WO2013175910A1 - Gas barrier layered product, and production method for gas barrier layered product - Google Patents

Gas barrier layered product, and production method for gas barrier layered product Download PDF

Info

Publication number
WO2013175910A1
WO2013175910A1 PCT/JP2013/061569 JP2013061569W WO2013175910A1 WO 2013175910 A1 WO2013175910 A1 WO 2013175910A1 JP 2013061569 W JP2013061569 W JP 2013061569W WO 2013175910 A1 WO2013175910 A1 WO 2013175910A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
energy ray
group
layer
meth
Prior art date
Application number
PCT/JP2013/061569
Other languages
French (fr)
Japanese (ja)
Inventor
悠太 鈴木
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2013175910A1 publication Critical patent/WO2013175910A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a gas barrier laminate and a method for producing the gas barrier laminate, and more particularly, to a gas barrier laminate suitably used as a member for devices such as photoelectric conversion elements and organic electroluminescence elements, and a method for producing the gas barrier laminate. .
  • a polymer molded body such as a plastic film is inexpensive and excellent in workability, and thus has a desired function and is used in various fields.
  • a glass plate is used as a substrate for forming an electrode in order to realize a reduction in thickness, weight, and flexibility. Therefore, the use of transparent plastic films has been studied.
  • a plastic film as such a substrate for electrode formation, development of a film having high gas barrier property and solvent resistance equivalent to that of a glass substrate, and also scratch resistance is desired.
  • a gas barrier plastic film As such a gas barrier plastic film, there has been proposed a method for manufacturing a gas barrier film applied to an easily manufactured organic EL element or the like without using heat treatment or the like (for example, see Patent Document 1). More specifically, after forming a polysilazane film made of polysilazane on at least one surface of a plastic film, the polysilazane film is subjected to plasma treatment to form a gas barrier film, and a method for producing a gas barrier film It is.
  • a gas barrier plastic molded article having a cured product layer excellent in gas barrier properties, abrasion resistance, and adhesion to a substrate has been proposed (for example, see Patent Document 2). More specifically, it is a gas barrier plastic molded article having two or more cured product layers formed on at least one surface of a transparent plastic substrate, and is an inner layer in contact with the outermost layer among the two or more cured products layers. Is a cured product layer derived from the following coating composition (A), and the outermost layer is a gas barrier plastic molded article having a cured product layer derived from the following coating composition (B).
  • the transparent coating molded product derived from the coating composition containing an active energy ray hardening compound and polysilazane is proposed (for example, refer patent document 3). More specifically, it is a transparent coated molded article having a transparent synthetic resin substrate and a transparent cured product layer formed on at least a part of the surface of the transparent synthetic resin substrate, and the transparent cured product layer is active.
  • the gas barrier plastic molded article described in Patent Document 2 must form two or more cured product layers from a predetermined active energy ray-curable coating composition, resulting in a complicated structure, Despite the formation of a film or the use of an active energy ray-curable coating composition, there have been problems that the production time is long and the productivity is lowered. In addition, the plasma treatment for the cured product layer was not taken into consideration, and there was a problem that the gas barrier property was insufficient.
  • the transparent coating molded article described in Patent Document 3 uses polysilazane or an active energy ray curable compound
  • the gas barrier property is not basically taken into consideration, and the cured product is subjected to plasma treatment. As a result, there was a problem that the gas barrier property was insufficient.
  • an object of the present invention is to provide a gas barrier laminate excellent in gas barrier properties and an efficient method for producing such a gas barrier laminate.
  • a gas barrier laminate having a gas barrier layer on at least one surface of a substrate, wherein the gas barrier layer is derived from a gas barrier material comprising a silicon-containing polymer and an energy ray-curable component.
  • the gas barrier material is provided with an energy ray hardening treatment and a plasma ion implantation treatment.
  • the gas barrier laminate can solve the above-described problems and has an excellent gas barrier property. A gas barrier laminate having scratch resistance and solvent resistance can be obtained efficiently.
  • the energy ray curable component is an energy ray curable monomer and / or oligomer.
  • a laminate having excellent gas barrier properties, scratch resistance and solvent resistance can be obtained.
  • the silicon-containing polymer is preferably a polysilazane compound.
  • a polysilazane compound as the silicon-containing polymer, more excellent gas barrier properties can be obtained.
  • the water vapor transmission rate is preferably 0.1 g / (m 2 ⁇ day) or less.
  • the water vapor transmission rate of a laminated body is the said range, it can use suitably as members for electronic devices, such as a photoelectric conversion element and an organic electroluminescent element, for example.
  • the plasma ion implantation process generates plasma in an atmosphere containing a plasma generation gas and applies a negative high voltage pulse to the surface of the treatment layer.
  • Plasma ion implantation for implanting ions in plasma is preferable.
  • a gas barrier laminate having better gas barrier properties can be obtained.
  • the energy ray curable component is preferably a polyfunctional (meth) acrylate monomer having 3 or more functional groups.
  • a polyfunctional (meth) acrylate monomer having 3 or more functional groups it is possible to obtain a gas barrier laminate having high hardness after curing and further excellent scratch resistance.
  • the amount of the energy ray curable component is set to a value within the range of 1 to 500 parts by weight with respect to 100 parts by weight of the silicon-containing polymer.
  • Another aspect of the present invention is a method for producing a gas barrier laminate having a gas barrier layer on at least one surface of a substrate, which comprises the following steps (1) to (2): It is a manufacturing method of a laminated body.
  • a step of laminating a gas barrier material containing a silicon-containing polymer and an energy beam curable component on at least one surface of a substrate (2) An energy beam curing process and a plasma ion implantation process are performed on the gas barrier material.
  • the step of forming the gas barrier layer that is, by forming the gas barrier layer in this way, a gas barrier laminate excellent in gas barrier properties can be obtained efficiently.
  • step (2) the gas barrier material is subjected to energy beam curing treatment and then subjected to plasma ion implantation treatment to form a gas barrier layer. It is preferable. That is, by forming the gas barrier layer in this way, a gas barrier laminate having further excellent gas barrier properties can be efficiently obtained.
  • FIG. 1 (a) and 1 (b) are views for explaining a gas barrier laminate of the present invention.
  • the first embodiment is a gas barrier laminate having a gas barrier layer 10 on at least one surface of a substrate 12, wherein the gas barrier layer 10 includes a silicon-containing polymer and an energy ray-curable component.
  • the gas barrier laminate 50 is characterized in that the gas barrier material is subjected to an energy ray hardening process and a plasma ion implantation process.
  • the gas barrier laminate of the first embodiment will be specifically described with reference to the drawings as appropriate.
  • Base Material The type of the base material 12 is not particularly limited, and examples thereof include a plastic resin film and a glass substrate (including a ceramic substrate).
  • resin used for the plastic resin film polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyphenylene sulfide
  • Examples include arylate, acrylic resin, cycloolefin polymer, and aromatic polymer.
  • the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
  • cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
  • the thickness of the substrate may be determined according to the purpose of use, etc., but is preferably 1 to 1000 ⁇ m, more preferably 5 to 100 ⁇ m from the viewpoint of flexibility and easy handling. preferable. Further, the total light transmittance of the substrate is not particularly limited, but when the laminate is used as a member for an electronic device such as a photoelectric conversion element or an organic electroluminescence element, it is preferably 80% or more. More preferably, it is 85% or more.
  • the gas barrier layer 10 can be obtained by subjecting a gas barrier material containing a silicon-containing polymer and a curable component to a curing treatment and a plasma ion implantation treatment.
  • the gas barrier layer is a layer having a characteristic of suppressing permeation of oxygen, water vapor, or the like (hereinafter referred to as “gas barrier property”).
  • the gas barrier layer 10 may be a single layer or a plurality of layers.
  • Silicon-containing polymer (sometimes referred to as a silicon-containing compound) is an organic compound as long as it is a polymer containing silicon in the molecule (including a compound containing silicon). Or an inorganic compound. Examples include polyorganosiloxane compounds, polycarbosilane compounds, polysilane compounds, polysilazane compounds, and the like. Among these, a polysilazane compound is preferable from the viewpoint that an excellent gas barrier property can be expressed.
  • the silicon-containing polymer is a polysilazane compound
  • the polysilazane compound can be made to have a higher gas barrier property by converting the surface layer into silica by converting to silica by energy ray curing treatment and plasma ion implantation treatment described later. .
  • the polysilazane compound is a polymer compound having a repeating unit containing —Si—N— bond (silazane bond) in the molecule, specifically, a repeating unit represented by the following general formula (1): It is preferable that it is a compound which has this. Further, the number average molecular weight of the polysilazane compound to be used is not particularly limited, but is preferably a value within the range of 100 to 50,000.
  • Rx, Ry and Rz each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted group.
  • a non-hydrolyzable group such as an alkenyl group, an unsubstituted or substituted aryl group or an alkylsilyl group, and the subscript n represents an arbitrary natural number.
  • alkyl group of the above-described unsubstituted or substituted alkyl group examples include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group.
  • alkyl groups having 1 to 10 carbon atoms such as butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group.
  • Examples of the unsubstituted or substituted cycloalkyl group include cycloalkyl groups having 3 to 10 carbon atoms such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • Examples of the alkenyl group of the above-described unsubstituted or substituted alkenyl group include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-butenyl group, a 2-butenyl group, and a 3-butenyl group. Examples include alkenyl groups having 2 to 10 carbon atoms.
  • examples of the substituent for the alkyl group, cycloalkyl group, and alkenyl group described above include halogen atoms such as fluorine atom, chlorine atom, bromine atom, and iodine atom; hydroxyl group; thiol group; epoxy group; glycidoxy group; ) Acryloyloxy group; unsubstituted or substituted aryl group such as phenyl group, 4-methylphenyl group, 4-chlorophenyl group; and the like.
  • Examples of the unsubstituted or substituted aryl group include aryl groups having 6 to 10 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • examples of the substituent for the aryl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkyl groups having 1 to 6 carbon atoms such as methyl group and ethyl group; methoxy group and ethoxy group Nitro group; cyano group; hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group; phenyl group, 4-methylphenyl group, 4-chlorophenyl group, etc. An unsubstituted or substituted aryl group; and the like.
  • alkylsilyl group described above examples include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, tri-t-butylsilyl group, methyldiethylsilyl group, dimethylsilyl group, diethylsilyl group, methylsilyl group, and ethylsilyl group.
  • Rx, Ry, and Rz are preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group, and particularly preferably a hydrogen atom.
  • polysilazane compound an inorganic polysilazane compound in which Rx, Ry, and Rz are all hydrogen atoms in the general formula (1), an organic polysilazane in which at least one of Rx, Ry, and Rz is not a hydrogen atom, Or a modified polysilazane etc. are mentioned.
  • examples of such inorganic polysilazane compounds include compounds having structures represented by the following general formulas (2) to (3) and formula (4).
  • perhydropolysilazane having a linear structure having a repeating unit represented by the following general formula (3) and a branched structure may be mentioned.
  • Y 1 is a hydrogen atom or a group represented by the following general formula (3 ′), and subscripts c and d each represent an arbitrary natural number.
  • Y 2 is a hydrogen atom or a group represented by General Formula (3 ′), subscript e represents an arbitrary natural number, and * represents a bonding position.
  • perhydropolysilazane having a perhydropolysilazane structure represented by the following formula (4) and having a linear structure, a branched structure and a cyclic structure in the molecule can be mentioned.
  • An organic polysilazane compound in which at least one of Rx, Ry, and Rz in the general formula (1) is not a hydrogen atom but an organic group is also suitable.
  • Examples of the organic polysilazane compound include compounds having structures represented by the following general formulas (5) to (7), the following formula (8), and the general formula (9).
  • Rx ′ has an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted group.
  • Rz ′ represents an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, or an alkylsilyl group.
  • Ry ′ has an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted group.
  • Y 3 is a hydrogen atom or a group represented by the following general formula (9 ′), and the subscripts f and g represent arbitrary natural numbers.
  • Y 4 represents a hydrogen atom or a group represented by general formula (9 ′), subscript h represents an arbitrary natural number, and * represents a bonding position.
  • the organic polysilazane compound mentioned above can be manufactured by a well-known method.
  • it can be obtained by reacting ammonia or a primary amine with the reaction product of an unsubstituted or substituted halogenosilane compound represented by the following general formula (10) and a secondary amine.
  • the secondary amine, ammonia, and primary amine to be used can be suitably selected according to the structure of the target polysilazane compound.
  • X represents a halogen atom
  • R 1 is a substituent of any one of Rx, Ry, Rz, Rx ′, Ry ′ and Rz ′ described above, and m is 1 to 3) Is an integer.
  • modified polysilazane as the polysilazane compound.
  • modified polysilazane include a polymetallosilazane containing a metal atom (the metal atom may be crosslinked), and repeating units of [(SiH 2 ) i (NH) j ] and [(SiH 2 ). k O] (subscripts i, j and k are each independently 1, 2 or 3).
  • Polyborosilazane, polysilazane and metal alkoxide produced by reacting a boron compound with polysiloxazan or polysilazane.
  • Ceramicized polysilazane, silicon alkoxide-added polysilazane, glycidol-added polysilazane Silazanes, acetylacetonato complexes addition polysilazane include metal carboxylate added polysilazane.
  • a polysilazane composition obtained by adding amines and / or acids to the above-described polysilazane compound or a modified product thereof, obtained by adding alcohol such as methanol or hexamethyldisilazane to a terminal N atom to perhydropolysilazane.
  • the energy ray curable component is not particularly limited as long as it is a compound having a property of being cured by irradiation with energy rays.
  • energy ray curable monomers and oligomers are used.
  • either one or the like has a polymer having energy ray curability.
  • the energy ray-curable component is characterized by being cured by irradiating energy rays (for example, ultraviolet rays) and having excellent scratch resistance and solvent resistance.
  • the energy ray curable monomer and / or oligomer has a polymerizable unsaturated bond in the molecule, and more specifically has one or more (meth) acryloyl groups.
  • the (meth) acryloyl group means both an acryloyl group and a methacryloyl group.
  • Examples of the energy ray curable monomer include monofunctional monomers and / or oligomers, and polyfunctional monomers and / or oligomers. Among these, a multifunctional monomer and / or oligomer is more preferable from the viewpoint of excellent scratch resistance.
  • the monofunctional monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (Meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane (Meth) acrylate, tricyclodecane acrylate, phenylhydroxypropyl acrylate, benzyl (meth) acrylate, phenol ethylene oxide modified acrylate, tetrahydride Furfuryl (meth) acrylate,
  • polyfunctional monomer examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, neopentyl glycol adipate di ( (Meth) acrylate, ethylene glycol di (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified dicyclopentenyl Bifunctional (meth) acrylates such as di (meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, and allylated cyclohexyl di (meth) acrylate; trimethylolpropane tri (meth) acrylate Relate, dipentaerythrito
  • polyfunctional (meth) acrylates having 3 or more functional groups are preferable, and hexafunctional (meth) acrylates are more preferable from the viewpoint of easily obtaining a gas barrier layer having high hardness after curing and excellent scratch resistance.
  • Examples of the energy ray curable oligomer include polyester (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, urethane (meth) acrylate oligomers, and the weight average molecular weight is 1,000 to 50,000. Is more preferable, and 2000 to 40000 is more preferable. These can be used individually by 1 type or in combination of 2 or more types.
  • polyester (meth) acrylate oligomer for example, by esterifying hydroxyl groups of a polyester oligomer having hydroxyl groups at both ends obtained by condensation of polycarboxylic acid and polyhydric alcohol with (meth) acrylic acid, or It can be obtained by esterifying a hydroxyl group at the terminal of an oligomer obtained by adding an alkylene oxide to a polyvalent carboxylic acid with (meth) acrylic acid.
  • the epoxy (meth) acrylate oligomer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it.
  • the urethane (meth) acrylate oligomer can be obtained, for example, by esterifying a polyurethane oligomer obtained by the reaction of polyether polyol or polyester polyol and polyisocyanate with (meth) acrylic acid. Furthermore, the polyol (meth) acrylate oligomer can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid.
  • the polymer having energy ray curable examples include an acrylate copolymer having an energy ray curable group in the side chain.
  • This acrylic ester copolymer is obtained by reacting an acrylic copolymer having a functional group-containing monomer unit with an unsaturated group-containing compound having a substituent bonded to the functional group, and the weight average molecular weight is It is preferably 100,000 or more, more preferably 200,000 to 2,500,000, and further preferably 500,000 to 1,500,000 from the viewpoint of heat resistance.
  • the amount of the energy ray curable component is preferably set to a value within the range of 1 to 500 parts by weight of the energy ray curable component with respect to 100 parts by weight of the silicon-containing polymer.
  • the reason for this is that if the blending amount of the energy ray-curable component is less than 1 part by weight, sufficient scratch resistance and chemical resistance may not be obtained, and conversely if it exceeds 500 parts by weight. This is because the gas barrier property tends to decrease. Therefore, the amount of the energy ray curable component is preferably 10 to 100 parts by weight, more preferably 20 to 60 parts by weight, based on 100 parts by weight of the silicon-containing polymer.
  • the polymerization curing time and the amount of light irradiation can be reduced by adding a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited.
  • acetophenones, benzophenones, alkylaminobenzophenones, benzyls, benzoins, benzoin ethers, benzyldimethylketals, benzoylbenzoates, ⁇ - Examples include acyloxime esters, sulfides, thioxanthones, acylphosphine oxide photopolymerization initiators, diacylphosphine oxide compounds, and the like alone or in combination of two or more.
  • the blending amount of the photopolymerization initiator is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the energy ray curable component, and is a value within the range of 0.5 to 5 parts by weight. Is more preferable.
  • the gas barrier layer forming material contains the above-mentioned silicon-containing polymer, energy ray curable component, photopolymerization initiator used as required, and various additives in an appropriate solvent. Can be blended. Examples of such additives include polymers that do not have energy beam curability, UV absorbers, light stabilizers, antioxidants, thermal polymerization inhibitors, leveling agents, antifoaming agents, thickeners, antisettling agents, and pigments. , Coloring dyes, infrared absorbers, fluorescent brighteners, dispersants, antistatic agents, antifogging agents, curable catalysts, silane coupling agents, organic solvents, and the like.
  • solvents examples include aliphatic hydrocarbons such as hexane and heptane, aromatic hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as methylene chloride and ethylene chloride, methanol, ethanol, propanol, and butanol. Alcohols, acetone, methyl ethyl ketone, ketones such as 2-pentanone, isophorone and cyclohexanone, esters such as ethyl acetate and butyl acetate, and cellosolv solvents such as ethyl cellosolve.
  • concentration and viscosity of the gas barrier layer forming material thus prepared are not particularly limited as long as they can be coated, and can be appropriately selected according to the situation.
  • the thickness of the gas barrier layer is preferably set to a value within the range of 0.05 to 50 ⁇ m. This is because an excellent gas barrier property can be obtained by using a gas barrier layer having such a thickness. Therefore, the thickness of the gas barrier layer is more preferably set to a value within the range of 0.05 to 20 ⁇ m, and further preferably set to a value within the range of 0.1 to 5 ⁇ m.
  • Laminated body The laminated body of this invention should just have the gas barrier layer 10 formed in the at least one surface of the base material 12, as shown in FIG. 1, and the gas barrier layer 10 is shown in FIG. It may be formed on one side of the substrate 12 or may be formed on both sides as shown in FIG.
  • Water vapor transmission rate Moreover, it is preferable to make the water vapor transmission rate of the laminated body of this invention into the value below 0.1 g / (m ⁇ 2 > * day). The reason for this is that an excellent gas barrier property can be obtained quantitatively by setting such a value of water vapor permeability. However, when the value of the water vapor transmission rate of the gas barrier layer is excessively low, usable materials are excessively limited, and the manufacturing yield is remarkably reduced. Therefore, it is more preferable to set the value of the water vapor transmission rate of the gas barrier layer to a value within the range of 0.001 to 0.1 g / (m 2 ⁇ day).
  • the water vapor transmission rate of the gas barrier sheet can be measured by a known method, for example, preferably measured according to JIS K 7129 or JIS Z 0208.
  • the surface hardness measured with the surface hardness measuring apparatus of the laminated body gas barrier layer of this invention is 2.0 GPa or more.
  • the surface hardness is 2.0 GPa or more, a laminate having good scratch resistance of the gas barrier layer can be obtained.
  • the laminate of the present invention includes, for example, an inorganic compound layer, an adhesive layer, a conductor layer, a primer layer, a refractive index adjustment layer, a light diffusion layer, an easy adhesion layer, an antiglare treatment layer,
  • the other layers may be a single layer or a plurality of layers.
  • the inorganic compound layer is a layer composed of one kind or a combination of two or more kinds of inorganic compounds, and such an inorganic compound layer is provided together with the gas barrier layer for the purpose of improving the durability and improving the gas barrier property. It is preferable.
  • an inorganic compound which comprises an inorganic compound layer it can generally form into a vacuum and has a gas barrier property, for example, an inorganic oxide, an inorganic nitride, an inorganic carbide, an inorganic sulfide, and these composites.
  • a gas barrier property for example, an inorganic oxide, an inorganic nitride, an inorganic carbide, an inorganic sulfide, and these composites.
  • the material for forming the adhesive layer is not particularly limited, and for example, acrylic resin, urethane resin, silicone resin, olefin resin, rubber material, and the like can be used.
  • a conductor layer is a layer for providing electroconductivity to a laminated body.
  • the material constituting the conductor layer include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. More specifically, antimony-doped tin oxide (ATO); fluorine-doped tin oxide (FTO); tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), etc.
  • Conductive metal oxides metals such as gold, silver, chromium and nickel; mixtures of these metals and conductive metal oxides; inorganic conductive materials such as copper iodide and copper sulfide; organics such as polyaniline, polythiophene and polypyrrole Examples thereof include conductive materials.
  • the primer layer plays a role of improving interlayer adhesion between the base material and the gas barrier layer. That is, by providing such a primer layer, a gas barrier layer that is extremely excellent in interlayer adhesion and surface smoothness can be obtained.
  • the refractive index adjustment layer is a layer provided for controlling reflection.
  • the refractive index adjusting layer can be formed using a high refractive material or a low refractive material so that desired performance can be obtained.
  • the light diffusion layer is a layer provided for diffusing light, and the viewing angle can be expanded when the sheet of the present invention is used as a member for an electronic device such as a liquid crystal display device.
  • the light diffusion layer can be formed by a conventionally known method.
  • the antiglare treatment layer is a layer provided for the purpose of preventing visual interference of transmitted light due to reflection of external light.
  • the antiglare treatment layer can be formed by a conventionally known method using a coating agent containing a filler such as silica particles.
  • a coating agent containing a filler such as silica particles.
  • the second embodiment is a method for producing a gas barrier laminate having a gas barrier layer on at least one surface of a base material, comprising the following steps (1) to (2): It is a manufacturing method. (1) A step of laminating a gas barrier material containing a silicon-containing polymer and an energy beam curable component on at least one surface of a substrate (2) An energy beam curing process and a plasma ion implantation process are performed on the gas barrier material. A step of forming a gas barrier layer
  • Step (1) is a step of laminating a gas barrier material containing a silicon-containing polymer and an energy ray-curable component on at least one surface of the substrate.
  • the silicon-containing polymer, energy This is a step of applying a gas barrier layer-forming coating solution containing a linear curable component, and drying and removing the solvent as necessary.
  • the method for laminating the gas barrier material containing the silicon-containing polymer and the energy beam curing component is not particularly limited, and a known method can be used. Examples thereof include a method of forming on a substrate by a known coating method such as a screen printing method, a knife coating method, a roll coating method, a die coating method, an ink jet method, a spin coating method, and the like.
  • Step (2) is a step for curing the energy ray-curable component in the gas barrier material obtained in step (1) and modifying the layer to form a gas barrier layer. Therefore, in the step (2), the plasma ion implantation process may be performed after the energy beam curing process is performed, and conversely, the energy beam curing process may be performed after the plasma ion implantation process is performed. The energy beam curing process may be further performed after the energy beam curing process is performed and the plasma ion implantation process is performed. In addition, although an energy beam hardening process and a plasma ion implantation process may be implemented simultaneously, it is more preferable to implement a plasma ion implantation process after performing an energy beam hardening process from the point of gas barrier property.
  • the energy beam curing process is a process for curing an energy beam curing component by irradiating energy beams such as ultraviolet rays and electron beams.
  • energy beams such as ultraviolet rays and electron beams.
  • ultraviolet rays are preferable because the irradiation device and the like are relatively simple and relatively small. Accordingly, a xenon lamp, a pulse xenon lamp, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc lamp, a tungsten lamp, or the like can be used as such an ultraviolet ray source.
  • the amount of energy ray irradiation varies depending on the type of energy ray.
  • a dose amount in the range of 50 to 1000 mJ / cm 2 is preferable, and 70 to 800 mJ / cm 2 .
  • the dose within the range is more preferable, and the dose within the range of 100 to 500 mJ / cm 2 is more preferable.
  • the plasma ion implantation treatment is a treatment for modifying the layer containing the silicon-containing polymer and energy ray-curable component obtained in step (1) to exhibit excellent gas barrier properties. is there.
  • the surface layer of the obtained gas barrier layer has a dense structure as compared with the inside of the layer, and exhibits high barrier properties.
  • the plasma ion implantation process generates plasma in an atmosphere containing a plasma generation gas such as a rare gas, and applies negative high voltage pulses to apply ions (positive ions) in the plasma to the surface of the layer. It is a method of injection.
  • a method of injecting ions present in plasma generated using an external electric field into the layer, or a negative high voltage pulse applied to the layer without using an external electric field A method in which ions existing in a plasma generated only by an electric field due to is implanted into the layer is preferable.
  • ions in plasma when ions in plasma are implanted, a known plasma ion implantation apparatus can be used.
  • the ion species to be implanted is not particularly limited, but ions of rare gases such as argon, helium, neon, krypton, and xenon; fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur Ions of alkane gases such as methane, ethane, propane, butane, pentane and hexane; ions of alkenes such as ethylene, propylene, butene and pentene; and ions of alkadiene gases such as pentadiene and butadiene Ions: Ions of alkyne gases such as acetylene and methylacetylene; Ions of aromatic hydrocarbon gases such as benzene, toluene, xylene, indene, naphthalene and phenanthrene; Cycloalkane gases such as cyclopropane and cyclohexane Ion; cyclopentene, cyclo Ion
  • the ion species implanted into the polysilazane compound that is, the ion implantation gas also has a function as a plasma generation gas.
  • the pressure of the vacuum chamber during ion implantation that is, the plasma ion implantation pressure is set to a value within the range of 0.01 to 1 Pa.
  • the plasma ion implantation pressure is more preferably set to a value within the range of 0.02 to 0.8 Pa, and further preferably set to a value within the range of 0.03 to 0.6 Pa.
  • the applied voltage (high voltage pulse / negative voltage) at the time of ion implantation is preferably set to a value in the range of ⁇ 1 kV to ⁇ 50 kV.
  • the reason for this is that if ion implantation is performed with such an applied voltage greater than ⁇ 1 kV, the ion implantation amount (dose amount) may be insufficient, and a desired gas barrier property may not be obtained. is there.
  • ion implantation is performed with an applied voltage smaller than ⁇ 50 kV, the film is charged during ion implantation, and defects such as coloring of the film may occur, and a desired gas barrier property may not be obtained. Because there is.
  • the applied voltage at the time of ion implantation is more preferably set to a value within the range of ⁇ 1 kV to ⁇ 15 kV, and further preferably set to a value within the range of ⁇ 5 kV to ⁇ 8 kV.
  • Example 1 Production of gas barrier laminate (1) Step 1 A polyethylene terephthalate film (manufactured by Mitsubishi Plastics, “PET38 T-100”, thickness 38 ⁇ m, hereinafter referred to as “PET film”) was prepared as a substrate.
  • PET film polyethylene terephthalate film
  • a coating agent (“AZNL110-20” manufactured by AZ Electronic Materials, solid content concentration 20%) containing perhydropolysilazane (indicated as PHPS in the table) as a main component 500 20 parts by weight of pentaerythritol triacrylate (indicated as PETRA in the table) as an energy ray curable component (ultraviolet ray curable component) with respect to parts by weight (that is, solid content concentration of 100 parts by weight)
  • PETRA pentaerythritol triacrylate
  • an energy ray curable component ultraviolet ray curable component
  • Irgacure 127 manufactured by BASF
  • a gas barrier layer forming coating solution solid content concentration: 33% by weight.
  • a gas barrier layer forming coating solution was applied onto the PET film, and further heated at 120 ° C. for 2 minutes to form a layer containing a silicon-containing polymer and an energy ray-curable component.
  • Step 2 the layer obtained in Step 1 was subjected to energy ray curing treatment using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes. Twice) to form an energy ray cured layer.
  • a UV light irradiation line high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes. Twice
  • Plasma ion implantation apparatus RF power supply: manufactured by JEOL Ltd., RF56000, high voltage pulse power supply: Kurita Seisakusho Co., Ltd., PV-3-HSHV-0835
  • Plasma ion implantation was performed under the conditions to obtain a gas barrier laminate including the gas barrier layer (thickness: 150 nm) of Example 1.
  • Example 2 to 5 the blending amount of PETRA as an energy ray-curable component was set to 40, 60, 80, and 100 parts by weight with respect to 100 parts by weight of PHPS, respectively, as in Example 1.
  • a gas barrier laminate was prepared and evaluated.
  • Example 6 uses dipentaerythritol hexaacrylate (denoted as DPHA in the table) as an energy ray-curable component, except that the ratio is 40 parts by weight with respect to 100 parts by weight of PHPS. As in Example 1, a gas barrier laminate was prepared and evaluated.
  • DPHA dipentaerythritol hexaacrylate
  • Example 7 In Example 7, Example 1 was used except that pentaerythritol tetraacrylate (denoted as PETA in the table) was used as the energy ray-curable component and the ratio was 40 parts by weight with respect to 100 parts by weight of PHPS. Similarly, a gas barrier laminate was prepared and evaluated.
  • PETA pentaerythritol tetraacrylate
  • Example 8 In Example 8, except that tricyclodecane dimethanol diacrylate (shown as DCPA in the table) was used as the energy ray-curable component, and the ratio was 40 parts by weight with respect to 100 parts by weight of PHPS. A gas barrier laminate was prepared and evaluated in the same manner as in Example 1.
  • DCPA tricyclodecane dimethanol diacrylate
  • Example 9 In Example 9, a urethane acrylate ultraviolet curable compound (SHIKOH UT-4692, manufactured by Nippon Synthetic Chemical Co., Ltd., indicated as UA in the table) is used as an energy ray curable component, based on 100 parts by weight of PHPS. A gas barrier laminate was prepared and evaluated in the same manner as in Example 1 except that the ratio was 40 parts by weight.
  • SHIKOH UT-4692 manufactured by Nippon Synthetic Chemical Co., Ltd., indicated as UA in the table
  • Comparative Example 1 In Comparative Example 1, a gas barrier laminate was prepared and evaluated in the same manner as in Example 6 except that PHPS was not used and only 100 parts by weight of DPHA as an energy ray-curable component and a photoinitiator were used.
  • Comparative Example 2 In Comparative Example 2, a gas barrier laminate was prepared and evaluated in the same manner as in Example 7 except that no PHPS was used and only 100 parts by weight of PETA as an energy ray-curable component and a photoinitiator were used.
  • Comparative Example 3 In Comparative Example 3, a gas barrier laminate was prepared and evaluated in the same manner as in Example 1 except that PHPS was not used and only 100 parts by weight of PETRA as an energy ray-curable component and a photoinitiator were used.
  • Comparative Example 4 In Comparative Example 4, a gas barrier laminate was prepared and evaluated in the same manner as in Example 8, except that PHPS was not used and 100 parts by weight of DCPA as an energy ray-curable component and only a photoinitiator were used.
  • Comparative Example 5 In Comparative Example 5, a laminate was prepared and evaluated in the same manner as in Example 2 except that the energy beam curing process was not performed and only the plasma ion implantation process was performed.
  • Comparative Example 6 In Comparative Example 6, a gas barrier laminate was prepared and evaluated in the same manner as in Example 2 except that the plasma ion implantation process was not performed and only the energy beam curing process was performed.
  • Comparative Example 7 In Comparative Example 7, without using an energy beam curable component, using only PHPS, without performing an energy beam curing process, only a plasma ion implantation process was performed, a gas barrier layer was formed, and a laminate was created. evaluated.
  • Comparative Example 8 In Comparative Example 8, a gas barrier layer was formed by using only PHPS without using an energy beam curable component, performing only an energy beam curing process without performing a plasma ion implantation process, creating a laminate, and evaluating it. did.
  • the gas barrier laminates of Examples 1 to 9 were excellent in all of gas barrier properties, scratch resistance and solvent resistance.
  • the laminates of Comparative Examples 1 to 4 containing no silicon-containing polymer have excellent scratch resistance and solvent resistance, but are inferior in gas barrier properties.
  • the laminated body of Comparative Example 5 that has not been subjected to the energy beam curing treatment is inferior in scratch resistance and solvent resistance, although a certain degree of gas barrier property is obtained.
  • the laminated body of the comparative example 6 which has not performed plasma ion implantation processing is inferior in all of gas barrier property, scratch resistance, and solvent resistance.
  • the laminated body of the comparative example 7 which does not contain an energy-beam curable component and has not performed the energy-beam hardening process is excellent in gas barrier property, it is inferior in abrasion resistance and solvent resistance.
  • the laminated body of the comparative example 8 which does not contain an energy-beam curable component and has not performed plasma ion implantation treatment is inferior in all of gas barrier properties, scratch resistance, and solvent resistance.
  • an energy beam curing process and a plasma ion implantation process are performed on a gas barrier material containing a silicon-containing polymer and an energy beam curable component on at least one surface of a substrate.
  • a gas barrier layer By forming a gas barrier layer by applying, a gas barrier laminate having excellent gas barrier properties and scratch resistance has been obtained. Therefore, the gas barrier laminate of the present invention is expected to be effectively used as a plastic film as a substrate for electrode formation in liquid crystal devices and organic electroluminescence devices.
  • Gas barrier layer 12 Base material 50: Gas barrier laminate

