidation suppressing effect, and thus can be preferably used.
  • a preferred embodiment of the present invention is a gas barrier film in which the transition metal M2 is at least one metal selected from the group consisting of vanadium, niobium and tantalum.
  • the transition metal in the transition metal compound is particularly preferably niobium (Nb) or tantalum (Ta) from which a compound with good transparency can be obtained.
  • the mode of the compound containing the transition metal M2 according to the present invention is not particularly limited, and for example, a compound such as an oxide, nitride, carbide, oxynitride, or oxycarbide of the transition metal M can be used. Among these, from the viewpoint of more effectively suppressing oxidation, it is preferable to use an oxide as the transition metal M2.
  • the action mechanism for improving the gas barrier property by forming the region E containing the transition metal M2 on the gas barrier layer is estimated as follows.
  • the region E containing the transition metal M2 is formed on the gas barrier layer, whereby the amount of the transition metal M2 is gradually reduced from the region E to the gas barrier layer side. it can.
  • region E is a region where Si and transition metal M2 are bonded. It is presumed that the gas barrier properties were improved.
  • the gas barrier layer is a layer containing silicon (Si), and the transition metal M2 contained in the region E is a Group 5 metal (for example, V, Nb, Ta, etc.). ),
  • the gas barrier property is remarkably improved.
  • Si and Group 5 metal atoms are likely to form a bond
  • the transition metal M2 is activated, it is deep in the gas barrier layer containing Si. It is estimated that this is an effect due to the formation of a dense region E containing Si—Nb bonds at the interface.
  • Nb and Ta are particularly preferable among Group 5 metals from the viewpoint of transparency.
  • the composition distribution can be obtained using the XPS method as in the composition analysis in the region D described above.
  • composition in region E also, when showing the film composition in the region E according to the present invention in SiM2 x O y N z, which satisfies the conditions is a preferred embodiment shown by the following formula (1).
  • Formula (1) 0 ⁇ (2y + 3z) / (a + bx) ⁇ 1.0
  • a is the valence of Si.
  • b is the maximum valence of the transition metal M2.
  • a represents the valence of the mixture calculated by the valences of Si, Al, and B and the respective atomic ratios.
  • the thickness of this region E is preferably 5 nm or more.
  • the condition that the region E satisfies the condition defined by the above formula (1) is that the oxygen deficiency composition of the composite oxide of the main constituent element (Si) and the transition metal (M2) of the gas barrier layer B exceeds a predetermined thickness. It represents that it is included.
  • composition of the composite oxide as a main constituent element of the gas barrier layer B according to the present invention (Si) and transition metal (M2) is represented by SiM2 x O y N z.
  • A is the valence of Si.
  • the composite oxide may partially include a nitride structure.
  • the valence of the constituent element (Si) of the gas barrier layer is a
  • the maximum valence of the transition metal (M2) is b
  • the valence of O is 2
  • the valence of N is 3.
  • gas barrier layer B is composed of Si, and Al or B is a case where a small amount is added, and calculation is often performed using Si alone.
  • This formula means that the total number of bonds of the constituent elements (Si) and transition metal (M2) of the gas barrier layer and the total number of bonds of O and N are the same.
  • the gas barrier layer Both the constituent element (Si) and the transition metal (M2) are bonded to either O or N.
  • the maximum valence of each element is set to each element.
  • the composite valence calculated by weighted averaging with the existence ratio is adopted as the values of a and b of the “maximum valence”.
  • the remaining bonds of the constituent element (Si) and transition metal (M2) of the gas barrier layer have the possibility of bonding to each other, and the constituent element (Si) and transition metal of the gas barrier layer
  • the metals of (M2) are directly bonded to each other, a denser and higher density structure is formed than when the metals are bonded via O or N, and as a result, the gas barrier property is considered to be improved.
  • an anchor coat layer On the surface of the base material on the side on which the gas barrier layer according to the present invention is formed, for the purpose of improving the adhesion between the base material and the gas barrier layer, an anchor coat layer may be disposed together with the base layer according to the present invention. Good.
  • polyester resins As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.
  • the above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
  • the anchor coat layer can also be formed by a vapor deposition method such as physical vapor deposition or chemical vapor deposition.
  • a vapor deposition method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor deposition method, a gas generated from the substrate side is generated.
  • An anchor coat layer can also be formed for the purpose of blocking to some extent and controlling the composition of the inorganic thin film.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • a hard coat layer may be disposed on the surface (one side or both sides) of the base material together with the base layer according to the present invention.
  • the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold.
  • Such curable resins can be used singly or in combination of two or more.
  • the active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.
  • active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray.
  • a layer containing a cured product of the functional resin, ie, a hard coat layer is formed.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. You may use the commercially available base material in which the hard-coat layer is formed previously.
  • the thickness of the hard coat layer is preferably in the range of 0.1 to 15 ⁇ m and more preferably in the range of 1 to 5 ⁇ m from the viewpoint of smoothness and bending resistance.
  • Examples of the active energy ray-curable resin applicable to the hard coat layer forming material include a resin composition containing an acrylate compound having a radical-reactive unsaturated compound, and a mercapto compound having an acrylate compound and a thiol group.
  • examples thereof include resin compositions, resin compositions in which polyfunctional acrylate monomers such as epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, and glycerol methacrylate are dissolved.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
  • thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd.
  • Examples include coats, thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins.
  • an epoxy resin-based material having heat resistance is particularly preferable.
  • the formation method of the hard coat layer is not particularly limited, but it is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described active energy ray-curable resin as necessary.
  • an appropriate resin or additive may be used in any of the hard coat layers in order to improve the film formability and prevent the generation of pinholes in the film.
  • the thickness of the hard coat layer is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 2 to 7 ⁇ m, from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. It is preferable.
  • the gas barrier film of the present invention can be used as a component for a wavelength conversion sheet called a so-called QD sheet in combination with a semiconductor nanoparticle layer.
  • the semiconductor nanoparticle layer can be provided mainly on the upper surface side of the region E, and is configured to contain semiconductor nanoparticles and an ultraviolet curable resin.
  • Two or more semiconductor nanoparticle layers may be provided. In this case, it is preferable that semiconductor nanoparticles having different emission wavelengths are contained in each of the two or more semiconductor nanoparticle layers.
  • the semiconductor nanoparticle layer contains semiconductor nanoparticles. That is, the semiconductor nanoparticles are contained in the coating solution for forming the semiconductor nanoparticle layer.
  • a semiconductor nanoparticle is a particle of a predetermined size that is composed of a crystal of a semiconductor material and has a quantum confinement effect, and is a fine particle having a particle diameter of about several nanometers to several tens of nanometers.
  • the quantum dot effect shown below Means what can be obtained.
  • the contents described in the gazette and the like can be referred to.
  • the gas barrier film of the present invention can be preferably applied to a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. That is, this invention can provide the electronic device containing the gas barrier film of this invention, and an electronic device main body.
  • Examples of the electronic device body used in the electronic device provided with the gas barrier film of the present invention include, for example, an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and the sun.
  • organic EL element organic electroluminescence element
  • LCD liquid crystal display element
  • PV thin film transistor
  • touch panel electronic paper
  • sun electronic paper
  • sun sun
  • PV battery
  • the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
  • Example 1 Preparation of base material with laminated base layer >> [1. Preparation of coating solution for underlayer formation] (Preparation of coating solution U1)
  • As the transition metal M1 compound Tynoch RA-6 (secondary particle size: about 35 nm) manufactured by Taki Chemical Co., Ltd., which is an aqueous dispersion of titanium oxide particles, was used. Further, a soap-free acrylic emulsion AE986B (particle size: about 60 nm, Tg: 2 ° C.) manufactured by Etec Co., Ltd. was used as a binder.
  • a surfactant Surfynol 465 manufactured by Air Products was used.
  • the transition metal M1 compound / binder / surfactant was mixed at a mass ratio of 75.0 / 24.8 / 0.2 as a solid content ratio, and further diluted with pure water to obtain a solid content of 3.0 mass%.
  • the coating liquid U1 was prepared.
  • coating solution U2 Similar to the preparation of the coating liquid U1 except that as the transition metal M1 compound, Viral Nb-G6000 (secondary particle size: about 15 nm) manufactured by Taki Chemical Co., Ltd., which is an aqueous dispersion of niobium oxide particles, was used. Thus, a coating liquid U2 having a solid content of 3.0% by mass was prepared.
  • coating solution U3 As the transition metal M1 compound, a bimetallic Fe-C10 (secondary particle size: about 6 nm) manufactured by Taki Chemical Co., Ltd., which is an aqueous dispersion of iron oxide particles, is used, and the transition metal M1 compound / binder / surfactant is used.
  • the coating liquid U3 having a solid content of 3.0% by mass was prepared in the same manner as the coating liquid U1 except that the solid content was 72.0 / 26.8 / 0.2.
  • the preparation of the coating liquid U1 is the same as that for the transition metal M1, except that an aqueous dispersion of zirconium oxide particles, Viral Zr-C20 (secondary particle size: about 40 nm) manufactured by Taki Chemical Co., Ltd., is used. Thus, a coating liquid U4 having a solid content of 3.0% by mass was prepared.
  • coating solution U5 As the transition metal M1, a nano-use ZR-30BS (particle diameter: about 63 nm) manufactured by Nissan Chemical Co., which is an aqueous dispersion of zirconium oxide particles, was used in the same manner as in the preparation of the coating liquid U1, A coating liquid U5 having a solid content of 3.0% by mass was prepared.
  • coating solution U6 As a compound that is a non-transition metal, except that Snowtex 20L (particle diameter: about 50 nm) manufactured by Nissan Chemical Co., Ltd., which is an aqueous dispersion of silicon oxide particles, was used, the same as in the preparation of the coating solution U1, A coating liquid U6 having a solid content of 3.0% by mass was prepared.
  • Polymerizable compound 1 penentaerythritol acrylate, trade name: A-TMM-3, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • polymerizable compound 2 isocyanuric acid ethylene oxide modified acrylate, trade name: A-9300, Shin-Nakamura Chemical Co., Ltd.
  • Manufactured a polymerization initiator (IRGACURE184, manufactured by Ciba Japan Co., Ltd.), and a surfactant (PF-6320, manufactured by OMNOVA SOLUTIONS) were used.
  • Zirconium oxide particles / polymerizable compound 1 / polymerizable compound 2 / polymerization initiator / surfactant are mixed at a mass ratio of 40.0 / 47.0 / 10.0 / 2.8 / 0.2 as a solid content. Further, this was diluted with propylene glycol monomethyl ether to prepare a coating liquid U8 having a solid content of 20.0% by mass.
  • Substrate F0 As a base material (resin base material), a 125 ⁇ m thick polyester film (Cosmo Shine (registered trademark) A4300, manufactured by Toyobo Co., Ltd.) that was easily bonded on both surfaces was used as a base material F0 that had no base layer.
  • resin base material a 125 ⁇ m thick polyester film (Cosmo Shine (registered trademark) A4300, manufactured by Toyobo Co., Ltd.) that was easily bonded on both surfaces was used as a base material F0 that had no base layer.
  • the prepared coating solution U8 was applied on one surface side of the base material F0 under the condition that the solid content after drying was 2 g / m 2, and then dried at 100 ° C. for 5 minutes. Then, under air, performing curing under conditions of irradiation energy 0.5 J / cm 2 using a high-pressure mercury lamp to form the primary layer A, to prepare a base layer substrate with F8.
  • gas barrier layer forming coating solution S1 A dibutyl ether solution containing 20% by mass of perhydropolysilazane (PHPS, manufactured by AZ Electronic Materials Co., Ltd., trade name: NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1, 6-diaminohexane (abbreviation: TMDAH)) and a 20% by mass dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) in a ratio of 4: 1 (mass ratio). Further, the coating solution S1 for gas barrier layer formation was prepared by diluting with dibutyl ether so that the solid concentration was 5% by mass. The gas barrier layer forming coating solution S1 was prepared in a glove box.
  • the vacuum ultraviolet irradiation device (10) shown in FIG. 5 having an Xe excimer lamp with a wavelength of 172 nm was used, and the irradiation condition of vacuum ultraviolet rays was 4.0 J / cm 2 .
  • Vacuum ultraviolet irradiation treatment was performed with the amount of irradiation energy.
  • the irradiation atmosphere of vacuum ultraviolet rays was replaced with nitrogen gas, and the oxygen concentration was set to 0.1% by volume.
  • the stage temperature for installing the sample was set to 80 ° C. In this way, the perhydropolysilazane-containing layer was modified to form a gas barrier layer B, and a gas barrier film 1-1 was produced.
  • reference numeral 11 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) and exhausts the gas from a gas discharge port (not shown). It is possible to substantially remove water vapor from the water and maintain the oxygen concentration at a predetermined concentration.
  • Reference numeral 12 denotes an Xe excimer lamp (excimer lamp light intensity: 130 mW / cm 2 ) having a double tube structure that irradiates 172 nm vacuum ultraviolet rays, and reference numeral 13 denotes an excimer lamp holder that also serves as an external electrode.
  • Reference numeral 14 denotes a sample stage.
  • the sample stage 14 can be reciprocated horizontally at a predetermined speed in the apparatus chamber 11 by a moving means (not shown).
  • the sample stage 14 can be maintained at a predetermined temperature by a heating means (not shown).
  • Reference numeral 15 denotes a sample on which a polysilazane compound coating layer is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm.
  • Reference numeral 16 denotes a light shielding plate which prevents the application layer of the sample from being irradiated with vacuum ultraviolet rays during aging of the Xe excimer lamp 2.
  • the energy applied to the surface of the sample coating layer in the vacuum ultraviolet irradiation process was measured using a 172 nm sensor head using a UV integrating photometer (C8026 / H8025 UV POWER METER) manufactured by Hamamatsu Photonics.
  • the sensor head is placed in the center of the sample stage (14) so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber (11) is Nitrogen and oxygen were supplied so as to obtain the same oxygen concentration as in the vacuum ultraviolet irradiation step, and the sample stage (14) was moved at a speed of 0.5 m / min, and measurement was performed.
  • an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the measurement was started by moving the sample stage (14).
  • the moving speed of the sample stage (14) was adjusted to adjust the irradiation energy amount to 4.0 J / cm 2 .
  • the vacuum ultraviolet irradiation was performed after aging for 10 minutes.
  • composition distribution profile in the thickness direction was measured on the surface side of the gas barrier film by XPS analysis.
  • the XPS analysis conditions are as follows.
  • the sample used for the analysis is a sample stored in an environment of 20 ° C. and 50% RH after the sample is prepared.
  • XPS analysis conditions ⁇ Device: QUANTERASXM manufactured by ULVAC-PHI ⁇ X-ray source: Monochromatic Al-K ⁇ ⁇ Sputtering ion: Ar (2 keV) Depth profile: Measurement was repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data every 1 nm is obtained in the depth direction).
  • the background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area.
  • MultiPak manufactured by ULVAC-PHI was used for data processing.
  • the analyzed elements are Si, M1, O, N, and C.
  • the transition metal M1 and Si coexist in the interface region between the base layer A and the gas barrier layer B, and the atomic ratio value of the transition metal M1 / Si is 0.11 to 9
  • a region in the range of 0.0 was defined as “region D”, and the presence or absence of region D and its thickness (nm) were measured.
  • Each sample was subjected to a 100-mass cross-cut test according to JIS K 5400.
  • the sample after the test was observed with an optical microscope, and the number of cells in which no peeling or chipping occurred substantially was counted out of 100 cells.
  • Table 1 shows the results obtained as described above.
  • the gas barrier film of the present invention is superior to the comparative example in water vapor barrier properties (gas barrier properties), and can be bonded even when stored in a high temperature and high humidity environment. It can be seen that the adhesiveness is not deteriorated and good adhesiveness is maintained.
  • Example 2 Preparation of coating solution for gas barrier layer formation >> (Preparation of gas barrier layer forming coating solution S2) An aluminum compound-containing solution was prepared by diluting aluminum ethyl acetoacetate diisopropylate with dibutyl ether to a solid content concentration of 5% by mass.
  • Example 2 the gas barrier layer forming coating solution S1 described in Example 1 and the prepared aluminum compound-containing solution were mixed so that the value of the atomic ratio of Al / Si was 0.01 and stirred.
  • the temperature was raised to 80 ° C., kept at 80 ° C. for 2 hours, and then gradually cooled to room temperature. In this way, a coating liquid S2 for forming a gas barrier layer was prepared.
  • the gas barrier layer-forming coating solution S1 described in Example 1 and the boron compound-containing solution prepared above were mixed so that the value of the B / Si atomic number ratio was 0.01 and stirred.
  • the temperature was raised to 80 ° C., kept at 80 ° C. for 2 hours, and then gradually cooled to room temperature. In this way, a coating liquid S3 for forming a gas barrier layer was prepared.
  • a region E was formed on the gas barrier layer B using a magnetron sputtering device (Canon Anelva Co., Ltd. model: EB1100) as a vapor phase method / sputtering device.
  • a magnetron sputtering device Canon Anelva Co., Ltd. model: EB1100
  • the following targets were used, and Ar and O 2 were used as process gases, and film formation was performed using a magnetron sputtering apparatus.
  • the sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa.
  • the composition was adjusted by adjusting the oxygen partial pressure. It should be noted that the conditions of the composition are determined by adjusting the oxygen partial pressure by film formation using a glass substrate in advance, finding the condition that the composition near the depth of 10 nm from the surface layer becomes the target composition, and the condition is Applied.
  • film thickness change data with respect to the film formation time is obtained in the range of 100 to 300 nm, the film formation time per unit time is calculated, and then the film formation time is set to the set film thickness. It was set.
  • ⁇ target> T1 A silicon target containing no transition metal M2 was produced by the method described in Comparative Example 1 of the examples of JP2012-7218A.
  • the target shape was a plate shape.
  • T2 A commercially available oxygen-deficient niobium oxide target was used. The composition was Nb 12 O 29 .
  • T3 A commercially available Ta target was used.
  • T1 was used as a target, and in the above XPS analysis, the oxygen partial pressure was adjusted so that the composition of the layer was SiO 2 .
  • the film formation time was set so that the film thickness was 15 nm.
  • T2-1 T2 was used as a target, and the oxygen partial pressure was 12%.
  • the film formation time was set so that the film thickness was 15 nm.
  • T2-2 Performed in the same manner as T2-1 except that the film formation time was set so that the film thickness was 10 nm.
  • T2-3 Performed in the same manner as T2-1 except that the film formation time was set so that the film thickness was 5 nm.
  • T3 was used as a target, and the oxygen partial pressure was 18%.
  • the film formation time was set so that the film thickness was 15 nm.
  • the element composition ratio of each region was calculated from the obtained data, and the presence / absence of region D, the thickness of region D, the presence / absence of region E, and the thickness of region E were determined.
  • Aluminum (Al) is added to the gas barrier layer forming coating solution S2 and boron (B) is added to the gas barrier layer forming coating solution S3, but in region E, Al and B are substantially detected. Was not.
  • the gas barrier film was measured under the conditions of 38 ° C. and 100% RH using a water vapor permeability measuring device manufactured by MOCON: PERMATRAN. When a measurement result less than 0.005 g / m 2 ⁇ day, which is the measurement limit, was obtained, Table 3 describes “less than measurement limit”.
  • the gas barrier film was measured under the conditions of 38 ° C. and 100% RH using a water vapor permeability measuring device manufactured by MOCON: PERMATRAN. When a measurement result less than 0.005 g / m 2 ⁇ day, which is the measurement limit, was obtained, Table 3 describes “less than measurement limit”.
  • Tables 2 and 3 show the configuration of each gas barrier form and each evaluation result.
  • Table 2 shows the structures of the base material with the base layer, the gas barrier layer, and the region D of the gas barrier films 2-1 to 2-16
  • Table 3 shows the gas barrier films 2-1 to 2-2. The characteristic value in the region E of ⁇ 16 and each evaluation result are described.
  • the gas barrier film of the present invention further having the region E on the gas barrier layer can be stored in a high-temperature and high-humidity environment with respect to the comparative example. It can be seen that there is little deterioration in water vapor barrier properties (gas barrier properties), and even when stored in a high-temperature and high-humidity environment, there is no deterioration in adhesiveness, and good adhesiveness is maintained.
  • a gas barrier film that maintains excellent gas barrier properties even after being stored in a high-temperature and high-humidity environment, and has excellent adhesion to a base material.
  • Films are susceptible to performance degradation due to chemical components in the air (for example, oxygen, water, nitrogen oxides, sulfur oxides, ozone, etc.).
  • organic EL elements for example, organic EL elements, liquid crystal display elements (LCD)
  • LCD liquid crystal display elements
  • PV solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present invention addresses the problem of providing a gas barrier film that has excellent gas barrier properties and exceptional durability in high-temperature and high-humidity environments, specifically in terms of having exceptional adhesion between a gas barrier layer and a base material even when subjected to a high-temperature and high-humidity environment. This gas barrier film is characterized by including a laminate C in which a foundation layer A that contains a compound including a transition metal M1 and a gas barrier layer B that contains at least silicon (Si) and nitrogen (N) and that is formed in contact with the foundation layer A are laminated in the stated order, and is characterized in that when the thickness-direction composition of the laminate C is analyzed by XPS, the transition metal M1 and Si are present together in the interface region between the foundation layer A and the gas barrier layer B, a region D is present in which the value of the atomic ratio of the transition metal M1/Si is within the range of 0.11-9.0, and the thickness of the region D is at least 5 nm.