Abstract

Provided are a gas barrier layered product exhibiting excellent gas barrier properties, scratch resistance, and solvent resistance, and an efficient production method for such a layered product. Provided are a gas barrier layered product having a gas barrier layer on at least one surface of a substrate, and a production method for such a layered product. The present invention is characterized in that: the gas barrier layer is derived from a gas barrier material including a silicon-containing polymer and an energy-ray curable component; and the gas barrier material is subjected to energy-ray curing and plasma ion injection. The energy-ray curable component is either an energy-ray curable monomer or an energy-ray curable oligomer. It is preferable that the silicon-containing polymer be a polysilazane compound. It is also preferable that the water vapour transmission rate of such a gas barrier layered product be not more than 0.1g/(m2/day).

Description

ガスバリア積層体、およびガスバリア積層体の製造方法Gas barrier laminate and method for producing gas barrier laminate
 本発明は、ガスバリア積層体、およびガスバリア積層体の製造方法に関し、特に、光電変換素子、有機エレクトロルミネッセンス素子等のデバイス用の部材として好適に用いられるガスバリア積層体、およびガスバリア積層体の製造方法に関する。 The present invention relates to a gas barrier laminate and a method for producing the gas barrier laminate, and more particularly, to a gas barrier laminate suitably used as a member for devices such as photoelectric conversion elements and organic electroluminescence elements, and a method for producing the gas barrier laminate. .
 従来、プラスチックフィルム等の高分子成形体は、低価格であり加工性に優れるため、所望の機能を付与して、種々の分野で用いられている。
 特に、近年、液晶デバイスや有機エレクトロルミネッセンスデバイス(有機EL素子)を用いた画像表示装置において、薄型化、軽量化、フレキシブル化等を実現するために、電極形成用の基板として、ガラス板に代えて透明プラスチックフィルムを用いることが検討されている。
 このような電極形成用の基板としてプラスチックフィルムを用いる場合、ガラス基板同等の高いガスバリア性および耐溶剤性、さらには、耐擦傷性を有するフィルムの開発が望まれている。
Conventionally, a polymer molded body such as a plastic film is inexpensive and excellent in workability, and thus has a desired function and is used in various fields.
In particular, in recent years, in an image display apparatus using a liquid crystal device or an organic electroluminescence device (organic EL element), a glass plate is used as a substrate for forming an electrode in order to realize a reduction in thickness, weight, and flexibility. Therefore, the use of transparent plastic films has been studied.
In the case of using a plastic film as such a substrate for electrode formation, development of a film having high gas barrier property and solvent resistance equivalent to that of a glass substrate, and also scratch resistance is desired.
 このようなガスバリア性のプラスチックフィルムとして、加熱処理等を使用することなく、製造容易な有機EL素子等に適用されるガスバリアフィルムの製造方法が提案されている(例えば、特許文献1参照)。
 より具体的には、プラスチックフィルムの少なくとも一方の面に、ポリシラザンからなるポリシラザン膜を形成した後、当該ポリシラザン膜に、プラズマ処理を施して、ガスバリアフィルムとすることを特徴としたガスバリアフィルムの製造方法である。
As such a gas barrier plastic film, there has been proposed a method for manufacturing a gas barrier film applied to an easily manufactured organic EL element or the like without using heat treatment or the like (for example, see Patent Document 1).
More specifically, after forming a polysilazane film made of polysilazane on at least one surface of a plastic film, the polysilazane film is subjected to plasma treatment to form a gas barrier film, and a method for producing a gas barrier film It is.
 また、ガスバリア性、耐磨耗性および基材との密着性に優れた硬化物層を有するガスバリア性プラスチック成形品が提案されている(例えば、特許文献2参照)。
 より具体的には、透明プラスチック基材の少なくとも片面に形成された2層以上の硬化物層を有するガスバリア性プラスチック成形品であって、2層以上の硬化物層のうち、最外層に接する内層が下記被覆組成物(A)に由来した硬化物層であり、最外層が下記被覆組成物(B)に由来した硬化物層であるガスバリア性プラスチック成形品である。
被覆組成物(A):重合性官能基を2個以上有する多官能性化合物と、ポリシラザンと、を含む活性エネルギー線硬化性の被覆組成物
被覆組成物(B):ポリシラザンを主成分とする硬化性被覆組成物
In addition, a gas barrier plastic molded article having a cured product layer excellent in gas barrier properties, abrasion resistance, and adhesion to a substrate has been proposed (for example, see Patent Document 2).
More specifically, it is a gas barrier plastic molded article having two or more cured product layers formed on at least one surface of a transparent plastic substrate, and is an inner layer in contact with the outermost layer among the two or more cured products layers. Is a cured product layer derived from the following coating composition (A), and the outermost layer is a gas barrier plastic molded article having a cured product layer derived from the following coating composition (B).
Coating composition (A): Active energy ray-curable coating composition containing polyfunctional compound having two or more polymerizable functional groups and polysilazane Coating composition (B): Curing based on polysilazane Coating composition
 また、ガスバリア材料ではないものの、活性エネルギー線硬化性化合物と、ポリシラザンとを含む被覆組成物に由来した透明被覆成形品が提案されている(例えば、特許文献3参照)。
 より具体的には、透明合成樹脂基材と、透明合成樹脂基材表面の少なくとも一部に形成された透明硬化物層と、を有する透明被覆成形品であって、透明硬化物層が、活性エネルギー線硬化性の重合性官能基を2個以上有する多官能性化合物と、ポリシラザンと、を含有する被覆組成物の硬化物である透明被覆成形品である。
Moreover, although it is not a gas barrier material, the transparent coating molded product derived from the coating composition containing an active energy ray hardening compound and polysilazane is proposed (for example, refer patent document 3).
More specifically, it is a transparent coated molded article having a transparent synthetic resin substrate and a transparent cured product layer formed on at least a part of the surface of the transparent synthetic resin substrate, and the transparent cured product layer is active. A transparent coated molded article, which is a cured product of a coating composition containing a polyfunctional compound having two or more energy ray-curable polymerizable functional groups and polysilazane.
特開2007-237588号公報JP 2007-237588 A 特開2001-322207号公報JP 2001-322207 A 特開平11 -268196号公報JP-A-11-268196
 しかしながら、特許文献1に記載されたガスバリアフィルムの製造方法では、フィルムに対してポリシラザン膜を形成した後に、プラズマ処理を施し、それをガスバリアフィルムとして用いているものの、ガスバリア性、耐溶剤性、および耐擦傷性が不十分であるという問題が見られた。 However, in the method for producing a gas barrier film described in Patent Document 1, although a polysilazane film is formed on the film and then subjected to plasma treatment and used as a gas barrier film, gas barrier properties, solvent resistance, and There was a problem that the scratch resistance was insufficient.
 また、特許文献2に記載されたガスバリア性プラスチック成形品は、所定の活性エネルギー線硬化性被覆組成物から、2層以上の硬化物層を形成しなければならず、構成が複雑化したり、厚膜化したり、あるいは、活性エネルギー線硬化性被覆組成物を用いているにもかかわらず、製造時間が長く、生産性が低下するという問題が見られた。その上、硬化物層に対するプラズマ処理まで考慮しておらず、ガスバリア性が不十分であるという問題も見られた。 Further, the gas barrier plastic molded article described in Patent Document 2 must form two or more cured product layers from a predetermined active energy ray-curable coating composition, resulting in a complicated structure, Despite the formation of a film or the use of an active energy ray-curable coating composition, there have been problems that the production time is long and the productivity is lowered. In addition, the plasma treatment for the cured product layer was not taken into consideration, and there was a problem that the gas barrier property was insufficient.
 また、特許文献3に記載された透明被覆成形品は、ポリシラザンや活性エネルギー線硬化性化合物を用いているものの、基本的にガスバリア性を考慮しておらず、硬化物に対するプラズマ処理を実施していないことから、ガスバリア性が不十分であるという問題も見られた。 Moreover, although the transparent coating molded article described in Patent Document 3 uses polysilazane or an active energy ray curable compound, the gas barrier property is not basically taken into consideration, and the cured product is subjected to plasma treatment. As a result, there was a problem that the gas barrier property was insufficient.
 そこで、本発明者らは、このような問題を鋭意検討した結果、ケイ素含有高分子(ケイ素含有化合物と称する場合もある。)と、エネルギー線硬化性成分とを含んでなるガスバリア材料に対してエネルギー線硬化処理およびプラズマイオン注入処理を施すことによって、生産性に優れ、かつ優れたガスバリア性、耐擦傷性および耐溶剤性を有する積層体が得られるという事実を見出し、本発明を完成させたものである。
 すなわち、本発明は、ガスバリア性に優れるガスバリア積層体、およびそのようなガスバリア積層体の効率的な製造方法を提供することを目的とする。
Thus, as a result of intensive studies on such problems, the present inventors have developed a gas barrier material comprising a silicon-containing polymer (sometimes referred to as a silicon-containing compound) and an energy ray-curable component. The present inventors have found the fact that a laminate having excellent productivity and excellent gas barrier properties, scratch resistance and solvent resistance can be obtained by performing energy beam curing treatment and plasma ion implantation treatment, and completed the present invention. Is.
That is, an object of the present invention is to provide a gas barrier laminate excellent in gas barrier properties and an efficient method for producing such a gas barrier laminate.
 本発明によれば、基材の少なくとも一方の面に、ガスバリア層を有するガスバリア積層体であって、ガスバリア層が、ケイ素含有高分子およびエネルギー線硬化性成分を含んでなるガスバリア材料に由来しており、当該ガスバリア材料につき、エネルギー線硬化処理してあるとともに、プラズマイオン注入処理してあることを特徴とするガスバリア積層体が提供され、上述した問題点を解決することができ、優れたガスバリア性、耐擦傷性および耐溶剤性を有するガスバリア積層体を効率的に得ることができる。 According to the present invention, a gas barrier laminate having a gas barrier layer on at least one surface of a substrate, wherein the gas barrier layer is derived from a gas barrier material comprising a silicon-containing polymer and an energy ray-curable component. In addition, the gas barrier material is provided with an energy ray hardening treatment and a plasma ion implantation treatment. The gas barrier laminate can solve the above-described problems and has an excellent gas barrier property. A gas barrier laminate having scratch resistance and solvent resistance can be obtained efficiently.
 また、本発明のガスバリア積層体を構成するにあたり、エネルギー線硬化性成分が、エネルギー線硬化型のモノマおよびオリゴマあるいはいずれか一方であることが好ましい。
 このような樹脂を含むことによって、優れたガスバリア性、耐擦傷性および耐溶剤性に優れる積層体を得ることができる。
Further, in constituting the gas barrier laminate of the present invention, it is preferable that the energy ray curable component is an energy ray curable monomer and / or oligomer.
By including such a resin, a laminate having excellent gas barrier properties, scratch resistance and solvent resistance can be obtained.
 また、本発明のガスバリア積層体を構成するにあたり、ケイ素含有高分子がポリシラザン化合物であることが好ましい。
 このようにケイ素含有高分子として、ポリシラザン化合物を用いることによって、より優れたガスバリア性を得ることができる。
In constituting the gas barrier laminate of the present invention, the silicon-containing polymer is preferably a polysilazane compound.
Thus, by using a polysilazane compound as the silicon-containing polymer, more excellent gas barrier properties can be obtained.
 また、本発明のガスバリア積層体を構成するにあたり、水蒸気透過率が0.1g/(m2・day)以下であることが好ましい。
 このように積層体の水蒸気透過率が上記範囲であれば、例えば、光電変換素子、有機エレクトロルミネッセンス素子等の電子デバイス用の部材として好適に用いることができる。
Further, in constituting the gas barrier laminate of the present invention, the water vapor transmission rate is preferably 0.1 g / (m 2 · day) or less.
Thus, if the water vapor transmission rate of a laminated body is the said range, it can use suitably as members for electronic devices, such as a photoelectric conversion element and an organic electroluminescent element, for example.
 また、本発明のガスバリア積層体を構成するにあたり、プラズマイオン注入処理が、プラズマ生成ガスを含む雰囲気下で、プラズマを発生させ、負の高電圧パルスを印加することにより、処理層の表面に、プラズマ中のイオンを注入するプラズマイオン注入であることが好ましい。
 このように、プラズマイオン注入処理を行うことにより、よりガスバリア性に優れたガスバリア積層体を得ることができる。
Further, in configuring the gas barrier laminate of the present invention, the plasma ion implantation process generates plasma in an atmosphere containing a plasma generation gas and applies a negative high voltage pulse to the surface of the treatment layer. Plasma ion implantation for implanting ions in plasma is preferable.
Thus, by performing plasma ion implantation treatment, a gas barrier laminate having better gas barrier properties can be obtained.
 また、本発明のガスバリア積層体を構成するにあたり、エネルギー線硬化性成分が、官能基数が3以上の多官能(メタ)アクリレートモノマであることが好ましい。
 このように官能基数が3以上の多官能(メタ)アクリレートモノマを用いることにより、硬化後の硬度が高く、耐擦傷性にさらに優れたガスバリア積層体を得ることができる。
In constituting the gas barrier laminate of the present invention, the energy ray curable component is preferably a polyfunctional (meth) acrylate monomer having 3 or more functional groups.
Thus, by using a polyfunctional (meth) acrylate monomer having 3 or more functional groups, it is possible to obtain a gas barrier laminate having high hardness after curing and further excellent scratch resistance.
 また、本発明のガスバリア積層体を構成するにあたり、ケイ素含有高分子100重量部に対して、エネルギー線硬化性成分の配合量を1~500重量部の範囲内の値とすることが好ましい。
 このようなエネルギー線硬化性成分の配合量の割合とすることによって、耐擦傷性および耐薬品性と、ガスバリア性との間で、良好なバランスを得ることができる。
In constituting the gas barrier laminate of the present invention, it is preferable that the amount of the energy ray curable component is set to a value within the range of 1 to 500 parts by weight with respect to 100 parts by weight of the silicon-containing polymer.
By setting the ratio of the energy ray-curable component to be blended, a good balance can be obtained between the scratch resistance and chemical resistance and the gas barrier property.
 また、本発明の別の態様は、基材の少なくとも一方の面に、ガスバリア層を有するガスバリア積層体の製造方法であって、下記工程(1)~(2)を含むことを特徴とするガスバリア積層体の製造方法である。
(1)ケイ素含有高分子およびエネルギー線硬化性成分を含むガスバリア材料を、基材の少なくとも一方の面に積層する工程
(2)ガスバリア材料に対して、エネルギー線硬化処理およびプラズマイオン注入処理を施すことにより、ガスバリア層を形成する工程
 すなわち、このようにガスバリア層を形成することによって、ガスバリア性に優れるガスバリア積層体を効率的に得ることができる。
Another aspect of the present invention is a method for producing a gas barrier laminate having a gas barrier layer on at least one surface of a substrate, which comprises the following steps (1) to (2): It is a manufacturing method of a laminated body.
(1) A step of laminating a gas barrier material containing a silicon-containing polymer and an energy beam curable component on at least one surface of a substrate (2) An energy beam curing process and a plasma ion implantation process are performed on the gas barrier material. Thus, the step of forming the gas barrier layer, that is, by forming the gas barrier layer in this way, a gas barrier laminate excellent in gas barrier properties can be obtained efficiently.
 また、本願発明のガスバリア積層体の製造方法を実施するにあたり、工程(2)において、ガスバリア材料に対して、エネルギー線硬化処理を施した後に、プラズマイオン注入処理を施すことによりガスバリア層を形成することが好ましい。
 すなわち、このように、ガスバリア層を形成することにより、さらにガスバリア性に優れるガスバリア積層体を効率的に得ることができる。
Further, in carrying out the method for producing a gas barrier laminate of the present invention, in step (2), the gas barrier material is subjected to energy beam curing treatment and then subjected to plasma ion implantation treatment to form a gas barrier layer. It is preferable.
That is, by forming the gas barrier layer in this way, a gas barrier laminate having further excellent gas barrier properties can be efficiently obtained.
図1(a)~(b)は、本発明のガスバリア積層体を説明するために供する図である。1 (a) and 1 (b) are views for explaining a gas barrier laminate of the present invention.
[第1の実施形態]
 第1の実施形態は、基材12の少なくとも一方の面に、ガスバリア層10を有するガスバリア積層体であって、ガスバリア層10が、ケイ素含有高分子およびエネルギー線硬化性成分を含んでなるガスバリア材料に由来しており、当該ガスバリア材料につき、エネルギー線硬化処理してあるとともに、プラズマイオン注入処理してあることを特徴とするガスバリア積層体50である。
 以下、第1の実施形態のガスバリア積層体につき、適宜図面を参照して、具体的に説明する。
[First embodiment]