Description

ガスバリアー性フィルムGas barrier film
 本発明は、ガスバリアー性フィルムに関する。更に詳しくは、本発明は、高いガスバリアー性を有し、かつ高温高湿環境下での耐久性(層間密着性)に優れるガスバリアー性フィルムに関する。 The present invention relates to a gas barrier film. More specifically, the present invention relates to a gas barrier film having high gas barrier properties and excellent durability (interlayer adhesion) in a high temperature and high humidity environment.
 フレキシブル電子デバイス、特に、フレキシブルな有機エレクトロルミネッセンス(以下、有機ELと略記する。)デバイスには、基板フィルムや封止フィルムとして、ガスバリアー性フィルムが用いられている。これらに用いられるガスバリアー性フィルムには、水分や酸素に対する高いガスバリアー性が求められている。 In a flexible electronic device, in particular, a flexible organic electroluminescence (hereinafter abbreviated as organic EL) device, a gas barrier film is used as a substrate film or a sealing film. The gas barrier film used for these is required to have high gas barrier properties against moisture and oxygen.
 一般に、ガスバリアー性フィルムは、フィルム上に、蒸着法、スパッタ法、化学堆積法(CVD法:Chemical Vapor Deposition)といった気相成膜法によって、無機バリアー層を形成することにより製造されている。無機バリアー層としてはケイ素含有化合物、例えば、ケイ素酸化物が広く用いられているが、ケイ素酸化物よりも、ケイ素窒化物の方が高いバリアー性が得られることが知られており、多くの検討がなされている。 Generally, a gas barrier film is manufactured by forming an inorganic barrier layer on a film by a vapor deposition method such as a vapor deposition method, a sputtering method, or a chemical deposition method (CVD method: Chemical Vapor Deposition). Silicon-containing compounds such as silicon oxide are widely used as the inorganic barrier layer, but silicon nitride is known to provide higher barrier properties than silicon oxide, and many studies have been made. Has been made.
 近年、基材上に溶液塗布法によって形成したバリアー前駆体層に、エネルギーを照射してガスバリアー層を形成する製造方法も検討されてきている。特に、新規のガスバリアー層の成膜方法として、ポリシラザン等のケイ素化合物を含む塗布液を基材上に溶液塗布し、塗布したポリシラザン塗布膜に真空紫外光を照射することにより、酸化ケイ素より構成されるガスバリアー層を形成する方法が提案されている(例えば、特許文献1参照。)。 In recent years, a manufacturing method in which a gas barrier layer is formed by irradiating energy to a barrier precursor layer formed on a substrate by a solution coating method has been studied. In particular, as a novel gas barrier layer deposition method, a coating liquid containing a silicon compound such as polysilazane is applied onto a substrate, and the applied polysilazane coating film is irradiated with vacuum ultraviolet light to constitute silicon oxide. A method for forming a gas barrier layer is proposed (see, for example, Patent Document 1).
 特許文献1に記載されている方法は、ポリシラザン内の原子間結合力より大きい、真空紫外光(以下、「VUV」、「VUV光」とも記載する。)と呼ばれる100~200nmの範囲内の光エネルギーを用いる。これにより、光量子プロセスと呼ばれる光子のみによる作用により、原子の結合を直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、ケイ素の酸窒化物組成となり、高いバリアー性が得られることから、注目されている。 The method described in Patent Document 1 is light in a range of 100 to 200 nm, which is called vacuum ultraviolet light (hereinafter also referred to as “VUV” or “VUV light”), which is larger than the interatomic bonding force in polysilazane. Use energy. As a result, by the action of only photons called photon processes, the oxidation reaction with active oxygen or ozone proceeds while directly breaking the atomic bonds, resulting in a silicon oxynitride composition at a relatively low temperature and high barrier properties. Has been attracting attention.
 しかしながら、このような方法で作製されたガスバリアー性フィルムは、バリアー性としては依然不十分であり、例えば、高度のガスバリアー性が要求される有機ELデバイスの基板として用いることのできるレベルには至っていない。加えて、高温高湿下での層間の接着性(以下、「密着性」ともいう。)の劣化が生じるため、耐久性も不十分である。 However, the gas barrier film produced by such a method is still insufficient as a barrier property. For example, the gas barrier film is at a level that can be used as a substrate of an organic EL device that requires a high gas barrier property. Not reached. In addition, since the adhesiveness between layers under high temperature and high humidity (hereinafter, also referred to as “adhesion”) is deteriorated, the durability is insufficient.
 具体的には、ポリシラザンをエキシマ光で改質して形成したガスバリアー層は、40℃程度までの低温におけるガスバリアー性は良好であるものの、例えば、85℃、85%RHといった高温高湿の非常に過酷な環境下では、この方式で形成したガスバリアー層であっても時間の経過に伴って、ガスバリアー性が低下することが判明した。これは、高温高湿環境下で保存させることにより、基材とポリシラザンを改質して形成したガスバリアー層間の接着性が低下し、基材とガスバリアー層間で剥離を生じることが一因であると考えられる。 Specifically, a gas barrier layer formed by modifying polysilazane with excimer light has good gas barrier properties at a low temperature up to about 40 ° C., for example, at a high temperature and high humidity such as 85 ° C. and 85% RH. Under extremely harsh environments, it was found that even a gas barrier layer formed by this method deteriorates the gas barrier property with the passage of time. This is due to the fact that the adhesion between the gas barrier layer formed by modifying the base material and the polysilazane decreases due to storage in a high temperature and high humidity environment, and peeling occurs between the base material and the gas barrier layer. It is believed that there is.
 以上のような状況を踏まえ、高いガスバリアー性と共に、高温高湿環境下においても優れた接着性を有する、電子デバイス用のガスバリアー性フィルムの開発が求められている。 Based on the above situation, there is a demand for the development of a gas barrier film for electronic devices having high gas barrier properties and excellent adhesiveness even in a high temperature and high humidity environment.
特表2009-503157号公報Special table 2009-503157
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、高いガスバリアー性を有し、かつ高温高湿環境下での耐久性、詳しくは高温高湿環境下にさらされてもガスバリアー層と基材との接着性に優れたガスバリアー性フィルムの提供することである。 The present invention has been made in view of the above-mentioned problems and circumstances, and its solution is to have a high gas barrier property and durability in a high-temperature and high-humidity environment. Even so, it is to provide a gas barrier film having excellent adhesion between the gas barrier layer and the substrate.
 本発明に係る上記課題を解決すべく、上記問題の原因等について検討した結果、基材上に、遷移金属M1を含む化合物を含有する下地層Aと、当該下地層Aに接して形成され、少なくともケイ素(Si)と窒素(N)とを含有するガスバリアー層Bとをこの順で積層した積層体Cを有し、前記下地層Aと前記ガスバリアー層Bとの界面領域に、遷移金属M1とSiとが共存し、遷移金属M1/Siの原子比率の値が、特定の範囲内にある領域Dを有し、かつ当該領域Dの厚さが5nm以上であることを特徴とするガスバリアー性フィルムにより、高いガスバリアー性を有し、かつ高温高湿環境下でのガスバリアー層と基材との接着性(密着性)に優れたガスバリアー性フィルムが得られることを見いだした。 As a result of examining the cause of the above-mentioned problem in order to solve the above-mentioned problem according to the present invention, the base layer A containing the compound containing the transition metal M1 and the base layer A are formed on the base material, It has a laminate C in which a gas barrier layer B containing at least silicon (Si) and nitrogen (N) is laminated in this order, and a transition metal is present in the interface region between the base layer A and the gas barrier layer B. A gas characterized in that M1 and Si coexist, the region D has a value of the atomic ratio of the transition metal M1 / Si within a specific range, and the thickness of the region D is 5 nm or more. It has been found that a gas barrier film having high gas barrier properties and excellent adhesion (adhesion) between the gas barrier layer and the substrate in a high temperature and high humidity environment can be obtained by the barrier film.
 すなわち、本発明に係る課題は、以下の手段により解決される。 That is, the problem according to the present invention is solved by the following means.
 1.基材上に、遷移金属M1を含む化合物を含有する下地層Aと、当該下地層Aに接して形成され、少なくともケイ素(Si)と窒素(N)とを含有するガスバリアー層Bとをこの順で積層した積層体Cを有するガスバリアー性フィルムであって、
 前記積層体Cの厚さ方向の組成分布をXPS法により分析したとき、前記下地層Aと前記ガスバリアー層Bとの界面領域に、遷移金属M1とSiとが共存し、遷移金属M1/Siの原子比率の値が、0.11~9.0の範囲内にある領域Dを有し、かつ当該領域Dの厚さが5nm以上であることを特徴とするガスバリアー性フィルム。
1. An underlayer A containing a compound containing a transition metal M1 and a gas barrier layer B formed in contact with the underlayer A and containing at least silicon (Si) and nitrogen (N) are formed on the substrate. A gas barrier film having a laminate C laminated in order,
When the composition distribution in the thickness direction of the laminate C is analyzed by the XPS method, the transition metal M1 and Si coexist in the interface region between the base layer A and the gas barrier layer B, and the transition metal M1 / Si. A gas barrier film comprising a region D having an atomic ratio value of 0.11 to 9.0 and a thickness of the region D of 5 nm or more.
 2.前記遷移金属M1を含む化合物が、球形粒子であることを特徴とする第1項に記載のガスバリアー性フィルム。 2. The gas barrier film according to item 1, wherein the compound containing the transition metal M1 is a spherical particle.
 3.前記遷移金属M1が、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)及び鉄(Fe)から選ばれる少なくとも一種であることを特徴とする第1項又は第2項に記載のガスバリアー性フィルム。 3. The gas barrier property according to Item 1 or 2, wherein the transition metal M1 is at least one selected from niobium (Nb), zirconium (Zr), titanium (Ti), and iron (Fe). the film.
 4.前記ガスバリアー層Bが、ポリシラザンを含有する塗布液を塗布し、乾燥して形成された層であることを特徴とする第1項から第3項までのいずれか一項に記載のガスバリアー性フィルム。 4. The gas barrier property according to any one of items 1 to 3, wherein the gas barrier layer B is a layer formed by applying a coating liquid containing polysilazane and drying the coating solution. the film.
 5.前記ガスバリアー層Bの形成に用いるポリシラザンを含有する塗布液が、更にアルミニウム化合物又はホウ素化合物を含有することを特徴とする第4項に記載のガスバリアー性フィルム。 5. 5. The gas barrier film according to item 4, wherein the coating liquid containing polysilazane used for forming the gas barrier layer B further contains an aluminum compound or a boron compound.
 6.前記積層体Cが、厚さ方向の組成分布をXPS法により分析した際に、前記領域Dとは異なる領域に、遷移金属M2とSiとが共存し、かつ、遷移金属M2/Siの原子比率の比が、0.11~9.0の範囲内であり、かつ、前記領域Dに接していない領域Eを有することを特徴とする第1項から第5項のいずれか一項に記載のガスバリアー性フィルム。 6. When the laminate C is analyzed by XPS method for the composition distribution in the thickness direction, the transition metal M2 and Si coexist in a region different from the region D, and the atomic ratio of the transition metal M2 / Si The ratio according to any one of Items 1 to 5, wherein the ratio E is within a range of 0.11 to 9.0, and the region E is not in contact with the region D. Gas barrier film.
 7.前記領域Eにおける膜組成をSiM2で表したとき、下式(1)で示す条件を満たすことを特徴とする第6項に記載のガスバリアー性フィルム。 7). When showing the film composition in the region E in SiM2 x O y N z, gas barrier film as described in paragraph 6, characterized in that satisfies represented by the following formula (1).
 式(1)
   0<(2y+3z)/(a+bx)<1.0
〔式中、aはSiの価数である。bは遷移金属M2の最大価数である。〕
 8.前記遷移金属M2が、ニオブ(Nb)又はタンタル(Ta)であることを特徴とする第6項又は第7項に記載のガスバリアー性フィルム。
Formula (1)
0 <(2y + 3z) / (a + bx) <1.0
[Wherein, a is the valence of Si. b is the maximum valence of the transition metal M2. ]
8). The gas barrier film according to Item 6 or 7, wherein the transition metal M2 is niobium (Nb) or tantalum (Ta).
 本発明によれば、高いガスバリアー性を有し、かつ高温高湿環境下でのガスバリアー層と基材との接着性に優れたガスバリアー性フィルムの提供することができる。 According to the present invention, it is possible to provide a gas barrier film having high gas barrier properties and excellent adhesion between a gas barrier layer and a substrate in a high temperature and high humidity environment.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明のガスバリアー性フィルムは、前述のとおり、基材上に、遷移金属M1を含む化合物を含有する下地層Aと、当該下地層Aに接して形成され、少なくともケイ素(Si)と窒素(N)とを含有するガスバリアー層Bとをこの順で積層した積層体Cを有し、前記積層体Cの厚さ方向の組成分布をXPS法により分析したとき、前記下地層Aと前記ガスバリアー層Bとの界面領域に、遷移金属M1とSiとが共存し、かつ、遷移金属M1/Siの原子比率の値が、0.11~9.0の範囲内にある領域Dを有し、かつ当該領域Dの厚さが5nm以上であることを特徴とし、上記で規定する構成とすることにより、高いガスバリアー性を達成するとともに、高温高湿環境下で保存された際のガスバリアー層と基材との接着性を飛躍的に向上させることができる。 As described above, the gas barrier film of the present invention is formed on a base material in contact with the base layer A containing the compound containing the transition metal M1, and at least silicon (Si) and nitrogen ( N) and the gas barrier layer B containing the laminate C in this order, and when the composition distribution in the thickness direction of the laminate C is analyzed by the XPS method, the base layer A and the gas In the interface region with the barrier layer B, there is a region D in which transition metal M1 and Si coexist and the atomic ratio of transition metal M1 / Si is in the range of 0.11 to 9.0. And the thickness of the said area | region D is 5 nm or more, and by setting it as the structure prescribed | regulated above, while achieving high gas-barrier property, the gas barrier at the time of preserve | saved in a high-temperature, high-humidity environment Dramatically improves adhesion between layer and substrate It can be.
 本発明に係る領域Dは、遷移金属M1を含む化合物、好ましくは球形粒子である遷移金属M1を含む化合物を含有する下地層Aの表面凹部に、ガスバリアー層Bの構成成分が入り込むことで形成される。 The region D according to the present invention is formed by the component of the gas barrier layer B entering the surface recess of the underlayer A containing the compound containing the transition metal M1, preferably the compound containing the transition metal M1 that is a spherical particle. Is done.
 下地層Aとガスバリアー層Bとの界面に領域Dを形成することにより、接着性が向上するメカニズムとしては、下記の2つの効果の相乗作用であると推定している。 It is presumed that the formation of the region D at the interface between the base layer A and the gas barrier layer B is a synergistic action of the following two effects as a mechanism for improving the adhesiveness.
 第1の効果は、遷移金属M1を含む化合物の表面に存在すると考えられるM1-OH構造と、ガスバリアー層BのSi-NH構造とが反応し、M1-O-Si結合を形成する。このM1-O-Si結合は、Si-O-Si結合よりも加水分解され難いと考えられ、一般的なコロイダルシリカを含有する下地層に比較し、高温高湿下での劣化が少ないと考えられ、この効果により高い接着性を得ることができる。 The first effect is that the M1-OH structure that is considered to exist on the surface of the compound containing the transition metal M1 reacts with the Si—NH 2 structure of the gas barrier layer B to form an M1-O—Si bond. This M1-O—Si bond is considered less susceptible to hydrolysis than the Si—O—Si bond, and is less likely to deteriorate under high temperature and high humidity than an underlayer containing general colloidal silica. Therefore, high adhesiveness can be obtained by this effect.
 第2の効果としては、下地層Aが球形の遷移金属M1粒子による凹凸構造を有することから、下地層Aとガスバリアー層Bとが入り組んで接することにより、例えば、球状粒子により構成される下地層Aの粒子間の間隙部に、ガスバリアー層Bを構成する材料が入り込むことにより、アンカー効果が発現する。加えて、下地層Aとガスバリアー層Bとが接する界面の面積が、界面の投影面積よりも、飛躍的に増大することにより、上記M1-O-Si結合を形成する面積も増加することにより、M1-O-Si結合数が増加し、その結果、高い接着性を実現することができたものと推測している。 As a second effect, since the underlayer A has a concavo-convex structure with spherical transition metal M1 particles, the underlayer A and the gas barrier layer B are intricately in contact with each other. When the material constituting the gas barrier layer B enters the gaps between the particles of the formation A, the anchor effect appears. In addition, since the area of the interface where the underlayer A and the gas barrier layer B are in contact with each other is greatly increased from the projected area of the interface, the area for forming the M1-O—Si bond is also increased. It is estimated that the number of M1-O—Si bonds increased, and as a result, high adhesiveness could be realized.
ガスバリアー性フィルムの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the gas barrier film 下地層とガスバリアー層界面に形成する領域Dの構成の一例を示す模式図The schematic diagram which shows an example of a structure of the area | region D formed in a base layer and a gas barrier layer interface ガスバリアー性フィルムの厚さ方向におけるSi及び遷移金属M1の組成分布をXPS法により分析したときの元素プロファイルの一例と領域Dを説明するためのグラフGraph for explaining an example of the element profile and region D when the composition distribution of Si and transition metal M1 in the thickness direction of the gas barrier film is analyzed by the XPS method ガスバリアー層上に領域Eを有するガスバリアー性フィルムの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of a gas barrier film having a region E on the gas barrier layer 本発明に係るガスバリアー層の形成に適用可能な真空紫外線照射装置の一例を示す概略断面図Schematic sectional view showing an example of a vacuum ultraviolet irradiation apparatus applicable to the formation of a gas barrier layer according to the present invention
 本発明のガスバリアー性フィルムは、基材上に、遷移金属M1を含む化合物を含有する下地層Aと、当該下地層Aに接して、少なくともケイ素(Si)と窒素(N)とを含有するガスバリアー層Bを形成・積層した積層体Cを有し、当該積層体Cの厚さ方向における組成分布をXPS法により分析したとき、前記下地層Aと前記ガスバリアー層Bとの界面領域に、遷移金属M1とSiとが共存し、かつ、遷移金属M1/Siの原子比率の値が、特定の範囲内にある、層厚が5nm以上の領域Dを有することを特徴とする。この特徴は、各請求項に係る発明に共通する又は対応する技術的特徴である。 The gas barrier film of the present invention contains, on a base material, an underlayer A containing a compound containing a transition metal M1, and at least silicon (Si) and nitrogen (N) in contact with the underlayer A. It has a laminated body C in which a gas barrier layer B is formed and laminated, and when the composition distribution in the thickness direction of the laminated body C is analyzed by the XPS method, an interface region between the base layer A and the gas barrier layer B is formed. The transition metal M1 and Si coexist, and the value of the atomic ratio of the transition metal M1 / Si is in a specific range, and the region D has a layer thickness of 5 nm or more. This feature is a technical feature common to or corresponding to the claimed invention.
 本発明においては、本発明の目的とする効果をより発現できる観点から、遷移金属M1を含む化合物が、球形粒子であることが、効率的に領域Dを形成することができ、より優れた接着性を得ることができる点で好ましい。 In the present invention, from the viewpoint that the effect intended by the present invention can be further expressed, it is possible for the compound containing the transition metal M1 to be a spherical particle, so that the region D can be efficiently formed, resulting in better adhesion. It is preferable at the point which can obtain property.
 また、遷移金属M1が、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)及び鉄(Fe)から選ばれる少なくとも一種であることが、ガスバリアー層の構成材料との相互作用により効果的なM1-O-Si結合を形成することができ、高温高湿環境下で保存された際にも優れた接着性を得ることができる観点から好ましい。 In addition, it is more effective due to the interaction with the constituent material of the gas barrier layer that the transition metal M1 is at least one selected from niobium (Nb), zirconium (Zr), titanium (Ti), and iron (Fe). It is preferable from the viewpoint that M1-O—Si bonds can be formed and excellent adhesiveness can be obtained even when stored in a high temperature and high humidity environment.
 また、ガスバリアー層Bが、ポリシラザンを含有する塗布液を塗布し、乾燥して形成される層であることが、簡易的な手段により高質のガスバリアー層を形成することができる点で好ましい。 Further, it is preferable that the gas barrier layer B is a layer formed by applying a coating liquid containing polysilazane and drying it, because a high-quality gas barrier layer can be formed by simple means. .
 また、ガスバリアー層Bが、ポリシラザンとアルミニウム化合物、またはポリシラザンとホウ素化合物とを含有する塗布液を塗布し、乾燥して形成された層であることが、更にその上に、下記に示す遷移金属M2を形成した際に、下記に示す領域Eにおけるガスバリアー性をより安定化することができ、生産効率を高めることができる点で好ましい。 Further, the gas barrier layer B is a layer formed by applying and drying a coating liquid containing polysilazane and an aluminum compound, or polysilazane and a boron compound, and the transition metal shown below is further formed thereon. When M2 is formed, the gas barrier property in the region E shown below can be further stabilized, which is preferable in terms of increasing production efficiency.
 また、前記積層体Cが、厚さ方向の組成分布をXPS法により分析した際に、前記領域Dとは異なる領域に、遷移金属M2とSiとが共存し、かつ、遷移金属M2/Siの原子比率の比が、0.11~9.0の範囲内であり、かつ前記領域Dに接していない領域Eを有すること、あるいは領域Eにおける組成をSiM2で表したとき、前記式(1)で示す条件を満たすことが、領域Eとして、遷移金属M2とSiが安定して結合した領域となり、加水分解され難い環境となり、より高いガスバリアー性を実現することができる点で好ましい。 Further, when the laminate C is analyzed by XPS method for the composition distribution in the thickness direction, the transition metal M2 and Si coexist in a region different from the region D, and the transition metal M2 / Si When the ratio of atomic ratios is in the range of 0.11 to 9.0 and the region E is not in contact with the region D, or the composition in the region E is expressed by SiM2 x O y N z Satisfying the condition represented by the above formula (1) is a region where the transition metal M2 and Si are stably combined as the region E, and it is difficult to be hydrolyzed, and higher gas barrier properties can be realized. Is preferable.