The first embodiment is a gas barrier laminate having a gas barrier layer 10 on at least one surface of a substrate 12, wherein the gas barrier layer 10 includes a silicon-containing polymer and an energy ray-curable component. The gas barrier laminate 50 is characterized in that the gas barrier material is subjected to an energy ray hardening process and a plasma ion implantation process.
Hereinafter, the gas barrier laminate of the first embodiment will be specifically described with reference to the drawings as appropriate.
1.基材
 基材12の種類は特に制限されるものでなく、プラスチック樹脂フィルム、ガラス基板(セラミック基板を含む)等が挙げられる。
 ここで、プラスチック樹脂フィルムに使用される樹脂としては、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマ、芳香族系重合体等が挙げられる。
 また、ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。
 また、シクロオレフィン系ポリマとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。
1. Base Material The type of the base material 12 is not particularly limited, and examples thereof include a plastic resin film and a glass substrate (including a ceramic substrate).
Here, as resin used for the plastic resin film, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyphenylene sulfide Examples include arylate, acrylic resin, cycloolefin polymer, and aromatic polymer.
Examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
Examples of cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
 また、基材の厚さは、使用目的等に応じて決定すればよいが、柔軟性および扱いが容易であるという点から、1~1000μmであることが好ましく、5~100μmであることがより好ましい。
 また、基材の全光線透過率は、特に制限はないが、積層体を光電変換素子、有機エレクトロルミネッセンス素子等の電子デバイス用の部材として使用する場合には、80%以上であることが好ましく、85%以上であることがより好ましい。
The thickness of the substrate may be determined according to the purpose of use, etc., but is preferably 1 to 1000 μm, more preferably 5 to 100 μm from the viewpoint of flexibility and easy handling. preferable.
Further, the total light transmittance of the substrate is not particularly limited, but when the laminate is used as a member for an electronic device such as a photoelectric conversion element or an organic electroluminescence element, it is preferably 80% or more. More preferably, it is 85% or more.
2.ガスバリア層
 ガスバリア層10は、ケイ素含有高分子および硬化性成分を含んでなるガスバリア材料に、硬化処理およびプラズマイオン注入処理を施すことにより得ることができる。
 なお、当該ガスバリア層は、酸素や水蒸気等の透過を抑制する特性(以下、「ガスバリア性」という)を有する層である。ガスバリア層10は、単層であってもよく、複数層であってもよい。
2. Gas Barrier Layer The gas barrier layer 10 can be obtained by subjecting a gas barrier material containing a silicon-containing polymer and a curable component to a curing treatment and a plasma ion implantation treatment.
Note that the gas barrier layer is a layer having a characteristic of suppressing permeation of oxygen, water vapor, or the like (hereinafter referred to as “gas barrier property”). The gas barrier layer 10 may be a single layer or a plurality of layers.
(1)ケイ素含有高分子
 ケイ素含有高分子(ケイ素含有化合物と称する場合もある。)としては、分子内にケイ素を含有する高分子(ケイ素を含有する化合物も含む。)であれば、有機化合物であっても無機化合物であってもよい。
 例えば、ポリオルガノシロキサン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、ポリシラザン化合物等が挙げられる。
 これらの中でも、優れたガスバリア性を発現させることができるという点から、ポリシラザン化合物が好ましい。ケイ素含有高分子がポリシラザン化合物であれば、ポリシラザン化合物が、後述するエネルギー線硬化処理およびプラズマイオン注入処理により、表層がセラミック化し、シリカに転化することで、より高いガスバリア性を発現させることができる。
(1) Silicon-containing polymer The silicon-containing polymer (sometimes referred to as a silicon-containing compound) is an organic compound as long as it is a polymer containing silicon in the molecule (including a compound containing silicon). Or an inorganic compound.
Examples include polyorganosiloxane compounds, polycarbosilane compounds, polysilane compounds, polysilazane compounds, and the like.
Among these, a polysilazane compound is preferable from the viewpoint that an excellent gas barrier property can be expressed. If the silicon-containing polymer is a polysilazane compound, the polysilazane compound can be made to have a higher gas barrier property by converting the surface layer into silica by converting to silica by energy ray curing treatment and plasma ion implantation treatment described later. .
 ここで、ポリシラザン化合物とは、分子内に-Si-N-結合(シラザン結合)を含む繰り返し単位を有する高分子化合物であって、具体的には、下記一般式(1)で表わされる繰り返し単位を有する化合物であることが好ましい。
 また、用いるポリシラザン化合物の数平均分子量は、特に限定されないが、100~50000の範囲内の値であることが好ましい。
Here, the polysilazane compound is a polymer compound having a repeating unit containing —Si—N— bond (silazane bond) in the molecule, specifically, a repeating unit represented by the following general formula (1): It is preferable that it is a compound which has this.
Further, the number average molecular weight of the polysilazane compound to be used is not particularly limited, but is preferably a value within the range of 100 to 50,000.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(一般式(1)中、Rx、RyおよびRzは、それぞれ独立して、水素原子、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基またはアルキルシリル基等の非加水分解性基であり、添字nは任意の自然数を表わす。) (In the general formula (1), Rx, Ry and Rz each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted group. A non-hydrolyzable group such as an alkenyl group, an unsubstituted or substituted aryl group or an alkylsilyl group, and the subscript n represents an arbitrary natural number.)
 また、上述した無置換若しくは置換基を有するアルキル基のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等の炭素数1~10のアルキル基が挙げられる。
 また、上述した無置換若しくは置換基を有するシクロアルキル基のシクロアルキル基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の炭素数3~10のシクロアルキル基が挙げられる。
 また、上述した無置換若しくは置換基を有するアルケニル基のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等の炭素数2~10のアルケニル基が挙げられる。
 また、上述したアルキル基、シクロアルキル基、およびアルケニル基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
 また、上述した無置換若しくは置換基を有するアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~10のアリール基が挙げられる。
 また、上述したアリール基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;ニトロ基;シアノ基;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
 また、上述したアルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリt-ブチルシリル基、メチルジエチルシリル基、ジメチルシリル基、ジエチルシリル基、メチルシリル基、エチルシリル基等が挙げられる。
 なお、Rx、Ry、Rzとしては、水素原子、炭素数1~6のアルキル基、またはフェニル基が好ましく、水素原子が特に好ましい。
Examples of the alkyl group of the above-described unsubstituted or substituted alkyl group include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group. Examples thereof include alkyl groups having 1 to 10 carbon atoms such as butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group.
Examples of the unsubstituted or substituted cycloalkyl group include cycloalkyl groups having 3 to 10 carbon atoms such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
Examples of the alkenyl group of the above-described unsubstituted or substituted alkenyl group include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-butenyl group, a 2-butenyl group, and a 3-butenyl group. Examples include alkenyl groups having 2 to 10 carbon atoms.
In addition, examples of the substituent for the alkyl group, cycloalkyl group, and alkenyl group described above include halogen atoms such as fluorine atom, chlorine atom, bromine atom, and iodine atom; hydroxyl group; thiol group; epoxy group; glycidoxy group; ) Acryloyloxy group; unsubstituted or substituted aryl group such as phenyl group, 4-methylphenyl group, 4-chlorophenyl group; and the like.
Examples of the unsubstituted or substituted aryl group include aryl groups having 6 to 10 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
In addition, examples of the substituent for the aryl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkyl groups having 1 to 6 carbon atoms such as methyl group and ethyl group; methoxy group and ethoxy group Nitro group; cyano group; hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group; phenyl group, 4-methylphenyl group, 4-chlorophenyl group, etc. An unsubstituted or substituted aryl group; and the like.
Examples of the alkylsilyl group described above include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, tri-t-butylsilyl group, methyldiethylsilyl group, dimethylsilyl group, diethylsilyl group, methylsilyl group, and ethylsilyl group. .
Rx, Ry, and Rz are preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group, and particularly preferably a hydrogen atom.
 また、具体的には、ポリシラザン化合物としては、一般式(1)において、Rx、Ry、Rzが全て水素原子である無機ポリシラザン化合物、Rx、Ry、Rzの少なくとも一つが水素原子ではない有機ポリシラザン、または変性ポリシラザン等が挙げられる。
 かかる、無機ポリシラザン化合物としては、下記一般式(2)~(3)および式(4)で表わされる構造を含む化合物が挙げられる。
Specifically, as the polysilazane compound, an inorganic polysilazane compound in which Rx, Ry, and Rz are all hydrogen atoms in the general formula (1), an organic polysilazane in which at least one of Rx, Ry, and Rz is not a hydrogen atom, Or a modified polysilazane etc. are mentioned.
Examples of such inorganic polysilazane compounds include compounds having structures represented by the following general formulas (2) to (3) and formula (4).
 すなわち、下記一般式(2)で表わされる繰り返し単位を有する直鎖状構造を有するとともに、1分子中に3~10個のSiH3基を有する数平均分子量が690~2000の範囲内の値であるパーヒドロポリシラザン(特公昭63-16325号公報等参照)が挙げられる。 That is, it has a linear structure having a repeating unit represented by the following general formula (2), and has a number average molecular weight of 3 to 10 SiH 3 groups in one molecule within a range of 690 to 2000. One perhydropolysilazane (see Japanese Patent Publication No. 63-16325) can be mentioned.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (一般式(2)中、添字bは任意の自然数を表わす。) (In the general formula (2), the subscript b represents an arbitrary natural number.)
 また、下記一般式(3)で表わされる繰り返し単位を有する直鎖状構造と分岐構造とを有するパーヒドロポリシラザンが挙げられる。 Moreover, perhydropolysilazane having a linear structure having a repeating unit represented by the following general formula (3) and a branched structure may be mentioned.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (一般式(3)中、Y1は、水素原子または下記一般式(3´)で表わされる基であり、添字cおよびdはそれぞれ任意の自然数を表わす。) (In general formula (3), Y 1 is a hydrogen atom or a group represented by the following general formula (3 ′), and subscripts c and d each represent an arbitrary natural number.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (一般式(3´)中、Y2は、水素原子、または一般式(3´)で表わされる基であり、添字eは任意の自然数を表わし、*は結合位置を表わす。) (In General Formula (3 ′), Y 2 is a hydrogen atom or a group represented by General Formula (3 ′), subscript e represents an arbitrary natural number, and * represents a bonding position.)
 さらに、例えば、下記式(4)で表わされるパーヒドロポリシラザン構造を有する、分子内に直鎖状構造、分岐構造および環状構造を有するパーヒドロポリシラザンが挙げられる。 Furthermore, for example, perhydropolysilazane having a perhydropolysilazane structure represented by the following formula (4) and having a linear structure, a branched structure and a cyclic structure in the molecule can be mentioned.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、一般式(1)中のRx、Ry、Rzの少なくとも一つが水素原子ではなく、有機基である有機ポリシラザン化合物も好適である。
 かかる有機ポリシラザン化合物としては、下記一般式(5)~(7)、下記式(8)、および一般式(9)で表わされる構造を含む化合物が挙げられる。
An organic polysilazane compound in which at least one of Rx, Ry, and Rz in the general formula (1) is not a hydrogen atom but an organic group is also suitable.
Examples of the organic polysilazane compound include compounds having structures represented by the following general formulas (5) to (7), the following formula (8), and the general formula (9).
 すなわち、下記一般式(5)で表わされる構造を繰り返し単位として、主として重合度が3~5の環状構造を有する化合物が挙げられる。 That is, compounds having a cyclic structure having a degree of polymerization of 3 to 5 mainly using a structure represented by the following general formula (5) as a repeating unit can be mentioned.
-(Rx´SiHNH)-    (5) -(Rx'SiHNH)-(5)
 (一般式(5)中、Rx´は、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基、またはアルキルシリル基を表わし、以下の一般式においても同様である。) (In general formula (5), Rx ′ has an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted group. This represents an aryl group or an alkylsilyl group, and the same applies to the following general formulas.)
 また、下記一般式(6)で表わされる構造を繰り返し単位として、主として重合度が3~5の環状構造を有する化合物が挙げられる。 Further, compounds having a cyclic structure mainly having a degree of polymerization of 3 to 5 using the structure represented by the following general formula (6) as a repeating unit can be mentioned.
-(Rx´SiHNRz´)-    (6) -(Rx'SiHNRz ')-(6)
 (一般式(6)中、Rz´は、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、またはアルキルシリル基である。) (In general formula (6), Rz ′ represents an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, or an alkylsilyl group.)
 また、下記一般式(7)で表わされる構造を繰り返し単位として、主として重合度が3~5の環状構造を有する化合物が挙げられる。 Further, compounds having a cyclic structure having a degree of polymerization of 3 to 5 mainly using the structure represented by the following general formula (7) as a repeating unit can be mentioned.
-(Rx´Ry´SiNH)-    (7) -(Rx'Ry'SiNH)-(7)
 (一般式(7)中、Ry´は、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基、またはアルキルシリル基である。) (In General Formula (7), Ry ′ has an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted group. An aryl group or an alkylsilyl group.)
 また、下記式(8)で表わされる構造を分子内に有するポリオルガノ(ヒドロ)シラザン化合物が挙げられる。 Moreover, a polyorgano (hydro) silazane compound having a structure represented by the following formula (8) in the molecule can be mentioned.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 さらに、下記一般式(9)で表わされる繰り返し構造を有するポリシラザン化合物が挙げられる。 Furthermore, a polysilazane compound having a repeating structure represented by the following general formula (9) can be mentioned.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(一般式(9)中、Y3は、水素原子、または下記一般式(9´)で表わされる基であり、添字fおよびgは任意の自然数を表わす。) (In the general formula (9), Y 3 is a hydrogen atom or a group represented by the following general formula (9 ′), and the subscripts f and g represent arbitrary natural numbers.)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (一般式(9´)中、Y4は、水素原子、または一般式(9´)で表わされる基であり、添字hは任意の自然数を表わし、*は結合位置を表わす。) (In general formula (9 ′), Y 4 represents a hydrogen atom or a group represented by general formula (9 ′), subscript h represents an arbitrary natural number, and * represents a bonding position.)
 なお、上述した有機ポリシラザン化合物は、公知の方法により製造することができる。
 例えば、下記一般式(10)で表わされる無置換若しくは置換基を有するハロゲノシラン化合物と2級アミンとの反応生成物に、アンモニアまたは1級アミンを反応させることにより得ることができる。
 なお、用いる2級アミン、アンモニアおよび1級アミンは、目的とするポリシラザン化合物の構造に応じて、適宜選択することができる。
In addition, the organic polysilazane compound mentioned above can be manufactured by a well-known method.
For example, it can be obtained by reacting ammonia or a primary amine with the reaction product of an unsubstituted or substituted halogenosilane compound represented by the following general formula (10) and a secondary amine.
In addition, the secondary amine, ammonia, and primary amine to be used can be suitably selected according to the structure of the target polysilazane compound.
1 4-mSiXm    (10) R 1 4-m SiX m (10)
 (一般式(10)中、Xは、ハロゲン原子を表わし、R1は、上述したRx、Ry、Rz、Rx´、Ry´およびRz´のいずれかの置換基であり、mは1~3の整数である。) (In the general formula (10), X represents a halogen atom, R 1 is a substituent of any one of Rx, Ry, Rz, Rx ′, Ry ′ and Rz ′ described above, and m is 1 to 3) Is an integer.)
 また、本発明においては、ポリシラザン化合物として、変性ポリシラザンを用いることも好ましい。
 かかる変性ポリシラザンとしては、例えば、金属原子(当該金属原子は架橋をなしていてもよい。)を含むポリメタロシラザン、繰り返し単位が[(SiH2i(NH)j]および[(SiH2kO](添字i、jおよびkは、それぞれ独立して1、2または3である。)で表わされるポリシロキサザン、ポリシラザンにボロン化合物を反応させて製造するポリボロシラザン、ポリシラザンとメタルアルコキシドとを反応させて製造するポリメタロシラザン、無機シラザン高重合体や改質ポリシラザン、ポリシラザンに有機成分を導入した共重合シラザン、ポリシラザンにセラミックス化を促進するための触媒的化合物を付加または添加した低温セラミックス化ポリシラザン、ケイ素アルコキシド付加ポリシラザン、グリシドール付加ポリシラザン、アセチルアセトナト錯体付加ポリシラザン、金属カルボン酸塩付加ポリシラザン等が挙げられる。
 その他、上述したポリシラザン化合物またはその変性物に、アミン類および/または酸類を添加してなるポリシラザン組成物、パーヒドロポリシラザンにメタノール等のアルコールあるいはヘキサメチルジシラザンを末端N原子に付加して得られる化合物等が挙げられる。
In the present invention, it is also preferable to use modified polysilazane as the polysilazane compound.
Examples of such a modified polysilazane include a polymetallosilazane containing a metal atom (the metal atom may be crosslinked), and repeating units of [(SiH 2 ) i (NH) j ] and [(SiH 2 ). k O] (subscripts i, j and k are each independently 1, 2 or 3). Polyborosilazane, polysilazane and metal alkoxide produced by reacting a boron compound with polysiloxazan or polysilazane. Polymetallosilazane produced by reacting with polysilazane, inorganic silazane high polymer, modified polysilazane, copolymerized silazane in which organic components are introduced into polysilazane, and low temperature with addition or addition of a catalytic compound for promoting ceramicization to polysilazane Ceramicized polysilazane, silicon alkoxide-added polysilazane, glycidol-added polysilazane Silazanes, acetylacetonato complexes addition polysilazane include metal carboxylate added polysilazane.
In addition, a polysilazane composition obtained by adding amines and / or acids to the above-described polysilazane compound or a modified product thereof, obtained by adding alcohol such as methanol or hexamethyldisilazane to a terminal N atom to perhydropolysilazane. Compounds and the like.
(2)エネルギー線硬化性成分
 エネルギー線硬化性成分としては、エネルギー線を照射することにより硬化する性質を有する化合物であれば、特に制限されるものでなく、例えばエネルギー線硬化型のモノマ及びオリゴマあるいはいずれか一方、エネルギー線硬化性を有するポリマ等が挙げられる。これらの中でも、硬化後の硬度が高く、耐擦傷性に優れるという点から、エネルギー線硬化型のモノマ及びオリゴマあるいはいずれか一方であることが好ましい。
 ここで、エネルギー線硬化性成分は、エネルギー線(例えば紫外線)を照射することにより硬化し、優れた耐擦傷性および耐溶剤性が得られるという特徴がある。
(2) Energy ray curable component The energy ray curable component is not particularly limited as long as it is a compound having a property of being cured by irradiation with energy rays. For example, energy ray curable monomers and oligomers are used. Alternatively, either one or the like has a polymer having energy ray curability. Among these, from the viewpoint of high hardness after curing and excellent scratch resistance, it is preferable to use either energy ray curable monomer or oligomer.
Here, the energy ray-curable component is characterized by being cured by irradiating energy rays (for example, ultraviolet rays) and having excellent scratch resistance and solvent resistance.
 また、エネルギー線硬化型のモノマ及びオリゴマあるいはいずれか一方は、分子内に重合性不飽和結合を有するものであって、より具体的には、(メタ)アクリロイル基を1個以上有するものが好ましい。
 なお、(メタ)アクリロイル基とは、アクリロイル基と、メタクリロイル基の両者を意味する。
In addition, the energy ray curable monomer and / or oligomer has a polymerizable unsaturated bond in the molecule, and more specifically has one or more (meth) acryloyl groups. .
The (meth) acryloyl group means both an acryloyl group and a methacryloyl group.
 また、エネルギー線硬化型のモノマとしては、例えば、単官能モノマ及びオリゴマあるいはいずれか一方、多官能性モノマ及びオリゴマあるいはいずれか一方が挙げられる。
 中でも、耐擦傷性に優れるという点から、多官能性モノマ及びオリゴマあるいはいずれか一方がより好ましい。
Examples of the energy ray curable monomer include monofunctional monomers and / or oligomers, and polyfunctional monomers and / or oligomers.
Among these, a multifunctional monomer and / or oligomer is more preferable from the viewpoint of excellent scratch resistance.
 ここで、単官能モノマとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロデカンアクリレート、フェニルヒドロキシプロピルアクリレート、ベンジル(メタ)アクリレート、フェノールエチレンオキシド変性アクリレート、テトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレート、フェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート等の(メタ)アクリレート誘導体;(メタ)アクリル酸、(メタ)アクリロニトリル;スチレン、α-メチルスチレン等のスチレン誘導体;(メタ)アクリルアミド、N-ジメチル(メタ)アクリルアミド、N-ジエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド誘導体;等が挙げられる。
 これらは一種単独で、あるいは二種以上を組み合わせて用いることができる。
Here, the monofunctional monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (Meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane (Meth) acrylate, tricyclodecane acrylate, phenylhydroxypropyl acrylate, benzyl (meth) acrylate, phenol ethylene oxide modified acrylate, tetrahydride Furfuryl (meth) acrylate, morpholine acrylate, phenoxyethyl (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, allyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) (Meth) acrylate derivatives such as acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate; (meth) acrylic acid, (meth) acrylonitrile; styrene derivatives such as styrene and α-methylstyrene; (Meth) acrylamide, N-dimethyl (meth) acrylamide, N-diethyl (meth) acrylamide, (meth) acrylamide derivatives such as dimethylaminopropyl (meth) acrylamide; It is done.
These can be used individually by 1 type or in combination of 2 or more types.
 また、多官能性モノマとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート等の2官能(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロイロキシエチル)イソシアヌレート等の3官能(メタ)アクリレート;ジグリセリンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の4官能(メタ)アクリレート;ジペンタエリスリトールペンタ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート等の5官能(メタ)アクリレート;ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能(メタ)アクリレート等が挙げられる。
 これらは、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 これらの中でも、硬化後の硬度が高く、耐擦傷性に優れるガスバリア層を得やすいという点から、官能基数が3以上の多官能(メタ)アクリレートが好ましく、6官能(メタ)アクリレートがより好ましい。
Examples of the polyfunctional monomer include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, neopentyl glycol adipate di ( (Meth) acrylate, ethylene glycol di (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified dicyclopentenyl Bifunctional (meth) acrylates such as di (meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, and allylated cyclohexyl di (meth) acrylate; trimethylolpropane tri (meth) acrylate Relate, dipentaerythritol tri (meth) acrylate, propionic acid modified dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, tris (acryloyloxyethyl) Trifunctional (meth) acrylates such as isocyanurate; tetrafunctional (meth) acrylates such as diglycerin tetra (meth) acrylate and pentaerythritol tetra (meth) acrylate; dipentaerythritol penta (meth) acrylate and propionic acid-modified dipentaerythritol Pentafunctional (meth) acrylates such as penta (meth) acrylate; dipentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol Ruhekisa (meth) hexafunctional acrylates such as (meth) acrylate.
These can be used individually by 1 type or in combination of 2 or more types.
Among these, polyfunctional (meth) acrylates having 3 or more functional groups are preferable, and hexafunctional (meth) acrylates are more preferable from the viewpoint of easily obtaining a gas barrier layer having high hardness after curing and excellent scratch resistance.
 また、エネルギー線硬化型のオリゴマとしては、ポリエステル(メタ) アクリレート系オリゴマ、エポキシ(メタ) アクリレート系オリゴマ、ウレタン(メタ) アクリレート系オリゴマ等があげられ、重量平均分子量は、1000~50000であることが好ましく、2000~40000であることがより好ましい。これらは一種単独で、あるいは二種以上を組み合わせて用いることができる。
 また、ポリエステル(メタ) アクリレート系オリゴマとしては、例えば多価カルボン酸と多価アルコールの縮合によって得られる両末端に水酸基を有するポリエステルオリゴマーの水酸基を(メタ)アクリル酸でエステル化することにより、あるいは、多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマの末端の水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。
 また、エポキシ(メタ) アクリレート系オリゴマは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂のオキシラン環に、(メタ)アクリル酸を反応しエステル化することにより得ることができる。
 また、ウレタン(メタ) アクリレート系オリゴマは、例えば、ポリエーテルポリオールやポリエステルポリオールとポリイソシアネートの反応によって得られるポリウレタンオリゴマーを、(メタ)アクリル酸でエステル化することにより得ることができる。
 さらに、ポリオール(メタ) アクリレート系オリゴマは、ポリエーテルポリオールの水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。
Examples of the energy ray curable oligomer include polyester (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, urethane (meth) acrylate oligomers, and the weight average molecular weight is 1,000 to 50,000. Is more preferable, and 2000 to 40000 is more preferable. These can be used individually by 1 type or in combination of 2 or more types.
Further, as the polyester (meth) acrylate oligomer, for example, by esterifying hydroxyl groups of a polyester oligomer having hydroxyl groups at both ends obtained by condensation of polycarboxylic acid and polyhydric alcohol with (meth) acrylic acid, or It can be obtained by esterifying a hydroxyl group at the terminal of an oligomer obtained by adding an alkylene oxide to a polyvalent carboxylic acid with (meth) acrylic acid.
The epoxy (meth) acrylate oligomer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it.
The urethane (meth) acrylate oligomer can be obtained, for example, by esterifying a polyurethane oligomer obtained by the reaction of polyether polyol or polyester polyol and polyisocyanate with (meth) acrylic acid.
Furthermore, the polyol (meth) acrylate oligomer can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid.
 また、エネルギー線硬化性を有するポリマとしては、側鎖にエネルギー線硬化性基を有するアクリル酸エステル共重合体等が挙げられる。
 このアクリル酸エステル共重合体は、官能基含有モノマ単位を有するアクリル系共重合体と、その官能基に結合する置換基を有する不飽和基含有化合物とを反応させて得られ、重量平均分子量は、好ましくは100,000以上であり、より好ましくは200,000~2,500,000であり、耐熱性の点から、さらに好ましくは500,000~1,500,000である。
Examples of the polymer having energy ray curable include an acrylate copolymer having an energy ray curable group in the side chain.
This acrylic ester copolymer is obtained by reacting an acrylic copolymer having a functional group-containing monomer unit with an unsaturated group-containing compound having a substituent bonded to the functional group, and the weight average molecular weight is It is preferably 100,000 or more, more preferably 200,000 to 2,500,000, and further preferably 500,000 to 1,500,000 from the viewpoint of heat resistance.
 また、エネルギー線硬化性成分の配合量は、ケイ素含有高分子100重量部に対して、エネルギー線硬化性成分の配合量を1~500重量部の範囲内の値とすることが好ましい。
 この理由は、エネルギー線硬化性成分の配合量が1重量部未満であると、十分な耐擦傷性および耐薬品性が得られない場合があるためであり、逆に、500重量部を超えるとガスバリア性が低下する傾向があるためである。
 したがって、エネルギー線硬化性成分の配合量は、ケイ素含有高分子に100重量部対して、10~100重量部であることが好ましく、20~60重量部であることがさらに好ましい。
The amount of the energy ray curable component is preferably set to a value within the range of 1 to 500 parts by weight of the energy ray curable component with respect to 100 parts by weight of the silicon-containing polymer.
The reason for this is that if the blending amount of the energy ray-curable component is less than 1 part by weight, sufficient scratch resistance and chemical resistance may not be obtained, and conversely if it exceeds 500 parts by weight. This is because the gas barrier property tends to decrease.
Therefore, the amount of the energy ray curable component is preferably 10 to 100 parts by weight, more preferably 20 to 60 parts by weight, based on 100 parts by weight of the silicon-containing polymer.
 ここで、エネルギー線として紫外線を用いる場合には、光重合開始剤を添加することにより、重合硬化時間および光線照射量を少なくすることができる。
 光重合開始剤としては、特に制限されるものではないが、例えば、アセトフェノン類、ベンゾフェノン類、アルキルアミノベンゾフェノン類、ベンジル類、ベンゾイン類、ベンゾインエーテル類、ベンジルジメチルケタール類、ベンゾイルベンゾエート類、α-アシロキシムエステル類、スルフィド類、チオキサントン類、アシルホスフィンオキシド系光重合開始剤、ジアシルホスフィンオキシド系化合物等の一種単独または二種以上の組み合わせが挙げられる。
 また、光重合開始剤の配合量は、エネルギー線硬化性成分100重量部に対して0.1~10重量部であることが好ましく、0.5~5重量部の範囲内の値であることがさらに好ましい。
Here, when ultraviolet rays are used as energy rays, the polymerization curing time and the amount of light irradiation can be reduced by adding a photopolymerization initiator.
The photopolymerization initiator is not particularly limited. For example, acetophenones, benzophenones, alkylaminobenzophenones, benzyls, benzoins, benzoin ethers, benzyldimethylketals, benzoylbenzoates, α- Examples include acyloxime esters, sulfides, thioxanthones, acylphosphine oxide photopolymerization initiators, diacylphosphine oxide compounds, and the like alone or in combination of two or more.
The blending amount of the photopolymerization initiator is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the energy ray curable component, and is a value within the range of 0.5 to 5 parts by weight. Is more preferable.
(3)ガスバリア層形成材料の調整
 また、ガスバリア層形成材料は、適当な溶媒中に、上述のケイ素含有高分子、エネルギー線硬化性成分及び所望により用いられる光重合開始剤や、各種添加物を配合することができる。
 このような添加物としては、エネルギー線硬化性を有しないポリマ、紫外線吸収剤、光安定剤、酸化防止剤、熱重合防止剤、レベリング剤、消泡剤、増粘剤、沈降防止剤、顔料、着色染料、赤外線吸収剤、蛍光増白剤、分散剤、帯電防止剤、防曇剤、硬化性触媒、シランカップリング剤、有機溶媒等が挙げられる。
 また、このような溶媒としては、例えばヘキサン、ヘプタンなどの脂肪族炭化水素、トルエン、キシレンなどの芳香族炭化水素、塩化メチレン、塩化エチレンなどのハロゲン化炭化水素、メタノール、エタノール、プロパノール、ブタノールなどのアルコール、アセトン、メチルエチルケトン、2-ペンタノン、イソホロン、シクロヘキサノンなどのケトン、酢酸エチル、酢酸ブチルなどのエステル、エチルセロソルブなどのセロソルブ系溶剤などが挙げられる。
 このようにして調製されたガスバリア層形成材料の濃度、粘度としては、コーティング可能なものであればよく、特に制限されず、状況に応じて適宜選定することができる。
(3) Preparation of gas barrier layer forming material The gas barrier layer forming material contains the above-mentioned silicon-containing polymer, energy ray curable component, photopolymerization initiator used as required, and various additives in an appropriate solvent. Can be blended.
Examples of such additives include polymers that do not have energy beam curability, UV absorbers, light stabilizers, antioxidants, thermal polymerization inhibitors, leveling agents, antifoaming agents, thickeners, antisettling agents, and pigments. , Coloring dyes, infrared absorbers, fluorescent brighteners, dispersants, antistatic agents, antifogging agents, curable catalysts, silane coupling agents, organic solvents, and the like.
Examples of such solvents include aliphatic hydrocarbons such as hexane and heptane, aromatic hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as methylene chloride and ethylene chloride, methanol, ethanol, propanol, and butanol. Alcohols, acetone, methyl ethyl ketone, ketones such as 2-pentanone, isophorone and cyclohexanone, esters such as ethyl acetate and butyl acetate, and cellosolv solvents such as ethyl cellosolve.
The concentration and viscosity of the gas barrier layer forming material thus prepared are not particularly limited as long as they can be coated, and can be appropriately selected according to the situation.
(4)エネルギー線硬化処理/プラズマイオン注入処理
 前述のケイ素含有高分子および硬化性成分を含む層に施すエネルギー線硬化処理およびプラズマイオン注入処理については、それぞれ第2の実施形態で具体的に説明する。
(4) Energy beam curing process / plasma ion implantation process The energy beam curing process and the plasma ion implantation process performed on the layer containing the silicon-containing polymer and the curable component are specifically described in the second embodiment. To do.
(5)厚さ
 また、ガスバリア層の厚さを0.05~50μmの範囲内の値とすることが好ましい。
 この理由は、このような厚さのガスバリア層とすることによって、優れたガスバリア性を得ることができるためである。
 したがって、ガスバリア層の厚さを0.05~20μmの範囲内の値とすることがより好ましく、0.1~5μmの範囲内の値とすることがさらに好ましい。
(5) Thickness The thickness of the gas barrier layer is preferably set to a value within the range of 0.05 to 50 μm.
This is because an excellent gas barrier property can be obtained by using a gas barrier layer having such a thickness.
Therefore, the thickness of the gas barrier layer is more preferably set to a value within the range of 0.05 to 20 μm, and further preferably set to a value within the range of 0.1 to 5 μm.
3.積層体
 本発明の積層体は、図1に示すように、基材12の少なくとも一方の面に、ガスバリア層10が形成されていればよく、図1(a)のように、ガスバリア層10が基材12の片面に形成されていてもよく、図1(b)のように、両面に形成されていてもよい。