 また、遷移金属M2がニオブ(Nb)又はタンタル(Ta)であることが、ガスバリアー層の構成材料でありSiとの相互作用により効果的なM2-O-Si結合を形成することができ、高温高湿環境下で保存された際にも優れた接着性を得ることができる点で好ましい。 The transition metal M2 is niobium (Nb) or tantalum (Ta), which is a constituent material of the gas barrier layer and can form an effective M2-O—Si bond by interaction with Si. It is preferable in that excellent adhesiveness can be obtained even when stored in a high temperature and high humidity environment.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。また、各図の説明で、構成要素の後の括弧内に記載の数字は、各図に記載している符号を示してある。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. In the explanation of each figure, numerals in parentheses after the constituent elements indicate the symbols shown in each figure.
 《ガスバリアー性フィルムの全体構成》
 本発明のガスバリアー性フィルムは、基材上に、遷移金属M1を含む化合物を含有する下地層Aと、当該下地層Aに接して、少なくともケイ素(Si)と窒素(N)とを含有するガスバリアー層Bを形成し、この順で積層した積層体Cを有する構成であることを特徴の一つとする。
<Overall configuration of gas barrier film>
The gas barrier film of the present invention contains, on a base material, an underlayer A containing a compound containing a transition metal M1, and at least silicon (Si) and nitrogen (N) in contact with the underlayer A. One of the characteristics is that the gas barrier layer B is formed and the laminate C is laminated in this order.
 更に、積層体Cの厚さ方向の構成組成分布を分析したとき、下地層Aとガスバリアー層Bとの界面領域に、遷移金属M1とSiとが共存し、かつ、遷移金属M1/Siの原子比率の値が0.11~9.0の範囲内にある層厚が5nm以上の領域Dを有することを特徴とする。 Further, when the composition composition distribution in the thickness direction of the laminate C is analyzed, the transition metal M1 and Si coexist in the interface region between the base layer A and the gas barrier layer B, and the transition metal M1 / Si A region D having a thickness of 5 nm or more having an atomic ratio value in a range of 0.11 to 9.0 is provided.
 本発明でいう「ガスバリアー性フィルム」とは、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(略称:WVTR、温度:38℃、相対湿度(RH):100%)が、1.0(g/m・24h)以下のフィルムであることを意味する。 The “gas barrier film” as used in the present invention has a water vapor permeability (abbreviation: WVTR, temperature: 38 ° C., relative humidity (RH): 100%) measured by a method according to JIS K 7129-1992. It means that the film is 1.0 (g / m 2 · 24 h) or less.
 水蒸気透過度は、例えば、水蒸気透過度測定装置(商品名:パーマトラン モコン社製)により、38℃、100%RHの雰囲気下で測定して求めることができる。 The water vapor transmission rate can be determined by, for example, measuring with a water vapor transmission rate measuring device (trade name: Permatran, manufactured by Mocon) in an atmosphere of 38 ° C. and 100% RH.
 図1は、本発明のガスバリアー性フィルムの構成の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the gas barrier film of the present invention.
 図1において、ガスバリアー性フィルム(1)は、基材(2)上に、第1の構成層として、遷移金属M1を含む化合物を含有する下地層A(3)を有し、その上に第2の構成層として、少なくともケイ素(Si)と窒素(N)とを含有するガスバリアー層B(4)を形成して、積層体(C)を構成している。 In FIG. 1, a gas barrier film (1) has a base layer (3) containing a compound containing a transition metal M1 as a first constituent layer on a substrate (2), on which As the second constituent layer, a gas barrier layer B (4) containing at least silicon (Si) and nitrogen (N) is formed to constitute a laminate (C).
 (領域Dについて)
 本発明においては、図1で示すように、積層体(C)を構成する下地層A(3)とガスバリアー層B(4)との間に、遷移金属M1/Siの原子比率の値が0.11~9.0の範囲内にある層厚が5nm以上の領域Dを有していることを特徴とする。
(Region D)
In the present invention, as shown in FIG. 1, the atomic ratio value of the transition metal M1 / Si is between the base layer A (3) and the gas barrier layer B (4) constituting the laminate (C). A region D having a layer thickness within a range of 0.11 to 9.0 and having a thickness of 5 nm or more is provided.
 本発明で規定する上記構成をとることにより、下地層A(3)は、遷移金属M1を含む化合物、好ましくは、遷移金属M1を含む球状粒子により構成され、その結果、下地層A(3)の表面は凹凸構造を有し、その上にガスバリアー層B(4)を形成、好ましくは、湿式塗布方式で形成することにより、前述のとおり、下地層A(3)表面の凹凸構造部に、ガスバリアー層B形成用塗布液が入り込むことにより、下地層A(3)を構成する遷移金属M1を含む化合物表面に存在するM1-OHと、ガスバリアー層B(4)を構成するSi-NHがその接触界面で反応し、M1-O-Si結合を形成する。このM1-O-Si結合、例えば、Nb-O-Si結合、Zr-O-Si結合、Ti-O-Si結合、Fe-O-Si結合等は、Si-O-Si結合に対し、加水分解されにくい特性を有しており、下地層がコロイダルシリカ等を含有している構成に対し、高温高湿環境下で劣化が少なく、優れた接着性を維持することができる。 By taking the above-mentioned configuration defined in the present invention, the underlayer A (3) is composed of a compound containing the transition metal M1, preferably spherical particles containing the transition metal M1, and as a result, the underlayer A (3). The surface of the substrate has a concavo-convex structure, and a gas barrier layer B (4) is formed thereon, preferably by wet coating, so that the concavo-convex structure portion on the surface of the base layer A (3) is formed as described above. When the coating liquid for forming the gas barrier layer B enters, M1-OH present on the surface of the compound containing the transition metal M1 constituting the underlayer A (3) and Si— constituting the gas barrier layer B (4) NH 2 reacts at the contact interface to form M1-O—Si bonds. This M1-O—Si bond, for example, Nb—O—Si bond, Zr—O—Si bond, Ti—O—Si bond, Fe—O—Si bond, etc. is added to the Si—O—Si bond. Compared to the structure in which the base layer contains colloidal silica and the like, it is less likely to be decomposed, so that it is less deteriorated in a high-temperature and high-humidity environment, and excellent adhesiveness can be maintained.
 更に、凹凸構造を有する下地層Aの表面領域に、ガスバリアー層の構成成分が入り込むことにより、アンカー効果を発現し、かつ両者の接触面積が広くなり、M1-O-Si結合面積が増大することにより、より強固な接着性を得ることができる。 Furthermore, when the constituent components of the gas barrier layer enter the surface region of the underlying layer A having a concavo-convex structure, an anchor effect is exhibited, the contact area between the two is increased, and the M1-O—Si bond area is increased. Thereby, stronger adhesiveness can be obtained.
 図2は、下地層とガスバリアー層の界面に形成する領域Dの構成の一例を示す模式図である。 FIG. 2 is a schematic diagram showing an example of the configuration of the region D formed at the interface between the base layer and the gas barrier layer.
 図2に示すガスバリアー性フィルム(1)の部分構造においては、基材(不図示)上に遷移金属M1を含む化合物を含有する下地層A(3)を形成するが、好ましい態様としては当該化合物として球状粒子を適用することにより、特に、下地層A(3)の表面領域では、下地層A(3)を構成する球状粒子の形状に対応して凹凸構造が形成され、かつ粒子密度も低く、粒子間に間隙が存在する状態となる。このような構成の下地層A(3)上に、ケイ素(Si)と窒素(N)とを含有するガスバリアー層B(4)を、湿式塗布方式で形成することにより、下地層A表面の凹凸構造部に、ガスバリアー層形成用塗布液が入り込むことにより、遷移金属M1/Siの原子数比率の値が、0.11~9.0の範囲内にある、厚さが5nm以上の領域Dを形成することができる。 In the partial structure of the gas barrier film (1) shown in FIG. 2, an underlayer A (3) containing a compound containing a transition metal M1 is formed on a substrate (not shown). By applying the spherical particles as the compound, a concavo-convex structure is formed corresponding to the shape of the spherical particles constituting the base layer A (3), and the particle density is also particularly high in the surface region of the base layer A (3). It is low, and there is a gap between the particles. By forming a gas barrier layer B (4) containing silicon (Si) and nitrogen (N) on the base layer A (3) having such a structure by a wet coating method, A region having a thickness of 5 nm or more in which the value of the atomic ratio of the transition metal M1 / Si is in the range of 0.11 to 9.0 when the gas barrier layer forming coating solution enters the concavo-convex structure portion. D can be formed.
 本発明に係る領域Dの厚さは、5nm以上であることを特徴とするが、好ましくは5~30nmの範囲内であり、さらに好ましくは8~20nmの範囲内である。上記で規定する範囲内であれば、良好なガスバリアー性と接着性とを両立することができる。 The thickness of the region D according to the present invention is 5 nm or more, preferably 5 to 30 nm, and more preferably 8 to 20 nm. If it is in the range prescribed | regulated above, favorable gas-barrier property and adhesiveness can be made compatible.
 本発明において、領域Dを所望の厚さに制御するための具体的手段としては、例えば、下地層の形成に用いる遷移金属M1を含む化合物、より詳しくは球形粒子の粒径等を適宜選択し、表面の凹凸の程度を制御する方法の他、遷移金属M1を含む化合物の密度、遷移金属M1を含む化合物と下地層形成用バインダーとの質量比等を調整することにより、適宜設定することができる。 In the present invention, as a specific means for controlling the region D to a desired thickness, for example, a compound containing the transition metal M1 used for forming the underlayer, more specifically, the particle size of the spherical particles, and the like are appropriately selected. In addition to the method for controlling the degree of unevenness on the surface, the density of the compound containing the transition metal M1 and the mass ratio of the compound containing the transition metal M1 and the binder for forming the underlayer can be appropriately set. it can.
 領域Dの厚さは、下地層A(3)を構成する化合物、より詳しくは球形粒子の粒径等に依存する表面の凹凸程度に関連して変化させることが好ましい。 The thickness of the region D is preferably changed in relation to the degree of unevenness of the surface depending on the compound constituting the underlayer A (3), more specifically, the particle size of the spherical particles.
 下地層A(3)の凹凸が小さすぎると、上述の推定メカニズムに記載した第1の効果及び第2の効果が十分に発現させることができず、接着性が不十分となる場合がある。一方、下地層Aの凹凸数が過剰、あるいは深くなりすぎると、ガスバリアー層B(4)の表面粗さが粗くなり、下地層A(3)の突起(凹凸構造)を、その上に設けるガスバリアー層B(4)で被覆できなくなり、その結果、十分なガスバリアー性を得ることが難しくなる。 If the unevenness of the underlayer A (3) is too small, the first effect and the second effect described in the above estimation mechanism cannot be sufficiently exhibited, and the adhesiveness may be insufficient. On the other hand, if the number of irregularities of the underlayer A is excessive or too deep, the surface roughness of the gas barrier layer B (4) becomes rough, and the protrusion (uneven structure) of the underlayer A (3) is provided thereon. It becomes impossible to coat with the gas barrier layer B (4), and as a result, it becomes difficult to obtain sufficient gas barrier properties.
 従って、下地層A(3)の表面凹凸の程度は、断面TEM画像で下地層A(3)の厚さの高低差を計測することで数値化することができる。下地層A(3)の高低差としては、断面TEM画像の長さ1.0μmの範囲で計測した際に、5~30nmの範囲内であることが好ましく、より好ましくは8~20nmの範囲内である。 Therefore, the degree of surface unevenness of the foundation layer A (3) can be quantified by measuring the difference in thickness of the foundation layer A (3) from the cross-sectional TEM image. The height difference of the underlayer A (3) is preferably in the range of 5 to 30 nm, more preferably in the range of 8 to 20 nm when measured in the range of the cross-sectional TEM image length of 1.0 μm. It is.
 〈XPSによる組成分析と領域Dの厚さの測定〉
 本発明に係る領域Dは、積層体Cの厚さ方向の組成分布をXPS法により分析したとき、前記下地層Aと前記ガスバリアー層Bとの界面領域に、遷移金属M1とSiとが共存し、遷移金属M1/Siの原子数比率の値が0.11~9.0の範囲内にあり、かつ、厚さが5nm以上であることを特徴とする。
<Composition analysis by XPS and measurement of thickness of region D>
In the region D according to the present invention, when the composition distribution in the thickness direction of the laminate C is analyzed by the XPS method, the transition metal M1 and Si coexist in the interface region between the base layer A and the gas barrier layer B. The transition metal M1 / Si has an atomic number ratio in the range of 0.11 to 9.0 and a thickness of 5 nm or more.
 次いで、XPS分析法による領域Dの測定方法について説明する。 Next, a method for measuring the region D by the XPS analysis method will be described.
 本発明に係る積層体Cの厚さ方向における元素濃度分布(以下、デプスプロファイルともいう。)は、具体的には、遷移金属M1分布曲線、ケイ素分布曲線、酸素分布曲線、窒素分布曲線及び炭素分布曲線等を、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用して行うことにより、積層体Cの表面より内部を順次露出させ、その表面組成の分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:atom%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は層厚方向における前記積層体Cの厚さ方向におけるガスバリアー層B(4)の表面からの距離におおむね相関することから、「積層体Cの厚さ方向におけるガスバリアー層B(4)の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリアー層の表面からの距離を採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。 The element concentration distribution (hereinafter also referred to as a depth profile) in the thickness direction of the laminate C according to the present invention is specifically a transition metal M1 distribution curve, a silicon distribution curve, an oxygen distribution curve, a nitrogen distribution curve, and carbon. A distribution curve or the like is performed by using both X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon to sequentially expose the inside from the surface of the laminate C. It can be created by so-called XPS depth profile measurement that analyzes the composition. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of each element (unit: atom%) and the horizontal axis as the etching time (sputtering time). In the element distribution curve with the horizontal axis as the etching time in this way, the etching time is roughly correlated with the distance from the surface of the gas barrier layer B (4) in the thickness direction of the laminate C in the layer thickness direction. Therefore, as the “distance from the surface of the gas barrier layer B (4) in the thickness direction of the laminate C”, the gas calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. The distance from the surface of the barrier layer can be employed. In addition, as a sputtering method employed for such XPS depth profile measurement, a rare gas ion sputtering method using argon (Ar + ) as an etching ion species is employed, and the etching rate (etching rate) is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
 以下に、本発明に適用可能なXPS分析の具体的な条件の一例を示す。 Hereinafter, an example of specific conditions of XPS analysis applicable to the present invention will be shown.
 ・分析装置:アルバックファイ社製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを求める。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)。
・ Analyzer: QUANTERASXM manufactured by ULVAC-PHI
・ X-ray source: Monochromatic Al-Kα
・ Sputtering ion: Ar (2 keV)
Depth profile: Measurement is repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data every 1 nm is obtained in the depth direction).
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバックファイ社製のMultiPakを用いる。なお、分析した元素は、ケイ素(Si)、遷移金属M1、酸素(O)、窒素(N)、炭素(C)とした。 Quantification: The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. Data processing uses MultiPak manufactured by ULVAC-PHI. The analyzed elements were silicon (Si), transition metal M1, oxygen (O), nitrogen (N), and carbon (C).
 得られたデータから、組成比を計算し、遷移金属M1とSiとが共存し、かつ、遷移金属M1/Siの原子数比率の値が、0.11~9.0にある範囲を求め、これを領域Dと定義し、その厚さを求めた。領域Dの厚さは、XPS分析におけるスパッタ深さをSiO換算で表したものである。 From the obtained data, the composition ratio is calculated, and the range in which the transition metal M1 and Si coexist and the atomic ratio of the transition metal M1 / Si is in the range of 0.11 to 9.0 is obtained. This was defined as region D and its thickness was determined. The thickness of the region D represents the sputtering depth in XPS analysis in terms of SiO 2 .
 前述のとおり、本発明において、領域Dの厚さは5nm以上であることを特徴とし、好ましくは5~30nmの範囲内であり、さらに好ましくは8~20nmの範囲内である。 As described above, in the present invention, the thickness of the region D is 5 nm or more, preferably in the range of 5 to 30 nm, and more preferably in the range of 8 to 20 nm.
 図3に、領域Dを含めたガスバリアー性フィルムの厚さ方向のSi及び遷移金属M1の組成分布をXPS法により分析したときの元素プロファイルの模式的なグラフを示す。 FIG. 3 shows a schematic graph of the element profile when the composition distribution of Si and the transition metal M1 in the thickness direction of the gas barrier film including the region D is analyzed by the XPS method.
 図3は、ガスバリアー性フィルムの表面(グラフの左端部)より深さ方向に、Si、M1、O、N、Cの元素分析を行い、横軸にスパッタの深さ(膜厚:nm)を、縦軸にSiとM1の含有率(atom%)を示したグラフである。 FIG. 3 shows the elemental analysis of Si, M1, O, N, and C in the depth direction from the surface of the gas barrier film (left end of the graph), and the horizontal axis represents the sputter depth (film thickness: nm). Is a graph showing the Si and M1 content (atom%) on the vertical axis.
 左側より、ガスバリアー層B(4)の元素組成、領域Dの元素組成、下地層A(3)における元素組成プロファイルであり、領域Dが、M1/Siの原子数比率の値が、0.11~9.0の範囲内である。 From the left side, the elemental composition of the gas barrier layer B (4), the elemental composition of the region D, and the elemental composition profile of the base layer A (3). It is within the range of 11 to 9.0.
 《ガスバリアー性フィルムの構成要素》
 以下に、本発明のガスバリアー性フィルムの構成要素である、基材、下地層A及び遷移金属M1、ガスバリアー層B及び形成方法、(領域D)、領域E及び遷移金属M2の詳細について説明する。
<Constituent elements of gas barrier film>
The details of the substrate, the base layer A and the transition metal M1, the gas barrier layer B and the forming method, (region D), the region E, and the transition metal M2, which are constituent elements of the gas barrier film of the present invention, are described below. To do.
 〔基材〕
 本発明のガスバリアー性フィルムに適用可能な基材としては、プラスチックフィルムを挙げることができる。
〔Base material〕
Examples of the substrate applicable to the gas barrier film of the present invention include a plastic film.
 当該プラスチックフィルムは、下地層Aやガスバリアー層B等を保持できるフィルムであれば、材質、厚さ等に特に制限はなく、使用目的等に応じて適宜選択することができる。 The plastic film is not particularly limited in material, thickness, and the like as long as it can hold the base layer A, the gas barrier layer B, and the like, and can be appropriately selected according to the purpose of use.
 本発明に適用可能なプラスチックフィルムとしては、従来公知のプラスチックフィルムを挙げることができ、例えば、特開2013-226758号公報の段落(0124)~同(0136)、国際公開第2013/002026号の段落(0044)~(0047)等に記載されたプラスチックフィルムを挙げることができる。 Examples of the plastic film applicable to the present invention include conventionally known plastic films. For example, JP-A-2013-226758, paragraphs (0124) to (0136), and International Publication No. 2013/002026. Examples thereof include plastic films described in paragraphs (0044) to (0047).
 プラスチックフィルムとして用いることができる好ましい具体例は、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等である。 Preferable specific examples that can be used as the plastic film are polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC) and the like.
 基材は、枚葉形状やロール形状等、その形状として特に限定されないが、生産性の観点からロールtoロール方式でも対応できるロール形状が好ましい。 The substrate is not particularly limited as a shape such as a single wafer shape or a roll shape, but a roll shape that can be handled by a roll-to-roll method is preferable from the viewpoint of productivity.
 基材の厚さは、用途によって適宜選択されるため、特に制限がないが、典型的には1~800μmの範囲内であり、好ましくは5~500μmの範囲内であり、さらに好ましくは10~200μmの範囲内である。 The thickness of the substrate is appropriately selected depending on the application and is not particularly limited, but is typically in the range of 1 to 800 μm, preferably in the range of 5 to 500 μm, more preferably 10 to It is in the range of 200 μm.
 本発明で用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造する溶融流延法や、樹脂を溶媒に溶解してドープを調製した後、当該ドープを金属支持体上に流延、乾燥して基材を製造する溶液流延法等を用いることができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、又は基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍が好ましい。 The base material used in the present invention can be produced by a conventionally known general method. For example, a melt casting method for producing an unstretched substrate that is substantially amorphous and not oriented by melting a resin as a material with an extruder, extruding with an annular die or a T-die, and quenching, A solution casting method or the like in which a resin is dissolved in a solvent to prepare a dope, and then the dope is cast on a metal support and dried to produce a substrate, or the like can be used. In addition, the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc. A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
 少なくとも基材の下地層A及びガスバリアー層を設ける面側には、密着性向上のための公知の種々の処理、例えば、コロナ放電処理、火炎処理、酸化処理、又はプラズマ処理等を行うことが好ましく、必要に応じて上記処理を組み合わせて行うことがより好ましい。 At least on the side of the substrate on which the base layer A and the gas barrier layer are provided, various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, can be performed. Preferably, it is more preferable to combine the above treatments as necessary.