3. Laminated body The laminated body of this invention should just have the gas barrier layer 10 formed in the at least one surface of the base material 12, as shown in FIG. 1, and the gas barrier layer 10 is shown in FIG. It may be formed on one side of the substrate 12 or may be formed on both sides as shown in FIG.
(1)水蒸気透過率
 また、本発明の積層体の水蒸気透過率を0.1g/(m2・day)以下の値とすることが好ましい。
 この理由は、このような水蒸気透過率の値とすることによって、優れたガスバリア性が定量的に得られるためである。
 但し、ガスバリア層の水蒸気透過率の値が過度に低くなると、使用可能な材料が過度に制限されたり、製造上の歩留まりが著しく低下したりする。
 したがって、ガスバリア層の水蒸気透過率の値を0.001~0.1g/(m2・day)の範囲内の値とすることがより好ましい。
 なお、ガスバリアシートの水蒸気透過率としては、公知の方法で測定することができ、例えば、JIS K 7129またはJIS Z 0208に準じて測定することが好ましい。
(1) Water vapor transmission rate Moreover, it is preferable to make the water vapor transmission rate of the laminated body of this invention into the value below 0.1 g / (m < 2 > * day).
The reason for this is that an excellent gas barrier property can be obtained quantitatively by setting such a value of water vapor permeability.
However, when the value of the water vapor transmission rate of the gas barrier layer is excessively low, usable materials are excessively limited, and the manufacturing yield is remarkably reduced.
Therefore, it is more preferable to set the value of the water vapor transmission rate of the gas barrier layer to a value within the range of 0.001 to 0.1 g / (m 2 · day).
The water vapor transmission rate of the gas barrier sheet can be measured by a known method, for example, preferably measured according to JIS K 7129 or JIS Z 0208.
(2)表面硬度
 また、本発明の積層体ガスバリア層の表面硬度測定装置により測定した表面硬度は、2.0GPa以上であることが好ましい。表面硬度が2.0GPa以上であれば、ガスバリア層の耐擦傷性が良好な積層体を得ることが出来る。
(2) Surface hardness Moreover, it is preferable that the surface hardness measured with the surface hardness measuring apparatus of the laminated body gas barrier layer of this invention is 2.0 GPa or more. When the surface hardness is 2.0 GPa or more, a laminate having good scratch resistance of the gas barrier layer can be obtained.
(3)その他の層
 また、本発明の積層体は、例えば、無機化合物層、接着剤層、導電体層、プライマー層、屈折率調整層、光拡散層、易接着層、防眩処理層、等のその他の層を有してもよく、その他の層は単層でもよく、複数層であっても構わない。
 ここで、無機化合物層は、無機化合物の一種又は二種以上の組み合わせからなる層であるが、かかる無機化合物層を、耐久性の向上やガスバリア性の向上等を目的として、ガスバリア層と併設することが好ましい。
 また、無機化合物層を構成する無機化合物としては、一般的に真空成膜可能で、ガスバリア性を有するもの、例えば無機酸化物、無機窒化物、無機炭化物、無機硫化物、これらの複合体である無機酸化窒化物、無機酸化炭化物、無機窒化炭化物、無機酸化窒化炭化物等が挙げられる。
(3) Other layers The laminate of the present invention includes, for example, an inorganic compound layer, an adhesive layer, a conductor layer, a primer layer, a refractive index adjustment layer, a light diffusion layer, an easy adhesion layer, an antiglare treatment layer, The other layers may be a single layer or a plurality of layers.
Here, the inorganic compound layer is a layer composed of one kind or a combination of two or more kinds of inorganic compounds, and such an inorganic compound layer is provided together with the gas barrier layer for the purpose of improving the durability and improving the gas barrier property. It is preferable.
Moreover, as an inorganic compound which comprises an inorganic compound layer, it can generally form into a vacuum and has a gas barrier property, for example, an inorganic oxide, an inorganic nitride, an inorganic carbide, an inorganic sulfide, and these composites. Inorganic oxynitrides, inorganic oxycarbides, inorganic nitriding carbides, inorganic oxynitriding carbides, etc.
 また、接着剤層を形成する素材としては、特に限定されないが、例えば、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、オレフィン系樹脂、ゴム系材料等を用いることができる。 The material for forming the adhesive layer is not particularly limited, and for example, acrylic resin, urethane resin, silicone resin, olefin resin, rubber material, and the like can be used.
 また、導電体層は、積層体に導電性を付与するための層である。
 ここで、導電体層を構成する材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等が挙げられる。より具体的には、アンチモンをドープした酸化スズ(ATO);フッ素をドープした酸化スズ(FTO);酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これら金属と導電性金属酸化物との混合物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料等が挙げられる。
Moreover, a conductor layer is a layer for providing electroconductivity to a laminated body.
Here, examples of the material constituting the conductor layer include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. More specifically, antimony-doped tin oxide (ATO); fluorine-doped tin oxide (FTO); tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), etc. Conductive metal oxides; metals such as gold, silver, chromium and nickel; mixtures of these metals and conductive metal oxides; inorganic conductive materials such as copper iodide and copper sulfide; organics such as polyaniline, polythiophene and polypyrrole Examples thereof include conductive materials.
 また、プライマー層は、基材とガスバリア層との層間密着性を高める役割を果たす。
 すなわち、このようなプライマー層を設けることにより、層間密着性及び表面平滑性に極めて優れるガスバリア層を得ることができる。
Further, the primer layer plays a role of improving interlayer adhesion between the base material and the gas barrier layer.
That is, by providing such a primer layer, a gas barrier layer that is extremely excellent in interlayer adhesion and surface smoothness can be obtained.
 また、屈折率調整層は、反射を制御するために設ける層である。
 屈折率調整層は、所望の性能が得られるように、高屈折材料や低屈折材料を用いて形成することができる。
The refractive index adjustment layer is a layer provided for controlling reflection.
The refractive index adjusting layer can be formed using a high refractive material or a low refractive material so that desired performance can be obtained.
 また、光拡散層は、光を拡散させるために設ける層であり、本発明のシートを液晶表示装置等の電子デバイス用部材として用いた場合に、視野角を拡大することができる。光拡散層は、従来公知の方法により形成することができる。 Further, the light diffusion layer is a layer provided for diffusing light, and the viewing angle can be expanded when the sheet of the present invention is used as a member for an electronic device such as a liquid crystal display device. The light diffusion layer can be formed by a conventionally known method.
 また、防眩処理層は、外光が反射することによる透過光の視認妨害を防止すること等を目的に設けられる層である。
 防眩処理層は、シリカ粒子等のフィラー入りのコート剤を用いて、従来公知の方法により形成することができる。
 上述のように、本発明の積層体は、ガスバリア性、耐擦傷性および耐溶剤性に優れているので、光電変換素子や、有機EL素子の封止用材料や基板として好適に用いることができる。
Further, the antiglare treatment layer is a layer provided for the purpose of preventing visual interference of transmitted light due to reflection of external light.
The antiglare treatment layer can be formed by a conventionally known method using a coating agent containing a filler such as silica particles.
As described above, since the laminate of the present invention is excellent in gas barrier properties, scratch resistance and solvent resistance, it can be suitably used as a sealing material or substrate for photoelectric conversion elements and organic EL elements. .
[第2の実施形態]
 第2の実施形態は、基材の少なくとも一方の面に、ガスバリア層を有するガスバリア積層体の製造方法であって、下記工程(1)~(2)を含むことを特徴とするガスバリア積層体の製造方法である。
(1)ケイ素含有高分子およびエネルギー線硬化性成分を含むガスバリア材料を、基材の少なくとも一方の面に積層する工程
(2)ガスバリア材料に対して、エネルギー線硬化処理およびプラズマイオン注入処理を施すことにより、ガスバリア層を形成する工程
[Second Embodiment]
The second embodiment is a method for producing a gas barrier laminate having a gas barrier layer on at least one surface of a base material, comprising the following steps (1) to (2): It is a manufacturing method.
(1) A step of laminating a gas barrier material containing a silicon-containing polymer and an energy beam curable component on at least one surface of a substrate (2) An energy beam curing process and a plasma ion implantation process are performed on the gas barrier material. A step of forming a gas barrier layer
1.工程(1)
 工程(1)は、基材の少なくとも一方の面に、ケイ素含有高分子と、エネルギー線硬化性成分とを含むガスバリア材料を積層する工程であり、具体的には、ケイ素含有高分子と、エネルギー線硬化性成分とを含むガスバリア層形成用塗布液を塗布し、必要に応じて溶媒を乾燥除去する工程である。
 ここで、ケイ素含有高分子とエネルギー線硬化成分とを含むガスバリア材料を積層する方法は、特に限定されず、公知の方法を用いることができる。例えば、スクリーン印刷法、ナイフコート法、ロールコート法、ダイコート法、インクジェット法、スピンコート法等の公知の塗布方法により基材上に形成する方法等が挙げられる。
1. Process (1)
Step (1) is a step of laminating a gas barrier material containing a silicon-containing polymer and an energy ray-curable component on at least one surface of the substrate. Specifically, the silicon-containing polymer, energy This is a step of applying a gas barrier layer-forming coating solution containing a linear curable component, and drying and removing the solvent as necessary.
Here, the method for laminating the gas barrier material containing the silicon-containing polymer and the energy beam curing component is not particularly limited, and a known method can be used. Examples thereof include a method of forming on a substrate by a known coating method such as a screen printing method, a knife coating method, a roll coating method, a die coating method, an ink jet method, a spin coating method, and the like.
2.工程(2)
 工程(2)は、工程(1)で得られたガスバリア材料中のエネルギー線硬化性成分を硬化させるとともに、層を改質させ、ガスバリア層を形成するための工程である。
 したがって、工程(2)において、エネルギー線硬化処理を施した後にプラズマイオン注入処理を実施してもよく、逆に、プラズマイオン注入処理を実施した後にエネルギー線硬化処理を施してもよく、さらには、エネルギー線硬化処理を施し、プラズマイオン注入処理を実施した後にさらに、エネルギー線硬化処理を実施してもよい。
 なお、エネルギー線硬化処理およびプラズマイオン注入処理を同時に実施しても良いが、ガスバリア性の点から、エネルギー線硬化処理を施した後にプラズマイオン注入処理を実施することがより好ましい。
2. Step (2)
Step (2) is a step for curing the energy ray-curable component in the gas barrier material obtained in step (1) and modifying the layer to form a gas barrier layer.
Therefore, in the step (2), the plasma ion implantation process may be performed after the energy beam curing process is performed, and conversely, the energy beam curing process may be performed after the plasma ion implantation process is performed. The energy beam curing process may be further performed after the energy beam curing process is performed and the plasma ion implantation process is performed.
In addition, although an energy beam hardening process and a plasma ion implantation process may be implemented simultaneously, it is more preferable to implement a plasma ion implantation process after performing an energy beam hardening process from the point of gas barrier property.
(1)エネルギー線硬化処理
 エネルギー線硬化処理は、紫外線、電子線等のエネルギー線を照射することによって、エネルギー線硬化成分を硬化させるための処理である。
 ここで、エネルギー線の種類として、照射装置等が比較的簡易であって、かつ比較的小型であることから紫外線であることが好ましい。
 したがって、このような紫外線源としては、キセノンランプ、パルスキセノンランプ、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク灯、タングステンランプなどを使用できる。
 なお、エネルギー線の照射量は、エネルギー線の種類によって異なるが、例えば、紫外線による硬化を行う時には、50~1000mJ/cm2の範囲内の値の照射量が好ましく、70~800mJ/cm2の範囲内の値の照射量がより好ましく、100~500mJ/cm2の範囲内の値の照射量がさらに好ましい。
(1) Energy beam curing process The energy beam curing process is a process for curing an energy beam curing component by irradiating energy beams such as ultraviolet rays and electron beams.
Here, as the type of energy rays, ultraviolet rays are preferable because the irradiation device and the like are relatively simple and relatively small.
Accordingly, a xenon lamp, a pulse xenon lamp, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc lamp, a tungsten lamp, or the like can be used as such an ultraviolet ray source.
The amount of energy ray irradiation varies depending on the type of energy ray. For example, when curing with ultraviolet rays, a dose amount in the range of 50 to 1000 mJ / cm 2 is preferable, and 70 to 800 mJ / cm 2 . The dose within the range is more preferable, and the dose within the range of 100 to 500 mJ / cm 2 is more preferable.
(2)プラズマイオン注入処理
 プラズマイオン注入処理は、工程(1)で得られたケイ素含有高分子およびエネルギー線硬化性成分を含む層を改質させ、優れたガスバリア性を発現させるための処理である。このプラズマイオン注入処理により、得られるガスバリア層の表層は、層の内部に比べて緻密な構造となり、高いバリア性が発現する。
 また、プラズマイオン注入処理は、希ガス等のプラズマ生成ガスを含む雰囲気下でプラズマを発生させ、負の高電圧パルスを印加することにより、層の表面に、プラズマ中のイオン(陽イオン)を注入する方法である。
(2) Plasma ion implantation treatment The plasma ion implantation treatment is a treatment for modifying the layer containing the silicon-containing polymer and energy ray-curable component obtained in step (1) to exhibit excellent gas barrier properties. is there. By this plasma ion implantation treatment, the surface layer of the obtained gas barrier layer has a dense structure as compared with the inside of the layer, and exhibits high barrier properties.
The plasma ion implantation process generates plasma in an atmosphere containing a plasma generation gas such as a rare gas, and applies negative high voltage pulses to apply ions (positive ions) in the plasma to the surface of the layer. It is a method of injection.
 また、プラズマイオン注入処理の中でも、外部電界を用いて発生させたプラズマ中に存在するイオンを、層に対して注入する方法、または外部電界を用いることなく、層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、層に注入する方法が好ましい。 Also, among plasma ion implantation processes, a method of injecting ions present in plasma generated using an external electric field into the layer, or a negative high voltage pulse applied to the layer without using an external electric field A method in which ions existing in a plasma generated only by an electric field due to is implanted into the layer is preferable.
 また、プラズマ中のイオンを注入する際には、公知のプラズマイオン注入装置を用いることができる。 Further, when ions in plasma are implanted, a known plasma ion implantation apparatus can be used.
 また、注入されるイオン種については特に制限されるものではないが、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等のアルカン系ガス類のイオン;エチレン、プロピレン、ブテン、ペンテン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン、メチルアセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン、キシレン、インデン、ナフタレン、フェナントレン等の芳香族炭化水素系ガス類のイオン;シクロプロパン、シクロヘキサン等のシクロアルカン系ガス類のイオン;シクロペンテン、シクロヘキセン等のシクロアルケン系ガス類のイオン;金、銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、ニオブ、タンタル、タングステン、アルミニウム等の導電性の金属のイオン;シラン(SiH)又は有機ケイ素化合物のイオン;等が挙げられる。 The ion species to be implanted is not particularly limited, but ions of rare gases such as argon, helium, neon, krypton, and xenon; fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur Ions of alkane gases such as methane, ethane, propane, butane, pentane and hexane; ions of alkenes such as ethylene, propylene, butene and pentene; and ions of alkadiene gases such as pentadiene and butadiene Ions: Ions of alkyne gases such as acetylene and methylacetylene; Ions of aromatic hydrocarbon gases such as benzene, toluene, xylene, indene, naphthalene and phenanthrene; Cycloalkane gases such as cyclopropane and cyclohexane Ion; cyclopentene, cyclo Ion cycloalkenes based gas such as cyclohexene; gold, silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, a conductive metal such as aluminum ion; silane (SiH 4) Or an ion of an organosilicon compound.
 これらの中でも、より簡便に注入することができ、優れたガスバリア性を有するガスバリア層が得られることから、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、及びクリプトンからなる群から選ばれる少なくとも一種のイオンが好ましい。
 なお、ポリシラザン化合物に注入されるイオン種、すなわち、イオン注入用ガスは、プラズマ生成ガスとしての機能も有することになる。
Among these, at least selected from the group consisting of hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton, because it can be more easily injected and a gas barrier layer having excellent gas barrier properties can be obtained. One kind of ion is preferred.
Note that the ion species implanted into the polysilazane compound, that is, the ion implantation gas also has a function as a plasma generation gas.