 〔下地層A〕
 本発明に係る下地層Aは、少なくとも遷移金属M1を含む化合物を含有する層である。さらには、当該化合物を構成する遷移金属M1が、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)及び鉄(Fe)から選ばれる少なくとも一種であることが好ましい。
[Underlayer A]
The underlayer A according to the present invention is a layer containing a compound containing at least a transition metal M1. Further, the transition metal M1 constituting the compound is preferably at least one selected from niobium (Nb), zirconium (Zr), titanium (Ti), and iron (Fe).
 (遷移金属M1)
 本発明に係る下地層Aの形成に適用する遷移金属M1とは、第3族元素から第12族元素を指し、本発明に係る遷移金属M1としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、及びAuなどが挙げられる。
(Transition metal M1)
The transition metal M1 applied to the formation of the underlayer A according to the present invention refers to a Group 3 element to a Group 12 element. As the transition metal M1 according to the present invention, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Examples include Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, and Au.
 中でも、Ti、Ce、Nb、Fe、Zr、La、Ndが好ましく、更には、透明性が良好な化合物が得られるNb、Zr、Ti及びFeから選ばれる少なくとも一種であることが好ましく、特に好ましくは、Nb又はZrである。 Among them, Ti, Ce, Nb, Fe, Zr, La, and Nd are preferable, and at least one selected from Nb, Zr, Ti, and Fe that can obtain a compound having good transparency is preferable, and particularly preferable. Is Nb or Zr.
 本発明に係る遷移金属M1を含む化合物の態様としては、特に限定されないが、例えば、遷移金属M1の酸化物、窒化物、炭化物、酸窒化物、又は酸炭化物といった化合物の状態で含有されることが挙げられる。中でも酸化をより効果的に抑制するという観点から、遷移金属M1としては、酸化物として下地層Aに含有されることが好ましい。下地層Aに適用する遷移金属M1は、1種単独であっても2種以上併用してもよい。 Although it does not specifically limit as an aspect of the compound containing the transition metal M1 which concerns on this invention, For example, it contains in the state of compounds, such as the oxide, nitride, carbide, oxynitride, or oxycarbide of the transition metal M1 Is mentioned. Among these, from the viewpoint of more effectively suppressing oxidation, the transition metal M1 is preferably contained in the underlayer A as an oxide. The transition metal M1 applied to the underlayer A may be used alone or in combination of two or more.
 (遷移金属M1を含む化合物の形状)
 本発明に係る遷移金属M1を含む化合物としては、粒子形状を有していることが好ましい態様の一つである。
(Shape of compound containing transition metal M1)
One preferred embodiment of the compound containing the transition metal M1 according to the present invention is to have a particle shape.
 粒子形状としては、球形、紡錘形、不定形等、いずれの形態でもよいが、下地層表面に所望の凹凸構造を安定して形成することができる観点から、球形粒子であることが好ましい。本発明でいう球形粒子とは、長軸/短軸の比の値(アスペクト比)が、1.00~1.50の範囲内であり、好ましくは1.00~1.20の範囲内であり、さらに好ましくは、1.00~1.10の範囲内である。 The particle shape may be any shape such as a spherical shape, a spindle shape, and an indeterminate shape, but is preferably a spherical particle from the viewpoint that a desired uneven structure can be stably formed on the surface of the underlayer. In the present invention, the spherical particles have a major axis / minor axis ratio value (aspect ratio) in the range of 1.00 to 1.50, preferably in the range of 1.00 to 1.20. More preferably, it is in the range of 1.00 to 1.10.
 遷移金属M1を含む化合物の粒子サイズとしては、長径として5~50nmの範囲内であることが好ましく、更には10~30nmの範囲内であることが好ましい。この範囲であれば、下地層Aの表面に粗大な突起を形成することなく、適度な凹凸構造を形成することができる。 The particle size of the compound containing the transition metal M1 is preferably in the range of 5 to 50 nm as the major axis, and more preferably in the range of 10 to 30 nm. Within this range, an appropriate uneven structure can be formed without forming coarse protrusions on the surface of the underlayer A.
 (遷移金属M1を含む化合物)
 本発明においては、遷移金属M1を含む化合物は市販品としても入手することができ、例えば、遷移金属酸化物のナノ粒子分散物として、下記の超微粒子酸化物ゾルを挙げることができる。
(Compound containing transition metal M1)
In the present invention, the compound containing the transition metal M1 can be obtained as a commercial product. For example, as the nanoparticle dispersion of the transition metal oxide, the following ultrafine oxide sol can be mentioned.
 下記に列挙する超微粒子酸化物ゾルは、いずれも、多木化学社製である。 The ultrafine oxide sols listed below are all manufactured by Taki Chemical Co., Ltd.
 〈TiO
 タイノックA-6(商品名、成分=TiO、2次粒子径=20nm、pH=12)
 タイノックM-6(商品名、成分=TiO、2次粒子径=10nm、pH=3)
 タイノックAM-15(商品名、成分=TiO、2次粒子径=20nm、pH=4)
 タイノックCZP-223(商品名、成分=TiO、2次粒子径=20nm)
 タイノックRA-6(商品名、成分=TiO、2次粒子径=35nm、pH=10)
 等、
 〈CeO
 ニードラールB-10(商品名、成分=CeO、2次粒子径=20nm,pH=8)
 ニードラールP-10(商品名、成分=CeO、2次粒子径=20nm,pH=7)
 等、
 〈Nb
 バイラールNb-G6000(商品名、成分=Nb、2次粒子径=15nm,pH=8)等、
 〈Fe
 バイラールFe-C10(商品名、成分=Fe、2次粒子径=6nm,pH=7)等、
 〈ZrO
 バイラールZr-C20(商品名、成分=ZrO、2次粒子径=40nm,pH=7)等、
 〈La
 バイラールLa-C10(商品名、成分=La、2次粒子径=40nm,pH=8)等、
 〈Nd
 バイラールNd-C10(商品名、成分=Nd、2次粒子径=20nm,pH=9)等を挙げることができる。
<TiO 2 >
Tynock A-6 (trade name, component = TiO 2 , secondary particle size = 20 nm, pH = 12)
Tynoch M-6 (trade name, component = TiO 2 , secondary particle size = 10 nm, pH = 3)
Tynock AM-15 (trade name, component = TiO 2 , secondary particle size = 20 nm, pH = 4)
Tynock CZP-223 (trade name, component = TiO 2 , secondary particle size = 20 nm)
Tynoc RA-6 (trade name, component = TiO 2 , secondary particle size = 35 nm, pH = 10)
etc,
<CeO 2 >
Nidoral B-10 (trade name, component = CeO 2 , secondary particle size = 20 nm, pH = 8)
Niedral P-10 (trade name, component = CeO 2 , secondary particle size = 20 nm, pH = 7)
etc,
<Nb 2 O 5 >
Viral Nb-G6000 (trade name, component = Nb 2 O 5 , secondary particle size = 15 nm, pH = 8), etc.
<Fe 2 O 3 >
Viral Fe-C10 (trade name, component = Fe 2 O 3 , secondary particle size = 6 nm, pH = 7), etc.
<ZrO 2 >
Viral Zr-C20 (trade name, component = ZrO 2 , secondary particle size = 40 nm, pH = 7), etc.
<La 2 O 3 >
Viral La-C10 (trade name, component = La 2 O 3 , secondary particle size = 40 nm, pH = 8), etc.
<Nd 2 O 3 >
Examples include viral Nd-C10 (trade name, component = Nd 2 O 3 , secondary particle size = 20 nm, pH = 9).
 また、日産化学工業社からも、下記の酸化ジルコニウム(ZrO)ゾル(ナノユース(登録商標)ZRシリーズ)が市販されている。 The following zirconium oxide (ZrO 2 ) sol (Nanouse (registered trademark) ZR series) is also commercially available from Nissan Chemical Industries.
 ZR-30BS(粒子径=63nm,pH=9.8)
 ZR-30BFN(粒子径=14nm、pH=7.2)
 ZR-20AS(粒子径=42nm、pH=3.8)
 等を挙げることができる。
ZR-30BS (particle size = 63 nm, pH = 9.8)
ZR-30BFN (particle size = 14 nm, pH = 7.2)
ZR-20AS (particle size = 42 nm, pH = 3.8)
Etc.
 (バインダー)
 本発明に係る下地層Aを形成する際には、上記説明した遷移金属M1を含む化合物と共に、バインダーを用いることができる。
(binder)
In forming the underlayer A according to the present invention, a binder can be used together with the compound containing the transition metal M1 described above.
 下地層Aの形成に適用可能なバインダーとしては、例えば、ポリスチレン、ポリプロピレン、ポリブタジエン、ポリイソプレン、エチレン-ブタジエン共重合体等のジエン(共)重合体、スチレン-ブタジエン共重合体、メチルメタクリレート-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体等の合成ゴム、ポリメチルメタクリレート、メチルメタクリレート-(2-エチルヘキシルアクリレート)共重合体、メチルメタクリレート-メタクリル酸共重合体、メチルアクリレート-(N-メチロールアクリルアミド)共重合体、ポリアクリロニトリル等の(メタ)アクリル(共)重合体、ポリ酢酸ビニル、酢酸ビニル-プロピオン酸ビニル共重合体、酢酸ビニル-エチレン共重合体等のビニルエステル(共)重合体、酢酸ビニル-(2-エチルヘキシルアクリレート)共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン等およびそれらの共重合体が挙げられる。 Examples of binders applicable to the formation of the underlayer A include diene (co) polymers such as polystyrene, polypropylene, polybutadiene, polyisoprene, and ethylene-butadiene copolymer, styrene-butadiene copolymer, and methyl methacrylate-butadiene. Copolymer, synthetic rubber such as acrylonitrile-butadiene copolymer, polymethyl methacrylate, methyl methacrylate- (2-ethylhexyl acrylate) copolymer, methyl methacrylate-methacrylic acid copolymer, methyl acrylate- (N-methylolacrylamide) Copolymers, (meth) acrylic (co) polymers such as polyacrylonitrile, polyvinyl acetate, vinyl acetate-vinyl propionate copolymers, vinyl ester (co) polymers such as vinyl acetate-ethylene copolymers, acetic acid Bi Le - (2-ethylhexyl acrylate) copolymers, polyvinyl chloride, polyvinylidene chloride, polystyrene and copolymers thereof.
 (下地層Aの形成方法)
 本発明において、基材上へ下地層Aを形成する方法としては、例えば、遷移金属M1を含む化合物、バインダーの他に、溶媒や界面活性剤等を添加して下地層A形成用塗布液を調製した後、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、ダイコート法、グラビア印刷法等の公知の湿式塗布方式により基材上にコーティングし、溶媒、希釈剤等を乾燥除去することにより下地層Aを形成することができる。
(Formation method of base layer A)
In the present invention, as a method for forming the underlayer A on the substrate, for example, in addition to the compound containing the transition metal M1 and the binder, a solvent, a surfactant, and the like are added to form a coating solution for forming the underlayer A. After preparation, known spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method, etc. The base layer A can be formed by coating on a substrate by a wet coating method and drying and removing a solvent, a diluent and the like.
 下地層Aの乾燥後の層厚としては、特に制限はないが、20~500nmの範囲内であり、好ましくは20~200nmの範囲内であり、さらに好ましくは、30~150nmの範囲内である。 The thickness of the underlying layer A after drying is not particularly limited, but is in the range of 20 to 500 nm, preferably in the range of 20 to 200 nm, and more preferably in the range of 30 to 150 nm. .
 〔ガスバリアー層B〕
 本発明に係るガスバリアー層Bは、少なくともケイ素(Si)と窒素(N)とを含有する層であれば特に制限はないが、好ましい態様は、ポリシラザンを含有する塗布液を塗布し、乾燥して形成される層である。
[Gas barrier layer B]
The gas barrier layer B according to the present invention is not particularly limited as long as it is a layer containing at least silicon (Si) and nitrogen (N), but a preferred embodiment is that a coating liquid containing polysilazane is applied and dried. It is a layer formed.
 以下、ポリシラザンを用いたガスバリアー層Bの形成方法について説明する。 Hereinafter, a method for forming the gas barrier layer B using polysilazane will be described.
 本発明係るガスバリアー層Bは、ポリシラザンを含む塗布液を公知の湿式塗布法により塗布した後、改質処理を施して、本発明に係る下地層A上にガスバリアー層B及び領域Dを形成する。 The gas barrier layer B according to the present invention forms a gas barrier layer B and a region D on the base layer A according to the present invention by applying a coating liquid containing polysilazane by a known wet coating method and then performing a modification treatment. To do.
 (ポリシラザン)
 本発明に用いられる「ポリシラザン」とは、構造内にケイ素(Si)-窒素(N)結合を持つポリマーで、酸窒化ケイ素(SiON)の前駆体となるポリマーであり、下記一般式(1)で表される構造を有するものが好ましく用いられる。
(Polysilazane)
The “polysilazane” used in the present invention is a polymer having a silicon (Si) -nitrogen (N) bond in the structure, and is a polymer that is a precursor of silicon oxynitride (SiON). What has the structure represented by these is used preferably.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)において、R、R、及びRは、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、又はアルコキシ基を表す。 In the general formula (1), R 1 , R 2 , and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
 本発明では、得られるガスバリアー層の膜としての緻密性の観点からは、R、R及びRの全てが水素原子であるパーヒドロポリシラザン(略称:PHPS)が特に好ましい。 In the present invention, from the viewpoint of denseness of a film of the obtained gas barrier layer, perhydropolysilazane all of R 1, R 2 and R 3 are hydrogen atom (abbreviation: PHPS) are particularly preferred.
 ポリシラザンは、有機溶媒に溶解した溶液の状態でも市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、例えば、AZエレクトロニックマテリアルズ株式会社製のNN120-20、NAX120-20、NL120-20等が挙げられる。 Polysilazane is also commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution. Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials Co., Ltd.
 その他、ポリシラザンの詳細については、例えば、特開2013-255910号公報の段落(0024)~同(0040)、特開2013-188942号公報の段落(0037)~同(0043)、特開2013-151123号公報の段落(0014)~同(0021)、特開2013-052569号公報の段落(0033)~同(0045)、特開2013-129557号公報の段落(0062)~同(0075)、特開2013-226758号公報の段落(0037)~同(0064)等に記載されている内容を参照して適用することができる。 In addition, for details of polysilazane, for example, paragraphs (0024) to (0040) of JP2013-255910A, paragraphs (0037) to (0043) of JP2013-188942A, JP2013-2013A. No. 151123, paragraphs (0014) to (0021), JP 2013-052569 A, paragraphs (0033) to (0045), JP 2013-129557, paragraphs (0062) to (0075), The present invention can be applied with reference to the contents described in paragraphs (0037) to (0064) of JP2013-226758A.
 (ポリシラザンを用いたガスバリアー層の形成方法)
 ポリシラザンを含有するガスバリアー層形成用塗布液には、ポリシラザンの他に、溶媒や必要に応じて後述する添加元素化合物を含有し、基材上に形成された下地層Aの上に、湿式塗布方式を用いて形成する。
(Method of forming a gas barrier layer using polysilazane)
In addition to polysilazane, the coating liquid for forming a gas barrier layer containing polysilazane contains a solvent and, if necessary, an additive element compound to be described later, and is wet-coated on the base layer A formed on the substrate. Form using the method.
 ガスバリアー層形成用塗布液の調製に用いる溶媒としては、非プロトン性溶剤;、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。 Solvents used in the preparation of the coating solution for gas barrier layer formation include aprotic solvents; aliphatic hydrocarbons, alicyclic hydrocarbons, aromatics such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben Hydrocarbon solvents such as hydrocarbons; halogen hydrocarbon solvents such as methylene chloride and trichloroethane; esters such as ethyl acetate and butyl acetate; ketones such as acetone and methyl ethyl ketone; aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Ethers such as cyclic ethers: For example, tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes) and the like can be mentioned.
 ガスバリアー層形成用塗布液におけるポリシラザンの濃度は、特に制限されず、形成する層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1~80質量%の範囲内、より好ましくは5~50質量%の範囲内、さらに好ましくは10~40質量%の範囲内である。 The concentration of polysilazane in the coating liquid for forming a gas barrier layer is not particularly limited and varies depending on the thickness of the layer to be formed and the pot life of the coating liquid, but is preferably in the range of 1 to 80% by mass, more preferably 5 It is in the range of ˜50 mass%, more preferably in the range of 10˜40 mass%.
 ポリシラザンを含有する塗布液を塗布する方法としては、任意の適切な湿式塗布方法を採用することができる。具体的には、例えば、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される溶媒を除去することができる。ガスバリアー層形成の具体的方法としては、例えば、特開2014-151571号公報の段落(0058)~同(0064)、特開2011-183773号公報の段落(0052)~同(0056)等を参照して採用することができる。 Any appropriate wet coating method can be employed as a method of applying the coating liquid containing polysilazane. Specifically, for example, spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, gravure printing method and the like can be mentioned. . After applying the coating solution, it is preferable to dry the coating film. By drying the coating film, the solvent contained in the coating film can be removed. Specific methods for forming the gas barrier layer include, for example, paragraphs (0058) to (0064) of JP2014-151571A, paragraphs (0052) to (0056) of JP2011-183773A, and the like. It can be adopted by reference.
 (改質処理)
 改質処理とは、ポリシラザンに対し、エネルギーを付与して、その一部又は全てを酸化ケイ素または酸化窒化珪素への転化する処理である。
(Modification process)
The modification treatment is treatment for imparting energy to polysilazane and converting part or all thereof to silicon oxide or silicon oxynitride.
 本発明における改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができ、例えば、公知のプラズマ処理、プラズマイオン注入処理、紫外線照射処理、真空紫外線照射処理等を挙げることができる。本発明においては、低温で転化反応が可能なプラズマや、オゾンや紫外線を使う転化反応が好ましい。プラズマやオゾンは従来公知の方法を用いることができる。本発明において、基材上に塗布方式のポリシラザン含有塗布液の塗膜を設け、波長200nm以下の真空紫外線(VUV)を照射して改質処理する真空紫外線照射処理を適用して、ガスバリアー層Bを形成する方法が、特に好ましい。 As the modification treatment in the present invention, a known method based on the conversion reaction of polysilazane can be selected, and examples thereof include known plasma treatment, plasma ion implantation treatment, ultraviolet irradiation treatment, vacuum ultraviolet irradiation treatment and the like. In the present invention, a plasma that can be converted at a low temperature, or a conversion reaction using ozone or ultraviolet light is preferable. Conventionally known methods can be used for plasma and ozone. In the present invention, a gas barrier layer is applied by applying a vacuum ultraviolet ray irradiation treatment in which a coating film of a polysilazane-containing coating solution of a coating method is provided on a substrate, and a modification treatment is performed by irradiating vacuum ultraviolet rays (VUV) having a wavelength of 200 nm or less. The method of forming B is particularly preferred.
 ガスバリアー層Bの厚さは、特に制限はないが、1~500nmの範囲内が好ましい、より好ましくは10~300nmの範囲内である。ガスバリアー層のうち、ガスバリアー層全体が改質層であってもよいし、ガスバリアー層の一部が改質処理された部分改質層であってもよい。 The thickness of the gas barrier layer B is not particularly limited, but is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm. Of the gas barrier layer, the entire gas barrier layer may be a modified layer, or a part of the gas barrier layer may be a partially modified layer that has been subjected to a modification treatment.
 (真空紫外線照射処理)
 本発明に係るガスバリアー層Bは、ポリシラザンを含む層に対し、真空紫外光(VUV)照射する工程で、ポリシラザンの少なくとも一部が酸窒化ケイ素へと改質される。
(Vacuum ultraviolet irradiation treatment)
In the gas barrier layer B according to the present invention, at least a part of the polysilazane is modified into silicon oxynitride in the step of irradiating the layer containing polysilazane with vacuum ultraviolet light (VUV).
 本発明におけるVUV照射工程において、ガスバリアー層の前駆体であるポリシラザン含有層塗膜が受ける塗膜面でのVUV照度は、30~200mW/cmの範囲内であることが好ましく、50~160mW/cmの範囲内であることがより好ましい。VUVの照度を30mW/cm以上とすることにより、改質効率を十分に奏することができ、200mW/cm以下とすることにより、塗膜への損傷発生率を極めて低く抑えることができ、かつ基材やすでに形成している下地層Aへの損傷を抑制することができる観点から、好ましい。 In the VUV irradiation step in the present invention, the VUV illuminance on the coating surface received by the polysilazane-containing coating film that is the precursor of the gas barrier layer is preferably in the range of 30 to 200 mW / cm 2 , and preferably 50 to 160 mW. More preferably within the range of / cm 2 . By setting the illuminance of VUV to 30 mW / cm 2 or more, the reforming efficiency can be sufficiently achieved, and by setting it to 200 mW / cm 2 or less, the damage occurrence rate to the coating film can be suppressed to a very low level. And it is preferable from a viewpoint which can suppress the damage to a base material or the base layer A already formed.
 ポリシラザン層塗膜面におけるVUVの照射エネルギー量は、200~10000mJ/cmの範囲内であることが好ましく、500~5000mJ/cmの範囲内であることがより好ましい。VUVの照射エネルギー量を200mJ/cm以上とすることで、ポリシラザン層の改質処理を安定して行うことができ、10000mJ/cm以下とすることにより、過度な改質を抑制し、形成するガスバリアー層のクラックや、基材や下地層Aの熱変形の発生を抑制することができる。 Irradiation energy amount of VUV in the polysilazane coating film surface is preferably in the range of 200 ~ 10000mJ / cm 2, and more preferably in a range of 500 ~ 5000mJ / cm 2. By making the amount of irradiation energy of VUV 200 mJ / cm 2 or more, the polysilazane layer can be stably reformed, and by setting it to 10000 mJ / cm 2 or less, excessive modification is suppressed and formed. Occurrence of cracks in the gas barrier layer and thermal deformation of the base material and the underlayer A can be suppressed.
 真空紫外光源としては、希ガスエキシマランプが好ましく用いられ、例えば、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製、株式会社エム・ディ・コム製など)等を挙げることができる。 As the vacuum ultraviolet light source, a rare gas excimer lamp is preferably used. For example, an excimer lamp (single wavelength of 172 nm, 222 nm, 308 nm, for example, manufactured by USHIO INC., Manufactured by M.D. Can be mentioned.
 真空紫外線照射による処理は、ポリシラザン内の原子間結合力より大きい、波長が100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温環境下(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。 Treatment by vacuum ultraviolet irradiation uses light energy having a wavelength of 100 to 200 nm, preferably light energy having a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in polysilazane, and bonds the atoms to photons called photon processes. This is a method of forming a silicon oxide film in a relatively low temperature environment (about 200 ° C. or less) by causing an oxidation reaction with active oxygen or ozone to proceed while being directly cut by the action of only.
 紫外線照射時の反応には酸素が必要であるが、真空紫外線の場合は、酸素による吸収が生じると、真空紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射環境では、可能な限り酸素濃度及び水蒸気濃度の低い状態であることが好ましい。すなわち、VUV照射時の酸素濃度は、10~10000ppmの範囲とすることが好ましく、より好ましくは50~5000ppmの範囲、さらに好ましく80~4500ppmの範囲、最も好ましくは100~1000ppmの範囲である。 Oxygen is required for the reaction at the time of ultraviolet irradiation, but in the case of vacuum ultraviolet rays, if absorption by oxygen occurs, the efficiency in the vacuum ultraviolet irradiation process tends to decrease, so it is possible in the environment of vacuum ultraviolet irradiation. As long as the oxygen concentration and the water vapor concentration are low, it is preferable. That is, the oxygen concentration at the time of VUV irradiation is preferably in the range of 10 to 10,000 ppm, more preferably in the range of 50 to 5000 ppm, still more preferably in the range of 80 to 4500 ppm, and most preferably in the range of 100 to 1000 ppm.
 VUV照射時においては、照射雰囲気を満たすガスとして乾燥不活性ガスを用いることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射環境内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 At the time of VUV irradiation, it is preferable to use a dry inert gas as a gas that satisfies the irradiation atmosphere, and it is particularly preferable to use a dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation environment and changing the flow rate ratio.
 これらの改質処理の詳細については、例えば、特開2012-086394号公報の段落(0055)~同(0091)、特開2012-006154号公報の段落(0049)~同(0085)、特開2011-251460号公報の段落(0046)~同(0074)等に記載の内容を参照することができる。 Details of these reforming treatments are described in, for example, paragraphs (0055) to (0091) of JP2012-086394A, paragraphs (0049) to (0085) of JP2012-006154A, JP The contents described in paragraphs (0046) to (0074) of 2011-251460 can be referred to.
 上記ガスバリアー層は2層以上積層する構成であってもよく、プラズマCVD法で形成したガスバリアー層上に、上記ポリシラザンを用いた湿式塗布方法によりガスバリアー層を形成・積層してもよい。 Two or more gas barrier layers may be laminated, and a gas barrier layer may be formed and laminated on a gas barrier layer formed by a plasma CVD method by a wet coating method using the polysilazane.
 (ガスバリアー層が、ポリシラザン由来であること判定)
 本発明に係るガスバリアー層においては、前駆体としてポリシラザン、特に好ましくはパーヒドロポリシラザンを用いて形成することが好ましい態様であるが、最終完成物であるガスバリアー層が、ポリシラザンにより形成された層であることは、下記の方法により分析することにより実証することができる。
(Determining that the gas barrier layer is derived from polysilazane)
The gas barrier layer according to the present invention is preferably formed using polysilazane, particularly preferably perhydropolysilazane, as a precursor, but the gas barrier layer as the final product is a layer formed of polysilazane. It can be proved by analyzing by the following method.
 本発明においては、ポリシラザンとしてはパーヒドロポリシラザンを適用した例について説明する。 In the present invention, an example in which perhydropolysilazane is applied as polysilazane will be described.
 市販のパーヒドロポリシラザンの一般的な組成をSiNとしたときに、vは0.78~0.80となる。パーヒドロポリシラザンから形成された前駆体層は、形成雰囲気の水分や酸素を取り込み、アンモニアや水素を放出して、下式(A)及び式(B)で示すように組成が変化していく。 When the general composition of commercially available perhydropolysilazane is SiN v H w , v is 0.78 to 0.80. The precursor layer formed from perhydropolysilazane takes in moisture and oxygen in the forming atmosphere, releases ammonia and hydrogen, and changes its composition as shown in the following formulas (A) and (B).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 その過程において、窒素が1個放出されるのに対し、酸素が3個取り込まれるという法則におおよそ従う。これは、上述の種々の改質処理を行った場合にもあてはまるものである。したがって、パーヒドロポリシラザンから塗布形成されたガスバリアー層の組成をSiOで示した際に、xとyの関係は下式(C)に従う。 In the process, one law of nitrogen is released, while the law that three oxygens are taken in is roughly followed. This is also true when the various reforming processes described above are performed. Therefore, when the composition of the gas barrier layer formed by coating from perhydropolysilazane is represented by SiO x N y , the relationship between x and y follows the following formula (C).
 式(C)
   y=0.8-x/3、x≧0、y≧0、
 元の組成がSiN0.8の場合、パーヒドロポリシラザンから塗布形成された層の厚さ方向の組成分布をXPSにより分析した場合、厚さ方向の各測定点でのいずれの組成も上記式にあてはまることになる(数%の誤差は存在する)。
Formula (C)
y = 0.8−x / 3, x ≧ 0, y ≧ 0,
When the original composition is SiN 0.8 H w , when the composition distribution in the thickness direction of the layer formed from perhydropolysilazane is analyzed by XPS, any composition at each measurement point in the thickness direction is the above This applies to the equation (there is a few percent error).
 したがって、Siを含有する層の厚さ方向の組成分布を分析して、SiOで示した際に、その形成したガスバリー層の厚さに対して、その80%以上となる測定点の組成が、yの値が(0.8-x/3)の±2%の範囲に入っていた場合、その層はパーヒドロポリシラザンから形成されたガスバリアー層であると推定することが可能となる。 Therefore, when the composition distribution in the thickness direction of the layer containing Si is analyzed and indicated by SiO x N y , the measurement point of 80% or more of the thickness of the formed gas valley layer is obtained. If the composition has a y value in the range of ± 2% of (0.8−x / 3), it is possible to estimate that the layer is a gas barrier layer formed from perhydropolysilazane. Become.
 (添加元素)
 本発明において、ガスバリアー層Bを形成するための塗布液には、添加元素(長周期型周期表の第2族~第14族の元素からなる群より選択される少なくとも1種の元素)を含有させることができる。添加元素の例としては、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、クロム(Cr)、鉄(Fe)、マグネシウム(Mg)、スズ(Sn)、ニッケル(Ni)、パラジウム(Pd)、鉛(Pb)、マンガン(Mn)、リチウム(Li)、ゲルマニウム(Ge)、銅(Cu)、ナトリウム(Na)、カリウム(K)、カルシウム(Ca)、コバルト(Co)、ホウ素(B)、ベリリウム(Be)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、タリウム(Tl)、ゲルマニウム(Ge)等が挙げられる。
(Additive elements)
In the present invention, the coating liquid for forming the gas barrier layer B contains an additive element (at least one element selected from the group consisting of elements of Group 2 to Group 14 of the long-period periodic table). It can be included. Examples of additive elements include aluminum (Al), titanium (Ti), zirconium (Zr), zinc (Zn), gallium (Ga), indium (In), chromium (Cr), iron (Fe), magnesium (Mg) ), Tin (Sn), nickel (Ni), palladium (Pd), lead (Pb), manganese (Mn), lithium (Li), germanium (Ge), copper (Cu), sodium (Na), potassium (K ), Calcium (Ca), cobalt (Co), boron (B), beryllium (Be), strontium (Sr), barium (Ba), radium (Ra), thallium (Tl), germanium (Ge) and the like. .
 本発明に係るガスバリアー層を、特に、ポリシラザンとアルミニウム化合物、またはポリシラザンとホウ素化合物とを含有する塗布液を塗布し、乾燥して形成することが好ましい。 The gas barrier layer according to the present invention is preferably formed by applying a coating liquid containing polysilazane and an aluminum compound, or polysilazane and a boron compound, and drying it.
 本発明のガスバリアー性フィルムにおいては、後述するように、領域Dに接していない位置に、遷移金属M2とSiとが共存し、かつ、遷移金属M2/Siの原子数比の値が、0.11~9.0の範囲内にある領域Eを有することが好ましい態様となる。 In the gas barrier film of the present invention, as will be described later, the transition metal M2 and Si coexist at a position not in contact with the region D, and the value of the atomic ratio of the transition metal M2 / Si is 0. It is a preferred embodiment to have a region E in the range of .11 to 9.0.
 上記の領域Eをガスバリアー層Bの上に、遷移金属M2をスパッタ加工により付与し、領域Eを形成する場合、ガスバリアー層Bの形成から遷移金属M2により領域Eを形成する工程において、ガスバリアー層Bまでを形成したガスバリアー性フィルムを保管する環境によっては、すでに形成されているガスバリアー層Bの組成が変化することがある。例えば、窒素原子が離脱し、酸素原子が取り込まれるといった元素組成の変化により、ガスバリアー性フィルムの品質、例えば、ガスバリアー性が安定しないという問題が生じる。 When the region E is formed on the gas barrier layer B by applying the transition metal M2 by sputtering to form the region E, in the step of forming the region E from the formation of the gas barrier layer B by the transition metal M2, Depending on the environment in which the gas barrier film formed up to the barrier layer B is stored, the composition of the already formed gas barrier layer B may change. For example, the quality of the gas barrier film, for example, the gas barrier property is not stable due to a change in elemental composition such that nitrogen atoms are separated and oxygen atoms are taken in.
 上記問題に対し、ガスバリアー層Bの形成時に、ポリシラザンと共に、アルミニウム化合物又はホウ素化合物を併用すると、ガスバリアー層Bの塗布形成後の高温高湿環境下での組成変化が抑制され、安定性が大きく向上するため、その後の工程で、ガスバリアー層B上に遷移金属M2を含む化合物によりスパッタ加工した際の品質(ガスバリアー性)が安定する、すなわち、生産安定性が大きく向上する。 For the above problem, when an aluminum compound or a boron compound is used in combination with polysilazane when forming the gas barrier layer B, the composition change in a high-temperature and high-humidity environment after the formation of the gas barrier layer B is suppressed, and the stability is improved. In order to greatly improve, the quality (gas barrier property) when the sputtering process is performed on the gas barrier layer B with the compound containing the transition metal M2 in the subsequent process is stabilized, that is, the production stability is greatly improved.
 本発明に適用可能なアルミニウム化合物としては、例えば、アルミニウムイソポロポキシド、アルミニウムsec-ブチレート、チタンイソプロポキシド、アルミニウムトリエチレート、アルミニウムトリイソプロピレート、アルミニウムトリtert-ブチレート、アルミニウムトリn-ブチレート、アルミニウムトリsec-ブチレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロピレートモノアルミニウムtert-ブチレート、アルミニウムトリスエチルアセトアセテート、アルミニウムオキシドイソプロポキサイドトリマー等を挙げることができる。 Examples of the aluminum compound applicable to the present invention include aluminum isopoloxide, aluminum sec-butyrate, titanium isopropoxide, aluminum triethylate, aluminum triisopropylate, aluminum tritert-butylate, and aluminum tri-n-butylate. Aluminum tri-sec-butyrate, aluminum ethyl acetoacetate diisopropylate, acetoalkoxyaluminum diisopropylate, aluminum diisopropylate monoaluminum tert-butylate, aluminum trisethylacetoacetate, aluminum oxide isopropoxide trimer, etc. it can.
 また、ホウ素化合物としては、例えば、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリn-プロピル、ホウ酸トリイソプロピル、ホウ酸トリn-ブチル、ホウ酸トリtert-ブチル等を挙げることができる。 Examples of the boron compound include trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, tri-tert-butyl borate and the like.
 これらの中でも、アルミニウム化合物が好ましい。具体的な市販品としては、例えば、AMD(アルミニウムジイソプロピレートモノsec-ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH-TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL-M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)等を挙げることができる。 Of these, aluminum compounds are preferred. Specific commercial products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate / diisopropylate), ALCH-TR (aluminum trisethyl acetoate). Acetate), aluminum chelate M (aluminum alkyl acetoacetate / diisopropylate), aluminum chelate D (aluminum bisethylacetoacetate / monoacetylacetonate), aluminum chelate A (W) (aluminum trisacetylacetonate) Ken Fine Chemical Co., Ltd.), Preneact (registered trademark) AL-M (acetoalkoxyaluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.) It is possible.
 なお、これらの化合物を用いる場合は、ポリシラザンを含む塗布液と不活性ガス雰囲気下で混合することが好ましい。これらの化合物を添加することにより、ポリシラザンが大気中の水分や酸素と反応し、激しく酸化が進むことを抑制するためである。また、これらの化合物とポリシラザンとを混合する場合は、30~100℃に昇温し、撹拌しながら1分~24時間保持することが好ましい。 In addition, when using these compounds, it is preferable to mix with the coating liquid containing polysilazane in inert gas atmosphere. This is because by adding these compounds, polysilazane reacts with moisture and oxygen in the atmosphere, and violent oxidation is suppressed. When these compounds and polysilazane are mixed, the temperature is preferably raised to 30 to 100 ° C. and maintained for 1 minute to 24 hours with stirring.
 ガスバリアー層における上記添加元素の含有量は、ケイ素(Si)の含有量100mol%に対して5~20mol%の範囲内であることが好ましく、より好ましくは5~10mol%の範囲内である。 The content of the additive element in the gas barrier layer is preferably in the range of 5 to 20 mol%, more preferably in the range of 5 to 10 mol% with respect to 100 mol% of the silicon (Si) content.
 〔領域E〕
 本発明のガスバリアー性フィルムにおいては、積層体Cが、厚さ方向の組成分布をXPS法により分析した際、前記領域Dとは接していない異なる領域に、遷移金属M2とSiとが共存し、かつ、遷移金属M2/Siの原子数比率の比が、0.11~9.0の範囲内にある領域Eを有することが好ましい態様である。
[Region E]
In the gas barrier film of the present invention, when the laminate C is analyzed for the composition distribution in the thickness direction by the XPS method, the transition metal M2 and Si coexist in different regions not in contact with the region D. In addition, it is preferable that the region E has a ratio of the number ratio of transition metal M2 / Si in the range of 0.11 to 9.0.
 図4は、ガスバリアー層上に領域Eを有するガスバリアー性フィルムの構成の一例を示す概略断面図である。 FIG. 4 is a schematic cross-sectional view showing an example of the configuration of a gas barrier film having a region E on the gas barrier layer.
 図4で示すように、本発明のガスバリアー性フィルム(1)の好ましい態様として、基材(2)上に、下地層(3)とガスバリアー層(4)を有し、当該下地層(3)とガスバリアー層(4)との間に領域Dを有する構成において、更に、ガスバリアー層(4)上に、領域Eを有する。この時、領域Dと領域Eはそれぞれ異なる位置に配置されている。 As shown in FIG. 4, as a preferred embodiment of the gas barrier film (1) of the present invention, the substrate (2) has an underlayer (3) and a gas barrier layer (4). In the configuration having the region D between 3) and the gas barrier layer (4), the region E is further provided on the gas barrier layer (4). At this time, the region D and the region E are arranged at different positions.
 本発明に係る領域Eは、ポリシラザンを含有する塗布液から形成されたガスバリアー層(4)の上に、気相成膜法により遷移金属M2を含有する層を成膜することによって形成されることが好ましい。気相成膜法としては物理蒸着法が好ましく、スパッタ法が特に好ましい。適用可能なスパッタ法としては、DCスパッタ法、RFスパッタ法、マグネトロンスパッタ法、イオンビームスパッタ法等を挙げることができ、その方法に特に制限はないが、その中でも、ターゲット側に磁石で磁界を形成し、プラズマを試料から分離するマグネトロンスパッタ法が好ましい。 The region E according to the present invention is formed by forming a layer containing the transition metal M2 on the gas barrier layer (4) formed from the coating liquid containing polysilazane by a vapor deposition method. It is preferable. As the vapor deposition method, physical vapor deposition is preferable, and sputtering is particularly preferable. Applicable sputtering methods include DC sputtering method, RF sputtering method, magnetron sputtering method, ion beam sputtering method and the like, and there are no particular restrictions on the method, but among them, a magnetic field is applied to the target side with a magnet. Magnetron sputtering, which forms and separates the plasma from the sample, is preferred.
 (遷移金属M2)
 本発明に係る領域Eの形成に適用可能な遷移金属M2とは、第3族元素から第12族元素を指し、本発明に係る遷移金属M2としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、及びAuなどが挙げられる。
(Transition metal M2)
The transition metal M2 applicable to the formation of the region E according to the present invention refers to a Group 3 element to a Group 12 element. As the transition metal M2 according to the present invention, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Examples include Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, and Au.
 中でも、遷移金属M2は、ケイ素よりも酸化還元電位が低い金属であることが好ましい。ケイ素よりも酸化還元電位の低い遷移金属の化合物を含む領域とすることで、より良好なガスバリアー性が得られる。ケイ素よりも酸化還元電位が低い金属の具体例としては、例えば、ニオブ、タンタル、バリウム、ジルコニウム、チタン、ハフニウム、イットリウム、ランタン、セリウム等が挙げられる。これら金属は、単独でも、又は2種以上混合して用いてもよい。これらの中でも特に第5族元素であるニオブ、タンタル、バナジウムが下部領域に形成しているガスバリアー層(4)の酸化抑制効果が高いため、好ましく用いることができる。すなわち、本発明の好適な実施形態は、遷移金属M2がバナジウム、ニオブ及びタンタルからなる群より選択される少なくとも1種の金属である、ガスバリアー性フィルムである。さらに、光学特性の観点から、遷移金属化合物中の遷移金属は、透明性が良好な化合物が得られるニオブ(Nb)又はタンタル(Ta)が特に好ましい。 Of these, the transition metal M2 is preferably a metal having a lower redox potential than silicon. By setting the region to contain a transition metal compound having a lower oxidation-reduction potential than silicon, better gas barrier properties can be obtained. Specific examples of the metal having a lower redox potential than silicon include niobium, tantalum, barium, zirconium, titanium, hafnium, yttrium, lanthanum, cerium, and the like. These metals may be used alone or in combination of two or more. Among these, the gas barrier layer (4) in which the group 5 elements niobium, tantalum, and vanadium are formed in the lower region has a high oxidation suppressing effect, and thus can be preferably used. That is, a preferred embodiment of the present invention is a gas barrier film in which the transition metal M2 is at least one metal selected from the group consisting of vanadium, niobium and tantalum. Furthermore, from the viewpoint of optical properties, the transition metal in the transition metal compound is particularly preferably niobium (Nb) or tantalum (Ta) from which a compound with good transparency can be obtained.
 本発明に係る遷移金属M2を含む化合物の態様としては、特に限定されないが、例えば、遷移金属Mの酸化物、窒化物、炭化物、酸窒化物、又は酸炭化物といった化合物を用いることができる。中でも酸化をより効果的に抑制するという観点から、遷移金属M2としては、酸化物を用いることが好ましい。 The mode of the compound containing the transition metal M2 according to the present invention is not particularly limited, and for example, a compound such as an oxide, nitride, carbide, oxynitride, or oxycarbide of the transition metal M can be used. Among these, from the viewpoint of more effectively suppressing oxidation, it is preferable to use an oxide as the transition metal M2.
 本発明のガスバリアー性フィルムにおいて、ガスバリアー層上に、遷移金属M2を含む領域Eを形成することによりガスバリアー性が向上する作用機構としては、以下のように推測している。 In the gas barrier film of the present invention, the action mechanism for improving the gas barrier property by forming the region E containing the transition metal M2 on the gas barrier layer is estimated as follows.
 本発明のように、ガスバリアー層上に、遷移金属M2を含有する領域Eを形成することにより、領域Eからガスバリアー層側にかけて、徐々に遷移金属M2の量を少なくする構成とすることができる。このような遷移金属M2/Siの原子数比率の比が、0.11~9.0の範囲内にある領域Eを形成することにより、領域EはSiと遷移金属M2とが結合した領域を形成し、これにより、ガスバリアー性が向上したと推察する。 As in the present invention, the region E containing the transition metal M2 is formed on the gas barrier layer, whereby the amount of the transition metal M2 is gradually reduced from the region E to the gas barrier layer side. it can. By forming a region E in which the ratio of the number ratio of transition metal M2 / Si is within a range of 0.11 to 9.0, region E is a region where Si and transition metal M2 are bonded. It is presumed that the gas barrier properties were improved.
 本発明のガスバリアー性フィルムにおいては、ガスバリアー層がケイ素(Si)を含有する層であり、かつ、領域Eが含有する遷移金属M2が5族の金属(例えば、V、Nb、Ta等。)である場合に、著しくガスバリアー性が向上する。このメカニズムについては明確にはなっていないが、Siと5族の金属原子とは結合を形成しやすいことから、遷移金属M2が活性化されている状態のため、Siを含むガスバリアー層に深く入り、界面でSi-Nb結合を含む緻密な領域Eが形成されることによる効果であると推定している。透明性の観点から5族の金属の中でも、Nb、Taが特に好ましい。 In the gas barrier film of the present invention, the gas barrier layer is a layer containing silicon (Si), and the transition metal M2 contained in the region E is a Group 5 metal (for example, V, Nb, Ta, etc.). ), The gas barrier property is remarkably improved. Although this mechanism is not clear, since Si and Group 5 metal atoms are likely to form a bond, since the transition metal M2 is activated, it is deep in the gas barrier layer containing Si. It is estimated that this is an effect due to the formation of a dense region E containing Si—Nb bonds at the interface. Nb and Ta are particularly preferable among Group 5 metals from the viewpoint of transparency.
 なお、領域Eにおける組成分析は、前述の領域Dにおける組成分析と同様に、XPS法を用いて組成分布を求めることができる。 In the composition analysis in the region E, the composition distribution can be obtained using the XPS method as in the composition analysis in the region D described above.
 (領域Eにおける組成)
 また、本発明に係る領域Eにおける膜組成をSiM2で表したとき、下式(1)で示す条件を満たすことが好ましい態様である。
(Composition in region E)
Also, when showing the film composition in the region E according to the present invention in SiM2 x O y N z, which satisfies the conditions is a preferred embodiment shown by the following formula (1).
 式(1)
   0<(2y+3z)/(a+bx)<1.0
 上記式(1)において、aはSiの価数である。bは遷移金属M2の最大価数である。ただし、ガスバリアー層Bが、Si+Alの構成、Si+Bの構成、又はSi+Al+Bの構成をとる場合には、aはSi、Al、Bの価数とそれぞれの原子比率によって計算される混合物の価数を表す。
Formula (1)
0 <(2y + 3z) / (a + bx) <1.0
In the above formula (1), a is the valence of Si. b is the maximum valence of the transition metal M2. However, when the gas barrier layer B has a configuration of Si + Al, a configuration of Si + B, or a configuration of Si + Al + B, a represents the valence of the mixture calculated by the valences of Si, Al, and B and the respective atomic ratios. To express.
 この領域Eの厚さとしては、5nm以上であることが好ましい。 The thickness of this region E is preferably 5 nm or more.
 領域Eが上記式(1)で規定する条件を満たすことは、ガスバリアー層Bの主要構成元素(Si)と遷移金属(M2)との複合酸化物の酸素欠損組成を、所定の厚さ以上にわたって含んでいることを表している。 The condition that the region E satisfies the condition defined by the above formula (1) is that the oxygen deficiency composition of the composite oxide of the main constituent element (Si) and the transition metal (M2) of the gas barrier layer B exceeds a predetermined thickness. It represents that it is included.
 上述したように、本発明に係るガスバリアー層Bの主要構成元素(Si)と遷移金属(M2)との複合酸化物の組成は、SiM2で示される。 As described above, the composition of the composite oxide as a main constituent element of the gas barrier layer B according to the present invention (Si) and transition metal (M2) is represented by SiM2 x O y N z.
 aはSiの価数である。 A is the valence of Si.
 この組成からも明らかなように、上記複合酸化物は、一部窒化物の構造を含んでいてもよい。ここでは、ガスバリアー層の構成元素(Si)の価数をa、遷移金属(M2)の最大価数をb、Oの価数を2、Nの価数を3とする。そして、上記複合酸化物(一部窒化物となっているものを含む)が化学量論的組成になっている場合は、(2y+3z)/(a+bx)=1.0となる。 As is clear from this composition, the composite oxide may partially include a nitride structure. Here, the valence of the constituent element (Si) of the gas barrier layer is a, the maximum valence of the transition metal (M2) is b, the valence of O is 2, and the valence of N is 3. When the composite oxide (including a partly nitrided) has a stoichiometric composition, (2y + 3z) / (a + bx) = 1.0.
 前述のように、ガスバリアー層Bは、そのほとんどがSiで構成され、Al又はBは微量添加のケースであり、Si単独で計算するケースが多い。 As described above, most of the gas barrier layer B is composed of Si, and Al or B is a case where a small amount is added, and calculation is often performed using Si alone.
 この式は、ガスバリアー層の構成元素(Si)及び遷移金属(M2)の結合手の合計と、O、Nの結合手の合計とが同数であることを意味し、この場合、ガスバリアー層の構成元素(Si)及び遷移金属(M2)ともに、O、Nのいずれかと結合していることになる。 This formula means that the total number of bonds of the constituent elements (Si) and transition metal (M2) of the gas barrier layer and the total number of bonds of O and N are the same. In this case, the gas barrier layer Both the constituent element (Si) and the transition metal (M2) are bonded to either O or N.
 なお、本発明において、ガスバリアー層の構成元素として2種以上が併用される場合や、遷移金属(M2)として2種以上が併用される場合には、各元素の最大価数を各元素の存在比率によって加重平均することにより算出される複合価数を「最大価数」のa及びbの値として採用するものとする。 In addition, in this invention, when 2 or more types are used together as a constituent element of a gas barrier layer, or when 2 or more types are used together as a transition metal (M2), the maximum valence of each element is set to each element. The composite valence calculated by weighted averaging with the existence ratio is adopted as the values of a and b of the “maximum valence”.
 一方、(2y+3z)/(a+bx)<1.0となる場合には、ガスバリアー層の構成元素(Si)及び遷移金属(M2)の結合手の合計に対して、O、Nの結合手の合計が不足していることを意味し、この状態が上記複合酸化物の「酸素欠損」である。酸素欠損状態においては、ガスバリアー層の構成元素(Si)及び遷移金属(M2)の余った結合手は互いに結合する可能性を有しており、ガスバリアー層の構成元素(Si)や遷移金属(M2)の金属同士が直接結合すると、金属の間にOやNを介して結合した場合よりも緻密で高密度な構造が形成され、その結果として、ガスバリアー性が向上すると考えられる。 On the other hand, in the case of (2y + 3z) / (a + bx) <1.0, O and N bond hands with respect to the sum of bond hands of the constituent elements (Si) and transition metal (M2) of the gas barrier layer. This means that the total is insufficient, and this state is an “oxygen deficiency” of the composite oxide. In the oxygen deficient state, the remaining bonds of the constituent element (Si) and transition metal (M2) of the gas barrier layer have the possibility of bonding to each other, and the constituent element (Si) and transition metal of the gas barrier layer When the metals of (M2) are directly bonded to each other, a denser and higher density structure is formed than when the metals are bonded via O or N, and as a result, the gas barrier property is considered to be improved.
 《ガスバリアー性フィルムのその他の機能層》
 本発明のガスバリアー性フィルムにおいては、上記説明した各構成層の他に、本発明の目的効果を損なわない範囲で、他の機能層を設けることができる。
<Other functional layers of gas barrier film>
In the gas barrier film of the present invention, in addition to the constituent layers described above, other functional layers can be provided as long as the object effects of the present invention are not impaired.
 (アンカーコート層)
 本発明に係るガスバリアー層を形成する側の基材の表面には、基材とガスバリアー層との密着性の向上を目的として、本発明に係る下地層と共にアンカーコート層が配置されてもよい。
(Anchor coat layer)
On the surface of the base material on the side on which the gas barrier layer according to the present invention is formed, for the purpose of improving the adhesion between the base material and the gas barrier layer, an anchor coat layer may be disposed together with the base layer according to the present invention. Good.
 アンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を単独でまたは2種以上組み合わせて使用することができる。 As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5.0g/m(乾燥状態)程度が好ましい。 Conventionally known additives can be added to these anchor coating agents. The above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to. The application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
 また、アンカーコート層は、物理蒸着法または化学蒸着法といった気相成膜法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化珪素を主体とした無機膜を形成することもできる。あるいは、特開2004-314626号公報に記載されているようなアンカーコート層を形成することで、その上に気相成膜法により無機薄膜を形成する際に、基材側から発生するガスをある程度遮断して、無機薄膜の組成を制御するといった目的でアンカーコート層を形成することもできる。 The anchor coat layer can also be formed by a vapor deposition method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like. Alternatively, by forming an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor deposition method, a gas generated from the substrate side is generated. An anchor coat layer can also be formed for the purpose of blocking to some extent and controlling the composition of the inorganic thin film.
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 μm.
 (ハードコート層)
 基材の表面(片面または両面)には、本発明に係る下地層と共にハードコート層が配置されてもよい。ハードコート層に含まれる材料の例としては、例えば、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることがで
きる。
(Hard coat layer)
A hard coat layer may be disposed on the surface (one side or both sides) of the base material together with the base layer according to the present invention. Examples of the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold. Such curable resins can be used singly or in combination of two or more.
 活性エネルギー線硬化性樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて、活性エネルギー線硬化性樹脂の硬化物を含む層、すなわちハードコート層が形成される。活性エネルギー線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。予めハードコート層が形成されている市販の基材を用いてもよい。 The active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray. A layer containing a cured product of the functional resin, ie, a hard coat layer is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. You may use the commercially available base material in which the hard-coat layer is formed previously.
 ハードコート層の厚さは、平滑性および屈曲耐性の観点から、0.1~15μmの範囲内が好ましく、1~5μmの範囲内であることがより好ましい。 The thickness of the hard coat layer is preferably in the range of 0.1 to 15 μm and more preferably in the range of 1 to 5 μm from the viewpoint of smoothness and bending resistance.
 ハードコート層の形成材料に適用可能な活性エネルギー線硬化性樹脂としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズを用いることができる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。 Examples of the active energy ray-curable resin applicable to the hard coat layer forming material include a resin composition containing an acrylate compound having a radical-reactive unsaturated compound, and a mercapto compound having an acrylate compound and a thiol group. Examples thereof include resin compositions, resin compositions in which polyfunctional acrylate monomers such as epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, and glycerol methacrylate are dissolved. Specifically, a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
 熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、株式会社アデカ製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製の各種シリコン樹脂、日東紡株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。この中でも特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。 Specific examples of thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd. Examples include coats, thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins. Among these, an epoxy resin-based material having heat resistance is particularly preferable.
 ハードコート層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。 The formation method of the hard coat layer is not particularly limited, but it is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
 ハードコート層の形成では、上述の活性エネルギー線硬化性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、ハードコート層の積層位置に関係なく、いずれのハードコート層においても、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。 In the formation of the hard coat layer, additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described active energy ray-curable resin as necessary. In addition, regardless of the position of the hard coat layer, an appropriate resin or additive may be used in any of the hard coat layers in order to improve the film formability and prevent the generation of pinholes in the film.
 ハードコート層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にする観点から、1~10μmの範囲が好ましく、さらに好ましくは、2μm~7μmの範囲にすることが好ましい。 The thickness of the hard coat layer is preferably in the range of 1 to 10 μm, more preferably in the range of 2 to 7 μm, from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. It is preferable.
 (半導体ナノ粒子層)
 本発明のガスバリアー性フィルムは、半導体ナノ粒子層と組み合わせて、いわゆるQDシートと呼ばれる波長変換シート用部品として用いることができる。
(Semiconductor nanoparticle layer)
The gas barrier film of the present invention can be used as a component for a wavelength conversion sheet called a so-called QD sheet in combination with a semiconductor nanoparticle layer.
 半導体ナノ粒子層は、主には、領域Eの上面側に設けることができ、半導体ナノ粒子及び紫外線硬化型樹脂を含有して構成されている。 The semiconductor nanoparticle layer can be provided mainly on the upper surface side of the region E, and is configured to contain semiconductor nanoparticles and an ultraviolet curable resin.
 半導体ナノ粒子層は、2層以上設けられているものとしても良い。この場合には、2層以上の各半導体ナノ粒子層に、それぞれ異なる発光波長の半導体ナノ粒子が含有されていることが好ましい。 Two or more semiconductor nanoparticle layers may be provided. In this case, it is preferable that semiconductor nanoparticles having different emission wavelengths are contained in each of the two or more semiconductor nanoparticle layers.
 半導体ナノ粒子層には、半導体ナノ粒子が含有されている。すなわち、半導体ナノ粒子は、半導体ナノ粒子層形成用塗布液に含有されているものである。 The semiconductor nanoparticle layer contains semiconductor nanoparticles. That is, the semiconductor nanoparticles are contained in the coating solution for forming the semiconductor nanoparticle layer.
 半導体ナノ粒子とは、半導体材料の結晶で構成され、量子閉じ込め効果を有する所定の大きさの粒子をいい、その粒子径が数nm~数十nm程度の微粒子であり、下記に示す量子ドット効果が得られるものをいう。 A semiconductor nanoparticle is a particle of a predetermined size that is composed of a crystal of a semiconductor material and has a quantum confinement effect, and is a fine particle having a particle diameter of about several nanometers to several tens of nanometers. The quantum dot effect shown below Means what can be obtained.
 なお、半導体ナノ粒子に関連する事項については、例えば、特開2012-133158号公報、2012-169460号公報、2014-078381号公報、2015-099636号公報、2015-103728号公報、2015-127362号公報等に記載されている内容を参照することができる。 For matters relating to the semiconductor nanoparticles, for example, JP 2012-133158 A, 2012-169460, 2014-078381, 2015-099636, 2015-103728, 2015-127362. The contents described in the gazette and the like can be referred to.
 《電子デバイス》
 本発明のガスバリアー性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく適用できる。すなわち、本発明は、本発明のガスバリアー性フィルムと、電子デバイス本体と、を含む電子デバイスを提供することができる。
《Electronic device》
The gas barrier film of the present invention can be preferably applied to a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. That is, this invention can provide the electronic device containing the gas barrier film of this invention, and an electronic device main body.
 本発明のガスバリアー性フィルムを具備した電子デバイスに用いられる電子デバイス本体の例としては、例えば、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該電子デバイス本体は有機EL素子または太陽電池が好ましく、有機EL素子がより好ましい。 Examples of the electronic device body used in the electronic device provided with the gas barrier film of the present invention include, for example, an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and the sun. A battery (PV) etc. can be mentioned. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples. In the examples, “%” is used, but “mass%” is indicated unless otherwise specified.
 実施例1
 《下地層を積層した基材の作製》
 〔1.下地層形成用塗布液の調製〕
 (塗布液U1の調製)
 遷移金属M1の化合物として、酸化チタン粒子の水分散液である、多木化学社製のタイノックRA-6(2次粒子径:約35nm)を用いた。また、バインダーとしてイーテック社製のソープフリーアクリルエマルションAE986B(粒子径:約60nm、Tg:2℃)を用いた。また、界面活性剤として、エアプロダクツ社製のサーフィノール465を用いた。遷移金属M1の化合物/バインダー/界面活性剤を、固形分比率として75.0/24.8/0.2の質量比率で混合し、さらに純水で希釈して、固形分3.0質量%の塗布液U1を調製した。
Example 1
<< Preparation of base material with laminated base layer >>
[1. Preparation of coating solution for underlayer formation]
(Preparation of coating solution U1)
As the transition metal M1 compound, Tynoch RA-6 (secondary particle size: about 35 nm) manufactured by Taki Chemical Co., Ltd., which is an aqueous dispersion of titanium oxide particles, was used. Further, a soap-free acrylic emulsion AE986B (particle size: about 60 nm, Tg: 2 ° C.) manufactured by Etec Co., Ltd. was used as a binder. As a surfactant, Surfynol 465 manufactured by Air Products was used. The transition metal M1 compound / binder / surfactant was mixed at a mass ratio of 75.0 / 24.8 / 0.2 as a solid content ratio, and further diluted with pure water to obtain a solid content of 3.0 mass%. The coating liquid U1 was prepared.
 (塗布液U2の調製)
 遷移金属M1の化合物として、酸化ニオブ粒子の水分散液である、多木化学社製のバイラールNb-G6000(2次粒子径:約15nm)を用いた以外は、上記塗布液U1の調製と同様にして、固形分3.0質量%の塗布液U2を調製した。
(Preparation of coating solution U2)
Similar to the preparation of the coating liquid U1 except that as the transition metal M1 compound, Viral Nb-G6000 (secondary particle size: about 15 nm) manufactured by Taki Chemical Co., Ltd., which is an aqueous dispersion of niobium oxide particles, was used. Thus, a coating liquid U2 having a solid content of 3.0% by mass was prepared.
 (塗布液U3の調製)
 遷移金属M1の化合物として、酸化鉄粒子の水分散液である、多木化学社製のバイラールFe-C10(2次粒子径:約6nm)を用い、遷移金属M1の化合物/バインダー/界面活性剤を、固形分として72.0/26.8/0.2の質量比率とした以外は、上記塗布液U1の調製と同様にして、固形分3.0質量%の塗布液U3を調製した。
(Preparation of coating solution U3)
As the transition metal M1 compound, a bimetallic Fe-C10 (secondary particle size: about 6 nm) manufactured by Taki Chemical Co., Ltd., which is an aqueous dispersion of iron oxide particles, is used, and the transition metal M1 compound / binder / surfactant is used. The coating liquid U3 having a solid content of 3.0% by mass was prepared in the same manner as the coating liquid U1 except that the solid content was 72.0 / 26.8 / 0.2.
 (塗布液U4の調製)
 遷移金属M1の化合物として、酸化ジルコニウム粒子の水分散液である、多木化学社製のバイラールZr-C20(2次粒子径:約40nm)を用いた以外は、上記塗布液U1の調製と同様にして、固形分3.0質量%の塗布液U4を調製した。
(Preparation of coating solution U4)
The preparation of the coating liquid U1 is the same as that for the transition metal M1, except that an aqueous dispersion of zirconium oxide particles, Viral Zr-C20 (secondary particle size: about 40 nm) manufactured by Taki Chemical Co., Ltd., is used. Thus, a coating liquid U4 having a solid content of 3.0% by mass was prepared.
 (塗布液U5の調製)
 遷移金属M1の化合物として、酸化ジルコニウム粒子の水分散液である、日産化学社製のナノユースZR-30BS(粒子径:約63nm)を用いた以外は、上記塗布液U1の調製と同様にして、固形分3.0質量%の塗布液U5を調製した。
(Preparation of coating solution U5)
As the transition metal M1, a nano-use ZR-30BS (particle diameter: about 63 nm) manufactured by Nissan Chemical Co., which is an aqueous dispersion of zirconium oxide particles, was used in the same manner as in the preparation of the coating liquid U1, A coating liquid U5 having a solid content of 3.0% by mass was prepared.
 (塗布液U6の調製)
 非遷移金属である化合物として、酸化珪素粒子の水分散液である、日産化学社製のスノーテックス20L(粒子径:約50nm)を用いた以外は、上記塗布液U1の調製と同様にして、固形分3.0質量%の塗布液U6を調製した。
(Preparation of coating solution U6)
As a compound that is a non-transition metal, except that Snowtex 20L (particle diameter: about 50 nm) manufactured by Nissan Chemical Co., Ltd., which is an aqueous dispersion of silicon oxide particles, was used, the same as in the preparation of the coating solution U1, A coating liquid U6 having a solid content of 3.0% by mass was prepared.
 (塗布液U7の調製)
 遷移金属M1の化合物として、ジルコニウムテトライソプロポキシドとチタンテトライソプロポキシドとを用いた。ジルコニウムテトライソプロポキシド/チタンテトライソプロポキシドを固形分として90.0/10.0の質量比率で混合し、さらにイソプロピルアルコールで希釈して、固形分が5.0質量%の塗布液U7を調製した。
(Preparation of coating solution U7)
Zirconium tetraisopropoxide and titanium tetraisopropoxide were used as the transition metal M1 compound. Zirconium tetraisopropoxide / titanium tetraisopropoxide as a solid content was mixed at a mass ratio of 90.0 / 10.0, and further diluted with isopropyl alcohol to obtain a coating liquid U7 having a solid content of 5.0 mass%. Prepared.
 (塗布液U8の調製)
 遷移金属M1の化合物として、酸化ジルコニウム粒子のメチルエチルケトン分散液である、堺化学工業社製のSZR-K(粒子径:約5nm)を用いた。また、重合性化合物1(ペンタエリスリトールアクリレート、商品名:A-TMM-3、新中村化学社製)、重合性化合物2(イソシアヌル酸エチレンオキサイド変性アクリレート、商品名:A-9300、新中村化学社製)、重合開始剤(IRGACURE184、チバ・ジャパン株式会社製)、界面活性剤(PF-6320、OMNOVA SOLUTIONS社製)を用いた。酸化ジルコニウム粒子/重合性化合物1/重合性化合物2/重合開始剤/界面活性剤を、固形分として40.0/47.0/10.0/2.8/0.2の質量比率で混合し、さらにプロピレングリコールモノメチルエーテルで希釈して、固形分20.0質量%の塗布液U8を調製した。
(Preparation of coating solution U8)
As the transition metal M1 compound, SZR-K (particle diameter: about 5 nm) manufactured by Sakai Chemical Industry Co., Ltd., which is a methyl ethyl ketone dispersion of zirconium oxide particles, was used. Polymerizable compound 1 (pentaerythritol acrylate, trade name: A-TMM-3, manufactured by Shin-Nakamura Chemical Co., Ltd.), polymerizable compound 2 (isocyanuric acid ethylene oxide modified acrylate, trade name: A-9300, Shin-Nakamura Chemical Co., Ltd.) Manufactured), a polymerization initiator (IRGACURE184, manufactured by Ciba Japan Co., Ltd.), and a surfactant (PF-6320, manufactured by OMNOVA SOLUTIONS) were used. Zirconium oxide particles / polymerizable compound 1 / polymerizable compound 2 / polymerization initiator / surfactant are mixed at a mass ratio of 40.0 / 47.0 / 10.0 / 2.8 / 0.2 as a solid content. Further, this was diluted with propylene glycol monomethyl ether to prepare a coating liquid U8 having a solid content of 20.0% by mass.