 また、イオン注入する際の真空チャンバーの圧力、すなわち、プラズマイオン注入圧力を0.01~1Paの範囲内の値とすることが好ましい。
 この理由は、かかるプラズマイオン注入時の圧力がこのような範囲にあるときに、簡便にかつ効率よく均一にイオンを注入することができ、優れた耐折り曲げ性やガスバリア性を兼ね備えたガスバリア層を効率よく形成することができるためである。
 したがって、プラズマイオン注入圧力を0.02~0.8Paの範囲内の値とすることがより好ましく、0.03~0.6Paの範囲内の値とすることがさらに好ましい。
Further, it is preferable that the pressure of the vacuum chamber during ion implantation, that is, the plasma ion implantation pressure is set to a value within the range of 0.01 to 1 Pa.
The reason for this is that when the plasma ion implantation pressure is in such a range, ions can be implanted easily and efficiently uniformly, and a gas barrier layer having excellent bending resistance and gas barrier properties can be obtained. This is because it can be formed efficiently.
Therefore, the plasma ion implantation pressure is more preferably set to a value within the range of 0.02 to 0.8 Pa, and further preferably set to a value within the range of 0.03 to 0.6 Pa.
 また、イオン注入する際の印加電圧(高電圧パルス/負電圧)を-1kV~-50kVの範囲内の値とすることが好ましい。
 この理由は、かかる印加電圧が-1kVより大きい値でイオン注入を行うと、イオン注入量(ドーズ量)が不十分となる場合があって、所望のガスバリア性が得られない場合があるためである。
 一方、印加電圧が-50kVより小さい値でイオン注入を行うと、イオン注入時にフィルムが帯電し、またフィルムへの着色等の不具合が生じる場合があって、所望のガスバリア性が得られない場合があるためである。
 したがって、イオン注入する際の印加電圧を-1kV~-15kVの範囲内の値とすることがより好ましく、-5kV~-8kVの範囲内の値とすることがさらに好ましい。
The applied voltage (high voltage pulse / negative voltage) at the time of ion implantation is preferably set to a value in the range of −1 kV to −50 kV.
The reason for this is that if ion implantation is performed with such an applied voltage greater than −1 kV, the ion implantation amount (dose amount) may be insufficient, and a desired gas barrier property may not be obtained. is there.
On the other hand, if ion implantation is performed with an applied voltage smaller than −50 kV, the film is charged during ion implantation, and defects such as coloring of the film may occur, and a desired gas barrier property may not be obtained. Because there is.
Therefore, the applied voltage at the time of ion implantation is more preferably set to a value within the range of −1 kV to −15 kV, and further preferably set to a value within the range of −5 kV to −8 kV.
 以下、実施例を挙げて、本発明をさらに詳細に説明する。但し、本発明は、特段の理由なく以下の実施例の記載に制限されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the description of the following examples without any particular reason. *
[実施例1]
1.ガスバリア積層体の製造
(1)工程1
 基材として、ポリエチレンテレフタレートフィルム(三菱樹脂社製、「PET38 T-100」、厚さ38μm、以下、「PETフィルム」という。)を準備した。
 次いで、ケイ素含有高分子として、ペルヒドロポリシラザン(表中、PHPSと表記する。)を主成分とするコーティング剤(AZエレクトロニックマテリアルズ社製、「AZNL110-20」、固形分濃度20%、)500重量部(即ち、固形分濃度100重量部)に対して、エネルギー線硬化性成分(紫外線硬化成分)として、ペンタエリスリトールトリアクリレート(表中、PETRAと表記する。)を20重量部と、光開始剤として、Irgacure127(BASF社製)を0.6重量部の割合で添加し、ガスバリア層形成用塗布液(固形分濃度:33重量%)を準備した。
 次いで、PETフィルム上に、ガスバリア層形成用塗布液を塗布し、さらに、120℃、2分間加熱して、ケイ素含有高分子およびエネルギー線硬化性成分を含む層を形成した。
[Example 1]
1. Production of gas barrier laminate (1) Step 1
A polyethylene terephthalate film (manufactured by Mitsubishi Plastics, “PET38 T-100”, thickness 38 μm, hereinafter referred to as “PET film”) was prepared as a substrate.
Next, as a silicon-containing polymer, a coating agent (“AZNL110-20” manufactured by AZ Electronic Materials, solid content concentration 20%) containing perhydropolysilazane (indicated as PHPS in the table) as a main component 500 20 parts by weight of pentaerythritol triacrylate (indicated as PETRA in the table) as an energy ray curable component (ultraviolet ray curable component) with respect to parts by weight (that is, solid content concentration of 100 parts by weight) As an agent, Irgacure 127 (manufactured by BASF) was added at a ratio of 0.6 part by weight to prepare a gas barrier layer forming coating solution (solid content concentration: 33% by weight).
Next, a gas barrier layer forming coating solution was applied onto the PET film, and further heated at 120 ° C. for 2 minutes to form a layer containing a silicon-containing polymer and an energy ray-curable component.
(2)工程2
 次いで、工程1で得られた層に対し、UV光照射ラインを用いて、エネルギー線硬化処理(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm2、ピーク強度1.466W、パス回数2回)を行い、エネルギー線硬化層を形成した。
(2) Step 2
Next, the layer obtained in Step 1 was subjected to energy ray curing treatment using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes. Twice) to form an energy ray cured layer.
 次いで、プラズマイオン注入装置(RF電源:日本電子(株)製、RF56000、高電圧パルス電源:栗田製作所(株)、PV-3-HSHV-0835)を用いて、エネルギー線硬化層に対し、下記条件にてプラズマイオン注入を行い、実施例1のガスバリア層(厚さ:150nm)を備えたガスバリア積層体とした。
チャンバー内圧:0.2Pa
プラズマ生成ガス:アルゴン
ガス流量:100sccm
RF出力:1000W
RF周波数:1000Hz
RFパルス幅:50μsec
RF delay:25nsec
DC電圧:-10kV
DC周波数:1000Hz
DCパルス幅:5μsec
DC delay:50μsec
Duty比:0.5%
処理時間:300sec
Next, using a plasma ion implantation apparatus (RF power supply: manufactured by JEOL Ltd., RF56000, high voltage pulse power supply: Kurita Seisakusho Co., Ltd., PV-3-HSHV-0835) Plasma ion implantation was performed under the conditions to obtain a gas barrier laminate including the gas barrier layer (thickness: 150 nm) of Example 1.
Chamber internal pressure: 0.2 Pa
Plasma generation gas: Argon gas flow rate: 100 sccm
RF output: 1000W
RF frequency: 1000Hz
RF pulse width: 50 μsec
RF delay: 25nsec
DC voltage: -10kV
DC frequency: 1000Hz
DC pulse width: 5 μsec
DC delay: 50 μsec
Duty ratio: 0.5%
Processing time: 300 sec
2.ガスバリア積層体の評価
 得られたガスバリア層を備えたガスバリア積層体につき、以下の評価を行った。
2. Evaluation of gas barrier laminate The following evaluation was performed on the gas barrier laminate provided with the obtained gas barrier layer.
(1)耐擦傷性評価
 得られた積層体につき、ガスバリア層の25℃における表面硬度を、表面硬度測定装置(ナノインデンター、MTS社製)により測定し、以下のように耐擦傷性を評価した。
「良好」:2.0GPa以上である。
「不良」:2.0GPa未満である。
(1) Scratch resistance evaluation About the obtained laminated body, the surface hardness in 25 degreeC of a gas barrier layer is measured with a surface hardness measuring apparatus (Nanoindenter, the product made from MTS), and scratch resistance is evaluated as follows. did.
“Good”: 2.0 GPa or more.
“Bad”: Less than 2.0 GPa.
(2)耐溶剤性評価
 耐溶剤性は、ガスバリア層を40℃の10%NaOH水溶液に90秒間浸漬試験し、以下のように耐溶剤性を評価した。
「良好」:表面硬度に差がない。
「不良」:表面硬度が低下した。
(2) Solvent resistance evaluation The solvent resistance was evaluated by immersing the gas barrier layer in a 10% NaOH aqueous solution at 40 ° C for 90 seconds and evaluating the solvent resistance as follows.
“Good”: No difference in surface hardness.
“Bad”: The surface hardness decreased.
(3)ガスバリア性評価
 得られたガスバリア積層体につき、水蒸気透過率測定装置(MOCON(株)製、AQUATRAN)を用いて、RH90%、40℃の条件下における水蒸気透過率を測定し、ガスバリア性を評価した。
(3) Gas barrier property evaluation About the obtained gas barrier laminated body, using a water vapor permeability measuring device (manufactured by MOCON Co., Ltd., AQUATRAN), the water vapor permeability under conditions of RH 90% and 40 ° C. was measured, and the gas barrier property was obtained. Evaluated.
[実施例2~5]
 実施例2~5では、エネルギー線硬化性成分としてのPETRAの配合量を、それぞれPHPS100重量部に対して、40、60、80、100重量部の割合とした以外は、実施例1と同様に、ガスバリア積層体を作成し、評価した。
[Examples 2 to 5]
In Examples 2 to 5, the blending amount of PETRA as an energy ray-curable component was set to 40, 60, 80, and 100 parts by weight with respect to 100 parts by weight of PHPS, respectively, as in Example 1. A gas barrier laminate was prepared and evaluated.
[実施例6]
 実施例6では、エネルギー線硬化性成分として、ジペンタエリスリトールヘキサアクリレート(表中、DPHAと表記する。)を用いて、PHPS100重量部に対して、40重量部の割合とした以外は、実施例1と同様に、ガスバリア積層体を作成し、評価した。
[Example 6]
Example 6 Example 6 uses dipentaerythritol hexaacrylate (denoted as DPHA in the table) as an energy ray-curable component, except that the ratio is 40 parts by weight with respect to 100 parts by weight of PHPS. As in Example 1, a gas barrier laminate was prepared and evaluated.
[実施例7]
 実施例7では、エネルギー線硬化性成分として、ペンタエリスリトールテトラアクリレート(表中、PETAと表記する。)を用いて、PHPS100重量部に対して、40重量部の割合とした以外は、実施例1と同様に、ガスバリア積層体を作成し、評価した。
[Example 7]
In Example 7, Example 1 was used except that pentaerythritol tetraacrylate (denoted as PETA in the table) was used as the energy ray-curable component and the ratio was 40 parts by weight with respect to 100 parts by weight of PHPS. Similarly, a gas barrier laminate was prepared and evaluated.
[実施例8]
 実施例8では、エネルギー線硬化性成分として、トリシクロデカンジメタノールジアクリレート(表中、DCPAと表記する。)を用いて、PHPS100重量部に対して、40重量部の割合とした以外は、実施例1と同様に、ガスバリア積層体を作成し、評価した。
[Example 8]
In Example 8, except that tricyclodecane dimethanol diacrylate (shown as DCPA in the table) was used as the energy ray-curable component, and the ratio was 40 parts by weight with respect to 100 parts by weight of PHPS. A gas barrier laminate was prepared and evaluated in the same manner as in Example 1.
[実施例9]
 実施例9では、エネルギー線硬化性成分として、ウレタンアクリレート系紫外線硬化型化合物(SHIKOH UT-4692、日本合成化学社製、表中、UAと表記する。)を用いて、PHPS100重量部に対して、40重量部の割合とした以外は、実施例1と同様に、ガスバリア積層体を作成し、評価した。
[Example 9]
In Example 9, a urethane acrylate ultraviolet curable compound (SHIKOH UT-4692, manufactured by Nippon Synthetic Chemical Co., Ltd., indicated as UA in the table) is used as an energy ray curable component, based on 100 parts by weight of PHPS. A gas barrier laminate was prepared and evaluated in the same manner as in Example 1 except that the ratio was 40 parts by weight.
[比較例1]
 比較例1では、PHPSを使用せず、エネルギー線硬化性成分としてのDPHA100重量部および光開始剤のみを使用した以外は、実施例6と同様に、ガスバリア積層体を作成し、評価した。
[Comparative Example 1]
In Comparative Example 1, a gas barrier laminate was prepared and evaluated in the same manner as in Example 6 except that PHPS was not used and only 100 parts by weight of DPHA as an energy ray-curable component and a photoinitiator were used.
[比較例2]
 比較例2では、PHPSを使用せず、エネルギー線硬化性成分としてのPETA100重量部および光開始剤のみを使用した以外は、実施例7と同様に、ガスバリア積層体を作成し、評価した。
[Comparative Example 2]
In Comparative Example 2, a gas barrier laminate was prepared and evaluated in the same manner as in Example 7 except that no PHPS was used and only 100 parts by weight of PETA as an energy ray-curable component and a photoinitiator were used.
[比較例3]
 比較例3では、PHPSを使用せず、エネルギー線硬化性成分としてのPETRA100重量部および光開始剤のみを使用した以外は、実施例1と同様に、ガスバリア積層体を作成し、評価した。
[Comparative Example 3]
In Comparative Example 3, a gas barrier laminate was prepared and evaluated in the same manner as in Example 1 except that PHPS was not used and only 100 parts by weight of PETRA as an energy ray-curable component and a photoinitiator were used.
[比較例4]
 比較例4では、PHPSを使用せず、エネルギー線硬化性成分としてのDCPA100重量部および光開始剤のみを使用した以外は、実施例8と同様に、ガスバリア積層体を作成し、評価した。
[Comparative Example 4]
In Comparative Example 4, a gas barrier laminate was prepared and evaluated in the same manner as in Example 8, except that PHPS was not used and 100 parts by weight of DCPA as an energy ray-curable component and only a photoinitiator were used.
[比較例5]
 比較例5では、エネルギー線硬化処理を行わず、プラズマイオン注入処理のみを施した以外は、実施例2と同様に、積層体を作成し、評価した。
[Comparative Example 5]
In Comparative Example 5, a laminate was prepared and evaluated in the same manner as in Example 2 except that the energy beam curing process was not performed and only the plasma ion implantation process was performed.
[比較例6]
 比較例6では、プラズマイオン注入処理を行わず、エネルギー線硬化処理のみを施した以外は、実施例2と同様に、ガスバリア積層体を作成し、評価した。
[Comparative Example 6]
In Comparative Example 6, a gas barrier laminate was prepared and evaluated in the same manner as in Example 2 except that the plasma ion implantation process was not performed and only the energy beam curing process was performed.
[比較例7]
 比較例7では、エネルギー線硬化性成分を用いずに、PHPSのみを用いて、エネルギー線硬化処理を行わず、プラズマイオン注入処理のみを施した、ガスバリア層を形成し、積層体を作成し、評価した。
[Comparative Example 7]
In Comparative Example 7, without using an energy beam curable component, using only PHPS, without performing an energy beam curing process, only a plasma ion implantation process was performed, a gas barrier layer was formed, and a laminate was created. evaluated.
 [比較例8]
 比較例8では、エネルギー線硬化性成分を用いずにPHPSのみを用いて、プラズマイオン注入処理を行わず、エネルギー線硬化処理のみを施した、ガスバリア層を形成し、積層体を作成し、評価した。
[Comparative Example 8]
In Comparative Example 8, a gas barrier layer was formed by using only PHPS without using an energy beam curable component, performing only an energy beam curing process without performing a plasma ion implantation process, creating a laminate, and evaluating it. did.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1から、実施例1~9のガスバリア積層体は、ガスバリア性、耐擦傷性および耐溶剤性のいずれにも優れていることが確認された。
 一方、ケイ素含有高分子を含まない比較例1~4の積層体は、耐擦傷性および耐溶剤性は優れているものの、ガスバリア性が劣っている。
 また、エネルギー線硬化処理を行っていない比較例5の積層体は、ガスバリア性はある程度は得られるものの、耐擦傷性および耐溶剤性に劣っている。
 また、プラズマイオン注入処理を行っていない比較例6の積層体は、ガスバリア性、耐擦傷性および耐溶剤性のいずれも劣っている。
 また、エネルギー線硬化性成分を含まず、エネルギー線硬化処理を行っていない比較例7の積層体は、ガスバリア性には優れるものの、耐擦傷性および耐溶剤性が劣っている。
 また、エネルギー線硬化性成分を含まず、プラズマイオン注入処理を行っていない比較例8の積層体は、ガスバリア性、耐擦傷性および耐溶剤性のいずれも劣っている。
From Table 1, it was confirmed that the gas barrier laminates of Examples 1 to 9 were excellent in all of gas barrier properties, scratch resistance and solvent resistance.
On the other hand, the laminates of Comparative Examples 1 to 4 containing no silicon-containing polymer have excellent scratch resistance and solvent resistance, but are inferior in gas barrier properties.
Moreover, the laminated body of Comparative Example 5 that has not been subjected to the energy beam curing treatment is inferior in scratch resistance and solvent resistance, although a certain degree of gas barrier property is obtained.
Moreover, the laminated body of the comparative example 6 which has not performed plasma ion implantation processing is inferior in all of gas barrier property, scratch resistance, and solvent resistance.
Moreover, although the laminated body of the comparative example 7 which does not contain an energy-beam curable component and has not performed the energy-beam hardening process is excellent in gas barrier property, it is inferior in abrasion resistance and solvent resistance.
Moreover, the laminated body of the comparative example 8 which does not contain an energy-beam curable component and has not performed plasma ion implantation treatment is inferior in all of gas barrier properties, scratch resistance, and solvent resistance.
 以上、詳述したように、本発明によれば、基材の少なくとも一方の面に、ケイ素含有高分子およびエネルギー線硬化性成分を含んでなるガスバリア材料に、エネルギー線硬化処理およびプラズマイオン注入処理を施すことによりガスバリア層を形成することによって、優れたガスバリア性および耐擦傷性を有するガスバリア積層体が得られるようになった。
 よって、本発明のガスバリア積層体は、液晶デバイスや有機エレクトロルミネッセンスデバイスにおいて、電極形成用の基板としてのプラスチックフィルムとして有効に使用されることが期待される。
As described above in detail, according to the present invention, an energy beam curing process and a plasma ion implantation process are performed on a gas barrier material containing a silicon-containing polymer and an energy beam curable component on at least one surface of a substrate. By forming a gas barrier layer by applying, a gas barrier laminate having excellent gas barrier properties and scratch resistance has been obtained.
Therefore, the gas barrier laminate of the present invention is expected to be effectively used as a plastic film as a substrate for electrode formation in liquid crystal devices and organic electroluminescence devices.
10:ガスバリア層
12:基材
50:ガスバリア積層体
10: Gas barrier layer 12: Base material 50: Gas barrier laminate