 〔2.下地層付基材の作製〕
 (基材F0)
 基材(樹脂基材)として、両面に易接着加工された厚さ125μmのポリエステルフィルム(コスモシャイン(登録商標)A4300、東洋紡社製)を、下地層を有していない基材F0とした。
[2. Preparation of substrate with base layer]
(Substrate F0)
As a base material (resin base material), a 125 μm thick polyester film (Cosmo Shine (registered trademark) A4300, manufactured by Toyobo Co., Ltd.) that was easily bonded on both surfaces was used as a base material F0 that had no base layer.
 (下地層付基材F1の作製)
 前記調製した塗布液U1(遷移金属M1=Ti)を、上記基材F0の片面に、乾燥後の固形分量として、0.1g/mとなる条件で塗布し、次いで、100℃で2分間乾燥して、遷移金属M1としてTiを含有する下地層Aを有する基材F1を作製した。
(Preparation of base material with base layer F1)
The prepared coating solution U1 (transition metal M1 = Ti) is applied to one side of the base material F0 under the condition that the solid content after drying is 0.1 g / m 2, and then at 100 ° C. for 2 minutes. It dried and produced the base material F1 which has the base layer A containing Ti as a transition metal M1.
 (下地層付基材F2の作製)
 上記下地層付基材F1の作製において、塗布液U1(遷移金属M1=Ti)に代えて、塗布液U2(遷移金属M1=Nb)を用いた以外は同様にして、遷移金属M1としてNbを含有する下地層Aを有する基材F2を作製した。
(Preparation of base material with base layer F2)
In the preparation of the base material with base layer F1, Nb is used as the transition metal M1 in the same manner except that the coating liquid U2 (transition metal M1 = Nb) is used instead of the coating liquid U1 (transition metal M1 = Ti). The base material F2 which has the base layer A to contain was produced.
 (下地層付基材F3の作製)
 上記下地層付基材F1の作製において、塗布液U1(遷移金属M1=Ti)に代えて、塗布液U3(遷移金属M1=Fe)を用いた以外は同様にして、遷移金属M1としてFeを含有する下地層Aを有する基材F3を作製した。
(Preparation of base material with base layer F3)
In the production of the substrate F1 with the underlayer, Fe was used as the transition metal M1 in the same manner except that the coating liquid U3 (transition metal M1 = Fe) was used instead of the coating liquid U1 (transition metal M1 = Ti). The base material F3 which has the base layer A to contain was produced.
 (下地層付基材F4の作製)
 上記下地層付基材F1の作製において、塗布液U1(遷移金属M1=Ti)に代えて、塗布液U4(遷移金属M1=Zr)を用いた以外は同様にして、遷移金属M1としてZr(
2次粒子径:約40nm)を含有する下地層Aを有する基材F4を作製した。
(Preparation of base material with base layer F4)
In the production of the base material F1 with the underlayer, Zr (as transition metal M1) was similarly obtained except that the coating liquid U4 (transition metal M1 = Zr) was used instead of the coating liquid U1 (transition metal M1 = Ti).
The base material F4 which has the base layer A containing a secondary particle diameter (about 40 nm) was produced.
 (下地層付基材F5の作製)
 上記下地層付基材F1の作製において、塗布液U1(遷移金属M1=Ti)に代えて、塗布液U5(遷移金属M1=Zr)を用いた以外は同様にして、遷移金属M1としてZr(
粒子径:約63nm)を含有する下地層Aを有する基材F5を作製した。
(Preparation of base material with base layer F5)
In the production of the substrate F1 with the underlayer, Zr (as transition metal M1) was similarly obtained except that the coating liquid U5 (transition metal M1 = Zr) was used instead of the coating liquid U1 (transition metal M1 = Ti).
A base material F5 having an underlayer A containing a particle size of about 63 nm was produced.
 (下地層付基材F6の作製)
 上記下地層付基材F1の作製において、塗布液U1(遷移金属M1=Ti)に代えて、非遷移金属である酸化珪素粒子を含有する塗布液U6を用いた以外は同様にして、遷移金属M1を含有しない下地層Aを有する基材F6を作製した。
(Preparation of base material with base layer F6)
In the production of the substrate F1 with the underlayer, the transition metal was similarly obtained except that the coating liquid U6 containing silicon oxide particles as a non-transition metal was used instead of the coating liquid U1 (transition metal M1 = Ti). The base material F6 which has the base layer A which does not contain M1 was produced.
 (下地層付基材F7の作製)
 上記調製した塗布液U7(遷移金属=Zr+Ti)を、前記基材F0の一方の面側に、乾燥後の固形分量が0.2g/mとなる条件で塗布した後、100℃で10分間乾燥した。次いで、詳細は後述のガスバリアー層Bの形成で記載の真空紫外線照射装置を用い、ガスバリアー層の形成条件に対し、真空紫外線の照射条件を2.0J/cmに変更した以外は同様にて下地層Aを形成し、下地層付基材F7を作製した。
(Preparation of base material with base layer F7)
The coating solution U7 (transition metal = Zr + Ti) prepared above, on one surface side of the substrate F0, after solid content after drying was coated with a condition to be 0.2 g / m 2, 10 minutes at 100 ° C. Dried. Next, details were similarly obtained except that the vacuum ultraviolet irradiation apparatus described in the formation of the gas barrier layer B described later was used and the vacuum ultraviolet irradiation condition was changed to 2.0 J / cm 2 with respect to the gas barrier layer formation conditions. A base layer A was formed to prepare a base material F7 with a base layer.
 (下地層付基材F8の作製)
 上記調製した塗布液U8を、前記基材F0の一方の面側に、乾燥後の固形分量が2g/mとなる条件で塗布した後、100℃で5分間乾燥した。次いで、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行って下地層Aを形成し、下地層付基材F8を作製した。
(Preparation of base material with base layer F8)
The prepared coating solution U8 was applied on one surface side of the base material F0 under the condition that the solid content after drying was 2 g / m 2, and then dried at 100 ° C. for 5 minutes. Then, under air, performing curing under conditions of irradiation energy 0.5 J / cm 2 using a high-pressure mercury lamp to form the primary layer A, to prepare a base layer substrate with F8.
 《ガスバリアー性フィルムの作製》
 (ガスバリアー層形成用塗布液S1の調製)
 パーヒドロポリシラザン(PHPS)を20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、商品名:NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン、略称:TMDAH))を含むパーヒドロポリシラザンの20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらにジブチルエーテルで固形分濃度が5質量%となるように希釈して、ガスバリアー層形成用塗布液S1を調製した。なお、ガスバリアー層形成用塗布液S1の調製は、グローブボックス内で行った。
<< Production of gas barrier film >>
(Preparation of gas barrier layer forming coating solution S1)
A dibutyl ether solution containing 20% by mass of perhydropolysilazane (PHPS, manufactured by AZ Electronic Materials Co., Ltd., trade name: NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1, 6-diaminohexane (abbreviation: TMDAH)) and a 20% by mass dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) in a ratio of 4: 1 (mass ratio). Further, the coating solution S1 for gas barrier layer formation was prepared by diluting with dibutyl ether so that the solid concentration was 5% by mass. The gas barrier layer forming coating solution S1 was prepared in a glove box.
 (ガスバリアー性フィルム1-1の作製)
 上記作製した下地層Aを有していない基材F0上に、上記調製したガスバリアー層形成用塗布液S1を用いて、スピンコート法により、乾燥後の膜厚が150nmとなる条件で塗布し、80℃で2分間乾燥した。
(Preparation of gas barrier film 1-1)
On the base material F0 which does not have the prepared underlayer A, coating is performed using the prepared coating solution S1 for gas barrier layer under the condition that the film thickness after drying is 150 nm by spin coating. And dried at 80 ° C. for 2 minutes.
 次いで、乾燥したパーヒドロポリシラザン含有層に対して、波長172nmのXeエキシマランプを有する図5に記載の真空紫外線照射装置(10)を用い、真空紫外線の照射条件として、4.0J/cmの照射エネルギー量で真空紫外線照射処理を行った。この際、真空紫外線の照射雰囲気は窒素ガスで置換し、酸素濃度は0.1体積%とした。また、試料を設置するステージ温度を80℃とした。このようにして、パーヒドロポリシラザン含有層を改質して、ガスバリアー層Bを形成し、ガスバリアー性フィルム1-1を作製した。 Next, with respect to the dried perhydropolysilazane-containing layer, the vacuum ultraviolet irradiation device (10) shown in FIG. 5 having an Xe excimer lamp with a wavelength of 172 nm was used, and the irradiation condition of vacuum ultraviolet rays was 4.0 J / cm 2 . Vacuum ultraviolet irradiation treatment was performed with the amount of irradiation energy. At this time, the irradiation atmosphere of vacuum ultraviolet rays was replaced with nitrogen gas, and the oxygen concentration was set to 0.1% by volume. The stage temperature for installing the sample was set to 80 ° C. In this way, the perhydropolysilazane-containing layer was modified to form a gas barrier layer B, and a gas barrier film 1-1 was produced.
 図5に示す真空紫外線照射装置(10)において、11は装置チャンバーであり、図示しないガス供給口から内部に窒素と酸素とを適量供給し、図示しないガス排出口から排気することで、チャンバー内部から実質的に水蒸気を除去し、酸素濃度を所定の濃度に維持することができる。12は172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプ(エキシマランプ光強度:130mW/cm)、13は外部電極を兼ねるエキシマランプのホルダーである。14は試料ステージである。試料ステージ14は、図示しない移動手段により装置チャンバー11内を水平に所定の速度で往復移動することができる。また、試料ステージ14は図示しない加熱手段により、所定の温度に維持することができる。15はポリシラザン化合物塗布層が形成された試料である。試料ステージが水平移動する際、試料の塗布層表面と、エキシマランプ管面との最短距離が3mmとなるように試料ステージの高さが調整されている。16は遮光板であり、Xeエキシマランプ2のエージング中に試料の塗布層に真空紫外線が照射されないようにしている。 In the vacuum ultraviolet irradiation apparatus (10) shown in FIG. 5, reference numeral 11 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) and exhausts the gas from a gas discharge port (not shown). It is possible to substantially remove water vapor from the water and maintain the oxygen concentration at a predetermined concentration. Reference numeral 12 denotes an Xe excimer lamp (excimer lamp light intensity: 130 mW / cm 2 ) having a double tube structure that irradiates 172 nm vacuum ultraviolet rays, and reference numeral 13 denotes an excimer lamp holder that also serves as an external electrode. Reference numeral 14 denotes a sample stage. The sample stage 14 can be reciprocated horizontally at a predetermined speed in the apparatus chamber 11 by a moving means (not shown). The sample stage 14 can be maintained at a predetermined temperature by a heating means (not shown). Reference numeral 15 denotes a sample on which a polysilazane compound coating layer is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm. Reference numeral 16 denotes a light shielding plate which prevents the application layer of the sample from being irradiated with vacuum ultraviolet rays during aging of the Xe excimer lamp 2.
 真空紫外線照射工程で試料塗布層表面に照射されるエネルギーは、浜松ホトニクス社製の紫外線積算光量計(C8026/H8025 UV POWER METER)を用い、172nmのセンサーヘッドを用いて測定した。測定に際しては、Xeエキシマランプ管面とセンサーヘッドの測定面との最短距離が、3mmとなるようにセンサーヘッドを試料ステージ(14)中央に設置し、かつ、装置チャンバー(11)内の雰囲気が、真空紫外線照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージ(14)を0.5m/minの速度で移動させて測定を行った。測定に先立ち、Xeエキシマランプ(12)の照度を安定させるため、Xeエキシマランプ点灯後に10分間のエージング時間を設け、その後、試料ステージ(14)を移動させて測定を開始した。 The energy applied to the surface of the sample coating layer in the vacuum ultraviolet irradiation process was measured using a 172 nm sensor head using a UV integrating photometer (C8026 / H8025 UV POWER METER) manufactured by Hamamatsu Photonics. In the measurement, the sensor head is placed in the center of the sample stage (14) so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber (11) is Nitrogen and oxygen were supplied so as to obtain the same oxygen concentration as in the vacuum ultraviolet irradiation step, and the sample stage (14) was moved at a speed of 0.5 m / min, and measurement was performed. Prior to the measurement, in order to stabilize the illuminance of the Xe excimer lamp (12), an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the measurement was started by moving the sample stage (14).
 この測定で得られた照射エネルギーをもとに、試料ステージ(14)の移動速度を調整することで、4.0J/cmの照射エネルギー量となるように調整した。尚、真空紫外線照射は、10分間のエージング後に行った。 Based on the irradiation energy obtained by this measurement, the moving speed of the sample stage (14) was adjusted to adjust the irradiation energy amount to 4.0 J / cm 2 . The vacuum ultraviolet irradiation was performed after aging for 10 minutes.
 (ガスバリアー性フィルム1-2~1-9の作製)
 上記ガスバリアー性フィルム1-1の作製において、下地層Aを有していない基材F0に代えて、上記作製した下地層Aを有する基材F1~F8を用いた以外は同様にして、ガスバリアー性フィルム1-2~1-9を作製した。
(Production of gas barrier films 1-2 to 1-9)
In the production of the gas barrier film 1-1, a gas was produced in the same manner except that the substrates F1 to F8 having the prepared underlayer A were used instead of the substrate F0 not having the underlayer A. Barrier films 1-2 to 1-9 were produced.
 《ガスバリアー性フィルムの評価》
 上記作製した各ガスバリアー性フィルムについて、下記の各測定及び評価を行った。
<Evaluation of gas barrier film>
About each produced said gas-barrier film, each following measurement and evaluation were performed.
 〔下地層の表面凹凸の測定〕
 上記作製した各試料について、断面TEM画像を撮影し、下地層Aの厚さ方向における高低差を計測した。断面TEM画像は、下地層Aとガスバリアー層Bとの界面の長さとして1.0μmの範囲内で測定した。1試料について、任意の場所で5点の上記観察用画像を取り込み、各画像について上記高低差の最大値を計測し、5点の画像の平均値を求めた。なお、表1に記載の表面凹凸が「0」とは、実質的に表面における凹凸が測定できなかったことを示す。
[Measurement of surface irregularities of the underlayer]
About each produced said sample, the cross-sectional TEM image was image | photographed and the height difference in the thickness direction of the base layer A was measured. The cross-sectional TEM image was measured within the range of 1.0 μm as the length of the interface between the base layer A and the gas barrier layer B. For one sample, five images for observation were taken at an arbitrary location, the maximum value of the height difference was measured for each image, and the average value of the five images was obtained. In addition, when the surface unevenness | corrugation of Table 1 is "0", it shows that the unevenness | corrugation in the surface could not be measured substantially.
 ただし、上記計測において、基材フィルムのうねりに起因するような、周期が200nmを超えるなだらかな凹凸の変化は除いた。 However, in the above measurement, changes in gentle irregularities with a period exceeding 200 nm, which were caused by waviness of the base film, were excluded.
 〔領域Dの有無と厚さの測定〕
 XPS分析により、ガスバリアー性フィルムの表面側により厚さ方向の組成分布プロファイルを測定した。なお、XPS分析条件は以下の通りである。なお、分析に用いた試料は、試料作成後、20℃・50%RHの環境に保管した試料である。
[Measurement of presence and thickness of region D]
The composition distribution profile in the thickness direction was measured on the surface side of the gas barrier film by XPS analysis. The XPS analysis conditions are as follows. The sample used for the analysis is a sample stored in an environment of 20 ° C. and 50% RH after the sample is prepared.
 (XPS分析条件)
 ・装置:アルバックファイ社製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを得た。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)。
(XPS analysis conditions)
・ Device: QUANTERASXM manufactured by ULVAC-PHI
・ X-ray source: Monochromatic Al-Kα
・ Sputtering ion: Ar (2 keV)
Depth profile: Measurement was repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data every 1 nm is obtained in the depth direction).
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバックファイ社製のMultiPakを用いた。なお、分析した元素は、Si、M1、O、N、Cである。 Quantification: The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. For data processing, MultiPak manufactured by ULVAC-PHI was used. The analyzed elements are Si, M1, O, N, and C.
 得られたデータから、下地層Aとガスバリアー層Bとの界面領域で、遷移金属M1とSiとが共存し、かつ、遷移金属M1/Siの原子数比率の値が、0.11~9.0の範囲内にある領域を「領域D」と定義し、領域Dの有無とその厚さ(nm)を測定した。 From the obtained data, the transition metal M1 and Si coexist in the interface region between the base layer A and the gas barrier layer B, and the atomic ratio value of the transition metal M1 / Si is 0.11 to 9 A region in the range of 0.0 was defined as “region D”, and the presence or absence of region D and its thickness (nm) were measured.
 〔水蒸気バリアー性の評価〕
 MOCON社製の水蒸気透過率測定装置 PERMATRANを用い、38℃・100%RHの環境下で測定した。なお、測定限界である0.005g/m・day未満の測定結果となった場合には、表1には「測定限界未満」と記載した。
[Evaluation of water vapor barrier properties]
Measurement was performed in an environment of 38 ° C. and 100% RH using a water vapor permeability measuring device PERMATRAN manufactured by MOCON. In addition, when it became a measurement result less than 0.005 g / m < 2 > * day which is a measurement limit, it described as "less than a measurement limit" in Table 1.
 〔接着性の評価〕
 (条件1)
 各ガスバリアー性フィルムについて、作製直後から20℃・50%RH環境に保管した試料を用意した。
[Evaluation of adhesion]
(Condition 1)
About each gas barrier film, the sample stored in 20 degreeC and 50% RH environment immediately after preparation was prepared.
 次いで、各試料について、JIS K 5400に準じた100マスのクロスカット試験を行った。試験後の各試料について光学顕微鏡で観察し、100マスのうち、実質的に剥離や欠けの生じていないマス数を計測した(最大数は、100である。)。 Next, a 100-mass cross-cut test according to JIS K 5400 was performed on each sample. Each sample after the test was observed with an optical microscope, and the number of cells in which no peeling or chipping occurred substantially was counted out of 100 cells (the maximum number was 100).
 (条件2)
 各ガスバリアー性フィルムについて、試料作製後に85℃・85%RH環境下で100時間保管し、次いで、20℃・50%RH環境に保管した試料を用意した。
(Condition 2)
About each gas-barrier film, the sample stored in 85 degreeC and 85% RH environment for 100 hours after sample preparation, and then the sample stored in 20 degreeC and 50% RH environment was prepared.
 各試料について、JIS K 5400に準じた100マスのクロスカット試験を行った。試験後の試料を光学顕微鏡で観察し、100マスのうち、実質的に剥離や欠けの生じていないマス数を計測した。 Each sample was subjected to a 100-mass cross-cut test according to JIS K 5400. The sample after the test was observed with an optical microscope, and the number of cells in which no peeling or chipping occurred substantially was counted out of 100 cells.
 以上により得られた結果を、表1に示す。 Table 1 shows the results obtained as described above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に記載の結果より明らかなように、本発明のガスバリアー性フィルムは、比較例に対し、水蒸気バリアー性(ガスバリアー性)に優れ、かつ高温高湿環境下に保存しても、接着性の劣化がなく、良好な接着性を維持していることが分かる。 As is clear from the results shown in Table 1, the gas barrier film of the present invention is superior to the comparative example in water vapor barrier properties (gas barrier properties), and can be bonded even when stored in a high temperature and high humidity environment. It can be seen that the adhesiveness is not deteriorated and good adhesiveness is maintained.
 実施例2
 《ガスバリアー層形成用塗布液の調製》
 (ガスバリアー層形成用塗布液S2の調製)
 アルミニウムエチルアセトアセテート・ジイソプロピレートをジブチルエーテルで固形分濃度が5質量%となるように希釈したアルミニウム化合物含有溶液を調製した。
Example 2
<< Preparation of coating solution for gas barrier layer formation >>
(Preparation of gas barrier layer forming coating solution S2)
An aluminum compound-containing solution was prepared by diluting aluminum ethyl acetoacetate diisopropylate with dibutyl ether to a solid content concentration of 5% by mass.
 次いで、実施例1で記載したガスバリアー層形成用塗布液S1と、上記調製したアルミニウム化合物含有溶液とを、Al/Siの原子数比の値が0.01となるように混合し、撹拌しながら80℃まで昇温し、80℃で2時間保持した後、室温まで徐冷した。このようにして、ガスバリアー層形成用塗布液S2を調製した。 Next, the gas barrier layer forming coating solution S1 described in Example 1 and the prepared aluminum compound-containing solution were mixed so that the value of the atomic ratio of Al / Si was 0.01 and stirred. The temperature was raised to 80 ° C., kept at 80 ° C. for 2 hours, and then gradually cooled to room temperature. In this way, a coating liquid S2 for forming a gas barrier layer was prepared.
 (ガスバリアー層形成用塗布液S3の調製)
 ホウ酸トリイソプロピルをジブチルエーテルで固形分濃度が5質量%となるように希釈したホウ素化合物含有溶液を調製した。
(Preparation of gas barrier layer forming coating solution S3)
A boron compound-containing solution was prepared by diluting triisopropyl borate with dibutyl ether so that the solid concentration was 5% by mass.
 次いで、実施例1で記載したガスバリアー層形成用塗布液S1と、上記調製したホウ素化合物含有溶液とを、B/Siの原子数比の値が0.01となるように混合し、撹拌しながら80℃まで昇温し、80℃で2時間保持した後、室温まで徐冷した。このようにして、ガスバリアー層形成用塗布液S3を調製した。 Next, the gas barrier layer-forming coating solution S1 described in Example 1 and the boron compound-containing solution prepared above were mixed so that the value of the B / Si atomic number ratio was 0.01 and stirred. The temperature was raised to 80 ° C., kept at 80 ° C. for 2 hours, and then gradually cooled to room temperature. In this way, a coating liquid S3 for forming a gas barrier layer was prepared.
 《ガスバリアー性フィルムの作製》
 (領域Eの形成条件)
 はじめに、下記に記載のガスバリアー性フィルム2-2~2-16において、領域Eの形成に用いる成膜条件について、一括して記載する。
<< Production of gas barrier film >>
(Formation conditions for region E)
First, film formation conditions used for forming the region E in the gas barrier films 2-2 to 2-16 described below will be described collectively.
 (スパッタ成膜方法及び成膜条件)
 領域Eの形成には、気相法・スパッタ装置としては、マグネトロンスパッタ装置(キャノンアネルバ社製:型式EB1100)を用い、ガスバリアー層B上に領域Eを成膜した。
(Sputter deposition method and deposition conditions)
For the formation of the region E, a region E was formed on the gas barrier layer B using a magnetron sputtering device (Canon Anelva Co., Ltd. model: EB1100) as a vapor phase method / sputtering device.
 ターゲットとしては、下記の各ターゲットを用い、プロセスガスにはArとOとを用いて、マグネトロンスパッタ装置により、成膜を行った。スパッタ電源パワーは5.0W/cmとし、成膜圧力は0.4Paとした。また、各成膜条件において、酸素分圧を調整することにより組成調整行った。なお、事前にガラス基板を用いた成膜により、酸素分圧を調整することにより組成の条件出しを行い、表層から深さ10nm近傍の組成が目標とする組成となる条件を見出し、その条件を適用した。また、膜厚に関しては、100~300nmの範囲で成膜時間に対する膜厚変化のデータを取り、単位時間当たりに成膜される膜厚を算出した後、設定膜厚となるように成膜時間を設定した。 As targets, the following targets were used, and Ar and O 2 were used as process gases, and film formation was performed using a magnetron sputtering apparatus. The sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa. In each film formation condition, the composition was adjusted by adjusting the oxygen partial pressure. It should be noted that the conditions of the composition are determined by adjusting the oxygen partial pressure by film formation using a glass substrate in advance, finding the condition that the composition near the depth of 10 nm from the surface layer becomes the target composition, and the condition is Applied. Regarding the film thickness, film thickness change data with respect to the film formation time is obtained in the range of 100 to 300 nm, the film formation time per unit time is calculated, and then the film formation time is set to the set film thickness. It was set.
 〈ターゲット〉
 T1:特開2012-7218号公報の実施例の比較例1に記載の方法により、遷移金属M2を含有しないシリコンターゲットを作製した。なお、ターゲット形状は板状とした。
<target>
T1: A silicon target containing no transition metal M2 was produced by the method described in Comparative Example 1 of the examples of JP2012-7218A. The target shape was a plate shape.
 T2:市販の酸素欠損型酸化ニオブターゲットを用いた。組成はNb1229であった。 T2: A commercially available oxygen-deficient niobium oxide target was used. The composition was Nb 12 O 29 .
 T3:市販のTaターゲットを用いた。 T3: A commercially available Ta target was used.
 〈成膜条件〉
 T1-1:ターゲットとしてT1を用い、上述のXPS分析において、層の組成がSiOとなるように酸素分圧を調整した。また、膜厚が15nmとなるように成膜時間を設定した。
<Film formation conditions>
T1-1: T1 was used as a target, and in the above XPS analysis, the oxygen partial pressure was adjusted so that the composition of the layer was SiO 2 . The film formation time was set so that the film thickness was 15 nm.
 T2-1:ターゲットとしてT2を用い、酸素分圧を12%とした。また、膜厚が15nmとなるように成膜時間を設定した。 T2-1: T2 was used as a target, and the oxygen partial pressure was 12%. The film formation time was set so that the film thickness was 15 nm.
 T2-2:膜厚が10nmとなるように成膜時間を設定した以外は、T2-1と同様にして行った。 T2-2: Performed in the same manner as T2-1 except that the film formation time was set so that the film thickness was 10 nm.
 T2-3:膜厚が5nmとなるように成膜時間を設定した以外は、T2-1と同様にして行った。 T2-3: Performed in the same manner as T2-1 except that the film formation time was set so that the film thickness was 5 nm.
 T3-1:ターゲットとしてT3を用い、酸素分圧を18%とした。また、膜厚が15nmとなるように成膜時間を設定した。 T3-1: T3 was used as a target, and the oxygen partial pressure was 18%. The film formation time was set so that the film thickness was 15 nm.
 (ガスバリアー性フィルム2-1の作製)
 実施例1に記載のガスバリアー性フィルム1-1の作製において、ガスバリアー層の乾燥後の膜厚を80nmに変更し、かつ真空紫外線の照射エネルギー条件を、0.5J/cmに変更した以外は同様にして、スパッタ成膜を行わず、領域Eを形成していないガスバリアー性フィルム2-1を作製した。
(Preparation of gas barrier film 2-1)
In the production of the gas barrier film 1-1 described in Example 1, the thickness of the gas barrier layer after drying was changed to 80 nm, and the irradiation energy condition of vacuum ultraviolet rays was changed to 0.5 J / cm 2 . In the same manner as described above, a gas barrier film 2-1 in which the sputter film formation was not performed and the region E was not formed was produced.
 (ガスバリアー性フィルム2-2の作製)
 上記作製したガスバリアー性フィルム2-1のガスバリアー層上に、上記スパッタによる成膜条件T1-1で、遷移金属M2を含有しない領域Eを形成した。ここで、ガスバリアー層Bを形成した後、スパッタ成膜を行うまでの間、ガスバリアー層Bまでを形成した試料は、20℃・50%RHの環境に保管した。
(Preparation of gas barrier film 2-2)
On the gas barrier layer of the gas barrier film 2-1 produced as described above, a region E not containing the transition metal M2 was formed under the film deposition condition T1-1 by sputtering. Here, after forming the gas barrier layer B and before performing sputter film formation, the sample formed up to the gas barrier layer B was stored in an environment of 20 ° C. and 50% RH.
 (ガスバリアー性フィルム2-3~2-16の作製)
 上記作製したガスバリアー性フィルム2-2の作製において、下地層付基材の種類、ガスバリアー層の形成条件、領域Eのスパッタによる成膜条件を、表2及び表3に記載の組み合わせに変更した以外は同様にして、ガスバリアー性フィルム2-3~2-16を作製した。
(Production of gas barrier film 2-3 to 2-16)
In the production of the gas barrier film 2-2 produced above, the types of base layer-attached base materials, gas barrier layer formation conditions, and film formation conditions by sputtering in region E were changed to the combinations shown in Table 2 and Table 3. Except for the above, gas barrier films 2-3 to 2-16 were produced in the same manner.
 《ガスバリアー性フィルムの評価》
 上記作製した各ガスバリアー性フィルムについて、下記の各測定及び評価を行った。
<Evaluation of gas barrier film>
About each produced said gas-barrier film, each following measurement and evaluation were performed.
 〔領域Dの有無及び厚さ、領域Eの有無及び厚さの測定〕
 実施例1に記載の方法と同様にして、XPS分析により、ガスバリアー性フィルムの表面側により厚さ方向の組成分布プロファイルを測定した。
[Measurement of presence / absence and thickness of region D, presence / absence of region E and thickness]
In the same manner as in the method described in Example 1, the composition distribution profile in the thickness direction was measured on the surface side of the gas barrier film by XPS analysis.
 得られたデータから、各領域の元素組成比を計算し、領域Dの有無、領域Dの厚さ、及び、領域Eの有無、領域Eの厚さを求めた。 The element composition ratio of each region was calculated from the obtained data, and the presence / absence of region D, the thickness of region D, the presence / absence of region E, and the thickness of region E were determined.
 〔領域Eの組成をSiM2で表した際の、(2y+3z)/(a+bx)の値の計算〕
 上記XPS分析データを用いて計算した。また、(2y+3z)/(a+bx)が最少となる測定点における、x、y、z、a、bの値を求めた。
[When representing the composition of the region E in SiM2 x O y N z, ( 2y + 3z) / (a + bx) value calculation]
Calculation was performed using the XPS analysis data. Further, the values of x, y, z, a, and b at the measurement point where (2y + 3z) / (a + bx) is minimized were obtained.
 ガスバリアー層形成用塗布液S2にはアルミニウム(Al)が、ガスバリアー層形成用塗布液S3にはホウ素(B)が添加されているが、領域Eにおいては、AlやBは実質的に検出されなかった。 Aluminum (Al) is added to the gas barrier layer forming coating solution S2 and boron (B) is added to the gas barrier layer forming coating solution S3, but in region E, Al and B are substantially detected. Was not.
 〔水蒸気バリアー性の評価〕
 (条件A)
 各ガスバリアー性フィルムについて、作製直後から20℃・50%RH環境に保管した試料を用意した。
[Evaluation of water vapor barrier properties]
(Condition A)
About each gas barrier film, the sample stored in 20 degreeC and 50% RH environment immediately after preparation was prepared.
 このガスバリアー性フィルムについて、MOCON社製の水蒸気透過率測定装置:PERMATRANを用い、38℃・100%RHの条件で測定した。測定限界である0.005g/m・day未満の測定結果が得られた場合には、表3には「測定限界未満」と記載した。 The gas barrier film was measured under the conditions of 38 ° C. and 100% RH using a water vapor permeability measuring device manufactured by MOCON: PERMATRAN. When a measurement result less than 0.005 g / m 2 · day, which is the measurement limit, was obtained, Table 3 describes “less than measurement limit”.
 (条件B)
 各ガスバリアー性フィルム試料について、作製後に85℃・85%RH環境に24時間保管し、次いで、20℃50%RH環境に保管した試料を用意した。
(Condition B)
Each gas barrier film sample was stored in an 85 ° C./85% RH environment for 24 hours after preparation, and then stored in a 20 ° C./50% RH environment.
 このガスバリアー性フィルムについて、MOCON社製の水蒸気透過率測定装置:PERMATRANを用い、38℃・100%RHの条件で測定した。測定限界である0.005g/m・day未満の測定結果が得られた場合には、表3には「測定限界未満」と記載した。 The gas barrier film was measured under the conditions of 38 ° C. and 100% RH using a water vapor permeability measuring device manufactured by MOCON: PERMATRAN. When a measurement result less than 0.005 g / m 2 · day, which is the measurement limit, was obtained, Table 3 describes “less than measurement limit”.
 〔接着性の評価〕
 実施例1に記載の接着性の評価と同様にして、条件1及び条件2で接着性を評価した。
[Evaluation of adhesion]
In the same manner as the evaluation of adhesiveness described in Example 1, the adhesiveness was evaluated under conditions 1 and 2.
 表2及び表3に、各ガスバリアー性フォルムの構成及び各評価結果を示す。 Tables 2 and 3 show the configuration of each gas barrier form and each evaluation result.
 なお、表2には、ガスバリアー性フィルム2-1~2-16の下地層付基材、ガスバリアー層及び領域Dの構成を示し、表3には、ガスバリアー性フィルム2-1~2-16の領域Eにおける特性値と、各評価結果を記載してある。 Table 2 shows the structures of the base material with the base layer, the gas barrier layer, and the region D of the gas barrier films 2-1 to 2-16, and Table 3 shows the gas barrier films 2-1 to 2-2. The characteristic value in the region E of −16 and each evaluation result are described.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2及び表3に記載の結果より明らかなように、ガスバリアー層上に更に領域Eを有する本発明のガスバリアー性フィルムは、比較例に対し、高温高湿環境下に保存しても、水蒸気バリアー性(ガスバリアー性)の劣化が少なく、かつ高温高湿環境下に保存しても、接着性の劣化がなく、良好な接着性を維持していることが分かる。 As is clear from the results shown in Tables 2 and 3, the gas barrier film of the present invention further having the region E on the gas barrier layer can be stored in a high-temperature and high-humidity environment with respect to the comparative example. It can be seen that there is little deterioration in water vapor barrier properties (gas barrier properties), and even when stored in a high-temperature and high-humidity environment, there is no deterioration in adhesiveness, and good adhesiveness is maintained.
 本発明によれば、高温高湿環境下で保存した後でも優れたガスバリアー性を維持し、かつ基材との接着性に優れたガスバリアー性フィルムを提供することができ、当該ガスバリアー性フィルムは、空気中の化学成分(例えば、酸素、水、窒素酸化物、硫黄酸化物、オゾン等。)により、性能劣化等の影響を受け易い、例えば、有機EL素子、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等の電子デバイスに適用することができる。 According to the present invention, it is possible to provide a gas barrier film that maintains excellent gas barrier properties even after being stored in a high-temperature and high-humidity environment, and has excellent adhesion to a base material. Films are susceptible to performance degradation due to chemical components in the air (for example, oxygen, water, nitrogen oxides, sulfur oxides, ozone, etc.). For example, organic EL elements, liquid crystal display elements (LCD) It can be applied to electronic devices such as thin film transistors, touch panels, electronic paper, and solar cells (PV).
 1 ガスバリアー性フィルム
 2 基材
 3 下地層A
 4 ガスバリアー層B
 10 真空紫外線照射装置
 11 装置チャンバー
 12 Xeエキシマランプ
 13 エキシマランプのホルダー
 14 試料ステージ
 15 ポリシラザン化合物塗布層形成試料
 16 遮光板
 C 積層体
 D 領域D
 E 領域E
 M1 遷移金属M1
1 Gas barrier film 2 Base material 3 Underlayer A
4 Gas barrier layer B
DESCRIPTION OF SYMBOLS 10 Vacuum ultraviolet irradiation apparatus 11 Apparatus chamber 12 Xe excimer lamp 13 Excimer lamp holder 14 Sample stage 15 Polysilazane compound coating layer forming sample 16 Light shielding plate C Laminate D Region D
E region E
M1 transition metal M1

Claims (8)

  1.  基材上に、遷移金属M1を含む化合物を含有する下地層Aと、当該下地層Aに接して形成され、少なくともケイ素(Si)と窒素(N)とを含有するガスバリアー層Bとをこの順で積層した積層体Cを有するガスバリアー性フィルムであって、
     前記積層体Cの厚さ方向の組成分布をXPS法により分析したとき、前記下地層Aと前記ガスバリアー層Bとの界面領域に、遷移金属M1とSiとが共存し、遷移金属M1/Siの原子比率の値が、0.11~9.0の範囲内にある領域Dを有し、かつ当該領域Dの厚さが5nm以上であることを特徴とするガスバリアー性フィルム。
    An underlayer A containing a compound containing a transition metal M1 and a gas barrier layer B formed in contact with the underlayer A and containing at least silicon (Si) and nitrogen (N) are formed on the substrate. A gas barrier film having a laminate C laminated in order,
    When the composition distribution in the thickness direction of the laminate C is analyzed by the XPS method, the transition metal M1 and Si coexist in the interface region between the base layer A and the gas barrier layer B, and the transition metal M1 / Si. A gas barrier film comprising a region D having an atomic ratio value of 0.11 to 9.0 and a thickness of the region D of 5 nm or more.
  2.  前記遷移金属M1を含む化合物が、球形粒子であることを特徴とする請求項1に記載のガスバリアー性フィルム。 The gas barrier film according to claim 1, wherein the compound containing the transition metal M1 is a spherical particle.
  3.  前記遷移金属M1が、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)及び鉄(Fe)から選ばれる少なくとも一種であることを特徴とする請求項1又は請求項2に記載のガスバリアー性フィルム。 The gas barrier property according to claim 1 or 2, wherein the transition metal M1 is at least one selected from niobium (Nb), zirconium (Zr), titanium (Ti), and iron (Fe). the film.
  4.  前記ガスバリアー層Bが、ポリシラザンを含有する塗布液を塗布し、乾燥して形成された層であることを特徴とする請求項1から請求項3までのいずれか一項に記載のガスバリアー性フィルム。 The gas barrier property according to any one of claims 1 to 3, wherein the gas barrier layer B is a layer formed by applying and drying a coating liquid containing polysilazane. the film.
  5.  前記ガスバリアー層Bの形成に用いるポリシラザンを含有する塗布液が、更にアルミニウム化合物又はホウ素化合物を含有することを特徴とする請求項4に記載のガスバリアー性フィルム。 The gas barrier film according to claim 4, wherein the coating liquid containing polysilazane used for forming the gas barrier layer B further contains an aluminum compound or a boron compound.
  6.  前記積層体Cが、厚さ方向の組成分布をXPS法により分析した際に、前記領域Dとは異なる領域に、遷移金属M2とSiとが共存し、かつ、遷移金属M2/Siの原子比率の比が、0.11~9.0の範囲内であり、かつ前記領域Dに接していない領域Eを有することを特徴とする請求項1から請求項5のいずれか一項に記載のガスバリアー性フィルム。 When the laminate C is analyzed by XPS method for the composition distribution in the thickness direction, the transition metal M2 and Si coexist in a region different from the region D, and the atomic ratio of the transition metal M2 / Si The gas according to any one of claims 1 to 5, wherein the gas has a region E that is within a range of 0.11 to 9.0 and is not in contact with the region D. Barrier film.
  7.  前記領域Eにおける膜組成をSiM2で表したとき、下式(1)で示す条件を満たすことを特徴とする請求項6に記載のガスバリアー性フィルム。
     式(1)
       0<(2y+3z)/(a+bx)<1.0
    〔式中、aはSiの価数である。bは遷移金属M2の最大価数である。〕
    The gas barrier film according to claim 6, wherein when the film composition in the region E is expressed by SiM 2 x O y N z , the condition represented by the following formula (1) is satisfied.
    Formula (1)
    0 <(2y + 3z) / (a + bx) <1.0
    [Wherein, a is the valence of Si. b is the maximum valence of the transition metal M2. ]
  8.  前記遷移金属M2が、ニオブ(Nb)又はタンタル(Ta)であることを特徴とする請求項6又は請求項7に記載のガスバリアー性フィルム。 The gas barrier film according to claim 6 or 7, wherein the transition metal M2 is niobium (Nb) or tantalum (Ta).
PCT/JP2016/068206 2015-07-23 2016-06-20 Gas barrier film WO2017013980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-145468 2015-07-23
JP2015145468A JP2018140493A (en) 2015-07-23 2015-07-23 Gas barrier film

Publications (1)

Publication Number Publication Date
WO2017013980A1 true WO2017013980A1 (en) 2017-01-26

Family

ID=57833869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068206 WO2017013980A1 (en) 2015-07-23 2016-06-20 Gas barrier film

Country Status (2)

Country Link
JP (1) JP2018140493A (en)
WO (1) WO2017013980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207508A1 (en) * 2017-05-12 2018-11-15 富士フイルム株式会社 Gas barrier film and method for producing gas barrier film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161809A1 (en) * 2012-04-26 2013-10-31 コニカミノルタ株式会社 Gas barrier film, and electronic device employing same
WO2014109356A1 (en) * 2013-01-11 2014-07-17 コニカミノルタ株式会社 Gas-barrier film
JP2014151571A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Gas barrier film, production method of the same and electronic device including the gas barrier film
JP2014226894A (en) * 2013-05-27 2014-12-08 コニカミノルタ株式会社 Gas barrier film and organic electroluminescent element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161809A1 (en) * 2012-04-26 2013-10-31 コニカミノルタ株式会社 Gas barrier film, and electronic device employing same
WO2014109356A1 (en) * 2013-01-11 2014-07-17 コニカミノルタ株式会社 Gas-barrier film
JP2014151571A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Gas barrier film, production method of the same and electronic device including the gas barrier film
JP2014226894A (en) * 2013-05-27 2014-12-08 コニカミノルタ株式会社 Gas barrier film and organic electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207508A1 (en) * 2017-05-12 2018-11-15 富士フイルム株式会社 Gas barrier film and method for producing gas barrier film

Also Published As

Publication number Publication date
JP2018140493A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
CN108503870B (en) Gas barrier film
JP6465019B2 (en) Gas barrier film
JP2017095758A (en) Method for producing gas barrier film
CN107531016B (en) Strip gas barrier film and its manufacturing method and short strip shape gas barrier film and its manufacturing method
WO2017013980A1 (en) Gas barrier film
WO2017104332A1 (en) Gas barrier film
WO2017090592A1 (en) Gas barrier film, and electronic device provided with same
JP6720981B2 (en) Gas barrier film and method for producing the same
TWI623433B (en) Gas barrier film and method for producing gas barrier film
JP6737279B2 (en) Electronic device and method for sealing electronic device
JP6627521B2 (en) Functional film and method for producing quantum dot (QD) -containing laminated member containing the same
WO2017110463A1 (en) Gas barrier film and method for manufacturing same
WO2017090498A1 (en) Method for producing gas barrier film
WO2016136841A1 (en) Gas barrier film
JP2018012267A (en) Gas barrier film and production method of the same
TWI627063B (en) Gas barrier film and method of manufacturing same
WO2017010249A1 (en) Gas barrier film
WO2017090602A1 (en) Gas barrier film, and electronic device provided with same
WO2017090591A1 (en) Gas barrier film and electronic device
JPWO2016136841A6 (en) Gas barrier film
JP2017226876A (en) Production method of gas barrier film
JP2016193527A (en) Gas barrier film
WO2017090579A1 (en) Multilayer gas barrier film and electronic device
WO2018021021A1 (en) Gas barrier membrane, gas barrier film using same, electronic device using said gas barrier membrane or said gas barrier film, and production method for gas barrier membrane
WO2016136843A1 (en) Gas barrier film and electronic device using gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16827544

Country of ref document: EP

Kind code of ref document: A1