Claims (9)

  1.  基材の少なくとも一方の面に、ガスバリア層を有するガスバリア積層体であって、
     前記ガスバリア層が、ケイ素含有高分子およびエネルギー線硬化性成分を含んでなるガスバリア材料に由来しており、
     当該ガスバリア材料につき、エネルギー線硬化処理してあるとともに、プラズマイオン注入処理してあることを特徴とするガスバリア積層体。
    A gas barrier laminate having a gas barrier layer on at least one surface of a substrate,
    The gas barrier layer is derived from a gas barrier material comprising a silicon-containing polymer and an energy ray-curable component;
    The gas barrier laminate is characterized in that the gas barrier material is subjected to energy beam curing treatment and plasma ion implantation treatment.
  2.  前記エネルギー線硬化性成分が、エネルギー線硬化型のモノマ及びオリゴマあるいはいずれか一方であることを特徴とする請求項1に記載のガスバリア積層体。 The gas barrier laminate according to claim 1, wherein the energy ray curable component is an energy ray curable monomer and / or oligomer.
  3.  前記ケイ素含有高分子が、ポリシラザン化合物であることを特徴とする請求項1または2に記載のガスバリア積層体。 The gas barrier laminate according to claim 1 or 2, wherein the silicon-containing polymer is a polysilazane compound.
  4.  水蒸気透過率が0.1g/(m2・day)以下であることを特徴とする請求項1~3のいずれか一項に記載のガスバリア積層体。 The gas barrier laminate according to any one of claims 1 to 3, wherein the water vapor permeability is 0.1 g / (m 2 · day) or less.
  5.  前記プラズマイオン注入処理が、プラズマ生成ガスを含む雰囲気下で、プラズマを発生させ、負の高電圧パルスを印加することにより、処理層の表面に、プラズマ中のイオンを注入するプラズマイオン注入であることを特徴とする請求項1~4のいずれか一項に記載のガスバリア積層体。 The plasma ion implantation process is a plasma ion implantation in which plasma is generated in an atmosphere containing a plasma generating gas and ions in the plasma are implanted into the surface of the treatment layer by applying a negative high voltage pulse. The gas barrier laminate according to any one of claims 1 to 4, wherein:
  6.  前記エネルギー線硬化性成分が、官能基数が3以上の多官能(メタ)アクリレートモノマであることを特徴とする請求項1~5のいずれか一項に記載のガスバリア積層体。 The gas barrier laminate according to any one of claims 1 to 5, wherein the energy ray-curable component is a polyfunctional (meth) acrylate monomer having 3 or more functional groups.
  7.  前記ケイ素含有高分子100重量部に対して、前記エネルギー線硬化性成分の配合量を1~500重量部の範囲内の値とすることを特徴とする請求項1~6のいずれか一項に記載のガスバリア積層体。 The amount of the energy ray-curable component is set to a value in the range of 1 to 500 parts by weight with respect to 100 parts by weight of the silicon-containing polymer. The gas barrier laminate as described.
  8.  基材の少なくとも一方の面に、ガスバリア層を有するガスバリア積層体の製造方法であって、
     下記工程(1)~(2)を含むことを特徴とするガスバリア積層体の製造方法。
    (1)ケイ素含有高分子およびエネルギー線硬化性成分を含むガスバリア材料を、基材の少なくとも一方の面に積層する工程
    (2)前記ガスバリア材料に対して、エネルギー線硬化処理およびプラズマイオン注入処理を施すことにより、ガスバリア層を形成する工程
    A method for producing a gas barrier laminate having a gas barrier layer on at least one surface of a substrate,
    A method for producing a gas barrier laminate comprising the following steps (1) to (2).
    (1) A step of laminating a gas barrier material containing a silicon-containing polymer and an energy ray curable component on at least one surface of a substrate (2) An energy ray hardening treatment and a plasma ion implantation treatment are performed on the gas barrier material. Step of forming a gas barrier layer by applying
  9.  前記工程(2)において、前記ガスバリア材料に対して、エネルギー線硬化処理を施した後に、プラズマイオン注入処理を施すことにより、ガスバリア層を形成することを特徴とする請求項8に記載のガスバリア積層体の製造方法。 9. The gas barrier laminate according to claim 8, wherein, in the step (2), a gas barrier layer is formed by performing a plasma ion implantation process after performing an energy ray curing process on the gas barrier material. Body manufacturing method.
PCT/JP2013/061569 2012-05-21 2013-04-19 Gas barrier layered product, and production method for gas barrier layered product WO2013175910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012115310 2012-05-21
JP2012-115310 2012-05-21

Publications (1)

Publication Number Publication Date
WO2013175910A1 true WO2013175910A1 (en) 2013-11-28

Family

ID=49623611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061569 WO2013175910A1 (en) 2012-05-21 2013-04-19 Gas barrier layered product, and production method for gas barrier layered product

Country Status (2)

Country Link
TW (1) TW201347985A (en)
WO (1) WO2013175910A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3786219A4 (en) * 2018-04-25 2021-06-02 Lg Chem, Ltd. Barrier film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105744768A (en) * 2014-12-11 2016-07-06 深圳富泰宏精密工业有限公司 Housing, preparation method for the same, and electronic device using the same
KR102432417B1 (en) * 2016-06-10 2022-08-12 닛토덴코 가부시키가이샤 Transparent conductive film and touch panel
TWI708680B (en) * 2019-01-08 2020-11-01 穎華科技股份有限公司 Polymer plastic front plate and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278328A (en) * 1994-04-14 1995-10-24 Toyota Autom Loom Works Ltd Formation of thin film
JPH11268196A (en) * 1998-03-23 1999-10-05 Asahi Glass Co Ltd Transparent coated molding and manufacture thereof
WO2001044371A1 (en) * 1999-12-16 2001-06-21 Asahi Glass Company, Limited Polysilazane composition and coated molded article having cured object obtained therefrom
WO2010107018A1 (en) * 2009-03-17 2010-09-23 リンテック株式会社 Molded article, process for producing the molded article, member for electronic device, and electronic device
WO2012039357A1 (en) * 2010-09-21 2012-03-29 リンテック株式会社 Formed body, production method thereof, electronic device member and electronic device
WO2012039387A1 (en) * 2010-09-21 2012-03-29 リンテック株式会社 Formed body, production method thereof, electronic device member and electronic device
WO2012039355A1 (en) * 2010-09-21 2012-03-29 リンテック株式会社 Gas-barrier film, process for producing same, member for electronic device, and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278328A (en) * 1994-04-14 1995-10-24 Toyota Autom Loom Works Ltd Formation of thin film
JPH11268196A (en) * 1998-03-23 1999-10-05 Asahi Glass Co Ltd Transparent coated molding and manufacture thereof
WO2001044371A1 (en) * 1999-12-16 2001-06-21 Asahi Glass Company, Limited Polysilazane composition and coated molded article having cured object obtained therefrom
WO2010107018A1 (en) * 2009-03-17 2010-09-23 リンテック株式会社 Molded article, process for producing the molded article, member for electronic device, and electronic device
WO2012039357A1 (en) * 2010-09-21 2012-03-29 リンテック株式会社 Formed body, production method thereof, electronic device member and electronic device
WO2012039387A1 (en) * 2010-09-21 2012-03-29 リンテック株式会社 Formed body, production method thereof, electronic device member and electronic device
WO2012039355A1 (en) * 2010-09-21 2012-03-29 リンテック株式会社 Gas-barrier film, process for producing same, member for electronic device, and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3786219A4 (en) * 2018-04-25 2021-06-02 Lg Chem, Ltd. Barrier film
US11591445B2 (en) 2018-04-25 2023-02-28 Lg Chem, Ltd. Barrier film

Also Published As

Publication number Publication date
TW201347985A (en) 2013-12-01

Similar Documents

Publication Publication Date Title
JP6883127B2 (en) Long gas barrier laminate and its manufacturing method
EP2832539B1 (en) Gas barrier film laminate, member for electronic device, and electronic device
KR101495482B1 (en) Gas barrier film and method for producing same
KR102168722B1 (en) Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
US10967618B2 (en) Curable composition for forming primer layer, gas barrier laminated film, and gas barrier laminate
WO2013175910A1 (en) Gas barrier layered product, and production method for gas barrier layered product
KR20150135520A (en) Laminate, method for producing same, member for electronic device, and electronic device
CN113226746A (en) Gas barrier laminate
CN113226750B (en) Gas barrier laminate
WO2014103756A1 (en) Gas-barrier film
JPWO2013168647A1 (en) Method for producing gas barrier film
JP6544832B2 (en) Gas barrier laminate, member for electronic device and electronic device
WO2013125351A1 (en) Gas barrier structure and method for forming gas barrier structure
WO2015152076A1 (en) Elongated gas barrier laminate, method for producing same, electronic device member, and electronic device
JP6694380B2 (en) Gas barrier laminate, electronic device member, and electronic device
TW201808632A (en) Laminate, member for electronic devices, and electronic device
JP2016140994A (en) Gas barrier film and electronic device
WO2013175911A1 (en) Gas barrier sheet, and production method for gas barrier sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP